Advanced Configuration and Power
Interface (ACPI) Specification

Version 6.3
January 2019

ACPI Specification, Version 6.3

Acknowledgements

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2018, Unified Extensible Firmware Interface (UEFI) Forum, Inc. All Rights Reserved. The UEFI Forum is
the owner of all rights and title in and to this work, including all copyright rights that may exist, and all rights to use and
reproduce this work. Further to such rights, permission is hereby granted to any person implementing this specification
to maintain an electronic version of this work accessible by its internal personnel, and to print a copy of this
specification in hard copy form, in whole or in part, in each case solely for use by that person in connection with the
implementation of this Specification, provided no modification is made to the Specification.

UEFI Forum, Inc. January 2019 Page ii

ACPI Specification, Version 6.3

Revision History

ACFTI . Mantis Number / Description i SREtE
Revision

6.3 1851 Extend GTDT to describe ARMv8.1 architected CNTHV timer Section 5.2.24

6.3 1855 ARS Error Inject Table 9-299
Section 9.20.7.7
Section 9.20.7.9.1
Section 9.20.7.12

6.3 1867 Add Trigger order to PCC Identifier structure within PDTT Section 5.2.28

6.3 1873 Peripheral-attached Memory Table 5-132

6.3 1883 Reserve the table names "CRAT" and "CDIT" http://uefi.org/acpi

6.3 1893 New NVDIMM Device methods NCH and _NBS Section 9.20.8.1
Section 9.20.8.2

6.3 1898 PCC Operation Region Section 5.5.2.4
Section 6.5.4
Section 19.2.7
Section 19.6
Section 20.2.5.2

6.3 1900 13C host controller support Table 6-190
Table 6-241

6.3 1904 Generic Initiator Affinity Structure Section 5.2.16

6.3 1910 NVDIMM Address Range Scrubbing (ARS) interface update Section 5.6.6
Section 9.20.7

6.3 1911 _PRD object in Table 6-186 has no definition Appendix C

6.3 1913 New NVDIMM Device methods for Health Error Injection Section 5.6.6
Section 9.20.8

6.3 1914 HMAT Enhancements Section 5.2.27

6.3 1922 HPX Enhancements Section 6.2.9

6.3 1930 ASL: Make some arguments to ASL operators optional Section 19.6.7

Section 19.6.46
Section 19.6.63
Section 19.6.88

UEFI Forum, Inc.

January 2019

Page iii

http://uefi.org/acpi
http://uefi.org/acpi

ACPI Specification, Version 6.3

Section 19.6.34
Section 19.6.41
Section 19.6.42
Section 19.6.109
Section 19.6.110
Section 19.6.151

ACFTI . Mantis Number / Description i SREtE
Revision
6.3 1931 ASL: extend Load() operator to allow table load from an ASL Section 19.6.76
buffer
6.3 1932 ASL: deprecate Unload operator Section 19.6.146
and related references
6.3 1934 SPE support for ARM Section 5.2.12.14
Table 5-155
6.3 1939 Error Disconnect Recover Notification Table 5-165
Section 6.3.5
6.3 1944 Outdated copied text from PCl Firmware Spec Section 6.2.11.3
Section 6.2.11.4
6.3 1946 Generic Initiator _OSC Bit Section 5.2.16.6
Table 6-200
6.3 1948 Adds a “Hot-plug Capable” flag to the Local APIC and x2APIC Table 5-44
structures in MADT Table 5-47
Table 5-58
6.3 1958 PCC Operation Region Updates Section 5.5.2.4
Section 19.2.7
Table 19-420
Section 20.2.5.2
6.3 1959 Update to ECR 1914 Table 5-146
6.3 1978 GT Block Timers table - update the Timer Interrupt Mode Table 5-126
description
6.3 1979 ACPI version change from 6.2 to 6.3 Table 5-33
6.3 1980 Fix link to local APIC flags in the Processor Local APIC Structure | Table 5-46
table
6.2B 1819 Errata: remove support for multiple GICD structures Table 5-43
6.2B 1852 Fix Inconsistent TranslateType Language Section 19.6.33

UEFI Forum, Inc.

January 2019

Page iv

https://mantis.uefi.org/mantis/view.php?id=1852

ACPI Specification, Version 6.3

ACFTI . Mantis Number / Description e
Revision
6.2B 1870 PPTT Clarifications Section 5.2.29.1
6.2B 1881 Incorrect reference "Memory Devices" in "5.2.21.10 Section 5.2.21.10
Interaction with Memory Hot Plug"

6.28B 1882 Incorrect EINJ table references/link Table 18-404

6.2B 1894 SRAT GICC Flags Field Definition Errata Table 5-76

6.2B 1905 Missing description in 6.1.9 title in ACPI 6.2a Section 6.1.9

6.2B 1909 Update NFIT SPA Range Structure Table 5-132

6.2B 1929 Miscellaneous Errata Section 19.6.38
Section 19.6.53
Section 19.6.54
Removed redundant
Interrupt section (now
Section 19.6.63).

6.2B 1945 NFIT_SPA_ECR Section 5.2.25.2

6.2B 1951 PXM Clarifications Section 5.2.16
Section 5.2.16.6
Section 6.2.14
Section 6.2.15
Section 17.2
Section 17.2.1
Section 17.3
Section 17.3.1
Section 17.4
Section 17.4.1

6.2B 1960 PWR_BUTTON desription should say "power button", not Table 5-34

"sleep button"

6.2B 1962 Clarifications for the use of _REG methods Section 6.5.4

6.2B 1965 Clean up Address Space ID Table 5-25
Table 6-238
Section 19.6.114
Section 19.2.7

6.2B 1968 Clarifications for ACPlI Namepaths Section 5.2

UEFI Forum, Inc.

January 2019

Page v

https://mantis.uefi.org/mantis/view.php?id=1881
https://mantis.uefi.org/mantis/view.php?id=1882

ACPI Specification, Version 6.3

ACFTI . Mantis Number / Description i SREtE
Revision
6.2 A 1839 Missing space in title of ACPI RAS Feature Table (RASF) Section 5.2
Section 5.2.20
Table 5-29
6.2A 1837 Typos in Extended PCC subspaces (types 3 and 4) Section 14.1.6
6.2 A 1831 Add a new NFIT Platform Capabilities Structure Section 5.2.25.1
Figure 5-22
Table 5-131
Section 5.2.25.9
6.2 A 1827 PPTT ID Type Structure offsets Section 5.2.29.3
6.2 A 1825 Remove bits 2-4 in the Platform RAS Capabilities Bitmap table Section 5.2.20.4
6.2A 1820 Region Format Interface Code description Section 5.2.25.6
6.2A 1819 Remove support for multiple GICD structures Section 5.2.12
Section 5.2.12.1
6.2A 1814 PDTT typos and PPTT reference Revision History
Section 5.2
Section 5.2.28
6.2A 1812 Minor correction to Trigger Action Table Section 18.6.4
6.2 A 1811 General Purpose Event Handling flow Section 5.6.4
6.2 1795 ACPI Table Signature Reservation Table 5-30
6.2 1781 Clarify ResourceUsage Descriptor Argument Table 6-193
6.2 1780 Add DescriptorName to PinFunction and PinConfig Macros Section 19.6.102 and
Section 19.6.103
6.2 1770 Update Revision History Revision History
6.2 1769 FADT Format: ACPI Version update to reflect 6.2 versus 6.1 Table 5-33
6.2 1755 Deprecate PCC Platform Async Notifications Section 14.4, and
Section 14.5.1
6.2 1743 PinGroupFunctionConfig resource descriptors update Section 6.4.3.11,
Section 6.4.3.12,
Section 6.4.3.13,
6.2 1738 PCIEXP_WAKE Bits description updates Table 4-15, Table 4-16, and
Table 5-34
6.2 1731 Software Delegated Exception HW error notitication Section 18-394
UEFI Forum, Inc. January 2019 Page vi

ACPI Specification, Version 6.3

ACPI i
¢ . . Mantis Number / Description i SREtE
Revision
6.2 1725 NVST Updates - NFIT ARS Error Injection Section 9.20.7.9,
Section 9.20.7.10,and
Section 9.20.7.11
6.2 1724 NVST Updates - Platform RAS Capabilities Updates Section 5.2.20.4
6.2 1723 NVST Updates - Translate SPA DSM Interface Section 2.1, Section 9.20.7.8
6.2 1722 NVST Updates - ARS Updates Section 2.1,
Section 9.20.7.2,
Section 9.20.7.4,
Section 9.20.7.5,and
Section 9.20.7.6
6.2 1721 NVST Updates - Labels Section 2.1, Section 5-
184,and Section 6.5.10
6.2 1717 ASL Grammar Update for Reference Operators Section 19.2
6.2 1714 Reserve the table name "SDEI" Table 5-30
6.2 1705 Add Heterogeneous Memory Attributes Tables (HMAT) Section 5.2, Section 5.6.6,
Section 5.6.8, Section 6.2,
Section 6.2.18, and
Section 17.4
6.2 1703 Time & Alarm Device _GCP new bits Section 9.18.2
6.2 1680 Pin Group, Pin Group Function and Pin Group Configuration Table 6-224 and
Descriptors and Macros Section 6.4.3.10
6.2 1679 Pin Configuration Descriptor and Macro Table 6-224 and
Section 6.4.3.10
6.2 1677 CPPC Registers in System Memory Section 6.2.11.2 and
Section 8.4.7.1
6.2 1674 GHES_ASSIST Proposal Section 18.3.2
6.2 1669 FADT HEADLESS flag should be valid for HW_REDUCED_ACPI Section 5.2.9
platforms
6.2 1667 Processor Properties Topology Table (PPTT) Section 5.2.29
6.2 1659 Master Slave PCC channels Chapter 14, Platform
Communications Channel
PCC
6.2 1656 SRAT Support for ITS Section 5.2.16
6.2 1650 CPPC Support for Multiple PCC Channels Table 6-200 and

Section 8.4.7.1.9

UEFI Forum, Inc.

January 2019

Page vii

ACPI Specification, Version 6.3

ACFTI . Mantis Number / Description i SREtE
Revision
6.2 1649 ECR: Minor updates to IA-32 Architecture Deferred Machine Section 18.3.2.10
Check
6.2 1645 Add _STR Support for Thermal Zones Section 6.1, Section 6.1.10,
Section 11.4,
Section 11.4.14, and
6.2 1632 Secure Devices Table (SDEV) Table 5-30
6.2 1611 Add a _PPL object to processor devices Section 8.4.7
6.2 1597 ASL For() Conditional Loop Macro Section 19.6.51,
Section 19.2.5,
Section 19.2.6, and
Section 19.3.4
6.2 1588 Clarification on Interrupt Descriptor Usage for "Interrupt Section 6.2.11.2,
Combining" Section 6.4.3.6,
Section 19.6.62
6.2 1585 Reserve table signature “WSMT,” with reference to ACPI links Table 5-30
page for more details
6.2 1583 Diverse Highest Processor Performance Table 5-158 and Table 6-200
6.2 1578 Function Config Descriptor and Macro Table 6-213 and
Section 6.4.3.9
6.2 1576 Platform Debug Trigger Table (PDTT) Section 5.2.28
6.2 1573 Extensions to the ASL Concatenate operator Section 19.2.6 and
Section 19.6.12
6.2 1569 Add new introduction (background) section Background chapter
6.1 1796 Clarify that Type 1 can never support Level triggered platform Section 14.1.4
Errata A | interrupt
6.1 1785 Lack of clarity on use of System Vector Base on GICD Section 5.2.12.15
Errata A | structures
6.1 1783 Clarification on Interrupt Descriptor Usage for Bit [0] Table 6-237
Errata A | Consumer/Producer
6.1 1760 Typo - incorrect bit offsets in the PM1 Enable Registers Fixed Table 4-16
Errata A | Hardware Feature Enable Bits table.
6.1 1758 Minor Errata in ERST tables, Serialization Instruction Entry and | Table 18-399 and Table 18-
Errata A | Injection Instruction Entry. 405

UEFI Forum, Inc.

January 2019

Page viii

ACPI Specification, Version 6.3

ACFTI . Mantis Number / Description i SREtE

Revision
6.1 1756 Errata: Ensure non-secure timers are accesible to non-secure Table 5-126
Errata A | in the Flag Definitions: Common Flags table.
6.1 1740 Errata in section 9.13: wrong reference Section 9.13
Errata A
6.1 1715 0 is a valid GSIV for the secure EL1 physical timer in GTDT Table 5-120
Errata A
6.1 1687 Typo in the Reserved field of the GIC ITS Structure table. Table 5-66
Errata A
6.1 1686 Clarification of the FADT HW_REDUCED_ACPI flag description Table 5-33
Errata A | inthe FADT Format table.
6.1 1676 Clarifications for the ASL Buffer (Declare Buffer Object) Section 19.6.10
Errata A
6.1 1671 Typo in Memory Affinity Structure table Section 5-72
Errata A
6.1 1670 Update for _OSlI return value Section 5.7.2
Errata A
6.1 1664 Clarification of the RSDP Structure table, Revision description. Table 5-66
Errata A
6.1 1662 Clarification of the Generic Communications Channel Table 14-370
Errata A | Command Field table.
6.1 1661 typos in the Generic Communications Channel Status Field Table 14-371 and
Errata A | table and the Platform Notification section. Section 14.5
6.1 1660 type in the Generic Communications Channel Shared Memory | Table 14-369
Errata A | Region table
6.1 1651 LPI Clarifications Section 8.4.4.3
Errata A
6.1 1644 Mismatch of mantis number 1449 vs. change description Revision History
Errata A
6.1 1643 Incorrect row order in GET_EXECUTE_OPERATION_TIMINGS Table 18-397
Errata A | table
6.1 1642 Clarifications and fixes to _PSD and _TSD Table 5-184
Errata A
6.1 1639 _WPC and _WPP are missing in the Predefined ACPI Names Table 5-164
Errata A | table.
6.1 1616 Clarify which processor ID to use in the EINJ for ARM Table 18-403
Errata A

UEFI Forum, Inc.

January 2019

Page ix

ACPI Specification, Version 6.3

ACFTI . Mantis Number / Description i SREtE
Revision

6.1 1606 Errata: typos in the Interrupt Resource Descriptor Macro Section 19.6.62

Errata A | definition

6.1 1602 Updates to the PMC Method Result Codes table Table 10-338

Errata A

6.1 1601 Typos in the _CPC Implementation Example Section 8.4.7.1.11

Errata A

6.1 1600 Typos in PCC Subspace Structure Type 1 and Type 2. Table 14-366 and Table 14-

Errata A 367

6.1 1599 Add clarification to existing text (_OSC Control Field via arg3) Table 6-202

Errata A

6.1 1591 ASL grammar clarification for “executable” AML opcodes Section 5.4

Errata A

6.1 1589 Wireless Power Calibration Device ACPI ID not defined Section 10.5 (Table 10-292

Errata A removed) and Table 5-163

6.1 1582 Clarification for Time and Alarm wake description Section 9.18.1

Errata A

6.1 1581 Processing Sequence for Graceful Shutdown Request - needto | Table 5-166 and

Errata A | update section 6.3.5.1 to reflect change Section 6.3.5.1

6.1 1579 typos Table 5-130 and Table 5-131

Errata A

6.1 1577 BGRT Image Orientation Offset Table 5-107

Errata A

6.1 1572 Update ASL grammar to support multiple Definition Blocks Section 19.2.3

Errata A

6.1 1571 Update AML Filename description for ASL DefinitionBlock Section 19.6.28

Errata A | operator

6.1 1552 GIC Redistributor base address language in GICC leaves room Table 5-60

Errata A | for ambiguity

6.1 1549 Errata: wrong offset in Generic Communications Channel Table 14-369

Errata A | Shared Memory Region table.

6.1 1527 Qualcomm feedback on ACPI 6.1 draft 2 Throughout

6.1 1524 Strange hotlink Section 5.7.5

6.1 1514 Comments against 6.1 Draft from HPE Throughout--draft

corrections and typos, but
especially Section 9.20.7.2

UEFI Forum, Inc.

January 2019

Page x

ACPI Specification, Version 6.3

ACFTI . Mantis Number / Description i SREtE
Revision
6.1 1512 Microsoft feedbacks on ACPI 6.1 draft 2 Section 5.2.25,
Section 9.20.7,
Section 18.3.2
6.1 1503 Editorial comments against 6.1 Draft 1 Throughout--draft
corrections & typos
6.1 1500 ACPI 6.1 - Graceful Shutdown (Device Object Notification) Table 5-166
6.1 1499 FIT and _MAT ASL nits in 6.0 and 6.1 Draft Section 6.2.10, Section 6.5.9
6.1 1490 ACPI Version update to reflect 6.1 versus 6.0 Table 5-33
6.1 1483 NFIT SPD extensions and clarifications Section 5.2.25x,
Section 6.5.9,
Section 9.20x
6.1 1478 Wireless Power Calibration ACPI Device Section 10.5 & Section 10.6
6.1 1427 Addition to Memory Device State Flags in NFIT Table 5-133
6.1 1395 DSM interfaces associated with NVDIMM-N objects Section 9.20.2x through
Section 9.20.7
6.1 1384 ERST/EINJ max wait time Table 18-397, Table 18-404
6.1 1367 Interrupt-signaled Events Section 4.1.1.1 Section 5.6,,
Section 5.6.10,
Section 5.6.4, Section 5.6.5
Section 5.6.5.2,
Section 6.2.11.2,
Section 7.3.13,
Section 18.3.2.7.2,
Section 18.4 Added
Section 5.6.9, through
Section 5.6.9.4
6.1 1356 ARM APEI extensions Section 18.3.2.7,
Section 18.3.2.8,
Section 18.3.2.9
6.1 1344 Sharing of Connection Resources Section 5.5.2.4.6 through
NOTE: The changes were included in ACPI 6.0, but was missed in the Section 5.5.2.4.6.3.9
ACPI 6.0 Revision History Section 19.6.15
6.1 1326 Section 2.2, Table 5-37,
Section 7.4.2.5, Section 15,
Table 15-374, Section 16.1.4
6.0 1488 Typo on description of PkglLength encoding (ACPI v6.0, section | Section 5.4
Errata 5.4)

UEFI Forum, Inc.

January 2019

Page xi

ACPI Specification, Version 6.3

ACFTI . Mantis Number / Description i SREtE
Revision

6.0 1487 The Length of GIC ITS Structure is wrong Table 5-66

Errata

6.0 1470 Region Format Interface Code clarification Table 5-137

Errata

6.0 1462 5.2.21 Errata Section 5.2.21

Errata

6.0 1461 5.2.21.10 Clarification Section 5.2.21.10

Errata

6.0 1449 Graceful Shutdown Request (Device Object Notification Section 2.1, Table 5-44,

Errata Values) Section 5.2.12.6,Table 5-51,
Section 5.2.12.9,
Section 5.2.12.14 through
Section 5.2.12.18,
Section 5.2.25, Section 5.6,
Table 6-193, Table 6.2.10,
Table 6-249, Table 6.5.9

6.0 1445 Section 19.6.99 "Package" of the specification needs updating | Section 19.6.100

Errata

6.0 1444 GTDT CntReadBase Physical address should be optional Section 5.2.24

Errata

6.0 1433 Time and Alarm _GCP changes in support of wakes from S4/S5 | Section 9.18.2

Errata

6.0 1432 Errata - Explicit Data Type Conversions Section 19.3.4,

Errata Section 19.3.5.2,
Section 19.3.5.3

6.0 1406 NFIT RAMDisk Update Section 5.2.25.2

Errata

6.0 1403 Two distinct definitions of the MADT have the same revision Table 5-43

Errata number

6.0 1393 In FADT: if X_DSDT field is non-zero, DSDT field should be Table 5-33

Errata ignored or deprecated

6.0 1392 Incorrect length in the GIC ITS Structure Table 5-66

Errata

6.0 1386 Clarify APEI vs UEFI runtime variable support Table 18-397

Errata

6.0 1385 ACPI 6.0 typo and table misnumbering Section 18.5.2.1,

Errata

UEFI Forum, Inc. January 2019 Page xii

ACPI Specification, Version 6.3

Bytes ranges

ACFTI . Mantis Number / Description i SREtE
Revision
6.0 1380 Unnecessary restrictions to FW vendors in ordering of GIC Section 5.2.12.14
Errata structures in MADT
6.0 1378 Duplication of table 5-155/156, section mismatch in GIC duplicates of Table 5-175 &
Errata redistributor Table 5-180 removed;
6.0 1374 section mismatch: _CCA method belongs to section 6.2 Device | Table 6-189/Table 6-193
Errata Configuration Objects?
6.0 1372 Fix inconsistency for _PXM method in section 17 Section 17.2.1,
Errata Section 17.3.2
6.0 1368 Various errata fixes and clarifications in chapter 18 APEI Section 18.3.1,.Section 18.3.
Errata 2.7.1, Section 18.5.1,
Section 18.6.1,
Section 18.6.2,
Section 18.6.4
6.0 1361 Clarify _PIC Method on ARM Section 5.8.1
Errata
6.0 1289 replace use of the term "BIOS" with more accurate Throughout
Errata descriptions
6.0 1154 Ensure that ACPI and UEFI specs agree on the treatment of Section 15.4
Errata "holes" in the memory map
6.0 1370 Changes needed for ACPI 6.0: persistent memory S4 behavior Section 16.3.4
6.0 1359 Vendor Range for E820 Address Types and UEFI memory Types | Table 15-374
6.0 1354 Disambiguation of _REV Section 5.7.4
6.0 1343 Comments against v6.0 Final Draft Section 18.6.2;
Section 18.6.4
6.0 1340 comment against the Final Draft: Minor errata in register fields | Section 8.4.4.3.4
of LPl example
6.0 1332 Fixes for ACPI 6.0 Draft March 2 Table 5-37;
Section 5.2.25.2Table 5-132
6.0 1328 ACPI 6.0 Draft feedback - Mantis 1228 Table 5-62
6.0 1337 Missing reference in Extended Address Space Descriptor Section 6.4.3.5.4
Definition, Section 6.4.3.5.4
6.0 1333 ACPI 6.0 March2 Draft Feedback - Bits and NFIT related NFIT throughout
6.0 1329 ACPI 6.0 Feb 18 Draft - Follow consistent notation for Bits and | throughout

UEFI Forum, Inc.

January 2019

Page xiii

ACPI Specification, Version 6.3

ACFTI . Mantis Number / Description i SREtE
Revision

6.0 1327 ACPI 6.0 Feb 18 draft feedback - NFIT related NFIT throughout

6.0 1324 ACPI 6.0 Feb 5 Draftl Feeback2 - Mantis 1250 Section 5.2;
Section 5.2.25;;Section 6.1.1
Section 5.6.6

6.0 1320 ACPI 6.0 Feb 5 Draftl Feedback - Mantis 1250 Section 5.2;
Section 5.2.25;;Section 6.1.1
Section 5.6.6

6.0 1319 Comment against ACPI 6.0 Draft 1 concerning Mantis 1279 Section 19.1;Section 19.6.3;
Section 19.6.5;Section 19.6.
26;;Section 19.6.31;Section
19.6.60;Section 19.6.61Secti
on 19.6.68 - Section 19.6.74;
Section 19.6.78Section 19.6.
85Section 19.6.86Section 19
.6.92

6.0 1312 Add USB-C Connection support to _UPC Table 9-293;Section 9.14

6.0 1306 New ACPI Version Placeholder Table 5-33

6.0 1302 Errata on reference in section 6.2.11.2 Platform-Wide OSPM Section 6.2.11.2

Capabilities

6.0 1294 Typo in section 5.7.2: "Section" used when "Table" was meant | Section 5.7.2

6.0 1293 Reserve "STAO" and "XENV" table signatures Table 5-30

6.0 1292 A Missing space in first paragraph of Section 2.4 Section 2.4

6.0 1284 Battery ACPI ECR Section 5-184
Section 10.2.2.7;Table 10-
329
;Section 10.2.2;Table 10-331

6.0 1282 AML: Improve Disassembly of Control Method Invocations Section 19.6.44;Section 20.2
.5.2;Section 20-440

6.0 1281 ASL Printf and Fprintf Debug MacrosTable 10-331Table 10-331 | Section 19.2.5;Section 19.2.
6;Section 19.3.4;Section 19.
3.5.2;Section 19.3;Section 1
9.4;Section 19.6.52;Section
19.6.107;

6.0 1280 ASL Helper Macro for _PLD (Physical Location of Device) - Section 19.2.6;Section 19.3.

ToPLD()

4:Section 19.3.5.2;Section 1
9.4;Section 19.5;Section 19.
6.140

UEFI Forum, Inc.

January 2019

Page xiv

ACPI Specification, Version 6.3

ACPI
Revision

Mantis Number / Description

Affected Sections

6.0

1279 ASL Extensions for Symbolic Operators and Expressions (ASL
2.0)

Section 19.1;Section 19.6.3;
Section 19.6.5;Section 19.6.
26;;Section 19.6.31;Section

19.6.60;Section 19.6.61Secti
on 19.6.68 - Section 19.6.74;
Section 19.6.78Section 19.6.
85Section 19.6.86Section 19
:6.92

6.0

1265 Missing word in figure 1-1

Figure 1-1

6.0

1264 Device Power Management Clarifications

Section 2.3;Section 2.3.1;Sec
tion 3.3.1;

Section 3.3;Section 3.4Secti
on 3.4.2Section 3.4.3Section
3.4.3Section 3.4.4x);
Section 7;

Section 7.1Section 7.2x;
Section 7.3

6.0

1262 New Thermal Zone Objects

Table 5-
184;Section 11.1.5.1;Section
11.4.8;Section 11.4.21

6.0

1261 _0OSC, add OS-->Platform information to communicate >16 p-
states are supported

Table 6-200

6.0

1258 Standby Thermal Trip

Section 11.4.5

6.0

1253 Clarification of S5 (Soft-Off) and S1~S4 Sleeping States

Section 2.4;Section 3.9.4;Sec
tion 4.7;Section 4.8.2.3;Secti
on 4.8.3.2.1;Section 7.3.1

6.0

1252 Incorrect Indentation in first page of Section 3

Section 3

6.0

1250 Support for Non-Volatile Memory Firmware Interfaces

Section 5.2;
Section 5.2.25;;Section 6.1.1
Section 5.6.6

6.0

1241 PCC and level interrupts for HW reduced platforms

Section 14.1.2;Section 14.1.
5

6.0

1232 Deprecate Processor Keyword

Table 5-46;Table 5-
52;Section 5.2.12.10;Section
5.2.12.12;Section 8.4;
;Section 11.7.1;Section 11.7.
2;

;Section 19.6.30;Section 19.
6.108

6.0

1231 Adjust max p-states

Section 2.6

UEFI Forum, Inc.

January 2019

Page xv

ACPI Specification, Version 6.3

ACFTI . Mantis Number / Description GRIRTEE Sl
Revision
6.0 1230 Adding Support for Faster Thermal Sampling Table 6-200; Table 5-184
;Section 11.4.17
Section 11.4.22;Section 11.6
6.0 1229 Reserve IORT and support for ARM GICv3/4 ITS in MADT Table 5-29; Table 5-45;
Section 5.2.12.18
6.0 1206 Clarify _HID/_CID/_CLS usage model Section 6.1;Section 6.1.5;Sec
tion 6.2x
6.0 1203 CPPC heterogeneous performance capabilities Section 8.4.7;Section 8.4.7.1
.10;
6.0 1197: MADT Efficiency Classes and wording change for MP Parking Table 5-60
update
6.0 1176 FADT Hypervisor Vendor Identification Support Table 5-33
6.0 1171 Extend Address Ranger Types and UEFI Memory Type to Table 5-
comprehend persistent memory. 37;Section 6.4.3.5.4.1;Sectio
n 15; Table 15-
379,Section 15.4
Table 15-380
6.0 1152 Support for Platform-specific device reset Section 7.3.25 and
Section 7.3.26t; Table 7-255
Table 7-256
6.0 1132 Generic Button(s) Abstraction Table 5-183; Add new
Section 9.19 and following.
6.0 1125 ACPI Low Power Idle Table (LPIT) and _LPD proposal Section 5.6.7;Section 5.6.8;
Table 6-200;
Section 7.1;Section 7.2.5;
Section 7.4.2.1;Section 8.4;S
ection 8.4.1;
Section 8.4.2;Section 8.4.2.1
; Section 8.4.3.1
5.1 1265 Missing word in figure 1-1 Figure 1-1
Errata
5.1 1252 Incorrect Indentation in first page of Section 3 Section 3
Errata
5.1 1243 Clarify whether or not the FACS is optional or not Section 5.2.9; Table 5-33
Errata
5.1 1233 Fix broken Link and Example for _CLS Section 6.1.3
Errata
UEFI Forum, Inc. January 2019 Page xvi

ACPI Specification, Version 6.3

ACFTI . Mantis Number / Description i SREtE
Revision

5.1 1228 Present GIC version in MADT table Table 5-62

Errata

5.1 1196 Table reference in Section 9.8.3.2 is Incorrect Section 9.9.3.2

Errata

5.1 1193 Parking protocol field link is incorrect Section 5.2.12.14;

Errata Table 5-60

5.1 1190 Table references in Section 18 - ACPI Platform Error Interfaces | Table 18-383; Table 18-385

Errata (APEI) are incorrect

5.1 1189 _CCA attribute default value description does not work for Section 6.2.17

Errata ARM systems

5.1 1181 MADT GICC table definition is wrong Table 5-61; 5.2.12.14

5.1 1180 FADT minor version byte length is wrong 5-34

5.1 1179 Errors in GTDT Section of 5.1 draft 5.2.24,5.2.24.1;Tables 5-
115, 5-118, 5-121, 5-122

5.1 1175 Bad section reference in ACPI 5.1 19.2.3

5.1 1164 Modifications to UEFI Forum ownership of PNP ID and ACPIID | 6.1.5

Registry

5.1 1161 Misc typos in draft documents 5.2.1.6;
5.2.16.4;5.2.24;5.2.12.14;
5.2.24.1.1; Table 5-74;Table
5-115-116;Table 5-118-119;
Table 5-121; Table 5-61; 5-
618.4.5.1, 8.4.5.1.2.3 Table
6-162, Table 8-229; RM
duplicates from 1123/
1130:8.4.5.1.31.1

5.1 1160 ACPI 5.1 draft corrections related to _DSD (SEE 1126 BELOW) 6.2.5;Was Table 5-133 & 6-
142 now-->5-148 & 6-157

5.1 1157 Reserve ACPI Low Power Ildle Table Signature "LPIT" Table 5-31

5.1 1155 Updates to M1133 MADT Table 5-63, 5-64

5.1 1151 Bug in ASL example code PRT3 code example
following Figure 9-49

5.1 1149 GTDT changes for new GT Configurations 5.2.24,5.24.1x

UEFI Forum, Inc.

January 2019

Page xvii

ACPI Specification, Version 6.3

ACFTI . Mantis Number / Description i SREtE
Revision
5.1 1136 Add a Notification Type for System Resource Affinity Change Table 5-119 Device Object
Event Notifications,
new 17.2.2
5.1 1134 FADT changes for PSCI Support on ARM platforms Table 5-34, 5-36, New table
5-37
5.1 1135 PCC Doorbell Protocol for HW-Reduced Platforms 14.1.1, 14.1.2-4,14.2.1-2,
14.3-4
5.1 1133 MADT Updates for new GICs 5.2.12.15-17, Table 5-43,
5.2.12 table 5-45, 5-60, 5-61,
5-63, 5-66
5.1 1131 Per-device Cache-coherency Attribute 6.2, 6.2.16; Was Table 6-
142-->Table 6-153
5.1 1126 Add _DSD Predefined Object-- “DeviceSpecific Data” Was Table 5-133 & 6-142
properties now-->5-148 & 6-157
5.1 1123 CPPC Performance Feedback Counter Change Tables 5-126, 8.4.5, 8.4.5.1x
1130 CPPC2 8.4.5.1,8.4.5.1.3.1-4; Was
[overlapping/duplicate tickets] Table 8-218-->8-229
5.1 1116 Add x2APIC and GIC structure for _MAT method 6.2.10
50B 1145 Support GICs in proximity domain 5.2.16 5.2. new section 16.4
new tables, 6.2.13 Table 5-
65
5.0B 1144 Fix the gap for Notify value description 5.6.6, new tables: Table 5-
132, 5-133
5.0B 1142 Error Source Notifications 18.3.2.6.2, 18.4, Table 18-
290
5.08B 1117 Move http://acpi.info/links.htm content to UEFI Forum 1.10,5.2.4,5.2.22.3,5.2.24,
Website 5.6.7,9.8.3.2, 13,13.2.2
A.2.4, A.2.5; Tables 5-31, 5-
60, 5-133
5.0B 1113 Typos in ACPI 5.0a Table 6-184
5.0B 1148 Inconsistent BIX object description/example Was Table 10-234-->10-250
5.0B 1143 Typos in ACPI 5.0a 6.1.8,8.4.1
5.08B 1102 Clarify Use of GPE Block Devices in Hardware-Reduced ACPI 3.11.1,4.1,9.10
5.0B Mantis 1114 Lack of description on Bit 4 of _STA 6.3.7

UEFI Forum, Inc.

January 2019

Page xviii

ACPI Specification, Version 6.3

::;Lion Mantis Number / Description (G IESEImIE
5.0A Jira 51 incorrect type information Table 19-322
5.0A Jira 50 Misspelling of “management” 3.10
5.0A Jira 49 Updated description of DerefOf to specify behavior when 19.5.29

attempt is made to de-reference a reference (via Index) to a NULL
(empty) package element.
5.0A Jira 48 Text changes to change PM Timer from required to optional 4.8.1.4,4.8.2.1,4.8.3.3,
5.2.9
50A Jira 46 Figure 5-29 is a printer killer Fig 5-29
5.0A Jira 45 Typos in Figure 5-30 Fig 5-30
5.0A Jira 44 Link issues in table 5-133 Table 5-133
5.0A Jira 43 Invalid AddressSpaced keywords in example ASL code, 6.5.4
orphan _REG
5.0A Jira 42 Serious bug in ASL example code for _OSC 6.2.10.4
5.0A Jira 41 Fix problems with PCC address space description 14.5
5.0A Jira 40 Issues with _GRT and _SRT Buffer description 9.18.3,9.18.4
5.0A Jira 39 Clarification needed for _CST Table 8-206
5.0A Jira 38 Incorrect field name in "Generic Register Descriptor". 6.4.3.7
5.0A Jira 37 Clarifications for _CPC method 8.4.5.1.2.1-2
5.0A Jira 36 Restore legality of module-level executable AML code. 19.1.3
5.0A Jira 35 ASL grammar: "UserTerm" is confusing 19.1
5.0A Jira 34 Description of _GTM has a bad line with very large font 9.8.2.1.1
5.0A Jira 33 Missing information in _CPC description 8.4.5.1
5.0A Jira3 2 Error in description of _REG method 6.5.4
50A Jira 31 Clarify length field for Serial resource descriptor 6.4.3.8.2
Table 6-190
50A Jira 30 Argument descriptions in incorrect order for resource 19.5.41,19.5.101
descriptors
5.0A Jira 29 Issues with memory descriptors (grammar and macros) 19.1, 19.5
5.0A Jira 28 Problems with ASL grammar entry for DWordMemory 19.1.8
50A Jira 27 Problems with Unicode description for _MLS method 6.1.7
5.0A Jira 26 Incorrect grammar for "32-bits" and "64-bits" throughout
UEFI Forum, Inc. January 2019 Page xix

ACPI Specification, Version 6.3

::;Lion Mantis Number / Description (G IESEImIE
5.0A Jira 25 Incorrect table reference in 19.2.5.4 19.2.5.4
5.0A Jira 24 Resource Descriptor tables -- formatting issues 6.4
5.0A Jira 23 Interrupt Descriptors: Wake bit should be split from Share bit | 6.4
5.0A Jira 22 ASL grammar for ObjectType operator is incorrect 19.1.6
5.0A Jira 21 ASL grammar is missing description of type 6 opcodes 19.1.5
5.0A Jira 20 Problems with table 5-31 (reserved ACPI table signatures) Table 5-31
5.0A Jira 19 Clarify description of _BQC method B.5.4
50A Jira 18 Fix for EC OpRegion availability example 5.2.15
5.0A Jira 17 Clarify meaning of BGRT status field Table 5-97
5.0A Jira 16 Correction to _DSM example 9.14.1
5.0A Jira 15 Clarify _DSM backward compatibility requirement and 9.15.1
example
5.0A Jira 14 Description of _CPC is missing definition of unsupported 8.4.5.1
optional registers
5.0A Jira 13 Incorrect _PLD name expansion Table 5-133, 6.1.8
50A Jira 12 PLD description needs clarification 6.1.8
5.0A Jira 11 Errata forwarded from HP 5.2.24,5.6.5.3
5.0A Jira 10 More issues with ACPI table 5-133 Table 5-133
5.0A Jira 7 Error in QWordlO, ExtendedlO descriptions 19.5.41,19.5.101
50A Jira 6 Appendix A is now misnamed in ACPI 5.0 Appendix A
5.0A Jira5 PARTIAL--Need group agreement--Method _GTS and _BFS are 7.3,7.3.3,16.1, 16.1.6-7,
unused, should be removed from ACPI spec. fig. 7-204
5.0A Jira 4 Table 5-133 - issues with _Sx methods Table 5-133
5.0A Jira 3 Issues with predefined names table (table 5-133) Table 5-133
5.0A Jira 2 Description of new sleep control register incorrect Table 4-24
5.0A Jira 1 SystemCMOS keyword inconsistencies Table 5-114,5.5.2.4.1, 6.5.4
19.,5.96,9.15.1 - 2, 19.5.96,
20.2.5.2
5.0 Ptec-002 5.2.6
Dec. 2,
2011

UEFI Forum, Inc.

January 2019

Page xx

ACPI Specification, Version 6.3

ACFTI . Mantis Number / Description i SREtE
Revision

5.0 MSFT-020 Enumeration Power Controls 7.2.7,7.2.12,

5.0 MSFT-019 GTDT table 5.2.24

5.0 MSFT_0018 Locking Targets from AML 5.7.5

5.0 MSFT-0017 PLD clarification for handhelf form factors 5.1.8

5.0 MSFT-0016 Extended GPIO-signaled Event Numbers 5.6.5.3

5.0 MSFT-0015 (0.1) D3 Cold Errata 7.2.1,7.2.18 through 7.2.22

5.0 MSFT-0014 5.2.23

5.0 MSFT-0013_ADR for SIO 6.2

5.0 MSFT-0012 ROM (Get ROM Data) 5.6.6,9.16

MSFT-010 Reserved Table Signatures 5.2.6

5.0 MSFT-0009 (0.4)TimeAndAlarmDevice Modification 9.18

5.0 MSFT-0008 Collaborative Processor Performance Control 8.4.5

5.0 MSFT-0007 Platform Communications Channel added (new ch. 14) Ch 14 (new)

5.0 MSFT-0007-0008 - (new) 14

Platform_Communication_Channel_and_CPPC_changes

5.0 MSFT-0006 SPB Abstraction 3.11.3,5.5.2.4.5.x,6.4.3.8.2,
6.5.8,18.1.3, 18.1.6, 18.1.7,
18.5.44, 18.5x,19.2.5.2

5.0 MSFT-0005 GPIO Abstraction 5.5.2.4.x,5.6, 5.6.5.x, 6.4.3,
6.3.8.x, 18.5.51, 18.5.52,
18.5.89

5.0 MSFT-0004 (0.2) Fixed DMA Descriptor 6.4.2.9, 18.5.50

5.0 MSFT-0003 Device identification 6.1,6.1.3,6.1.5,6.1.6,6.1.9

5.0 MSFT-0002 Interrupt Descriptors for Generic Interrupt Controller 5.2.11,5.2.14-15

5.0 MSFT-0001 HW-reduced ACPI 3.11.x,4,4.1.x,4.3.7,5.2.9,
5.2.9.1,6.4.2.1,6.4.3.6,
7.2.11,7.3.4,9.6,12,12.1,
12.6,12.11,12.11.1, 15,
15.1.x, 15.3, 15.3.1.x,
18.5.55, 18.5.57

5.0 INTC-0014 Remove a line (reference) not needed A2.3

5.0 INTC-0013

5.0 INTC-0012 fix AML opcode table 19.3

UEFI Forum, Inc.

January 2019

Page xxi

ACPI Specification, Version 6.3

ACFTI . Mantis Number / Description i SREtE
Revision
5.0 INTC-0011 fix table offsets 18.6.x (tables)
5.0 INTC-0010 Update Constant Descriptions 18.5.88,
18.5.89,18.5.104,18.5.136

5.0 INTCO009 RASF 5.2.20.x
5.0 INTC-008 5.2.6
5.0 INTC-006 Fixed Example 6.2.104
5.0 INTC-005 Update Package Description 18.5.92
5.0 INTC-004 Table Definition Language 20, 21.x
5.0 INTC-003 MPST 6.1,6.1.3,6.1.5,6.1.6,6.1.9
5.0 INTC-002 EINJ 17.6.1,17.6.3, 17.6.5
5.0 INTC-001 (0.8) Firmware Performance Data Table (FPDT) 5.2.20.4,5.2.20.6
5.0 INTC-001 Firmware Performance Data Table (FPDT) (0.4) 5.2.19-5.2.20.6
5.0 HP-0002 Additional Hardware Error Notification Types 18.3.2.7
5.0 HP-0001 (0.2) BMC Requested Graceful Shutdown 5.6.5,6.3.5
5.0 ACPI4.0 _DSM function O clarification 9.14.1
5.0 AMD-002 0.3 ROM (Get ROM Data) B.3.3
4.0a Errata corrected and clarifications added.
Apr. Removed text concerning government requirement of mechanical 2.2
2010 off 5.2.6

Clarified URL update document, Corrected section references for

APIC, SLIT, SRAT in Table 5-5, Update URLs and reformated Table 5- 5212.4

UEFI Forum, Inc.

January 2019

Page xxii

ACPI Specification, Version 6.3

ACPI
Revision

Mantis Number / Description

Affected Sections

Removed “TODO” note. Updated example
Repaired diagram that would not display properly Figure 15-1
Corrected error conditions from “fatal” to “corrected

Corrected several incorrect section references, Clarified number of
Generic Error Data Entry structures is >=1 (not Zero)

Clarified number of Generic Error Data Entry structures is >=1 (not
Zero)

Added new section clarifying SCI notification for generic error
sources

Added new section describing Firmware First error handling
Clarified purpose of the codes Table 17-17
Added reference to table of COMMAND_STATUS codes Table 17-23

Clarified purpose of the command status codes in Table 17-27 and
the error type definitions in Table 17-28

Added _ATT resource descriptor field name
Clarified rules for Buffer vs. Integer return types from a field unit
Corrected section/page reference

10.4.1

10.5
15.1
17.1
17.3.1

17.3.2.6.1
17.3.2.6.2
17.4
17.5.1.1
17.6.1
17.6.3

18.1.8
18.5.44,89
18.5.101

4.0

June
2009

Major specification revision. Clock Domains, x2APIC Support, Logical
Processor Idling, Corrected Platform Error Polling Table, Maximum
System Characteristics Table, Power Metering and Budgeting, IPMI
Operation Region, USB3 Support in _PLD, Re-evaluation of _PPC
acknowledgement via _OST, Thermal Model Enhancements, _OSC
at _SB, Wake Alarm Device, Battery Related Extensions, Memory
Bandwidth Monitoring and Reporting, ACPI Hardware Error
Interfaces, D3hot.

3.0b

Oct.
2006

Errata corrected and clarifications added.

3.0a
Dec.
2005

Errata corrected and clarifications added.

3.0
Sept.
2004

Major specification revision. General configuration enhancements.
Inter-Processor power, performance, and throttling state
dependency support added. Support for > 256 processors added.
NUMA Distancing support added. PCl Express support added. SATA
support added. Ambient Light Sensor and User Presence device
support added. Thermal model extended beyond processor-centric
support.

UEFI Forum, Inc. January 2019

Page xxiii

ACPI Specification, Version 6.3

ACPI
Revision

Mantis Number / Description

Affected Sections

2.0c
Aug.
2003

Errata corrected and clarifications added.

2.0b
Oct.
2002

Errata corrected and clarifications added.

2.0a
Mar.
2002

Errata corrected and clarifications added. ACPI 2.0 Errata Document
Revision 1.0 through 1.5 integrated.

ACPI12.0
Errata
Doc.
Rev. 1.5

Errata corrected and clarifications added.

ACPI2.0
Errata
Doc.
Rev. 1.4

Errata corrected and clarifications added.

ACPI2.0
Errata
Doc.
Rev. 1.3

Errata corrected and clarifications added.

ACPI12.0
Errata
Doc.
Rev. 1.2

Errata corrected and clarifications added.

ACPI2.0
Errata
Doc.
Rev. 1.1

Errata corrected and clarifications added.

ACPI2.0
Errata
Doc.
Rev. 1.0

Errata corrected and clarifications added.

2.0
Aug.
2000

Major specification revision. 64-bit addressing support added.
Processor and device performance state support added. Numerous
multiprocessor workstation and server-related enhancements.
Consistency and readability enhancements throughout.

1.0b
Feb.
1999

Errata corrected and clarifications added. New interfaces added.

UEFI Forum, Inc. January 2019

Page xxiv

ACPI Specification, Version 6.3

ACPI
Revision

Mantis Number / Description

Affected Sections

1.0a
Jul.
1998

Errata corrected and clarifications added. New interfaces added.

1.0
Dec.
1996

Original Release.

UEFI Forum, Inc. January 2019

Page xxv

ACPI Specification, Version 6.3

Table of Contents

ReViISion HisStory........ccciier s iii
JLIE=1 o1 (3 o 0 1 1= 41 £ XXVi
IS o 0 =T o1 [T xliii
List Of FIQUIresScooiiiiieeerrn s lii
OVOIVIBW... ..t r e s s s s s s s s s s e s e mn s s e e e ma s s s e nmnss s s nnmnssssnnnnnnsnns 1
I 101 Yo [0 o2 1 o o PSP 8
(S T T T o = 1 T = PP 8
1.2 Power Management RatioNale...............uuiiiiiiiiiii e 9

L IPRC T =T = oy VR U o o o PRSPPI 10

1.4 OEM Implementation SIrategyuuuiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 10
1.5 Power and SIEEP BULIONSuuuiiiiiiiiiiiiiiiiiiiiiee et e e e e e e e ee e e e e e e e eeeeeeeeeeeeeeeeaaeees 11
1.6 ACPI Specification and the Structure of ACPIuueiiiiiiiiiiiieeeeeeeeeeeeeee 11

1.7 OS and Platform COmMPlANCEuuuuiiiiiiiiiiiiiiiiiiieiceeeeeeee e e e e e e e e e eeaaeeeaeaaaaaaaeeees 13
1.7.1 Platform Implementations of ACPI-defined Interfaces L. 13

1.7.2 OSPM Implementationscoooiviiiiiiiiiiiiieee e 17

1.7.3 0SS REQUIrEMENES....coiiiiiiiiiiiie e, 17

1.8 Target AUIENCE......oeeiiiii ettt e e e e e e s 18

1.9 Document Organizationcooooiiiiiiiiiieee e 18
1.9.1 ACPI Introduction and OVEIVIEWcc.ccvvieiiiiiiiiiiiiiieeeeeeeeee e 19

1.9.2 Programming MOEISc.uuuuniiiii i e e 19

1.9.3 Implementation Details............ccooii i 19

1.9.4 Technical REFErENCEooiiiiiiie e 21

1.9.5 ReVSION NUMDEIS...cooiiiiiiiiiieee e 21

1.10 Related DOCUMENTSuuiiiiiiiiiiiiiiiiieii ettt ettt e et e et e eeeeeeeeeeeeeeeeeeeeeeeaeeaaeeeaaaaeaees 21

2 Definition of Terms....... ..o r e s e e e nnnns 23
2.1 General ACPI TEIMUNOIOQYuuuuiiiiiiiiiiieiiieiiiiiireeaaaaeaaaeeaaaaaaeess 23
2.2 Global System State Definitionsc..ueiiiiiiiii e 33
2.3 Device Power State DefinitionS.............euueiiiiiiiiiiiiiieieeeeeeeee et 35
2.3.1 Device Performance States ... 37

2.4 Sleeping and Soft-off State DefinitioNscevviiiiiiiiiiii 37
2.5 Processor Power State Definitionsoooiiiiiiiiii e 38
2.6 Device and Processor Performance State Definitionscccccoovviiiiiiiieic e, 38

BTN 0 o I 0o s Lo - o £ 40
3.1 System Power ManagemMENT.........oouiiiiiiiiiiiiieeeeeeeeeee ettt a e e 42
3.2 POWET SEAEES....eeeeiiiii e e et e e e e e e e ae e e e e e eana 42
3.2.1 POWEr BULON.....cco 43

3.2.2 Platform Power Management CharacteristiCs............cccccoviiiiiiiiiieiiiiiiiieeeeeeen 43

3.3 Device Power Management.........cuuiiiiiiieeiiiiie et 44
3.3.1 Device Power Management Model ... 45

3.3.2 Power Management StandardS...........ccccuuueveuiiiiiiiuiiiiriieiiiieieeeesessseeseeeeeeeeeeeeeeeee 46

UEFI Forum, Inc. December 2018 Page xxvi

ACPI Specification, Version 6.3

3.3.3 DeVvice POWEr SEateS.....ccoiiiiiiiiiiiee e 46
3.3.4 Device Power State DefinitionS...........oociiiiiiiei e 46

3.4 CoNtrolliNg DEVICE POWETcuiiiiieiiiiiiiieeeeeeeeeeeee ettt ettt e aaaaaa s 47
3.4.1 Getting Device Power Capabilitiescoooiiiiiiiiiie e 47
3.4.2 Setting Device POWEr States..........ooouiiiiiiiiiiiie e 48
3.4.3 Getting Device POWEr STatusooouiiiiiiiiiiiee e 48
3.4.4Waking the System ... 48
3.4.5 Example: Modem Device Power Management...........ccccceeeviiieiiiiiiiiccin e eeeeeeeens 49

3.5 Processor Power Management..........oouiiiiiiiiii e e et e e e e e e an e e e e eeens 52
3.6 Device and Processor Performance States ... 52
3.7 Configuration and “Plug @nd Play”coooiiiii et 53
3.7.1 Device Configuration Example: Configuring the Modemcccocciiiiiiiiinnns 53

3. 7.2 NUMA NOGES ...ttt e e e e e e et e e e e e e e s eeeaaeeeaas 53

3.8 SYSIEM EVENLS ...uiiiiiiiiiiiiiieee ettt e 54
3.9 Battery ManagemeENt.... ... aaaaan 54
3.9.1 Battery COMMUNICAtIONSeuiiiiiiiiiiiieie e 55
3.9.2 Battery Capacitycouuiiiiiiiiiiiiee e 55
3.9.3 Battery Gas GaUJEcooiiuuiiiiiiiee ettt e e 55
3.9.4 LoW Battery LEVEIS.....cooo oot 56
3.9.5 Battery Calibration..........c..ccccc . 58

3.10 Thermal Management...........ooo it e e e e 58
3.10.1 Active and Passive Cooling MOEScooiiiiiiiiiieiiiieee e 59
3.10.2 Performance vs. Energy Conservationcccceeeeeoiiiiiiiieiiiee e 60
3.10.3 AcCOUSEICS (NOISE) ..ccoeeiiieeeeeee e 60
3.10.4 Multiple Thermal ZONES..........uuuoiiiiiiie et e e e e eeeeenees 60

3.11 Flexible Platform Architecture SUPPOrtcooviiiiiiiiiiii 60
3.11.1 Hardware-reduced ACPI ettt ee e eeeeeeeeeeeeees 61
3.11.2 LOW-POWET 1AL ...ttt aeeeeeeeneees 61
3.11.3 CONNECLION RESOUIMCESuuuieiiiiiiiiieeeae et e eeeeaeeeaeeaesessseeseeeseeeseeeeeeeeees 61

4 ACPI Hardware Specification ... 64
4.1 Hardware-ReducCed ACPI ettt e e e e e e e e e e e e e e e e e e eeeeeaeeeees 64
4.1.1 Hardware-Reduced Events ... 65

4.2 Fixed Hardware Programming MOElcoooiuiiiiiiiiiiiiieeee e 65
4.3 Generic Hardware Programming MOdElouuuiiiiiiiiiiiiiiiieiieiieereeeeeeeeeeeeeeeeeeeeeeeeeeeeees 66
v R B T F=To | = o ¢ T = To 1= oL < TSP 68
4.5 Register Bit NOtatioNuvueii e e e e e e e eeaaees 69
4.6 The ACPI Hardware MOAEuuiuueiiiiiiiiiiiiiiiieiieeeeeeeee ettt e e e e e e e e e e e aaaaaeas 69
4.6.1 Hardware Reserved BitScoooviiiiiiiiiiiiii 74
4.6.2 Hardware Ignored BitSoooiiiiiiiiiii s 74
4.6.3 Hardware Write-Only BitS........cooovviiiiiiiiiiii 74
4.6.4 Cross Device DEPENAENCIES.........cocvveeiiiiiiiiiiieeeee e 74

4.7 ACPI HardWare FEAtUIESuuiiei ettt e e e e e e e e e e e e e nnnneeeeas 75
4.8 ACPI RegiIStEr MOUEIt 77
4.8.1 ACPI RegiSter SUMMAIYcooiiiiiiiiie et 80
4.8.2 Fixed Hardware FEatures........ouvvvviiieiiiiiieeeeee e, 82
4.8.3 Fixed Hardware RegiSters.........coooviiiiiiiiiii e 93

UEFI Forum, Inc. December 2018 Page xxvii

ACPI Specification, Version 6.3

4.8.4 Generic Hardware Registers..........cccccvvvviiiiiiiiii 102

5 ACPI Software Programming Model.............iiiinin 109
5.1 Overview of the System Description Table Architecturec, 109
5.1.1 Address Space Translationooooiiiiiiiiiii i 112

5.2 ACPI System Description Tables........c.coovvvviiiiiiiiiiiii 112
5.2.1 Reserved Bits and Fields ... 113
5.2.2 CompPatiDility......cooeieieieeee e 113
5.2.3 Address FOrmMat.. ...ttt ettt e e e e e e e e eeeeeees 113
5.2.4 Universally Unique Identifiers (UUIDS)........cccooiiiiiiiiiiiiiieeeeeeeeeeeee e 116
5.2.5 Root System Description Pointer (RSDP)........coocuiiiiiiiiiiiieeeeeeeen 116
5.2.6 System Description Table Headerccoooiiiiiiiiiiii 118
5.2.7 Root System Description Table (RSDT)ccoooiiiiiiiiii s 124
5.2.8 Extended System Description Table (XSDT)cccccoiiiiiiiiiiiieiaans 125
5.2.9 Fixed ACPI Description Table (FADT)couiiiiiiieieeeeeeieeeeeee e 126
5.2.10 Firmware ACPI Control Structure (FACS).......ccccuuiiiiieiiiiiieeeeeeeeeeee e 142
5.2.11 Definition BIOCKS.......coooiie e 148
5.2.12 Multiple APIC Description Table (MADT)......cccooiiiiiici s 151
5.2.13 Global System INterrupts...........ooooiiiiiiiiiii s 168
5.2.14 Smart Battery Table (SBST) ...cccooiiiiiiee e 169
5.2.15 Embedded Controller Boot Resources Table (ECDT)cccevveeiiiiiiiiiiiieeeenn. 170
5.2.16 System Resource Affinity Table (SRAT)cooiiii e 172
5.2.17 System Locality Distance Information Table (SLIT)ccccccceiiinniinniinininn, 179
5.2.18 Corrected Platform Error Polling Table (CPEP)cccccooviiiiiieiiiiinns 180
5.2.19 Maximum System Characteristics Table (MSCT)cccceciiuurrrnriinrriniiinininnns 182
5.2.20 ACPI RAS Feature Table (RASF)ooiiiiiiiiiiie e 184
5.2.21 Memory Power State Table (MPST)oooviiiii e 188
5.2.22 Boot Graphics Resource Table (BGRT).......couiiiiiiiiiiiiiiiieieeeeeeeieeeee 206
5.2.23 Firmware Performance Data Table (FPDT)cccoooiiiiiiiiiiiias 209
5.2.24 Generic Timer Description Table (GTDT)ccccoiiiiiicii s 216
5.2.25 NVDIMM Firmware Interface Table (NFIT)cccooiiiiiiiiiiiieias 222
5.2.26 Secure Devices (SDEV) ACPI Table ... 239
5.2.27 Heterogeneous Memory Attribute Table (HMAT).......oooiiiiiiieeen 243
5.2.28 Platform Debug Trigger Table (PDTT)ccuiiiiiieeeeieeeee e 252
5.2.29 Processor Properties Topology Table (PPTT) ..o 256

5.3 ACPI NAGMESPACE ..oevvieiiiiiiiiiiiiiieeeeeee ettt ettt e aeaaeens 265
5.3.1 Predefined RoOOt NameESPaACEScccooeiiiiiiiiiiiicce s 268

ST T2 O o)=Y £ TSP 268

5.4 Definition BIOCK ENCOINGeeiiiiiiiiiiieiieeee et 268
5.4.1 AML ENCOTING ...ttt ettt e e eeaeeas 269
5.4.2 Definition Block Loading..........ccoooiiiiiiiiiiiii e 269

5.5 Control Methods and the ACPI Source Language (ASL)..........ccooeeiiiiiee, 271
5.5.1 ASL StatemMeNtSooeiiiiiie i 272
5.5.2 Control Method EXECULION..........uuiiiiiiiiiiie e 272

5.6 ACPI Event Programming MOlooooriiiiiiiiiii e 302
5.6.1 ACPI Event Programming Model Components.........cccccooiiiiiiieeieeiiiiiiiiieeeeeennn 302
5.6.2 Types Of ACPIEVENTS ... 303

UEFI Forum, Inc. December 2018 Page xxviii

ACPI Specification, Version 6.3

5.6.3 Fixed Event Handlingooooumiiiiii e e e e e 304
5.6.4 General-Purpose Event Handlingcooooiiiiiiiiii i 304
5.6.5 GPIO-signaled ACPIEVENLSccoooiiiiiiiii i 309
5.6.6 Device Object NOtIficationsoooiiiiiiiiiiii e 311
5.6.7 Device Class-SpecCific ODJECLSooouviiiiiiiiiii e 318
5.6.8 Predefined ACPI Names for Objects, Methods, and Resources....................... 320
5.6.9 Interrupt-signaled ACPl events ... 331
5.6.10 Managing a Wake Event Using Device PRW Objectsccccocuvrvrrrnnnnnnns 334

5.7 Predefined ODJECESouviiieieeeieeeeeeeeeeeeeee e, 335
5.7.1_GL (Global LOCK MULEX)ureieeeiiiiiiiiiieeee et 335
5.7.2 _OSI (Operating System Interfaces)ccccoviiiiiiiiiiiiiiee 335
5.7.3_0OS (OS NamMe ODJECL) ...ciueeieeiiiiiie et e e e ee e 338
5.7.4_REV (Revision Data Object)............coooiiiiiiiiiii e 339
5.7.5 DLM (DeViceLock MULEX)......ccooiiiiiiiiiiiiic e 339

5.8 System Configuration ODJECLSccooviiiiiiiiiiiiii 341
5.8.1 _PIC MELNOM ...t e e e e e e e eeeaaeens 341

6 Device Configuration ... 342
6.1 Device Identification ObJECES.......cooovviiiiiiiii 342
0t I T N o [OSSP 343
6.1.2 _CID (Compatible ID) ...cccceiiiiiiiiiee et e e e a e 344
6.1.3 _CLS (ClasS COUL)uuueiieiiiiiiee it et et eeee et a et e e e e e e e e nnneeeeens 345
6.1.4 DDN (DOS Device Name).......coooiiiiiiiiiii e 346
6.1.5 _HID (Hardware ID)cooiiiiiiiiiee ettt e e 346
6.1.6 _HRV (Hardware RevViSION) ..ot 347
6.1.7 _MLS (Multiple Language String)........cc.uueeieiiiiiiiiiiiiee e 347
6.1.8 _PLD (Physical Location 0f DEVICE)..........cuiiiiiiiiiiiiiiiieeieeiiiieeeeee e 348
6.1.9 _SUB (SUDSYSEM ID) ..cciiiiiiiiieiiii e 357
6.1.10 _STR (SHING) <ot e e e e e e e eeaeeas 357
6.1.11 _SUN (Slot User NUMDEN)........ccooiiiiiiiiei e 357
6.1.12 _UID (UNIQUE ID)...eeeeiiieeeieeeieeeie ettt e e e e e e e e e s nnnnneeeeaens 358

6.2 Device Configuration ODJECLSouiiiiiiiiii e 358
6.2.1 _CDM (CIOCK DOM@IN) ittt e e 359
6.2.2 _CRS (Current Resource SettingS).........uueeiiiiiiiiiiiiieiee e 360
6.2.3 _DIS (DISADIE)......eeeeeeeieeee et 360
6.2.4 DMA (Direct MemMOry ACCESS).....ccoieeiiiiii it 361
6.2.5 DSD (Device Specific Data)cooooiiiiiiiiii i 362
6.2.6 _FIX (Fixed Register Resource Provider)cccoueveiiiiiiiiiiiieeeeeeeieeeeeen 365
6.2.7 _GSB (Global System Interrupt Base)cooouiiiiiiiiiiiiiiiieieeeeeeeeeeee 367
6.2.8 _HPP (Hot Plug Parameters) ... 368
6.2.9 HPX (Hot Plug Parameter EXtENSIONS)ccoooiiiiiiii s 371
6.2.10 _MAT (Multiple APIC Table ENtry)uueeiiiiiiiiieee e 385
6.2.11 _OSC (Operating System Capabilities)........cccccceieeiiiiiiiiiiias 386
6.2.12 _PRS (Possible Resource Settings) ... 396
6.2.13 _PRT (PCI RoOUtING TaAbIE)coiiiiiiiiiiiieie et 397
6.2.14 PXM (ProXimity)eeeeeeeiiiiiiiiiiee ettt e e e e e e e e e e e e nnnanneeaaaeas 399
6.2.15 _SLI (System Locality Information)oooiiiiiiiiiiii 400

UEFI Forum, Inc. December 2018 Page xxix

ACPI Specification, Version 6.3

6.2.16 _SRS (Set Resource Settings)........ccoooiiiiiiiiii i 402
6.2.17 CCA (Cache Coherency Attribute)ccoooeiiiiiiii s 403
6.2.18 HMA(Heterogeneous Memory Attributes)ccooeeiiiiiiiiiciiiis 405

6.3 Device Insertion, Removal, and Status Objects..........ccccciiii 405
6.3.1 _EDL (EjeCt DeVice LiSt)cc.uuuiiiiiiiiiiiieeee e 407
6.3.2 _EJD (Ejection Dependent DEVICE)..........uuuuiiiiiiiiiiiiiieeeiieiiiieeee e 408
6.3.3 _EJIX (EJECL) i 409
LI 0 I Qo o3« SRR 410
6.3.5 OST (OSPM Status Indication)ooooiiiiiiiiiii s 410
6.3.6 _RMV (REMOVE) ...t e e 416
B.3.7 _STA (SHAtUS) ..ot e e e e e e e e e e e e e aaaae s 417

6.4 Resource Data Types fOr ACPI..... ..o e 418
6.4.1 ASL Macros for Resource DesCriptors...........cooiiiiiiiiiciiiceans 418
6.4.2 Small Resource Data TYPEeoooooiiiiiiiii e 418
6.4.3 Large Resource Data TYPEc.uuuuiiii it e e e e eeees 424

6.5 Other Objects and Control Methods ... 470
B.5.1 INT (INIL) 1erriieeeeeeeeee e e e e e e e e e e e e e e s e aaae s 470
6.5.2 DCK (DOCK) ...ttt ettt e e e e e e e e e e e e e e e e e aaaaeas 471
6.5.3 _BDN (BIOS DOCK NAME)uuiiiiiiiieiiiiiiiiiee ettt a e 472
6.5.4 REG (REQION). ..ot 472
6.5.5 _BBN (Base Bus NUMDEI)coiiiiiiiiii e 474
6.5.6 _SEG (SEIMENL)eiiiiiiiiiiiie e 474
6.5.7 _GLK (GIODAI LOCK)....eiiiieiiiiiiiiiiiie e ettt e e e e e e e naanaeeaaa s 476
6.5.8 DEP (Operation Region Dependencies)ccccceeicciiiinnrnneiiniiniiineininnnnnnes 476
6.5.9 FIT (Firmware Interface Table)coooiiiiiiii i 477
6.5.10 NVDIMM Label Methodscoiiiiiiiiiiiiieee et 478

7 Power and Performance Managementcccoveeemeeccnnnnsssesssmsssssssennnes 481
7.1 Power Resource Objects and the Power Management Modelsoooeee. 481
7.2 Declaring a Power Resource ObjecCt ..., 482
7.2.1 Defined Methods for @ POWer RESOUICEcccuvuiiiiieeiiiiiiiiieee e 484
A © | o TSP 484

A T © RSO RPR 484
T7.2.4 STA (StAtUS)..ceeieiiiiiee e e e e e e e e e e et e e e e e e e e s sanasaeeaaaens 485
7.2.5 Passive POWETr RESOUICES ...ttt e e e e e e e e e eeeeeeeas 485

7.3 Device Power Management ObjJectS..........ccooovviviiiiiiiii 485
7.3.1 _DSW (DeViCe SIEEP WAKE)uuuurruriiuiiiiiiiiiiiiiiiiiieesieeereeeeeseeeeeeeeeeeeeeeeereeeeeeseeees 487
7.3.2 _PSO (PoOWer State 0) ..o 488
7.3.3 _PS1 (POWEr SHate 1) .o 488
7.3.4 _PS2 (POWEr SHate 2) ..o 488
7.3.5 PS3 (POWET State 3) ..ot 488
7.3.6 _PSC (Power State CUITENt)..........uuuuueiiiiiiiiiiiiiiieiresreeeeeeeeeeeeeee e e e e e e e e e e e eeeeeeees 489

7.3.7 PSE (Power State for Enumeration)ccccuvvviiieieiieiiieieieeeeeeeeeeeeeeeeeeeeee e 489

7.3.8 _PRO (Power Resources for DO)........c.cuuiiiiiiiiiiiieiiee e 489
7.3.9 _PR1 (Power Resources for D1)......ccuiiiiiiiiiiieeeee e 490
7.3.10 _PR2 (Power Resources for D2)...........cuuiiiiiiiiiiiiee e 490
7.3.11 PR3 (Power Resources for D3hot)............uuuviiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeee e 491

UEFI Forum, Inc. December 2018 Page xxx

ACPI Specification, Version 6.3

7.3.12 _PRE (Power Resources for Enumeration)ceeveevieiieeiiieiieeieeeeieeeeeeeeen, 491
7.3.13 _PRW (Power Resources for Wake)...........uuvuveiiiiiieieeieeiieeeeeeeeeeeeeeeeeeeeee e 492
7.3.14 PSW (Power State WakKe)...........uuuuuiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 493
7.3.15 _IRC (IN RUSH CUIMTENL) ...t 494
7.3.16 _S1D (S1 DEVICE State)uuvieeeeiiiiiiiiiiiee et 494
7.3.17 _S2D (S22 DEViCe State)uueeieiiiiiiiiiiiiiie e 495
7.3.18 _S3D (S3 DEViICE State)uuuuuieiiiiiiiiiiiiiiiiiiiitteeee e 496
7.3.19 _S4D (S4 DEViCe State)uuuuuiiiiiiiiiiiiiiiiiiitieeeeee e 496
7.3.20 _SOW (SO Device Wake State)cccuvriuuiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 497
7.3.21 _S1W (S1 Device Wake State)ccuueviiieiiiiiiecee e 497
7.3.22 _S2W (S2 Device Wake State)ccuveeiiieiiiiiiiieee e 497
7.3.23 _S3W (S3 Device Wake State)ccuueeiiiiiiiiiieeee e 498
7.3.24 SAW (S4 Device Wake State)ccuvvivriiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeeeee e 498
7.3.25 RST (DEVICE RESEL) ...ttt ee e e e e e e e e e e e e e eeeeeeeees 499
7.3.26 _PRR (Power Resource for RESEL)uuuuuuiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeee e 499

7.4 OEM-Supplied System-Level Control Methods ..o, 499
741N\ _PTS (Prepare TO SIEEP).....ccccuuuuuuiiuniiuiieeiiieeereereeeseeesseeeeeeeeeeeeeeeeeeeereeeeeeeees 500
7.4.2\ _SX (System States)oocueiiiiiiiie e 500
7.4.3 _SWS (System WaKe SOUICE)cccceuuuuieiiiiiiiiiiiiiiviiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeees 505
7.4.4\ TTS (Transition TO STA)........uuuuuuiuiiiiiiiiiiiiiiieiier et e e 506
7.4.5_ WAK (SyStemM WaKe)cuiiiiiiiiiiiiiiee et 507

7.5 OSPM usage of _PTS, _TTS, and _WAK ..., 508
8 Processor Configuration and Control ... 509
8.1 Processor POWET StAteSoooiiiiiiiiiiiiiiie et e e ee e e 509
8.1.1 Processor Power State CO.........ooooiiiiiiii e 511
8.1.2 Processor Power State C ... 513
8.1.3 Processor Power State C2.........ooooiiiiiiiiii e 513
8.1.4 Processor Power State C3.........oooiiiiiiiiiie e 513
8.1.5 Additional Processor Power States............cccoiiiiiiiiiiiee e 514

8.2 FIUSNING CACRESoeeeiiiiieeeeeeeeeeee e 515
8.3 Power, Performance, and Throttling State Dependencies............cccccvvveeiiiiiiiiiiiieeneenn. 515
8.4 DECIariNg PrOCESSOISuuiiiiiiiiiiiiiitee et e e e e e e e e ee e e e s 516
8.4.1 _PDC (Processor Driver Capabiliti€s)cccuuiiiiiiiiiiiiiiiiieeeeeeeee e 516
8.4.2 Processor Power State CONtrol............cuuiiiiiiiiiiiiiee e 518
8.4.3 Processor HierarChy..........oooeuuiiiiii et e e e e e e eeees 524
8.4.4 Lower Power Idle Stateseeviiiiiiiiiiiiee e 525
8.4.5 Processor Throttling CONtrolS..........oooiiiiiiiiiiiii e 551
8.4.6 Processor Performance Control.............ooooooiiiiiiiiiiii e 559
8.4.7 Collaborative Processor Performance Control...........cccccccoecinnnninnninnennniiinennnns 567
8.4.8 PPE (Polling for Platform Errors)coooiiiiiiiiiiiccccc e 586

8.5 Processor Aggregator DEVICEccvveuiuiiiii et s e e e e e e e e e e e eeeenes 586
8.5.1 Logical Processor IdliNgcccuuuiuiiiiiiicie et e e e e e e e e e e eeens 586
8.5.2 OSPM _OST Evaluationcoooiiiiiii oo 587

9 ACPI-Defined Devices and Device-Specific Objects...........cccceveemneccinnnnns 589
9.1 Device Object Name ColliSIONcooiiiiiiiiiiiiiiiiiiieeeeeeeee e, 589
9.1.1 _DSM (Device Specific Method)ccoooiiiiiiiiiiic s 589

UEFI Forum, Inc. December 2018 Page xxxi

ACPI Specification, Version 6.3

9.2\ Sl SyStemM INAICAIOrSoeviiiiiiiieeeeeeeeeeee e 592
9.2.1 _SST (System Status).........ooooiiiiiiii s 592
9.2.2 MSG (MESSAQE)cceeeeieee e 592
9.2.3 _BLT (Battery Level Threshold)cccuuiiiiiiiiiiiiiieeeeeee e 593

9.3 Ambient Light SENSOr DEVICE...........uiiiiiiiiiiiie e 593
0.3.1 OVEIVIEW ... 594
9.3.2 _ALI (Ambient Light lluminance)cooooiiiiiiiiiic s 595
9.3.3 _ALT (Ambient Light Temperature)...........coooiiiiiiiiiiiiiiic s 595
9.3.4 ALC (Ambient Light Color Chromaticity)cccooeiiiiiiiiiii s 595
9.3.5 _ALR (Ambient Light RESPONSE).......cccuuiiiiiiiiiiiie e 596
9.3.6 _ALP (Ambient Light POIING)ccceieiiiiiiiiiieee e 600
9.3.7 Ambient Light SENSOr EVENTS........cooiiiiiiiiiiii e 600
9.3.8 Relationship to Backlight Control Methodsccccciiiiiiiiiis 601

9.4 Battery DEVICE ... oot a e e e e e aaaaaaann 601

9.5 Control Method Lid DEVICE........ccoiiiiiiiiiee et e e e e e e 601
S T | TS SPR 601

9.6 Control Method Power and Sleep Button Devices.........ccccceeeeeieeieiee, 602

9.7 Embedded Controller DEVICEcc.cvvviiiiiiiiieieieeeeeeee et 602

9.8 GeneriC CoNtaINEr DEVICEccieiiiiiiieieee et e e e e eeaens 602

9.9 ATA CONrollEr DEVICES......ueeiiiieeiiiiiiiii et e e e e e e e e e s e e e e e e e e e nnnenaeeeaaens 603
9.9.1 Objects for Both ATA and SATA Controllers............cooeeiiiiiiiiiiieeeieeeieeeeen 603
9.9.2 IDE CoNtroller DEVICE......ccce e e 604
9.9.3 Serial ATA (SATA) Controller DEVICE..........cccoiiiiiiiiiiiee e 607

9.10 Floppy Controller Device ObJECESc.covvvviiiiiiiiiiiii e, 609
9.10.1 _FDE (Floppy Disk Enumerate)ccoooiiiiiiiiiicec s 609
9.10.2 _FDI (Floppy Disk Information)cccooiiiiiiiiiiiiicec s 610
9.10.3 _FDM (Floppy Disk Drive MOde)...........uumeiiiiiiiiiiiiieee e 611

S I I B €] = o o 1 D Lo T = T 611
9.11.1 Matching Control Methods for Events in a GPE Block Device................c........ 612

9.12 MOAUIE DEVICE ...ttt 613

0. 13 MEMOIY D VICES ... ieeeieieeiiiiee e ettt e e e e e e e e ettt e s e e e e e e e eaaeaaeeeaeeeeeasnanaeeaeaaeennnes 616
9.13.1 AdAress DECOAING ... ccciii i e et e e e e e e e e atr e e e e e e e eeeenes 616
9.13.2 Memory Bandwidth Monitoring and Reporting ..o, 616
9.13.3 _OSC Definition for Memory DevVICe ... 618
9.13.4 Example: MemOry DEVICEcouiiiiiiiiiiiiiiii et 619

9.14 _UPC (USB Port CapabilitieS)uuueriiieiiiiiiiiiiee e 619
9.14.1 USB 2.0 Host Controllers and _UPC and PLDccccccciiiinniiniiiniiiiiiiiiiinns 624

9.15 PC/AT RTC/CMOS DEVICESccociiiiiiieeeeeeeeiieeee e e e e st e e e e e e e eeeaaeaaannnnnneeeeaaens 626
9.15.1 PC/AT-compatible RTC/CMOS Devices (PNPOBO00).........ccccceveeeiiiiiiiiiieeeenn. 626
9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNPOB02) 628

9.16 User Presence Detection DEVICEccvvvvvviiiiiiiiiiiiiee e, 628
9.16.1 _UPD (User Presence Detect)cooooiiiiiiiiiiiii i 628
9.16.2 _UPP (User Presence Polling) ..o 629
9.16.3 User Presence Sensor EVENtS ... 629

.17 /O APIC DEVICE ... eeeeteeee ettt e e e e e et e e e e e e e s et r e e e e e e e e ensnnneeeaaens 629

9.18 Time and Alarm DEVICE........ouiiiiiiiiiiiieieeeeeeee e 630
9.18.2 _GCP (Get Capability)c.uuriiiieeeeeieee e 634

UEFI Forum, Inc. December 2018 Page xxxii

ACPI Specification, Version 6.3

9.18.3 _GRT (Get Real TIME) ...t 634
9.18.4 _SRT (Set Real TiME) ...cciiieiiiiiiie et e e 635
9.18.5 GWS (Get Wake alarm status)............cooooiiiiiiiiiiiic s 636
9.18.6 _CWS (Clear Wake alarm Status)cooiiiiiiiiiiiieeiieeeee e 637
9.18.7 _STP (Set Expired Timer Wake POlICY)cooviuuiiiiiieiiiiiiiiiieeeeeeeeee e 637
9.18.8 _STV (Set TIMEr ValU@)eeeiiiiiiiiiiiiiiii e 637
9.18.9 TIP (Expired Timer Wake PoliCY)ccooeiiiiiiiiiccc e 638
9.18.10 _TIV (TIMEr ValUES)ccoeiiiiiiii e 638
9.18.11 ACPI Wakeup Alarm EVENtScooiiiiiiiiiiiii e 638
9.18.12 Relationship to Real Time Clock Alarm ... 639
9.18.13 Time and Alarm device as a replacement to the RTCcccccccvviviiiiinnnns 639
9.18.14 Relationship to UEFI time SOUICEe..........cooiiiiiiiiii e 639
9.18.15 Example ASL COUEooooiiiiiiii i 639

9.19 GeneriC BULONS DEVICEcoiieiiiiiiiiiiiee ettt e e e e e e e e s ennenaeeeaeens 643
9.19.1 BUON INteITUPES..ceeee e e e e e e eeees 643
9.19.2 Button Usages and COollECIONSuuiiiiiiiiiiiiie e 644

0. 19.3 EXAMPIE .o e 645

9.20 NVDIMM DEVICES......ccceieeiiiee e ettt e e ettt e e e e e e e e e e e e e s e s as e e e e e e e e e s ansssaeeeaaens 647
9.20.1 OVEIVIBW ..ottt e e e e e ettt e e e e e e e e s e e e e e e e e e e s annnneeeaaeeas 647
9.20.2 NVDIMM ROOt DEVICE ...ttt e e e e 647
9.20.3 NVDIMM D VICE.....eeeiiiieeiiiiiiiieeie e e e e e ettt e e s e et e e e e e e e e snnseeeeeeaeaeasnsnseeeaaaens 647
0.20.4 EXAMPIE .. 647
9.20.5 Loading NVDIMM AFIVETScoiiiiiiiiiiiiiiee et 648
9.20.6 HOt PIUugQ SUPPOIt.....cccc e 649
9.20.7 NVDIMM RoOt Device _DSMScooiiiiiiiiiee e 650
9.20.8 NVDIMM DeVvice MethodsS........ccoiiieiiiiiiiiiiie e 665

10 Power Source and Power Meter DevViCesccuuueeeeeeeeeeeemmmnnnnnnnnnnnnssnnnnnes 673
10.1 Smart Battery SUDSYSIEMSuuuiiiiiiiiiiiiiiiiii et e e e e e e e e e e e e e eeeeeeees 673
10.1.1 ACPI Smart Battery Status Change Notification Requirements..................... 675
10.1.2 Smart Battery ObjJECtScoooviiiiiiiiiiiiiei 676
10.1.3 _SBS (Smart Battery SubSyStem)cceuviiiiiiiiiii e 676

10.2 Control Method Batteriesuuueuiiiiiiiiiiiieiiiei ettt e e e e e e e e eeeeeeeees 680
10.2.1 Battery EVENTS ... 680
10.2.2 Battery Control Methodsooovvviiiiiiiiiiii 681

10.3 AC Adapters and Power Source ODJECESuuuiiiiiiiiiieiiiiiieeieeeeeeee e 695
10.3.1 PSR (POWEI SOUICE)...cciiiiiiiiiiiiiiieieeeeeeeeeeeeee e, 696
10.3.2 _PCL (Power ConSUMEr LiSt)coeiiiiiiiiiiiiiiee e 696
10.3.3 _PIF (Power Source INformation)...........ccuvviiiiiiiiiiiiiiicceeeeee e 696
10.3.4 _PRL (Power Source Redundancy List)ccoouiiiiiiiiiiiiiiiiiiece e 697

LR o 1Yo oY (T PP 698
10.4.1 _PMC (Power Meter Capabiliti€s)...........ccooveeeieeiiii . 698
10.4.2 _PTP (Power Trip POINES) coooviiiiiiiiiii 700
10.4.3 _PMM (Power Meter Measurement)ooeeeeiiiiiieiieeeeeesiiieieee e 701
10.4.4 _PAI (Power Averaging Interval)............cccuiiiiiiiiiiiiieee e 701
10.4.5 _GAI (Get Averaging INterval) ... 702
10.4.6 _SHL (Set Hardware Limit) ..., 702

UEFI Forum, Inc. December 2018 Page xxxiii

ACPI Specification, Version 6.3

10.4.7 _GHL (Get Hardware Limit)ccovviiiiiiiiii 702
10.4.8 _PMD (Power Metered DevViCes)..........ooovvviiiiiiiiiii, 703

10.5 Wireless POWEr CONLrOIIEIS.......coooiiiiiieiieeee et e e 703
10.5.1 Wireless Power Calibration DevViCecoooviiiiiiiiiiii, 704
10.5.2 Wireless Power Calibration (_WPC)uuiiiiiiiiiieeee e 704
10.5.3 Wireless Power Polling (LWPP) ..o 704

10.6 Wireless Power Calibration Event ... 705
10.7 Example: Power Source and Power Meter Namespace..........ccoceevvevveevieeiieeiieeeeeeneen. 705
11 Thermal Management.............iii s 707
P I =Y 4= 1 T 1 o 707
11.1.1 Active, Passive, and Critical POlICIEScoeeeeieeeeeeee e 708
11.1.2 Dynamically Changing Cooling Temperature Trip Pointsooe. 709
11.1.3 Detecting Temperature Changesccccooveeeiiiii, 710
11.1.4 ACHIVE COOIING .ot 712
11.1.5 PasSiVe COOIING ... 713
11.1.6 Critical SRULdOWN ..coooeiiiiiiiiieeee 714

11.2 COOlING PrefEr@NCESttt e e e e e e e e e e e eeeeeeeeeeeeeeeeeees 715
11.2.1 Evaluating Thermal Device ListS.........coiiiiiiiiiiicc e, 716
11.2.2 Evaluating Device Thermal Relationship Informationcccccccooiiiinnn. 717

LG T =T T T o P 717
11.3.1 FaN ODJECES ...ceiiiieieee e 718

L I g T g g F= 1 @ o= Yo £ 721
11.4.1 _ACX (Active COOlING) ..ciiiiiiiiiiiiiiiieee e, 722
11.4.2 _ALX (ACHVE LiSt) .o 723
11.4.3 _ART (Active Cooling Relationship Table)............ccccoiiiiiiiiiiiii 723
11.4.4 _CRT (Critical TEMPEerature)...........ccoouiiiiiieieeiee e 726
11.4.5 _CR3 (Warm/Standby Temperature)cccccoviiiiiiiiiiiieiiieeee e 726
11.4.6 _DTI (Device Temperature Indication)..............ccccoooe . 727
11.4.7 _HOT (Hot Temperature) ..., 727
11.4.8 _MTL (Minimum Throttle Limit)cooiiiiiiiireeeeeeee e 727
11.4.9 _NTT (Notification Temperature Threshold)ccceeeiiiiiiiiiii 728
11.4.10 _PSL (PASSIVE LiSt)....cciiieiiiiiiiiiiieee et 728
T1.4.11 _PSV (PASSIVE)iiiiiiiiiie ettt a e e e e e e e e e e e annnees 728
11.4.12 _RTV (Relative Temperature Values)c.ccccceeii, 729
11.4.13 _SCP (Set Cooling POIICY) ..cccooviviiiiiiiiiiie 729
11.4.14 _STR (SrNG) ceeeeeiiiiiiiiie et e e e e e e e e e s e e e e e e e e nnneeees 733
11.4.15 _TC1 (Thermal Constant 1)coooiiiiiiiiiieee e 733
11.4.16 _TC2 (Thermal CoNStant 2)cccouiiiiiiiiieeeeeii e 733
11.4.17 _TFP (Thermal fast Sampling Period) ..o 733
11.4.18 _TMP (TE€MPEratUre).....ccovviiiiiiiiiiiieeeeeee e, 734
11.4.19 _TPT (Trip Point Temperature) ..o, 734
11.4.20 _TRT (Thermal Relationship Table).........ccccccco . 734
11.4.21 _TSN (Thermal Sensor DEVICE)cccuuuiiiiiiiiiiiiiiieieeee e 735
11.4.22 _TSP (Thermal Sampling Period)cc.uueieiiiiiiiieee e 735
11.4.23 _TST (Temperature Sensor Threshold) ... 736
11.4.24 TZD (Thermal Zone DeVICES)........ccoovviiiiiiiiiiiieee e, 736

UEFI Forum, Inc. December 2018 Page xxxiv

ACPI Specification, Version 6.3

11.4.25 _TZM (Thermal Zone Member) ..., 737
11.4.26 _TZP (Thermal Zone Polling).........cooviiiiiiiiiii 737

11.5 Native OS Device Driver Thermal Interfacescccccoviiiiiiiiiiie i, 737
11.6 Thermal Zone Interface RequiremMents ... 738
11.7 Thermal Zone EXAmPIESttt ee e s aeeseeeeeeeseeeeeeeeees 738
11.7.1 Example: The Basic Thermal Zone.........ccccceeviiiiiii, 738
11.7.2 Example: Multiple-Speed Fans ..., 740
11.7.3 Example: Thermal Zone with Multiple Devicesc..ccoevvviviiiiiiii e, 742

12 ACPI Embedded Controller Interface Specification..........ccccccevrrrennnnnnnee. 750
12.1 Embedded Controller Interface DesScCriptioneevvveiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 750
12.2 Embedded Controller Register Descriptions.............evvveeiiiiieiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 753
12.2.1 Embedded Controller Status, EC_SC (R) ..., 753
12.2.2 Embedded Controller Command, EC_SC (W)........cccccc, 755
12.2.3 Embedded Controller Data, EC_DATA (R/W).....ooiiiiiiiiiiiiieeeee e 755

12.3 Embedded Controller Command Set..............uuuiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeee e 755
12.3.1 Read Embedded Controller, RD_EC (0X80)ccouvmiiiiiiiiiiiiiieeeeee e 755
12.3.2 Write Embedded Controller, WR_EC (0x81)........ccoovviiiiiiii, 755
12.3.3 Burst Enable Embedded Controller, BE_EC (0x82).............cccceeeeeiiiiiiiinnnnn. 756
12.3.4 Burst Disable Embedded Controller, BD_EC (0X83)........cccoiiuviiiiiiiiiiiiiinee. 756
12.3.5 Query Embedded Controller, QR_EC (0X84)........cccuvviiieiiiiiiiiiiiieeeeeeeee 757

12.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT 757
12.5 Embedded Controller FIrMWareeoiiiieiiiiiieeee e 757
12.6 INTEITUPE MOGEL et e e e e e e e e e e e e e e e eeeeenees 758
12.6.1 Event Interrupt MOdEl...........iiiiie e 758
12.6.2 Command Interrupt Model ... 758

12.7 Embedded Controller Interfacing Algorithms ... 759
12.8 Embedded Controller Description Information ... 759
12.9 SMBus Host Controller Interface via Embedded Controller...............cccccceeeeiiiiiinnen. 760
12.9.1 Register DeSCriptioNc..uuueiiii e e e 760
(2R I = (o) CoToto] I D 1= Y= Tod o] i o] o I 764
12.10 SIMBUS DBVICES ... ettt e et e e et eseeeeeeeeeeeeeeeeeeeeeeeeeeeeees 771
12.10.1 SMBus Device Access Restrictions ... 771
12.10.2 SMBus Device Command Access Restrictioncccco, 771
12.11 Defining an Embedded Controller Device in ACPI Namespacecccccccevvvevveennnn.. 772
12.11.1 Example: EC Definition ASL Codecoovvviiiiiiiii 772
12.12 Defining an EC SMBus Host Controller in ACPI Namespace.......cccccccccvvveevieeeeence... 773
12.12.1 Example: EC SMBus Host Controller ASL-Code...........ccooeeeeeiiiiiiiii. 773

13 ACPI System Management Bus Interface Specification......................... 775
13.1 SMBUS OVEIVIEWcoiiiiiiiiiiiieiie ettt e e e e e e ettt e e e e e e e s eeeeeeeeeeannneeeees 775
13.1.1 SMBUS SIave AdAreSSES..........uviiiiiieeeeiiiiiieeee e e e e e e e s e e e e e e e 775
13.1.2 SMBUS ProtOCOIS....ceeiiiiiiiiiieeeieeeeeeeeee e 776
13.1.3 SMBUS Status COUESocovviiiiiiiiiiieeieee e 777
13.1.4 SMBuUs Command ValUEScooviiiiiiiiiiieeeeeee e, 777

13.2 Accessing the SMBUS from ASL COdEuuvuiiiiiiiiiiieiiiiiieeeeeeeeeee e e e 777
13.2.1 Declaring SMBus Host Controller Objectscccco, 777
13.2.2 Declaring SMBUS DEVICES........cooiviiiiiiiiiiiiiiiee 778

UEFI Forum, Inc. December 2018 Page xxxv

ACPI Specification, Version 6.3

13.2.3 Declaring SMBus Operation Regionscccccoovvvieeiiii, 778
13.2.4 Declaring SMBUS FieldS.........ccoooiiiiiiiiiiiiii 780
13.2.5 Declaring and Using an SMBus Data Buffer..........................l 782

13.3 Using the SMBUS ProtOCOIScooiiiiiiiiiiiiceee e 783
13.3.1 Read/Write QuiCk (SMBQUICK)......ccevieeiiiiiiiiiiie e 783
13.3.2 Send/Receive Byte (SMBSendREeCeIVe)cccooviiiiiiiiiiiiiiiiiie e 784
13.3.3 Read/Write Byte (SMBBYLE).....covvvvviiiiiiii 785
13.3.4 Read/Write Word (SMBWOrd) ... 785
13.3.5 Read/Write Block (SMBBIOCK)coooviiiiiiiiiiiiiii 786
13.3.6 Word Process Call (SMBProcessCall)ccoooiiiiiiiiiiiiiiiiiiiiiieeeee e 787
13.3.7 Block Process Call (SMBBIlockProcessCall)ccuveveeiiiiiiiiiiiiiiieeeeei 788

14 Platform Communications Channel (PCC).........cccoiimmmimmccciiirrrrrreene 789
14.1 Platform Communications Channel Table ..o 789
14.1.1 Platform Communications Channel Global Flagsc.cccccciiiiiiiiiinnniiiinnn. 790
14.1.2 Platform Communications Channel Subspace Structures 790
14.1.3 Generic Communications Subspace Structure (type 0)........cccvveeeeeiiiiniiinnnn. 790
14.1.4 HW-Reduced Communications Subspace Structure (type 1)..........cceeeeeennn. 791
14.1.5 HW-Reduced Communications Subspace Structure (type 2)............cceeeennnnnn. 793
14.1.6 Extended PCC subspaces (types 3 and 4)cooccureireeiiiiiiiiiiiieeee e 794

14.2 Generic Communications Channel Shared Memory Regioncccccveieiinniiiiinnen. 798
14.2.1 Generic Communications Channel Command Field.......................cccoeeee. 798
14.2.2 Generic Communications Channel Status Fieldccccccoiiiiiiii, 798

14.3 Extended PCC Subspace Shared Memory Regioncooevvviviiiiiiiiiieiiieiieeieeeeeeeeee 799
LR B ToToTy o1 | I o) (oo o] 800
14.5 Platform NOtfiCationt e e e e eeeeeeeas 802
14.5.1 Platform Notification for Subspace Types 0, 1Tand 2..............ccceeiiii. 802
14.5.2 Platform Notification for slave PCC subspaces (type 4)cccoveeeeeeiiiiiiinnnn. 802

14.6 Referencing the PCC addreSs SPACE..........uuuurviiiiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeees 804
15 System Address Map Interfaces ... 805
15.1 INT 15H, E820H - Query System Address Mapccoooiiiiieiiiiiiiiiiieeeee e 806
15.2 E820 Assumptions and Limitations..............uuviiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeee e 808
15.3 UEFI GetMemoryMap() Boot Services FUNCHiON...........covvvviiiiiiiiiiiiieeiieeeeeeeeeeeeeeeee 809
15.4 UEFI Assumptions and Limitationscooveiiiiiiiiion e 810
15.5 EXample AdAress Mapcci oot e ettt e e e e e e e e e et e e e e e e eeeanes 810
15.6 Example: Operating System USageccuuiiiiiiiiiiiiieiiieeeeeee e 811
16 Waking and Sleepingcccccvriiiiiiiiiiinsssss s sss s s sssnes 813
LSRR IS =TT o e RS = (= 3 814
16.1.1 S1 Sleeping State ..ooovvveiiiieeie 816
16.1.2 S2 Sleeping STateccoiiiiiiiiiee e 817
16.1.3 S3 Sleeping STatecoiiiiiiiiiie 817
16.1.4 S4 Sleeping STatecooiiiiiiii 818
16.1.5 S5 Soft Off Stateeeeeeiiiieee e 820
16.1.6 Transitioning from the Working to the Sleeping State.................................... 820
16.1.7 Transitioning from the Working to the Soft Off State...................................... 821

16.2 FIUSRING CACNESciiiiiiii et e e 821

UEFI Forum, Inc. December 2018 Page xxxvi

ACPI Specification, Version 6.3

S TRC I 11 (=1 172= 11 (] PP 822
16.3.1 Placing the System in ACPI Mode ..., 825
16.3.2 Platform Boot Firmware Initialization of Memory..........................l. 825
LS R @ 1S T I Y- To [T I PRSP 827
16.3.4 EXitiNg ACPI MOAEovviiiiee ettt e e e 829

17 Non-Uniform Memory Access (NUMA) Architecture Platforms 830

A0 T NN 18 11 N o o = SRR 830

17.2 SYSEEM LOCAITY ... 830
17.2.1 System Resource Affinity Table Definition ... 831
17.2.2 System Resource Affinity Updateccuvieiiiiiiiiee e 831

17.3 System Locality Distance Information..............cccuviieiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 831
17.3.10NHMNE HOt PIUQ c.coeiiiiieeeeeeeeeeeeee 832
17.3.2 Impact to Existing Localities...........ccouvuiiiiiii e, 832

17.4 Heterogeneous Memory Attributes Information ... 832
17.4.10NINE HOt PIUG ... 833
17.4.2 Impact to EXisting LOCAlIEScoeviiiiiiiiiiie e 833

18 ACPI Platform Error Interfaces (APEI).......oo i 834

18.1 Hardware Errors and ErrOr SOUICESuuuuiuuiiiiiiiiieiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 834

18.2 Relationship between OSPM and System Firmwarecccccoiiiiiiiiii, 835

18.3 ErrOr SOUIMCE DIiSCOVEIYuuiiiiiiiiiie et e e veessesee e e s s ssessasseeseeeeeeeeeeeeeeeeeeeeeees 835
18.3.1 BOOL EITOIr SOUICEeeeiiiiieeiieieieeee ettt e e e 835
18.3.2 ACPI EITOIr SOUICEuuviiiiieee ettt et e e e e e e s e e e e e e e nneneees 836

18.4 Firmware First Error Handlingooooeeiiiiii e 854
18.4.1 Example: Firmware First Handling Using NMI Notificationcccoccveeee. 854

18.5 Error SerialiZationcccoooo e e e e aeees 855
18.5.1 Serialization Action Table.............ooooiiiiiii e 856
LK TP O] o 1T = 1110] o 1< TP 862

R G T =3 o] a1 =3 1o o RPN 866
18.6.1 Error Injection Table (EINJ)..........oo e 866
18.6.2 Injection Instruction ENtriesoooiiiiiiii e 869
18.6.3 INjection INSrUCHIONScooiiiiiiiii e 870
18.6.4 Trigger ACHON Table.....coouvueiii i e 873
18.6.5 Error Injection Operation..........cccccovvviiiiiiii 873

19 ACPI Source Language (ASL) Reference.........cccueeemmemmmmmmmenmnnnnnnnnnns 875

19.1 ASL 2.0 Symbolic Operators and EXPreSSiONSceeueveveviieeiiieiiiieeeeeeeeeeeeeeeeeeeeeeeeeeens 875

19.2 ASL Language GramIMar.............uuueuuuruuuuuneiuursssninesreseessssssseeeeseresereeeeeseeeeeereren 876
19.2.1 ASL Grammar NOtationccuuiiiiiiiei e 877
19.2.2 ASL Name and Pathname Termscccvuieeieee i 878
19.2.3 ASL Root and Secondary TEIrMSccooiiuiiiiiiiiiiieiie e 879
19.2.4 ASL Data and Constant TErMSoooviiiiiiiiii e, 880
19.2.5 ASL OPCOAE TOIMIS...ciiiiiiiiiiieieeeee ettt 883
19.2.6 ASL Primary (Terminal) TErmMScoooovviiiiiiiiiiee e, 885
19.2.7 ASL Parameter Keyword Termsccccccvvieiiiiiii 903
19.2.8 ASL Resource Template TErMS........ccooviiiiiiiiiiiii, 905

LR TR 3N I 0o o =T o) £ 916

UEFI Forum, Inc. December 2018 Page xxxvii

ACPI Specification, Version 6.3

T9.3.1 ASL NAMES ...ceiiiiiiiee ettt e e e e e e e e e e e e e e nneeeees 916
19.3.2 ASL Literal CoNStaNtSccooviiiiiiiiiee e 917
19.3.3 ASL Resource Templates ... 919
LR IR R | I V= T o 1 R 920
19.3.5 ASL Data TYPES . ..uiiiiiiiieie ettt 921
19.4 ASL Operator SUMMAIYoooiiiiiiiiiiiiieeea ettt e e et e e e e e e s e e e e e e e e snneeees 933
19.5 ASL Operator SUMMAry DY TYPEuuuuuuiiiiiiiiiiiiiiiiiiieeeeeeeesees 937
19.6 ASL Operator RETEFENCEuuuuuiiiiiiiiiiiiiiiiiiiiiiierieeeeeeeeeeeeeeeereeereeeeeeeeeereeeeeeeeereeeeeeees 942
19.6.1 AccessAs (Change Field Unit ACCESS)......ccoovviviiiiiiii, 942
19.6.2 Acquire (ACQUIre @ MULEX).........uuiiiiiieiiiiiie e 943
19.6.3 Add (INteger Add)ueiiiieeeeeiceee e 943
19.6.4 Alias (Declare Name Ali@s)ueeeiiiiiiiiiiiiiiee e 944
19.6.5 And (Integer Bitwise ANd)cooovvviiiiiiiiiii 944
19.6.6 Argx (Method Argument Data Objects)..................ccc, 944
19.6.7 BankField (Declare Bank/Data Field).................cccccccc . 945
19.6.8 Break (Break from WHIl€)..........uuiiiiiiiiiiie e 946
19.6.9 BreakPoint (Execution Break Point).............oooiiiiiiiie 946
19.6.10 Buffer (Declare Buffer ObJect)..........oooviiiiiiiiiiii 946
19.6.11 Case (Expression for Conditional Execution)..................cccccc, 948
19.6.12 Concatenate (Concatenate Data)ccccc 948
19.6.13 ConcatenateResTemplate (Concatenate Resource Templates) 950
19.6.14 CondRefOf (Create Object Reference Conditionally)ccceeeeeeiiiiiiiiinnen. 950
19.6.15 Connection (Declare Field Connection Attributes).........ccooccviiiiiiiiiiiniiinnn. 951
19.6.16 Continue (Continue Innermost Enclosing While)cccce. 952
19.6.17 CopyObject (Copy and Store Object)........cccoovvviiiiiiii, 952
19.6.18 CreateBitField (Create 1-Bit Buffer Field)cl. 952
19.6.19 CreateByteField (Create 8-Bit Buffer Field) ... 952
19.6.20 CreateDWordField (Create 32-Bit Buffer Field)ccccoiiiiiiiiiiiiiiiniinn 953
19.6.21 CreateField (Create Arbitrary Length Buffer Field) ..., 953
19.6.22 CreateQWordField (Create 64-Bit Buffer Field)ccccccoviiiiiiiiieieie, 953
19.6.23 CreateWordField (Create 16-Bit Buffer Field)occl, 954
19.6.24 DataTableRegion (Create Data Table Operation Region)oc...... 954
19.6.25 Debug (Debugger OUIPUL).........ueiiiiiiiiiiieeeee e 954
19.6.26 Decrement (Integer Decrement)ccevvieieiiiiiiiiiieieeeeeee e 955
19.6.27 Default (Default Execution Path in Switch) ... 955
19.6.28 DefinitionBlock (Declare Definition BIOCK)..............cccooeeeiiii, 956
19.6.29 DerefOf (Dereference an Object Reference)ccccoo, 956
19.6.30 Device (Declare Device Package)cccccceevveiiiiiiii 957
19.6.31 Divide (Integer DiVIe)........ooouuiiiiiiiieeieee e 958
19.6.32 DMA (DMA Resource Descriptor Macro)cccuuveeieiiiiiiiiiiieeeee e 958
19.6.33 DWordIO (DWord 10 Resource Descriptor Macro)cccccuvveeeeeeeeiiniiiennen. 959
19.6.34 DWordMemory (DWord Memory Resource Descriptor Macro)..................... 961
19.6.35 DWordSpace (DWord Space Resource Descriptor Macro)c....... 963
19.6.36 EISAID (EISA ID String To Integer Conversion Macro)ccccceeeeeeeeennnn. 964
19.6.37 Else (Alternate EXECULION)..........ooiiiiiiiiiiiiiiic e 964
19.6.38 Elself (Alternate/Conditional EXeCUtion).............cccuiiiiiiiiiiiiiiiiiiecceeeeie 965

19.6.39 EndDependentFn (End Dependent Function Resource Descriptor Macro) .. 966

UEFI Forum, Inc. December 2018 Page xxxviii

ACPI Specification, Version 6.3

19.6.40 Event (Declare Event Synchronization Object).....................cccc, 966
19.6.41 ExtendedlO (Extended IO Resource Descriptor Macro)...............cccoeeeeen. 967
19.6.42 ExtendedMemory (Extended Memory Resource Descriptor Macro) 968
19.6.43 ExtendedSpace (Extended Address Space Resource Descriptor Macro).... 970
19.6.44 External (Declare External ObjJects)...........covviiiiiiiiiiiiiiiii e 971
19.6.45 Fatal (Fatal Error Check)..........ueeiiiiiiieiee e 972
19.6.46 Field (Declare Field ObJjects)........ccovvviiiiiiiiii, 972
19.6.47 FindSetLeftBit (Find First Set Left Bit)........cccooiiiiie 975
19.6.48 FindSetRightBit (Find First Set Right Bit)...........ccccvviiiiiiiiii 975
19.6.49 FixedDMA (DMA Resource Descriptor Macro)cccevviciiiieeiiiiniisiieee, 976
19.6.50 FixedlO (Fixed 10 Resource Descriptor Macro)..........ccccceeeeeeeeieeeeeee e, 976
19.6.51 For (ConditioNal LOOP) ...cceiiiuiiiiiiieeee et 977
19.6.52 Fprintf (Create and Store formatted string)cccc . 978
19.6.53 FromBCD (Convert BCD To Integer) ..., 978
19.6.54 Function (Declare Control Method)cccccc 979
19.6.55 Gpiolnt (GPIO Interrupt Connection Resource Descriptor Macro)................ 980
19.6.56 Gpiolo (GPIO Connection 10 Resource Descriptor Macro)ceeeeen. 981
19.6.57 12CSerialBusV2 (12C Serial Bus Connection Resource Descriptor (Version 2)
MACTO) . ———————— 982
19.6.58 If (Conditional EXECULION)ccoooviiiiiiiii 983
19.6.59 Include (Include Additional ASL Fil€)coviiiiiiiiiiiiieiieee e 983
19.6.60 Increment (Integer INCremMent)..........oooiiiiiiiiiiiiiie e 984
19.6.61 Index (Indexed Reference To Member Object)..........ccccovviiiiiiiiiiiiiiniiiiee, 984
19.6.62 IndexField (Declare Index/Data Fields).............ccccccooiii . 986
19.6.63 Interrupt (Interrupt Resource Descriptor Macro)ccccoeeeeeeie, 987
19.6.64 10 (IO Resource Descriptor Macro) ..., 988
19.6.65 IRQ (Interrupt Resource Descriptor Macro) ..., 989
19.6.66 IRQNoFlags (Interrupt Resource Descriptor Macro)ccccceeeveeeeniniiinnnnn. 990
19.6.67 LANd (LOGICAl ANA)....ooiiiiiiiiiiiiieieee et e e 990
19.6.68 LEqual (Logical Equal)..........cooooiiiiiiiiiii 990
19.6.69 LGreater (Logical Greater)ccoovviiiiiiiiie 991
19.6.70 LGreaterEqual (Logical Greater Than Or Equal)cccee. 991
19.6.71 LLeSS (LOGICAI LESS) ..eeeiieiiiiiiiiiieee et 991
19.6.72 LLessEqual (Logical Less Than Or Equal).........ccccviiiiiiiiiiiiiiii 992
19.6.73 LNOt (LOGICAI NOL) ... 992
19.6.74 LNotEqual (Logical Not Equal)).....ccoovviiiiiiiiiii, 993
19.6.75 Load (Load Definition BIOCK)ooovviiiiiii 993
19.6.76 LoadTable (Load Definition Block From XSDT)...........cccceeeiiiii. 994
19.6.77 Localx (Method Local Data ObJjects)ceeeiiiiiiiiiiiiieiieeiieec e 995
19.6.78 LOK (LOGICAI OF) ...t 995
19.6.79 Match (Find Object MatCh)..........cooiiiiiiiiiiiiie e 995
19.6.80 Memory24 (Memory Resource Descriptor Macro)cccceeeeeeieieee. 996
19.6.81 Memory32 (Memory Resource Descriptor Macro)cccceeeeieiiiee. 997
19.6.82 Memory32Fixed (Memory Resource Descriptor Macro)ccoeeeeeennnnn. 998
19.6.83 Method (Declare Control Method).............oevviiiiiiiiiiiiiee e 999
19.6.84 Mid (Extract Portion of Buffer or String) ... 1000
19.6.85 Mod (Integer MOAUIO)cooieiiiiiieeee e 1001

UEFI Forum, Inc. December 2018 Page xxxix

ACPI Specification, Version 6.3

19.6.86 Multiply (Integer MUIIPIY)eeeeieeeeee e 1001
19.6.87 Mutex (Declare Synchronization/Mutex Object)......................l. 1001
19.6.88 Name (Declare Named ODbject) ... 1002
19.6.89 NANd (Integer Bitwise Nand)...........coouiiiiiiiiiiiiiiie e 1003
19.6.90 NoOp Code (NO OPEration)cceueeeiiiiiiiiieeee et 1003
19.6.91 NOT (Integer BitWiSe NOI)........uuiiiiiiiiiiiiieeee e 1003
19.6.92 Not (Integer Bitwise NOt)ooovviiiiiiiiiiiiiiii 1003
19.6.93 Notify (Notify Object of EVeNnt) ..o 1004
19.6.94 Offset (Change Current Field Unit Offset)................cccol. 1004
19.6.95 ObjectType (Get ObJECt TYPE) ..vvreiiiiiiiiiiieieeee e 1004
19.6.96 One (Constant ONe INtEGET).......ccuuiii i 1005
19.6.97 Ones (Constant ONes INTEJEN)oooii i 1005
19.6.98 OperationRegion (Declare Operation Region)..............ccccoooeii. 1006
19.6.99 Or (Integer BitwiSe OF)oovviiiiieiiiiiiieeeeee e 1007
19.6.100 Package (Declare Package ODbject).......ccccccvvvviiiiiiiiiii 1007
19.6.101 Pin Configuration...........coooiiiiiiiiie e 1009
19.6.102 Pin FUNCHON ..coooeeiiiiiiieeeeee e 1013
R T N0 TG I 1 T o T o R 1017
19.6.104 Pin Group Configuration..........ccccccvvviiiiiiiiii 1017
19.6.105 Pin Group FUNCHONcooiiiiiiiiiiiiieeeeeeee 1022
19.6.106 PowerResource (Declare Power RESOUICe)oeeveeiiiiiiiiiiieeeeeeneinee 1023
19.6.107 Printf (Create and Store formatted String)cccoveeeeiiiiiiiiiiiis 1023
19.6.108 Processor (Declare ProCeSSOr)ocuuuiiiiieeiiiiiiiiieeee e 1024
19.6.109 QWordIO (QWord 10 Resource Descriptor Macro)...........ccccveeeeeeeeennnnnee. 1025
19.6.110 QWordMemory (QWord Memory Resource Descriptor Macro) 1027
19.6.111 QWordSpace (QWord Space Resource Descriptor Macro)...................... 1028
19.6.112 RawDataBuffer............ooviiiiiiiii 1030
19.6.113 RefOf (Create Object Reference)............ueevvviiiiiiiiiiiiiii e 1030
19.6.114 Register (Generic Register Resource Descriptor Macro)......................... 1031
19.6.115 Release (Release a Mutex Synchronization Object)................................. 1032
19.6.116 Reset (Reset an Event Synchronization Object).................................... 1032
19.6.117 ResourceTemplate (Resource To Buffer Conversion Macro)................... 1033
19.6.118 Return (Return from Method Execution)ccccceeviiiiiiiiiiii 1033
19.6.119 Revision (Constant Revision INteger)..........cooiiiiiiiiiiiiiiiiiiie e 1033
19.6.120 Scope (Open Named SCOPE)ccvvvvviiiiiiiiiieieee e, 1033
19.6.121 ShiftLeft (Integer Shift Left)ooovvveiviiiii 1035
19.6.122 ShiftRight (Integer Shift Right)ooooiiiii 1035
19.6.123 Signal (Signal a Synchronization Event).........................L 1035
19.6.124 SizeOf (Get Data ObJect SiZ€)ccovvviiiiiiiieee e 1036
19.6.125 Sleep (MilliISECONAS SIEEP)uuiiiiiiiiiiiiiiie e 1036
19.6.126 SPISerialBusV2 (SPI Serial Bus Connection Resource Descriptor (Version 2)

Y= Tod o) ISP 1036
19.6.127 Stall (Stall for a Short Time)oooovviiiiiiii . 1037
19.6.128 StartDependentFn (Start Dependent Function Resource Descriptor Macro)....

1038
19.6.129 StartDependentFnNoPri (Start Dependent Function Resource Descriptor

1Y = o7 o) PP PP PUPPPPPPPPR 1038

UEFI Forum, Inc. December 2018 Page xI

ACPI Specification, Version 6.3

19.6.130 Store (Store an ObJECt)ovvvvvviiiiiiie 1039
19.6.131 Subtract (Integer Subtract)..........oovii 1039
19.6.132 Switch (Select Code To Execute Based On Expression)......................... 1040
19.6.133 ThermalZone (Declare Thermal Zone)............ccccuiiieiiiiiiiiiiiiieee e 1042
19.6.134 Timer (Get 64-Bit Timer Value)cccuueeiiiiiiiiie e 1042
19.6.135 ToBCD (Convert Integer to BCD)..........uvviiiiiiiiiiiie e 1043
19.6.136 ToBuffer (Convert Data to Buffer) ... 1043
19.6.137 ToDecimalString (Convert Data to Decimal String)........................l. 1044
19.6.138 ToHexString (Convert Data to Hexadecimal String) 1044
19.6.139 Tolnteger (Convert Data to INteger) ... 1044
19.6.140 ToPLD (Creates a _PLD Buffer Object)cocuuiieiiiiiiiiiiiii e 1045
19.6.141 ToString (Convert Buffer To String)ccovviiiiiiii e 1047
19.6.142 ToUUID (Convert String to UUID Macro)cccccoeeeeiii e, 1047
19.6.143 UARTSerialBusV2 (UART Serial Bus Connection Resource Descriptor
(Version 2) MaCIO)........ocoiie e 1048
19.6.144 Unicode (String To Unicode Conversion Macro)...........cccccuvvieeeeeeiinnnnnee. 1050
19.6.145 VendorLong (Long Vendor Resource Descriptor).........coocccvvieeeeeiiinninee. 1050
19.6.146 {deprec ated} Unload (Unload Definition BIOCK)...........cccoociiiiiiiiiiinnnnee. 1051
19.6.147 VendorShort (Short Vendor Resource Descriptor)...........ccccooeeee. 1051
19.6.148 Wait (Wait for a Synchronization Event)l 1051
19.6.149 While (Conditional LOOP)uureiiiiiiiiiiiiieee et 1052
19.6.150 WordBusNumber (Word Bus Number Resource Descriptor Macro)......... 1052
19.6.151 WordIO (Word IO Resource Descriptor Macro)ccoovvvvvieeeeeeiinnennee. 1053
19.6.152 WordSpace (Word Space Resource Descriptor Macro)) 1055
19.6.153 XOr (Integer Bitwise XOr) ..c.coovvviiiiiiiiiiiiiiieiee 1057
19.6.154 Zero (Constant Zero INteger) ... 1057
20 ACPI Machine Language (AML) Specification............cccceviiiiiiiinniinnnnnn. 1058
20.1 NOtation CONVENTIONS........uuiiiiiiie e e e e e e e e enneeeeeas 1058
20.2 AML Grammar Definitioncooiiiiiiiiiieee e 1059
20.2.1 Table and Table Header ENCOAINGcccuuuiiiiiiiiiiiceeiccs et 1059
20.2.2 Name ODbjects ENCOAINGuuuriiiiiiiiiiiiiiieeee e 1060
20.2.3 Data Objects ENCOAINGuuiiiiiiiiiiiiiiiiee e 1060
20.2.4 Package Length ENCOAINGcccciiiiiiiiiiiiiii e 1061
20.2.5 Term Objects ENCOAINgG.........ccoooiiiiiiiii e 1061
20.2.6 Miscellaneous Objects ENcodingcoooooeiiiiiiiiiiciiicc e 1069
20.3 AML Byte Stream Byte ValUES...........uuuuuiuuiiiiiiiiiiiiiiieiiiiiiirieeesseeereseeesseesseeeseeseseseeeee. 1070
20.4 AML Encoding of Names in the Namespaceccccoooiiiiiiiiiiiiiiiieeee e 1076
21 ACPI Data Tables and Table Definition Languagecccevviiiriinnnnnn. 1079
21.1 Types of ACPI Data TabIEsuuuiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeee ettt 1079
21.2 ACPI Table Definition Language Specificationccccuvveeiivviiiiiieeiiieiieeeeeeeeeeeeeeeee, 1079
21.2.1 Overview of the Table Definition Language (TDL)cccciiiiiiiiiiiiiiiiieeeee. 1080
21.2.2 TDL Grammar Specification ... 1081
21.2.3 Data TYPES e ittt 1083
21.2.4 Fields Set Automatically by the Compiler.............cooooiiiiiiiiiicii, 1086
21.2.5 Special Fields ..., 1086
21.2.6 TDL Generic Data TYPESccoooiiiiiiiieie e 1087

UEFI Forum, Inc. December 2018 Page xli

ACPI Specification, Version 6.3

21.2.7 Defining a Known ACPI Table in TDLooooiiiiiiiiieiccc e 1087
21.2.8 Defining an Unknown or New ACPI table in TDL...........ccoooiiiiiiiiiiiiicn, 1088
21.2.9 Table Definition Language EXamplesccoooiiiiiiiiiieiiieiiicccccecc s 1088
21.2.10 Minimal ECDT Definitioncccuiiiiiiiiie e 1090
Device Class Specifications ... s 1092
Video EXLENSIONScooiiiiecii i rr s s e s enes s s s s s s s s e s e nmn s e e s e s nmnn e e rennmnnnanes 1116
[DT=T o] =Y o= 1 £=T o B O] o =Y o 1 PP 1133

UEFI Forum, Inc. December 2018 Page xlii

ACPI Specification, Version 6.3

List of Tables

Table 1-1 Hardware Type vs. OS Type INteraction........cccuuiiiiiiiiiie it 10
Table 2-1 Summary of GIobal POWET StAtesuuiiiiiiiiiee it e et e e e e e e e e eraee e 34
Table 2-2 Summary of DEVICE POWET STALES......cccccuiiieieiieiee ettt e e e e aae e e e e araea e s 36
Table 3-3 LOW Battery LEVEIS ... et e e et e e e e e e e e e s baa e e e e e e e ee e e e e e ennnnnnes 57
Table 3-4 Implementable Platform TYPESveii it e e saae e e e e 62
Table 4-5 Feature/Programming Model SUMMAry........ccccciiviiiiiiiiieecie ettt e 75
Table 4-6 PM1L EVENT REGISTEIS .. uuvviiiiiiiiieeccitiee ettt tee ettt e ettt e e e sta e e s st e e e s aba e e e ssssaeeesessbeee e s esnnseneeas 80
Table 4-7 PM1 CoONErol REGISTEISueiiiiieeee e ettt e e e e e e ctrree e e e e e s e esatbaaeeeseeeesssnbeaaeeaaaeeesaneeennnnnns 80
Table 4-8 PM2 CoNErol REGISTEI ... eiiiiieeee ettt e e e e e st e e e e e e s e s snarbtaeeeeeeeeeneeesnnnnnnns 80
Table 4-9 PIM TimMEr REEISLEN woveiiiiiiiicitieieee e e ettt e e e e e e st ee e e e e e s e s earbeaeeeeeeesessnsrttaeeeaeeeaeeesesnnnsne 80
Table 4-10 Processor CONrol REGISTEISciiiiiiiiiiieee e e ccitee ettt e e et e e e saar e e s s abr e e e e aaaeeeesnssnnraees 80
Table 4-11 General-Purpose EVENT REGISTEIS ...cccivuiiiiiiiiiiee ettt e e s saaee e e s 81
Table 4-12 POWEr BULEON SUPPOIt ..ciiiiiiee ittt eette st e st e e e st e e e s saaa e e e ssataeeeesnsbeeessssnnaeeeeas 84
Table 4-13 Sleep BULLON SUPPOIT.......uiiiiiiie ettt e e e e et e e e e e e e s eearteaeeeeeeeessssbeaeeeaeeeessasesnnnnsens 86
Table 4-14 Alarm Field Decodings Within the FADTc.oov it e e 91
Table 4-15 PM1 Status Registers Fixed Hardware Feature Status BitS........ccccceeeeivveciiiiieeeee e, 93
Table 4-16 PM1 Enable Registers Fixed Hardware Feature Enable Bits.......ccccccveeeriiiieiiicieeesccieee s 96
Table 4-17 PM1 Control Registers Fixed Hardware Feature Control BitS.......cccccccevevvivvveeeeeeeeeccnnnnnen, 97
B o] (I R B Y B T o T = T PR 98
Table 4-19 PM2 Control REGISTEI BitS ...cciiiiiiieiiiiiiiiieeeeee ettt e e ecrere e e e e e e eeeanbree e e e e e e e e e nn ennnnnes 99
Table 4-20 Processor Control Register BitS.......ccccuiiiiiiiiiee ettt e e e e e e e e eraanees 99
Table 4-21 Processor LVL2 RegISter BitS ...uuiiiiiiiciiieiiiee ettt e e e e e e s ecverre e e e e s e e e nansaernnes 100
Table 4-22 Processor LVL3 REGISTEN BitSccccuiiiiiiiiieieciiieececieee et e e e sire e e svae e e sabaee e e baee e e eansareeas 100
Table 4-23 Sleep CoNLrol REGISTEN ...ccccviiiiecciieee ettt e e e e e e s bba e e s e baee e e e e enrenas 101
Table 4-24 Sleep Status REGISTELuvviiiiiiii ettt e e et re e e e e e e e e s abaraeeeeseeeenn e eennnrnnes 101
Table 5-25 Generic Address StrUCTUIE (GAS)oiiicueeee ettt e e ettt e et eeeree e e eeare e e e eareeeeeareea s 115
Table 5-26 ADdress SPace FOMMALciiiiiii it e e e e e e e eccrrrr e e e e e e e e esnabasaeeeeeeeeesnnsrennsnnes 116
TabIE 5-27 RSDP SEIUCTUIEeiiiiiiiiteeeiiite ettt s ettt et e s sttt e e s s be e e s s abee e s sabeaeessabbaeessanbeebaeessnrenas 118
Table 5-28 DESCRIPTION_HEADER Fieldscoiciiiiiieiinieeiiiiee ettt sie et sve s sireesvaeesine s sveeeses 119
Table 5-29 DESCRIPTION_HEADER Signatures for tables defined by ACPI.........cccoeeeiveiiiciieeeecieenen, 120
Table 5-30 DESCRIPTION_HEADER Signatures for tables reserved by ACPl..........ccoovvviiviveeeeeeeeniennns 122
Table 5-31 Root System Description Table Fields (RSDT)cccuvieieeiiiieeeeiieee ettt eee e are e 124
Table 5-32 Extended System Description Table Fields (XSDT)....iuiiiciieeeeiiieee et 125
Table 5-33 FADT FOIMAt ooueiiiiiiiiiiee ettt ettt ettt s e e s sttt e e s st e e s sttt e e e ssabeaeessabbeeessanbeebaeessarenas 126
Table 5-34 Fixed ACPI Description Table Fixed FEature FIagscccccvveiiiiiieieiniiiee e eeveee 136
Table 5-35 Fixed ACPI Description Table Boot IA-PC Boot Architecture Flags.......ccccoceeevcciveeeeicnnnennn. 141
Table 5-36 Fixed ACPI Description Table ARM Boot Architecture FIags.......ccccovvvevcieiiiiiciieeeecneenn, 142
Table 5-37 Firmware ACPI Control STructure (FACS)uveee ittt ettt et e e 142
Table 5-38 Firmware Control Structure Feature FIags.......ccoooiiiiiiiiie ettt e 146
Table 5-39 OSPM Enabled Firmware Control Structure Feature FIags.......cccccveeveeiiiiiciiiiieeee s 146
Table 5-40 Global Lock Structure Within the FACSooiiiiiiiiiiieecitececsiec et 147
Table 5-41 Differentiated System Description Table Fields (DSDT).....cccoccvuereeriiiieeeeciieeeeeieeeeeiieee s 149
Table 5-42 Secondary System Description Table Fields (SSDT)uvueeeeeeeiieiiiiireeeeeeeeeecirreeeeeeeeeeeennnns 150
Table 5-43 Multiple APIC Description Table (MADT) FOrmMatccccvueeeeiiiieeeeiiiee e eeciree e e 151
Table 5-44 MUILIPIE APIC FIQESuuiiiiiiieee ettt e e e e e crte e e e e e e e e tree e e e e e s e e ennraaaeeeaeeeessneeennnsnnns 152
Table 5-45 Interrupt Controller StrUCtUIre TYPES ...uuiiiiieeei ettt ecaare e e e e e e e e snaneeeees 152
Table 5-46 Processor LOCal APIC STIUCLUIEcocviiiiieeiiieeeiiee ettt esieesieeesteessieeesiteesateesabaeesasessnseeaeen 154
LI o (SR A e Yot | Y o O o P - PSR 154
TabIE 5-48 1/O APIC STFUCTUI ooeeviieiieetiie e ettt e ettt e sttt e s eaat e e s s saaaeessssbaeeesssaaeesssbbaeessssbaeeseessssrens 154
Table 5-49 Interrupt Source OVerride STFUCTUIEuciiieiii it e e e e e e e erenaeees 155
TabIE 5-50 IMIPS INTI FIAgS...uitieiiiiiiiiiiiiiiieee e e e e ettt e e e e e e e ettt reeeeeeeeesabraaeeesaeseesnssasaseaaeaasaeesesannsnnes 156
Table 5-51 NIMI SOUICE STIUCLUIE ..ciiiiuiiiiiiiiiiiee ettt ettt e s sbee e e s bae e e s sbbee e s ssbeeeeses sabeeas 157

UEFI Forum, Inc. December 2018 Page xliii

ACPI Specification, Version 6.3

Table 5-52 LoCal APIC NIMI STFUCLUIE ..ovuuiiiiiieiiieeeiteeeeiee et e st site e steessate e sae e e sateesateesabaeenaseesn saveeen 157
Table 5-53 Local APIC Address OVerride StrUCTUIEcocciveeeiiciiieeeieee e ecireeeerree e esrre e s srae e e s snreeeeas 158
Table 5-54 1/O SAPIC SEFUCLUIE ...veeiveieeereeeeteee ettt ettt ettt e et s eetveeeateseeateeeaeeeeaeeesnbeeesatesenseseeesareean 158
Table 5-55 Processor LOCal SAPIC SLIUCLUIEciiiiciiieeiiiiiiee ettt et e e sree e s svee e s s saae e e s snreeeaes 159
Table 5-56 Platform Interrupt SOUrCe StrUCTUIE........ciiciiiiiie ettt e e aree e 160
Table 5-57 Platform INterrupt SOUICE FIAES......cociiuiiieieiiiee ettt et e e e e aae e e e e 161
Table 5-58 Processor LOCal X2APIC SEIUCTUIEviiiviiiiiieeeriieeiieesiee st et sive s sve e s e ssaaeeste s snaeee s en 161
Table 5-59 Local X2APIC NIMI SErUCLUIE ..cvieiiieeiiieieeee ettt e e e eeeeetrre e e e e e e e e esabasaeeeeeeeeennnrsnennnns 162
Table 5-60 GICC SEIUCTUIE ...vviiiiiiieiiecciiteeesitee e e sttt e e e be e e e stre e e s s abeeeseabeeeeesssaaeeesssbaeesensseeseeeesnnsens 164
Table 5-61 GICC CPU INtErface FIAEScuviiee ittt cttre e e e e e e e srerae e e e e e e e e ennraannnes 166
TabIE 5-62 GICD SEIUCTUIE ...eviiiiiiieee ettt ettt e e s st be e e s s abee e e ssabeaeessabbeeessnbeebaeessnrenas 166
Table 5-63 GIC MSI Frame STFUCTUIEiiiiiiiiiiiiiiieee ettt st sbee e s e e s st e s e bee e s s st beees 167
Table 5-64 GIC MSI Frame FIAgSccoccuiiiiiiiiie ettt et e e ree e e svre e e e vaae e e s aba e e s ebaee e e e enraeas 167
TabIE 5-65 GICR SEIUCLUIE ...eeiiiiiiieeecciieeeectee e e st e st e e e e bre e e s s aae e e e e ssbee e e e sbaaeeesssbeeesennsenteeeesnnsens 168
Table 5-66 GIC ITS SErUCLUIE .ooiieivieeeeciiiee ettt ertee st e e et e e e st e e e e abae e e e sbaaeeesnsbaeeeenreesaeeesnsenas 168
Table 5-67 Smart Battery Description Table (SBST) FOrmatcccoccvieieiiiiee e 169
Table 5-68 Embedded Controller Boot Resources Table FOrmatcccovcuveeiiniiiieeniiieeeeieee e 170
Table 5-69 Static Resource Affinity Table FOrmMatcccveiiiiiiiiii e e 173
Table 5-70 Processor Local APIC/SAPIC Affinity STFUCLUIEcceeeiieeeciiieeiee ettt et 174
Table 5-71 Flags — Processor Local APIC/SAPIC Affinity STrUCTUIE.......cueevviveeeeeeiee et 174
Table 5-72 Memory Affinity StrUCTUIEcoi ittt eeerrre e e e e e e e e brbaeeee e e eeesaarssannnns 175
Table 5-73 Flags — Memory Affinity StrUCTUIEuiviiiii et e e e e raaee e 175
Table 5-74 Processor Local x2APIC Affinity STrUCTUre......cooi i 176
Table 5-75 GICC Affinity StrUCtUre . . .o i e e e i e e i e ceecceacceaceacaaaaaanan 176
Table 5-76 Flags — GICC Affinity Structure it i e i i e i e e ceaceacceaaaaaa 177
Table 5-77 Architecture Specific Affinity STrUCTUIEcc.vviiiiiiiee e 177
Table 5-78 Generic INitiator Affinity STIUCTUIEvvveviiii ettt e e e e e e abaree s 178
Table 5-79 DeVICE HAaNIE = ACPI.....coioeiiii ettt e e s e e s beee e e ssbbee e s snbeee e s e e snnreeas 178
Table 5-80 DEVICE HANAIE = PCl.....uiiiiiiiiee ettt ettt st et e e s bee e e s bee e e e ssbbe e e s sbeeesaeesnrenas 178
Table 5-81 Flags — Generic Initiator Affinity STrUCTUIEooiiieiiiie e 179
Table 5-82 SLIT FOIMAt c..eviiiiieeiiiee ettt st stt et e e st e s sabe e sbe e e sateessbaeesabeessbaeesabeeesasaeaesnseesnsseenn 180
Table 5-83 Corrected Platform Error Polling Table FOrmat.........ccocccvieiiiiiiee et 181
Table 5-84 Corrected Platform Error Polling Processor StruCtUre.......cccocveeeveciieeesciieeesccneeeesveee e 182
Table 5-85 Maximum System Characteristics Table (MSCT) FOrmat......cccoceeeeeiveeeeciieee e eecveenenn 182
Table 5-86 Maximum Proximity Domain Information Structureccooeciiiiiiiiiiiicceee e 183
Table 5-87 RASF Table fOrMateeiciiiicie ettt sttt e e aee e et e e saee e e sanee s 184
Table 5-88 RASF Platform Communication Channel Shared Memory Region........cccccceeevvciveeeecnnnnnn. 185
Table 5-89 PCC Command Codes used by RASF Platform Communication Channel 186
Table 5-90 Platform RAS Capabilities BitmMapcccueeeiiciiiiiie ittt e e e 186
Table 5-91 Parameter Block Structure for PATROL SCRUB..........uuuiiiiieiicciiieee e eee e 187
Table 5-92 MPST Table STrUCLUIE ...ciiiieiiiiecciee et e e e e s bee e s e bee e e e s snreeas 190
Table 5-93 PCC Command Codes used by MPST Platform Communication Channel 191
Table 5-94 MPST Platform Communication Channel Shared Memory Region..........ccccceeevvvveeecnnennn. 191
Table 5-95 POWET StAate VAlUEScovciiiiiiieiiiie ettt e st sate e saee e sabeeebee eesaree s 193
Table 5-96 COMMANG STAtUS ...oiiicuiiiieiiiiiee et e e e e e et ee e e e baae e esnbbeeeseabeeeeeaessnsenas 194
Table 5-97 Memory Power Node Structure definitionccccviiiiiiiee e 195
Table 5-98 FIag fOrMAt......uuiiiie ettt e e e e e e e e e e e e st rr e e e e e e e e e e snnraaaeeaaeeseeaeeesnnrnnes 197
Table 5-99 Memory Power State Structure definitionccccovieieciiie e 197
Table 5-100 Memory Power State Characteristics STrUCTUIecccceeeiiieieeiiiiie e 198
Table 5-101 Flag format of Memory Power State Characteristics Structurecccccvveeviviieeeeinnenn, 199
Table 5-102 Platform Memory TOPoIogy Table.......uuveeiiiiiiiiccirreeee e e e 201
Table 5-103 Common Memory Aggregator Device StrUCLUIEeeeveeeiieecciiiieee e eeccirreeeee e e e e 203
Table 5-104 SOCKET STFUCTUIE ..eiiieiiiiieciiee ettt e e et e e e s e e e e ssbbeeessnbeeesaeesnarenas 204
Table 5-105 Memory Controller SErUCTUIE ... e e e e e e eraaee e 204
Table 5-106 Physical Components Identifier SErUCtUreccceeiveieeiiiieee e 206

UEFI Forum, Inc. December 2018 Page xliv

ACPI Specification, Version 6.3

Table 5-107 Boot Graphics Resource Table Fields.......cccuiiiiiiiiieicciie et 207
Table 5-108 Status Description FIieldceeiiiiiiiiiiis ettt e s rae e e e e 208
Table 5-109 Image Type Description Field..........coocuiiiiiiiiiiiiiiee et 208
Table 5-110 Firmware Performance Data Table (FPDT) FOrmat.......coceeeeciieeeeiiieeeeciiee e e 209
Table 5-111 Performance RECOId StIUCTUIEccuviiiieeiiiieeciee ettt eteeeeteeesive e ste e snte e saaeesaeeeeneeeeas 210
Table 5-112 Performance RECOIA TYPES . .ciiu i eiieeeeeciiteeeeette e e esrte e e eetteeeeeabaeeeeasbeeeeesseeesenreeeses 211
Table 5-113 Runtime Performance RECOId TYPESuuiieciiieeiiiiiieeccieee e et e e esvee e e stare e e aaee e s sareeeean 211
Table 5-114 S3 Performance Table PoINter RECOITccooieiiiiiiiiieieeee ettt e e e e e e evanns 212
Table 5-115 S4 Performance Table Pointer RECOIduuiiiiiciiiieiiiiiie e saree e 212
Table 5-116 S3 Performance Table HEAErcoo ittt 213
Table 5-117 Basic S3 Resume Performance RECOIdcivcvieriiieiiiecieesieeeiee e sies e sreeesvee e svee e 213
Table 5-118 Basic S3 Suspend Performance RECOIdoooiccciiiieiiiiee ettt e 214
Table 5-119 Firmware Basic Boot Performance Table Headercccocvevviiiiiniiiiceiiniecnec e 214
Table 5-120 Firmware Basic Boot Performance Data Record Structurecccccceeevvveeeiiciieeeecineenn, 214
Table 5-121 GTDT Table StrUCTUIE....cii ettt e e e e e s e e s s baee e e es sareeas 216
Table 5-122 Flag Definitions: Secure EL1 Timer, Non-Secure EL1 Timer, EL2 Timer, Virtual EL1 Timer
AN ViIrtUAL EL2 TIMIEEaeeieiiiiieee ettt sttt s s e e e s e e s sbee e e s s bbeeessabeaeessasabeeas 218
Table 5-123 Platform Timer TYPE StIUCTUIES......ccccuvieeeciieee ettt e et e e eetre e e e rae e e eibte e e e aree e e enraeae s 218
Table 5-124 GT BIOCK StruCtUre FOrMAt.....coicueiiiieiiiieiiiieeriee et esieesire e e e sire e sbe e s b e sbaeesateeseevee s 219
Table 5-125 GT Block Timer Structure FOrMatcuviiieciiiiie et e s are e e 219
Table 5-126 Flag Definitions: GT Block Physical Timers and Virtual TIMersccccccceevevvvvvveeeeeeeniennns 220
Table 5-127 Flag Definitions: COMMON FIags..........uuuiiiiiiiiiiiiiiiieeeee ettt e e e e e e e sarnneeee e 220
Table 5-128 SBSA Generic Watchdog Structure FOrmat.........cccovviiieeeee e 221
Table 5-129 Flag Definitions: SBSA Generic Watchdog TImMer.......ccccvieiiiiiiie et 221
Table 5-130 NVDIMM Firmware Interface Table (NFIT)coouiiieieece e 224
LI o [e 3 A N Y VT] I Y/ 1P 224
Table 5-132 SPA RANGE STIUCTUIEuuiiiiiiieee ettt eee e e eeecrrre e e e e e eeeretbareeesesesessaasssaeeeeeeeesnnssnnsnnns 225
Table 5-133 NVDIMM Region Mapping STFUCLUIEceeiiiiiiiiiiiiiiiieee ettt e e eestrre e e e e e e e e e eannens 227
Table 5-134 Interleave Structure Index and Interleave Ways definition..........cccccoeeeviciiiieeneinneccinn, 230
Table 5-135 INterl@ave StrUCTUIEcoiv i ittt e s s bee e e s e e sabeeas 231
Table 5-136 SMBIOS Management Information Structure.........cccooccveeiiiiiiee e 231
Table 5-137 NVDIMM Control Region Structure Mark.........coccuveeeeciieeeeiiieee e ecree e sveee e 232
Table 5-138 NVDIMM Block Data Windows Region StruCtUIeccceeevvciieeeiiiiiieeciee e 236
Table 5-139 Flush Hint Address SErUCLUIEuviiiiciieiiecieec ettt e s aae e e s sare e e 237
Table 5-140 Platform Capabilities StrUCLUIE...........uvviiiiiiee et e e e e aenae e 237
Table 5-141 SDEV ACPI Tabl@..uui ettt e e e e e s e e e e e e e e e s anbae e e e e e e e sesn e e ennrnnns 240
Table 5-142 PCle Endpoint Device Based Device Structure EXamplecccceeeeiveeencieeicccieee e, 242
Table 5-143 Heterogeneous Memory Attribute Table Header.........ccccoeeviiiiiiciiiecccieecceee e 244
Table 5-144 HMAT StrUCTUIE TYPES c..uuuiririieeeeeiiiiitireeeeeeeeeeeeeiiirrreeeeeeeeessitsseessesesesssssssseseesessssssssnssnns 245
Table 5-145 Memory Proximity Domain Attributes StruCtUrecccceeeeecciiiieeeie e 246
Table 5-146 System Locality Latency and Bandwidth Information Structure..........cccccovviveeeeeieninnns 248
Table 5-147 Memory Side Cache Information STrUCtUIe........c.vvviiiiiiiei e 250
TabIE 5-148 PDTT StIUCTUIE ...eveiiiieeeiteeeiee ettt este ettt ste e st e s sbe e staeesateesaaeesabeessateesabeeessseessnseeesaseean 253
Table 5-149 PDTT Platform Communication Channel Identifier Structure.........cccccovvcveeviiiinceriniennns 253
Table 5-150 PCC Commands Codes used by Platform Debug Trigger Tablec..cccoevvvvviveeeeeeeencennns 254
Table 5-151 PDTT Platform Communication Channelcooccuvieiiiiiiiiiiniie e 254
Table 5-152 Example: Platform with 4 debug triggersoooiiiiieei e 255
Table 5-153 Processor Properties TOpology Table ... 257
Table 5-154 Processor Hierarchy NOde STrUCLUIEcccviieiiiiiiiee et sire e 259
Table 5-155 Processor STrUCLUIE FIAEScciiiciiieiiiiiieeeccieee et e et e e ette e e s aaae e e eabae e s e baee e e enneneeas 260
Table 5-156 Cache TYPE STIUCTUIE.......uuiiiiieee ettt e e e e eeerebrreeeeeeeeessabasaeeeeeseeenanssnnssnns 263
Table 5-157 Cache StruCture FIAESccuiiiieiie ettt e e et e e e e e e e esnrnae e e e e e e e e e enan ennnnes 263
Table 5-158 ID TYPE StIUCLUIE ceeceeeeeeiiiiieee e e e ectitte et et e e e e eee ettt rr e e e e e e eeseabrsaeeeseeeeeeannsasaseaeeeseaasseesnnsnnes 265
Table 5-159 Namespaces Defined Under the Namespace ROOt.........cccceecvveeeeeiiiieeeciieec e, 268
Table 5-160 Operation Region Address Space Identifierscccccceecuieeiiiieee e 275

UEFI Forum, Inc. December 2018 Page xlv

ACPI Specification, Version 6.3

Table 5-161 IPMI STAtUS COUESeiiiiiiiiieeiiiieeriee ettt e ettt e st essite e sbeessateesbee e sateesabteesabeeesee seesaseeen 281
Table 5-162 AcCSESSOr TYPE VAIUEBS ..ccccueiiieieiiieieeiiitee s estee e ettt e e see e e e sbee e e e s baaeeesssbaee s ennraeeeesnnareeas 284
Table 5-163 ACPI Event Programming Model COMPONENTESceeeiiiiiiiiiiiiiieeciiee e eeree e sveee e 303
Table 5-164 FIXEA ACPI EVENTS...cccuvtiiiieiiiieeeiiiteeestitee e st e e s saee e s ssaee e s sssbeeeesssbeaeessssbeeessnnbeeesaessnnsens 304
Table 5-165 Device Object Notification ValUEscooocuiiiiiiiciiie et 312
Table 5-166 System Bus NOtIification ValUESccuueii it ettt e 313
Table 5-167 Control Method Battery Device Notification Valuescccccveeevvciieiecccieeeccieee e 314
Table 5-168 Power Source Object Notification Values........ccccocciiiieiiiie e 314
Table 5-169 Thermal Zone Object Notification Values.........cccoccuriieeiiie e 314
Table 5-170 Control Method Power Button Notification Values.........ccccocveeiiniiiiiiniiiieiiiiiee e 314
Table 5-171 Control Method Sleep Button Notification Valuescccoccveveeeciieiecciee e, 315
Table 5-172 Control Method Lid Notification Valuescccceecueieiiiiiciiisiiecee e eee e 315
Table 5-173 NVDIMM Root Device Notification Valuesocveivrieiriiiiniiieiiieciec e 315
Table 5-174 NVDIMM Device Notification ValUes.........cuueviiiiciiiiiiiiiiecccieee et 315
Table 5-175 Processor Device Notification ValUEsccueeiiiiciiiiiiiiiiie et 316
Table 5-176 User Presence Device Notification Valuesccccuieiiiiiieiiiiiieee e 316
Table 5-177 Ambient Light Sensor Device Notification Values...........ccccocuveeeieciieiecciee e 316
Table 5-178 Power Meter Object Notification Values..........ccccviiiiiciiiiiicieee et 317
Table 5-179 Processor Aggregator Device Notification Valuesccccceeeuveeeiciiieieccieeeccieee e 317
Table 5-180 Error Device Notification ValUEscc.ueviiiiiiiiiiiiie ettt e s 317
Table 5-181 Fan Device Notification VAlUEScccuiiiiiiiiiiiiicie sttt s 317
Table 5-182 Memory Device Notification ValUEseeeieeiiieciiiiiiiee ettt 318
TabIE 5-183 ACPI DEVICE IDS ..eeteieuiiiieieiiiiieeiiitteesiiitee e sttt e e sssaaeeesssaaeeesssabeeaesssbeaeeenssbeeessnnseeeseessnnsens 318
Table 5-184 Predefined ACPI NGMEScccuiiiiie e eieieectiee ettt e seteeeseteestaessnte e esaeeesnteesnteesnseeessseesnseseean 320
Table 5-185 Predefined ObJECT NAMES.....cccciuiiiiiiiiie ettt ettt e e e e e aae e e e enree aeas 335
Table 5-186 Predefined Operating System Vendor String Prefixescccocvveeeeciieiecccieeccccieee e 336
Table 5-187 Standard ACPI-Defined Feature Group STHiNGSccvvvveeeeeeeiiiiiiiireeeeeeeeeeeirreeeeeeeeeesnnnns 336
Table 5-188 DeviceLockinfo Package ValUesuuueeeiiiiii ettt ectrae e e e e e e avaaaeees 340
Table 6-189 Device Identification ODJECES......cccuiiiiiiiie e e e e e araee e 342
Table 6-190 ADR Object Address ENCOAINGS.......cc.uviiiiiiieiie e ccciiieree e e e e eccterteee e e e e e esveare e e e s e e s ssnnnnenees 343
Table 6-191 Additional Language ID Alias STriNGS.......ccoccuiiieiiiiiieeeciee ettt e ae e e e 348
Table 6-192 PLD Back Panel EXample SETLINGS ...ccccuviii ettt e et e et e e saae e 355
Table 6-193 Device Configuration ODJECESuiiiiiiiiiieiiiee e e e e nreee e 359
Table 6-194 HPP Package CONtENTSuuiiiiiiieiiciiieieeeeee e e eecctte e e e e e e e e ttae e e e e e e e e esnbasaaeeeeeeeesnnnssnnsnnns 368
Table 6-195 PCl Setting Record CONTENT.....ccccc ittt e e e e et rre e e e e e e e e nnraneeees 372
Table 6-196 PCI-X Setting Record CONtENtcevviiiiiiee et e e e e e e e saaraneee e 373
Table 6-197 PCl Express Setting Record CONtENTccocciiiieiiiiiiic et e e saree e 374
Table 6-198 PCl Express Descriptor Setting Record Content..........cccveeeiiiieeeeiiiiee e eccree e 378
Table 6-199 PCl EXPress REgiSTEr DESCIIPION . ..o uuiiieieee e e eeceiireee e eeeccrrree e e e e e e e esbrrreeeeeeeeenaarsseeenns 379
Table 6-200 Platform-Wide _OSC Capabilities DWORD 2ouviiiiieieeeieciiiiieeeeeeeeeeireeeeee e e e e eeneens 390
Table 6-201 MaPPINg FIEIAS....cuii it e e e e e e e rrre e e e e e s e e s aararaeeaeeeeeseeeeennnsnnns 397
Table 6-202 Example Relative Distances Between Proximity DOmainscccccceeeveviciininneeeeeeesccnnnns 401
Table 6-203 Example System Locality Information Table.......cccceeeeciiieiiiiiee e 401
Table 6-204 Example Relative Distances Between Proximity Domains - 5 Nodecccccvveeeennnennn. 402
Table 6-205 Device Insertion, Removal, and Status ObJectscueeeeeeiiiiciiiiieeeiec e 407
Table 6-206 OST SOUICE EVENT COUBSuuviiiiiiiiieiiiiee ettt ettt e e e s sbee e e s saeee e s sabee e s sebaeeessnnrebeeas 411
Table 6-207 General Processing Status COUES.......uuuuiiiiiiiiiiiiiiiiiieeee e ecccrrree e e e e e e ecbrrree e e e e e e e snnreaaeeees 412
Table 6-208 Operating System Shutdown Processing (Source Events : 0x100) Status Codes............ 412
Table 6-209 Ejection Request / Ejection Processing (Source Events: 0x03 and 0x103) Status Codes413
Table 6-210 Insertion Processing (Source Event: 0x200) Status COdescccevuuvreriuveeesicveeeeeineeeann 413
Table 6-211 Small Resource Data Type Tag Bit Definitionscccvveeeeeeiiiiiiiiiieeecc e 418
Table 6-212 SMall RESOUICE [EEMIS....iiiiiiiieiiiiiie ettt e e s ee e s sbbee e s e sbeeeeeen snnreeas 418
Table 6-213 IRQ Descriptor DefinitioN........c.cccicciiiieee e e e e e e e e e 419
Table 6-214 DMA Descriptor Definitioncc.ueiiiiiiie it e e e aree s 420
Table 6-215 Start Dependent Functions Descriptor Definitioncccceecvveeiiiiieeccciee e 421

UEFI Forum, Inc. December 2018 Page xlvi

ACPI Specification, Version 6.3

Table 6-216 Start Dependent Function Priority Byte Definition..........cccoecveeeicciieeeccieeecceee e 421
Table 6-217 End Dependent Functions Descriptor Definitioncccccevvviieiiiiiiieeecciee e 422
Table 6-218 1/O Port Descriptor DefinitioN.........cccueiiieciiieiieeireeseecee e cre et s e eveeveesbeestaesbe s reas 422
Table 6-219 Fixed-Location I/O Port Descriptor Definitioncocveeevveeeieieeeie e eeeeceeee et 423
Table 6-220 Fixed DIMA ReSOUICE DESCIIPLON c.ciiiiiiiieeeee ettt e e eectrre e e e e e e e svane e e e e e e e e e e ennrnnes 423
Table 6-221 Vendor-Defined Resource Descriptor Definitionccceeeeeciiieeeciiee e 424
Table 6-222 ENd Tag DefinitioN.........ciiiiiiieecciiee ettt rre e e re e e st e e s e rae e e s e e eareeas 424
Table 6-223 Large Resource Data Type Tag Bit Definitionsccovcuveiiiiiieeiiiiee e 425
Table 6-224 Large RESOUICE [LEIMS.......uuiiiiieeeeeiiiciiireeeeeeeeeeeecirrreeeeeeeesssbaseeesesesessssssseeseesesssssnsnnsssnns 425
Table 6-225 24-bit Memory Range Descriptor Definition.cccueeeeeie i 426
Table 6-226 Large Vendor-Defined Resource Descriptor Definitionccccceeeiveeeecieeieccieee e, 427
Table 6-227 32-Bit Memory Range Descriptor Definitionccccoccveeiiciieie e 427
Table 6-228 32-bit Fixed-Location Memory Range Descriptor Definition........ccccceecvieeiiccieeeeccneennn, 430
Table 6-229 Valid combination of Address Space Descriptors fields........cccccveciieeeicieeiiccieee e, 431
Table 6-230 QWORD Address Space Descriptor Definitionvvveeeeeeeiiiiiiiiieeeie e 431
Table 6-231 DWORD Address Space Descriptor Definitionccccceeeeeiieeciiiiieeeic e 435
Table 6-232 WORD Address Space Descriptor Definition............eeeecieeiiciieee e 437
Table 6-233 Extended Address Space Descriptor Definitioncccceeeeeiiiieicciiee e, 439
Table 6-234 Memory Resource Flag (Resource Type = 0) Definitionsccceeeeciieeeeiiieeecccieee e, 443
Table 6-235 I/0 Resource Flag (Resource Type = 1) DefinitionS........cccveeivvieeieeeecieeeeeeecreeeeree e e 444
Table 6-236 Bus Number Range Resource Flag (Resource Type = 2) Definitions........ccocvveeeeeeeenennns 444
Table 6-237 Extended Interrupt Descriptor Definition........ccccocciiiiieeiii e 445
Table 6-238 Generic Register Descriptor Definition ... e 447
Table 6-239 GPIO Connection Descriptor Definitioncoocciiiiieciiie e 448
Table 6-240 GenericSerialBus Connection DESCrIPLOrSccivccuviieeiciieee e ecteee e re e e saaeee e 451
Table 6-241 12C Serial Bus CoNNECtion DESCHIPLON ...uviieiiiiieieciiiie e ccieee ettt e e e s srre e e e saaeeeeas 453
Table 6-242 SPI Serial Bus CONNECLION DESCIIPTON....uuuiiiiieeeieiiiiiirieeeeeeeeeeeeirreeeeeeeeseseirrreeeeeeeeessarnnes 455
Table 6-243 UART Serial Bus CoNNECction DESCIIPLOr....cuuiiiiieiicciiiieeee e e e eeeciiiteee e e e e e eesrree e e e e e e e e e eannnns 457
Table 6-244 Pin Function Description Definitionccccceeeeeciiiiiie et 460
Table 6-245 Pin Configuration Descriptor DefinitioN...........ccocciiiiieciiie e 462
Table 6-246 Pin Group Descriptor Definitionccceeiiciiiie it 464
Table 6-247 Pin Group Function Descriptor Definitionccccoeeieiiiieiiiiieee e 465
Table 6-248 Pin Group Configuration Descriptor Descriptioncccceeeeciveeeiiiiieeescieeeecreeeesineee e 467
Table 6-249 Other Objects anNd MEthods ... e e e e e e e earraae e 470
Table 6-250 OSPM _INI ObjJECt ACLIONS ..vvveieiieicciieieee et e e e e e e e e rarre e e e e e e e eeneneeanes 471
Table 6-251 NVDIMM Label METhOASciiiiiiiiiiiiieeetec e e e 478
Table 6-252 _LSI Return Package ValUBSueiiiiiiiie ittt ettt e et aae e e e nree s 478
Table 6-253 _LSR Return Package ValUEScoicuuiieieiiiiiie ettt e e vte e et e e vte e e e ataee e 480
Table 7-254 Power Resource Object Provisions for Information and Control..........cccccovvveeeeeeeinnnn, 481
Table 7-255 Power ReSOUICE METNOUS.iiiiiiiiiiiiiie ettt ssbee e e s s nreee e 484
Table 7-256 Device Power Management Child ObjJectsScccvviiiiiiiiii e 486
Table 7-257 PSC DeVICe STate COUES......uuuiiiiiiiiieiiiiees ettt ettt e s e e s sbbee e s s bee e s s snabeeas 489
Table 7-258 Power Resource Requirements PaCckagecccccuvveeeiiiiieiiciieee ettt 490
Table 7-259 S1 ACHION / RESUIT TABIE ...uvviiiiiiiieeeeee ettt e e e e s s e e e e e e s s e ssasssnraees 495
Table 7-260 S2 Action / RESUIT TabBI@ccuveiieie ittt e e e 495
Table 7-261 S3 ACTION / RESUIT TaBI@ ...ttt ettt e e e s e e e e e ereeesssesasseaerenes 496
Table 7-262 SA ACTION [RESUIT TaBDI@ ...ttt ettt e e e s e e e e ereeesesesaseeaeerenee 497
Table 7-263 BIOS-Supplied Control Methods for System-Level FUNCLIONS...........coeeciieeecciiee e, 499
Table 7-264 System State PACKagecccccviii ittt e e et eeatae e e e e 501
Table 8-265 Cstate PACckage ValUESeeeeuiiiiiiiiiie ettt e et e e aae e e bae e e bae e e e e nareeas 520
Table 8-266 CStateDependency Package ValUES.........ueeeii ettt eeecrreeeee e e e e e 522
Table 8-267 Processor Container DeVice ObJeCES......uuuiiiiiiii ittt e e e e eaneees 525
Table 8-268 Valid Local State Combinations in Figure 2 example system.......ccccceeeeeecciiiiieeeeeeeeeecnnnns 527
Table 8-269 EXteNded LPI fieldS......ccceiiiieeiiie ettt sttt see e st e e st eene e e sanee s 534
Table 8-270 FIags fOr LPI STAteSuviiiiciiiie et ettt e et e e e s ivee e e e ita e e e e e e e e e e nabae e s enbaee seeeenrenas 536

UEFI Forum, Inc. December 2018 Page xlvii

ACPI Specification, Version 6.3

Table 8-271 Enabled Parent State values for example syStem........cccceeeiiieeiiiiiie e 537
Table 8-272 Entry method eXamPleueei it e e e e e e nre s 544
Table 8-273 PTC PacKage VAlUEScoiieiiiieiciiiie ettt e et e e vae e s e s e vae e e e e s areeas 552
Table 8-274 TState PAckage ValUES ...ttt e e e e et re e e e e e e e e snaraannees 553
Table 8-275 TStateDependency Package ValUesuueeieiiiii it ee e e e e e 555
Table 8-276 PCT PACKage VAlUESuuuiiiiieeiie ettt e e e e e e st ee e e e e e s e s e nnbaaae e e e e s e e snnnnesnnnnnns 560
Table 8-277 PState Package ValUESueei ittt ettt e e bae e s e e e 561
Table 8-278 PStateDependency Package ValUEScocuuiiiiiiiiiiii ittt evaee e 564
Table 8-279 Continuous Performance Control Package Valuesccevuveeiivciieeeccieee e 569
Table 8-280 Performance Limited Register Status BitScccocciiiiieiiei i 581
Table 8-281 PCC Commands Codes used by Collaborative Processor Performance Control 583
Table 8-282 Processor Aggregator Device ObjJECtS.. ..o 586
Table 9-283 System Indicator Control Methods...........cccuiiiiiiciiie i 592
Table 9-284 Control Method Ambient Light SENSOr DEVICEcceevciiiiiiiiiiie et 594
Table 9-285 Control Method Lid DEVICEccccuuiiiiiiiieeecitee ettt e aae e e sae e e vaee e e e ntee e 601
Table 9-286 ATA SPECITiC ODJECLS ...t e e e e e e e e enb e ae e e e e e e e esann eennrnnes 603
Table 9-287 GTM Method ReSUIt COUBSciiiuiiiiiiiiiiieiiitee ettt e e s saree e 606
TabIE 9-288 TAPE PrESENCE. . uiiiiiiiee e ettt e e e e e e ettt e e e e e e e e et treeeeeesssaabtaaraeeeesesssnsaseaaaeessaaseeesannsnnns 610
Table 9-289 ACPI Floppy Drive INfOrmationcccueeeiiiiiiiiecciee et vae e e e 610
Table 9-290 MBM Package Detailsuveeeiiiiiiiiiiiiiieee ettt ettt e e e e e e e eeraraee e e e e e e e arsanens 617
Table 9-291 MSM ReSUIT ENCOTINGuuvriiiieiieiiiciitieeee e ee ettt e e e e e e cttrreeeeeeeeeeasaraeeeeseeeesnnsssnnnnns 618
Table 9-292 Memory Device _OSC Capabilities DIWORD NUMDBEr 2ccociiiiiiiiieee e e 618
Table 9-293 UPC Return Package ValUES........cocuuiiiiiiee ettt ee ettt e e e e e esavanae e e e e e e e e snnranaee e 620
Table 9-294 User Presence DeteCtion DEVICE.....couiiiiiiiiiiiieiiiiee ettt e st e s s saae e e s sibeee e 628
Table 9-295 TimMe and AlQrMm DEVICEcoicviiiiiiiriee ettt et et e et e st e s sateessbee s sateessteesabaeesasessasareeen 630
Table 9-296 Generic Buttons Device Child ObJECLScccvviiiiiciiiieiceee e 643
Table 9-297 Usage Types and Interrupt POIArityccceeeeciieiiiiiiiies ettt 644
Table 9-298 CommOon HID BULLON USAEES ...eceeeiiiiiiiiiieee e e e e ettt ee e e e e eeeittrree e e e e e e essanraaeseeeaseeeennrnnns 644
Table 9-299 NVDIMM Root Device FUNCLION INAEX ...cviviiiiiiiiiiiiiei ettt e e 650
Table 9-300 Status and Extended Status Field Generic Interpretations........ccccceeeeeveccciieeeee e ceccies 652
Table 9-301 Query ARS Capabilities — INput BUFferccuueiiiiiiie e 653
Table 9-302 Query ARS Capabilities — OUtPUL BUFFercoiiiiiiiieiceee e 653
Table 9-303 Start ARS — INPUL BUFFEIuiieiciee ettt e 654
Table 9-304 Start ARS — OQULPUL BUFFEI ...eeiiiei it e e e e e e e en e 655
Table 9-305 Query ARS Status — OULPUL BUFfEr........uuviiiiiii e 656
TabIE 9-306 ARS DAtA ...evieiiiiiiieiiiiiiee ettt ettt sttt e s s bte e e sttt e e s s bbe e e s s bbe e e e s abeae e e abbae e s et bbaeesearaeas 656
Table 9-307 ARS Error RECOIT FOIMAT.....uiiiiiiiiiieeeiieesiiee et e sttt stee s sete e sbe e e ste e sateesabaeesaaeesnbeveeen 657
Table 9-308 Clear Uncorrectable Error — INput BUffer..........ooccuvieiiiciiii et 658
Table 9-309 Clear Uncorrectable Error — Output BUffer.........ccccuvvveeeeeiiiccciieeee e 659
Table 9-310 Translate SPA - Input Payload FOrmatccoooieiiiiiiii e 659
Table 9-311 Translate SPA - Output Payload FOrmatcoociiiiiiii e 660
Table 9-312 Translate SPA — Translated NVDIMM Device List Output Payload Format..................... 661
Table 9-313 ARS Error Inject — INPUL FOrMAat.....cooiuiiiiieciieee ettt e e e e e et 661
Table 9-314 ARS Error Inject — OUtPUL FOrMAt.....ccuviiiiiiiiiie et e e e 663
Table 9-315 ARS Error Inject Clear — INPUt FOrmMat......uueiiiiiiiiiiiiiieieeee ettt e e e e ee e aranes 663
Table 9-316 ARS Error Inject Clear — OUtpUt FOrmMat.......coooiieciiiiiiiee e e 663
Table 9-317 ARS Error Inject Status Query — Output FOrmatccceeeeeiiieciiiiieeee e e 664
Table 9-318 ARS Error Inject Status Query — Error Record Formatococciiieeeiii e 664
Table 9-319 ARS Error Inject Options SUPPOIt.......cuueeieiiiiieeeiciiee e ecitee e eeire e e essreeeesiraee s e s raeeeeenraeee s 665
Table 9-320 NVDIMM Device Method Return Status COE........ooviiriniiiniiiiiiieeiieeerreenieeenireesiee e 665
Table 9-321 _NCH RETUIN VAUuiiiiiiiiee ettt ettt e e e e aae e e st e e s e abaee e e e snreeas 666
Table 9-322 NBS REUINN ValUE ...ttt e e e tr e e e e e e e e e e snbaaaa e e e e e e e ennn eennrnnns 668
Table 9-323 NIC OULPUL BUFFEI ..t e e e e e e e e e e e e e e eann eeaarnens 669
Table 9-324 NIH INPUL BUFFEI ..ottt et e et e e e e ree e e e e e enreeas 670
Table 9-325 NIH OULPUL BUFfEIuiiiieieeee et e e e e e e araeas 671

UEFI Forum, Inc. December 2018 Page xlviii

ACPI Specification, Version 6.3

Table 9-326 _NIG OULPUL BUFFEIuiiiieeiee et ae e e e e 672
Table 10-327 Example SMBuUs DeVvice SIave AdAreSSESccucuviieeiiiieeeiiiieieeiieeeesvreeeserreeessnseeeeas 674
Table 10-328 SMart Battery ObjJECESccuuuiiiiiiiiie ettt e s e e e rae e e e e areeas 676
Table 10-329 Battery Control MethodS ...ttt e e e e e e sanaee e 681
Table 10-330 BIF Return Package ValUEs........cocuuiiiiiieiei ettt e e e e ssvanee e e e e s e e e sannvanne e 682
Table 10-331 BIX Return Package ValUEScc.eeeviiiiieiii ettt e e ervtnte e e e e s e snnraneee e 684
Table 10-332 Control Method Battery _OSC Capabilities DWORD?2 Bit Definitions..........cccceeeennneee.. 687
Table 10-333 BST Return Package ValUEScooiuiiiiiiiiiiiie sttt e et e s vae e e s nrae e e 689
Table 10-334 BMD Return Package ValUEs........coocuiiiiiiiiiiie ettt aee e s 693
Table 10-335 POWET SOUICE ODJECES .. .uuuiiiiieiieiiciiiiie e ee et e e e e eccrre e e e e e e e e esabraaeeeeeeeeesannresnnnnes 696
Table 10-336 PIF Method ReSUIt COUES......couuuiiiiiiiiiieiiee ettt e 697
Table 10-337 POWEr IMEter ODJECES.......uiiiieei e e et e e e e e e ecrer e e e e e e e e s sabeeer e e e e e eessnnnrennranes 698
Table 10-338 PMC Method RESUIL COUESuuiiriiiiiiiiiiieiiiiee ettt esreesieeeste e esite e ste e sateesbaeesaeeesabeeesan 699
Table 10-339 Wireless Power Calibration..........cioiiieeiiciiiie ettt e e e e sae e s snree e 704
Table 10-340 Wireless Power Control Notification Values:.........cccecuveeiiiiiiiiiiiiie e 705
Table 11-341 Fan SPeCific ODJECLSuuuiiiiiiee ettt e e e e e e e e ebera e e e e e e e e e eann sennrnnes 717
Table 11-342 FIF Package DEetailscccuiiiieeiiiiiiiiieieeeee e eccttre e e e e e s s ecrere e e e e e e e s eabaaae e e e e s seennn srnnrnnes 718
Table 11-343 FPS FanPstate Package Details...........uueveeeiiiiicceeeee et 720
Table 11-344 FST Package Details.......cccuueee ittt e et ree e e e e bae e e e e e areeas 721
Table 11-345 ThermMal ObjJECES. ...t eeeecrr e e e e e e e e e sabarareeeeeeeenan e ennnrnnns 721
Table 11-346 Thermal Relationship Package ValUEscoouceeiiiiieieeee e eeeerrreeee e e eeeeenanns 724
Table 11-347 Thermal Relationship Package ValUescoooiiiiiiieei e e e 735
Table 12-348 Read only register table e e e e e e e nnees 753
Table 12-349 Register details ...cciiii e e e e e e e e e e e e e e raranee 754
Table 12-350 Embedded Controller COMMAaNSc.coorvieiiiieniieenieeesieesiee e e sieeesbeesieessaeeessanee e 755
Table 12-351 Events for Which Embedded Controller Must Generate SCIS.........ccccovvverriiveencieeinieenns 758
Table 12-352 Read ComMmMaANd (3 BYLES) ..vveviicuiriieiiiiiieeiiiieeeesiiee s este ettt e e s vae e s arae e e e naee e e enreeae s 758
Table 12-353 Write COmMmMand (3 BYLES) ..eeeeeuriiieiiiiee ettt ee ettt e ettt e e tae e e et e e e e aree e e earaeae s 759
Table 12-354 Query ComMmMaNd (2 BYLESccucuiiieecirieeeciieee ettt eeete e e eetre e e e e eara e e e eeaabee e e areeeeenreeae s 759
Table 12-355 Burst Enable Command (2 BYLES)uuiieieciiiiee ettt ettt sttae e e e erae e 759
Table 12-356 Burst Disable Command (1 BYt)ccuveeieiiiiiiiiiiiieeciree et vre e e saae e 759
Table 12-357 SMBUS StatUus COUESuuiiiiiiiiiiieiiieeiiee ettt ettt esteesrbeeesbeeesiseesbeesssbeesbaeesasesssnseees 761
Table 12-358 SIMIB EC INTEITACE ..uvuiiii ettt ettt e e aee e e st ae e s e beee e e e eareeas 770
Table 12-359 Embedded Controller Device Object Control Methods..........cccccevveeiiiiiciiiiiieeeeee 772
Table 12-360 EC SMBUS HC DeViCe ODJECESccccuiiiiiiiiee ettt ettt e e esbrrae e e e e e e e e nnraaaee e 773
Table 13-361 SMBUS ProtOCOl TYPES ...uuviiieeeiieiiiiiireeeee e e e e eeccitre e e e e e s e ssnaraeeee e e e e s ssnnbanaeeeeessesnnnnsennsenes 776
Table 14-362 Platform Communications Channel Table (PCCT) ..uuuvuiiiiiiiiiiiieeeeieeeeeecirreeeee e eeeenanns 789
Table 14-363 Platform Communications Channel Global FIags........cccceeeviiieiiciieeeccieeccciee e 790
Table 14-364 Generic PCC SUDSPACE STIUCTUIEuuviiiieeieeee ettt ee e et e e e e eeeetrrre e e e e e e e e e enarnnes 790
Table 14-365 PCC Subspace Structure type 0 (Generic Communications Subspace)........ccccceeeunee... 790
Table 14-366 PCC Subspace Structure type 1 (HW-Reduced Communications Subspace)................. 791
Table 14-367 PCC Subspace Structure type 2 (HW-Reduced Communications Subspace) 793
Table 14-368 PCC Subspace Structure type 3 and type 4, master and slave respectively 795
Table 14-369 Generic Communications Channel Shared Memory Region.......cccccevcvvveeecciieeeecnnennn, 798
Table 14-370 Generic Communications Channel Command Fieldcccoovevviiiiieniiiieiciciee e, 798
Table 14-371 Generic Communications Channel Status Fieldcccccvvriiiiiniieinieeciee e 798
Table 14-372 Master Slave Communications Channel Shared Memory Regioncccccveeeeeeennnnns 799
Table 14-373 Master Slave Communications Channel FIagsuueeeviiiieiiiiiieiiieecccciieeeee e 799
Table 15-374 Address RANGE TYPES ..eeeccuuiiieiiiiieeeiiieteeeesie e e sstee e s e stae e s esbteeeesasaeeeeasteesennseeeeesnsnsens 805
Table 15-375 Input to the INT 15h E820N Call.....cc.cuviiiiiiiiie ettt e et 807
Table 15-376 Output from the INT 15h E820h Call ...ccccueviieiiiiiieeeccee et 807
Table 15-377 Address Range Descriptor STrUCTUE......cuiii it 807
Table 15-378 Extended Attributes for Address Range Descriptor Structure........cccooeeccvviveeeeeeeeeecnnnns 808
Table 15-379 UEFI Memory Types and mapping to ACPl address range typesccceeecvvvvveeeeeeereennnns 809
Table 15-380 SamMpPle MEMOIY IMAP ..ccccuuiiiiiiiiieeecieee et e eere e e e rre e e e eare e e e s abae e s eabteeeeeaaeeeeennreeeaes 811

UEFI Forum, Inc. December 2018 Page xlix

ACPI Specification, Version 6.3

Table 18-381 Boot Error Record Table (BERT) Table v..uueiiiiiiiiiiiieieeee et 836
Table 18-382 Hardware Error Source Table (HEST) ..ottt 837
Table 18-383 IA-32 Architecture Machine Check Exception Structurecccoecvveeevvieeeeiciieee e, 837
Table 18-384 IA-32 Architecture Machine Check Error Bank Structurecccoccvvevevvcieeiviiiieesecieeenn 838
Table 18-385 IA-32 Architecture Corrected Machine Check Structureccccocvveeevviiiiiiiiiee e, 839
Table 18-386 IA-32 Architecture NMI Error STrUCTUIE.......ciiiiiiiiiei ettt 840
Table 18-387 PCl Express ROOt POrt AER SErUCTUIEccuvveeeiiciieee ettt e e svae e 841
Table 18-388 PCl Express Device AER StrUCTUIEciivciiiiiecciiiee e ccitee et e e e e e e s svae e e s snaeee e 842
Table 18-389 PCl Express Bridge AER StrUCTUIEciiviiiiiieiiiiee et e e e e svae e s saae e 844
Table 18-390 Generic Hardware Error SOUrCe StrUCTUIE......cvcuvieeiiciieeeiriieee ettt e e s seee e 845
Table 18-391 Generic Error Status BIOCKuiiiiiiiiiiiiccte ettt e 847
Table 18-392 Generic Error Data ENtry.. ..ottt e e e e e e e e evarne e e e e s e e s ennnsennnnes 848
Table 18-393 Generic Hardware Error Source version 2 (GHESV2) Structurecooeevveveeeeeeeeneennne 851
Table 18-394 Hardware Error Notification StrUCLUIeueeviiiciiie i 852
Table 18-395 Architecture Deferred Machine Check Structureccoovcveeeivciiee s 853
Table 18-396 Error Record Serialization Table (ERST)uuviiiiciiiieeeceiee ettt 856
Table 18-397 Error Record Serialization ACHIONSuiiiiiiiiiiiiiee ettt 857
Table 18-398 Command Status DefinitioNcccuviiieriiiie e 858
Table 18-399 Serialization INSTrUCLION ENTIY......ccoiiuiiiiiiiiiie et rae e e e e 859
Table 18-400 Serialization INSTrUCLIONSciiiciiiiiiiiiiie e ee e e e e 859
Table 18-401 INSTrUCTION FIAES......cooiiiiiiieiee ettt e e e e e eeeerrre e e e e e e s e s aabaaaeeeeeeeesneeessnnrnnns 860
Table 18-402 Error Record Serialization INfO.......oocuviiiiiiiiie e 862
Table 18-403 Error Injection Table (EINJ) ...ttt ettt eeare e e e e 866
Table 18-404 Error INJECTION ACLIONSvviiiieeei et e e s e e e e e e e e sabaeee e e e e e eessnnnennrnnes 867
Table 18-405 Injection INSTrUCTION ENTIY ..ooiiciiiiieciiee ettt ettt e e aae e e e e vae e e e nereeas 869
Table 18-406 INSErUCTION FIAZS....cccuiiieiiiiieeciiiee ettt erre e esee e e s rvee e e esabe e e e e baae e esnbbaeesenbaeeseeeennsenas 869
Table 18-407 INJECtion INSTrUCTIONS ..viiiuiiieiiiieee e e e e e e sabee e e e sbeee e e s e eareeas 870
Table 18-408 Command Status Definitionciviiiiiiiiiiic e e 870
Table 18-409 Error Type Definitionueeeee ittt rrre e e e e e e e et annnes 870
Table 18-410 SET_ERROR_TYPE_WITH_ADDRESS Data StruCtureccooecuvvieeeeeeeeeecciieeeee e e e e e 871
Table 18-411 Vendor Error Type EXtension StrUCTUIEccocccuiiieieiiiie ettt 872
Table 18-412 Trigger ErrOr ACTIONcciccuiieeeciiee ettt e e eeee e e e e e e e sabte e e e s baa e e eenabaeeseabaee e e eennsenas 873
Table 19-413 ASL Grammar NOTatiONueiiiiiiiee ittt e e ee e s e e e e e reee e e s nteeeeas 877
Table 19-414 Named Object Reference ENCOAINGSuueveiiieiiiiiciiiiiieee ettt eecctrre e e e e e e e e einnnes 916
Table 19-415 Definition Block Name Modifier ENcodingscccvveeeiieiiicciiiiieeeee e 916
Table 19-416 ASL ESCAPE SEQUENCES ...uvvrriieeeeeeieciitirreeeeeeeeeesiiuttteeeeessesiassenreessessssssssssseeseesesssnsnsessssnes 918
Table 19-417 SUMMAry Of ASL Data TYPES ...cuuviieeiiieeeecieeee ettt e s avae e e et e e e e aae e e e enraeeeas 921
Table 19-418 Data Types and TYPE CONVEISIONScececcurieeeeeiiiiieeeiiieeeeeireeeesisreeessssseeessssseeessssseeeaas 925
Table 19-419 Object CONVEISION RUIEScciiiieeiciiieieeee e eeectrtee e e e eeeeerrreeeeeeeeeesabsaaeeeeeseeesnnrsnennnns 927
Table 19-420 Object Storing and COPYING RUIES........uvuiiiiiiiee ettt eesrree e e e e e e e araees 930
Table 19-421 Reading from ArgX ObjJECES ...cccciiiiiiieiiiee ettt e e e e e e e esberre e e e e e e e e snnrraeeeees 931
Table 19-422 Writing tO ArgX ODjJECES ...uviiiii i e e e e e sberrr e e e e s e e s eaaneenranes 931
Table 19-423 Reading from LOCalX OBJECLSuviiiiiiiiiecciieee et 932
Table 19-424 Writing to LOCAIX ODJECES ..vviiiiiiieieciiiee ettt e e vae e e e e 932
Table 19-425 Reading from Named ObjJECES.......cccccuiiiiiiiee ettt e e eeeevrreeeee e e e e eeaanens 932
Table 19-426 Writing to Named ODbjJECEScccce et e e e e e e e e snnraaeee e 933
Table 19-427 ConcatenNate Data TYPES ..uuuiiie i e ciiieeeieeee e e eeecrte e e e e e e e ecsrraeeeeeeeeessnbssaaeeeeeeeesnnreseesnns 948
Table 19-428 Concatenate ObJECt TYPES ..cuiii i e e e e e e e e e e e s sanbeaeee e 949
Table 19-429 Debug Object Display FOrMatsccccuviiieiiiiiieiiiiie ettt e s svae e e saaeee e 955
Table 19-430 Field UNit liSt @NTIreS ..ouveiiiiiiieeriee ettt ettt sttt ste e sabe e sbaeesaebeesabee s 973
Table 19-431 OperationRegion Address Spaces and ACCESS TYPESueevercurreeeriireeeriireeeerireeesssseeeeas 974
Table 19-432 Match Term Operator MEANINESuuiieeeeeeiieiiicciieieee e e e e eeectrrre e e e e e e eeserrareseeeeesesensnnns 996
Table 19-433 TValues Returned By the ObjectType OPeratorccccceeeeccciiiieeee e e eccirreeee e 1005
Table 19-434 Pin Configuration Types and ValUEscceeeiiiiiieie et 1010
Table 19-435 Pin Group Configuration Types and ValUesceeeecveeeieiiieiecciieee et e 1018

UEFI Forum, Inc. December 2018 Page |

ACPI Specification, Version 6.3

Table 19-436 PLD Keywords and AsSigNMENT TYPES ..eccccvrereeiiiieeeeiiieeeeeiieeeeentreeeesnreeeessnseeesennsenas 1045
Table 19-437 PLD Keywords and assignable String Values..........coeovviiiiiciieiicciieeeeceee e 1046
Table 19-438 UUID BUFfer FOrMAtcccuviiiiiiieeee ettt eeecrrte e e e e eeeerabreee e e e e s eaansaeseeeeesseenn eennn 1048
Table 20-439 AML Grammar Notation CONVENTIONSc.vviiiiiiiiiie it 1058
Table 20-440 AML Byte Stream Byte ValUESuviiiiiiiiiii ittt e e e e snne e e e e e e e snnnaes 1070
Table A-1 Default Power State Definitionscccevciiiiiiiiiiies e 1095
Table B-1 Video Extension Object REQUIrEMENTSccoiciiieeiiiiiee et et e e e ree e e e 1116
Table B-2 Video Output Device AtFIDULESccooiciiiee ittt sree e 1121
Table B-3 EXamMPIE DEVICE IUSccoiiireieee ettt et e e e eectrree e e e e e e e e s tbabeeeeeeeessnstssaeaeesaeesaseeennns 1122
Table B-4 Notifications for DiSplay DEVICES.cuviieiiiiiiiiiieeciirieeee e ettt ee e e e e e esrrre e e e e e e e eeeeannan 1125
TabIE B-5 DEVICE STATUS i oeiieiiiiiitee ettt ettt e e st e e s s bte e e s s bbe e e s sbbe e e e sabaeaeessnnbanas 1128
Table B-6 DeVICe STAte fOr DGS......cceiiieeceeiee ettt ettt e e e e ette e e e e eate e e e e eata e e e eeabaeeeeen eenrenas 1129
Table B-7 DeVICe STAte fOr DSS ...oooi ettt et e e e e e e rate e e e e eaba e e s e eabaee e een eenraeas 1130
Table B-8 Notification Values for OULPUL DEVICESeeeieeeeeiiiieiiireeeeeeeeeecctrreeeeeeeeeeeirrreeeeeeeeessannees 1130

UEFI Forum, Inc. December 2018 Page li

ACPI Specification, Version 6.3

List of Figures

FIQUIE O-1 ACPI OVEIVIBW ..ottt 2
FIQUIE 0-2 ACPI STIUCTUIEcooiitiiiceicei bbb 2
FIQUIrE 0-3 ASL @NA AML......oviiiiccseiess sttt sttt 3
Figure 0-4 ACPIINITIANZALION ...ttt sns 5
Figure 0-5 RUNTIME thermMal EVENT..........c.ccocr s 6
Figure 1-1 OSPM/ACPI GIODAl SYSTEMoviiiiiiieese s 12
Figure 3-1 Global System Power States and TranSitioNs ... 42
Figure 3-2 Example Modem and COM POrt Hardware..........cocovvneiesessssssssenens 50
Figure 3-3 Reporting Battery CapPaCIty ..., 55
Figure 3-4 Low Battery and WarNiNg.........cc.ccooniinnisisnsss s sssssssssssssssesssessesses 56
FIGUIE 3-5 TREIMNAI ZONE.....cooccece sttt st 59
Figure 4-1 Generic Hardware Feature MOdel..............cccooineincccee e, 67
Figure 4-2 Global States and Their TranSitioNS ..., 71
Figure 4-3 Example Event Structure for a Legacy/ACPI Compatible Event Model 72
Figure 4-4 Block Diagram of a Status/Enable Cell..........c..cccooviiinnicicnisceee e, 77
Figure 4-5 Example Fixed Hardware Feature Register GroUpPINg ... 78
Figure 4-6 Register Blocks versus Register GrOUPINGScoeerreneneeneinesnsensenssssssssssssssesssssesenns 79
Figure 4-7 Power Management TIMEK ... sssssessesons 83
Figure 4-8 Fixed POWET BUTLON LOGICc.vviiiiiiieees s 84
Figure 4-9 Fixed Hardware Sleep BULtON LOGICccoouvviinininissisisesssne e, 86
Figure 4-10 SIeeping/WakKe LOGIC.......ccouiuiinininisiisisisses st ssssss s, 88
FIQUIE 4-11 RTC ALGIMN ..ottt st p st 90
Figure 4-12 Power Management Events to SMI/SCI Control LOQIC..........cocunneninniinineennens 92
Figure 4-13 Example of General-Purpose vs. Generic Hardware Events..........cccccoovvvnini 103
Figure 4-14 Example Generic Address Space Lid SWitch LOGIC.........cccvuinrniniineineinnininne, 106
Figure 5-15 Root System Description Pointer and Table..........ccccccoovininisiississssssessnnns 109
Figure 5-16 Description Table StrUCTUIES ... s 110
Figure 5-17 APIC-Global System INtErTUPLS ... ssssssens 163
Figure 5-18 8259-Global SysStem INTEITUPLS ...t 169
Figure 5-19 MPST ACPI TabIe OVEIVIEW........ccviriiiiriniisseee e ssssssss st ssessssesesenes 189
Figure 5-20 Memory Power State TranSIitioNS.........cccsessesssseessseessaes 193
FIgure 5-21 IMage OFfSEL......coisss s 209
Figure 5-22 NVDIMM Firmware Interface Table (NFIT) OVEIVIEWcc.ccocvvvinierssisnsnenissnnins 223
Figure 5-23 HMAT RePIreSENTAtION.......cccccivivicrie sttt st sse s 244
Figure 5-24 Memory Side Cache EXamMPIE ... 245
Figure 5-25 Example: Platform with 4 debug triggers ..., 255
Figure 5-26 Cache Type Structure - Type 1 EXamPpPIe ... 262
Figure 5-27 Example ACPI NAMESPACE........cccucvririnrininieniisieneseses s ssssssssnes 267
Figure 5-28 AML ENCOAING.......ccciiiiiicsesssssssississss st 269
Figure 6-29 System Panel and Panel Origin POSITIONS ... 349
Figure 6-30 Laptop Panel and Panel Origin POSITIONS ... 349
Figure 6-31 Default Shape DefiNitioNS ... 354
Figure 6-32 PLD Back Panel RENAEIING ... 356
Figure 6-33 System Locality information Table ..., 400

UEFI Forum, Inc. December 2018 Page lii

ACPI Specification, Version 6.3

Figure 6-34 Device Ejection Flow Example UsSiNg _OSTccccovvmenneeneieessseeessssnsenn, 414
Figure 7-35 Working / Sleeping State object evaluation flow............ccccoocovivivnnccicncccicininns 508
Figure 8-36 ProCesSOr POWET STALES ...t sssssssss s sssssssssssssssessessssens 510
Figure 8-37 Throttling EXaMIPIE........cisn s 511
Figure 8-38 Equation 1 Duty Cycle EQUALION...........cccoeine e 511
Figure 8-39 Example Control for the STPCLKH ..., 512
Figure 8-40 ACPI Clock LOQiC (ONE PEIr PrOCESSON)ccociivieieiiisisieiee s ssssssssssssssenns 512
Figure 8-41 ProCesSOr HIEIAICHY ...ttt ssesssens 524
Figure 8-42 Power states for processor herarChy ... 526
Figure 8-43 WOrst Case WakKe lateNCY ... 538
Figure 8-44 Energy of states A,B and C versus sleep duration ..., 538
Figure 8-45 Platform performance thresholds............cco, 573
Figure 8-46 OSPM performance CONTIOIS ... 576
Figure 9-47 A five-point ALS RESPONSE CUIMVE ... eessssssssssssssssssssssssssssssessssens 597
Figure 9-48 A two-poiNt ALS RESPONSE CUNVE. ...t ssssesesssssssssssssssssssssssssens 598
Figure 9-49 Example Response Curve for a Transflective Display.......c.ccoovnnncninenencnnene. 599
FIQUIE 9-50 USB POITS ... 621
Figure 9-51 Persistence of expired tiIMer EVENTS ..., 632
Figure 9-52 System transitions with WakeAlarm -- TIMEer ..., 633
Figure 9-53 System transitions with WakeAlarm -- POlICY ... 633
Figure 9-54 Vendor/Device Specific Driver LOading ..., 648
Figure 10-55 Typical Smart Battery SUDSYStem (SBS)........cccoconnrenenneeeseseese e, 674
Figure 10-56 Single Smart Battery SUDSYSTEM ... 678
Figure 10-57 Smart Battery SUDSYSTEM ... 679
Figure 10-58 Remaining Battery Percent FOrMUIA.......c.ccoocvviincsnsvssinssssssssesessssse s 690
Figure 10-59 Remaining Battery Life FOrMUIA ... 690
Figure 10-60 Power Meter and Power Source/Docking Namespace Example.................... 706
Figure 11-61 ACPI TREIMAl ZOMNE ... 708
Figure 11-62 Thermal EVENTS ...t 711
Figure 11-63 Temperature and CPU Performance Versus TiMEe........cccoeneveeneneneneissennons, 713
Figure 11-64 Active and Passive Threshold Values.............ccccciicccsenceesssse s, 715
Figure 11-65 COO0lING Pref@rENCES.......ccovvivcrcc sttt sse s 716
Figure 12-66 Shared INTEITACE ... 751
Figure 12-67 Private INTEITACE. ... 752
Figure 12-68 INterrupt MOUEL ... 758
Figure 13-69 Bit ENCOAING EXAMIPIE ..o s 776
Figure 13-70 Smart Battery SUDSYStEM DEVICES ... sssseens 779
Figure 13-71 Smart Battery Device Virtual REQISTEIS ..o 781
Figure 14-72 Communication flow of the doorbell protocol ... 800
Figure 14-73 Communication flow for notifications on slave subspaces...........cccocoevvininne 803
Figure 16-74 Example SIEEPING STALES ..ot 814
Figure 16-75 Platform Firmware INitialization ..., 823
Figure 16-76 Example Physical MemMOry Map ..., 826
Figure 16-77 Memory as Configured after BOOL...........ccccovvivcninnnncssesess s 827
Figure 16-78 OS INILIAlIZATIONooiicce ettt 828
Figure 18-79 APEI error flow example with external RAS controller ... 851
Figure B-1 Example Display ArChITECTUIE ... 1122

UEFI Forum, Inc. December 2018 Page liii

Overview

This chapter provides a high-level overview of the Advanced Configuration and Power Interface (ACPI). To
make it easier to understand ACPI, this section focuses on broad and general statements about ACPI and
does not discuss every possible exception or detail about ACPI. The rest of the ACPI specification provides
much greater detail about the inner workings of ACPI than is discussed here, and is recommended
reading for developers using ACPI.

History of ACPI

ACPI was developed through collaboration between Intel, Microsoft*, Toshiba*, HP*, and Phoenix* in
the mid-1990s. Before the development of ACPI, operating systems (OS) primarily used BIOS (Basic Input/
Output System) interfaces for power management and device discovery and configuration. This power
management approach used the OS’s ability to call the system BIOS natively for power management. The
BIOS was also used to discover system devices and load drivers based on probing input/output (1/0) and
attempting to match the correct driver to the correct device (plug and play). The location of devices could
also be hard coded within the BIOS because the platform itself was non-enumerable.

These solutions were problematic in three key ways. First, the behavior of OS applications could be
negatively affected by the BIOS-configured power management settings, causing systems to go to sleep
during presentations or other inconvenient times. Second, the power management interface was
proprietary on each system. This required developers to learn how to configure power management for
each individual system. Finally, the default settings for various devices could also conflict with each other,
causing devices to crash, behave erratically, or become undiscoverable.

ACPI was developed to solve these problems and others.

What is ACPI?

ACPI can first be understood as an architecture-independent power management and configuration
framework that forms a subsystem within the host OS. This framework establishes a hardware register
set to define power states (sleep, hibernate, wake, etc). The hardware register set can accommodate
operations on dedicated hardware and general purpose hardware.

The primary intention of the standard ACPI framework and the hardware register set is to enable power
management and system configuration without directly calling firmware natively from the OS. ACPI
serves as an interface layer between the system firmware (BIOS) and the OS, as shown in Figure 0-1 and
Figure 0-2, with certain restrictions and rules.

UEFI Forum, Inc. January 2019 Page 1

ACPI Specification, Version 6.3 Overview

Operating System

The ACPI subsystem is an
interface layer between the
ACPI subsystem System firmware and the OS.

; The arrows indicate data flow.

System firmware

Figure 0-1 ACPI overview

Fundamentally, ACPI defines two types of data structures that are shared between the system firmware
and the OS: data tables and definition blocks. These data structures are the primary communication
mechanism between the firmware and the OS. Data tables store raw data and are consumed by device
drivers. Definition blocks consist of byte code that is executable by an interpreter.

The ACPI subsystem consists of
two types of data structures:
data tables and definition blocks.

0s

Upon initialization, the AML
interpreter extracts the byte
code in the definition blacks as
enumerable objects.

v ¥ This collection of enumerable

AML interpreter objects forms the OS construct
called the ACPI namespace.

ACPI |namespace)

ACPI | subsystem

Data Tables Definition blocks

Objects can either have a
directly defined value or must be

evaluated and interpreted by
the AML interpreter.

The AML interpreter, directed by
the O0S, evaluates objects and

¥ interfaces with system hardware
to perform necessary
operations.

Figure 0-2 ACPI structure

System hardware

This definition block byte code is compiled from the ACPI Source Language (ASL) code. ASL is the
language used to define ACPI objects and to write control methods. An ASL compiler translates ASL into
ACPI Machine Language (AML) byte code. AML is the language processed by the AML interpreter, as
shown in Figure 0-3.

UEFI Forum, Inc. January 2019 Page 2

ACPI Specification, Version 6.3 Overview

ASL code ACPI Source Langauge (ASL) code is
used to define objects and control
methods.

] The ASL compiler translates ASL into
il | ACPI Machine Language (AML) byte
st code contained within the ACPI
definition blocks.
Y

Definition block i ;
L Definition blocks consist of an

L . identifying table header and byte
¥is e code thatis executable by an AML
I interpreter.
|
Y

AML interpreter

Figure 0-3 ASL and AML

The AML interpreter executes byte code and evaluates objects in the definition blocks to allow the byte
code to perform loop constructs, conditional evaluations, access defined address spaces, and perform
other operations that applications require. The AML interpreter has read/write access to defined address
spaces, including system memory, 1/0O, PCI configuration, and more. It accesses these address spaces by
defining entry points called objects. Objects can either have a directly defined value or else must be
evaluated and interpreted by the AML interpreter.

This collection of enumerable objects is an OS construct called the ACPl namespace. The namespace is a
hierarchical representation of the ACPI devices on a system. The system bus is the root of enumeration
for these ACPI devices. Devices that are enumerable on other buses, like PCI or USB devices, are usually
not enumerated in the namespace. Instead, their own buses enumerate the devices and load their
drivers. However, all enumerable buses have an encoding technique that allows ACPI to encode the bus-
specific addresses of the devices so they can be found in ACPI, even though ACPI usually does not load
drivers for these devices.

Generally, devices that have a _HID object (hardware identification object) are enumerated and have
their drivers loaded by ACPI. Devices that have an _ADR object (physical address object) are usually not
enumerated by ACPI and generally do not have their drivers loaded by ACPI. _ADR devices usually can
perform all necessary functions without involving ACPI, but in cases where the device driver cannot

UEFI Forum, Inc. January 2019 Page 3

ACPI Specification, Version 6.3 Overview

perform a function, or if the driver needs to communicate to system firmware, ACPI can evaluate objects
to perform the needed function.

As an example of this, PCl does not support native hotplug. However, PCl can use ACPI to evaluate
objects and define methods that allow ACPI to fill in the functions necessary to perform hotplug on PCI.

An additional aspect of ACPI is a runtime model that handles any ACPI interrupt events that occur during
system operation. ACPI continues to evaluate objects as necessary to handle these events. This interrupt-
based runtime model is discussed in greater detail in the Runtime model section below.

ACPI Initialization

The best way to understand how ACPI works is chronologically. The moment the user powers up the
system, the system firmware completes its setup, initialization, and self tests.

The system firmware then uses information obtained during firmware initialization to update the ACPI
tables as necessary with various platform configurations and power interface data, before passing
control to the bootstrap loader. The extended root system description table (XSDT) is the first table used
by the ACPI subsystem and contains the addresses of most of the other ACPI tables on the system. The
XSDT points to the fixed ACPI description table (FADT) as well as other major tables that the OS processes
during initialization. After the OS initializes, the FADT directs the ACPI subsystem to the differentiated
system description table (DSDT), which is the beginning of the namespace because it is the first table that
contains a definition block.

The ACPI subsystem then processes the DSDT and begins building the namespace from the ACPI
definition blocks. The XSDT also points to the secondary system description tables (SSDTs) and adds them
to the namespace. The ACPI data tables give the OS raw data about the system hardware.

After the OS has built the namespace from the ACPI tables, it begins traversing the namespace and
loading device drivers for all the _HID devices it encounters in the namespace.

UEFI Forum, Inc. January 2019 Page 4

ACPI Specification, Version 6.3 Overview

System firmware updates the
ACPl tables as necessary with
System firmware information only available at
runtime before handing off
control to the boostrap loader.

h 4 The XSDT is the first table used
XSDT by the 0S’s ACPI subsystem and
contains the addresses of most
of the other ACPI tables on the
system.

v v v

FADT SSDTs “ Major ACPl tables

the §5DTs, and other major ACP!
tables.

H The XSDT points to the FADT,

Y The FADT directs the ACPI
subsystem to the DSDT, which is the
beginning of the namespace by
virtue of being the first table that
contains a definition block.

DSDT

h 4 The ACPI subsystem then
consumes the DSDT and begins
building the ACPI namespace
from the definition blocks. The
XSDT also points to the SSDTs
and adds them to the
namespace.

ACPI namespace

Figure 0-4 ACPI initialization

Runtime Model

After the system is up and running, ACPI works with the OS to handle any ACPI events that occur via an
interrupt. This interrupt invokes ACPI events in one of two general ways: fixed events and general
purpose events (GPEs).

Fixed events are ACPI events that have a predefined meaning in the ACPI specification. These fixed events
include actions like pressing the power button or ACPI timer overflows. These events are handled directly
by the OS handlers.

GPEs are ACPI events that are not predefined by the ACPI specification. These events are usually handled
by evaluating control methods, which are objects in the namespace and can access system hardware.
When the ACPI subsystem evaluates the control method with the AML interpreter, the GPE object
handles the events according to the OS’s implementation. Typically this might involve issuing a
notification to a device to invoke the device driver to perform a function.

We discuss a generic example of this runtime model in the next section.

UEFI Forum, Inc. January 2019 Page 5

ACPI Specification, Version 6.3 Overview

Thermal Event Example

ACPl includes a thermal model to allow systems to control the system temperature either actively (by
performing actions like turning a fan on) or passively by reducing the amount of power the system uses
(by performing actions like throttling the processor). We can use an example of a generic thermal event
shown in Figure 5 to demonstrate how the ACPI runtime model works.

When the system initially finds a

Thermal zone [1] thermal zone [1] in the namespace,

. i Temperature and it loads the thermal zone handlerto
Example trip point 5 : :
various trip points evaluate the thermal zone to
_______________________________ determine the femperature and trip
points.
v
Thermal zone GPE When the temperature reachesa
121 trip point during runtime, a general

purpose event [2] occurs.

(4] 7
The thermal zone event causes an
mtemupt[3] interrupt [3] to occur.
[51
When the OS receives the interrupt,
ACH e pate the handler searches the
L Various ACPI namespace for the control method
objects object [4] corresponding to the GPE
interrupt. Upon finding it, the
handler evaluates that object.
Read temperature, turn on fans, reduce device ” The thermal zone handlerthen
performance, etc. takes whatever actions are

necessary to handle the event [5].

Figure 0-5 Runtime thermal event

The ACPI thermal zone includes control methods to read the current system temperature and trip points.

When the OS initially finds a thermal zone in the namespace, it loads the thermal zone driver, which
evaluates the thermal zone to obtain the current temperature and trip points.

When a system component heats up enough to trigger a trip point, a thermal zone GPE occurs.

The GPE causes an interrupt to occur. When the ACPI subsystem receives the interrupt, it first checks
whether any fixed events have occurred. In this example, the thermal zone event is a GPE, so no fixed
event hasoccurred.

UEFI Forum, Inc. January 2019 Page 6

ACPI Specification, Version 6.3 Overview

The ACPI subsystem then searches the namespace for the control method that matches the GPE number
of the interrupt. Upon finding it, the ACPI subsystem evaluates the control method, which might then
access hardware and/or notify the thermal zone handler.

The operating system’s thermal zone handler then takes whatever actionsare necessary to handle the
event, including possibly accessinghardware.

ACPI is a very robust interface implementation. The thermal zone trip point could notify the system to
turn on a fan, reduce a device’s performance, read the temperature, shut down the system, or any
combination of these and other actions depending on the need.

This runtime model is used throughout the system to manage all of the ACPI events that occur during
system operation.

Summary

ACPI can best be described as a framework of concepts and interfaces that are implemented to form a
subsystem within the host OS. The ACPI tables, handlers, interpreter, namespace, events, and interrupt
model together form this implementation of ACPI, creating the ACPI subsystem within the host OS. In this
sense, ACPI is the interface between the system hardware/firmware and the OS and OS applications for
configuration and power management. This gives various OS a standardized way to support power
management and configuration via the ACPl namespace.

The ACPI namespace is the enumerable, hierarchical representation of all ACPI devices on the system and
is used to both find and load drivers for ACPI devices on the system. The namespace can be dynamic by
evaluating objects and sending interrupts in real time, all without the need for the OS to call native
system firmware code. This enables device manufacturers to code their own instructions and events into
devices. It also reduces incompatibility and instability by implementing a standardized power
management interface.

UEFI Forum, Inc. January 2019 Page 7

1 Introduction

The Advanced Configuration and Power Interface (ACPI) specification was developed to establish industry
common interfaces enabling robust operating system (OS)-directed motherboard device configuration
and power management of both devices and entire systems. ACPI is the key element in Operating
System-directed configuration and Power Management (OSPM).

ACPI evolved the existing pre-ACPI collection of power management BIOS code, Advanced Power
Management (APM) application programming interfaces (APls, PNPBIOS APIls, Multiprocessor
Specification (MPS) tables and so on into a well-defined power management and configuration interface
specification. ACPI provides the means for an orderly transition from existing (legacy) hardware to ACPI
hardware, and it allows for both ACPI and legacy mechanisms to exist in a single machine and to be used
as needed.

Further, system architectures being built at the time of the original ACPI specification’s inception,
stretched the limits of historical “Plug and Play” interfaces. ACPI evolved existing motherboard
configuration interfaces to support advanced architectures in a more robust, and potentially more
efficient manner.

The interfaces and OSPM concepts defined within this specification are suitable to all classes of
computers including (but not limited to) desktop, mobile, workstation, and server machines. From a
power management perspective, OSPM/ACPI promotes the concept that systems should conserve
energy by transitioning unused devices into lower power states including placing the entire system in a
low-power state (sleeping state) when possible.

This document describes ACPI hardware interfaces, ACPI software interfaces and ACPI data structures
that, when implemented, enable support for robust OS-directed configuration and power management
(OSPM).

1.1 Principal Goals

ACPI is the key element in implementing OSPM. ACPI-defined interfaces are intended for wide adoption
to encourage hardware and software vendors to build ACPI-compatible (and, thus, OSPM-compatible)
implementations.

The principal goals of ACPl and OSPM are to:

¢ Enable all computer systems to implement motherboard configuration and power
management functions, using appropriate cost/function tradeoffs.
— Computer systems include (but are not limited to) desktop, mobile, workstation, and
server machines.
— Machine implementers have the freedom to implement a wide range of solutions, from
the very simple to the very aggressive, while still maintaining full OS support.

— Wide implementation of power management will make it practical and compelling for
applications to support and exploit it. It will make new uses of PCs practical and existing
uses of PCs more economical.

UEFI Forum, Inc. January 2019 Page 8

ACPI Specification, Version 6.3 Introduction

Enhance power management functionality and robustness.

— Power management policies too complicated to implement in platform firmware can be
implemented and supported in the OS, allowing inexpensive power managed hardware to
support very elaborate power management policies.

— Gathering power management information from users, applications, and the hardware
together into the OS will enable better power management decisions and execution.

— Unification of power management algorithms in the OS will reduce conflicts between the
firmware and OS and will enhance reliability.

Facilitate and accelerate industry-wide implementation of power management.

— OSPM and ACPI reduces the amount of redundant investment in power management
throughout the industry, as this investment and function will be gathered into the OS. This
will allow industry participants to focus their efforts and investments on innovation rather
than simple parity.

— The OS can evolve independently of the hardware, allowing all ACPI-compatible machines
to gain the benefits of OS improvements and innovations.

Create a robust interface for configuring motherboard devices.

— Enable new advanced designs not possible with existing interfaces.

1.2 Power Management Rationale

It is necessary to move power management into the OS and to use an abstract interface (ACPI) between
the OS and the hardware to achieve the principal goals set forth above. Because ACPI is abstract, the OS
can evolve separately from the hardware and, likewise, the hardware from the OS.

ACPI is by nature more portable across operating systems and processors. ACPI control methods allow for
very flexible implementations of particular features.

Issues with older power management approaches include the following:

Minimal support for power management inhibits application vendors from supporting or

exploiting it.

— Moving power management functionality into the OS makes it available on every machine
on which the OS is installed. The level of functionality (power savings, and so on) varies
from machine to machine, but users and applications will see the same power interfaces
and semantics on all OSPM machines.

— This will enable application vendors to invest in adding power management functionality to
their products.

Legacy power management algorithms were restricted by the information available to the

platform firmware that implemented them. This limited the functionality that could be

implemented.

— Centralizing power management information and directives from the user, applications,
and hardware in the OS allows the implementation of more powerful functionality. For
example, an OS can have a policy of dividing I/O operations into normal and lazy. Lazy I/O
operations (such as a word processor saving files in the background) would be gathered up
into clumps and done only when the required I/O device is powered up for some other
reason. A non-lazy /0 request made when the required device was powered down would
cause the device to be powered up immediately, the non-lazy 1/O request to be carried
out, and any pending lazy 1/O operations to be done. Such a policy requires knowing when

UEFI Forum, Inc. January 2019 Page 9

ACPI Specification, Version 6.3 Introduction

I/0 devices are powered up, knowing which application I/O requests are lazy, and being
able to assure that such lazy I/O operations do not starve.

Appliance functions, such as answering machines, require globally coherent power decisions.

For example, a telephone-answering application could call the OS and assert, “I am waiting for

incoming phone calls; any sleep state the system enters must allow me to wake and answer the

telephone in 1 second.” Then, when the user presses the “off” button, the system would pick

the deepest sleep state consistent with the needs of the phone answering service.

— Platform firmware has become very complex to deal with power management. It is difficult
to make work with an OS and is limited to static configurations of the hardware.

— There is much less state information for the platform firmware to retain and manage
(because the OS manages it).

— Power management algorithms are unified in the OS, yielding much better integration
between the OS and the hardware.

— Because additional ACPI tables (Definition Blocks) can be loaded, for example, when a
mobile system docks, the OS can deal with dynamic machine configurations.

— Because the platform firmware has fewer functions and they are simpler, it is much easier
(and therefore cheaper) to implement and support.

The legacy PC platform structure constrains OS and hardware designs.

1.3 Legacy Support

ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and allows for
both mechanisms to exist in a single machine and be used as needed.

Table 1-1 Hardware Type vs. OS Type Interaction

Hardware\OS Legacy OS ACPI OS with OSPM
Legacy hardware A legacy OS on legacy hardware | If the OS lacks legacy support, legacy

does what it always did. support is completely contained within
the hardware functions.

Legacy and ACPI It works just like a legacy OS on During boot, the OS tells the hardware to
hardware support in legacy hardware. switch from legacy to OSPM/ACPI mode
machine and from then on, the system has full

OSPM/ACPI support.

ACPl-only hardware There is no power management. | There is full OSPM/ACPI support.

1.4 OEM Implementation Strategy

Any OEM is, as always, free to build hardware as they see fit. Given the existence of the ACPI
specification, two general implementation strategies are possible:

An original equipment manufacturer (OEM) can adopt the OS vendor-provided ACPlI OSPM
software and implement the hardware part of the ACPI specification (for a given platform) in
one of many possible ways.

An OEM can develop a driver and hardware that are not ACPl-compatible. This strategy opens
up even more hardware implementation possibilities. However, OEMs who implement
hardware that is OSPM-compatible but not ACPIl-compatible will bear the cost of developing,
testing, and distributing drivers for their implementation.

UEFI Forum, Inc. January 2019 Page 10

ACPI Specification, Version 6.3 Introduction

1.5 Power and Sleep Buttons

OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button that
is a “soft” button that does not turn the machine physically off but signals the OS to put the machine in a
soft off or sleeping state. ACPI defines two types of these “soft” buttons: one for putting the machine to
sleep and one for putting the machine in soft off.

This gives the OEM two different ways to implement machines: A one-button model or a two-button
model. The one-button model has a single button that can be used as a power button or a sleep button as
determined by user settings. The two-button model has an easily accessible sleep button and a separate
power button. In either model, an override feature that forces the machine to the soft-off state without
OSPM interaction is also needed to deal with various rare, but problematic, situations.

1.6 ACPI Specification and the Structure of ACPI

This specification defines ACPI hardware interfaces, ACPI software interfaces and ACPI data structures.
This specification also defines the semantics of these interfaces.

Figure 1-1 lays out the software and hardware components relevant to OSPM/ACPI and how they relate
to each other. This specification describes the interfaces between components, the contents of the ACPI
System Description Tables, and the related semantics of the other ACPI components. Notice that the ACPI
System Description Tables, which describe a particular platform’s hardware, are at heart of the ACPI
implementation and the role of the ACPI System Firmware is primarily to supply the ACPI Tables (rather
than a native instruction API).

ACPI is not a software specification; it is not a hardware specification, although it addresses both
software and hardware and how they must behave. ACPI is, instead, an interface specification comprised
of both software and hardware elements.

UEFI Forum, Inc. January 2019 Page 11

ACPI Specification, Version 6.3 Introduction

Dependent
Application
APls

‘ APPLICATIONS

OSPM System Code

0S8 Specific

Device ACPI Driver/ _ technologies,
Driver AML Interpreter interfaces, and code

0S '
ACPI ACPI Table Inde
: . pendent
' Interface technologies,
interfaces, "
firmware hardware
Existing ' Interface .
industry
tandard
Tegister AcPiBios [l ACPITables
interfaces to !
CMOS, PIC,
PITS, ... | e o o o o N = o = e e o o @ —

Y
Platform Hardware BIOS

- ACPI Spec Covers this area
- OS specific technology, not part of ACPI
- Hardware/Platform specific technology, not part of ACPI

Figure 1-1 OSPM/ACPI Global System

There are three run-time components to ACPI:

ACPI System Description Tables

Describe the interfaces to the hardware. Some descriptions limit what can be built (for example,
some controls are embedded in fixed blocks of registers and the table specifies the address of the
register block). Most descriptions allow the hardware to be built in arbitrary ways and can
describe arbitrary operation sequences needed to make the hardware function. ACPI Tables
containing “Definition Blocks” can make use of a pseudo-code type of language, the
interpretation of which is performed by the OS. That is, OSPM contains and uses an interpreter

UEFI Forum, Inc. January 2019 Page 12

ACPI Specification, Version 6.3 Introduction

that executes procedures encoded in the pseudo-code language and stored in the ACPI tables
containing “Definition Blocks.” The pseudo-code language, known as ACPl Machine Language
(AML), is a compact, tokenized, abstract type of machine language.

ACPI Registers.

The constrained part of the hardware interface, described (at least in location) by the ACPI
System Description Tables.

ACPI Platform Firmware.

Refers to the portion of the firmware that is compatible with the ACPI specifications. Typically,
this is the code that boots the machine (as legacy BIOSs have done) and implements interfaces
for sleep, wake, and some restart operations. It is called rarely, compared to a legacy BIOS. The
ACPI Description Tables are also provided by the ACPI Platform Firmware.

1.7 OS and Platform Compliance

The ACPI specification contains only interface specifications. ACPI does not contain any platform
compliance requirements. The following sections provide guidelines for class specific platform
implementations that reference ACPI-defined interfaces and guidelines for enhancements that operating
systems may require to completely support OSPM/ACPI. The minimum feature implementation
requirements of an ACPl-compatible OS are also provided.

1.7.1 Platform Implementations of ACPI-defined Interfaces

System platforms implement ACPI-defined hardware interfaces via the platform hardware and ACPI-
defined software interfaces and system description tables via the ACPI system firmware. Specific ACPI-
defined interfaces and OSPM concepts while appropriate for one class of machine (for example, a mobile
system), may not be appropriate for another class of machine (for example, a multi-domain enterprise
server). It is beyond the capability and scope of this specification to specify all platform classes and the
appropriate ACPI-defined interfaces that should be required for the platform class.

Platform design guide authors are encouraged to require the appropriate ACPI-defined interfaces and
hardware requirements suitable to the particular system platform class addressed in a particular design
guide. Platform design guides should not define alternative interfaces that provide similar functionality to
those defined in the ACPI specification.

1.7.1.1 Recommended Features and Interface Descriptions for Design Guides

Common description text and category names should be used in design guides to describe all features,
concepts, and interfaces defined by the ACPI specification as requirements for a platform class. Listed
below is the recommended set of high-level text and category names to be used to describe the features,
concepts, and interfaces defined by ACPI.

Note: Where definitions or relational requirements of interfaces are localized to a specific section, the
section number is provided. The interface definitions and relational requirements of the interfaces
specified below are generally spread throughout the ACPI specification. The ACPI specification
defines:

e System address map reporting interfaces (Section 14)
e ACPI System Description Tables (Section 5.2):

UEFI Forum, Inc. January 2019 Page 13

ACPI Specification, Version 6.3 Introduction

e Root System Description Pointer (RSDP)

e System Description Table Header

e Root System Description Table (RSDT)

e Fixed ACPI Description Table (FADT)

e Firmware ACPI Control Structure (FACS)

e Differentiated System Description Table (DSDT)

e Secondary System Description Table (SSDT)

e Multiple APIC Description Table (MADT)

e Smart Battery Table (SBST)

e Extended System Description Table (XSDT)

e Embedded Controller Boot Resources Table (ECDT)

e System Resource Affinity Table (SRAT)

e System Locality Information Table (SLIT)

e Corrected Platform Error Polling Table (CPEP)

¢ Maximum System Characteristics Table (MSCT)

e ACPI RAS FeatureTable (RASF)

e Memory Power StateTable (MPST)

¢ Platform Memory Topology Table (PMTT)

e Boot Graphics Resource Table (BGRT)

e Firmware Performance Data Table (FPDT)

e Generic Timer Description Table (GTDT)

e ACPI-defined Fixed Registers Interfaces (Section 4, Section 5.2.9):

e Power management timer control/status

e Power or sleep button with S5 override (also possible in generic space)

e Real time clock wakeup alarm control/status

e SCI /SMI routing control/status for Power Management and General-purpose events

e System power state controls (sleeping/wake control) (Section 7)

e Processor power state control (c states) (Section 8)

e Processor throttling control/status (Section 8)

e Processor performance state control/status (Section 8)

e General-purpose event control/status

e Global Lock control/status

e System Reset control (Section 4.7.3.6)

e Embedded Controller control/status (Section 12)

e SMBus Host Controller (HC) control/status (Section 13)

e Smart Battery Subsystem (Section 10.1)

e ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace
(Section 4.2, Section 5.6.5):

e General-purpose event processing

e Motherboard device identification, configuration, and insertion/removal (Section 6)

e Thermal zones (Section 11)

e Power resource control (Section 7.1)

e Device power state control (Section 7.2)

e System power state control (Section 7.3)

e System indicators (Section 9.1)

UEFI Forum, Inc. January 2019 Page 14

ACPI Specification, Version 6.3 Introduction

¢ Devices and device controls (Section 9):
— Processor (Section 8)
— Control Method Battery (Section 10)
— Smart Battery Subsystem (Section 10)
— Mobile Lid
— Power or sleep button with S5 override (also possible in fixed space)
— Embedded controller (Section 12)
— Fan
— Generic Bus Bridge
— ATA Controller
— Floppy Controller
— GPE Block
— Module
— Memory
e Global Lock related interfaces
e ACPI Event programming model (Section 5.6)
e ACPI-defined Platform Firmware Responsibilities (Section 15)
e ACPI-defined State Definitions (Section 2):
— Global system power states (G-states, SO, S5)
— System sleeping states (S-states S1-S4) (Section 15)
— Device power states (D-states (Appendix B))
— Processor power states (C-states) (Section 8)
— Device and processor performance states (P-states) (Section 3, Section 8)

1.7.1.2 Terminology Examples for Design Guides

The following example shows how a client platform design guide could use the recommended
terminology to define ACPI requirements, with a goal of requiring robust configuration and power
management for the system class.

Note: This example is provided as a guideline for how ACPI terminology can be used. It should not be
interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system
features, concepts, and interfaces, along with their associated event models:

e System address map reporting interfaces

e ACPI System Description Tables provided in the system firmware

¢ ACPI-defined Fixed Registers Interfaces:

¢ Power management timer control/status

e Power or sleep button with S5 override (may also be implemented in generic register space)

e Real time clock wakeup alarm control/status

e General-purpose event control/status

e SCI /SMI routing control/status for Power Management and General-purpose events

¢ (control required only if system supports legacy mode)

e System power state controls (sleeping/wake control)

* Processor power state control (for C1)

¢ Global Lock control/status (if Global Lock interfaces are required by the system)

UEFI Forum, Inc. January 2019 Page 15

ACPI Specification, Version 6.3 Introduction

e ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:
— General-purpose event processing
— Motherboard device identification, configuration, and insertion/removal (Section 6)
— System power state control (Section 7.3)
— Devices and device controls:
Processor
Control Method Battery (or Smart Battery Subsystem on a mobile system)
Smart Battery Subsystem (or Control Method Battery on a mobile system)
Power or sleep button with S5 override (may also be implemented in fixed register
space)
— Global Lock related interfaces when a logical register in the hardware is shared between OS
and firmware environments
e ACPI Event programming model (Section 5.6)
e ACPI-defined Platform Firmware Responsibilities (Section 15)
e ACPI-defined State Definitions:
— System sleeping states (At least one system sleeping state, S1-S4, must be implemented)
— Device power states (D-states must be implemented in accordance with device class
specifications)
— Processor power states (All processors must support the C1 Power State)

The following example shows how a design guide could use the recommended terminology to define
ACPI related requirements for systems that execute multiple OS instances, with a goal of requiring robust
configuration and continuous availability for the system class.

Note: This example is provided as a guideline for how ACPI terminology can be used. It should not be
interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system
features and interfaces, along with their associated event models:

e System address map reporting interfaces

e ACPI System Description Tables provided in the system firmware

e ACPI-defined Fixed Registers Interfaces:

¢ Power management timer control/status

e General-purpose event control/status

e SCI /SMI routing control/status for Power Management and General-purpose events

¢ (control required only if system supports legacy mode)

e System power state controls (sleeping/wake control)

e Processor power state control (for C1)

¢ Global Lock control/status (if Global Lock interfaces are required by the system)

e ACPI-defined Generic Register Interfaces and object definitions in the ACPl Namespace:
— General-purpose event processing
— Motherboard device identification, configuration, and insertion/removal (Section 6)
— System power state control (Section 7.3)
— System indicators

UEFI Forum, Inc. January 2019 Page 16

ACPI Specification, Version 6.3 Introduction

— Devices and device controls:

Processor
¢ Global Lock related interfaces when a logical register in the hardware is shared between OS

and firmware environments
e ACPI Event programming model (Section 5.6)
e ACPI-defined Platform Firmware Responsibilities (Section 15)
e ACPI-defined State Definitions:
Processor power states (All processors must support the C1 Power State)

1.7.2 OSPM Implementations

0OS enhancements are needed to support ACPI-defined features, concepts, and interfaces, along with
their associated event models appropriate to the system platform class upon which the OS executes. This
is the implementation of OSPM. The following outlines the OS enhancements and elements necessary to
support all ACPI-defined interfaces. To support ACPI through the implementation of OSPM, the OS needs
to be modified to:

e Use system address map reporting interfaces.

e Find and consume the ACPI System Description Tables.

¢ Interpret ACPI machine language (AML).

e Enumerate and configure motherboard devices described in the ACPl Namespace.

¢ Interface with the power management timer.

¢ Interface with the real-time clock wake alarm.

e Enter ACPI mode (on legacy hardware systems).

¢ Implement device power management policy.

¢ Implement power resource management.

¢ Implement processor power states in the scheduler idle handlers.

e Control processor and device performance states.

¢ Implement the ACPI thermal model.

e Support the ACPI Event programming model including handling SCl interrupts, managing fixed
events, general-purpose events, embedded controller interrupts, and dynamic device support.

e Support acquisition and release of the Global Lock.

e Use the reset register to reset the system.

e Provide APIs to influence power management policy.

¢ Implement driver support for ACPI-defined devices.

¢ Implement APIs supporting the system indicators.

e Support all system states S1-S5.

1.7.3 OS Requirements
The following list describes the minimum requirements for an OSPM/ACPI-compatible OS:
e Use system address map reporting interfaces to get the system address map on Intel
Architecture (lA) platforms:

e INT 15H, E820H - Query System Address Map interface (see Section 15,“System Address
Map Interfaces”)

e EFlI GetMemoryMap() Boot Services Function (see Section 15, “System Address Map
Interfaces”)

UEFI Forum, Inc. January 2019 Page 17

ACPI Specification, Version 6.3 Introduction

Find and consume the ACPI System Description Tables (see Section 5, “ACPI Software
Programming Model”).

Implementation of an AML interpreter supporting all defined AML grammar elements (see
Section 20, ACPI Machine Language Specification”).

Support for the ACPI Event programming model including handling SCI interrupts, managing
fixed events, general-purpose events, embedded controller interrupts, and dynamic device
support.

Enumerate and configure motherboard devices described in the ACPI Namespace.
Implement support for the following ACPI devices defined within this specification:

e Embedded Controller Device (see Section 12, “ACPI Embedded Controller Interface
Specification”)

e GPE Block Device (see Section 9.11, “GPE Block Device”)

¢ Module Device (see Section 9.12, “Module Device”)

Implementation of the ACPI thermal model (see Section 11, “Thermal Management”).
Support acquisition and release of the Global Lock.

OS-directed power management support (device drivers are responsible for maintaining device
context as described by the Device Power Management Class Specifications described in
Section A).

1.8 Target Audience

This specification is intended for the following users:

OEMs building hardware containing ACPl-compatible interfaces
Operating system and device driver developers

All platform system firmware developers

CPU and chip set vendors

Peripheral vendors

1.9 Document Organization

The ACPI specification document is organized into the following four parts:

The first part of the specification (sections 1 through 3) introduces ACPI and provides an
executive overview.

The second part (sections 4 and 5) defines the ACPI hardware and software programming
models.

The third part (sections 6 through 17) specifies the ACPI implementation details; this part of
the specification is primarily for developers.

The fourth part (sections 18 and 19) is technical reference material; section 18 is the ACPI
Source Language (ASL) reference, parts of which are referred to by most of the other sections
in the document.

Appendices contain device class specifications, describing power management characteristics
of specific classes of devices, and device class-specific ACPI interfaces.

UEFI Forum, Inc. January 2019 Page 18

ACPI Specification, Version 6.3 Introduction

1.9.1 ACPI Introduction and Overview
The first three sections of the specification provide an executive overview of ACPI.
Section 1: Introduction.

Discusses the purpose and goals of the specification, presents an overview of the ACPI-
compatible system architecture, specifies the minimum requirements for an ACPl-compatible
system, and provides references to related specifications.

Section 2: Definition of Terms.

Defines the key terminology used in this specification. In particular, the global system states
(Mechanical Off, Soft Off, Sleeping, Working, and Non-Volatile Sleep) are defined in this section,
along with the device power state definitions: Off (D3), D3hot, D2, D1, and Fully-On (DO). Device
and processor performance states (PO, P1, ...Pn) are also discussed.

Section 3: ACPI Overview.

Gives an overview of the ACPI specification in terms of the functional areas covered by the
specification: system power management, device power management, processor power
management, Plug and Play, handling of system events, battery management, and thermal
management.

1.9.2 Programming Models

Sections 4 and 5 define the ACPI hardware and software programming models. This part of the
specification is primarily for system designers, developers, and project managers.

All of the implementation-oriented, reference, and platform example sections of the specification that
follow (all the rest of the sections of the specification) are based on the models defined in sections 4 and
5. These sections are the heart of the ACPI specification. There are extensive cross-references between
the two sections.

Section 4: ACPI Hardware Specification.
Defines a set of hardware interfaces that meet the goals of this specification.
Section 5: ACPI Software Programming Model.

Defines a set of software interfaces that meet the goals of this specification.

1.9.3 Implementation Details

The third part of the specification defines the implementation details necessary to actually build
components that work on an ACPIl-compatible platform. This part of the specification is primarily for
developers.

Section 6: Configuration.

Defines the reserved Plug and Play objects used to configure and assign resources to devices, and
share resources and the reserved objects used to track device insertion and removal. Also defines
the format of ACPIl-compatible resource descriptors.

UEFI Forum, Inc. January 2019 Page 19

ACPI Specification, Version 6.3 Introduction

Section 7: Power and Performance Management.

Defines the reserved device power-management objects and the reserved-system power-
management objects.

Section 8: Processor Configuration and Control.

Defines how the OS manages the processors’ power consumption and other controls while the
system is in the working state.

Section 9: ACPI-Specific Device Objects.

Lists the integrated devices that need support for some device-specific ACPI controls, along with
the device-specific ACPI controls that can be provided. Most device objects are controlled
through generic objects and control methods and have generic device IDs; this section discusses
the exceptions.

Section 10: Power Source Devices.
Defines the reserved battery device and AC adapter objects.
Section 11: Thermal Management.
Defines the reserved thermal management objects.
Section 12: ACPlI Embedded Controller Interface Specification.
Defines the interfaces between an ACPI-compatible OS and an embedded controller.
Section 13: ACPI System Management Bus Interface Specification.

Defines the interfaces between an ACPI-compatible OS and a System Management Bus (SMBus)
host controller.

Section 14: Platform Communications Channel.

Explains the generic mechanism for OSPM to communicate with an entity in the platform
defines a new address space type

Section 15: System Address Map Interfaces.

Explains the special INT 15 call for use in ISA/EISA/PCI bus-based systems. This call supplies the
OS with a clean memory map indicating address ranges that are reserved and ranges that are
available on the motherboard. UEFI-based memory address map reporting interfaces are also
described.

Section 16: Waking and Sleeping.

Defines in detail the transitions between system working and sleeping states and their
relationship to wake events. Refers to the reserved objects defined in sections 6, 7, and 8.

Section 17: Non-Uniform Memory Access (NUMA) Architecture Platforms.

Discusses in detail how ACPI define interfaces can be used to describe a NUMA architecture
platform. Refers to the reserved objects defined in sections 5, 6, 8, and 9.

UEFI Forum, Inc. January 2019 Page 20

ACPI Specification, Version 6.3 Introduction

Section 18: ACPI Platform Error Interfaces.
Defines interfaces that enable OSPM to processes different types of hardware error events that
are detected by platform-based error detection hardware.

1.9.4 Technical Reference

The fourth part of the specification contains reference material for developers.

Section 19: ACPI Source Language Reference.

Defines the syntax of all the ASL statements that can be used to write ACPI control methods,
along with example syntax usage.

Section 20: ACPI Machine Language Specification.

Defines the grammar of the language of the ACPI virtual machine language. An ASL translator
(compiler) outputs AML.

Section 21: ACPI Data Tables and Table Language Definition.

Describes a simple language (the Table Definition Language or TDL) that can be used to generate
any ACPI data table.

Appendix A: Device class specifications.
Describes device-specific power management behavior on a per device-class basis.
Appendix B: Video Extensions.

Contains video device class-specific ACPI interfaces.

1.9.5 Revsion Numbers
Updates to the ACPI specification are considered either new revisions or errata as described below:

e Anew revision is produced when there is substantive new content or changes that may modify
existing behavior. New revisions are designated by a Major.Minor version number (e.g. 6.3). In
cases where the changes are exceptionally minor, we may have a Major.Minor.Minor naming
convention (e.g. 6.3.1).

e Anerratais produced when proposed changes or fixes of the specification do not include any
significant new material or modify existing behavior. Errata are designated by adding an upper-
case letter at the end of the version number, such as 6.2A.

1.10 Related Documents

Power management and Plug and Play specifications for legacy hardware platforms are the following,
available from “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Legacy PNP
Guidelines".

e Advanced Power Management (APM) BIOS Specification, Revision 1.2.
e Plug and Play BIOS Specification, Version 1.0a.

Intel Architecture specifications are available from http://developer.intel.com:

UEFI Forum, Inc. January 2019 Page 21

ACPI Specification, Version 6.3 Introduction

Intel® Itanium ™ Architecture Software Developer’s Manual, see “Links to ACPI-Related Documents”
(http://uefi.org/acpi) under the heading "Intel Architecture Specifications".

Itanium ™ Processor Family System Abstraction Layer Specification, Intel Corporation, December 2003
(June 2004 Update).

Unified Extensible Firmware Interface Specifications are available from http://www.uefi.org:

Unified Extensible Firmware Interface Specification, see “Links to ACPI-Related Documents” (http://
uefi.org/acpi) under the heading "Unified Extensible Firmware Interface Specifications"

Documentation and specifications for the Smart Battery System components and the SMBus are available
from http://www.sbs-forum.org:

e “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Smart Battery
System Components and SMBus Specification".

e Smart Battery Data Specification, see “Links to ACPI-Related Documents” (http://uefi.org/acpi)
under the heading "Smart Battery System Components and SMBus Specification".

e Smart Battery Selector Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

e Smart Battery System Manager Specification, Revision 1.0, Smart Battery System Implementers
Forum, December, 1998.

e System Management Bus Specification, Revision 1.1, Smart Battery System Implementers
Forum, December, 1998.

UEFI Forum, Inc. January 2019 Page 22

2 Definition of Terms

This specification uses a particular set of terminology, defined in this section. This section has three parts:
General ACPI terms are defined and presented alphabetically.

The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global system
states apply to the entire system, and are visible to the user.

The ACPI device power states are defined. Device power states are states of particular devices; as such,
they are generally not visible to the user. For example, some devices may be in the off state even though
the system as a whole is in the working state. Device states apply to any device on any bus.

2.1 General ACPI Terminology

Advanced Configuration and Power Interface (ACPI)

As defined in this document, ACPIl is a method for describing hardware interfaces in terms
abstract enough to allow flexible and innovative hardware implementations and concrete
enough to allow shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware

Computer hardware with the features necessary to support OSPM and with the interfaces to
those features described using the Description Tables as specified by this document.

ACPI Namespace

A hierarchical tree structure in OS-controlled memory that contains named objects. These
objects may be data objects, control method objects, bus/device package objects, and so on. The
0OS dynamically changes the contents of the namespace at run-time by loading definition blocks
from the ACPI Tables that reside in the ACPI system firmware. All the information in the ACPI
Namespace comes from the Differentiated System Description Table (DSDT), which contains the
Differentiated Definition Block, and one or more other definition blocks.

ACPI Machine Language (AML)

Pseudo-code for a virtual machine supported by an ACPI-compatible OS and in which ACPI
control methods and objects are written. The AML encoding definition is provided in section 19,
“ACPl Machine Language (AML) Specification.”

Add-in Card

A generic term used to refer to any device which can be inserted or removed from a platform
through a connection bus, such as PCl. Add-in cards are typically inserted within a platform’s
physical enclosure, rather than residing physically external to a platform. An add-in card will have
its own devices and associated firmware, and may have its own Expansion ROM Firmware.

Advanced Programmable Interrupt Controller (APIC)

An interrupt controller architecture commonly found on Intel Architecture-based 32-bit PC
systems. The APIC architecture supports multiprocessor interrupt management (with symmetric
interrupt distribution across all processors), multiple 1/0 subsystem support, 8259A

UEFI Forum, Inc. January 2019 Page 23

ACPI Specification, Version 6.3 Definition of Terms

compatibility, and inter-processor interrupt support. The architecture consists of local APICs
commonly attached directly to processors and I/O APICs commonly in chip sets.

ACPI Source Language (ASL)

The programming language equivalent for AML. ASL is compiled into AML images. The ASL
statements are defined in section 18, “ACPI Source Language (ASL) Reference.”

Address Range Scrub (ARS)

Process by which regions of memory can be scrubbed to look for memory locations that contain
correctable or uncorrectable errors.

BIOS

BIOS (Basic Input/Output System) is firmware that provides basic boot capabilities for a platform;
it is used here to refer specifically to traditional x86 BIOS, and not as a general term for all
firmware, or a replacement term for UEFI Core System BIOS. The ambiguity of this the term is
what we are trying to remove. See also: Legacy BIOS, System BIOS.

Boot Firmware

Generic term to describe any firmware on a platform used during the boot process. Use a more
specific term, if possible.

Component

Synonym for device. Please use the term “device” if possible.
Control Method

A control method is a definition of how the OS can perform a simple hardware task. For example,
the OS invokes control methods to read the temperature of a thermal zone. Control methods are
written in an encoded language called AML that can be interpreted and executed by the ACPI-
compatible OS. An ACPI-compatible system must provide a minimal set of control methods in the
ACPI tables. The OS provides a set of well-defined control methods that ACPI table developers
can reference in their control methods. OEMs can support different revisions of chip sets with
one version of platform firmware by either including control methods in the platform firmware
that test configurations and respond as needed or including a different set of control methods for
each chip set revision.

Central Processing Unit (CPU) or Processor

The part of a platform that executes the instructions that do the work. An ACPl-compatible OS
can balance processor performance against power consumption and thermal states by
manipulating the processor performance controls. The ACPI specification defines a working state,
labeled GO (S0), in which the processor executes instructions. Processor sleeping states, labeled
C1 through C3, are also defined. In the sleeping states, the processor executes no instructions,
thus reducing power consumption and, potentially, operating temperatures. The ACPI
specification also defines processor performance states, where the processor (while in CO)
executes instructions, but with lower performance and (potentially) lower power consumption
and operating temperature. For more information, see section 8, “Processor Configuration and
Control.”

UEFI Forum, Inc. January 2019 Page 24

ACPI Specification, Version 6.3 Definition of Terms

A definition block contains information about hardware implementation and configuration
details in the form of data and control methods, encoded in AML. An OEM can provide one or
more definition blocks in the ACPI Tables. One definition block must be provided: the
Differentiated Definition Block, which describes the base system. Upon loading the
Differentiated Definition Block, the OS inserts the contents of the Differentiated Definition Block
into the ACPI Namespace. Other definition blocks, which the OS can dynamically insert and
remove from the active ACPlI Namespace, can contain references to the Differentiated Definition
Block. For more information, see Section 5.2.11

Device

A generic term used to refer to any computing, input/output or storage element, or any
collection of computing, input/output or storage elements, on a platform. An example of a
device is a CPU, APU, embedded controller (EC), BMC, Trusted Platform Module (TPM), graphics
processing unit (GPU), network interface controller (NIC), hard disk drive (HDD), solid state drive
(SSD), Read Only Memory (ROM), flash ROM, or any of the large number of other possible
devices. If at all possible, use a more specific term.

Device Context

The variable data held by the device; it is usually volatile. The device might forget this
information when entering or leaving certain states (for more information, see section 2.3,
“Device Power State Definitions.”), in which case the OS software is responsible for saving and
restoring the information. Device Context refers to small amounts of information held in device
peripherals. See System Context.

Device Firmware

Firmware that is only used by a specific device and cannot be used with any other device. This
firmware is typically provided by the device manufacturer.

Differentiated System Description Table (DSDT)

An OEM must supply a DSDT to an ACPI-compatible OS. The DSDT contains the Differentiated
Definition Block, which supplies the implementation and configuration information about the
base system. The OS always inserts the DSDT information into the ACPI Namespace at system
boot time and never removes it.

DIMM Physical Address (DPA)
An NVDIMM relative memory address.
Embedded Controller

The general class of micro-controllers used to support OEM-specific implementations, mainly in
mobile environments. The ACPI specification supports embedded controllers in any platform
design, as long as the micro-controller conforms to one of the models described in this section.
The embedded controller performs complex low-level functions through a simple interface to the
host microprocessor(s).

Embedded Controller Interface

A standard hardware and software communications interface between an OS driver and an
embedded controller. This allows any OS to provide a standard driver that can directly

UEFI Forum, Inc. January 2019 Page 25

ACPI Specification, Version 6.3 Definition of Terms

communicate with an embedded controller in the system, thus allowing other drivers within the
system to communicate with and use the resources of system embedded controllers (for
example, Smart Battery and AML code). This in turn enables the OEM to provide platform
features that the OS and applications can use.

Expansion ROM Firmware

Peripheral Component Interconnect (PCl) term for firmware executed on a host processor which
is used by an add-in device during the boot process. This includes Option ROM Firmware and
UEFI drivers. Expansion ROM Firmware may be embedded as part of the Host Processor Boot
Firmware, or may be separate (e.g., from an add-in card). See also: Option ROM Firmware

Firmware

Generic term to describe any BIOS or firmware on a platform; it refers to the general class of
things, not a specific type. Use a more specific term, if possible.

Firmware ACPI Control Structure (FACS)

A structure in read/write memory that the platform runtime firmware uses for handshaking
between the firmware and the OS. The FACS is passed to an ACPI-compatible OS via the Fixed
ACPI Description Table (FADT). The FACS contains the system’s hardware signature at last boot,
the firmware waking vector, and the Global Lock.

Firmware Storage Device

A memory device used to store firmware. This could include Read Only Memory (ROM), flash
memory, eMMC, UFS drives, etc.

Fixed ACPI Description Table (FADT)

A table that contains the ACPI Hardware Register Block implementation and configuration details
that the OS needs to directly manage the ACPl Hardware Register Blocks, as well as the physical
address of the DSDT, which contains other platform implementation and configuration details.
An OEM must provide an FADT to an ACPI-compatible OS in the RSDT/XSDT. The OS always
inserts the namespace information defined in the Differentiated Definition Block in the DSDT into
the ACPI Namespace at system boot time, and the OS never removes it.

Fixed Features

A set of features offered by an ACPI interface. The ACPI specification places restrictions on where
and how the hardware programming model is generated. All fixed features, if used, are
implemented as described in this specification so that OSPM can directly access the fixed feature
registers.

Fixed Feature Events

A set of events that occur at the ACPI interface when a paired set of status and event bits in the
fixed feature registers are set at the same time. When a fixed feature event occurs, a system
control interrupt (SCl is raised. For ACPI fixed feature events, OSPM (or an ACPl-aware driver)
acts as the event handler.

UEFI Forum, Inc. January 2019 Page 26

ACPI Specification, Version 6.3 Definition of Terms

Fixed Feature Registers

A set of hardware registers in fixed feature register space at specific address locations in system
I/0O address space. ACPI defines register blocks for fixed features (each register block gets a
separate pointer from the FADT). For more information, see section 4.6, “ACPl Hardware
Features.”

General-Purpose Event Registers

The general-purpose event registers contain the event programming model for generic features.
All general-purpose events generate SCls.

Generic Feature

A generic feature of a platform is value-added hardware implemented through control methods
and general-purpose events.

Generic Interrupt Controller (GIC)
An interrupt controller architecture for ARM processor-based systems.
Global System Status

Global system states apply to the entire system, and are visible to the user. The various global
system states are labeled GO through G3 in the ACPI specification. For more information, see
Section 2.2, “Global System State Definitions.”

Host Processor

A host processor is the primary processing unit in a platform, traditionally called a Central
Processing Unit (CPU), now also sometimes referred to as an Application Processing Unit (APU),
or a System on Chip (SoC). This is the processing unit on which the primary operating system
(and/or hypervisor), as well as user applications run. This is the processor that is responsible for
loading and executing the Host Processor Boot Firmware. This term and "Boot Processor" should
be considered synonyms for this particular text clean-up effort (i.e., making them consistent
should probably be part of a different ECR, if needed).

Host Processor Boot Firmware

Generic term used to describe firmware loaded and executed by the Host Processor which
provides basic boot capabilities for a platform. This class of firmware is a reference to Legacy
BIOS and UEFI, which were sometimes referred to as System BIOS. Where the distinction
between Legacy BIOS and UEFI is not important, the term Host Processor Boot Firmware will be
used. Where the distinction is important, it will be referenced appropriately. Expansion ROM
firmware may also be considered as part of the Host Processor Boot Firmware. Expansion ROM
Firmware may be embedded as part of the Host Processor Boot Firmware, or may be separate
from the Host Processor Boot Firmware (e.g., loaded from an add-in card).

Host Processor Runtime Firmware

Host processor runtime firmware is any runtime firmware which executes on the host processor.

Ignored Bits

Some unused bits in ACPI hardware registers are designated as “ignored” in the ACPI
specification. Ignored bits are undefined and can return zero or one (in contrast to reserved bits,

UEFI Forum, Inc. January 2019 Page 27

ACPI Specification, Version 6.3 Definition of Terms

which always return zero). Software ignores ignored bits in ACPl hardware registers on reads and
preserves ignored bits on writes.

Intel Architecture-Personal Computer (IA-PC)

A general descriptive term for computers built with processors conforming to the architecture
defined by the Intel processor family based on the Intel Architecture instruction set and having
an industry-standard PC architecture.

/0 APIC

An Input/Output Advanced Programmable Interrupt Controller routes interrupts from devices to
the processor’s local APIC.

/0 SAPIC

An Input/Output Streamlined Advanced Programmable Interrupt Controller routes interrupts
from devices to the processor’s local APIC.

Label Storage Area
A persistent storage area reserved for Label storage.
Legacy

A computer state where power management policy decisions are made by the platform
hardware/firmware shipped with the system. The legacy power management features found in
today’s systems are used to support power management in a system that uses a legacy OS that
does not support the OS-directed power management architecture.

Legacy BIOS

One form of Host Processor Boot Firmware used on x86 platforms which uses a legacy x86 BIOS

structure. This form of host processor boot firmware has been or is being replaced by UEFI. This
term will likely be most useful in distinguishing and comparing older forms of firmware to newer
forms (e.g., "it was done this way in legacy BIOS, but is now done another way in UEFI). See also:
BIOS, System BIOS

Legacy Hardware
A computer system that has no ACPl or OSPM power management support.
Legacy OS

An OS that is not aware of and does not direct the power management functions of the system.
Included in this category are operating systems with APM 1.x support.

Local APIC
A local Advanced Programmable Interrupt Controller receives interrupts from the I/O APIC.
Local SAPIC

A local Streamlined Advanced Programmable Interrupt Controller receives interrupts from the I/
O SAPIC.

UEFI Forum, Inc. January 2019 Page 28

ACPI Specification, Version 6.3 Definition of Terms

Management Firmware

Firmware used only by a Baseboard Management Controller (BMC) or other Out-of-Band (OOB)
management controller.

Multiple APIC Description Table (MADT)

The Multiple APIC Description Table (MADT) is used on systems supporting the APIC and SAPIC to
describe the APIC implementation. Following the MADT is a list of APIC/SAPIC structures that
declare the APIC/SAPIC features of the machine.

Namespace

A namespace defines a contiguously-addressed range of Non-Volatile Memory, conceptually
similar to a SCSI Logical Unit (LUN) or an NVM Express namespace. A namespace can be
described by one or more Labels.

Non-Host Processor

A non-host processor is a generic term used to describe any processing unit on a platform which
is not a host processor (e.g. a microcontroller, co-processor, etc). For the purposes of this
particular ECR, this should also be considered a synonym for "secondary processor", those CPUs
that might be on an SoC, for example, that are not the host (or "boot") processor.

NVDIMM
Non Volatile Dual In-line Memory Module.
Object

The nodes of the ACPlI Namespace are objects inserted in the tree by the OS using the
information in the system definition tables. These objects can be data objects, package objects,
control method objects, and so on. Package objects refer to other objects. Objects also have
type, size, and relative name.

Object name
Part of the ACPI Namespace. There is a set of rules for naming objects.
Operating System-directed Power Management (OSPM)

A model of power (and system) management in which the OS plays a central role and uses global
information to optimize system behavior for the task at hand.

Option ROM FirmwareDevice Firmware

Legacy term for boot firmware typically executed on a host processor which is used by a device
during the boot process. Option ROM firmware may be included with the host processor boot
firmware or may be carried separately by a device (such as an add-in card). See also: Expansion
ROM Firmware

Package

An array of objects.

UEFI Forum, Inc. January 2019 Page 29

ACPI Specification, Version 6.3 Definition of Terms

Peripheral

A peripheral (also known as an external device) is a device which resides physically external to a
platform and is connected to a platform, either wired or wirelessly. A peripheral is comprised of
its own devices which may have their own firmware.

Persistent Memory (pmem)
Byte-addressable memory that retains its contents across power loss.
Platform

A platform consists of multiple devices assembled and working together to deliver a specific
computing function, but does not include any other software other than the firmware as part of
the devices in the platform. Examples of platforms include a notebook, a desktop, a server, a
network switch, a blade, etc. - all without and independent of any operating system, user
applications, or user data.

Platform Boot Firmware

The collection of all boot firmware on a platform. This firmware is initially loaded by a platform
(such as an SoC, a motherboard, or a complete system) at power-on to do basic initialization of
the platform hardware and then hand control to a boot loader or OS. In some cases this will be
x86 BIOS, or it may be UEFI Core System BIQS, or it could be something else entirely. Once
control has been handed over to a boot loader or an OS, this firmware has no further role.

Platform Runtime Firmware

The collection of all run-time firmware on a platform. This is firmware that can provide functions
that can be invoked by an OS, but those functions are still concerned only with the platform
hardware (e.g., PSCl on ARM). The assumption is that platform boot firmware has since been
superceded by the OS since the OS is now up and running, but that there is still a need for an OS
to access specific features of hardware that may only be possible via firmware.

Platform Firmware
The collection of platform boot firmware and platform runtime firmware.
Power Button

A user push button or other switch contact device that switches the system from the sleeping/
soft off state to the working state, and signals the OS to transition to a sleeping/soft off state
from the working state.

Power Management

Mechanisms in software and hardware to minimize system power consumption, manage system
thermal limits, and maximize system battery life. Power management involves trade-offs among
system speed, noise, battery life, processing speed, and alternating current (AC) power
consumption. Power management is required for some system functions, such as appliance (for
example, answering machine, furnace control) operations.

Power Resources

Resources (for example, power planes and clock sources) that a device requires to operate in a
given power state.

UEFI Forum, Inc. January 2019 Page 30

ACPI Specification, Version 6.3 Definition of Terms

Power Sources

The battery (including a UPS battery) and AC line powered adapters or power supplies that
supply power to a platform.

Register Grouping

Consists of two register blocks (it has two pointers to two different blocks of registers). The fixed-
position bits within a register grouping can be split between the two register blocks. This allows
the bits within a register grouping to be split between two chips.

Reserved Bits

Some unused bits in ACPI hardware registers are designated as “Reserved” in the ACPI
specification. For future extensibility, hardware-register reserved bits always return zero, and
data writes to them have no side effects. OSPM implementations must write zeros to all reserved
bits in enable and status registers and preserve bits in control registers.

Root System Description Pointer (RSDP)

An ACPl-compatible system must provide an RSDP in the system’s low address space. This
structure’s only purpose is to provide the physical address of the RSDT and XSDT.

Root System Description Table (RSDT)

A table with the signature ‘RSDT,’ followed by an array of physical pointers to other system
description tables. The OS locates that RSDT by following the pointer in the RSDP structure.

Runtime Firmware

Generic term to describe any firmware on a platform used during runtime (i.e., after the boot
process has completed). Use a more specific term, if possible.

Secondary System Description Table (SSDT)

SSDTs are a continuation of the DSDT. Multiple SSDTs can be used as part of a platform
description. After the DSDT is loaded into the ACPl Namespace, each secondary description table
listed in the RSDT/XSDT with a unique OEM Table ID is loaded. This allows the OEM to provide the
base support in one table, while adding smaller system options in other tables.

System Physical Address (SPA)
The platform physical address assigned and programmed by the platform and utilized by the OS.
Sleep Button

A user push button that switches the system from the sleeping/soft off state to the working
state, and signals the OS to transition to a sleeping state from the working state.

Smart Battery Subsystem

A battery subsystem that conforms to the following specifications: Smart Battery and either
Smart Battery System Manager or Smart Battery Charger and Selector—and the additional ACPI
requirements.

UEFI Forum, Inc. January 2019 Page 31

ACPI Specification, Version 6.3 Definition of Terms

Smart Battery Table

An ACPI table used on platforms that have a Smart Battery subsystem. This table indicates the
energy-level trip points that the platform requires for placing the system into different sleeping
states and suggested energy levels for warning the user to SMBus Interface

A standard hardware and software communications interface between an OS bus driver and an
SMBus controller.

Software

Software is comprised of elements required to load the operating system and all user
applications and user data subsequently handled by the operating system.

Streamlined Advanced Programmable Interrupt Controller (SAPIC)

An advanced APIC commonly found on Intel Itanium™ Processor Family-based 64-bit systems.
transition the platform into a sleeping state.
System

A system is the entirety of a computing entity, including all elements in a platform (hardware,
firmware) and software (operating system, user applications, user data). A system can be
thought of both as a logical construct (e.g. a software stack) or physical construct (e.g. a
notebook, a desktop, a server, a network switch, etc).

System BIOS

A term sometimes used in industry to refer to either Legacy BIOS, or to UEFI Core System BIOS, or
both. Please use this term only when referring to Legacy BIOS. See also: BIOS, Legacy BIOS.

System Context
The volatile data in the system that is not saved by a device driver.
System Control Interrupt (SCI)

A system interrupt used by hardware to notify the OS of ACPI events. The SCl is an active, low,
shareable, level interrupt.

System Management Bus (SMBus)

A two-wire interface based upon the I12C protocol. The SMBus is a low-speed bus that provides
positive addressing for devices, as well as bus arbitration.

System Management Interrupt (SMI)

An OS-transparent interrupt generated by interrupt events on legacy systems. By contrast, on
ACPI systems, interrupt events generate an OS-visible interrupt that is shareable (edge-style
interrupts will not work). Hardware platforms that want to support both legacy operating
systems and ACPI systems must support a way of re-mapping the interrupt events between SMls
and SCls when switching between ACPI and legacy models.

Thermal States

Thermal states represent different operating environment temperatures within thermal zones of
a system. A system can have one or more thermal zones; each thermal zone is the volume of

UEFI Forum, Inc. January 2019 Page 32

ACPI Specification, Version 6.3 Definition of Terms

space around a particular temperature-sensing device. The transitions from one thermal state to
another are marked by trip points, which are implemented to generate an SCl when the
temperature in a thermal zone moves above or below the trip point temperature.

UEFI

One form of Host Processor Boot Firmware which uses a Unified Extensible Firmware Interface
(UEFI) structure (as defined by the UEFI Forum). This is the current host processor boot firmware
structure being adopted as a standard in the industry. This term should be used when referring
specifically to UEFI code on a platform.

UEFI Drivers

Standalone binary executables in PECOFF format which are loaded by UEFI during the boot
process to handle specific pieces of hardware.

Extended Root System Description Table (XSDT)

The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERs that are larger than 32 bits. Notice that both the XSDT and the RSDT can
be pointed to by the RSDP structure.

2.2 Global System State Definitions

Global system states (Gx states) apply to the entire system and are visible to the user.
Global system states are defined by six principal criteria:

Does application software run?

What is the latency from external events to application response?
What is the power consumption?

Is an OS reboot required to return to a working state?

e W e

Is it safe to disassemble the computer?
6. Can the state be entered and exited electronically?

Following is a list of the system states:
G3 Mechanical Off

A computer state that is entered and left by a mechanical means (for example, turning off the
system’s power through the movement of a large red switch). It is implied by the entry of this off
state through a mechanical means that no electrical current is running through the circuitry and
that it can be worked on without damaging the hardware or endangering service personnel. The
OS must be restarted to return to the Working state. No hardware context is retained. Except for
the real-time clock, power consumption is zero.

G2/S5 Soft Off

A computer state where the computer consumes a minimal amount of power. No user mode or
system mode code is run. This state requires a large latency in order to return to the Working
state. The system’s context will not be preserved by the hardware. The system must be restarted
to return to the Working state. It is not safe to disassemble the machine in this state.

UEFI Forum, Inc. January 2019 Page 33

ACPI Specification, Version 6.3 Definition of Terms

G1 Sleeping

A computer state where the computer consumes a small amount of power, user mode threads
are not being executed, and the system “appears” to be off (from an end user’s perspective, the
display is off, and so on). Latency for returning to the Working state varies on the wake
environment selected prior to entry of this state (for example, whether the system should
answer phone calls). Work can be resumed without rebooting the OS because large elements of
system context are saved by the hardware and the rest by system software. It is not safe to
disassemble the machine in this state.

G0 Working

A computer state where the system dispatches user mode (application) threads and they
execute. In this state, peripheral devices (peripherals) are having their power state changed
dynamically. The user can select, through some Ul, various performance/power characteristics of
the system to have the software optimize for performance or battery life. The system responds
to external events in real time. It is not safe to disassemble the machine in this state.

S$4 Non-Volatile Sleep

A special global system state that allows system context to be saved and restored (relatively
slowly) when power is lost to the motherboard. If the system has been commanded to enter S4,
the OS will write all system context to a file on non-volatile storage media and leave appropriate
context markers. The machine will then enter the S4 state. When the system leaves the Soft Off
or Mechanical Off state, transitioning to Working (G0) and restarting the OS, a restore from a
NVS file can occur. This will only happen if a valid non-volatile sleep data set is found, certain
aspects of the configuration of the machine have not changed, and the user has not manually
aborted the restore. If all these conditions are met, as part of the OS restarting, it will reload the
system context and activate it. The net effect for the user is what looks like a resume from a
Sleeping (G1) state (albeit slower). The aspects of the machine configuration that must not
change include, but are not limited to, disk layout and memory size. It might be possible for the
user to swap a PC Card or a Device Bay device, however.

Notice that for the machine to transition directly from the Soft Off or Sleeping states to 5S4, the system
context must be written to non-volatile storage by the hardware; entering the Working state first so that
the OS or platform runtime firmware can save the system context takes too long from the user's point of
view. The transition from Mechanical Off to S4 is likely to be done when the user is not there to see it.

Because the S4 state relies only on non-volatile storage, a machine can save its system context for an
arbitrary period of time (on the order of many years).

Table 2-1 Summary of Global Power States

Global system Software |Latency |Power OS restart S.a fe to Exit state
. . disassemble .
state runs consumption |required electronically
computer
GO Working Yes 0 Large No No Yes

UEFI Forum, Inc. January 2019 Page 34

ACPI Specification, Version 6.3 Definition of Terms

Global system Software |Latency |Power OS restart S.a fe to Exit state
. . disassemble .
state runs consumption |required electronically
computer

G1 Sleeping No >0, varies | Smaller No No Yes

with

sleep

state
G2/S5 Soft Off No Long Very near 0 Yes No Yes
G3 Mechanical Off | No Long RTC battery Yes Yes No

Notice that the entries for G2/S5 and G3 in the Latency column of the above table are “Long.” This
implies that a platform designed to give the user the appearance of “instant-on,” similar to a home
appliance device, will use the GO and G1 states almost exclusively (the G3 state may be used for moving
the machine or repairing it).

2.3 Device Power State Definitions

Device power states are states of particular devices; as such, they are generally not visible to the user. For
example, some devices may be in the Off state even though the system as a whole is in the Working
state.

Device states apply to any device on any bus. They are generally defined in terms of four principal
criteria:

¢ Power consumption-How much power the device uses.

¢ Device context--How much of the context of the device is retained by the hardware. The OS is
responsible for restoring any lost device context (this may be done by resetting the device).

e Device driver--What the device driver must do to restore the device to full on.

e Restore time--How long it takes to restore the device to full on.

The device power states are defined below, although very generically. Many devices do not have all four
power states defined. Devices may be capable of several different low-power modes, but if there is no
user-perceptible difference between the modes, only the lowest power mode will be used. The Device
Class Power Management Specifications, included in Appendix A of this specification, describe which of
these power states are defined for a given type (class) of device and define the specific details of each
power state for that device class. For a list of the available Device Class Power Management
Specifications, see “Appendix A: Device Class Specifications.”

D3 (Off)

Power has been fully removed from the device. Also referred to as D3cold in this and other specs.
All device context is lost when this state is entered, so the OS software will reinitialize the device
when powering it back on. Since all device context and power are lost, devices in this state do not
decode their address lines, and cannot be enumerated by software. Devices in this state have the
longest restore times.

D3hot

The meaning of the D3hot State is defined by each device class. In general, D3hot is expected to
save as much power as possible without affecting PNP Enumeration. Devices in D3hot must have

UEFI Forum, Inc. January 2019 Page 35

ACPI Specification, Version 6.3

Note:

D2

D1

Definition of Terms

enough power to remain enumerable by software. For example, PCI Configuration space access
and contents must operate as in shallower power states. Similarly, ACPI identification and
configuration objects must operate as in shallower power states. Otherwise, no device
functionality is supported, and Driver software is required to restore any lost context, or
reinitialize the device, during its transition back to DO.

Devices in this state can have long restore times. All classes of devices define this state.

For devices that support both D3hot and D3 exposed to OSPM via _PR3, device software/drivers

must always assume OSPM will target D3and must assume all device context will be lost and the
device will no longer be enumerable.

The meaning of the D2 Device State is defined by each device class. Many device classes may not
define D2. In general, D2 is expected to save more power and preserve less device context than
D1 or DO. Buses in D2 may cause the device to lose some context (for example, by reducing
power on the bus, thus forcing the device to turn off some of its functions).

The meaning of the D1 Device State is defined by each device class. Many device classes may not

define D1. In general, D1 is expected to save less power and preserve more device context than
D2.

DO (Fully-On)

This state is assumed to be the highest level of power consumption. The device is completely
active and responsive, and is expected to remember all relevant context continuously.

Transitions amongst these power states are restricted for simplicity. Power-down transitions (from
higher-power, or shallower, to lower-power, or deeper) are allowed between any two states. However,

power-up transitions (from deeper to shallower) are required to go through DO; i.e. Dy to Dx<y is illegal
for all x 1=0.

Table 2-2 Summary of Device Power States

Device State Power Consumption Device Context Retained |Driver Restoration
DO - Fully-On As needed for operation All None
D1 D0>D1>D2> D3hot>D3 >D2 <D2
D2 D0>D1>D2> D3hot>D3 <D1 >D1
D3hot D0>D1>D2>D3hot>D3 Optional None <->Full initialization and
load
D3 - Off 0 None Full initialization and load
UEFI Forum, Inc. January 2019 Page 36

ACPI Specification, Version 6.3 Definition of Terms

Note: Devices often have different power modes within a given state. Devices can use these modes as
long as they can automatically transparently switch between these modes from the software,
without violating the rules for the current Dx state the device is in. Low-power modes that
adversely affect performance (in other words, low speed modes) or that are not transparent to
software cannot be done automatically in hardware; the device driver must issue commands to
use these modes.

2.3.1 Device Performance States

Device performance states (Px states) are power consumption and capability states within the active (DO)
device power state. Performance states allow OSPM to make tradeoffs between performance and energy
conservation. Device performance states have the greatest impact when the implementation is such that
the states invoke different device efficiency levels as opposed to a linear scaling of performance and
energy consumption. Since performance state transitions occur in the active device states, care must be
taken to ensure that performance state transitions do not adversely impact the system.

Device performance states, when necessary, are defined on a per device class basis (See Appendix A for
more information).

2.4 Sleeping and Soft-off State Definitions

S1-S4 are types of sleeping states within the global system state, G1, while S5 is a soft-off state associated
with the G2 system state. The Sx states are briefly defined below. For a detailed definition of the system
behavior within each Sx state, see Section 7.4.2, “System _Sx States.” For a detailed definition of the
transitions between each of the Sx states, see Section 16.1, “Sleeping States.”

S1 Sleeping State

The S1 sleeping state is a low wake latency sleeping state. In this state, no system context is lost
(CPU or chip set) and hardware maintains all system context.

S2 Sleeping State

The S2 sleeping state is a low wake latency sleeping state. This state is similar to the S1 sleeping
state except that the CPU and system cache context is lost (the OS is responsible for maintaining
the caches and CPU context). Control starts from the processor’s reset vector after the wake
event.

S3 Sleeping State

The S3 sleeping state is a low wake latency sleeping state where all system context is lost except
system memory. CPU, cache, and chip set context are lost in this state. Hardware maintains
memory context and restores some CPU and L2 configuration context. Control starts from the
processor’s reset vector after the wake event.

S84 Sleeping State

The S4 sleeping state is the lowest power, longest wake latency sleeping state supported by ACPI.
In order to reduce power to a minimum, it is assumed that the hardware platform has powered
off all devices. Platform context is maintained.

S5 Soft Off State

The S5 state is similar to the S4 state except that the OS does not save any context. The system is
in the “soft” off state and requires a complete boot when it wakes. Software uses a different

UEFI Forum, Inc. January 2019 Page 37

ACPI Specification, Version 6.3 Definition of Terms

state value to distinguish between the S5 state and the S4 state to allow for initial boot
operations within the platform boot firmware to distinguish whether the boot is going to wake
from a saved memory image.

2.5 Processor Power State Definitions

Processor power states (Cx states) are processor power consumption and thermal management states
within the global working state, GO. The Cx states possess specific entry and exit semantics and are briefly
defined below. For a more detailed definition of each Cx state, see section 8.1, “Processor Power States.”

CO0 Processor Power State
While the processor is in this state, it executes instructions.
C1 Processor Power State

This processor power state has the lowest latency. The hardware latency in this state must be
low enough that the operating software does not consider the latency aspect of the state when
deciding whether to use it. Aside from putting the processor in a non-executing power state, this
state has no other software-visible effects.

C2 Processor Power State

The C2 state offers improved power savings over the C1 state. The worst-case hardware latency
for this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C1 state should be used instead of the C2 state. Aside from
putting the processor in a non-executing power state, this state has no other software-visible
effects.

C3 Processor Power State

The C3 state offers improved power savings over the C1 and C2 states. The worst-case hardware
latency for this state is provided via the ACPI system firmware and the operating software can
use this information to determine when the C2 state should be used instead of the C3 state.
While in the C3 state, the processor’s caches maintain state but ignore any snoops. The operating
software is responsible for ensuring that the caches maintain coherency.

2.6 Device and Processor Performance State Definitions

Device and Processor performance states (Px states) are power consumption and capability states within
the active/executing states, CO for processors and DO for devices. The Px states are briefly defined below.
For a more detailed definition of each Px state from a processor perspective, see section 8.4.4,
“Processor Performance Control.” For a more detailed definition of each Px state from a device
perspective see section 3.6, “Device and Processor Performance States,” and the device class
specifications in Appendix A.

PO Performance State

While a device or processor is in this state, it uses its maximum performance capability and may
consume maximum power.

UEFI Forum, Inc. January 2019 Page 38

ACPI Specification, Version 6.3 Definition of Terms

P1 Performance State
In this performance power state, the performance capability of a device or processor is limited
below its maximum and consumes less than maximum power.

Pn Performance State

In this performance state, the performance capability of a device or processor is at its minimum
level and consumes minimal power while remaining in an active state. State n is a maximum
number and is processor or device dependent. Processors and devices may define support for an
arbitrary number of performance states not to exceed 255.

UEFI Forum, Inc. January 2019 Page 39

3 ACPI Concepts

Platforms compliant with the ACPI specification provide OSPM with direct and exclusive control over the
power management and motherboard device configuration functions of a computer. During OS
initialization, OSPM takes over these functions from legacy implementations such as the APM BIOS,
SMM-based firmware, legacy applications, and the PNPBIOS. Having done this, OSPM is responsible for
handling motherboard device configuration events as well as for controlling the power, performance,
and thermal status of the system based on user preference, application requests and OS imposed Quality
of Service (QOS) / usability goals. ACPI provides low-level interfaces that allow OSPM to perform these
functions. The functional areas covered by the ACPI specification are:

System power management

ACPI defines mechanisms for putting the computer as a whole in and out of system sleeping
states. It also provides a general mechanism for any device to wake the computer.

Device power management

ACPI tables describe motherboard devices, their power states, the power planes the devices are
connected to, and controls for putting devices into different power states. This enables the OS to
put devices into low-power states based on application usage.

Processor power management

While the OS is idle but not sleeping, it will use commands described by ACPI to put processors in
low-power states.

Device and processor performance management

While the system is active, OSPM will transition devices and processors into different
performance states, defined by ACPI, to achieve a desirable balance between performance and
energy conservation goals as well as other environmental requirements (for example, visibility
and acoustics).

Configuration / Plug and Play

ACPI specifies information used to enumerate and configure motherboard devices. This
information is arranged hierarchically so when events such as docking and undocking take place,
the OS has precise, a priori knowledge of which devices are affected by the event.

System Events

ACPI provides a general event mechanism that can be used for system events such as thermal
events, power management events, docking, device insertion and removal, and so on. This
mechanism is very flexible in that it does not define specifically how events are routed to the
core logic chip set.

Battery management

Battery management policy moves from the APM BIOS to the ACPI OS. An ACPI-compatible
battery device needs either a Smart Battery subsystem interface, which is controlled by the OS
directly through the embedded controller interface, or a Control Method Battery interface. A
Control Method Battery interface is completely defined by AML control methods, allowing an

UEFI Forum, Inc. January 2019 Page 40

ACPI Specification, Version 6.3 ACPI Concepts

OEM to choose any type of the battery and any kind of communication interface supported by
ACPI. The battery must comply with the requirements of its interface, as described either herein
or in other applicable standards. The OS may choose to alter the behavior of the battery, for
example, by adjusting the Low Battery or Battery Warning trip point. When there are multiple
batteries present, the battery subsystem is not required to perform any synthesis of a
“composite battery” from the data of the separate batteries. In cases where the battery
subsystem does not synthesize a “composite battery” from the separate battery’s data, the OS
must provide that synthesis.

Thermal management

Since the OS controls the power and performance states of devices and processors, ACPI also
addresses system thermal management. It provides a simple, scalable model that allows OEMs to
define thermal zones, thermal indicators, and methods for cooling thermal zones.

Embedded Controller

ACPI defines a standard hardware and software communications interface between an OS bus
enumerator and an embedded controller. This allows any OS to provide a standard bus
enumerator that can directly communicate with an embedded controller in the system, thus
allowing other drivers within the system to communicate with and use the resources of system
embedded controllers. This in turn enables the OEM to provide platform features that the OS and
applications can use.

SMBus Controller

ACPI defines a standard hardware and software communications interface between an OS bus
driver and an SMBus Controller. This allows any OS to provide a standard bus driver that can
directly communicate with SMBus devices in the system. This in turn enables the OEM to provide
platform features that the OS and applications can use.

OSPM’s mission is to optimally configure the platform and to optimally manage the system’s power,
performance, and thermal status given the user’s preferences and while supporting OS imposed Quality
of Service (QOS) / usability goals. To achieve these goals, ACPI requires that once an ACPI compliant
platform is in ACPI mode, the platform’s hardware, firmware, or other non-0S software must not
manipulate the platform’s configuration, power, performance, and thermal control interfaces
independently of OSPM. OSPM alone is responsible for coordinating the configuration, power
management, performance management, and thermal control policy of the system. Manipulation of
these interfaces independently of OSPM undermines the purpose of OSPM/ACPI and may adversely
impact the system’s configuration, power, performance, and thermal policy goals. There are two
exceptions to this requirement. The first is in the case of the possibility of damage to a system from an
excessive thermal conditions where an ACPI compatible OS is present and OSPM latency is insufficient to
remedy an adverse thermal condition. In this case, the platform may exercise a failsafe thermal control
mechanism that reduces the performance of a system component to avoid damage. If this occurs, the
platform must notify OSPM of the performance reduction if the reduction is of significant duration (in
other words, if the duration of reduced performance could adversely impact OSPM’s power or
performance control policy - operating system vendors can provide guidance in this area). The second
exception is the case where the platform contains Active cooling devices but does not contain Passive
cooling temperature trip points or controls,. In this case, a hardware based Active cooling mechanism
may be implemented without impacting OSPM’s goals. Any platform that requires both active and

UEFI Forum, Inc. January 2019 Page 41

ACPI Specification, Version 6.3 ACPI Concepts

passive cooling must allow OSPM to manage the platform thermals via ACPI defined active and passive
cooling interfaces.

3.1 System Power Management

Under OSPM, the OS directs all system and device power state transitions. Employing user preferences
and knowledge of how devices are being used by applications, the OS puts devices in and out of low-
power states. Devices that are not being used can be turned off. Similarly, the OS uses information from
applications and user settings to put the system as a whole into a low- power state. The OS uses ACPI to
control power state transitions in hardware.

3.2 Power States

From a user-visible level, the system can be thought of as being in one of the states in the following
diagram:
Power

GO (S0) -
Working 52

51

G1-

Figure 3-1Global System Power States and Transitions

See Section 2.2, “Global System State Definitions,” for detailed definitions of these states.

In general use, computers alternate between the Working and Sleeping states. In the Working state, the
computer is used to do work. User-mode application threads are dispatched and running. Individual
devices can be in low-power (Dx) states and processors can be in low-power (Cx) states if they are not
being used. Any device the system turns off because it is not actively in use can be turned on with short
latency. (What “short” means depends on the device. An LCD display needs to come on in sub-second
times, while it is generally acceptable to wait a few seconds for a printer to wake.)

UEFI Forum, Inc. January 2019 Page 42

ACPI Specification, Version 6.3 ACPI Concepts

The net effect of this is that the entire machine is functional in the Working state. Various Working sub-
states differ in speed of computation, power used, heat produced, and noise produced. Tuning within the
Working state is largely about trade-offs among speed, power, heat, and noise.

When the computer is idle or the user has pressed the power button, the OS will put the computer into
one of the sleeping (Sx) states. No user-visible computation occurs in a sleeping state. The sleeping sub-
states differ in what events can arouse the system to a Working state, and how long this takes. When the
machine must awaken to all possible events or do so very quickly, it can enter only the sub-states that
achieve a partial reduction of system power consumption. However, if the only event of interest is a user
pushing on a switch and a latency of minutes is allowed, the OS could save all system context into an NVS
file and transition the hardware into the S4 sleeping state. In this state, the machine draws almost zero
power and retains system context for an arbitrary period of time (years or decades if needed).

The other states are used less often. Computers that support legacy BIOS power management interfaces
boot in the Legacy state and transition to the Working state when an ACPI OS loads. A system without
legacy support (for example, a RISC system) transitions directly from the Mechanical Off state to the
Working state. Users typically put computers into the Mechanical Off state by flipping the computer’s
mechanical switch or by unplugging the computer.

3.2.1 Power Button

In legacy systems, the power button typically either forces the machine into Soft Off or Mechanical Off
or, on a laptop, forces it to some sleeping state. No allowance is made for user policy (such as the user
wants the machine to “come on” in less than 1 second with all context as it was when the user turned the
machine “off”), system alert functions (such as the system being used as an answering machine or fax
machine), or application function (such as saving a user file).

In an OSPM system, there are two switches. One is to transition the system to the Mechanical Off state. A
mechanism to stop current flow is required for legal reasons in some jurisdictions (for example, in some
European countries). The other is the “main” power button. This is in some obvious place (for example,
beside the keyboard on a laptop). Unlike legacy on/off buttons, all it does is send a request to the system.
What the system does with this request depends on policy issues derived from user preferences, user
function requests, and application data.

3.2.2 Platform Power Management Characteristics

3.2.2.1Mobile PC

Mobile PCs will continue to have aggressive power management functionality. Going to OSPM/ACPI will
allow enhanced power savings techniques and more refined user policies.

Aspects of mobile PC power management in the ACPI specification are thermal management (see
Section 11, “Thermal Management”) and the embedded controller interface (see Section 12, “ACPI
Embedded Controller Interface Specification”).

3.2.2.2 Desktop PCs

Power-managed desktops will be of two types, though the first type will migrate to the second over time.

UEFI Forum, Inc. January 2019 Page 43

ACPI Specification, Version 6.3 ACPI Concepts

Ordinary “Green PC”

Here, new appliance functions are not the issue. The machine is really only used for productivity
computations. At least initially, such machines can get by with very minimal function. In
particular, they need the normal ACPI timers and controls, but don’t need to support elaborate
sleeping states, and so on. They, however, do need to allow the OS to put as many of their
devices/resources as possible into device standby and device off states, as independently as
possible (to allow for maximum compute speed with minimum power wasted on unused
devices). Such PCs will also need to support wake from the sleeping state by means of a timer,
because this allows administrators to force them to turn on just before people are to show up for
work.

Home PC

Computers are moving into home environments where they are used in entertainment centers
and to perform tasks like answering the phone. A home PC needs all of the functionality of the
ordinary green PC. In fact, it has all of the ACPI power functionality of a laptop except for docking
and lid events (and need not have any legacy power management). Note that there is also a
thermal management aspect to a home PC, as a home PC user wants the system to run as quietly
as possible, often in a thermally constrained environment.

3.2.2.3 Multiprocessor and Server PCs

Perhaps surprisingly, server machines often get the largest absolute power savings. Why? Because they
have the largest hardware configurations and because it’s not practical for somebody to hit the off switch
when they leave at night.

Day Mode

In day mode, servers are power-managed much like a corporate ordinary green PC, staying in the
Working state all the time, but putting unused devices into low-power states whenever possible.
Because servers can be very large and have, for example, many disk spindles, power
management can result in large savings. OSPM allows careful tuning of when to do this, thus
making it workable.

Night Mode

In night mode, servers look like home PCs. They sleep as deeply as they can and are still able to
wake and answer service requests coming in over the network, phone links, and so on, within
specified latencies. So, for example, a print server might go into deep sleep until it receives a
print job at 3 A.M., at which point it wakes in perhaps less than 30 seconds, prints the job, and
then goes back to sleep. If the print request comes over the LAN, then this scenario depends on
an intelligent LAN adapter that can wake the system in response to an interesting received
packet.

3.3 Device Power Management

This section describes ACPI-compatible device power management. The ACPI device power states are
introduced, the controls and information an ACPI-compatible OS needs to perform device power
management are discussed, the wake operation devices use to wake the computer from a sleeping state
is described, and an example of ACPI-compatible device management using a modem is given

UEFI Forum, Inc. January 2019 Page 44

ACPI Specification, Version 6.3 ACPI Concepts

3.3.1 Device Power Management Model

ACPI Device Power Management is based on an integrated model consisting of:

Distributed device power state policy

For each hardware device on the system, there is a Power Policy Owner in the Operating System
that is responsible for continuously determining the best power state for the device. The best
device power state is the one that, at any point in time, minimizes the consumption of power by
the device consistent with the usage requirements of the device by the system and its user.
Policy is typically defined for a class of devices, and incorporates application activity, user
scenarios and other operating state as necessary. It is applied to all devices of a given class.

Layered device power state control

Once power state decisions are made for a device, they must be carried-out by device drivers.
The model partitions the control functionality between the device, bus and platform layers.
Device drivers at each layer perform control using mechanisms available at that level,
coordinated by OSPM. In general, the ordering proceeds from Device/Class level, to Bus level, to
Platform level when a device is powering down, and the inverse when powering-up.

For instance, a device-level driver has access, via the device programming interface, to settings
and control registers that invoke specific, sometimes proprietary, power control features in the
device. The device driver uses these controls as appropriate for the target ACPIl-defined power
state determined by the policy owner. Similarly, classes of devices may have standardized power
features, invoked in standardized ways that Class Drivers might use when entering a target
power state.

At the bus level, power management standards come into play to provide bus-specific controls
that work for every device connected to the bus, regardless of device class. PCI, for instance,
defines fields in the device Configuration Space for setting the device’s power state (D0-D3). Bus-
level drivers utilize these standards to perform control in addition to that applied by the device-
specific or device class driver. Bus-specific mechanisms also enable additional power savings in
the system by enabling the bus infrastructure hardware itself to enter lower power states, as
defined in the bus standard.

Finally, for platform-level power state control, ACPI defines mechanisms (_PRx, PSx, ON, OFF)
for putting a device into a given power state. The Operating System’s ACPI software (“OSPM”)
utilizes these mechanisms to execute the lowest-level, platform-specific control for a given
device, such as turning off and on power rails and clocks, resetting HW, etc.

Operating System coordination

Finally, ACPI defines information and behavior requirements that enable OSPM to inform the
Power Policy Owner about supported state and wake-up capabilities, and to coordinate the
actions of the various levels of device drivers in controlling power. OSPM, in this role, is
responsible for ensuring that device power management is coordinated with System Power
Management such as entering sleep states (5S1-S4) or Low-power ldle states (LPI). Integrated with
device power state policy and control, wake-up policy and control are also coordinated by OSPM.
Power Policy Owners, which decide when the device might be needed to wake the system,
ensure that only device power states that the device can wake from are selected when the

UEFI Forum, Inc. January 2019 Page 45

ACPI Specification, Version 6.3 ACPI Concepts

platform enters a Sleep or LPI state. Enabling of wake-up hardware is also performed at the
device, bus and platform levels and coordinated by OSPM. OSPM ensures further that the Sleep
or LPI state selected for the system is compatible with the device state and wake-up capabilities
of all the devices currently enabled for wake.

3.3.2 Power Management Standards

To manage power of all the devices in the system, the OS needs standard methods for sending
commands to a device. These standards define the operations used to manage power of devices on a
particular I/O interconnect and the power states that devices can be put into. Defining these standards
for each I/0O interconnect creates a baseline level of power management support the OS can utilize.
Independent Hardware Vendors (IHVs) do not have to spend extra time writing software to manage
power of their hardware, because simply adhering to the standard gains them direct OS support. For OS
vendors, the 1/0 interconnect standards allow the power management code to be centralized in the
driver for each I/O interconnect. Finally, I/O interconnect-driven power management allows the OS to
track the states of all devices on a given I/O interconnect. When all the devices are in a given state (or
example, D3 - off), the OS can put the entire I/O interconnect into the power supply mode appropriate
for that state (for example, D3 - off).

I/0 interconnect-level power management specifications are written for a number of buses including:

e PCI

e PCl Express
e CardBus

e USB

e |EEE 1394

3.3.3 Device Power States

To unify nomenclature and provide consistent behavior across devices, standard definitions are used for
the power states of devices. Generally, these states are defined in terms of the following criteria:

e Power consumption--How much power the device uses.

e Device context--How much of the context of the device is retained by the hardware.
¢ Device driver--What the device driver must do to restore the device to fully on.

e Restore latency--How long it takes to restore the device to fully on.

More specifically, power management specifications for each class of device (for example, modem,
network adapter, hard disk, and so on) more precisely define the power states and power policy for the
class. See Section 2.3, “Device Power State Definitions,” for the detailed description of the general device
power states (DO-D3).

3.3.4 Device Power State Definitions

The device power state definitions are device-independent, but classes of devices on a bus must support
some consistent set of power-related characteristics. For example, when the bus-specific mechanism to
set the device power state to a given level is invoked, the actions a device might take and the specific
sorts of behaviors the OS can assume while the device is in that state will vary from device type to device
type. For a fully integrated device power management system, these class-specific power characteristics
must also be standardized:

UEFI Forum, Inc. January 2019 Page 46

ACPI Specification, Version 6.3 ACPI Concepts

Device Power State Characteristics

Each class of device has a standard definition of target power consumption levels, state-change
latencies, and context loss.

Minimum Device Power Capabilities
Each class of device has a minimum standard set of power capabilities.
Device Functional Characteristics

Each class of device has a standard definition of what subset of device functionality or features is
available in each power state (for example, the net card can receive, but cannot transmit; the
sound card is fully functional except that the power amps are off, and so on).

Device Wakeup Characteristics
Each class of device has a standard definition of its wake policy.

The Device Class Power Management specifications define these power state characteristics for each
class of device. See Appendix A.

3.4 Controlling Device Power

ACPI interfaces provide the control methods and information needed to manage device power. OSPM
leverages these interfaces to perform tasks like determining the capabilities of a device, executing
methods to set a device's power state or get its status, and enabling a device to wake the machine.

Note: Other buses enumerate some devices on the main board. For example, PCl devices are reported
through the standard PCl enumeration mechanisms. Power management of these devices is
handled through their own bus specification (in this case, PCl). All other devices on the main board
are handled through ACPI. Specifically, the ACPI table lists legacy devices that cannot be reported
through their own bus specification, the root of each bus in the system, and devices that have
additional power management or configuration options not covered by their own bus
specification.

For more detailed information see Section 7, “Power and Performance Management.”

3.4.1 Getting Device Power Capabilities

As the OS enumerates devices in the system, it gets information about the power management features
that the device supports. The Differentiated Definition Block given to the OS by the platform boot
firmware describes every device handled by ACPI. This description contains the following information:

e Adescription of what power resources (power planes and clock sources) the device needs in
each power state that the device supports. For example, a device might need a high power bus
and a clock in the DO state but only a low-power bus and no clock in the D2 state.

e A description of what power resources a device needs in order to wake the machine (or none
to indicate that the device does not support wake). The OS can use this information to infer
what device and system power states from which the device can support wake.

¢ The optional control method the OS can use to set the power state of the device and to get and
set resources.

UEFI Forum, Inc. January 2019 Page 47

ACPI Specification, Version 6.3 ACPI Concepts

In addition to describing the devices handled by ACPI, the table lists the power planes and clock sources
themselves and the control methods for turning them on and off. For detailed information, see Section 7,
“Power and Performance Management.”

3.4.2 Setting Device Power States
OSPM uses the Set Power State operation to put a device into one of the four power states.

When a device is put in a lower power state, it configures itself to draw as little power from the bus as
possible. The OS tracks the state of all devices on the bus, and will put the bus in the best power state
based on the current device requirements on that bus. For example, if all devices on a bus are in the D3
state, the OS will send a command to the bus control chip set to remove power from the bus (thus
putting the bus in the D3 state). If a particular bus supports a low-power supply state, the OS puts the bus
in that state if all devices are in the D1 or D2 state. Whatever power state a device is in, the OS must be
able to issue a Set Power State command to resume the device.

Note: The device does not need to have power to do this. The OS must turn on power to the device
before it can send commands to the device.

OSPM also uses the Set Power State operation to enable power management features such as wake
(described in Section 7, “Power and Performance Management.”).

For power-down operations (transitions from Dx to some deeper Dy), OSPM first evaluates the
appropriate control method for the target state (_PSx), then turns-off any unused power resources.
Notice that this might not mean that power is actually removed from the device. If other active devices
are sharing a power resource, the power resource will remain on. In the power-up case (transitions from
some Dx back to the shallower D0), the power resources required for DO are first turned on, and then the
control method (_PSO0) is evaluated.

3.4.3 Getting Device Power Status

OSPM uses the Get Power Status operation to determine the current power configuration (states and
features), as well as the status of any batteries supported by the device. The device can signal an SCI to
inform the OS of changes in power status. For example, a device can trigger an interrupt to inform the OS
that the battery has reached low power level.

Devices use the ACPl event model to signal power status changes (for example, battery status changes) to
OSPM. The platform signals events to the OS via an interrupt, either SCI, or GPIO. An interrupt status bit is
set to indicate the event to the OS. The OS runs the control method associated with the event. This
control method signals to the OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information and
batteries that support the Smart Battery System Implementers Forum Smart Battery Specification. For
batteries that report only basic battery status information (such as total capacity and remaining
capacity), the OS uses control methods from the battery’s description table to read this information. To
read status information for Smart Batteries, the OS can use a standard Smart Battery driver that directly
interfaces to Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the System

The wake operation enables devices to wake the system from a sleeping or low-power idle state. This
operation must not depend on the CPU because the CPU will not be executing instructions.

UEFI Forum, Inc. January 2019 Page 48

ACPI Specification, Version 6.3 ACPI Concepts

The OS ensures any bridges between the device and the core logic are in the lowest power state in which
they can still forward the wake signal. When a device with wake enabled decides to wake the system, it
sends the defined signal on its bus. Bus bridges must forward this signal to upstream bridges using the
appropriate signal for that bus. Thus, the signal eventually reaches the core chip set (for example, an ACPI
chip set), which in turn wakes the system.

Before putting the system in a sleeping power state, the OS determines which devices are needed to
wake the system based on application requests, and then enables wake on those devices in a device and
bus specific manner.

The OS enables the wake feature on devices by setting that device's SCI Enable bit or unmasking its wake
interrupt. The location of this control is listed in the device's entry in the description table. Only devices
that have their wake feature enabled can wake the system. The OS keeps track of the power states that
the wake devices support, and keeps the system in a power state in which the wake can still wake the
system (based on capabilities reported in the description table).

When the system is in a Sleeping or low-power idle state and a wake device decides to wake the system,
it signals to the core logic. The status bit corresponding to the device waking the system is set, and the
core logic resumes the system. After the OS is running again, it determines the device responsible for the
wake event by either running a control method (for wake events) or processing the device's ISR (for wake
interrupts).

Note: Besides using ACPI mechanism to enable a particular device to wake the system, an ACPI platform
must also be able to record and report the wake source to OSPM. When a system is woken from
certain states (such as the $4 state), it may start out in non-ACPI mode. In this case, the SCI status
bit may be cleared when ACPI mode is re-entered. However the platform must still attempt to
record the wake source for retrieval by OSPM at a later point.

Note: Although the above description explains how a device can wake the system, note that a device
can also be put into a low power state during the SO system state, and that this device may
generate a wake signal in the SO state as the following example illustrates.

3.4.5 Example: Modem Device Power Management

To illustrate how these power management methods function in ACPI, consider an integrated modem.
(This example is greatly simplified for the purposes of this discussion.) The power states of a modem are
defined as follows (this is an excerpt from the Modem Device Class Power Management Specification):

DO

Modem controller on
Phone interface on
Speaker on

Can be on hook or off hook
Can be waiting for answer

D1

Modem controller in low-power mode (context retained by device)
Phone interface powered by phone line or in low-power mode
Speaker off

Must be on hook

UEFI Forum, Inc. January 2019 Page 49

ACPI Specification, Version 6.3 ACPI Concepts

D2
Same as D3
D3

Modem controller off (context lost)

Phone interface powered by phone line or off
Speaker off
On hook

The power policy for the modem is defined as follows:

D3 DO

COM port opened
DO0,D1 D3

COM port closed
D0 D1

Modem put in answer mode
D1 DO

Application requests dial or the phone rings while the modem is in answer mode

The wake policy for the modem is very simple: When the phone rings and wake is enabled, wake the
system.

Based on that policy, the modem and the COM port to which it is attached can be implemented in

hardware as shown in Figure 3-2. This is just an example for illustrating features of ACPI. This example is
not intended to describe how OEMs should build hardware.

PWR1 PWR2
E g E g
PWR1_EN]
PWR2_EN | ﬁ
MDM_D3
MDM D1
COM_D3
- v A A
ACPI core 1o /o 110
chip set COM port Modem Control Phone Phone
(UART) controller interface line
— RI
N
WAKE (<

Figure 3-2 Example Modem and COM Port Hardware

UEFI Forum, Inc. January 2019 Page 50

ACPI Specification, Version 6.3 ACPI Concepts

Note: Although not shown above, each discrete part has some isolation logic so that the part is isolated
when power is removed from it. Isolation logic controls are implemented as power resources in
the ACPI Differentiated Description Block so that devices are isolated as power planes are
sequenced off.

3.4.5.1 Obtaining the Modem Capabilities

The OS determines the capabilities of this modem when it enumerates the modem by reading the
modem’s entry in the Differentiated Definition Block. In this case, the entry for the modem would report:

The device supports DO, D1, and D3:

e DO requires PWR1 and PWR2 as power resources
D1 requires PWR1 as a power resource
(D3 implicitly requires no power resources)

e To wake the system, the modem needs no power resources (implying it can wake the system
from DO, D1, and D3)

Control methods for setting power state and resources

3.4.5.2 Setting the Modem Power State

While the OS is running (GO state), it switches the modem to different power states according to the
power policy defined for modem:s.

When an application opens the COM port, the OS turns on the modem by putting it in the DO state. Then
if the application puts the modem in answer mode, the OS puts the modem in the D1 state to wait for the
call. To make this power-down transition, OSPM first runs a control method (_PS1) provided in the
modem's entry to put the device in the D1 state. In this example, this control method asserts the
MDM_D1 signal that tells the modem controller to go into a low-power mode. OSPM then checks to see
what power resources are no longer needed by the modem device. In this case, PWR2 is no longer
needed. Then it checks to make sure no other device in the system requires the use of the PWR2 power
resource. If the resource is no longer needed, the OSPM uses the _OFF control method associated with
that power resource in the Differentiated Definition Block to turn off the PWR2 power plane. This control
method sends the appropriate commands to the core chip set to stop asserting the PWR2_EN line.

OSPM does not always turn off power resources when a given device is put in a lower power state. For
example, assume that the PWR1 power plane also powers an active line printer (LPT) port. Suppose the
user terminates the modem application, causing the COM port to be closed, and therefore causing the
modem to be shut off (state D3). As always, OSPM begins the state transition process by running the
modem's control method to switch the device to the D3 power state. The control method causes the
MDM_D3 line to be asserted. Notice that these registers might not be in the device itself. For example,
the control method could read the register that controls MDM_D3.The modem controller now turns off
all its major functions so that it draws little power, if any, from the PWR1 line. OSPM continues by
checking to see which power resources are no longer needed. Because the LPT port is still active, PWR1 is
in use. OSPM does not turn off the PWR1 resource. Because the COM port is closed, the same sequence
of events take place to put it in the D3 state, but the power resource is not turned off due to the LPT
dependency.

UEFI Forum, Inc. January 2019 Page 51

ACPI Specification, Version 6.3 ACPI Concepts

3.4.5.3 Obtaining the Modem Power Status

Integrated modems have no batteries; the only power status information for the device is the power
state of the modem. To determine the modem’s current power state (D0-D3), OSPM runs a control
method (_PSC) supplied in the modem’s entry in the Differentiated Definition Block. This control method
reads from the necessary registers to determine the modem’s power state.

3.4.5.4 Waking the System

As indicated in the modem capabilities, this modem can wake the machine from any device power state.
Before putting the system in a Sleep or LPI state, the OS enables wake on any devices that applications
have requested to be able to wake the system. Then, it chooses the deepest sleeping or LPI state that can
still provide the power resources necessary to allow all enabled wake devices to wake the system. Next,
the OS puts each of those devices in the appropriate power state. In this case, the OS puts the modem in
the D3 state because it supports wake from that state. Finally, the OS puts the system into a sleep or LPI
state.

Waking the system via modem starts with the modem's phone interface asserting its ring indicate (RI)
line when it detects a ring on the phone line. This line is routed to the core logic to generate a wake
event. The chipset then wakes the system and the hardware will eventually pass control back to the OS
(the wake mechanism differs depending on the sleeping state, or LPI). After the OS is running, it puts the
device in the DO state and begins handling interrupts from the modem to process the event.

3.5 Processor Power Management

To further save power in the Working state, the OS puts the CPU into low-power states (C1, C2, and C3)
when the OS is idle. In these low-power states, the CPU does not run any instructions, and wakes when
an interrupt, such as the OS scheduler’s timer interrupt, occurs.

The OS determines how much time is being spent in its idle loop by reading the ACPI Power Management
Timer. This timer runs at a known, fixed frequency and allows the OS to precisely determine idle time.
Depending on this idle time estimate, the OS will put the CPU into different quality low-power states
(which vary in power and latency) when it enters its idle loop.

The CPU states are defined in detail in Section 8, “Processor Configuration and Control.”

3.6 Device and Processor Performance States

This section describes the concept of device and processor performance states. Device and processor
performance states (Px states) are power consumption and capability states within the active/executing
states, CO for processors and DO for devices. Performance states allow OSPM to make tradeoffs between
performance and energy conservation. Device and processor performance states have the greatest
impact when the states invoke different device and processor efficiency levels as opposed to a linear
scaling of performance and energy consumption. Since performance state transitions occur in the active/
executing device states, care must be taken to ensure that performance state transitions do not
adversely impact the system.

Examples of device performance states include:

¢ A hard drive that provides levels of maximum throughput that correspond to levels of power
consumption.

UEFI Forum, Inc. January 2019 Page 52

ACPI Specification, Version 6.3 ACPI Concepts

e An LCD panel that supports multiple brightness levels that correspond to levels of power
consumption.

e A graphics component that scales performance between 2D and 3D drawing modes that
corresponds to levels of power consumption.

e An audio subsystem that provides multiple levels of maximum volume that correspond to
levels of maximum power consumption.

e A Direct-RDRAM™ controller that provides multiple levels of memory throughput
performance, corresponding to multiple levels of power consumption, by adjusting the
maximum bandwidth throttles.

Processor performance states are described in Section 8, “Processor Configuration and Control.”

3.7 Configuration and “Plug and Play”

In addition to power management, ACPI interfaces provide controls and information that enable OSPM
to configure the required resources of motherboard devices along with their dynamic insertion and
removal. ACPI Definition Blocks, including the Differentiated System Description Table (DSDT) and
Secondary System Description Tables (SSDTs), describe motherboard devices in a hierarchical format
called the ACPI namespace. The OS enumerates motherboard devices simply by reading through the ACPI
Namespace looking for devices with hardware IDs.

Each device enumerated by ACPI includes ACPI-defined objects in the ACPI Namespace that report the
hardware resources that the device could occupy, an object that reports the resources that are currently
used by the device, and objects for configuring those resources. The information is used by the Plug and
Play OS (OSPM) to configure the devices.

Note: When preparing to boot a system, the platform boot firmware only needs to configure boot
devices. This includes boot devices described in the ACPI system description tables as well as
devices that are controlled through other standards.

3.7.1 Device Configuration Example: Configuring the Modem

Returning to the modem device example above, the OS will find the modem and load a driver for it when
the OS finds it in the DSDT. This table will have control methods that give the OS the following
information:

e The device can use IRQ 3, I/O 3F8-3FF or IRQ 4, /O 2E8-2EF
e The device is currently using IRQ 3, /O 3F8-3FF

The OS configures the modem’s hardware resources using Plug and Play algorithms. It chooses one of the
supported configurations that does not conflict with any other devices. Then, OSPM configures the
device for those resources by running a control method supplied in the modem’s section of the
Differentiated Definition Block. This control method will write to any 1/O ports or memory addresses
necessary to configure the device to the given resources.

3.7.2 NUMA Nodes

Systems employing a Non Uniform Memory Access (NUMA) architecture contain collections of hardware
resources including processors, memory, and 1/0 buses, that comprise what is commonly known as a

“NUMA node”. Processor accesses to memory or 1/O resources within the local NUMA node is generally
faster than processor accesses to memory or /O resources outside of the local NUMA node. ACPI defines

UEFI Forum, Inc. January 2019 Page 53

ACPI Specification, Version 6.3 ACPI Concepts

interfaces that allow the platform to convey NUMA node topology information to OSPM both statically at
boot time and dynamically at run time as resources are added or removed from the system.

3.8 System Events

ACPl includes a general event model used for Plug and Play, Thermal, and Power Management events.
There are two registers that make up the event model: an event status register and an event enable
register.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If the
corresponding bit in the enable register is set, the core logic will assert the SCI to signal the OS. When the
OS receives this interrupt, it will run the control methods corresponding to any bits set in the event status
register. These control methods use AML commands to tell the OS what event occurred.

For example, assume a machine has all of its Plug and Play, Thermal, and Power Management events
connected to the same pin in the core logic. The event status and event enable registers would only have
one bit each: the bit corresponding to the event pin.

When the system is docked, the core logic sets the status bit and signals the SCI. The OS, seeing the status
bit set, runs the control method for that bit. The control method checks the hardware and determines
the event was a docking event (for example). It then signals to the OS that a docking event has occurred,
and can tell the OS specifically where in the device hierarchy the new devices will appear.

Since the event model registers are generalized, they can describe many different platform
implementations. The single pin model above is just one example. Another design might have Plug and
Play, Thermal, and Power Management events wired to three different pins so there would be three
status bits (and three enable bits). Yet another design might have every individual event wired to its own
pin and status bit. This design, at the opposite extreme from the single pin design, allows very complex
hardware, yet very simple control methods. Countless variations in wiring up events are possible.
However, note that care must be taken to ensure that if events share a signal that the event that
generated the signal can be determined in the corresponding event handling control method allowing
the proper device notification to be sent.

3.9 Battery Management

Battery management policy moves from the APM BIOS to the ACPI-compatible OS. Batteries must comply
with the requirements of their associated interfaces, as described either herein or in other applicable
standards. The OS may choose to alter the behavior of the battery, for example, by adjusting the Low
Battery or Battery Warning trip point. When there are multiple batteries present, the battery subsystem
is not required to perform any synthesis of a “composite battery” from the data of the separate batteries.
In cases where the battery subsystem does not synthesize a “composite battery” from the separate
battery's data, the OS must provide that synthesis.

An ACPl-compatible battery device needs either a Smart Battery subsystem interface or a Control
Method Battery interface.

e Smart Battery is controlled by the OS directly through the embedded controller (EC). For more
information about the ACPI Embedded Controller SMBus interface, see Section 12.9, “SMBus
Host Controller Interface via Embedded Controller.” For additional information about the
Smart Battery subsystem interface, see Section 10.1, “Smart Battery Subsystems.”

UEFI Forum, Inc. January 2019 Page 54

ACPI Specification, Version 6.3 ACPI Concepts

e Control Method Battery is completely accessed by AML code control methods, allowing the
OEM to choose any type of battery and any kind of communication interface supported by
ACPI. For more information about the Control Method Battery Interface, see Section 10.2,
“Control Method Batteries.”

This section describes concepts common to all battery types.

3.9.1 Battery Communications

Both the Smart Battery and Control Method Battery interfaces provide a mechanism for the OS to query
information from the platform’s battery system. This information may include full charged capacity,
present battery capacity, rate of discharge, and other measures of the battery’s condition. All battery
system types must provide notification to the OS when there is a change such as inserting or removing a
battery, or when a battery starts or stops discharging. Smart Batteries and some Control Method
Batteries are also able to give notifications based on changes in capacity. Smart batteries provide extra
information such as estimated run-time, information about how much power the battery is able to
provide, and what the run-time would be at a predetermined rate of consumption.

3.9.2 Battery Capacity

Each battery must report its designed capacity, latest full-charged capacity, and present remaining
capacity. Remaining capacity decreases during usage, and it also changes depending on the environment.
Therefore, the OS must use latest full-charged capacity to calculate the battery percentage. In addition
the battery system must report warning and low battery levels at which the user must be notified and the
system transitioned to a sleeping state. See Figure 3-3 for the relation of these five values.

A system may use either rate and capacity [mA/mAh] or power and energy [mMW/mWHh] for the unit of
battery information calculation and reporting. Mixing [mA] and [mW] is not allowed on a system.

Designed capacity
L [EEEERER TR Last full charged capacity

—»

""" 44— Present remaining capacity

| e OEM designed initial capacity for warning
- _ - e OEM designed initial capacity for low

Figure 3-3 Reporting Battery Capacity
3.9.3 Battery Gas Gauge

At the most basic level, the OS calculates Remaining Battery Percentage [%] using the following formula:

UEFI Forum, Inc. January 2019 Page 55

ACPI Specification, Version 6.3 ACPI Concepts

Remaining Battery Percentage[%] = Battery Remaining Capacity [mAh/mWh] + 100

Last Full Charged Capacity [mnAh/mWh]

Control Method Battery also reports the Present Drain Rate [mA or mW] for calculating the remaining
battery life. At the most basic level, Remaining Battery life is calculated by following formula:

Battery Remaining Capacity [nAh/mWh]
Battery Present Drain Rate [mMA/mW]

Remaining Battery Life [h]=

Smart Batteries also report the present rate of drain, but since they can directly report the estimated run-
time, this function should be used instead as it can more accurately account for variations specific to the
battery.

3.9.4 Low Battery Levels

A system has an OEM-designed initial capacity for warning, initial capacity for low, and a critical battery
level or flag. The values for warning and low represent the amount of energy or battery capacity needed
by the system to take certain actions. The critical battery level or flag is used to indicate when the
batteries in the system are completely drained. OSPM can determine independent warning and low
battery capacity values based on the OEM-designed levels, but cannot set these values lower than the
OEM-designed values, as shown in the figure below

Full L 1 :
K Last full charged capacity
F
4 OSPM-selected low battery warning capacity
-------- <
... Waming . OEM-designed initial capacity for warning (minimum)

......... OSPM-selected low battery

B ~|=9W _ OEM-designed initial capacity for low (minimum)

Critical [N OEM-defined Battery Critical flag

Figure 3-4 Low Battery and Warning

Each Control Method Battery in a system reports the OEM-designed initial warning capacity and OEM-
designed initial low capacity as well as a flag to report when that battery has reached or is below its
critical energy level. Unlike Control Method Batteries, Smart Batteries are not necessarily specific to one
particular machine type, so the OEM-designed warning, low, and critical levels are reported separately in
a Smart Battery Table described in Section 5.2.14.

UEFI Forum, Inc. January 2019 Page 56

ACPI Specification, Version 6.3 ACPI Concepts

The table below describes how these values should be set by the OEM and interpreted by the OS.

Table 3-3 Low Battery Levels

Level Description

Warning | When the total available energy (mWh) or capacity (mAh) in the batteries falls below this level,
the OS will notify the user through the Ul. This value should allow for a few minutes of run-time
before the “Low” level is encountered so the user has time to wrap up any important work,
change the battery, or find a power outlet to plug the system in.

Low This value is an estimation of the amount of energy or battery capacity required by the system
to transition to any supported sleeping state. When the OS detects that the total available
battery capacity is less than this value, it will transition the system to a user defined system
state (51-S4). In most situations this should be S4 so that system state is not lost if the battery
eventually becomes completely empty. The design of the OS should consider that users of a
multiple battery system may remove one or more of the batteries in an attempt replace or
charge it. This might result in the remaining capacity falling below the “Low” level not leaving
sufficient battery capacity for the OS to safely transition the system into the sleeping state.
Therefore, if the batteries are discharging simultaneously, the action might need to be initiated
at the point when both batteries reach this level.

Critical The Critical battery state indicates that all available batteries are discharged and do not appear
to be able to supply power to run the system any longer. When this occurs, the OS must
attempt to perform an emergency shutdown as described below.

For a smart battery system, this would typically occur when all batteries reach a capacity of O,
but an OEM may choose to put a larger value in the Smart Battery Table to provide an extra
margin of safely.

For a Control Method Battery system with multiple batteries, the flag is reported per battery. If
any battery in the system is in a critically low state and is still providing power to the system (in
other words, the battery is discharging), the system is considered to be in a critical energy state.
The _BST control method is required to return the Critical flag on a discharging battery only
when all batteries have reached a critical state; the ACPI system firmware is otherwise
required to switch to a non-critical battery.

3.9.4.1 Emergency Shutdown

Running until all batteries in a system are critical is not a situation that should be encountered normally,
since the system should be put into a sleeping state when the battery becomes low. In the case that this
does occur, the OS should take steps to minimize any damage to system integrity. The emergency
shutdown procedure should be designed to minimize bad effects based on the assumption that power
may be lost at any time. For example, if a hard disk is spun down, the OS should not try to spin it up to
write any data, since spinning up the disk and attempting to write data could potentially corrupt files if
the write were not completed. Even if a disk is spun up, the decision to attempt to save even system
settings data before shutting down would have to be evaluated since reverting to previous settings might
be less harmful than having the potential to corrupt the settings if power was lost halfway through the
write operation.

UEFI Forum, Inc. January 2019 Page 57

ACPI Specification, Version 6.3 ACPI Concepts

3.9.5 Battery Calibration

The reported capacity of many batteries generally degrade over time, providing less run time for the
user. However, it is possible with many battery systems to provide more usable runtime on an old battery
if a calibration or conditioning cycle is run occasionally. The user has typically been able to perform a
calibration cycle either by going into the platform boot firmware setup menu, or by running a custom
driver and calibration application provided by the OEM. The calibration process typically takes several
hours, and the laptop must be plugged in during this time. Ideally the application that controls this should
make this as good of a user experience as possible, for example allowing the user to schedule the system
to wake up and perform the calibration at some time when the system will not be in use. Since the
calibration user experience does not need to be different from system to system it makes sense for this
service to be provided by the OSPM. In this way OSPM can provide a common experience for end users
and eliminate the need for OEMs to develop custom battery calibration software.

In order for OSPM to perform generic battery calibration, generic interfaces to control the two basic
calibration functions are required. These functions are defined in Section 10.2.2.5 and Section 10.2.2.6.
First, there is a means to detect when it would be beneficial to calibrate the battery. Second there is a
means to perform that calibration cycle. Both of those functions may be implemented by dedicated
hardware such as a battery controller chip, by firmware in the embedded controller, by the platform
firmware, or by OSPM. From here on any function implemented through AML, whether or not the AML
code relies on hardware, will be referred to as “AML controlled” since the interface is the same whether
the AML passes control to the hardware or not.

Detection of when calibration is necessary can be implemented by hardware or AML code and be
reported through the BMD method. Alternately, the _BMD method may simply report the number of
cycles before calibration should be performed and let the OS attempt to count the cycles. A counter
implemented by the hardware or the platform firmware will generally be more accurate since the
batteries can be used without the OS running, but in some cases, a system designer may opt to simplify
the hardware or firmware implementation.

When calibration is desirable and the user has scheduled the calibration to occur, the calibration cycle
can be AML controlled or OSPM controlled. OSPM can only implement a very simple algorithm since it
doesn’t have knowledge of the specifics of the battery system. It will simply discharge the battery until it
quits discharging, then charge it until it quits charging. In the case where the AC adapter cannot be
controlled through the _BMC, it will prompt the user to unplug the AC adapter and reattach it after the
system powers off. If the calibration cycle is controlled by AML, the OS will initiate the calibration cycle by
calling _BMC. That method will either give control to the hardware, or will control the calibration cycle
itself. If the control of the calibration cycle is implemented entirely in AML code, the platform runtime
firmware may avoid continuously running AML code by having the initial call to _BMC start the cycle, set
some state flags, and then exit. Control of later parts of the cycle can be accomplished by putting code
that checks these state flags in the battery event handler (_Qxx, _Lxx, or _Exx).

Details of the control methods for this interface are defined in Section 10.2.

3.10 Thermal Management

ACPI allows the OS to play a role in the thermal management of the system while maintaining the
platform’s ability to mandate cooling actions as necessary. In the passive cooling mode, OSPM can make
cooling decisions based on application load on the CPU as well as the thermal heuristics of the system.
OSPM can also gracefully shutdown the computer in case of high temperature emergencies.

UEFI Forum, Inc. January 2019 Page 58

ACPI Specification, Version 6.3 ACPI Concepts

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is one
large thermal zone, but an OEM can partition the system into several logical thermal zones if necessary.
Figure 3-5 is an example mobile PC diagram that depicts a single thermal zone with a central processor as
the thermal-coupled device. In this example, the whole notebook is covered as one large thermal zone.
This notebook uses one fan for active cooling and the CPU for passive cooling.

Thermal v commele—y—» MCPU/ /
ssiv ing emory. A
Zone CPU o «—| PCI Bridge
? yy

y
)
A

y

M
» : PCI/PCI
P . = . Bridge
.| (Active Cooling) A
L

P S gl LCD
R le»| Graphics
M l«—»(-) CRT
: 8 USsB
‘ 1P 1 Docking
Momentary ‘
F v Vv 4_>| Keyboard
FO: PIC, PITs, F2: Embedded
DMA, RTC, EIO, .| USB Controller PSs/2
P ports
H@ Mouse
F1: BM A
IDE
DPRO ; P
h 4 SIO: ~ FDD
EPROM COMs, DPR1
Lpr, fe—¥{ Je——(D com
FDC, [——»(—) LPT
ACPI

Figure 3-5 Thermal Zone

The following sections are an overview of the thermal control and cooling characteristics of a computer.
For some thermal implementation examples on an ACPI platform, see Section 11.6, “Thermal Zone
Interface Requirements.”

3.10.1 Active and Passive Cooling Modes

ACPI defines two cooling modes, Active and Passive:

Passive cooling

OS reduces the power consumption of devices at the cost of system performance to reduce the
temperature of the system.

Active cooling

OS increases the power consumption of the system (for example, by turning on a fan) to reduce
the temperature of the system.

UEFI Forum, Inc. January 2019 Page 59

ACPI Specification, Version 6.3 ACPI Concepts

These two cooling modes are inversely related to each other. Active cooling requires increased power to
reduce the heat within the system while Passive cooling requires reduced power to decrease the
temperature. The effect of this relationship is that Active cooling allows maximum system performance,
but it may create undesirable fan noise, while Passive cooling reduces system performance, but is
inherently quiet.

3.10.2 Performance vs. Energy Conservation

A robust OSPM implementation provides the means for the end user to convey to OSPM a preference (or
a level of preference) for either performance or energy conservation. Allowing the end user to choose
this preference is most critical to mobile system users where maximizing system run-time on a battery
charge often has higher priority over realizing maximum system performance.

A user’s preference for performance corresponds to the Active cooling mode while a user’s preference
for energy conservation corresponds to the Passive cooling mode. ACPI defines an interface to convey
the cooling mode to the platform. Active cooling can be performed with minimal OSPM thermal policy
intervention. For example, the platform indicates through thermal zone parameters that crossing a
thermal trip point requires a fan to be turned on. Passive cooling requires OSPM thermal policy to
manipulate device interfaces that reduce performance to reduce thermal zone temperature.

3.10.3 Acoustics (Noise)

Active cooling mode generally implies that fans will be used to cool the system and fans vary in their
audible output. Fan noise can be quite undesirable given the loudness of the fan and the ambient noise
environment. In this case, the end user’s physical requirement for fan silence may override the
preference for either performance or energy conservation.

A user’s desire for fan silence corresponds to the Passive cooling mode. Accordingly, a user’s desire for
fan silence also means a preference for energy conservation.

For more information on thermal management and examples of platform settings for active and passive
cooling, see Section 11, “Thermal Management.”

3.10.4 Multiple Thermal Zones

The basic thermal management model defines one thermal zone, but in order to provide extended
thermal control in a complex system, ACPI specifies a multiple thermal zone implementation. Under a
multiple thermal zone model, OSPM will independently manage several thermal-coupled devices and a
designated thermal zone for each thermal-coupled device, using Active and/or Passive cooling methods
available to each thermal zone. Each thermal zone can have more than one Passive and Active cooling
device. Furthermore, each zone might have unique or shared cooling resources. In a multiple thermal
zone configuration, if one zone reaches a critical state then OSPM must shut down the entire system.

3.11 Flexible Platform Architecture Support

ACPI defines mechanisms and models to accommodate platform architectures that deviate from the
traditional PC. ACPI provides support for platform technologies that enable lower-power, lower cost,
more design flexibility and more device diversity. This support is described in the following sections, and
detailed in later chapters.

UEFI Forum, Inc. January 2019 Page 60

ACPI Specification, Version 6.3 ACPI Concepts

3.11.1 Hardware-reduced ACPI

ACPI offers an alternative platform interface model that removes ACPI hardware requirements for
platforms that do not implement the PC Architecture. In the Hardware-reduced ACPI model, the Fixed
hardware interface requirements of Chapter 4 are removed, and Generic hardware interfaces are used
instead. This provides the level of flexibility needed to innovate and differentiate in low-power hardware
designs while enabling support by multiple Operating Systems.

Hardware-reduced ACPI has the following requirements:

e UEFI firmware interface for boot (Legacy BIOS is not supported).

e Boot in ACPI mode only (ACPI Enable, ACPI Disable, SMI_CMD and Legacy mode are not
supported)

¢ No hardware resource sharing between OSPM and other asynchronous operating
environments, such as UEFI Runtime Services or System Management Mode. (The Global Lock
is not supported)

¢ No dependence on OS-support for maintaining cache coherency across processor sleep states
(Bus Master Reload and Arbiter Disable are not supported)

e GPE block devices are not supported

Systems that do not meet the above requirements must implement the ACPI Fixed Hardware interface.

3.11.1.1 Interrupt-based Wake Events

On HW-reduced ACPI platforms, wakeup is an attribute of connected interrupts. Interrupts that are
designed to wake the processor or the entire platform are defined as wake-capable. Wake-capable
interrupts, when enabled by OSPM, wake the system when they assert.

3.11.2 Low-Power Idle

Platform architectures may support hardware power management models other than the traditional
ACPI Sleep/Resume model. These are typically implemented in proprietary hardware and are capable of
delivering low-latency, connected idle while saving as much energy as ACPI Sleep states. To support the
diversity of hardware implementations, ACPI provides a mechanism for the platform to indicate to OSPM
that such capability is available.

3.11.2.1 Low Power S0 Idle Capable Flag

This flag in the FADT informs OSPM whether a platform has advanced idle power capabilities such that SO
idle achieves savings similar to or better than those typically achieved in S3. With this flag, OSPM can
keep the system in SO idle for its low-latency response and its connectedness rather than transitioning to
a system sleep state which has neither. The flag enables support for a diversity of platform
implementations: traditional Sleep/Resume systems, systems with advanced idle power, systems that
support neither, and systems that can support both, depending on the capabilities of the installed OS.

3.11.3 Connection Resources

General-purpose I/0 (GPI0) and Simple Peripheral Bus (SPB) controllers are hardware resources provided
in silicon solutions to enable flexible configuration of a broad range of system designs. These controllers
can provide input, output, interrupt and serial communication connections to arbitrary devices in a
system. The function to which one of these connections is put depends on the specific device involved

UEFI Forum, Inc. January 2019 Page 61

ACPI Specification, Version 6.3 ACPI Concepts

and the needs of the platform design. In order to support these platform technologies, ACPI defines a
general abstraction for flexible connections.

In order to maintain compatibility with existing software models, ACPI abstracts these connections as
hardware resources.

The Connection Resource abstraction mirrors the hardware functionality of GPIO and SPB controllers.
Like other resources, these connections are allocated and configured before use. With the resources
described by the platform, OSPM abstracts the underlying configuration from device drivers. Drivers,
then, can be written for the device's function only, and reused with that functional hardware regardless
of how it is integrated into a given system.

The key aspects of the Connection Resource abstraction are:

e GPIO and SPB controllers are enumerated as devices in the ACPlI Namespace.

® GPIO Connection and SPB Connection resource types are defined.

¢ Namespace devices that are connected to GPIO or SPB controllers use Resource Template
Macros to add Connection Resources to their resource methods (_CRS, _SRS, etc.).

e GPIO Connection Resources can be designated by the platform for use as GPIO-signaled ACPI
Events.

e Connection Resources can be used by AML methods to access pins and peripherals through
GPIO and SPB operation regions.

3.11.3.1 Supported Platforms

The HW-reduced ACPI and Low power SO Idle Capable flags combine to represent 4 platform types that
can be implemented. The following table enumerates these, as well as the intended OSPM behavior and
specific platform requirements.

Table 3-4 Implementable Platform Types

Low Power | Hardware- | OSPM Behavior Platform Implementation

SO Idle reduced

Capable ACPI

0 0 Fixed hardware interface accessed Implement Fixed-feature hardware
for features, events and system interface.

power management.

Traditional Sleep/Resume power

management.
0 1 Fixed-feature hardware interface not | Implement GPIO-signaled ACPI Events;
accessed. Implement software alternatives to any

Sleep/Resume Power Management | ACPI fixed features, including the Sleep
using FADT SLEEP_* REG fields and | registers.

Interrupt-based wake signaling. Implement wake-capable interrupts for
wake events.

UEFI Forum, Inc. January 2019 Page 62

ACPI Specification, Version 6.3 ACPI Concepts

Low Power | Hardware- | OSPM Behavior Platform Implementation

SO Idle reduced

Capable ACPI

1 0 Fixed hardware interface accessed Implement Fixed-feature hardware
for features and events. interface.
Platform-specific Low-power Idle Implement low-power hardware such
power management. that the platform achieves power

savings in SO similar to or better than
those typically achieved in S3.

1 1 Fixed-feature hardware interface not | Implement GPIO-signaled ACPI Events;
accessed. Implement software alternatives to any
Platform-specific Low-power Idle ACPI fixed features desired;
power management. Implement wake-capable interrupts for

any wake events.

Implement low-power hardware such
that the platform achieves power
savings in SO similar to or better than
those typically achieved in S3.

UEFI Forum, Inc. January 2019 Page 63

4 ACPI Hardware Specification

ACPI defines standard interface mechanisms that allow an ACPIl-compatible OS to control and
communicate with an ACPl-compatible hardware platform. These interface mechanisms are optional
(See "Hardware-Reduced ACPI", below).However, if the ACPI Hardware Specification is implemented,
platforms must comply with the requirements in this section.

This section describes the hardware aspects of ACPI.

ACPI defines “hardware” as a programming model and its behavior. ACPI strives to keep much of the
existing legacy programming model the same; however, to meet certain feature goals, designated
features conform to a specific addressing and programming scheme. Hardware that falls within this
category is referred to as “fixed.”

Although ACPI strives to minimize these changes, hardware engineers should read this section carefully
to understand the changes needed to convert a legacy-only hardware model to an ACPI/Legacy hardware
model or an ACPl-only hardware model.

ACPI classifies hardware into two categories: Fixed or Generic. Hardware that falls within the fixed
category meets the programming and behavior specifications of ACPI. Hardware that falls within the
generic category has a wide degree of flexibility in its implementation.

4.1 Hardware-Reduced ACPI

For certain classes of systems the ACPI Hardware Specification may not be adequate. Examples include
legacy-free, UEFI-based platforms with recent processors, and those implementing mobile platform
architectures. For such platforms, a Hardware-reduced ACPl mode is defined. Under this definition, the
ACPI Fixed Hardware interface is not implemented, and software alternatives for many of the features it
supports are used instead. Note, though, that Hardware-reduced ACPI is not intended to support every
possible ACPI system that can be built today. Rather, it is intended to introduce new systems that are
designed to be HW-reduced from the start. The ACPI HW Specification should be used if the platform
cannot be designed to work without it. Specifically, the following features are not supported under the
HW-reduced definition:

¢ The Global Lock, SMI_CMD, ACPI Enable and ACPI Disable. Hardware-reduced ACPI systems
always boot in ACPlI mode, and do not support hardware resource sharing between OSPM and
other asynchronous operating environments, such as UEFI Runtime Services or System
Management Mode.

e Bus Master Reload and Arbiter Disable. Systems that depend on OS use of these bits to
maintain cache coherency across processor sleep states are not supported.

e GPE block devices are not supported.

Platforms that require the above features must implement the ACPI Hardware Specification.

Platforms that are designed for the Hardware-reduced ACPI definition must implement Revision 5 or
greater of the Fixed ACPI Descriptor Table, and must set the HW_REDUCED_ACPI flag in the Flags field.

UEFI Forum, Inc. January 2019 Page 64

ACPI Specification, Version 6.3 ACPI Hardware Specification

Note: FFH is permitted and applicable to both full and HW-reduced ACPI implementations.

4.1.1 Hardware-Reduced Events

HW-reduced ACPI platforms require alternatives to some of the features supported in the ACPI HW
Specification, where none already exists. There are two areas that require such alternatives: The ACPI
Platform Event Model, and System and Device Wakeup.

4.1.1.1 GPIO-Signaled Events or Interrupt Signaled Events

General Purpose Input/Output (GPIO) hardware can be used for signaling platform events. GPIO HW is a
generalization of the GPE model, and is a shared hardware resource used for many applications. ACPI
support for GPIO is described in section Section 3.11.3, "Connection Resources". ACPI 6.1lintroduces the
capability to signal events via interrupts. See Section 5.6.9 for further details.

GPIO based event signaling is provided through GPIO interrupt connections, which describe the
connection to a GPIO controller and pin, and which are mapped to the ACPI Event Handling mechanism
via the ACPI Event Information namespace object (_AEl). OSPM treats GPIO Interrupt Connections listed
in _AEl exactly as it does SCl interrupts: it executes the Event Method associated with the specific event.
The name of the method to run is determined by the pin information contained in the GPIO Interrupt
Connection resource. See Section 5.6.5 for further details.

GPIO-signaled events can also be wake events, just as GPE events can on traditional ACPI platforms.
Designating which events are wake events is done through attributes of the GPIO Interrupt Connection
resource used.Devices may use _PRW to manage wake events as described in Section 7.3.13.

Interrupt based event signaling follows a similar methodology, a generic event device (GED) is declared
which in turn describes all interrupts associated with event generation. The interrupts are listed ina _CRS
object. When an interrupt is asserted the OSPM will execute the event method (_EVT) declared in the
GED object specifying the interrupt identifier as a parameter. In this way the interrupt can be associated
with specific platform events.

4.1.1.2 Interrupt-based Wake Events

Wake events on HW-reduced ACPI platforms are always caused by an interrupt reaching the processor.
Therefore, there are two requirements for waking the system from a sleep or low-power idle state, or a
device from a low-power state. First, the interrupt line must be Wake-Capable. Wake-capable interrupts
are designed to be able to be delivered to the processor from low-power states. This implies that it must
also cause the processor and any required platform hardware to power-up so that an Interrupt Service
Routine can run. Secondly, an OS driver must enable the interrupt before entering a low-power state, or
before OSPM puts the system into a sleep or low-power idle state.

Wake-capable interrupts are designated as such in their Extended Interrupt or GPIO Interrupt Connection
resource descriptor.

4.2 Fixed Hardware Programming Model

Because of the changes needed for migrating legacy hardware to the fixed category, ACPI limits the
features specified by fixed hardware. Fixed hardware features are defined by the following criteria:

e Performance sensitive features
e Features that drivers require during wake

UEFI Forum, Inc. January 2019 Page 65

ACPI Specification, Version 6.3 ACPI Hardware Specification

e Features that enable catastrophic OS software failure recovery

ACPI defines register-based interfaces to fixed hardware. CPU clock control and the power management
timer are defined as fixed hardware to reduce the performance impact of accessing this hardware, which
will result in more quickly reducing a thermal condition or extending battery life. If this logic were
allowed to reside in PCl configuration space, for example, several layers of drivers would be called to
access this address space. This takes a long time and will either adversely affect the power of the system
(when trying to enter a low-power state) or the accuracy of the event (when trying to get a time stamp
value).

Access to fixed hardware by OSPM allows OSPM to control the wake process without having to load the
entire OS. For example, if PCl configuration space access is needed, the bus enumerator is loaded with all
drivers used by the enumerator. Defining these interfaces in fixed hardware at addresses with which
OSPM can communicate without any other driver’s assistance, allows OSPM to gather information prior
to making a decision as to whether it continues loading the entire OS or puts it back to sleep.

If elements of the OS fail, it may be possible for OSPM to access address spaces that need no driver
support. In such a situation, OSPM will attempt to honor fixed power button requests to transition the
system to the G2 state. In the case where OSPM event handler is no longer able to respond to power
button events, the power button override feature provides a back-up mechanism to unconditionally
transition the system to the soft-off state.

4.3 Generic Hardware Programming Model

Although the fixed hardware programming model requires hardware registers to be defined at specific
address locations, the generic hardware programming model allows hardware registers to reside in most
address spaces and provides system OEMs with a wide degree of flexibility in the implementation of
specific functions in hardware. OSPM directly accesses the fixed hardware registers, but relies on OEM-
provided ACPI Machine Language (AML) code to access generic hardware registers.

AML code allows the OEM to provide the means for OSPM to control a generic hardware feature’s
control and event logic.

The section entitled “ACPI Source Language Reference” describes the ACPI Source Language (ASL)—a
programming language that OEMs use to create AML. The ASL language provides many of the operators
found in common object-oriented programming languages, but it has been optimized to enable the
description of platform power management and configuration hardware. An ASL compiler converts ASL
source code to AML, which is a very compact machine language that the ACPI AML code interpreter
executes.

AML does two things:

e Abstracts the hardware from OSPM
e Buffers OEM code from the different OS implementations

One goal of ACPI is to allow the OEM “value added” hardware to remain basically unchanged in an ACPI
configuration. One attribute of value-added hardware is that it is all implemented differently. To enable
OSPM to execute properly on different types of value added hardware, ACPI defines higher level “control
methods” that it calls to perform an action. The OEM provides AML code, which is associated with control
methods, to be executed by OSPM. By providing AML code, generic hardware can take on almost any
form.

UEFI Forum, Inc. January 2019 Page 66

ACPI Specification, Version 6.3 ACPI Hardware Specification

Another important goal of ACPI is to provide OS independence. To do this, the OEM AML code has to
execute the same under any ACPl-compatible OS. ACPI allows for this by making the AML code
interpreter part of OSPM. This allows OSPM to take care of synchronizing and blocking issues specific to
each particular OS.

The generic feature model is represented in the following block diagram. In this model the generic
feature is described to OSPM through AML code. This description takes the form of an object that sits in
the ACPl Namespace associated with the hardware to which it is adding value.

ACPI Driver

and AML-
Interpreter

ontrol
vents

GP Event Status
= = Generic
Generic Child Control
Event Status Logic

Generic Event
Logic

Figure 4-1 Generic Hardware Feature Model

As an example of a generic hardware control feature, a platform might be designed such that the IDE
HDD’s D3 state has value-added hardware to remove power from the drive. The IDE drive would then
have a reference to the AML PowerResource object (which controls the value added power plane) in its
namespace, and associated with that object would be control methods that OSPM invokes to control the
D3 state of the drive:

e _PSO0: A control method to sequence the IDE drive to the DO state.
e _PS3: A control method to sequence the IDE drive to the D3 state.
e _PSC: A control method that returns the status of the IDE drive (on or off).

The control methods under this object provide an abstraction layer between OSPM and the hardware.
OSPM understands how to control power planes (turn them on or off or to get their status) through its
defined PowerResource object, while the hardware has platform-specific AML code (contained in the
appropriate control methods) to perform the desired function. In this example, the platform would
describe its hardware to the ACPI OS by writing and placing the AML code to turn the hardware off within
the _PS3 control method. This enables the following sequence:

When OSPM decides to place the IDE drive in the D3 state, it calls the IDE driver and tells it to place the
drive into the D3 state (at which point the driver saves the device’s context).

When the IDE driver returns control, OSPM places the drive in the D3 state.

OSPM finds the object associated with the HDD and then finds within that object any AML code
associated with the D3 state.

OSPM executes the appropriate _PS3 control method to control the value-added “generic” hardware to
place the HDD into an even lower power state.

UEFI Forum, Inc. January 2019 Page 67

ACPI Specification, Version 6.3 ACPI Hardware Specification

As an example of a generic event feature, a platform might have a docking capability. In this case, it will
want to generate an event. Notice that all ACPI events generate an SCI, which can be mapped to any
shareable system interrupt. In the case of docking, the event is generated when a docking has been
detected or when the user requests to undock the system. This enables the following sequence:

OSPM responds to the SCI and calls the AML code event handler associated with that generic event. The
ACPI table associates the hardware event with the AML code event handler.

The AML-code event handler collects the appropriate information and then executes an AML Notify
command to indicate to OSPM that a particular bus needs re-enumeration.

The following sections describe the fixed and generic hardware feature set of ACPI. These sections enable
a reader to understand the following:

e Which hardware registers are required or optional when an ACPI feature, concept or interface
is required by a design guide for a platform class

¢ How to design fixed hardware features

e How to design generic hardware features

e The ACPI Event Model

4.4 Diagram Legends

The hardware section uses simplified logic diagrams to represent how certain aspects of the hardware
are implemented. The following symbols are used in the logic diagrams to represent programming bits.

Write-only control bit
Enable, control or status bit

Sticky status bit

%&@@

Query value

The half round symbol with an inverted “V” represents a write-only control bit. This bit has the behavior
that it generates its control function when it is set. Reads to write-only bits are treated as ignore by
software (the bit position is masked off and ignored).

The round symbol with an “X” represents a programming bit. As an enable or control bit, software setting
or clearing this bit will result in the bit being read as set or clear (unless otherwise noted). As a status bit
it directly represents the value of the signal.

The square symbol represents a sticky status bit. A sticky status bit is set by the level (not edge) of a
hardware signal (active high or active low). The bit is only cleared by software writing a “1” to its bit
position.

The rectangular symbol represents a query value from the embedded controller. This is the value the
embedded controller returns to the system software upon a query command in response to an SCl event.
The query value is associated with the event control method that is scheduled to execute upon an
embedded controller event.

UEFI Forum, Inc. January 2019 Page 68

ACPI Specification, Version 6.3 ACPI Hardware Specification

4.5 Register Bit Notation

Throughout this section there are logic diagrams that reference bits within registers. These diagrams use
a notation that easily references the register name and bit position. The notation is as follows:

Registername.Bit
Registername contains the name of the register as it appears in this specification
Bit contains a zero-based decimal value of the bit position.

For example, the SLP_EN bit resides in the PM1x_CNT register bit 13 and would be represented in
diagram notation as:

SLP_EN
PM1x_CNT.13

4.6 The ACPI Hardware Model

The ACPI hardware model is defined to allow OSPM to sequence the platform between the various global
system states (G0-G3) as illustrated in the following figure by manipulating the defined interfaces. When
first powered on, the platform finds itself in the global system state G3 or “Mechanical Off.” This state is
defined as one where power consumption is very close to zero—the power plug has been removed;
however, the real-time clock device still runs off a battery. The G3 state is entered by any power failure,
defined as accidental or user-initiated power loss.

The G3 state transitions into either the GO working state or the Legacy state depending on what the
platform supports. If the platform is an ACPl-only platform, then it allows a direct boot into the GO
working state by always returning the status bit SCI_EN set (1) (for more information, see Section 4.8.2.5,
“Legacy/ACPI Select and the SCI Interrupt”). If the platform supports both legacy and ACPI operations
(which is necessary for supporting a non-ACPI 0OS), then it would always boot into the Legacy state
(illustrated by returning the SCI_EN clear (0)). In either case, a transition out of the G3 state requires a
total boot of OSPM.

The Legacy system state is the global state where a non-ACPI OS executes. This state can be entered from
either the G3 “Mechanical Off,” the G2 “Soft Off,” or the GO “Working” states only if the hardware
supports both Legacy and ACPI modes. In the Legacy state, the ACPI event model is disabled (no SCls are
generated) and the hardware uses legacy power management and configuration mechanisms. While in
the Legacy state, an ACPl-compliant OS can request a transition into the GO working state by performing
an ACPI mode request. OSPM performs this transition by writing the ACPI_ENABLE value to the
SMI_CMD, which generates an event to the hardware to transition the platform into ACPl mode. When
hardware has finished the transition, it sets the SCI_EN bit and returns control back to OSPM. While in
the GO “working state,” OSPM can request a transition to Legacy mode by writing the ACPI_DISABLE
value to the SMI_CMD register, which results in the hardware going into legacy mode and resetting the
SCI_EN bit LOW (for more information, see Section 4.8.2.5, “Legacy/ACPI Select and the SClI Interrupt”).

The GO “Working” state is the normal operating environment of an ACPI system. In this state different
devices are dynamically transitioning between their respective power states (DO, D1, D2, D3hot, or D3)
and processors are dynamically transitioning between their respective power states (C0O, C1, C2 or C3). In
this state, OSPM can make a policy decision to place the platform into the system G1 “sleeping” state.
The platform can only enter a single sleeping state at a time (referred to as the global G1 state); however,
the hardware can provide up to four system sleeping states that have different power and exit latencies

UEFI Forum, Inc. January 2019 Page 69

ACPI Specification, Version 6.3 ACPI Hardware Specification

represented by the S1, S2, S3, or S4 states. When OSPM decides to enter a sleeping state it picks the most
appropriate sleeping state supported by the hardware (OS policy examines what devices have enabled
wake events and what sleeping states these support). OSPM initiates the sleeping transition by enabling
the appropriate wake events and then programming the SLP_TYPx field with the desired sleeping state
and then setting the SLP_ENXx bit. The system will then enter a sleeping state; when one of the enabled
wake events occurs, it will transition the system back to the working state (for more information, see
Section 16, “Waking and Sleeping”).

Another global state transition option while in the GO “working” state is to enter the G2 “soft off” or the
G3 “mechanical off” state. These transitions represent a controlled transition that allows OSPM to bring
the system down in an orderly fashion (unloading applications, closing files, and so on). The policy for
these types of transitions can be associated with the ACPI power button, which when pressed generates
an event to the power button driver. When OSPM is finished preparing the operating environment for a
power loss, it will either generate a pop-up message to indicate to the user to remove power, in order to
enter the G3 “Mechanical Off” state, or it will initiate a G2 “soft-off” transition by writing the value of the
S5 “soft off” system state to the SLP_TYPx register and setting the SLP_EN bit.

The G1 sleeping state is represented by four possible sleeping states that the hardware can support. Each
sleeping state has different power and wake latency characteristics. The sleeping state differs from the
working state in that the user’s operating environment is frozen in a low-power state until awakened by
an enabled wake event. No work is performed in this state, that is, the processors are not executing
instructions. Each system sleeping state has requirements about who is responsible for system context
and wake sequences (for more information, see Section 16, Waking and Sleeping”).

The G2 “soft off” state is an OS initiated system shutdown. This state is initiated similar to the sleeping
state transition (SLP_TYPx is set to the S5 value and setting the SLP_EN bit initiates the sequence). Exiting
the G2 soft-off state requires rebooting the system. In this case, an ACPl-only system will re-enter the GO
state directly (hardware returns the SCI_EN bit set), while an ACPI/Legacy system transitions to the
Legacy state (SCI_EN bit is clear).

UEFI Forum, Inc. January 2019 Page 70

ACPI Specification, Version 6.3 ACPI Hardware Specification

Power

Figure 4-2 Global States and Their Transitions

The ACPI architecture defines mechanisms for hardware to generate events and control logic to
implement this behavior model. Events are used to notify OSPM that some action is needed, and control
logic is used by OSPM to cause some state transition. ACPl-defined events are “hardware” or “interrupt”
events. A hardware event is one that causes the hardware to unconditionally perform some operation.
For example, any wake event will sequence the system from a sleeping state (S1, S2, S3, and S4 in the
global G1 state) to the GO working state (see Figure 16-74).

An interrupt event causes the execution of an event handler (AML code or an ACPl-aware driver), which
allows the software to make a policy decision based on the event. For ACPI fixed-feature events, OSPM or
an ACPl-aware driver acts as the event handler. For generic logic events OSPM will schedule the
execution of an OEM-supplied AML control method associated with the event.

For legacy systems, an event normally generates an OS-transparent interrupt, such as a System
Management Interrupt, or SMI. For ACPI systems the interrupt events need to generate an OS-visible
interrupt that is shareable; edge-style interrupts will not work. Hardware platforms that want to support
both legacy operating systems and ACPI systems support a way of re-mapping the interrupt events
between SMls and SCIs when switching between ACPI and legacy models. This is illustrated in the
following block diagram.

UEFI Forum, Inc. January 2019 Page 71

ACPI Specification, Version 6.3 ACPI Hardware Specification

Legacy Only Event Logic

DeTV_ice Idle ACPl/Legacy Event Logic
imers ACPI Only Event Logic
Device | ACPI/Legacy Generic Control Features
Traps ACPI/Legacy Fixed Control Features
GLBL STBY SEw SMI Arbiter
Timer
PWRBTN User
LID Interface SCI Arbiter
Sleep/Wake
THRM Tterr_nal State machine
ogic

DOCK Power Plane
STS_CHG L ETGIET —— SMI Events Control

Events Generic Space
RI SCI/SMI Events

— Wake-up Events CPU Clock

Figure 4-3 Example Event Structure for a Legacy/ACPI Compatible Event Model

SMI#

SCI#

This example logic illustrates the event model for a sample platform that supports both legacy and ACPI
event models. This example platform supports a number of external events that are power-related
(power button, LID open/close, thermal, ring indicate) or Plug and Play-related (dock, status change). The
logic represents the three different types of events:

OS Transparent Events

These events represent OEM-specific functions that have no OS support and use software that
can be operated in an OS-transparent fashion (that is, SMls).

Interrupt Events

These events represent features supported by ACPI-compatible operating systems, but are not
supported by legacy operating systems. When a legacy OS is loaded, these events are mapped to
the transparent interrupt (SMI# in this example), and when in ACPI mode they are mapped to an
OS-visible shareable interrupt (SCI#). This logic is represented by routing the event logic through
the decoder that routes the events to the SMI# arbiter when the SCI_EN bit is cleared, or to the
SCI# arbiter when the SCI_EN bit is set.

Hardware events

These events are used to trigger the hardware to initiate some hardware sequence such as
waking, resetting, or putting the system to sleep unconditionally.

In this example, the legacy power management event logic is used to determine device/system activity or
idleness based on device idle timers, device traps, and the global standby timer. Legacy power
management models use the idle timers to determine when a device should be placed in a low-power
state because it is idle—that is, the device has not been accessed for the programmed amount of time.
The device traps are used to indicate when a device in a low-power state is being accessed by OSPM. The

UEFI Forum, Inc. January 2019 Page 72

ACPI Specification, Version 6.3 ACPI Hardware Specification

global standby timer is used to determine when the system should be allowed to go into a sleeping state
because it is idle—that is, the user interface has not been used for the programmed amount of time.

These legacy idle timers, trap monitors, and global standby timer are not used by OSPM in the ACPI
mode. This work is handled by different software structures in an ACPl-compatible OS. For example, the
driver model of an ACPI-compatible OS is responsible for placing its device into a low-power state (D1,
D2, D3hot, or D3) and transitioning it back to the On state (D0O) when needed. And OSPM is responsible
for determining when the system is idle by profiling the system (using the PM Timer) and other
knowledge it gains through its operating structure environment (which will vary from OS to OS). When
the system is placed into the ACPI mode, these events no longer generate SMls, as OSPM handles this
function. These events are disabled through some OEM-proprietary method.

On the other hand, many of the hardware events are shared between the ACPIl and legacy models
(docking, the power button, and so on) and this type of interrupt event changes to an SCl event when
enabled for ACPI. The ACPI OS will generate a request to the platform runtime firmware to enter into the
ACPI mode. The firmware sets the SCI_EN bit to indicate that the system has successfully entered into the
ACPI mode, so this is a convenient mechanism to map the desired interrupt (SMI or SCI) for these events
(as shown in Figure 4-3).

The ACPI architecture specifies some dedicated hardware not found in the legacy hardware model: the
power management timer (PM Timer). This is a free running timer that the ACPI OS uses to profile system
activity. The frequency of this timer is explicitly defined in this specification and must be implemented as
described.

Although the ACPI architecture reuses most legacy hardware as is, it does place restrictions on where and
how the programming model is generated. If used, all fixed hardware features are implemented as
described in this specification so that OSPM can directly access the fixed hardware feature registers.

Generic hardware features are manipulated by ACPI control methods residing in the ACPI Namespace.
These interfaces can be very flexible; however, their use is limited by the defined ACPI control methods
(for more information, see Section 9, “ACPI Devices and Device Specific Objects”). Generic hardware
usually controls power planes, buffer isolation, and device reset resources. Additionally, “child” interrupt
status bits can be accessed via generic hardware interfaces; however, they have a “parent” interrupt
status bit in the GP_STS register. ACPI defines eight address spaces that may be accessed by generic
hardware implementations. These include:

e System I/O space

¢ System memory space

¢ PCl configuration space

e Embedded controller space

e System Management Bus (SMBus) space

e CMOS
e PCIBAR Target
e |[PMI space

e Platform Communication Channel

Generic hardware power management features can be implemented accessing spare 1/0 ports residing in
any of these address spaces. The ACPI specification defines an optional embedded controller and SMBus
interfaces needed to communicate with these associated address spaces.

UEFI Forum, Inc. January 2019 Page 73

ACPI Specification, Version 6.3 ACPI Hardware Specification

4.6.1 Hardware Reserved Bits

ACPI hardware registers are designed such that reserved bits always return zero, and data writes to them
have no side affects. OSPM implementations must write zeros to reserved bits in enable and status
registers and preserve bits in control registers, and they will treat these bits as ignored.

4.6.2 Hardware Ignored Bits

ACPI hardware registers are designed such that ignored bits are undefined and are ignored by software.
Hardware-ignored bits can return zero or one. When software reads a register with ignored bits, it masks
off ignored bits prior to operating on the result. When software writes to a register with ignored bit
fields, it preserves the ignored bit fields.

4.6.3 Hardware Write-Only Bits

ACPI hardware defines a number of write-only control bits. These bits are activated by software writing a
1 to their bit position. Reads to write-only bit positions generate undefined results. Upon reads to
registers with write-only bits, software masks out all write-only bits.

4.6.4 Cross Device Dependencies

Cross Device Dependency is a condition in which an operation to a device interferes with the operation of
other unrelated devices, or allows other unrelated devices to interfere with its behavior. This condition is
not supportable and can cause platform failures. ACPI provides no support for cross device dependencies
and suggests that devices be designed to not exhibit this behavior. The following two examples describe
cross device dependencies:

4.6.4.1 Example 1: Related Device Interference

This example illustrates a cross device dependency where a device interferes with the proper operation
of other unrelated devices. Device A has a dependency that when it is being configured it blocks all
accesses that would normally be targeted for Device B. Thus, the device driver for Device B cannot access
Device B while Device A is being configured; therefore, it would need to synchronize access with the
driver for Device A. High performance, multithreaded operating systems cannot perform this kind of
synchronization without seriously impacting performance.

To further illustrate the point, assume that Device A is a serial port and Device B is a hard drive controller.
If these devices demonstrate this behavior, then when a software driver configures the serial port,
accesses to the hard drive need to block. This can only be done if the hard disk driver synchronizes access
to the disk controller with the serial driver. Without this synchronization, hard drive data will be lost
when the serial port is being configured.

4.6.4.2 Example 2: Unrelated Device Interference

This example illustrates a cross-device dependency where a device demonstrates a behavior that allows
other unrelated devices to interfere with its proper operation. Device A exhibits a programming behavior
that requires atomic back-to-back write accesses to successfully write to its registers; if any other
platform access is able to break between the back-to-back accesses, then the write to Device A is
unsuccessful. If the Device A driver is unable to generate atomic back-to-back accesses to its device, then
it relies on software to synchronize accesses to its device with every other driver in the system; then a
device cross dependency is created and the platform is prone to Device A failure.

UEFI Forum, Inc. January 2019 Page 74

ACPI Specification, Version 6.3 ACPI Hardware Specification

4.7 ACPI Hardware Features

This section describes the different hardware features defined by the ACPI interface. These features are
categorized as the following:

e Fixed Hardware Features
e Generic Hardware Features

Fixed hardware features reside in a number of the ACPI-defined address spaces at the locations described
by the ACPI programming model. Generic hardware features reside in one of four address spaces (system
I/0, system memory, PCI configuration, embedded controller, or serial device I/O space) and are
described by the ACPI Namespace through the declaration of AML control methods.

Fixed hardware features have exact definitions for their implementation. Although many fixed hardware
features are optional, if implemented they must be implemented as described since OSPM manipulates
the registers of fixed hardware devices and expects the defined behavior. Functional fixed hardware
provides functional equivalents of the fixed hardware feature interfaces as described in Section 4.3,
“Functional Fixed Hardware.”

Generic hardware feature implementation is flexible. This logic is controlled by OEM-supplied AML code
(for more information, see Section 5, “ACPI Software Programming Model”), which can be written to
support a wide variety of hardware. Also, ACPI provides specialized control methods that provide
capabilities for specialized devices. For example, the Notify command can be used to notify OSPM from a
generic hardware event handler (control method) that a docking or thermal event has taken place. A
good understanding of this section and Section 5 of this specification will give designers a good
understanding of how to design hardware to take full advantage of an ACPl-compatible OS.

Notice that the generic features are listed for illustration only, the ACPI specification can support many
types of hardware not listed.

Table 4-5 Feature/Programming Model Summary

Feature Name Description Programming Model

Power Management 24-bit or 32-bit free running timer. Fixed Hardware Feature Control

Timer Logic

Power Button User pushes button to switch the system | Fixed Hardware Event and Control
between the working and sleeping/soft- | Logic or Generic Hardware Event and
off states. Logic

Sleep Button User pushes button to switch the system | Fixed Hardware Event and Control
between the working and sleeping/soft- | Logic or Generic Hardware Event and
off states. Logic

Power Button Override | User sequence (press the power button
for 4 seconds) to turn off a hung system.

Real Time Clock Alarm | Programmed time to wake the system. | optional Fixed Hardware Event?
Sleep/Wake Control Logic used to transition the system Fixed Hardware Control and Event
Logic between the sleeping and working Logic

states.

UEFI Forum, Inc. January 2019 Page 75

ACPI Specification, Version 6.3 ACPI Hardware Specification

Feature Name Description Programming Model
Embedded Controller ACPl Embedded Controller protocol and | Generic Hardware Event Logic, must
Interface interface, as described in Section 12, reside in the general-purpose

“ACPl Embedded Controller Interface register block

Specification.”

Legacy/ACPI Select Status bit that indicates the system is Fixed Hardware Control Logic
using the legacy or ACPI power
management model (SCI_EN).

Lid switch Button used to indicate whether the Generic Hardware Event Feature
system’s lid is open or closed (mobile
systems only).

C1 Power State Processor instruction to place the Processor ISA
processor into a low-power state.

C2 Power Control Logic to place the processor into a C2 Fixed Hardware Control Logic
power state.

C3 Power Control Logic to place the processor into a C3 Fixed Hardware Control Logic
power state.

Thermal Control Logic to generate thermal events at Generic Hardware Event and Control
specified trip points. Logic (See description of thermal
logic in Section 3.10, “Thermal
Management.”)

Device Power Control logic for switching between Generic Hardware control logic
Management different device power states.
AC Adapter Logic to detect the insertion and removal | Generic Hardware event logic
of the AC adapter.
Docking/device Logic to detect device insertion and Generic Hardware event logic
insertion and removal removal events.
a. RTC wakeup alarm is required, the fixed hardware feature status bit is optional.

UEFI Forum, Inc. January 2019 Page 76

ACPI Specification, Version 6.3 ACPI Hardware Specification

4.8 ACPI Register Model

ACPI hardware resides in one of six address spaces:

e System /O

e System memory

e PCl configuration

e SMBus

e Embedded controller

e Functional Fixed Hardware

Different implementations will result in different address spaces being used for different functions. The
ACPI specification consists of fixed hardware registers and generic hardware registers. Fixed hardware
registers are required to implement ACPI-defined interfaces. The generic hardware registers are needed
for any events generated by value-added hardware.

ACPI defines register blocks. An ACPI-compatible system provides an ACPI table (the FADT, built in
memory at boot-up) that contains a list of pointers to the different fixed hardware register blocks used by
OSPM. The bits within these registers have attributes defined for the given register block. The types of
registers that ACPI defines are:

e Status/Enable Registers (for events)
e Control Registers

If a register block is of the status/enable type, then it will contain a register with status bits, and a
corresponding register with enable bits. The status and enable bits have an exact implementation
definition that needs to be followed (unless otherwise noted), which is illustrated by the following
diagram:

Status Bit

Event Input >—|X|—D—> Event Output

Enable Bit ®
Figure 4-4 Block Diagram of a Status/Enable Cell

Notice that the status bit, which hardware sets by the Event Input being set in this example, can only be
cleared by software writing a 1 to its bit position. Also, the enable bit has no effect on the setting or
resetting of the status bit; it only determines if the SET status bit will generate an “Event Output,” which
generates an SCl when set if its enable bit is set.

ACPI also defines register groupings. A register grouping consists of two register blocks, with two pointers
to two different blocks of registers, where each bit location within a register grouping is fixed and cannot
be changed. The bits within a register grouping, which have fixed bit positions, can be split between the
two register blocks. This allows the bits within a register grouping to reside in either or both register
blocks, facilitating the ability to map bits within several different chips to the same register thus providing
the programming model with a single register grouping bit structure.

OSPM treats a register grouping as a single register; but located in multiple places. To read a register
grouping, OSPM will read the “A” register block, followed by the “B” register block, and then will logically
“OR” the two results together (the SLP_TYP field is an exception to this rule). Reserved bits, or unused

UEFI Forum, Inc. January 2019 Page 77

ACPI Specification, Version 6.3 ACPI Hardware Specification

bits within a register block always return zero for reads and have no side effects for writes (which is a
requirement).

The SLP_TYPx field can be different for each register grouping. The respective sleeping object _Sx
contains a SLP_TYPa and a SLP_TYPb field. That is, the object returns a package with two integer values of
0-7 in it. OSPM will always write the SLP_TYPa value to the “A” register block followed by the SLP_TYPb
value within the field to the “B” register block. All other bit locations will be written with the same value.
Also, OSPM does not read the SLP_TYPx value but throws it away.

& @ et @?

Register Block A /%. A A

Figure 4-5 Example Fixed Hardware Feature Register Grouping

Register
Grouping

As an example, the above diagram represents a register grouping consisting of register block A and
register block b. Bits “a” and “d” are implemented in register block B and register block A returns a zero
for these bit positions. Bits “b”, “c” and “e” are implemented in register block A and register block B
returns a zero for these bit positions. All reserved or ignored bits return their defined ACPI values.

When accessing this register grouping, OSPM must read register block a, followed by reading register
block b. OSPM then does a logical OR of the two registers and then operates on the results.

When writing to this register grouping, OSPM will write the desired value to register group A followed by
writing the same value to register group B.

ACPI defines the following fixed hardware register blocks. Each register block gets a separate pointer
from the FADT. These addresses are set by the OEM as static resources, so they are never changed—
OSPM cannot re-map ACPI resources. The following register blocks are defined:

UEFI Forum, Inc. January 2019 Page 78

ACPI Specification, Version 6.3 ACPI Hardware Specification

Registers Register Blocks Register Groupings
PQ",JI?ESE ﬁ)} PM1a_EVT BLK
PM1b STS :>— PM1 EVT Grouping
PM1b_EN ~ F—PM1b_EVT_BLK
PM1a_CNT

PM1a_CNT_BLK
:>— PM1 CNT Grouping

PM1b_CNT PM1b_CNT_BLK
PM2_CNT PM2_CNT_BLK PM2 Control Block
PM_TMR PM_TMR_BLK PM Timer Block
P_CNT
P_LVL2 37 P_BLK Processor Block
P_LVL3
Ggggasgﬁ ~ }—— GPEO_BLK General Purpose Event 0
= Block
GPE1_STS
GPE1_EN) GPE1_BLK General Purpose Event 1
Block

Figure 4-6 Register Blocks versus Register Groupings

The PM1 EVT grouping consists of the PM1a_EVT and PM1b_EVT register blocks, which contain the fixed
hardware feature event bits. Each event register block (if implemented) contains two registers: a status
register and an enable register. Each register grouping has a defined bit position that cannot be changed,;
however, the bit can be implemented in either register block (A or B). The A and B register blocks for the
events allow chipsets to vary the partitioning of events into two or more chips. For read operations,
OSPM will generate a read to the associated A and B registers, OR the two values together, and then
operate on this result. For write operations, OSPM will write the value to the associated register in both
register blocks. Therefore, there are two rules to follow when implementing event registers:

e Reserved or unimplemented bits always return zero (control or enable).
e Writes to reserved or unimplemented bits have no affect.

The PM1 CNT grouping contains the fixed hardware feature control bits and consists of the
PM1a_CNT_BLK and PM1b_CNT_BLK register blocks. Each register block is associated with a single
control register. Each register grouping has a defined bit position that cannot be changed; however, the
bit can be implemented in either register block (A or B). There are two rules to follow when implementing
CNT registers:

e Reserved or unimplemented bits always return zero (control or enable).
e Writes to reserved or unimplemented bits have no affect.

The PM2_CNT_BLK register block currently contains a single bit for the arbiter disable function. The
general-purpose event register contains the event programming model for generic features. All generic
events, just as fixed events, generate SCls. Generic event status bits can reside anywhere; however, the
top-level generic event resides in one of the general-purpose register blocks. Any generic feature event
status not in the general-purpose register space is considered a child or sibling status bit, whose parent
status bit is in the general-purpose event register space. Notice that it is possible to have N levels of
general-purpose events prior to hitting the GPE event status.

UEFI Forum, Inc. January 2019 Page 79

ACPI Specification, Version 6.3 ACPI Hardware Specification

General-purpose event registers are described by two register blocks: The GPEO_BLK or the GPE1_BLK.
Each register block is pointed to separately from within the FADT. Each register block is further broken
into two registers: GPEx_STS and GPEx_EN. The status and enable registers in the general-purpose event
registers follow the event model for the fixed hardware event registers.

4.8.1 ACPI Register Summary

The following tables summarize the ACPI registers:

Table 4-6 PM1 Event Registers

Register Size (Bytes) Address (relative to register block)
PM1a_STS PM1_EVT_LEN/2 <PM1la_EVT_BLK >
PM1la_EN PM1_EVT_LEN/2 <PM1a_EVT_BLK >+PM1_EVT_LEN/2
PM1b_STS PM1_EVT_LEN/2 <PM1b_EVT_BLK >
PM1b_EN PM1_EVT_LEN/2 <PM1b_EVT_BLK >+PM1_EVT_LEN/2

Table 4-7 PM1 Control Registers

Register Size (Bytes) Address (relative to register block)
PM1_CNTa PM1_CNT_LEN <PM1a_CNT_BLK >
PM1_CNTb PM1_CNT_LEN <PM1b_CNT_BLK >

Table 4-8 PM2 Control Register

Register Size (Bytes) Address (relative to register block)
PM2_CNT PM2_CNT_LEN <PM2_CNT_BLK >

Table 4-9 PM Timer Register

Register Size (Bytes) Address (relative to register block)
PM_TMR PM_TMR_LEN <PM_TMR_BLK >

Table 4-10 Processor Control Registers

Register Size (Bytes) Address (relative to register block)
P_CNT 4 Either <P_BLK> or specified by the PTC object (See

Section 8.4.5.1, “PTC [Processor Throttling Control].”)

P_LVL2 1 <P_BLK>+4h

P_LVL3 1 <P_BLK>+5h

UEFI Forum, Inc.

January 2019

Page 80

ACPI Specification, Version 6.3 ACPI Hardware Specification

Table 4-11 General-Purpose Event Registers

Register Size (Bytes) Address (relative to register block)
GPEO_STS GPEO_LEN/2 <GPEO_BLK>

GPEO_EN GPEO_LEN/2 <GPEO_BLK>+GPEO_LEN/2
GPE1_STS GPE1_LEN/2 <GPE1_BLK>

GPE1_EN GPE1_LEN/2 <GPE1_BLK>+GPE1_LEN/2

4.8.1.1 PM1 Event Registers

The PM1 event register grouping contains two register blocks: the PM1a_EVT_BLK is a required register
block when the following ACPI interface categories are required by a class specific platform design guide:

e Power management timer control/status

* Processor power state control/status

e Global Lock related interfaces

e Power or Sleep button (fixed register interfaces)

e System power state controls (sleeping/wake control)

The PM1b_EVT_BLK is an optional register block. Each register block has a unique 32-bit pointer in the
Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If the
PM1b_EVT_BLK is not supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 event grouping contains two registers that are required to be the same
size: the PM1x_STS and PM1x_EN (where x can be “a” or “b”). The length of the registers is variable and
is described by the PM1_EVT_LEN field in the FADT, which indicates the total length of the register block
in bytes. Hence if a length of “4” is given, this indicates that each register contains two bytes of I/O space.
The PM1 event register block has a minimum size of 4 bytes.

4.8.1.2 PM1 Control Registers

The PM1 control register grouping contains two register blocks: the PM1a_CNT_BLK is a required register
block when the following ACPI interface categories are required by a class specific platform design guide:

e SCI/SMI routing control/status for power management and general-purpose events
* Processor power state control/status

e Global Lock related interfaces

e System power state controls (sleeping/wake control)

The PM1b_CNT_BLK is an optional register block. Each register block has a unique 32-bit pointer in the
Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If the
PM1b_CNT_BLK is not supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 control grouping contains a single register: the PM1x_CNT. The length of
the register is variable and is described by the PM1_CNT_LEN field in the FADT, which indicates the total
length of the register block in bytes. The PM1 control register block must have a minimum size of 2 bytes.
4.8.1.3 PM2 Control Register

The PM2 control register is contained in the PM2_CNT_BLK register block. The FADT contains a length
variable for this register block (PM2_CNT_LEN) that is equal to the size in bytes of the PM2_CNT register

UEFI Forum, Inc. January 2019 Page 81

ACPI Specification, Version 6.3 ACPI Hardware Specification

(the only register in this register block). This register block is optional, if not supported its block pointer
and length contain a value of zero.

4.8.1.4 PM Timer Register

The PM timer register is contained in the PM_TMR_BLK register block. It is an optional register block that
must be implemented when the power management timer control/status ACPI interface category is
required by a class specific platform design guide.

If defined, this register block contains the register that returns the running value of the power
management timer. The FADT also contains a length variable for this register block (PM_TMR_LEN) that is
equal to the size in bytes of the PM_TMR register (the only register in this register block).

4.8.1.5 Processor Control Block (P_BLK)

There is an optional processor control register block for each processor in the system. As this is a
homogeneous feature, all processors must have the same level of support. The ACPI OS will revert to the
lowest common denominator of processor control block support. The processor control block contains
the processor control register (P_CNT-a 32-bit performance control configuration register), and the
P_LVL2 and P_LVL3 CPU sleep state control registers. The 32-bit P_CNT register controls the behavior of
the processor clock logic for that processor, the P_LVL2 register is used to place the CPU into the C2 state,
and the P_LVL3 register is used to place the processor into the C3 state.

4.8.1.6 General-Purpose Event Registers

The general-purpose event registers contain the root level events for all generic features. To facilitate the
flexibility of partitioning the root events, ACPI provides for two different general-purpose event blocks:
GPEO_BLK and GPE1_BLK. These are separate register blocks and are not a register grouping, because
there is no need to maintain an orthogonal bit arrangement. Also, each register block contains its own
length variable in the FADT, where GPEO_LEN and GPE1_LEN represent the length in bytes of each
register block.

Each register block contains two registers of equal length: GPEx_STS and GPEx_EN (where xis 0 or 1). The
length of the GPEO_STS and GPEO_EN registers is equal to half the GPEO_LEN. The length of the GPE1_STS
and GPE1_EN registers is equal to half the GPE1_LEN. If a generic register block is not supported then its
respective block pointer and block length values in the FADT table contain zeros. The GPEQ_LEN and
GPE1_LEN do not need to be the same size.

4.8.2 Fixed Hardware Features

This section describes the fixed hardware features defined by ACPI.

4.8.2.1 Power Management Timer

The ACPI specification defines an optional power management timer that provides an accurate time
value that can be used by system software to measure and profile system idleness (along with other
tasks). The power management timer provides an accurate time function while the system is in the
working (GO0) state. To allow software to extend the number of bits in the timer, the power management
timer generates an interrupt when the last bit of the timer changes (from 0 to 1 or 1 to 0). ACPI supports
either a 24-bit or 32-bit power management timer. The PM Timer is accessed directly by OSPM, and its
programming model is contained in fixed register space. The programming model can be partitioned in
up to three different register blocks. The event bits are contained in the PM1_EVT register grouping,

UEFI Forum, Inc. January 2019 Page 82

ACPI Specification, Version 6.3 ACPI Hardware Specification

which has two register blocks, and the timer value can be accessed through the PM_TMR_BLK register
block. A block diagram of the power management timer is illustrated in the following figure:

TMR_STS
T PM1x_STS.0
_Counter PMTMR_PME
3.579545 MHH»—[Bits(23/31-0)
- 24/32 TMR_EN
PM1x_EN.O
TMR_VAL

PM_TMR.0-23/0-31
Figure 4-7 Power Management Timer

The power management timer is a 24-bit or 32-bit fixed rate free running count-up timer that runs off a
3.579545 MHz clock. The ACPI OS checks the FADT to determine whether the PM Timer is a 32-bit or 24-
bit timer. The programming model for the PM Timer consists of event logic, and a read port to the
counter value. The event logic consists of an event status and enable bit. The status bit is set any time the
last bit of the timer (bit 23 or bit 31) goes from set to clear or clear to set. If the TMR_EN bit is set, then
the setting of the TMR_STS will generate an ACPI event in the PM1_EVT register grouping (referred to as
PMTMR_PME in the diagram). The event logic is only used to emulate a larger timer.

OSPM uses the read-only TMR_VAL field (in the PM TMR register grouping) to read the current value of
the timer. OSPM never assumes an initial value of the TMR_VAL field; instead, it reads an initial TMR_VAL
upon loading OSPM and assumes that the timer is counting. It is allowable to stop the Timer when the
system transitions out of the working (G0/S0) state. The only timer reset requirement is that the timer
functions while in the working state.

The PM Timer’s programming model is implemented as a fixed hardware feature to increase the accuracy
of reading the timer.

4.8.2.2 Console Buttons

ACPI defines user-initiated events to request OSPM to transition the platform between the GO working
state and the G1 sleeping, G2 soft off and G3 mechanical off states. ACPI also defines a recommended

mechanism to unconditionally transition the platform from a hung GO working state to the G2 soft-off

state.

ACPI operating systems use power button events to determine when the user is present. As such, these
ACPI events are associated with buttons in the ACPI specification.

The ACPI specification supports two button models:

¢ Asingle-button model that generates an event for both sleeping and entering the soft-off
state. The function of the button can be configured using OSPM UL.

e Adual-button model where the power button generates a soft-off transition request and a
sleep button generates a sleep transition request. The type of button implies the function of
the button.

Control of these button events is either through the fixed hardware programming model or the generic
hardware programming model (control method based). The fixed hardware programming model has the
advantage that OSPM can access the button at any time, including when the system is crashed. In a

UEFI Forum, Inc. January 2019 Page 83

ACPI Specification, Version 6.3 ACPI Hardware Specification

crashed system with a fixed hardware power button, OSPM can make a “best” effort to determine
whether the power button has been pressed to transition to the system to the soft-off state, because it
doesn’t require the AML interpreter to access the event bits.

4.8.2.2.1 Power Button

The power button logic can be used in one of two models: single button or dual button. In the single-
button model, the user button acts as both a power button for transitioning the system between the GO
and G2 states and a sleep button for transitioning the system between the GO and G1 states. The action
of the user pressing the button is determined by software policy or user settings. In the dual-button
model, there are separate buttons for sleeping and power control. Although the buttons still generate
events that cause software to take an action, the function of the button is now dedicated: the sleep
button generates a sleep request to OSPM and the power button generates a wake request.

Support for a power button is indicated by a combination of the PWR_BUTTON flag and the power button
device object, as shown in the following:

Table 4-12 Power Button Support

Indicated Support PWR_BUTTON Flag Power Button Device Object
Fixed hardware power button | Clear Absent
Control method power button | Set Present

The power button can also have an additional capability to unconditionally transition the system from a
hung working state to the G2 soft-off state. In the case where OSPM event handler is no longer able to
respond to power button events, the power button override feature provides a back-up mechanism to
unconditionally transition the system to the soft-off state. This feature can be used when the platform
doesn’t have a mechanical off button, which can also provide this function. ACPI defines that holding the
power button active for four seconds or longer will generate a power button override event.

4.8.2.2.1.1 Fixed Power Button

— . PORETN
Dobounca - o . > |_M-.-:|E|::-.-

| PWRETHE — e e—— — !
L Liogec | | ’ ——_ i
- - | I—h PARETH Ewanl
PWRETN_ST5 /

L
FMix_STS 8

PWHBTH_EN
PMTE_EN.8

Figure 4-8 Fixed Power Button Logic

The fixed hardware power button has its event programming model in the PM1x_EVT_BLK. This logic
consists of a single enable bit and sticky status bit. When the user presses the power button, the power
button status bit (PWRBTN_STS) is unconditionally set. If the power button enable bit (PWRBTN_EN) is
set and the power button status bit is set (PWRBTN_STS) due to a button press while the system is in the
GO state, then an SCl is generated. OSPM responds to the event by clearing the PWRBTN_STS bit. The
power button logic provides debounce logic that sets the PWRBTN_STS bit on the button press “edge.”

While the system is in the G1 or G2 global states (S1, S2, S3, S4 or S5 states), any further power button
press after the button press that transitioned the system into the sleeping state unconditionally sets the

UEFI Forum, Inc. January 2019 Page 84

ACPI Specification, Version 6.3 ACPI Hardware Specification

power button status bit and wakes the system, regardless of the value of the power button enable bit.
OSPM responds by clearing the power button status bit and waking the system.

4.8.2.2.1.2 Control Method Power Button

The power button programming model can also use the generic hardware programming model. This
allows the power button to reside in any of the generic hardware address spaces (for example, the
embedded controller) instead of fixed space. If the power button is implemented using generic
hardware, then the OEM needs to define the power button as a device with an _HID object value of
“PNPOCOC,” which then identifies this device as the power button to OSPM. The AML event handler then
generates a Notify command to notify OSPM that a power button event was generated. While the system
is in the working state, a power button press is a user request to transition the system into either the
sleeping (G1) or soft-off state (G2). In these cases, the power button event handler issues the Notify
command with the device specific code of 0x80. This indicates to OSPM to pass control to the power
button driver (PNPOCOC) with the knowledge that a transition out of the GO state is being requested.
Upon waking from a G1 sleeping state, the AML event handler generates a notify command with the code
of 0x2 to indicate it was responsible for waking the system.

The power button device needs to be declared as a device within the ACPI Namespace for the platform
and only requires an _HID. An example definition follows.

This example ASL code performs the following:

e Creates a device named “PWRB” and associates the Plug and Play identifier (through the HID
object) of “PNPOCOC.”

¢ The Plug and Play identifier associates this device object with the power button driver.

e Creates an operational region for the control method power button’s programming model:
System |/O space at 0x200.

¢ Fields that are not accessed are written as zeros. These status bits clear upon writing a 1 to
their bit position, therefore preserved would fail in this case.

¢ Creates a field within the operational region for the power button status bit (called PBP). In this
case the power button status bit is a child of the general-purpose event status bit 0. When this
bit is set, it is the responsibility of the ASL-code to clear it (OSPM clears the general-purpose
status bits). The address of the status bit is 0x200.0 (bit O at address 0x200).

e Creates an additional status bit called PBW for the power button wake event. This is the next
bit and its physical address would be 0x200.1 (bit 1 at address 0x200).

e Generates an event handler for the power button that is connected to bit 0 of the general-
purpose event status register 0. The event handler does the following:

e Clears the power button status bit in hardware (writes a one to it).

¢ Notifies OSPM of the event by calling the Notify command passing the power button object
and the device specific event indicator 0x80.

// Define a control method power button
Device(_SB.PWRB){
Name(_HID, EISAID(*“PNPOCOC"))
Name(_PRW, Package(){0, 0x4})

OperationRegion(\PHO, SystemlO, 0x200, 0x1)

Field(\PHO, ByteAcc, NoLock, WriteAsZeros){
PBP, 1, // sleep/off request

UEFI Forum, Inc. January 2019 Page 85

ACPI Specification, Version 6.3 ACPI Hardware Specification

PBW, 1 // wakeup request
}
} // end of power button device object
Scope(_GPE){ // Root level event handlers
Method(_L00){ // uses bit 0 of GPO_STS register
ITQ\PBP){
Store(One, \PBP) // clear power button status
Notify(_SB.PWRB, 0x80) // Notify 0S of event
}
IFQ\PBW){
Store(One, \PBW)
Notify(_SB.PWRB, 0x2)
}

} // end of _LOO handler
} // end of _GPE scope

4.8.2.2.1.3 Power Button Override

The ACPI specification also allows that if the user presses the power button for more than four seconds
while the system is in the working state, a hardware event is generated and the system will transition to
the soft-off state. This hardware event is called a power button override. In reaction to the power button
override event, the hardware clears the power button status bit (PWRBTN_STS).

4.8.2.2.2 Sleep Button

When using the two button model, ACPI supports a second button that when pressed will request OSPM
to transition the platform between the GO working and G1 sleeping states. Support for a sleep button is
indicated by a combination of the SLEEP_BUTTON flag and the sleep button device object:

Table 4-13 Sleep Button Support

Indicated Support SLEEP_BUTTON Flag Sleep Button Device Object
No sleep button Set Absent
Fixed hardware sleep button Clear Absent
Control method sleep button Set Present

4.8.2.2.2.1 Fixed Hardware Sleep Button

SLPBTN_STS
PM1x_STS.9

SLPBTN# Defg;gce > O Sta?(le_ fnz-(r:':ine
SLPBTN Event
SLPBTN_EN
PM1x_EN.9

Figure 4-9 Fixed Hardware Sleep Button Logic

UEFI Forum, Inc. January 2019 Page 86

ACPI Specification, Version 6.3 ACPI Hardware Specification

The fixed hardware sleep button has its event programming model in the PM1x_EVT_BLK. This logic
consists of a single enable bit and sticky status bit. When the user presses the sleep button, the sleep
button status bit (SLPBTN_STS) is unconditionally set. Additionally, if the sleep button enable bit
(SLPBTN_EN) is set, and the sleep button status bit is set (SLPBTN_STS, due to a button press) while the
system is in the GO state, then an SCl is generated. OSPM responds to the event by clearing the
SLPBTN_STS bit. The sleep button logic provides debounce logic that sets the SLPBTN_STS bit on the
button press “edge.”

While the system is sleeping (in either the SO, S1, S2, S3 or S4 states), any further sleep button press
(after the button press that caused the system transition into the sleeping state) sets the sleep button
status bit (SLPBTN_STS) and wakes the system if the SLP_EN bit is set. OSPM responds by clearing the
sleep button status bit and waking the system.

4.8.2.2.2.2 Control Method Sleep Button

The sleep button programming model can also use the generic hardware programming model. This
allows the sleep button to reside in any of the generic hardware address spaces (for example, the
embedded controller) instead of fixed space. If the sleep button is implemented via generic hardware,
then the OEM needs to define the sleep button as a device with an _HID object value of “PNPOCOE”,
which then identifies this device as the sleep button to OSPM. The AML event handler then generates a
Notify command to notify OSPM that a sleep button event was generated. While in the working state, a
sleep button press is a user request to transition the system into the sleeping (G1) state. In these cases
the sleep button event handler issues the Notify command with the device specific code of 0x80. This will
indicate to OSPM to pass control to the sleep button driver (PNPOCOE) with the knowledge that the user
is requesting a transition out of the GO state. Upon waking-up from a G1 sleeping state, the AML event
handler generates a Notify command with the code of 0x2 to indicate it was responsible for waking the
system.

The sleep button device needs to be declared as a device within the ACPI Namespace for the platform
and only requires an _HID. An example definition is shown below.

The AML code below does the following:

e Creates a device named “SLPB” and associates the Plug and Play identifier (through the _HID
object) of “PNPOCOE.”

e The Plug and Play identifier associates this device object with the sleep button driver.

e Creates an operational region for the control method sleep button’s programming model:
System |/O space at 0x201.

¢ Fields that are not accessed are written as “1s” (these status bits clear upon writing a “1” to
their bit position, hence preserved would fail in this case).

e Creates a field within the operational region for the sleep button status bit (called PBP). In this
case the sleep button status bit is a child of the general-purpose status bit 0. When this bit is
set it is the responsibility of the AML code to clear it (OSPM clears the general-purpose status
bits). The address of the status bit is 0x201.0 (bit O at address 0x201).

e Creates an additional status bit called PBW for the sleep button wake event. This is the next bit
and its physical address would be 0x201.1 (bit 1 at address 0x201).

e Generates an event handler for the sleep button that is connected to bit 0 of the general-
purpose status register 0. The event handler does the following:

e Clears the sleep button status bit in hardware (writes a “1” to it).

UEFI Forum, Inc. January 2019 Page 87

ACPI Specification, Version 6.3 ACPI Hardware Specification

¢ Notifies OSPM of the event by calling the Notify command passing the sleep button object and
the device specific event indicator 0x80.

// Define a control method sleep button
Device(_SB.SLPB){
Name(_HID, EISAID(“PNPOCOE™))
Name(_PRW, Package(){0x01, 0x04})
OperationRegion(\Boo, SystemlO, 0x201, 0x1)
Field(\Boo, ByteAcc, NoLock, WriteAsZeros){

SBP, 1, // sleep request
SBW, 1 // wakeup request
} // end of field definition
}
Scope(_GPE){ // Root level event handlers
Method(_LO1){ // uses bit 1 of GPO_STS register
ITQ\SBP){
Store(One, \SBP) // clear sleep button status
Notify(_SB.SLPB, 0x80) // Notify 0S of event
}
ITQ\SBW){

Store(One, \SBW)
Notify(_SB.SLPB, 0x2)

}
} /7 end of _L01 handler
} 7/ end of _GPE scope

4.8.2.3 Sleeping/Wake Control

The sleeping/wake logic consists of logic that will sequence the system into the defined low-power
hardware sleeping state (S1-S4) or soft-off state (S5) and will wake the system back to the working state
upon a wake event. Notice that the S4BIOS state is entered in a different manner (for more information,
see Section 16.1.4.2, “The S4BIOS Transition”).

SLP_EN SLP_TYP:3
PM1x CNT S4.13 PM1x_CNT.S4.[10-12]
X
Lo ® WAK_STS

PM1x_STS.80.15

Sleeping D—g

"OR" or all
Wake >_j — Wakeup/
Events
Sleep
Logic
PWRBTN_OR >

Figure 4-10 Sleeping/Wake Logic

The logic is controlled via two bit fields: Sleep Enable (SLP_EN) and Sleep Type (SLP_TYPx). The type of
sleep or soft-off state desired is programmed into the SLP_TYPx field and upon assertion of the SLP_EN
the hardware will sequence the system into the defined sleeping state. OSPM gets values for the
SLP_TYPx field from the _Sx objects defined in the static definition block. If the object is missing OSPM

UEFI Forum, Inc. January 2019 Page 88

ACPI Specification, Version 6.3 ACPI Hardware Specification

assumes the hardware does not support that sleeping state. Prior to entering the desired sleeping state,
OSPM will read the designated _Sx object and place this value in the SLP_TYP field.

Additionally ACPI defines a fail-safe Off protocol called the “power button override,” which allows the
user to initiate an Off sequence in the case where the system software is no longer able to recover the
system (the system has hung). ACPI defines that this sequence be initiated by the user pressing the
power button for over 4 seconds, at which point the hardware unconditionally sequences the system to
the Off state. This logic is represented by the PWRBTN_OR signal coming into the sleep logic.

While in any of the sleeping states (G1), an enabled “Wake” event will cause the hardware to sequence
the system back to the working state (G0). The “Wake Status” bit (WAK_STS) is provided for OSPM to
“spin-on” after setting the SLP_EN/SLP_TYP bit fields. When waking from the S1 sleeping state, execution
control is passed backed to OSPM immediately, whereas when waking from the S2-54 states execution
control is passed to the platform boot firmware (execution begins at the CPU’s reset vector). The
WAK_STS bit provides a mechanism to separate OSPM’s sleeping and waking code during an S1
sequence. When the hardware has sequenced the system into the sleeping state (defined here as the
processor is no longer able to execute instructions), any enabled wake event is allowed to set the
WAK_STS bit and sequence the system back on (to the GO state). If the system does not support the S1
sleeping state, the WAK_STS bit can always return zero.

-If more than a single sleeping state is supported, then the sleeping/wake logic is required to be able to
dynamically sequence between the different sleeping states. This is accomplished by waking the system;
OSPM programs the new sleep state into the SLP_TYP field, and then sets the SLP_EN bit—placing the
system again in the sleeping state.

4.8.2.4 Real Time Clock Alarm

If implemented, the Real Time Clock (RTC) alarm must generate a hardware wake event when in the
sleeping state. The RTC can be programmed to generate an alarm. An enabled RTC alarm can be used to
generate a wake event when the system is in a sleeping state. ACPI provides for additional hardware to
support OSPM in determining that the RTC was the source of the wake event: the RTC_STS and RTC_EN
bits. Although these bits are optional, if supported they must be implemented as described here.

If the RTC_STS and RTC_EN bits are not supported, OSPM will attempt to identify the RTC as a possible
wake source; however, it might miss certain wake events. If implemented, the RTC wake feature is
required to work in the following sleeping states: S1-S3. S4 wake is optional and supported through the

RTC_S4 flag within the FADT (if set, then the platform supports RTC wake in the S4 state)!.
When the RTC generates a wake event the RTC_STS bit will be set. If the RTC_EN bit is set, an RTC

hardware power management event will be generated (which will wake the system from a sleeping state,
provided the battery low signal is not asserted).

1. Notice that the G2/S5 “soft off” and the G3 “mechanical off” states are not sleeping states. The OS will dis-
able the RTC_EN bit prior to entering the G2/S5 or G3 states regardless.

UEFI Forum, Inc. January 2019 Page 89

ACPI Specification, Version 6.3 ACPI Hardware Specification

RTC_STS
PM1x_STS.10

Real Time Clock
(RTC) X RTC Wake-up
Event
RTC_EN
PM1x_EN.10

Figure 4-11 RTC Alarm

The RTC wake event status and enable bits are an optional fixed hardware feature and a flag within the
FADT (FIX_RTC) indicates if the register bits are to be used by OSPM. If the RTC wake event status and
enable bits are implemented in fixed hardware, OSPM can determine if the RTC was the source of the
wake event without loading the entire OS. This also gives the platform the capability of indicating an RTC
wake source without consuming a GPE bit, as would be required if RTC wake was not implemented using
the fixed hardware RTC feature. If the fixed hardware feature event bits are not supported, then OSPM
will attempt to determine this by reading the RTC’s status field. If the platform implements the RTC fixed
hardware feature, and this hardware consumes resources, the _FIX method can be used to correlate
these resources with the fixed hardware. See Section 6.2.5, “_FIX (Fixed Register Resource Provide”, for
details.

OSPM supports enhancements over the existing RTC device (which only supports a 99 year date and 24-
hour alarm). Optional extensions are provided for the following features:

Day Alarm.

The DAY_ALRM field points to an optional CMOS RAM location that selects the day within the
month to generate an RTC alarm.

Month Alarm.

The MON_ALRM field points to an optional CMOS RAM location that selects the month within
the year to generate an RTC alarm.

Centenary Value.

The CENT field points to an optional CMOS RAM location that represents the centenary value of
the date (thousands and hundreds of years).

The RTC_STS bit may be set through the RTC interrupt (IRQ8 in IA-PC architecture systems). OSPM will
insure that the periodic and update interrupt sources are disabled prior to sleeping. This allows the RTC’s
interrupt pin to serve as the source for the RTC_STS bit generation. Note however that if the RTC
interrupt pin is used for RTC_STS generation, the RTC_STS bit value may not be accurate when waking
from S4. If this value is accurate when waking from S4, the platform should set the S4_RTC_STS_VALID
flag, so that OSPM can utilize the RTC_STS information.

UEFI Forum, Inc. January 2019 Page 90

ACPI Specification, Version 6.3

ACPI Hardware Specification

Table 4-14 Alarm Field Decodings within the FADT
Field Value Address (Location) in RTC CMOS RAM
(Must be Bank 0)

DAY_ALRM Eight bit value that can represent 0x01-0x31 | The DAY_ALRM field in the FADT will
days in BCD or 0x01-0x1F days in binary. Bits 6 | contain a non-zero value that represents
and 7 of this field are treated as Ignored by an offset into the RTC’s CMOS RAM area
software. The RTC is initialized such that this | that contains the day alarm value. A value
field contains a “don’t care” value when the | of zero in the DAY_ALRM field indicates
platform firmware switches from legacy to that the day alarm feature is not
ACPI mode. A don’t care value can be any supported.
unused value (not 0x1-0x31 BCD or Ox01-0x1F
hex) that the RTC reverts back to a 24 hour
alarm.

MON_ALRM Eight bit value that can represent 01-12 The MON_ALRM field in the FADT will
months in BCD or 0x01-0xC months in binary. | contain a non-zero value that represents
The RTC is initialized such that this field an offset into the RTC's CMOS RAM area
contains a don’t care value when the platform | that contains the month alarm value. A
firmware switches from legacy to ACPI mode. | value of zero in the MON_ALRM field
A “don’t care” value can be any unused value | indicates that the month alarm feature is
(not 1-12 BCD or x01-xC hex) that the RTC not supported. If the month alarm is
reverts back to a 24 hour alarm and/or 31 day | supported, the day alarm function must
alarm). also be supported.

CENTURY 8-bit BCD or binary value. This value indicates | The CENTURY field in the FADT will
the thousand year and hundred year contain a non-zero value that represents
(Centenary) variables of the date in BCD (19 | an offset into the RTC’s CMOS RAM area
for this century, 20 for the next) or binary that contains the Centenary value for the
(x13 for this century, x14 for the next). date. A value of zero in the CENTURY field

indicates that the Centenary value is not
supported by this RTC.

4.8.2.5 Legacy/ACPI Select and the SCI Interrupt

As mentioned previously, power management events are generated to initiate an interrupt or hardware
sequence. ACPI operating systems use the SCl interrupt handler to respond to events, while legacy
systems use some type of transparent interrupt handler to respond to these events (that is, an SMI
interrupt handler). ACPI-compatible hardware can choose to support both legacy and ACPI modes or just
an ACPI mode. Legacy hardware is needed to support these features for non-ACPI-compatible operating
systems. When the ACPI OS loads, it scans the platform firmware tables to determine that the hardware
supports ACPI, and then if the it finds the SCI_EN bit reset (indicating that ACPI is not enabled), issues an
ACPI activate command to the SMI handler through the SMI command port. The platform firmware
acknowledges the switching to the ACPlI model of power management by setting the SCI_EN bit (this bit
can also be used to switch over the event mechanism as illustrated below):

UEFI Forum, Inc. January 2019 Page 91

ACPI Specification, Version 6.3 ACPI Hardware Specification

SCI_EN
PM1x_CNT.0
Power o——— 3 SMI_EVNT
Management —————— Dec
Event Logic I SCI_EWNT
Shareable
Interrupt

Figure 4-12 Power Management Events to SMI/SCI Control Logic

The interrupt events (those that generate SMils in legacy mode and SCls in ACPI mode) are sent through a
decoder controlled by the SCI_EN bit. For legacy mode this bit is reset, which routes the interrupt events
to the SM interrupt logic. For ACPI mode this bit is set, which routes interrupt events to the SCl interrupt
logic. This bit always returns set for ACPl-compatible hardware that does not support a legacy power
management mode (in other words, the bit is wired to read as “1” and ignore writes).

The SCl interrupt is defined to be a shareable interrupt and is connected to an OS visible interrupt that
uses a shareable protocol. The FADT has an entry that indicates what interrupt the SCl interrupt is
mapped to (see Section 5.2.6, “System Description Table Header”).

If the ACPI platform supports both legacy and ACPI modes, it has a register that generates a hardware
event (for example, SMI for IA-PC processors). OSPM uses this register to make the hardware switch in
and out of ACPI mode. Within the FADT are three values that signify the address (SMI_CMD) of this port
and the data value written to enable the ACPI state (ACPI_ENABLE), and to disable the ACPI state
(ACPI_DISABLE).

To transition an ACPI/Legacy platform from the Legacy mode to the ACPI mode the following would
occur:

e ACPI driver checks that the SCI_EN bit is zero, and that it is in the Legacy mode.
e OSPM does an OUT to the SMI_CMD port with the data in the ACPl_ENABLE field of the FADT.
e OSPM polls the SCI_EN bit until it is sampled as SET.

To transition an ACPI/Legacy platform from the ACPI mode to the Legacy mode the following would
occur:

e ACPI driver checks that the SCI_EN bit is one, and that it is in the ACPI mode.
e OSPM does an OUT to the SMI_CMD port with the data in the ACPI_DISABLE field of the FADT.
e OSPM polls the SCI_EN bit until it is sampled as RESET.

Platforms that only support ACPI always return a 1 for the SCI_EN bit. In this case OSPM skips the Legacy
to ACPI transition stated above.

4.8.2.6 Processor Control

The ACPI specification defines several processor controls including power state control, throttling
control, and performance state control. See Section 8, “Processor Configuration and Control,” for a
complete description of the processor controls.

UEFI Forum, Inc. January 2019 Page 92

ACPI Specification, Version 6.3 ACPI Hardware Specification

4.8.3 Fixed Hardware Registers

The fixed hardware registers are manipulated directly by OSPM. The following sections describe fixed
hardware features under the programming model. OSPM owns all the fixed hardware resource registers;
these registers cannot be manipulated by AML code. Registers are accessed with any width up to its
register width (byte granular).

4.8.3.1 PM1 Event Grouping

The PM1 Event Grouping has a set of bits that can be distributed between two different register blocks.
This allows these registers to be partitioned between two chips, or all placed in a single chip. Although
the bits can be split between the two register blocks (each register block has a unique pointer within the
FADT), the bit positions are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) always returns zeros, and writes have no side effects.

4.8.3.1.1 PM1 Status Registers

Register Location: <PMla EVT BLK / PM1b_EVT BLK> System 1/0 or Memory Space
Default Value: 00h

Attribute: Read/Write

Size: PM1_EVT_LEN / 2

The PM1 status registers contain the fixed hardware feature status bits. The bits can be split between
two registers: PM1a_STS or PM1b_STS. Each register grouping can be at a different 32-bit aligned
address and is pointed to by the PM1a_EVT BLK or PM1b_EVT_BLK. The values for these pointers to the
register space are found in the FADT. Accesses to the PM1 status registers are done through byte or word
accesses.

For ACPI/legacy systems, when transitioning from the legacy to the GO working state this register is
cleared by platform firmware prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI
only platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or
soft-off state to the GO working state this register is cleared prior to entering the GO working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-15 PM1 Status Registers Fixed Hardware Feature Status Bits

Bit Name Description

0 TMR_STS This is the timer carry status bit. This bit gets set any time the most significant bit
of a 24/32-bit counter changes from clear to set or set to clear. While TMR_EN and
TMR_STS are set, an interrupt event is raised.

1-3 Reserved Reserved

4 BM_STS This is the bus master status bit. This bit is set any time a system bus master
requests the system bus, and can only be cleared by writing a “1” to this bit
position. Notice that this bit reflects bus master activity, not CPU activity (this bit
monitors any bus master that can cause an incoherent cache for a processor in the
C3 state when the bus master performs a memory transaction).

UEFI Forum, Inc. January 2019 Page 93

ACPI Specification, Version 6.3 ACPI Hardware Specification

Bit

Name

Description

GBL_STS

This bit is set when an SCl is generated due to the platform runtime firmware
wanting the attention of the SCI handler. Platform runtime firmware will have a
control bit (somewhere within its address space) that will raise an SCI and set this
bit. This bit is set in response to the platform runtime firmware releasing control of
the Global Lock and having seen the pending bit set.

Reserved

Reserved. These bits always return a value of zero.

PWRBTN_STS

This optional bit is set when the Power Button is pressed. In the system working
state, while PWRBTN_EN and PWRBTN_STS are both set, an interrupt event is
raised. In the sleep or soft-off state, a wake event is generated when the power
button is pressed (regardless of the PWRBTN_EN bit setting). This bit is only set by
hardware and can only be reset by software writing a “1” to this bit position.

ACPI defines an optional mechanism for unconditional transitioning a system that
has stopped working from the GO working state into the G2 soft-off state called
the power button override. If the Power Button is held active for more than four
seconds, this bit is cleared by hardware and the system transitions into the G2/S5
Soft Off state (unconditionally).

Support for the power button is indicated by the PWR_BUTTON flag in the FADT
being reset (zero). If the PWR_BUTTON flag is set or a power button device object
is present in the ACPl Namespace, then this bit field is ignored by OSPM.

If the power button was the cause of the wake (from an S1-54 state), then this bit
is set prior to returning control to OSPM.

SLPBTN_STS

This optional bit is set when the sleep button is pressed. In the system working
state, while SLPBTN_EN and SLPBTN_STS are both set, an interrupt event is raised.
In the sleep or soft-off states a wake event is generated when the sleeping button
is pressed and the SLPBTN_EN bit is set. This bit is only set by hardware and can
only be reset by software writing a “1” to this bit position.

Support for the sleep button is indicated by the SLP_BUTTON flag in the FADT
being reset (zero). If the SLP_BUTTON flag is set or a sleep button device object is
present in the ACPI Namespace, then this bit field is ignored by OSPM.

If the sleep button was the cause of the wake (from an S1-54 state), then this bit is
set prior to returning control to OSPM.

10

RTC_STS

This optional bit is set when the RTC generates an alarm (asserts the RTC IRQ
signal). Additionally, if the RTC_EN bit is set then the setting of the RTC_STS bit will
generate a power management event (an SCI, SMI, or resume event). This bit is
only set by hardware and can only be reset by software writing a “1” to this bit
position.

If the RTC was the cause of the wake (from an S1-S3 state), then this bit is set prior
to returning control to OSPM. If the RTC_S4 flag within the FADT is set, and the
RTC was the cause of the wake from the S4 state), then this bit is set prior to
returning control to OSPM.

11

Ignore

This bit field is ignored by software.

12-13

Reserved

Reserved. These bits always return a value of zero.

UEFI Forum, Inc.

January 2019 Page 94

ACPI Specification, Version 6.3 ACPI Hardware Specification

Bit Name Description

14 PCIEXP_WAKE_STS | This bit is optional for chipsets that implement PCI Express.

This bit is set by hardware to indicate that the system woke due to a PCl Express
wakeup event. A PCl Express wakeup event is defined as the PCI Express WAKE#
pin being active , one or more of the PClI Express ports being in the beacon state,
or receipt of a PCI Express PME message at a root port. This bit should only be set
when one of these events causes the system to transition from a non-S0 system
power state to the SO system power state. This bit is set independent of the state
of the PCIEXP_WAKE_DIS bit.

Software writes a 1 to clear this bit. If the WAKE# pin is still active during the write,
one or more PCl Express ports is in the beacon state or the PME message received
indication has not been cleared in the root port, then the bit will remain active (i.e.
all inputs to this bit are level-sensitive).

Note: This bit does not itself cause a wake event or prevent entry to a sleeping
state. Thus if the bit is 1 and the system is put into a sleeping state, the system will
not automatically wake.

15 WAK_STS This bit is set when the system is in the sleeping state and an enabled wake event
occurs. Upon setting this bit system will transition to the working state. This bit is
set by hardware and can only be cleared by software writing a “1” to this bit
position.

4.8.3.1.2 PM1Enable Registers

Register Location: <PMla EVT BLK / PM1b_EVT BLK> + PM1_EVT_LEN / 2 System 1/0 or
Memory Space

Default Value: 00h
Attribute: Read/Write
Size: PM1_EVT LEN / 2

The PM1 enable registers contain the fixed hardware feature enable bits. The bits can be split between
two registers: PM1a_EN or PM1b_EN. Each register grouping can be at a different 32-bit aligned address
and is pointed to by the PM1a_EVT_BLK or PM1b_EVT BLK. The values for these pointers to the register
space are found in the FADT. Accesses to the PM1 Enable registers are done through byte or word
accesses.

For ACPI/legacy systems, when transitioning from the legacy to the GO working state the enables are
cleared by platform firmware prior to setting the SCI_EN bit (and thus passing control to OSPM). For
ACPIl-only platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3)
or soft-off state to the GO working state this register is cleared prior to entering the GO working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats the enable bits as write as
zero.

UEFI Forum, Inc. January 2019 Page 95

ACPI Specification, Version 6.3 ACPI Hardware Specification

Table 4-16 PM1 Enable Registers Fixed Hardware Feature Enable Bits

Bit Name Description

0 TMR_EN This is the timer carry interrupt enable bit. When this bit is set then an SCI
event is generated anytime the TMR_STS bit is set. When this bit is reset
then no interrupt is generated when the TMR_STS bit is set.

4:1 Reserved Reserved. These bits always return a value of zero.

5 GBL_EN The global enable bit. When both the GBL_EN bit and the GBL_STS bit are
set, an SCl is raised.

7:6 Reserved Reserved

8 PWRBTN_EN This optional bit is used to enable the setting of the PWRBTN_STS bit to

generate a power management event (SCl or wake). The PWRBTN_STS bit is
set anytime the power button is asserted. The enable bit does not have to
be set to enable the setting of the PWRBTN_STS bit by the assertion of the
power button (see description of the power button hardware).

Support for the power button is indicated by the PWR_BUTTON flag in the
FADT being reset (zero). If the PWR_BUTTON flag is set or a power button
device object is present in the ACPI Namespace, then this bit field is ignored
by OSPM.

9 SLPBTN_EN This optional bit is used to enable the setting of the SLPBTN_STS bit to
generate a power management event (SCl or wake). The SLPBTN_STS bit is
set anytime the sleep button is asserted. The enable bit does not have to be
set to enable the setting of the SLPBTN_STS bit by the active assertion of the
sleep button (see description of the sleep button hardware).

Support for the sleep button is indicated by the SLP_BUTTON flag in the
FADT being reset (zero). If the SLP_BUTTON flag is set or a sleep button
device object is present in the ACPI Namespace, then this bit field is ignored

by OSPM.
10 RTC_EN This optional bit is used to enable the setting of the RTC_STS bit to generate
a wake event. The RTC_STS bit is set any time the RTC generates an alarm.
13:11 Reserved Reserved. These bits always return a value of zero.
14 PCIEXP_WAKE_DIS This bit is optional for chipsets that implement PCI Express.

This bit disables the inputs to the PCIEXP_WAKE_STS bit in the PM1 Status
register from waking the system. Modification of this bit has no impact on
the value of the PCIEXP_WAKE_STS bit. PCIEXP_WAKE_DIS bit. Software
writes a 1 to clear this bit. If the WAKE# pin is still active during the write,
one or more PCl Express ports is in the beacon state or the PME message
received indication has not been cleared in the root port, then the bit will
remain active (i.e. all inputs to this bit are level-sensitive). Note: This bit
does not itself cause a wake event or prevent entry to a sleeping state. Thus
if the bit is 1 and the system is put into a sleeping state, the system will not
automatically wake.

15 Reserved Reserved. These bits always return a value of zero.

UEFI Forum, Inc. January 2019 Page 96

ACPI Specification, Version 6.3 ACPI Hardware Specification

4.8.3.2 PM1 Control Grouping

The PM1 Control Grouping has a set of bits that can be distributed between two different registers. This
allows these registers to be partitioned between two chips, or all placed in a single chip. Although the bits
can be split between the two register blocks (each register block has a unique pointer within the FADT),

the bit positions specified here are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) returns zeros, and writes have no side effects.

4.8.3.2.1 PM1 Control Registers

Register Location: <PMla CNT_BLK / PM1b_CNT BLK> System 1/0 or Memory Space
Default Value: 00h

Attribute: Read/Write

Size: PM1_CNT_LEN

The PM1 control registers contain the fixed hardware feature control bits. These bits can be split
between two registers: PM1a_CNT or PM1b_CNT. Each register grouping can be at a different 32-bit
aligned address and is pointed to by the PM1a_CNT_BLK or PM1b_CNT_BLK. The values for these
pointers to the register space are found in the FADT. Accesses to PM1 control registers are accessed
through byte and word accesses.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-17 PM1 Control Registers Fixed Hardware Feature Control Bits

Bit Name Description

0 SCI_EN Selects the power management event to be either an SCl or SMl interrupt for the
following events. When this bit is set, then power management events will
generate an SCl interrupt. When this bit is reset power management events will
generate an SMl interrupt. It is the responsibility of the hardware to set or reset
this bit. OSPM always preserves this bit position.

1 BM_RLD When set, this bit allows the generation of a bus master request to cause any
processor in the C3 state to transition to the CO state. When this bit is reset, the
generation of a bus master request does not affect any processor in the C3 state.

2 GBL_RLS This write-only bit is used by the ACPI software to raise an event to the platform
runtime firmware, that is, generates an SMI to pass execution control to the
platform runtime firmware for IA-PC platforms. Platform runtime firmware
software has a corresponding enable and status bit to control its ability to
receive ACPI events (for example, BIOS_EN and BIOS_STS). The GBL_RLS bit is set
by OSPM to indicate a release of the Global Lock and the setting of the pending
bit in the FACS memory structure.

8:3 Reserved Reserved. These bits are reserved by OSPM.

9 Ignore Software ignores this bit field.

UEFI Forum, Inc. January 2019 Page 97

ACPI Specification, Version 6.3 ACPI Hardware Specification

Bit Name Description

12:10 | SLP_TYPx Defines the type of sleeping or soft-off state the system enters when the SLP_EN
bit is set to one. This 3-bit field defines the type of hardware sleep state the
system enters when the SLP_EN bit is set. The _Sx object contains 3-bit binary
values associated with the respective sleeping state (as described by the object).
OSPM takes the two values from the _Sx object and programs each value into
the respective SLP_TYPx field.

13 SLP_EN This is a write-only bit and reads to it always return a zero. Setting this bit causes
the system to sequence into the sleeping state associated with the SLP_TYPx
fields programmed with the values from the _Sx object.

15:14 | Reserved Reserved. This field always returns zero.

4.8.3.3 Power Management Timer (PM_TMR)
Register Location: <PM_TMR_BLK> System 1/0 or Memory Space

Default Value: 00h
Attribute: Read-Only
Size: 32 bits

This optional read-only register returns the current value of the power management timer (PM timer) if it
is implemented on the platform. The FADT has a flag called TMR_VAL_EXT that an OEM sets to indicate a
32-bit PM timer or reset to indicate a 24-bit PM timer. When the last bit of the timer toggles the
TMR_STS bit is set. This register is accessed as 32 bits.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-18 PM Timer Bits

Bit Name Description

23:0 TMR_VAL This read-only field returns the running count of the power management timer.
This is a 24-bit counter that runs off a 3.579545-MHz clock and counts while in
the SO working system state. The starting value of the timer is undefined, thus
allowing the timer to be reset (or not) by any transition to the SO state from any
other state. The timer is reset (to any initial value), and then continues counting
until the system’s 14.31818 MHz clock is stopped upon entering its Sx state. If
the clock is restarted without a reset, then the counter will continue counting
from where it stopped.

31:24 | E_TMR_VAL This read-only field returns the upper eight bits of a 32-bit power management
timer. If the hardware supports a 32-bit timer, then this field will return the
upper eight bits; if the hardware supports a 24-bit timer then this field returns
all zeros.

4.8.3.4 PM2 Control (PM2_CNT)

Register Location: <PM2_CNT_BLK> System 1/0, System Memory, or Functional
Fixed Hardware Space

Default Value: 00h
Attribute: Read/Write
Size: PM2_CNT_LEN

UEFI Forum, Inc. January 2019 Page 98

ACPI Specification, Version 6.3 ACPI Hardware Specification

This register block is naturally aligned and accessed based on its length. For ACPI 1.0 this register is byte
aligned and accessed as a byte.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-19 PM2 Control Register Bits

Bit Name Description

0 ARB_DIS This bit is used to enable and disable the system arbiter. When this bit is CLEAR
the system arbiter is enabled and the arbiter can grant the bus to other bus
masters. When this bit is SET the system arbiter is disabled and the default CPU
has ownership of the system.

OSPM clears this bit when using the C0O, C1 and C2 power states.

>0 Reserved Reserved

4.8.3.5 Processor Register Block (P_BLK)

This optional register block is used to control each processor in the system. There is one unique processor
register block per processor in the system. For more information about controlling processors and
control methods that can be used to control processors, see Section 8, “Processor Configuration and
Control.” This register block is DWORD aligned and the context of this register block is not maintained
across S3 or S4 sleeping states, or the S5 soft-off state.

4.8.3.5.1 Processor Control (P_CNT): 32

Register Location: Either <P_BLK>: System 1/0 Space
or specified by PTC Object: System 1/0, System Memory, or
Functional Fixed Hardware Space

Default Value: 00h
Attribute: Read/Write
Size: 32 bits

This register is accessed as a DWORD. The CLK_VAL field is where the duty setting of the throttling
hardware is programmed as described by the DUTY_WIDTH and DUTY_OFFSET values in the FADT.
Software treats all other CLK_VAL bits as ignored (those not used by the duty setting value).

Table 4-20 Processor Control Register Bits

Bit Name Description
3:0 CLK_VAL Possible locations for the clock throttling value.
4 THT_EN This bit enables clock throttling of the clock as set in the CLK_VAL field. THT_EN bit

must be reset LOW when changing the CLK_VAL field (changing the duty setting).

31:5 CLK_VAL Possible locations for the clock throttling value.

4.8.3.5.2 Processor LVL2 Register (P_LVL2): 8

Register Location: Either <P_BLK> + 4: System 1/0 Space
or specified by CST Object: System 1/0, System Memory, or

UEFI Forum, Inc. January 2019 Page 99

ACPI Specification, Version 6.3 ACPI Hardware Specification

Functional Fixed Hardware Space

Default Value: 00h
Attribute: Read-Only
Size: 8 bits

This register is accessed as a byte.

Table 4-21 Processor LVL2 Register Bits

Bit Name Description

7:0 P_LVL2 Reads to this register return all zeros; writes to this register have no effect. Reads
to this register also generate an “enter a C2 power state” to the clock control logic.

4.8.3.5.3 Processor LVL3 Register (P_LVL3): 8

Register Location: Either <P_BLK> + 5: System 1/0 Space
or specified by CST Object: System 1/0, System Memory, or
Functional Fixed Hardware Space

Default Value: 00h
Attribute: Read-Only
Size: 8 bits

This register is accessed as a byte.

Table 4-22 Processor LVL3 Register Bits

Bit Name Description

7:0 P_LVL3 Reads to this register return all zeros; writes to this register have no effect. Reads
to this register also generate an “enter a C3 power state” to the clock control logic.

4.8.3.6 Reset Register

The optional ACPI reset mechanism specifies a standard mechanism that provides a complete system
reset. When implemented, this mechanism must reset the entire system. This includes processors, core
logic, all buses, and all peripherals. From an OSPM perspective, asserting the reset mechanism is the
logical equivalent to power cycling the system. Upon gaining control after a reset, OSPM will perform
actions in like manner to a cold boot.

The reset mechanism is implemented via an 8-bit register described by RESET_REG in the FADT (always

accessed via the natural alignment and size described in RESET_REG). To reset the system, software will
write a value (indicated in RESET_VALUE in FADT) to the reset register. The RESET_REG field in the FADT
indicates the location of the reset register.

The reset register may exist only in /0 space, Memory space, or in PCl Configuration space on a function
in bus 0. Therefore, the Address_Space_ID value in RESET_REG must be set to System |/O space, System
Memory space, or PCI Configuration space (with a bus number of 0). As the register is only 8 bits,
Register_Bit_Width must be 8 and Register_Bit_Offset must be 0.

The system must reset immediately following the write to this register. OSPM assumes that the processor
will not execute beyond the write instruction. OSPM should execute spin loops on the CPUs in the system
following a write to this register.

UEFI Forum, Inc. January 2019 Page 100

ACPI Specification, Version 6.3 ACPI Hardware Specification

4.8.3.7 Sleep Control and Status Registers

The optional ACPI sleep registers (SLEEP_CONTROL_REG and SLEEP_STATUS_REG) specify a standard
mechanism for system sleep state entry on HW-Reduced ACPI systems. When implemented, the Sleep
registers are a replacement for the SLP_TYP, SLP_EN and WAK_STS registers in the PM1_BLK. Use of
these registers is at the discretion of OSPM. OSPM can decide whether to enter sleep states on the
platform based on the LOW_POWER_SO_IDLE_CAPABLE flag. Even when implemented, OSPM may use
other provided options for hibernate and shutdown (e.g. UEFI ResetSystem()).

The HW-reduced Sleep mechanism is implemented via two 8-bit registers described by
SLEEP_CONTROL_REG and SLEEP_STATUS_REG in the FADT (always accessed via the natural alignment
and size described in SLEEP_* REG). To put the system into a sleep state, software will write the HW-
reduced Sleep Type value (obtained from the _Sx object in the DSDT) and the SLP_EN bit to the sleep
control register. The OSPM then polls the WAK_STS bit of the SLEEP_STATUS_REG waiting for it to be one
(1), indicating that the system has been transitioned back to the Working state.

The Sleep registers may exist only in 1/O space, Memory space, or in PCl Configuration space on a
function in bus 0. Therefore, the Address_Space_ID value must be set to System 1/O space,
SystemMemory space, or PCI Configuration space (with a bus number of 0). As the registers are only 8
bits, Register_Bit_Width must be 8 and Register_Bit_Offset must be 0.

Table 4-23 Sleep Control Register

Field Name f:ngth g:’tfset Description

Reserved 1 0 Reserved. This bit is reserved by OSPM.

Ignore 1 1 Software ignores this bit field.

SLP_TYPx 3 2 Defines the type of sleeping state the system enters when the

SLP_EN bit is set to one. This 3-bit field defines the type of
hardware sleep state the system enters when the SLP_EN bit is set.
The _Sx object contains 3-bit binary values associated with the
respective sleeping state (as described by the object). OSPM takes
the HW-reduced Sleep Type value from the _SX object and
programs it into the SLP_TYPx field.

SLP_EN 1 5 This is a write-only bit and reads to it always return a zero. Setting
this bit causes the system to sequence into the sleeping state
associated with the SLP_TYPx fields programmed with the values
from the _Sx object.

Reserved 2 6 Reserved. This field always returns zero.

Table 4-24 Sleep Status Register

Bit Bit

Field Name Length | Offset Description

Ignore 4 0 Software ignores this bit field.

Reserved 2 4 Reserved. These bits always return a value of zero.
Ignore 1 6 Software ignores this bit field.

UEFI Forum, Inc. January 2019 Page 101

ACPI Specification, Version 6.3 ACPI Hardware Specification

WAK_STS 1 7 This bit is set when the system is in the sleeping state and an
enabled wake event occurs. Upon setting this bit system will
transition to the working state. This bit is set by hardware and can
only be cleared by software writing a “1” to this bit position.

4.8.4 Generic Hardware Registers

ACPI provides a mechanism that allows a unique piece of “value added” hardware to be described to
OSPM in the ACPI Namespace. There are a number of rules to be followed when designing ACPI-
compatible hardware.

Programming bits can reside in any of the defined generic hardware address spaces (system 1/0O, system
memory, PCl configuration, embedded controller, or SMBus), but the top-level event bits are contained
in the general-purpose event registers. The general-purpose event registers are pointed to by the
GPEO_BLK and GPE1_BLK register blocks, and the generic hardware registers can be in any of the defined
ACPI address spaces. A device’s generic hardware programming model is described through an
associated object in the ACPI Namespace, which specifies the bit’s function, location, address space, and
address location.

The programming model for devices is normally broken into status and control functions. Status bits are
used to generate an event that allows OSPM to call a control method associated with the pending status
bit. The called control method can then control the hardware by manipulating the hardware control bits
or by investigating child status bits and calling their respective control methods. ACPI requires that the
top level “parent” event status and enable bits reside in either the GPEO_STS or GPE1_STS registers, and
“child” event status bits can reside in generic address space.

The example below illustrates some of these concepts. The top diagram shows how the logic is
partitioned into two chips: a chipset and an embedded controller.

e The chipset contains the interrupt logic, performs the power button (which is part of the fixed
register space, and is not discussed here), the lid switch (used in portables to indicate when the
clam shell lid is open or closed), and the RI# function (which can be used to wake a sleeping
system).

¢ The embedded controller chip is used to perform the AC power detect and dock/undock event
logic. Additionally, the embedded controller supports some system management functions
using an OS-transparent interrupt in the embedded controller (represented by the EXTSMI#
signal).

UEFI Forum, Inc. January 2019 Page 102

ACPI Specification, Version 6.3 ACPI Hardware Specification

Momentary o la 8 _
g >
Power E EC_CSt# . ACH
Button PWRBTN# % ”| Embedded |<+—
O & EXTSMI#
s Controller
ACPI-Compatif 5 < EXTPME#
Chip Set = pock# | Docking
3 Chip
Momentary 2
1S
-
LID L
Switch N Lib# R
EXTSMI# SMi-only
GPx_REG E\wn?snl EXTSMI# | {ExTsmiz sources
o AC_STS
Block ao

EC_STS 32] 4 ACH

GP_STS.0 EXTPMES DOCK_STS
1 -
_< EXTPME# | EXTPME P0.40.1

35 DOCK# DOCK#

sci EC_EN

Shareable GP_EN.0
Interrupt RI_STS
GP_STS.1

RI#

RI_EN
GP_EN.1

LID_STS
GP_STS.2
Debounce

LID_POL
ELDEN ® s3s2
GP_EN.2

Other SCI
sources

Figure 4-13 Example of General-Purpose vs. Generic Hardware Events

At the top level, the generic events in the GPEx_STS register are the:

e Embedded controller interrupt, which contains two query events: one for AC detection and
one for docking (the docking query event has a child interrupt status bit in the docking chip).

¢ Ring indicate status (used for waking the system).

e Lid status.

The embedded controller event status bit (EC_STS) is used to indicate that one of two query events is
active.

e Aqueryeventis generated when the AC# signal is asserted. The embedded controller returns a
query value of 34 (any byte number can be used) upon a query command in response to this
event; OSPM will then schedule for execution the control method associated with query value
34.

Another query event is for the docking chip that generates a docking event. In this case, the embedded
controller will return a query value of 35 upon a query command from system software responding to an
SCI from the embedded controller. OSPM will then schedule the control method associated with the
query value of 35 to be executed, which services the docking event.

UEFI Forum, Inc. January 2019 Page 103

ACPI Specification, Version 6.3 ACPI Hardware Specification

For each of the status bits in the GPEx_STS register, there is a corresponding enable bit in the GPEx_EN
register. Notice that the child status bits do not necessarily need enable bits (see the DOCK_STS bit).

The lid logic contains a control bit to determine if its status bit is set when the LID is open (LID_POL is set
and LID is set) or closed (LID_POL is clear and LID is clear). This control bit resides in generic I/O space (in
this case, bit 2 of system 1/O space 33h) and would be manipulated with a control method associated
with the lid object.

As with fixed hardware events, OSPM will clear the status bits in the GPEx register blocks. However, AML
code clears all sibling status bits in the generic hardware.

Generic hardware features are controlled by OEM supplied control methods, encoded in AML. ACPI
provides both an event and control model for development of these features. The ACPI specification also
provides specific control methods for notifying OSPM of certain power management and Plug and Play
events. Section 5, “ACPI Software Programming Model,” provides information on the types of hardware
functionality that support the different types of subsystems. The following is a list of features supported
by ACPI. The list is not intended to be complete or comprehensive.

¢ Device insertion/ejection (for example, docking, device bay, A/C adapter)

e Batteries?

e Platform thermal subsystem

e Turning on/off power resources
¢ Mobile lid Interface

e Embedded controller

e System indicators

e OEM-specific wake events

¢ Plug and Play configuration

4.8.4.1 General-Purpose Event Register Blocks

ACPI supports up to two general-purpose register blocks as described in the FADT (see Section 5, “ACPI
Software Programming Model”) and an arbitrary number of additional GPE blocks described as devices
within the ACPI namespace. Each register block contains two registers: an enable and a status register.
Each register block is 32-bit aligned. Each register in the block is accessed as a byte. It is up to the specific
design to determine if these bits retain their context across sleeping or soft-off states. If they lose their
context across a sleeping or soft-off state, then platform boot firmware resets the respective enable bit
prior to passing control to the OS upon waking.

4.8.4.1.1 General-Purpose Event 0 Register Block

This register block consists of two registers: The GPEO_STS and the GPEO_EN registers. Each register’s
length is defined to be half the length of the GPEQ register block, and is described in the ACPI FADT’s
GPEO_BLK and GPEO_BLK_LEN operators. OSPM owns the general-purpose event resources and these
bits are only manipulated by OSPM; AML code cannot access the general-purpose event registers.

It is envisioned that chipsets will contain GPE event registers that provide GPE input pins for various
events.

2. ACPI operating systems assume the use of the Smart Battery System Implementers Forum defined stan-
dard for batteries, called the “Smart Battery Specification” (SBS). ACPI provides a set of control methods for use by
OEMs that use a proprietary “control method” battery interface.

UEFI Forum, Inc. January 2019 Page 104

ACPI Specification, Version 6.3 ACPI Hardware Specification

The platform designer would then wire the GPEs to the various value-added event hardware and the AML
code would describe to OSPM how to utilize these events. As such, there will be the case where a
platform has GPE events that are not wired to anything (they are present in the chip set), but are not
utilized by the platform and have no associated AML code. In such, cases these event pins are to be tied
inactive such that the corresponding SCI status bit in the GPE register is not set by a floating input pin.

4.8.4.1.1.1 General-Purpose Event 0 Status Register
Register Location:<GPEO_STS> System 1/0 or System Memory Space

Default Value: 00h
Attribute: Read/Write
Size: GPEO_BLK_LEN/2

The general-purpose event 0 status register contains the general-purpose event status bits in bank zero
of the general-purpose registers. Each available status bit in this register corresponds to the bit with the
same bit position in the GPEO_EN register. Each available status bit in this register is set when the event is
active, and can only be cleared by software writing a “1” to its respective bit position. For the general-
purpose event registers, unimplemented bits are ignored by OSPM.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with its
respective enable bit set. OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.4.1.1.2 General-Purpose Event 0 Enable Register

Register Location: <GPEO_EN> System 1/0 or System Memory Space
Default Value: 00h

Attribute: Read/Write

Size: GPEO_BLK_LEN/2

The general-purpose event 0 enable register contains the general-purpose event enable bits. Each
available enable bit in this register corresponds to the bit with the same bit position in the GPEO_STS
register. The enable bits work similarly to how the enable bits in the fixed-event registers are defined:
When the enable bit is set, then a set status bit in the corresponding status bit will generate an SCI bit.
OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.4.1.2 General-Purpose Event 1 Register Block

This register block consists of two registers: The GPE1_STS and the GPE1_EN registers. Each register’s
length is defined to be half the length of the GPE1 register block, and is described in the ACPI FADT’s
GPE1_BLK and GPE1_BLK_LEN operators.

4.8.4.1.2.1 General-Purpose Event 1 Status Register
Register Location: <GPE1 STS> System 1/0 or System Memory Space

Default Value: 00h
Attribute: Read/Write
Size: GPE1 BLK_LEN/2

The general -purpose event 1 status register contains the general-purpose event status bits. Each
available status bit in this register corresponds to the bit with the same bit position in the GPE1_EN
register. Each available status bit in this register is set when the event is active, and can only be cleared
by software writing a “1” to its respective bit position. For the general-purpose event registers,
unimplemented bits are ignored by the operating system.

UEFI Forum, Inc. January 2019 Page 105

ACPI Specification, Version 6.3 ACPI Hardware Specification

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with its
respective enable bit set.

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.4.1.2.2 General-Purpose Event 1 Enable Register
Register Location: <GPE1 _EN> System 1/0 or System Memory Space

Default Value: 00h
Attribute: Read/Write
Size: GPE1 BLK LEN/2

The general-purpose event 1 enable register contains the general-purpose event enable. Each available
enable bit in this register corresponds to the bit with the same bit position in the GPE1_STS register. The
enable bits work similarly to how the enable bits in the fixed-event registers are defined: When the
enable bit is set, a set status bit in the corresponding status bit will generate an SCl bit.

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.4.2 Example Generic Devices

This section points out generic devices with specific ACPI driver support.

4.8.4.2.1 Lid Switch

The Lid switch is an optional feature present in most “clam shell” style mobile computers. It can be used
by the OS as policy input for sleeping the system, or for waking the system from a sleeping state. If used,
then the OEM needs to define the lid switch as a device with an _HID object value of “PNPOCOD”, which
identifies this device as the lid switch to OSPM. The Lid device needs to contain a control method that
returns its status. The Lid event handler AML code reconfigures the lid hardware (if it needs to) to
generate an event in the other direction, clear the status, and then notify OSPM of the event.

IM

Example hardware and ASL code is shown below for such a design.

NP S

O O Debounce

Momentary Normally LID_STS
Open push button

LID_POL

Figure 4-14 Example Generic Address Space Lid Switch Logic

This logic will set the Lid status bit when the button is pressed or released (depending on the LID_POL
bit).

The ASL code below defines the following:

e An operational region where the lid polarity resides in address space System address space in
registers 0x201.

e Afield operator to allow AML code to access this bit: Polarity control bit (LID_POL) is called
LPOL and is accessed at 0x201.0.

e Adevice named _SB.LID with the following:

— A Plug and Play identifier “PNPOCOD” that associates OSPM with this object.

UEFI Forum, Inc. January 2019 Page 106

ACPI Specification, Version 6.3 ACPI Hardware Specification

— Defines an object that specifies a change in the lid’s status bit can wake the system from
the S4 sleep state and from all higher sleep states (S1, S2, or S3).
e The lid switch event handler that does the following:

— Defines the lid status bit (LID_STS) as a child of the general-purpose event 0 register bit 1.

— Defines the event handler for the lid (only event handler on this status bit) that does the
following:

* Flips the polarity of the LPOL bit (to cause the event to be generated on the opposite
condition).

e Generates a notify to the OS that does the following:
e Passes the _SB.LID object.

¢ Indicates a device specific event (notify value 0x80).
// Define a Lid switch
OperationRegion(\PHO, SystemlO, 0x201, Ox1)
Field(\PHO, ByteAcc, NoLock, Preserve) {
LPOL, 1 // Lid polarity control bit

}

Device(_SB.LID){
Name(_HID, EISAID(*PNPOCOD™))
Method(_LID){Return(LPOL)}
Name(_PRW, Package(2){

1, // bit 1 of GPE to enable Lid wakeup
0x04} // can wakeup from S4 state
)

Scope(_GPE){ // Root level event handlers
Method(_LO01){ // uses bit 1 of GPO_STS register
Not(LPOL, LPOL) // Flip the lid polarity bit

Notify(LID, Ox80) // Notify OS of event
}

}
4.8.4.2.2 Embedded Controller

ACPI provides a standard interface that enables AML code to define and access generic logic in
“embedded controller space.” This supports current computer models where much of the value added
hardware is contained within the embedded controller while allowing the AML code to access this
hardware in an abstracted fashion.

e The embedded controller is defined as a device and must contain a set number of control
methods:

e HID with a value of PNPOCQ9 to associate this device with the ACPI’s embedded controller’s
driver.

e CRStoreturn the resources being consumed by the embedded controller.

e _GPE that returns the general-purpose event bit that this embedded controller is wired to.

Additionally the embedded controller can support up to 255 generic events per embedded controller,
referred to as query events. These query event handles are defined within the embedded controller’s
device as control methods. An example of defining an embedded controller device is shown below:

UEFI Forum, Inc. January 2019 Page 107

ACPI Specification, Version 6.3 ACPI Hardware Specification

Device(ECO) {

// PnP ID

Name(_HID, EISAID(*“PNPOC09™))

// Returns the “Current Resources” of EC

Name(_CRS,

ResourceTemplate(){

10(Decodel6, 0x62, 0x62, 0, 1)
10(Decodel6, 0x66, 0x66, 0, 1)

1)
// Indicate that the EC SCI is bit 0 of the GP_STS register
Name(_GPE, 0) // embedded controller is wired to bit 0 of GPE

OperationRegion(\ECO, EmbeddedControl, 0, OxFF)
Field(ECO, ByteAcc, Lock, Preserve) {
// Field definitions

}
// Query methods

Method(_Q00){. ..}
Method(_QFF){...}

}

For more information on the embedded controller, see Section 12, “ACPI Embedded Controller Interface
Specification.”

4.8.4.2.3 Fan

ACPI has a device driver to control fans (active cooling devices) in platforms. A fan is defined as a device
with the Plug and Play ID of “PNPOCOB.” It should then contain a list power resources used to control the
fan.

For more information, see Section 9, “ACPI-Defined Devices and Device Specific Objects.” .

UEFI Forum, Inc. January 2019 Page 108

5 ACPI Software Programming Model

ACPI defines a hardware register interface that an ACPl-compatible OS uses to control core power
management features of a machine, as described in Section 4, “ACPI Hardware Specification.” ACPI also
provides an abstract interface for controlling the power management and configuration of an ACPI
system. Finally, ACPI defines an interface between an ACPl-compatible OS and the platform runtime
firmware.

To give hardware vendors flexibility in choosing their implementation, ACPI uses tables to describe
system information, features, and methods for controlling those features. These tables list devices on the
system board or devices that cannot be detected or power managed using some other hardware
standard, plus their capabilities as described in Section 3, “Overview.” They also list system capabilities
such as the sleeping power states supported, a description of the power planes and clock sources
available in the system, batteries, system indicator lights, and so on. This enables OSPM to control system
devices without needing to know how the system controls are implemented.

Topics covered in this section are:

e The ACPI system description table architecture is defined, and the role of OEM-provided
definition blocks in that architecture is discussed.
e The concept of the ACPI Namespace is discussed.

5.1 Overview of the System Description Table Architecture

The Root System Description Pointer (RSDP) structure is located in the system’s memory address space
and is setup by the platform firmware. This structure contains the address of the Extended System
Description Table (XSDT), which references other description tables that provide data to OSPM, supplying
it with knowledge of the base system’s implementation and configuration (see Figure 5-15).

Located in system's memory address space

A
f 1
Root System Extended System
Description Pointer Description Table
RSD PTR
Pointer
Pointer Entry
Entry contents contents
Entry

Figure 5-15 Root System Description Pointer and Table

All system description tables start with identical headers. The primary purpose of the system description
tables is to define for OSPM various industry-standard implementation details. Such definitions enable

UEFI Forum, Inc. January 2019 Page 109

http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-ff260a9c20e2/pnp_legacy.doc
http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-ff260a9c20e2/pnp_legacy.doc

ACPI Specification, Version 6.3 ACPI Software Programming Model

various portions of these implementations to be flexible in hardware requirements and design, yet still
provide OSPM with the knowledge it needs to control hardware directly.

The Extended System Description Table (XSDT) points to other tables in memory. Always the first table, it
points to the Fixed ACPI Description table (FADT). The data within this table includes various fixed-length
entries that describe the fixed ACPI features of the hardware. The FADT table always refers to the
Differentiated System Description Table (DSDT), which contains information and descriptions for various
system features. The relationship between these tables is shown in Figure 5-16.

Fixed ACPI Differentiated System Firmware ACPI
Description Table Description Table Control Structure
FACS
Wake Vector

Shared Lock

Static info
FIRM Differet'lt‘iated
DSDT | Definition

BLKs Block

Software

Hardware

OEM-Specific

Located in
port space

Device 1/0
Device Memory
PCI configuration
Embedded Controller space

Figure 5-16 Description Table Structures

OSPM finds the RSDP structure as described in Section 5.2.5.1 (“Finding the RSDP on IA-PC Systems”) or
Section 5.2.5.2 (“Finding the RSDP on UEFI Enabled Systems”).

When OSPM locates the structure, it looks at the physical address for the Root System Description Table
or the Extended System Description Table. The Root System Description Table starts with the signature
“RSDT”, while the Extended System Description Table starts with the signature “XSDT”. These tables
contain one or more physical pointers to other system description tables that provide various
information about the system. As shown in Figure 5-16, there is always a physical address in the Root
System Description Table for the Fixed ACPI Description table (FADT).

UEFI Forum, Inc. January 2019 Page 110

ACPI Specification, Version 6.3 ACPI Software Programming Model

When OSPM follows a physical pointer to another table, it examines each table for a known signature.
Based on the signature, OSPM can then interpret the implementation-specific data within the description
table.

The purpose of the FADT is to define various static system information related to configuration and
power management. The Fixed ACPI Description Table starts with the “FACP” signature. The FADT
describes the implementation and configuration details of the ACPI hardware registers on the platform.

For a specification of the ACPI Hardware Register Blocks (PM1a_EVT_BLK, PM1b_EVT_BLK,
PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, PM_TMR_BLK, GPO_BLK, GP1_BLK, and one or more
P_BLKs), see Section 4.8, “ACPI Register Model.” The PM1a_EVT_BLK, PM1b_EVT BLK, PMla_CNT_BLK,
PM1b_CNT _BLK, PM2_CNT_BLK, and PM_TMR_BLK blocks are for controlling low-level ACPI system
functions.

The GPEO_BLK and GPE1_BLK blocks provide the foundation for an interrupt-processing model for
Control Methods. The P_BLK blocks are for controlling processor features.

Besides ACPI Hardware Register implementation information, the FADT also contains a physical pointer
to a data structure known as the Differentiated System Description Table (DSDT), which is encoded in
Definition Block format (See Section 5.2.11, “Definition Blocks”).

A Definition Block contains information about the platform’s hardware implementation details in the
form of data objects arranged in a hierarchical (tree-structured) entity known as the “ACPl namespace”,
which represents the platform’s hardware configuration. All definition blocks loaded by OSPM combine
to form one namespace that represents the platform. Data objects are encoded in a format known as
ACPI Machine Language or AML for short. Data objects encoded in AML are “evaluated” by an OSPM
entity known as the AML interpreter. Their values may be static or dynamic. The AML interpreter’s
dynamic data object evaluation capability includes support for programmatic evaluation, including
accessing address spaces (for example, I/0 or memory accesses), calculation, and logical evaluation, to
determine the result. Dynamic namespace objects are known as “control methods”. OSPM “loads” an
entire definition block as a logical unit — adding to or removing the associated objects from the
namespace. The DSDT contains a Definition Block named the Differentiated Definition Block that contains
implementation and configuration information OSPM can use to perform power management, thermal
management, or Plug and Play functionality that goes beyond the information described by the ACPI
hardware registers.

Definition Blocks can either define new system attributes or, in some cases, build on prior definitions. A
Definition Block can be loaded from system memory address space. One use of a Definition Block is to
describe and distribute platform version changes.

Definition blocks enable wide variations of hardware platform implementations to be described to the
ACPI-compatible OS while confining the variations to reasonable boundaries. Definition blocks enable
simple platform implementations to be expressed by using a few well-defined object names. In theory, it
might be possible to define a PCI configuration space-like access method within a Definition Block, by
building it from I/O space, but that is not the goal of the Definition Block specification. Such a space is
usually defined as a “built in” operator.

Some operators perform simple functions and others encompass complex functions. The power of the
Definition Block comes from its ability to allow these operations to be glued together in numerous ways,
to provide functionality to OSPM. The operators present are intended to allow many useful hardware
designs to be ACPIl-expressed, not to allow all hardware designs to be expressed.

UEFI Forum, Inc. January 2019 Page 111

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.1.1 Address Space Translation

Some platforms may contain bridges that perform translations as /0 and/or Memory cycles pass through
the bridges. This translation can take the form of the addition or subtraction of an offset. Or it can take
the form of a conversion from I/0 cycles into Memory cycles and back again. When translation takes
place, the addresses placed on the processor bus by the processor during a read or write cycle are not the
same addresses that are placed on the I/0 bus by the 1/O bus bridge. The address the processor places on
the processor bus will be known here as the processor-relative address. And the address that the bridge
places on the 1/0 bus will be known as the bus-relative address. Unless otherwise noted, all addresses
used within this section are processor-relative addresses.

For example, consider a platform with two root PCl buses. The platform designer has several choices. One
solution would be to split the 16-bit I/O space into two parts, assigning one part to the first root PCl bus
and one part to the second root PCl bus. Another solution would be to make both root PCl buses decode
the entire 16-bit I/O space, mapping the second root PCl bus’s I/O space into memory space. In this
second scenario, when the processor needs to read from an I/O register of a device underneath the
second root PCl bus, it would need to perform a memory read within the range that the root PCl bus
bridge is using to map the 1/0 space.

Note: Industry standard PCs do not provide address space translations because of historical
compatibility issues.

5.2 ACPI System Description Tables

This section specifies the structure of the system description tables:

¢ Root System Description Pointer (RSDP)

e System Description Table Header

e Root System Description Table (RSDT)

e Fixed ACPI Description Table (FADT)

e Firmware ACPI Control Structure (FACS)

e Differentiated System Description Table (DSDT)

e Secondary System Description Table (SSDT)

e Multiple APIC Description Table (MADT)

e Smart Battery Table (SBST)

e Extended System Description Table (XSDT)

e Embedded Controller Boot Resources Table (ECDT)
e System Locality Distance Information Table (SLIT)
e System Resource Affinity Table (SRAT)

e Corrected Platform Error Polling Table (CPEP)

e Maximum System Characteristics Table (MSCT)

e ACPI RAS Feature Table (RASF)

e Memory Power StateTable (MPST)

¢ Platform Memory Topology Table (PMTT)

e Boot Graphics Resource Table (BGRT)

e Firmware Performance Data Table (FPDT)

e Generic Timer Description Table (GTDT)

¢ NVDIMM Firmware Interface Table (NFIT)

e Heterogeneous Memory Attributes Table (HMAT)

UEFI Forum, Inc. January 2019 Page 112

ACPI Specification, Version 6.3 ACPI Software Programming Model

e Platform Debug Trigger Table (PDTT)
e Processor Properties Topology Table (PPTT)

All numeric values in ACPI-defined tables, blocks, and structures are always encoded in little endian
format. Signature values are stored as fixed-length strings.

5.2.1 Reserved Bits and Fields

For future expansion, all data items marked as reserved in this specification have strict meanings. This
section lists software requirements for reserved fields. Notice that the list contains terms such as ACPI
tables and AML code defined later in this section of the specification.

5.2.1.1 Reserved Bits and Software Components

e OEM implementations of software and AML code return the bit value of O for all reserved bits
in ACPI tables or in other software values, such as resource descriptors.

e Forall reserved bits in ACPI tables and registers, OSPM implementations must:

¢ lgnore all reserved bits that are read.

e Preserve reserved bit values of read/write data items (for example, OSPM writes back reserved
bit values it reads).

e Write zeros to reserved bits in write-only data items.

5.2.1.2 Reserved Values and Software Components

e OEM implementations of software and AML code return only defined values and do not return
reserved values.
e OSPM implementations write only defined values and do not write reserved values.

5.2.1.3 Reserved Hardware Bits and Software Components

e Software ignores all reserved bits read from hardware enable or status registers.

e Software writes zero to all reserved bits in hardware enable registers.

e Software ignores all reserved bits read from hardware control and status registers.

e Software preserves the value of all reserved bits in hardware control registers by writing back
read values.

5.2.1.4 Ignored Hardware Bits and Software Components

e Software handles ignored bits in ACPI hardware registers the same way it handles reserved bits
in these same types of registers.

5.2.2 Compatibility

All versions of the ACPI tables must maintain backward compatibility. To accomplish this, modifications
of the tables consist of redefinition of previously reserved fields and values plus appending data to the
1.0 tables. Modifications of the ACPI tables require that the version numbers of the modified tables be
incremented. The length field in the tables includes all additions and the checksum is maintained for the
entire length of the table.

5.2.3 Address Format

Addresses used in the ACPI 1.0 system description tables were expressed as either system memory or 1/0
space. This was targeted at the IA-32 environment. Newer architectures require addressing mechanisms

UEFI Forum, Inc. January 2019 Page 113

ACPI Specification, Version 6.3 ACPI Software Programming Model

beyond that defined in ACPI 1.0. To support these architectures ACPl must support 64-bit addressing and
it must allow the placement of control registers in address spaces other than System 1/0.

5.2.3.1 Functional Fixed Hardware

ACPI defines the fixed hardware low-level interfaces as a means to convey to the system OEM the
minimum interfaces necessary to achieve a level of capability and quality for motherboard configuration
and system power management. Additionally, the definition of these interfaces, as well as others defined
in this specification, conveys to OS Vendors (OSVs) developing ACPl-compatible operating systems, the
necessary interfaces that operating systems must manipulate to provide robust support for system
configuration and power management.

While the definition of low-level hardware interfaces defined by ACPI 1.0 afforded OSPM
implementations a certain level of stability, controls for existing and emerging diverse CPU architectures
cannot be accommodated by this model as they can require a sequence of hardware manipulations
intermixed with native CPU instructions to provide the ACPI-defined interface function. In this case, an
ACPI-defined fixed hardware interface can be functionally implemented by the CPU manufacturer
through an equivalent combination of both hardware and software and is defined by ACPI as Functional
Fixed Hardware.

In IA-32-based systems, functional fixed hardware can be accommodated in an OS independent manner
by using System Management Mode (SMM) based system firmware. Unfortunately, the nature of SMM-
based code makes this type of OS independent implementation difficult if not impossible to debug. As
such, this implementation approach is not recommended. In some cases, Functional Fixed Hardware
implementations may require coordination with other OS components. As such, an OS independent
implementation may not be viable.

0OS-specific implementations of functional fixed hardware can be implemented using technical
information supplied by the CPU manufacturer. The downside of this approach is that functional fixed
hardware support must be developed for each OS. In some cases, the CPU manufacturer may provide a
software component providing this support. In other cases support for the functional fixed hardware may
be developed directly by the OS vendor.

The hardware register definition was expanded, in ACPI 2.0, to allow registers to exist in address spaces
other than the System 1/O address space. This is accomplished through the specification of an address
space ID in the register definition (see Section 5.2.3.2, “Generic Address Structure,” for more
information). When specifically directed by the CPU manufacturer, the system firmware may define an
interface as functional fixed hardware by indicating 0x7F (Functional Fixed Hardware), in the address
space ID field for register definitions. It is emphasized that functional fixed hardware definitions may be
declared in the ACPI system firmware only as indicated by the CPU Manufacturer for specific interfaces
as the use of functional fixed hardware requires specific coordination with the OS vendor.

Only certain ACPI-defined interfaces may be implemented using functional fixed hardware and only when
the interfaces are common across machine designs for example, systems sharing a common CPU
architecture that does not support fixed hardware implementation of an ACPI-defined interface. OEMs
are cautioned not to anticipate that functional fixed hardware support will be provided by OSPM
differently on a system-by-system basis. The use of functional fixed hardware carries with it a reliance on
OS specific software that must be considered. OEMs should consult OS vendors to ensure that specific
functional fixed hardware interfaces are supported by specific operating systems.

UEFI Forum, Inc. January 2019 Page 114

ACPI Specification, Version 6.3 ACPI Software Programming Model

Note: FFH is permitted and applicable to both full and HW-reduced ACPI implementations.

5.2.3.2 Generic Address Structure

The Generic Address Structure (GAS) provides the platform with a robust means to describe register
locations. This structure, described below (Table 5-25), is used to express register addresses within tables
defined by ACPI .

Table 5-25 Generic Address Structure (GAS)

Field E::-Zth (B)::ft:et Description
Address Space |1 0 The address space where the data structure or register exists.
ID Defined values are:
0x00 System Memory space
0x01 System |/O space
0x02 PCI Configuration space
0x03 Embedded Controller
0x04 SMBus
0x05 SystemCMOS
0x06 PciBarTarget
0x07 IPMI
0x08 General PurposelO
0x09 GenericSerialBus
O0x0A Platform Communications Channel (PCC)
0x0B to OX7E ~ Reserved
0x7F Functional Fixed Hardware
0x80 to OxBF Reserved
0xCO to OxFF OEM Defined
Register Bit 1 1 The size in bits of the given register. When addressing a data
Width structure, this field must be zero.
Register Bit 1 2 The bit offset of the given register at the given address. When
Offset addressing a data structure, this field must be zero.
Access Size 1 3 Specifies access size. Unless otherwise defined by the Address
Space ID:
0 Undefined (legacy reasons)
1 Byte access
2 Word access
3 Dword access
4 QWord access
Address 8 4 The 64-bit address of the data structure or register in the given
address space (relative to the processor). (See below for specific
formats.)

UEFI Forum, Inc. January 2019 Page 115

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-26 Address Space Format

Address Space Format

0-System Memory The 64-bit physical memory address (relative to the processor) of the register. 32-
bit platforms must have the high DWORD set to 0.

1-System 1/O The 64-bit I/0 address (relative to the processor) of the register. 32-bit platforms
must have the high DWORD set to 0.

2—PCI Configuration PCI Configuration space addresses must be confined to devices on

Space PCI Segment Group 0, bus 0. This restriction exists to accommodate access to fixed
hardware prior to PCl bus enumeration. The format of addresses are defined as
follows:

WORD Location Description

Highest WORD Reserved (must be 0)

PCI Device number on bus 0

PCI Function number

Lowest WORD Offset in the configuration space header

For example: Offset 23h of Function 2 on device 7 on bus 0 segment 0 would be
represented as: 0x0000000700020023.

0x7F—Functional Use of GAS fields other than Address_Space_ID is specified by the CPU

Fixed Hardware manufacturer. The use of functional fixed hardware carries with it a reliance on 0S
specific software that must be considered. OEMs should consult OS vendors to
ensure that specific functional fixed hardware interfaces are supported by specific
operating systems.

0x0A-PCC

5.2.4 Universally Unique Identifiers (UUIDs)

UUIDs (Universally Unique IDentifiers), also known as GUIDs (Globally Unique IDentifiers) are 128 bit long
values that extremely likely to be different from all other UUIDs generated until 3400 A.D. UUIDs are
used to distinguish between callers of ASL methods, such as _DSM and _0OSC.

The format of both the binary and string representations of UUIDs along with an algorithm to generate
them is specified in ISO/IEC 11578:1996 Information technology - Open Systems Interconnection - Remote
Procedure Call (RPC) and can be found as part of the Distributed Computing Environment 1.1: Remote
Procedure Call specification, which can be found in “Links to ACPI-Related Documents” (http://uefi.or
acpi) under the heading "Universal Uniform Identifiers (UUID)".

5.2.5 Root System Description Pointer (RSDP)

During OS initialization, OSPM must obtain the Root System Description Pointer (RSDP) structure from
the platform. When OSPM locates the Root System Description Pointer (RSDP) structure, it then locates
the Root System Description Table (RSDT) or the Extended Root System Description Table (XSDT) using
the physical system address supplied in the RSDP.

UEFI Forum, Inc. January 2019 Page 116

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.5.1 Finding the RSDP on IA-PC Systems

OSPM finds the Root System Description Pointer (RSDP) structure by searching physical memory ranges
on 16-byte boundaries for a valid Root System Description Pointer structure signature and checksum
match as follows:

e The first 1 KB of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the EBDA can
be found in the two-byte location 40:0Eh on the BIOS data area.
¢ The BIOS read-only memory space between OEO000h and OFFFFFh.

5.2.5.2 Finding the RSDP on UEFI Enabled Systems

In Unified Extensible Firmware Interface (UEFI) enabled systems, a pointer to the RSDP structure exists
within the EFI System Table. The OS loader is provided a pointer to the EFI System Table at invocation.
The OS loader must retrieve the pointer to the RSDP structure from the EFl System Table and convey the
pointer to OSPM, using an OS dependent data structure, as part of the hand off of control from the OS
loader to the OS.

The OS loader locates the pointer to the RSDP structure by examining the EFI Configuration Table within
the EFI System Table. EFI Configuration Table entries consist of Globally Unique Identifier (GUID)/table
pointer pairs. The UEFI specification defines two GUIDs for ACPI; one for ACPI 1.0 and the other for ACPI
2.0 or later specification revisions.

The EFI GUID for a pointer to the ACPI 1.0 specification RSDP structure is:
e eb9d2d30-2d88-11d3-9a16-0090273fc14d.

The EFI GUID for a pointer to the ACPI 2.0 or later specification RSDP structure is:
e 8868e871-e4f1-11d3-bc22-0080c73c8881.

The OS loader for an ACPIl-compatible OS will search for an RSDP structure pointer (Table 5-27) using the
current revision GUID first and if it finds one, will use the corresponding RSDP structure pointer. If the
GUID is not found then the OS loader will search for the RSDP structure pointer using the ACPI 1.0 version
GUID.

The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table before
assuming platform control via the EFI ExitBootServices interface. See the UEFI Specification for more
information.

UEFI Forum, Inc. January 2019 Page 117

ACPI Specification, Version 6.3

ACPI Software Programming Model

5.2.5.3 Root System Description Pointer (RSDP) Structure

The revision number contained within the structure indicates the size of the table structure.

Table 5-27 RSDP Structure
. Byte Byte ..

Field Length |Offset Description

Signature 8 0 “RSD PTR ” (Notice that this signature must contain a trailing blank
character.)

Checksum 1 8 This is the checksum of the fields defined in the ACPI 1.0
specification. This includes only the first 20 bytes of this table,
bytes 0 to 19, including the checksum field. These bytes must sum
to zero.

OEMID 6 9 An OEM-supplied string that identifies the OEM.

Revision 1 15 The revision of this structure. Larger revision numbers are
backward compatible to lower revision numbers. The ACPI version
1.0 revision number of this table is zero. The ACPI version 1.0 RSDP
Structure only includes the first 20 bytes of this table, bytes 0 to
19. It does not include the Length field and beyond. The current
value for this field is 2.

RsdtAddress 4 16 32 bit physical address of the RSDT.

Length* 4 20 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table. This field is not available in the ACPI version 1.0 RSDP
Structure.

XsdtAddress* 8 24 64 bit physical address of the XSDT.

Extended 1 32 This is a checksum of the entire table, including both checksum

Checksum* fields.

Reserved* 3 33 Reserved field

* These fields are only valid when the Revision value is 2 or above.

5.2.6 System Description Table Header

All system description tables begin with the structure shown in Table 5-28. The Signature field

determines the content of the system description table. System description table signatures defined by

this specification are listed in Table 5-29.

UEFI Forum, Inc.

January 2019

Page 118

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-28 DESCRIPTION_HEADER Fields

Field Byte Byte Description
Length | Offset
Signature 4 0 The ASCII string representation of the table identifier. Notice that if

OSPM finds a signature in a table that is not listed in Table 5-29,
OSPM ignores the entire table (it is not loaded into ACPI
namespace); OSPM ignores the table even though the values in the
Length and Checksum fields are correct.

Length 4 4 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table.

Revision 1 8 The revision of the structure corresponding to the signature field

for this table. Larger revision numbers are backward compatible to
lower revision numbers with the same signature.

Checksum 1 9 The entire table, including the checksum field, must add to zero to
be considered valid.

OEMID 6 10 An OEM-supplied string that identifies the OEM.

OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify the
particular data table. This field is particularly useful when defining
a definition block to distinguish definition block functions. The
OEM assigns each dissimilar table a new OEM Table ID.

OEM Revision 4 24 An OEM-supplied revision number. Larger numbers are assumed to
be newer revisions.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision |4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

For OEMs, good design practices will ensure consistency when assigning OEMID and OEM Table ID fields
in any table. The intent of these fields is to allow for a binary control system that support services can
use. Because many support functions can be automated, it is useful when a tool can programmatically
determine which table release is a compatible and more recent revision of a prior table on the same
OEMID and OEM Table ID.

Table 5-29 and Table 5-30 contain the system description table signatures defined by this specification.
These system description tables may be defined by ACPl and documented within this specification
(Table 5-29) or they may be simply reserved by ACPI and defined by other industry specifications

(Table 5-30). This allows OS and platform specific tables to be defined and pointed to by the RSDT/XSDT
as needed. For tables defined by other industry specifications, the ACPI specification acts as gatekeeper
to avoid collisions in table signatures.

Table signatures will be reserved by the ACPI promoters and posted independently of this specification in
ACPI errata and clarification documents on the ACPI web site. Requests to reserve a 4-byte alphanumeric
table signature should be sent to the email address info@acpi.info and should include the purpose of the
table and reference URL to a document that describes the table format. Tables defined outside of the
ACPI specification may define data value encodings in either little endian or big endian format. For the

UEFI Forum, Inc. January 2019 Page 119

ACPI Specification, Version 6.3

ACPI Software Programming Model

purpose of clarity, external table definition documents should include the endian-ness of their data value

encodings.

Since reference URLs can change over time and may not always be up-to-date in this specification, a
separate document containing the latest known reference URLs can be found at “Links to ACPI-Related
Documents” (http://uefi.org/acpi), which should conspicuously be placed in the same location as this

specification.

Table 5-29 DESCRIPTION_HEADER Signatures for tables defined by ACPI

Signature Description Reference

“APIC” Multiple APIC Description Table Section 5.2.12, “Multiple APIC Description Table”

“BERT” Boot Error Record Table Section 18.3.1, “Boot Error Source”

“BGRT” Boot Graphics Resource Table Section 5.2.22, “Boot Graphics Resource Table”

“CPEP” Corrected Platform Error Polling Section 5.2.18, “Corrected Platform Error Polling Table”
Table

“DSDT” Differentiated System Description Section 5.2.11.1, “Differentiated System Description Table”
Table

“ECDT” Embedded Controller Boot Resources | Section 5.2.15 “Embedded Controller Boot Resources
Table Table”

“EINJ” Error Injection Table Section 18.6.1, “Error Injection Table”

“ERST” Error Record Serialization Table Section 18.5, “Error Serialization”

"FACP” Fixed ACPI Description Table (FADT) | Section 5.2.9, “Fixed ACPI Description Table”

“FACS” Firmware ACPI Control Structure Section 5.2.10, “Firmware ACPI Control Structure”

“FPDT” Firmware Performance Data Table Section 5.2.23, “Firmware Performance Data Table”

“GTDT” Generic Timer Description Table Section 5.2.24, “Generic Timer Description Table”

“HEST” Hardware Error Source Table Section 18.3.2, “ACPI Error Source”

“MSCT” Maximum System Characteristics Section 5.2.19, “Maximum System Characteristics Table”
Table

“MPST” Memory Power StateTable Section 5.2.21, “Memory Power StateTable”

“NFIT” NVDIMM Firmware Interface Table Section 5.2.25, “NVDIMM Firmware Interface Table (NFIT)

“OEMX” OEM Specific Information Tables OEM Specific tables. All table signatures starting with

“OEM” are reserved for OEM use.

“PCCT” Platform Communications Channel Section 14.1 “Platform Communications Channel Table”
Table

“PMTT” Platform Memory Topology Table Section 5.2.21.12, Memory Topology Table (PMTT)

“PSDT” Persistent System Description Table | Section 5.2.11.3, “Persistent System Description Table”

“RASF” ACPI RAS FeatureTable Section 5.2.20.3, “ACPI RAS Feature Table”

“RSDT” Root System Description Table Section 5.2.7, “Root System Description Table”

UEFI Forum, Inc.

January 2019

Page 120

ACPI Specification, Version 6.3

ACPI Software Programming Model

Signature Description Reference

“SBST” Smart Battery Specification Table Section 5.2.14, “Smart Battery Table”

“SDEV” Secure DEVices Table Section 5.2.26 “Secure Devices (SDEV) Table”

“SLIT” System Locality Distance Information | Section 5.2.16.6, “System Locality Distance Information
Table Table”

“SRAT” System Resource Affinity Table Section 5.2.16, “System Resource Affinity Table”

“SSDT” Secondary System Description Table | Section 5.2.11.2, “Secondary System Description Table”

“XSDT” Extended System Description Table Section 5.2.8, “Extended System Description Table”

UEFI Forum, Inc.

January 2019 Page 121

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-30 DESCRIPTION_HEADER Signatures for tables reserved by ACPI

Signature Description and External Reference

“BOOT” Reserved Signature

“cDIT” Component Distance Information Table

See "Links to ACPI-Related Documents" (http://uefi.org/acpi) under the heading "Component
Distance Information Table"

“CRAT” Component Resource Attribute Table

See "Links to ACPI-Related Documents" (http://uefi.org/acpi) under the heading "Component
Resource Attribute Table"

“CSRT” Core System Resource Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Core System
Resource Table".

“DBG2” Debug Port Table 2
Microsoft Debug Port Table 2 Specification
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Debug Port

Table 2".

“DBGP” Debug Port Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Debug Port
Table".

“DMAR” DMA Remapping Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading “DMA
Remapping Table”.

“DPPT” DMA Protection Policy Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading “DMA Protection
Policy Table”.

“DRTM” Dynamic Root of Trust for Measurement Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading “TCG D-RTM
Architecture Specification”.

“ETDT” Event Timer Description Table (Obsolete)
IA-PC Multimedia Timers Specification. This signature has been superseded by “HPET” and is now
obsolete.

“HPET” IA-PC High Precision Event Timer Table

IA-PC High Precision Event Timer Specification
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "IA-PC High
Precision Event Timer Table".

“IBFT” iSCSI Boot Firmware Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "iSCSI Boot
Firmware Table".

UEFI Forum, Inc. January 2019 Page 122

ACPI Specification, Version 6.3 ACPI Software Programming Model

Signature

Description and External Reference

"IORT"

I/0 Remapping Table

See "Links to ACPI-Related Documents" (http://uefi.org/acpi) under the heading "I/O Remapping
Table"

lllVRSu

1/0 Virtualization Reporting Structure
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "I/O
Virtualization Reporting Structure".

"LPIT"

Low Power Idle Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Low Power Idle
Table".

“MCFG”

PCI Express memory mapped configuration space base address Description Table
PCI Firmware Specification, Revision 3.0
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "PCl Sig".

“MCHI”

Management Controller Host Interface Table

DSP0256 Management Component Transport Protocol (MCTP) Host Interface Specification
See“Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Management
Controller Host Interface Table".

IIMSDMII

Microsoft Data Management Table
See: Microsoft Data Management Table Specification

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Microsoft Data
Management Table".

uSDEln

Software Delegated Exceptions Interface

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Software
Delegated Exceptions Interface.”

IISLlcll

Microsoft Software Licensing Table Specification

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Microsoft
Software Licensing Table Specification".

“SPCR”

Serial Port Console Redirection Table

Microsoft Serial Port Console Redirection Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Serial Port
Console Redirection Table".

“SPMI”

Server Platform Management Interface Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Server Platform
Management Interface Table".

STAO”

_STA Override Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "_STA Override
Table".

“TCPA”

Trusted Computing Platform Alliance Capabilities Table

TCPA PC Specific Implementation Specification

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Trusted
Computing Platform Alliance Capabilities Table".

UEFI Forum, Inc. January 2019 Page 123

ACPI Specification, Version 6.3 ACPI Software Programming Model

Signature Description and External Reference

TPM2 Trusted Platform Module 2 Table
See: Trusted Platform Module 2 Table Specification

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Trusted
Platform Module 2 Table".

“UEFI” UEFI ACPI Data Table

UEFI Specification

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Unified
Extensible Firmware Interface Specifications".

“WAET” Windows ACPI Emulated Devices Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Windows ACPI
Emulated Devices Table".

“WDAT” Watch Dog Action Table

Requirements for Hardware Watchdog Timers Supported by Windows — Design Specification
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Watchdog
Action Table".

“WDRT” Watchdog Resource Table

Watchdog Timer Hardware Requirements for Windows Server 2003

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Watchdog Timer
Resource Table (WDRT)".

“WPBT” Windows Platform Binary Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Windows
Platform Binary Table".

“WSMT” See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading “Windows SMM
Security Mitigation Table (WSMT).”

"XENV" Xen Project Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Xen Project
Table".

5.2.7 Root System Description Table (RSDT)

OSPM locates that Root System Description Table by following the pointer in the RSDP structure. The
RSDT, shown in Table 5-31, starts with the signature ‘RSDT’ followed by an array of physical pointers to
other system description tables that provide various information on other standards defined on the
current system. OSPM examines each table for a known signature. Based on the signature, OSPM can
then interpret the implementation-specific data within the table.

Platforms provide the RSDT to enable compatibility with ACPI 1.0 operating systems. The XSDT, described
in the next section, supersedes RSDT functionality.

Table 5-31 Root System Description Table Fields (RSDT)

Field Byte Byte Description
Length | Offset

Header

UEFI Forum, Inc. January 2019 Page 124

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field Byte Byte Description
Length | Offset
Signature 4 0 ‘RSDT’ Signature for the Root System Description Table.
Length 4 4 Length, in bytes, of the entire RSDT. The length implies the
number of Entry fields (n) at the end of the table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the RSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.
OEM Revision 4 24 OEM revision of RSDT table for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.
Entry 4*n 36 An array of 32-bit physical addresses that point to other

DESCRIPTION_HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can further
address the table based upon its Length field.

5.2.8 Extended System Description Table (XSDT)

The XSDT provides identical functionality to the RSDT but accommaodates physical addresses of
DESCRIPTION HEADERs that are larger than 32 bits. Notice that both the XSDT and the RSDT can be
pointed to by the RSDP structure. An ACPl-compatible OS must use the XSDT if present.

Table 5-32 Extended System Description Table Fields (XSDT)

Field E::Zth (B))flft:et Description
Header
Signature 4 0 ‘XSDT'’. Signature for the Extended System Description Table.
Length 4 4 Length, in bytes, of the entire table. The length implies the
number of Entry fields (n) at the end of the table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the XSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.
OEM Revision 4 24 OEM revision of XSDT table for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL Compiler.

UEFI Forum, Inc.

January 2019 Page 125

ACPI Specification, Version 6.3

ACPI Software Programming Model

. Byte Byte iy
Field Length |Offset Description
Creator Revision 4 32 Revision of utility that created the table. For tables containing

Definition Blocks, this is the revision for the ASL Compiler.

Entry 8*n 36 An array of 64-bit physical addresses that point to other
DESCRIPTION_HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can further
address the table based upon its Length field.

5.2.9 Fixed ACPI Description Table (FADT)

The Fixed ACPI Description Table (FADT) defines various fixed hardware ACPI information vital to an ACPI-
compatible OS, such as the base address for the following hardware registers blocks: PM1a_EVT_BLK,
PM1b_EVT_BLK, PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, PM_TMR_BLK, GPEO_BLK, and

GPE1_BLK.

The FADT also has a pointer to the DSDT that contains the Differentiated Definition Block, which in turn
provides variable information to an ACPl-compatible OS concerning the base system design.

All fields in the FADT that provide hardware addresses provide processor-relative physical addresses.

Note: Ifthe HW_REDUCED ACPI flag in the table is set, OSPM will ignore fields related to the ACPI HW
register interface: Fields at offsets 46 through 108 and 148 through 232, as well as FADT Flag bits
1,2 37,813, 14, 16, and 17).

Note: In all cases where the FADT contains a 32-bit field and a corresponding 64-bit field the 64-bit field
should always be preferred by the OSPM if the 64-bit field contains a non-zero value which can be
used by the OSPM. In this case, the 32-bit field must be ignored regardless of whether or not it is
zero, and whether or not it is the same value as the 64-bit field. The 32-bit field should only be
used if the corresponding 64-bit field contains a zero value, or if the 64-bit value can not be used
by the OSPM subject to e.g. CPU addressing limitations.

Table 5-33 FADT Format

. Byte Byte o
Field Length | Offset Description
Header
Signature 4 0 ‘FACP’. Signature for the Fixed ACPI Description Table. (This
signature predates ACPI 1.0, explaining the mismatch with this
table's name.)
Length 4 4 Length, in bytes, of the entire FADT.
FADT Major Version 1 8 6
Major Version of this FADT structure, in "Major.Minor" form,
where 'Minor' is the value in the Minor Version Field (Byte offset
131 in this table)
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID

UEFI Forum, Inc.

January 2019 Page 126

ACPI Specification, Version 6.3

ACPI Software Programming Model

. Byte Byte o
Field Length | Offset Description

OEM Table ID 8 16 For the FADT, the table ID is the manufacture model ID. This field
must match the OEM Table ID in the RSDT.

OEM Revision 4 24 OEM revision of FADT for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

FIRMWARE_CTRL 4 36 Physical memory address of the FACS, where OSPM and
Firmware exchange control information. See Section 5.2.6,
“Root System Description Table,” for a description of the FACS. If
the X_FIRMWARE_CTRL field contains a non zero value which
can be used by the OSPM, then this field must be ignored by the
OSPM. If the HARDWARE_REDUCED_ACPI flag is set, and both
this field and the X_FIRMWARE_CTRL field are zero, there is no
FACS available.

DSDT 4 40 Physical memory address of the DSDT. If the X_DSDT field
contains a non-zero value which can be used by the OSPM, then
this field must be ignored by the OSPM.

Reserved 1 44 ACPI 1.0 defined this offset as a field named INT_MODEL, which
was eliminated in ACPI 2.0. Platforms should set this field to zero
but field values of one are also allowed to maintain compatibility
with ACPI 1.0.

Preferred_PM_Profile 1 45 This field is set by the OEM to convey the preferred power
management profile to OSPM. OSPM can use this field to set
default power management policy parameters during OS
installation.

Field Values:

0 Unspecified

1 Desktop

2 Mobile

3 Workstation

4 Enterprise Server
5 SOHO Server

6 Appliance PC

7 Performance Server
8) Tablet

>8 Reserved

UEFI Forum, Inc.

January 2019 Page 127

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

SCI_INT

46

System vector the SCl interrupt is wired to in 8259 mode. On
systems that do not contain the 8259, this field contains the
Global System interrupt number of the SCl interrupt. OSPM is
required to treat the ACPI SCl interrupt as a sharable, level,
active low interrupt.

SMI_CMD

48

System port address of the SMI Command Port. During ACPI OS
initialization, OSPM can determine that the ACPI hardware
registers are owned by SMI (by way of the SCI_EN bit), in which
case the ACPI OS issues the ACPI_ENABLE command to the
SMI_CMD port. The SCI_EN bit effectively tracks the ownership
of the ACPI hardware registers. OSPM issues commands to the
SMI_CMD port synchronously from the boot processor. This field
is reserved and must be zero on system that does not support
System Management mode.

ACPI_ENABLE

52

The value to write to SMI_CMD to disable SMI ownership of the
ACPI hardware registers. The last action SMI does to relinquish
ownership is to set the SCI_EN bit. During the OS initialization
process, OSPM will synchronously wait for the transfer of SMI
ownership to complete, so the ACPI system releases SMI
ownership as quickly as possible. This field is reserved and must
be zero on systems that do not support Legacy Mode.

ACPI_DISABLE

53

The value to write to SMI_CMD to re-enable SMI ownership of
the ACPI hardware registers. This can only be done when
ownership was originally acquired from SMI by OSPM using
ACPI_ENABLE. An OS can hand ownership back to SMI by
relinquishing use to the ACPI hardware registers, masking off all
SCl interrupts, clearing the SCI_EN bit and then writing
ACPI_DISABLE to the SMI_CMD port from the boot processor.
This field is reserved and must be zero on systems that do not
support Legacy Mode.

S4BIOS_REQ

54

The value to write to SMI_CMD to enter the S4BIOS state. The
S4BIOS state provides an alternate way to enter the S4 state
where the firmware saves and restores the memory context. A
value of zero in S4BIOS_F indicates S4BIOS_REQ is not
supported. (See Table 5-37)

PSTATE_CNT

55

If non-zero, this field contains the value OSPM writes to the
SMI_CMD register to assume processor performance state
control responsibility.

PM1a_EVT BLK

56

System port address of the PM1a Event Register Block. See
Section 4.8.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This is a required field. If
the X_PM1a_CNT_BLK field contains a non zero value which can
be used by the OSPM, then this field must be ignored by the
OSPM.

UEFI Forum, Inc.

January 2019 Page 128

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

PM1b_EVT BLK

60

System port address of the PM1b Event Register Block. See
Section 4.8.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. If the
X_PM1b_EVT_BLK field contains a non zero value which can be
used by the OSPM, then this field must be ignored by the OSPM.

PM1a_CNT_BLK

64

System port address of the PM1a Control Register Block. See
Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This is a required field. If
the X_PM1a_CNT_BLK field contains a non zero value which can
be used by the OSPM, then this field must be ignored by the
OSPM.

PM1b_CNT_BLK

68

System port address of the PM1b Control Register Block. See
Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. If the
X_PM1b_CNT_BLK field contains a non zero value which can be
used by the OSPM, then this field must be ignored by the OSPM.

PM2_CNT_BLK

72

System port address of the PM2 Control Register Block. See
Section 4.8.3.4, “PM2 Control (PM2_CNT),” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. If the
X_PM2_CNT_BLK field contains a non zero value which can be
used by the OSPM, then this field must be ignored by the OSPM.

PM_TMR_BLK

76

System port address of the Power Management Timer Control
Register Block. See Section 4.8.3.3, “Power Management Timer
(PM_TMR),” for a hardware description layout of this register
block. This is an optional field; if this register block is not
supported, this field contains zero. If the X_PM2_CNT_BLK field
contains a non-zero value which can be used by the OSPM, then
this field must be ignored by the OSPM.

GPEO_BLK

80

System port address of General-Purpose Event O Register Block.
See Section 4.8.4.1, “General-Purpose Event Register Blocks,”
for a hardware description of this register block. This is an
optional field; if this register block is not supported, this field
contains zero. If the X_GPEO_BLK field contains a nonzero value
which can be used by the OSPM, then this field must be ignored
by the OSPM.

GPE1_BLK

84

System port address of General-Purpose Event 1 Register Block.
See Section 4.8.4.1, “General-Purpose Event Register Blocks,”
for a hardware description of this register block. This is an
optional field; if this register block is not supported, this field
contains zero. If the X_GPE1_BLK field contains a nonzero value
which can be used by the OSPM, then this field must be ignored
by the OSPM.

UEFI Forum, Inc.

January 2019 Page 129

ACPI Specification, Version 6.3

ACPI Software Programming Model

. Byte Byte o

Field Length | Offset Description

PM1_EVT_LEN 1 88 Number of bytes decoded by PM1a_EVT_BLK and, if supported,
PM1b_ EVT_BLK. This value is > 4.

PM1_CNT_LEN 1 89 Number of bytes decoded by PM1a_CNT_BLK and, if supported,
PM1b_CNT_BLK. This value is > 2.

PM2_CNT_LEN 1 90 Number of bytes decoded by PM2_CNT_BLK. Support for the
PM2 register block is optional. If supported, this value is > 1. If
not supported, this field contains zero.

PM_TMR_LEN 1 91 Number of bytes decoded by PM_TMR_BLK. If the PM Timer is
supported, this field’s value must be 4. If not supported, this
field contains zero.

GPEO_BLK_LEN 1 92 Number of bytes decoded by GPEO_BLK. The value is a non-
negative multiple of 2.

GPE1_BLK_LEN 1 93 Number of bytes decoded by GPE1_BLK. The value is a non-
negative multiple of 2.

GPE1_BASE 1 94 Offset within the ACPI general-purpose event model where
GPE1 based events start.

CST_CNT 1 95 If non-zero, this field contains the value OSPM writes to the
SMI_CMD register to indicate OS support for the _CST object
and C States Changed notification.

P_LVL2_LAT 2 96 The worst-case hardware latency, in microseconds, to enter and
exit a C2 state. A value > 100 indicates the system does not
support a C2 state.

P_LVL3_LAT 2 98 The worst-case hardware latency, in microseconds, to enter and

exit a C3 state. A value > 1000 indicates the system does not
support a C3 state.

UEFI Forum, Inc.

January 2019 Page 130

ACPI Specification, Version 6.3 ACPI Software Programming Model

Byte Byte

Field Length |Offset

Description

FLUSH_SIZE 2 100 If WBINVD=0, the value of this field is the number of flush strides
that need to be read (using cacheable addresses) to completely
flush dirty lines from any processor’s memory caches. Notice
that the value in FLUSH_STRIDE is typically the smallest cache
line width on any of the processor’s caches (for more
information, see the FLUSH_STRIDE field definition). If the
system does not support a method for flushing the processor’s
caches, then FLUSH_SIZE and WBINVD are set to zero. Notice
that this method of flushing the processor caches has
limitations, and WBINVD=1 is the preferred way to flush the
processors caches. This value is typically at least 2 times the
cache size. The maximum allowed value for FLUSH_SIZE
multiplied by FLUSH_STRIDE is 2 MB for a typical maximum
supported cache size of 1 MB. Larger cache sizes are supported
using WBINVD=1.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems
are required to support the WBINVD function and indicate this
to OSPM by setting the WBINVD field = 1.

FLUSH_STRIDE 2 102 If WBINVD=0, the value of this field is the cache line width, in
bytes, of the processor’s memory caches. This value is typically
the smallest cache line width on any of the processor’s caches.
For more information, see the description of the FLUSH_SIZE
field.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems

are required to support the WBINVD function and indicate this
to OSPM by setting the WBINVD field = 1.

DUTY_OFFSET 1 104 The zero-based index of where the processor’s duty cycle setting
is within the processor’s P_CNT register.

UEFI Forum, Inc. January 2019 Page 131

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

DUTY_WIDTH

105

The bit width of the processor’s duty cycle setting value in the
P_CNT register. Each processor’s duty cycle setting allows the
software to select a nominal processor frequency below its
absolute frequency as defined by:

THTL_EN =1

Where:
BF—Base frequency
DC—Duty cycle setting

When THTL_EN is 0, the processor runs at its absolute BF. A
DUTY_WIDTH value of 0 indicates that processor duty cycle is
not supported and the processor continuously runs at its base
frequency.

DAY_ALRM

106

The RTC CMOS RAM index to the day-of-month alarm value. If
this field contains a zero, then the RTC day of the month alarm
feature is not supported. If this field has a non-zero value, then
this field contains an index into RTC RAM space that OSPM can
use to program the day of the month alarm. See Section 4.8.2.4
“Real Time Clock Alarm,” for a description of how the hardware
works.

MON_ALRM

107

The RTC CMOS RAM index to the month of year alarm value. If
this field contains a zero, then the RTC month of the year alarm
feature is not supported. If this field has a non-zero value, then
this field contains an index into RTC RAM space that OSPM can
use to program the month of the year alarm. If this feature is
supported, then the DAY_ALRM feature must be supported also.

CENTURY

108

The RTC CMOS RAM index to the century of data value (hundred
and thousand year decimals). If this field contains a zero, then
the RTC centenary feature is not supported. If this field has a
non-zero value, then this field contains an index into RTC RAM
space that OSPM can use to program the centenary field.

IAPC_BOOT_ARCH

109

IA-PC Boot Architecture Flags. See Table 5-35 for a description of
this field.

Reserved

111

Must be 0.

Flags

112

Fixed feature flags. See Table 5-34 for a description of this field.

RESET_REG

12

116

The address of the reset register represented in Generic Address
Structure format (See Section 4.8.3.6, “Reset Register,” for a
description of the reset mechanism.)

Note: Only System I/O space, System Memory space and PCl
Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

UEFI Forum, Inc.

January 2019 Page 132

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

RESET_VALUE

128

Indicates the value to write to the RESET_REG port to reset the
system. (See Section 4.8.3.6, “Reset Register,” for a description
of the reset mechanism.)

ARM_BOOT_ARCH

129

ARM Boot Architecture Flags. See Table 5-36 for a description of
this field.

FADT Minor Version

131

3

Minor Version of this FADT structure, in "Major.Minor" form,
where 'Major' is the value in the Major Version Field (Byte offset
8 in this table).

X_FIRMWARE_CTRL

132

Extended physical address of the FACS. If this field contains a
nonzero value which can be used by the OSPM, then the
FIRMWARE_CTRL field must be ignored by the OSPM. If the
HARDWARE_REDUCED_ACPI flag is set, and both this field and
the FIRMWARE_CTRL field are zero, there is no FACS available.

X_DSDT

140

Extended physical address of the DSDT. If this field contains a
nonzero value which can be used by the OSPM, then the DSDT
field must be ignored by the OSPM.

X_PM1a_EVT_BLK

12

148

Extended address of the PM1a Event Register Block, represented
in Generic Address Structure format. See Section 4.8.3.1, “PM1
Event Grouping,” for a hardware description layout of this
register block. This is a required field. If this field contains a
nonzero value which can be used by the OSPM, then the
PM1a_EVT_BLK field must be ignored by the OSPM.

X_PM1b_EVT_BLK

12

160

Extended address of the PM1b Event Register Block,
represented in Generic Address Structure format. See

Section 4.8.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. If
this field contains a nonzero value which can be used by the
OSPM, then the PM1b_EVT_BLK field must be ignored by the
OSPM.

X_PM1a_CNT_BLK

12

172

Extended address of the PM1a Control Register Block,
represented in Generic Address Structure format. See

Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This is a required field. If
this field contains a nonzero value which can be used by the
OSPM, then the PM1a_CNT_BLK field must be ignored by the
OSPM.

UEFI Forum, Inc.

January 2019 Page 133

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

X_PM1b_CNT BLK

12

184

Extended address of the PM1b Control Register Block,
represented in Generic Address Structure format. See

Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. If
this field contains a nonzero value which can be used by the
OSPM, then the PM1b_CNT_BLK field must be ignored by the
OSPM.

X_PM2_CNT_BLK

12

196

Extended address of the PM2 Control Register Block,
represented in Generic Address Structure format. See

Section 4.8.3.4 “PM2 Control (PM2_CNT),” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. If
this field contains a nonzero value which can be used by the
OSPM, then the PM2_CNT_BLK field must be ignored by the
OSPM.

X_PM_TMR_BLK

12

208

Extended address of the Power Management Timer Control
Register Block, represented in Generic Address Structure format.
See Section 4.8.3.3, “Power Management Timer (PM_TMR),” for
a hardware description layout of this register block. This field is
optional; if this register block is not supported, this field contains
zero. If this field contains a nonzero value which can be used by
the OSPM, then the PM_TMR_BLK field must be ignored by the
OSPM.

X_GPEO_BLK

12

220

Extended address of the General-Purpose Event O Register
Block, represented in Generic Address Structure format. See
Section 4.8.4.1 “General-Purpose Event Register Blocks,” for a
hardware description of this register block. This is an optional
field; if this register block is not supported, this field contains
zero. If this field contains a nonzero value which can be used by
the OSPM, then the GPEO_BLK field must be ignored by the
OSPM.ns a non-zero value then this field must be zero.

X_GPE1_BLK

12

232

Extended address of the General-Purpose Event 1 Register
Block, represented in Generic Address Structure format. See
Section 4.8.4.1 “General-Purpose Event Register Blocks,” for a
hardware description of this register block. This is an optional
field; if this register block is not supported, this field contains
zero. If this field contains a nonzero value which can be used by
the OSPM, then the GPE1_BLK field must be ignored by the
OSPM.

UEFI Forum, Inc.

January 2019 Page 134

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

SLEEP_CONTROL_REG

12

244

The address of the Sleep register, represented in Generic
Address Structure format (See Section 4.8.3.7, "Sleep Control
and Status Registers," for a description of the sleep mechanism.)

Note: Only System 1/O space, System Memory space and PCl
Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

SLEEP_STATUS_REG

12

256

The address of the Sleep status register, represented in Generic
Address Structure format (See Section 4.8.3.7, "Sleep Control
and Status Registers," for a description of the sleep mechanism.)

Note: Only System 1/0 space, System Memory space and PCI
Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

Hypervisor Vendor
Identity

268

64-bit identifier of hypervisor vendor. All bytes in this field are
considered part of the vendor identity.

These identifiers are defined independently by the vendors
themselves, usually following the name of the hypervisor
product.

Version information should NOT be included in this field - this
shall simply denote the vendor's name or identifier. Version
information can be communicated through a supplemental
vendor-specific hypervisor API.

Firmware implementers would place zero bytes into this field,
denoting that no hypervisor is present in the actual firmware.

UEFI Forum, Inc.

January 2019 Page 135

ACPI Specification, Version 6.3 ACPI Software Programming Model

Note: [Hypervisor Vendor Identity] A firmware implementer would place zero bytes into this field,
denoting that no hypervisor is present in the actual firmware.

Note: [Hypervisor Vendor Identity] A hypervisor vendor that presents ACPI tables of its own
construction to a guest (for 'virtual' firmware or its 'virtual’ platform), would provide its identity in
this field.

Note: [Hypervisor Vendor Identity] If a guest operating system is aware of this field it can consult it and
act on the result, based on whether it recognized the vendor and knows how to use the API that is
defined by the vendor.

Table 5-34 Fixed ACPI Description Table Fixed Feature Flags

Bit Bit

FACP -Flag Length |Offset

Description

WBINVD 1 0 Processor properly implements a functional equivalent to the
WBINVD IA-32 instruction.

If set, signifies that the WBINVD instruction correctly flushes the
processor caches, maintains memory coherency, and upon
completion of the instruction, all caches for the current
processor contain no cached data other than what OSPM
references and allows to be cached. If this flag is not set, the
ACPI OS is responsible for disabling all ACPI features that need
this function. This field is maintained for ACPI 1.0 processor
compatibility on existing systems. Processors in new ACPI-
compatible systems are required to support this function and
indicate this to OSPM by setting this field.

WBINVD_FLUSH 1 1 If set, indicates that the hardware flushes all caches on the
WBINVD instruction and maintains memory coherency, but does
not guarantee the caches are invalidated. This provides the
complete semantics of the WBINVD instruction, and provides
enough to support the system sleeping states. If neither of the
WBINVD flags is set, the system will require FLUSH_SIZE and
FLUSH_STRIDE to support sleeping states. If the FLUSH
parameters are also not supported, the machine cannot support
sleeping states S1, S2, or S3.

PROC_C1 1 2 A one indicates that the C1 power state is supported on all
processors.

P_LVL2_UP 1 3 A zero indicates that the C2 power state is configured to only
work on a uniprocessor (UP) system. A one indicates that the C2
power state is configured to work on a UP or multiprocessor
(MP) system.

UEFI Forum, Inc. January 2019 Page 136

ACPI Specification, Version 6.3

ACPI Software Programming Model

FACP - Flag

Bit
Length

Bit
Offset

Description

PWR_BUTTON

A zero indicates the power button is handled as a fixed feature
programming model; a one indicates the power button is
handled as a control method device. If the system does not have
a power button, this value would be “1” and no power button
device would be present.

Independent of the value of this field, the presence of a power
button device in the namespace indicates to OSPM that the
power button is handled as a control method device.

SLP_BUTTON

A zero indicates the sleep button is handled as a fixed feature
programming model; a one indicates the sleep button is handled
as a control method device.

If the system does not have a sleep button, this value would be
“1” and no sleep button device would be present.

Independent of the value of this field, the presence of a sleep
button device in the namespace indicates to OSPM that the
sleep button is handled as a control method device.

FIX_RTC

A zero indicates the RTC wake status is supported in fixed
register space; a one indicates the RTC wake status is not
supported in fixed register space.

RTC_S4

Indicates whether the RTC alarm function can wake the system
from the S4 state. The RTC must be able to wake the system
from an S1, S2, or S3 sleep state. The RTC alarm can optionally
support waking the system from the S4 state, as indicated by this
value.

TMR_VAL_EXT

A zero indicates TMR_VAL is implemented as a 24-bit value. A
one indicates TMR_VAL is implemented as a 32-bit value. The
TMR_STS bit is set when the most significant bit of the TMR_VAL
toggles.

DCK_CAP

A zero indicates that the system cannot support docking. A one
indicates that the system can support docking. Notice that this
flag does not indicate whether or not a docking station is
currently present; it only indicates that the system is capable of
docking.

RESET_REG_SUP

10

If set, indicates the system supports system reset via the FADT
RESET_REG as described in Section 4.8.3.6, “Reset Register.”

SEALED_CASE

11

System Type Attribute. If set indicates that the system has no
internal expansion capabilities and the case is sealed.

HEADLESS

12

System Type Attribute. If set indicates the system cannot detect
the monitor or keyboard / mouse devices.

CPU_SW_SLP

13

If set, indicates to OSPM that a processor native instruction must
be executed after writing the SLP_TYPx register.

UEFI Forum, Inc.

January 2019 Page 137

ACPI Specification, Version 6.3

ACPI Software Programming Model

FACP - Flag

Bit
Length

Bit
Offset

Description

PCI_EXP_WAK

14

If set, indicates the platform supports the PCIEXP_WAKE_STS bit
in the PM1 Status register and the PCIEXP_WAKE_EN bit in the
PM1 Enable register. This bit must be set on platforms
containing chipsets that implement PCl Express and supports
PM1 PCIEXP_WAK bits.

USE_PLATFORM_CLOCK

15

A value of one indicates that OSPM should use a platform
provided timer to drive any monotonically non-decreasing
counters, such as OSPM performance counter services. Which
particular platform timer will be used is OSPM specific, however,
it is recommended that the timer used is based on the following
algorithm: If the HPET is exposed to OSPM, OSPM should use the
HPET. Otherwise, OSPM will use the ACPl power management
timer. A value of one indicates that the platform is known to
have a correctly implemented ACPI power management timer.

A platform may choose to set this flag if a internal processor
clock (or clocks in a multi-processor configuration) cannot
provide consistent monotonically non-decreasing counters.

Note: If a value of zero is present, OSPM may arbitrarily choose
to use an internal processor clock or a platform timer clock for
these operations. That is, a zero does not imply that OSPM will
necessarily use the internal processor clock to generate a
monotonically non-decreasing counter to the system.

S4_RTC_STS_VALID

16

A one indicates that the contents of the RTC_STS flag is valid
when waking the system from S4.

See Table 4-15 — PM1 Status Registers Fixed Hardware Feature
Status Bits for more information. Some existing systems do not
reliably set this input today, and this bit allows OSPM to
differentiate correctly functioning platforms from platforms with
this errata.

REMOTE_POWER_ON_CA
PABLE

17

A one indicates that the platform is compatible with remote
power- on.

That is, the platform supports OSPM leaving GPE wake events
armed prior to an S5 transition. Some existing platforms do not
reliably transition to S5 with wake events enabled (for example,
the platform may immediately generate a spurious wake event
after completing the S5 transition). This flag allows OSPM to
differentiate correctly functioning platforms from platforms with
this type of errata.

UEFI Forum, Inc.

January 2019 Page 138

ACPI Specification, Version 6.3

ACPI Software Programming Model

FACP - Flag

Bit
Length

Bit
Offset

Description

FORCE_
APIC_CLUSTER_MODEL

18

A one indicates that all local APICs must be configured for the
cluster destination model when delivering interrupts in logical
mode.

If this bit is set, then logical mode interrupt delivery operation
may be undefined until OSPM has moved all local APICs to the
cluster model.

Note that the cluster destination model doesn’t apply to
Itanium™ Processor Family (IPF) local SAPICs. This bit is intended
for xAPIC based machines that require the cluster destination
model even when 8 or fewer local APICs are present in the
machine.

FORCE_APIC_PHYSICAL_D
ESTINATION_MODE

19

A one indicates that all local xAPICs must be configured for
physical destination mode. If this bit is set, interrupt delivery
operation in logical destination mode is undefined. On machines
that contain fewer than 8 local xAPICs or that do not use the
XAPIC architecture, this bit is ignored.

HW_REDUCED_ACPI*

20

A one indicates that the Hardware-Reduced ACPI (section 4.1) is
implemented, therefore software-only alternatives are used for
supported fixed-features defined in chapter 4.

LOW_POWER_SO_IDLE_C
APABLE

21

A one informs OSPM that the platform is able to achieve power
savings in SO similar to or better than those typically achieved in
S3. In effect, when this bit is set it indicates that the system will
achieve no power benefit by making a sleep transition to S3.

Reserved

10

22

* The description of HW_REDUCED_ACPI provided here applies to ACPI specifications 5.0 and later.

5.2.9.1 Preferred PM Profile System Types

The following descriptions of preferred power management profile system types are to be used as a
guide for setting the Preferred_PM_Profile field in the FADT. OSPM can use this field to set default power
management policy parameters during OS installation.

Desktop

A single user, full featured, stationary computing device that resides on or near an individual’s
work area. Most often contains one processor. Must be connected to AC power to function. This
device is used to perform work that is considered mainstream corporate or home computing (for
example, word processing, Internet browsing, spreadsheets, and so on).

Mobile

A single-user, full-featured, portable computing device that is capable of running on batteries or
other power storage devices to perform its normal functions. Most often contains one processor.
This device performs the same task set as a desktop. However it may have limitations dues to its
size, thermal requirements, and/or power source life.

UEFI Forum, Inc.

January 2019 Page 139

ACPI Specification, Version 6.3 ACPI Software Programming Model

Workstation

A single-user, full-featured, stationary computing device that resides on or near an individual’s
work area. Often contains more than one processor. Must be connected to AC power to function.
This device is used to perform large quantities of computations in support of such work as CAD/
CAM and other graphics-intensive applications.

Enterprise Server

A multi-user, stationary computing device that frequently resides in a separate, often specially
designed, room. Will almost always contain more than one processor. Must be connected to AC
power to function. This device is used to support large-scale networking, database,
communications, or financial operations within a corporation or government.

SOHO Server

A multi-user, stationary computing device that frequently resides in a separate area or room in a
small or home office. May contain more than one processor. Must be connected to AC power to
function. This device is generally used to support all of the networking, database,
communications, and financial operations of a small office or home office.

Appliance PC

A device specifically designed to operate in a low-noise, high-availability environment such as a
consumer’s living rooms or family room. Most often contains one processor. This category also
includes home Internet gateways, Web pads, set top boxes and other devices that support ACPI.
Must be connected to AC power to function. Normally they are sealed case style and may only
perform a subset of the tasks normally associated with today’s personal computers.

Performance Server

A multi-user stationary computing device that frequently resides in a separate, often specially
designed room. Will often contain more than one processor. Must be connected to AC power to
function. This device is used in an environment where power savings features are willing to be
sacrificed for better performance and quicker responsiveness.

Tablet

A full-featured, highly mobile computing device which resembles writing tablets and which users
interact with primarily through a touch interface. The touch digitizer is the primary user input
device, although a keyboard and/or mouse may be present. Tablet devices typically run on
battery power and are generally only plugged into AC power in order to charge. This device
performs many of the same tasks as Mobile; however battery life expectations of Tablet devices

generally require more aggressive power savings especially for managing display and touch
components.

5.2.9.2 System Type Attributes

This set of flags is used by the OS to assist in determining assumptions about power and device
management. These flags are read at boot time and are used to make decisions about power
management and device settings. For example, a system that has the SEALED_CASE bit set may take a
very aggressive low noise policy toward thermal management. In another example an OS might not load
video, keyboard or mouse drivers on a HEADLESS system.

UEFI Forum, Inc. January 2019 Page 140

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.9.3 IA-PC Boot Architecture Flags

This set of flags is used by an OS to guide the assumptions it can make in initializing hardware on IA-PC
platforms. These flags are used by an OS at boot time (before the OS is capable of providing an operating
environment suitable for parsing the ACPI namespace) to determine the code paths to take during boot.
In IA-PC platforms with reduced legacy hardware, the OS can skip code paths for legacy devices if none
are present. For example, if there are no ISA devices, an OS could skip code that assumes the presence of
these devices and their associated resources. These flags are used independently of the ACPI namespace.
The presence of other devices must be described in the ACPl namespace as specified in Section 6,
“Configuration.” These flags pertain only to IA-PC platforms. On other system architectures, the entire
field should be set to 0.

Table 5-35 Fixed ACPI Description Table Boot IA-PC Boot Architecture Flags

Bit Bit

length |offset Description

IAPC_BOOT_ARCH

LEGACY_DEVICES 1 0 If set, indicates that the motherboard supports user-visible
devices on the LPC or ISA bus. User-visible devices are devices
that have end-user accessible connectors (for example, LPT
port), or devices for which the OS must load a device driver so
that an end-user application can use a device. If clear, the OS
may assume there are no such devices and that all devices in
the system can be detected exclusively via industry standard
device enumeration mechanisms (including the ACPI
namespace).

8042 1 1 If set, indicates that the motherboard contains support for a
port 60 and 64 based keyboard controller, usually implemented
as an 8042 or equivalent micro-controller.

VGA Not Present 1 2 If set, indicates to OSPM that it must not blindly probe the VGA
hardware (that responds to MMIO addresses AOOOOh-BFFFFh
and 10 ports 3B0h-3BBh and 3COh-3DFh) that may cause
machine check on this system. If clear, indicates to OSPM that it
is safe to probe the VGA hardware.

MSI Not Supported 1 3 If set, indicates to OSPM that it must not enable Message
Signaled Interrupts (MSI) on this platform.

PCle ASPM Controls 1 4 If set, indicates to OSPM that it must not enable OSPM ASPM
control on this platform.

CMOS RTC Not 1 5 If set, indicates that the CMOS RTC is either not implemented,

Present or does not exist at the legacy addresses. OSPM uses the

Control Method Time and Alarm Namespace device instead.

Reserved 10 6 Must be 0.

5.2.9.4 ARM Architecture boot flags

These flags are used by an OS at boot time (before the OS is capable of providing an operating
environment suitable for parsing the ACPI namespace) to determine the code paths to take during boot.
For the PSCI flags, specifically, the flags describe if the platform is compliant with the PSCI specification.

UEFI Forum, Inc. January 2019 Page 141

ACPI Specification, Version 6.3 ACPI Software Programming Model

The PSCI specification is found at Links to ACPI-Related Document" (http://uefi.org/acpi) under the
heading_PSCI Specification.

The ARM Architecture boot flags are described in Table 5-36:

Table 5-36 Fixed ACPI Description Table ARM Boot Architecture Flags

ARM_BOOT ARCH E:ng " g:ffset Description

PSCI_COMPLIANT 1 0 1if PSCl is implemented.

PSCI_USE_HVC 1 1 1 if HVC must be used as the PSCI conduit.instead of SMC.
Reserved 14 2 This value is zero.

5.2.10 Firmware ACPI Control Structure (FACS)

The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the platform boot
firmware reserves for ACPI usage. This structure is optional if and only if the HARDWARE_REDUCED_ACPI
flag in the FADT is set. The FACS is passed to an ACPl-compatible OS using the FADT. For more
information about the FADT FIRMWARE_CTRL field, see Table 5.2.9, “Fixed ACPI Description Table
(FADT).”

The platform boot firmware aligns the FACS on a 64-byte boundary anywhere within the system’s
memory address space. The memory where the FACS structure resides must not be reported as system
AddressRangeMemory in the system address map. For example, the E820 address map reporting
interface would report the region as AddressRangeReserved. For more information about system address
map reporting interfaces, see Section 15, “System Address Map Interfaces.”

Table 5-37 Firmware ACPI Control Structure (FACS)

Byte Byte
Field Length |Offset |Description
Signature 4 0 ‘FACS’
Length 4 4 Length, in bytes, of the entire Firmware ACPI Control Structure.
This value is 64 bytes or larger.

UEFI Forum, Inc. January 2019 Page 142

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

Hardware Signature

4

The value of the system's "hardware signature" at last boot. This
value is calculated by the platform boot firmware on a best effort
basis to indicate the base hardware configuration of the system
such that different base hardware configurations can have
different hardware signature values. Although memory described
using or EfiPersistentMemory (Section 15) iis not saved/restored
by OS during S4, any change to persistent memory that impacts
any OS visible firmware interfaces must change hardware
signature. Any change to the data in Persistent Memory itself
should not be included in computing the hardware signature.

OSPM uses this information in waking from an S4 state, by
comparing the current hardware signature to the signature values
saved in the non-volatile sleep image. If the values are not the
same, OSPM assumes that the saved non-volatile image is from a
different hardware configuration and cannot be restored.

Firmware Waking
Vector

12

This field is superseded by the X_Firmware_Waking_Vector field.

The 32-bit address field where OSPM puts its waking vector.
Before transitioning the system into a global sleeping state, OSPM
fills in this field with the physical memory address of an OS-specific
wake function. During POST, the platform firmware first checks if
the value of the X_Firmware_Waking_Vector field is non-zero and
if so transfers control to OSPM as outlined in the
X_Firmware_Waking_vector field description below. If the
X_Firmware_Waking_Vector field is zero then the platform
firmware checks the value of this field and if it is non-zero,
transfers control to the specified address.

On PCs, the wake function address is in memory below 1 MB and
the control is transferred while in real mode. OSPM’s wake
function restores the processors’ context.

For IA-PC platforms, the following example shows the relationship
between the physical address in the Firmware Waking Vector and
the real mode address the BIOS jumps to. If, for example, the
physical address is 0x12345, then the BIOS must jump to real
mode address 0x1234:0x0005. In general this relationship is

Real-mode address =
Physical address>>4 : Physical address and 0xO00F

Notice that on IA-PC platforms, A20 must be enabled when the
BIOS jumps to the real mode address derived from the physical
address stored in the Firmware Waking Vector.

UEFI Forum, Inc.

January 2019 Page 143

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

Global Lock

16

This field contains the Global Lock used to synchronize access to
shared hardware resources between the OSPM environment and
an external controller environment (for example, the SMI
environment). This lock is owned exclusively by either OSPM or
the firmware at any one time. When ownership of the lock is
attempted, it might be busy, in which case the requesting
environment exits and waits for the signal that the lock has been
released. For example, the Global Lock can be used to protect an
embedded controller interface such that only OSPM or the
firmware will access the embedded controller interface at any one
time. See Section 5.2.10.1, “Global Lock,” for more information on
acquiring and releasing the Global Lock.

Flags

20

Firmware control structure flags. See Table 5-38 for a description
of this field.

UEFI Forum, Inc.

January 2019 Page 144

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

X Firmware Waking
Vector

8

24

64-bit physical address of OSPM’s Waking Vector.

Before transitioning the system into a global sleeping state, OSPM
fills in this field and the OSPM Flags field to describe the waking
vector. OSPM populates this field with the physical memory
address of an OS-specific wake function. During POST, the
platform firmware checks if the value of this field is non-zero and if
so transfers control to OSPM by jumping to this address after
creating the appropriate execution environment, which must be
configured as follows:

For 64-bit Itanium™ Processor Family (IPF) -based platforms:
Interrupts must be disabled

The processor must have psr.i set to 0. See the Intel® Itanium W
Architecture Software Developer’s Manual for more information.
Memory address translation must be disabled

The processor must have psr.it, psr.dt, and psr.rt set to 0. See the

Intel® Itanium ™ Architecture Software Developer’s Manual for
more information.

For 1A 32 and x64 platforms, platform firmware is required to
support a 32 bit execution environment. Platform firmware can
additionally support a 64 bit execution environment. If platform
firmware supports a 64 bit execution environment, firmware
inspects the OSPM Flags during POST. If the 64BIT_WAKE_F flag is
set, the platform firmware creates a 64 bit execution environment.
Otherwise, the platform firmware creates a 32 bit execution
environment.

For 64 bit execution environment:
Interrupts must be disabled
EFLAGS.IF setto 0

Long mode enabled

Paging mode is enabled and physical memory for waking vector is
identity mapped (virtual address equals physical address)

Waking vector must be contained within one physical page
Selectors are set to be flat and are otherwise not used

For 32 bit execution environment:

Interrupts must be disabled

EFLAGS.IF setto O

Memory address translation / paging must be disabled

4 GB flat address space for all segment registers

Version

32

2—Version of this table

Reserved

33

This value is zero.

UEFI Forum, Inc.

January 2019 Page 145

ACPI Specification, Version 6.3 ACPI Software Programming Model
Byte Byte
Field Length |Offset |Description
OSPM Flags 4 36 OSPM enabled firmware control structure flags. Platform
firmware must initialize this field to zero. See Table 5-39 for a
description of the OSPM control structure feature flags.
Reserved 24 40 This value is zero.
Table 5-38 Firmware Control Structure Feature Flags
Bit Bit iy
FACS - Flag Langth Offset Description
S4BIOS_F 1 0 Indicates whether the platform supports S4BIOS_REQ. If
S4BIOS_REQ is not supported, OSPM must be able to save and
restore the memory state in order to use the S4 state.
64BIT_WAKE_SUPPORT | 1 1 Indicates that the platform firmware supports a 64 bit execution
ED_F environment for the waking vector. When set and the OSPM
additionally set 64BIT_WAKE_F, the platform firmware will create
a 64 bit execution environment before transferring control to the
X_Firmware_Waking_Vector.
Reserved 30 2 The value is zero.
Table 5-39 OSPM Enabled Firmware Control Structure Feature Flags
Bit Bit .
FACS - Flag Length Offset Description
64BIT_WAKE_F 1 0 OSPM sets this bit to indicate to platform firmware that the
X_Firmware_Waking_Vector requires a 64 bit execution
environment.
This flag can only be set if platform firmware sets
64BIT_WAKE_SUPPORTED_F in the FACS flags field.
This bit field has no affect on Itanium™ Processor Family (IPF) -
based platforms, which require a 64 bit execution environment.
Reserved 31 1 The value is zero.

5.2.10.1 Global Lock

The purpose of the ACPI Global Lock is to provide mutual exclusion between the host OS and the platform
runtime firmware. The Global Lock is a 32-bit (DWORD) value in read/write memory located within the
FACS and is accessed and updated by both the OS environment and the SMI environment in a defined
manner to provide an exclusive lock. Note: this is not a pointer to the Global Lock, it is the actual memory
location of the lock. The FACS and Global Lock may be located anywhere in physical memory.

By convention, this lock is used to ensure that while one environment is accessing some hardware, the
other environment is not. By this convention, when ownership of the lock fails because the other
environment owns it, the requesting environment sets a “pending” state within the lock, exits its attempt
to acquire the lock, and waits for the owning environment to signal that the lock has been released

UEFI Forum, Inc.

January 2019 Page 146

ACPI Specification, Version 6.3 ACPI Software Programming Model

before attempting to acquire the lock again. When releasing the lock, if the pending bit in the lock is set
after the lock is released, a signal is sent via an interrupt mechanism to the other environment to inform
it that the lock has been released. During interrupt handling for the “lock released” event within the
corresponding environment, if the lock ownership were still desired an attempt to acquire the lock would
be made. If ownership is not acquired, then the environment must again set “pending” and wait for
another “lock release” signal.

The table below shows the encoding of the Global Lock DWORD in memory.

Table 5-40 Global Lock Structure within the FACS

Field Bit Length Bit Offset Description

Pending 1 0 Non-zero indicates that a request for ownership of the Global
Lock is pending.

Owned 1 1 Non-zero indicates that the Global Lock is Owned.

Reserved 30 2 Reserved for future use.

The following code sequence is used by both OSPM and the firmware to acquire ownership of the Global
Lock. If non-zero is returned by the function, the caller has been granted ownership of the Global Lock
and can proceed. If zero is returned by the function, the caller has not been granted ownership of the
Global Lock, the “pending” bit has been set, and the caller must wait until it is signaled by an interrupt
event that the lock is available before attempting to acquire access again.

Note: In the examples that follow, the “GlobalLock” variable is a pointer that has been previously
initialized to point to the 32-bit Global Lock location within the FACS.

AcquireGloballLock:
mov ecx, GloballLock ; ecx = Address of Global Lock in FACS
acqlo: mov eax, [ecx] ; Get current value of Global Lock
mov edx, eax
and edx, not 1 ; Clear pending bit
bts edx, 1 ; Check and set owner bit
adc edx, O ; 1T owned, set pending bit

lock cmpxchg dword ptr[ecx], edx ; Attempt to set new value
jnz short acqlO ; If not set, try again

cmp dl, 3 ; Was it acquired or marked pending?
sbb eax, eax ; acquired = -1, pending = 0
ret

The following code sequence is used by OSPM and the firmware to release ownership of the Global Lock.
If non-zero is returned, the caller must raise the appropriate event to the other environment to signal
that the Global Lock is now free. Depending on the environment, this signaling is done by setting the
either the GBL_RLS or BIOS_RLS within their respective hardware register spaces. This signal only occurs
when the other environment attempted to acquire ownership while the lock was owned.

UEFI Forum, Inc. January 2019 Page 147

ACPI Specification, Version 6.3 ACPI Software Programming Model

ReleaseGloballLock:
mov ecx, GloballLock ; ecx = Address of Global Lock in FACS
rell0: mov eax, [ecx] ; Get current value of Global Lock

mov edx, eax
and edx, not 03h ; Clear owner and pending field

lock cmpxchg dword ptr[ecx], edx ; Attempt to set it
jnz short rell0 ; If not set, try again

and eax, 1 ; Was pending set?

; IT one is returned (we were pending) the caller must signal that the
; lock has been released using either GBL_RLS or BIOS RLS as appropriate

ret

Although using the Global Lock allows various hardware resources to be shared, it is important to notice
that its usage when there is ownership contention could entail a significant amount of system overhead
as well as waits of an indeterminate amount of time to acquire ownership of the Global Lock. For this
reason, implementations should try to design the hardware to keep the required usage of the Global Lock
to a minimum.

The Global Lock is required whenever a logical register in the hardware is shared. For example, if bit 0 is
used by ACPI (OSPM) and bit 1 of the same register is used by SMI, then access to that register needs to

be protected under the Global Lock, ensuring that the register’s contents do not change from underneath
one environment while the other is making changes to it. Similarly if the entire register is shared, as the

case might be for the embedded controller interface, access to the register needs to be protected under
the Global Lock.

5.2.11 Definition Blocks

A Definition Block consists of data in AML format (see Section 5.4 “Definition Block Encoding”) and
contains information about hardware implementation details in the form of AML objects that contain
data, AML code, or other AML objects. The top-level organization of this information after a definition
block is loaded is name-tagged in a hierarchical namespace.

OSPM “loads” or “unloads” an entire definition block as a logical unit. OSPM will load a definition block
either as a result of executing the AML Load() or LoadTable() operator or encountering a table definition
during initialization. During initialization, OSPM loads the Differentiated System Description Table
(DSDT), which contains the Differentiated Definition Block, using the DSDT pointer retrieved from the
FADT. OSPM will load other definition blocks during initialization as a result of encountering Secondary
System Description Table (SSDT) definitions in the RSDT/XSDT. The DSDT and SSDT are described in the
following sections.

As mentioned, the AML Load() and LoadTable() operators make it possible for a Definition Block to load
other Definition Blocks, either statically or dynamically, where they in turn can either define new system
attributes or, in some cases, build on prior definitions. Although this gives the hardware the ability to vary
widely in implementation, it also confines it to reasonable boundaries. In some cases, the Definition Block

UEFI Forum, Inc. January 2019 Page 148

ACPI Specification, Version 6.3 ACPI Software Programming Model

format can describe only specific and well-understood variances. In other cases, it permits
implementations to be expressible only by means of a specified set of “built in” operators. For example,
the Definition Block has built in operators for 1/0O space.

In theory, it might be possible to define something like PCI configuration space in a Definition Block by
building it from I/O space, but that is not the goal of the definition block. Such a space is usually defined
as a “built in” operator.

Some AML operators perform simple functions, and others encompass complex functions. The power of
the Definition block comes from its ability to allow these operations to be glued together in numerous
ways, to provide functionality to OSPM.

The AML operators defined in this specification are intended to allow many useful hardware designs to
be easily expressed, not to allow all hardware designs to be expressed.

Note: To accommodate addressing beyond 32 bits, the integer type was expanded to 64 bits in ACPI 2.0,
see Section 19.3.5, “ASL Data Types”. Existing ACPI definition block implementations may contain an
inherent assumption of a 32-bit integer width. Therefore, to maintain backwards compatibility, OSPM
uses the Revision field, in the header portion of system description tables containing Definition Blocks, to
determine whether integers declared within the Definition Block are to be evaluated as 32-bit or 64-bit
values. A Revision field value greater than or equal to 2 signifies that integers declared within the
Definition Block are to be evaluated as 64-bit values. The ASL writer specifies the value for the Definition
Block table header’s Revision field via the ASL Definition Block’s ComplianceRevision field. See

Section 19.6.28, “DefinitionBlock (Declare Definition Block)”, for more information. It is the responsibility
of the ASL writer to ensure the Definition Block’s compatibility with the corresponding integer width
when setting the ComplianceRevision field.

5.2.11.1 Differentiated System Description Table (DSDT)

The Differentiated System Description Table (DSDT) is part of the system fixed description. The DSDT is
comprised of a system description table header followed by data in Definition Block format. See

Section 5.2.11, “Definition Blocks,” for a description of Definition Blocks. During initialization, OSPM finds
the pointer to the DSDT in the Fixed ACPI Description Table (using the FADT’s DSDT or X_DSDT fields) and
then loads the DSDT to create the ACPI Namespace.

Table 5-41 Differentiated System Description Table Fields (DSDT)

. Byte Byte L.
Field Length |Offset Description
Header
Signature 4 0 ‘DSDT’ Signature for the Differentiated System Description
Table.
Length 4 4 Length, in bytes, of the entire DSDT (including the header).
Revision 1 8 2. This field also sets the global integer width for the AML
interpreter. Values less than two will cause the interpreter to
use 32-bit integers and math. Values of two and greater will
cause the interpreter to use full 64-bit integers and math.
Checksum 1 9 Entire table must sum to zero.

UEFI Forum, Inc. January 2019 Page 149

ACPI Specification, Version 6.3 ACPI Software Programming Model

Field f::;th (B):fft:et Description
OEMID 6 10 OEM ID
OEM Table ID 8 16 The manufacture model ID.
OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID for the ASL Compiler.
Creator Revision |4 32 Revision number of the ASL Compiler.
Definition Block n 36 n bytes of AML code (see Section 5.4, “Definition Block
Encoding”)

5.2.11.2 Secondary System Description Table (SSDT)

Secondary System Description Tables (SSDT) are a continuation of the DSDT. The SSDT is comprised of a
system description table header followed by data in Definition Block format. There can be multiple SSDTs
present. After OSPM loads the DSDT to create the ACPI Namespace, each secondary system description
table listed in the RSDT/XSDT with a unique OEM Table ID is loaded.

Note: Additional tables can only add data; they cannot overwrite data from previous tables.

This allows the OEM to provide the base support in one table and add smaller system options in other
tables. For example, the OEM might put dynamic object definitions into a secondary table such that the
firmware can construct the dynamic information at boot without needing to edit the static DSDT. A SSDT
can only rely on the DSDT being loaded prior to it.

Table 5-42 Secondary System Description Table Fields (SSDT)

Field EZ;egth g)f,ftseet Description
Header
Signature 4 0 ‘SSDT’ Signature for the Secondary System Description Table.
Length 4 4 Length, in bytes, of the entire SSDT (including the header).
Revision 1 8 2
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 The manufacture model ID.
OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID for the ASL Compiler.
Creator Revision |4 32 Revision number of the ASL Compiler.
Definition Block n 36 n bytes of AML code (see Section 5.4, “Definition Block
Encoding”)

UEFI Forum, Inc. January 2019 Page 150

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.11.3 Persistent System Description Table (PSDT)

The table signature, “PSDT” refers to the Persistent System Description Table (PSDT) defined in the ACPI
1.0 specification. The PSDT was judged to provide no specific benefit and as such has been deleted from
follow-on versions of the ACPI specification. OSPM will evaluate a table with the “PSDT” signature in like
manner to the evaluation of an SSDT as described in Section 5.2.11.2, “Secondary System Description
Table.”

5.2.12 Multiple APIC Description Table (MADT)

The ACPIl interrupt model describes all interrupts for the entire system in a uniform interrupt model
implementation. Supported interrupt models include the PC-AT-compatible dual 8259 interrupt
controller, for Intel processor-based systems, the Intel Advanced Programmable Interrupt Controller
(APIC) and Intel Streamlined Advanced Programmable Interrupt Controller (SAPIC), and, for ARM
processor-based systems, the Generic Interrupt Controller (GIC). The choice of the interrupt model(s) to
support is up to the platform designer. The interrupt model cannot be dynamically changed by the
system firmware; OSPM will choose which model to use and install support for that model at the time of
installation. If a platform supports multiple models, an OS will install support for only one of the models;
it will not mix models. Multi-boot capability is a feature in many modern operating systems. This means
that a system may have multiple operating systems or multiple instances of an OS installed at any one
time. Platform designers must allow for this.

This section describes the format of the Multiple APIC Description Table (MADT), which provides OSPM
with information necessary for operation on systems with APIC, SAPIC or GIC implementations.

ACPI represents all interrupts as "flat" values known as global system interrupts. Therefore to support
APICs, SAPICs or GICs on an ACPl-enabled system, each used interrupt input must be mapped to the
global system interrupt value used by ACPI. See Section 5.2.13. Global System Interrupts,” for a
description of Global System Interrupts.

Additional support is required to handle various multi-processor functions that implementations might
support (for example, identifying each processor's local interrupt controller ID).

All addresses in the MADT are processor-relative physical addresses.

Table 5-43 Multiple APIC Description Table (MADT) Format

Field E::Z " g‘f’::et Description
Header
Signature 4 0 ‘APIC’ Signature for the Multiple APIC Description Table.
Length 4 4 Length, in bytes, of the entire MADT.
Revision 1 8 5
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the MADT, the table ID is the manufacturer model ID.
OEM Revision 4 24 OEM revision of MADT for supplied OEM Table ID.

UEFI Forum, Inc. January 2019 Page 151

ACPI Specification, Version 6.3

ACPI Software Programming Model

. Byte Byte iy
Field Length | Offset Description
Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.
Creator Revision |4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.
Local Interrupt 4 36 The 32-bit physical address at which each processor can access its local
Controller Address interrupt controller.
Flags 4 40 Multiple APIC flags. See Table 5-44 for a description of this field.
Interrupt — 44 A list of interrupt controller structures for this implementation. This list
Controller will contain all of the structures from Table 5-45 needed to support this
Structure([n] platform. These structures are described in the following sections.
Table 5-44 Multiple APIC Flags
Multiple APIC Bit Bit Descriotion
Flags Length |Offset P
PCAT_COMPAT 1 0 A one indicates that the system also has a PC-AT-compatible dual-8259
setup. The 8259 vectors must be disabled (that is, masked) when
enabling the ACPI APIC operation.
Reserved 31 1 This value is zero.

Immediately after the Flags value in the MADT is a list of interrupt controller structures that declare the
interrupt features of the machine. The first byte of each structure declares the type of that structure and
the second byte declares the length of that structure.

Table 5-45 Interrupt Controller Structure Types
Value |Description I;':noizs:;r object MAT for an I:IO Reference
a APIC object
0 Processor Local APIC yes no Section 5.2.12.2
1 1/0 APIC no yes Section 5.2.12.3
2 Interrupt Source Override no yes Section 5.2.12.5
3 Non-maskable Interrupt no yes Section 5.2.12.6
(NMI) Source
4 Local APIC NMI yes no Section 5.2.12.7
5 Local APIC Address Override | no no Section 5.2.12.8
6 1/0 SAPIC no yes Section 5.2.12.9
7 Local SAPIC yes no Section 5.2.12.9
8 Platform Interrupt Sources no yes Section 5.2.12.11
9 Processor Local x2APIC yes no Section 5.2.12.12

UEFI Forum, Inc.

January 2019

Page 152

ACPI Specification, Version 6.3 ACPI Software Programming Model

OxA Local x2APIC NMI yes no Section 5.2.12.13
0xB GIC CPU Interface (GICC) yes no Section 5.2.12.14
0xC GIC Distributor (GICD) no no Section 5.2.12.15
0OxD GIC MSI Frame no no Section 5.2.12.16
OxE GIC Redistributor (GICR) no no Section 5.2.12.17
OxF GIC Interrupt Translation no no Section 5.2.12.18
Service (ITS)
0x10- | Reserved. OSPM skips no no
Ox7F structures of the reserved
type.
0x80- | Reserved for OEM use no no
OxFF

@ When _MAT (see Section 6.2.10) appears under a Processor Device object (see Section 8.4), OSPM
processes the Interrupt Controller Structures returned by _MAT with the types labeled "yes" and ignores
other types.

b When _MAT appears under an /0 APIC Device (see Section 9.17), OSPM processes the Interrupt
Controller Structures returned by _MAT with the types labeled "yes" and ignores other types.

5.2.12.1 MADT Processor Local APIC / SAPIC Structure Entry Order

OSPM implementations may limit the number of supported processors on multi-processor platforms.
OSPM executes on the boot processor to initialize the platform including other processors. To ensure
that the boot processor is supported post initialization, two guidelines should be followed. The first is
that OSPM should initialize processors in the order that they appear in the MADT. The second is that

platform firmware should list the boot processor as the first processor entry in the MADT.

The advent of multi-threaded processors yielded multiple logical processors executing on common
processor hardware. ACPI defines logical processors in an identical manner as physical processors. To
ensure that non multi-threading aware OSPM implementations realize optimal performance on
platforms containing multi-threaded processors, two guidelines should be followed. The first is the same
as above, thatis, OSPM should initialize processors in the order that they appear in the MADT. The
second is that platform firmware should list the first logical processor of each of the individual multi-
threaded processors in the MADT before listing any of the second logical processors. This approach
should be used for all successive logical processors.

Failure of OSPM implementations and platform firmware to abide by these guidelines can result in both
unpredictable and non optimal platform operation.

5.2.12.2 Processor Local APIC Structure

When using the APIC interrupt model, each processor in the system is required to have a Processor Local
APIC record in the MADT, and a processor device object in the DSDT. OSPM does not expect the
information provided in this table to be updated if the processor information changes during the lifespan
of an OS boot. While in the sleeping state, processors are not allowed to be added, removed, nor can
their APIC ID or Flags change. When a processor is not present, the Processor Local APIC information is
either not reported or flagged as disabled.

UEFI Forum, Inc. January 2019 Page 153

ACPI Specification, Version 6.3

ACPI Software Programming Model

Table 5-46 Processor Local APIC Structure

. Byte Byte .
Fiel D
ield Length |Offset escription
Type 1 0 0 Processor Local APIC structure
Length 1 1 8
ACPI Processor |1 2 The OS associates this Local APIC Structure with a processor object in the
uib namespace when the _UID child object of the processor's device object (or
the Processorld listed in the Processor declaration operator) evaluates to a
numeric value that matches the numeric value in this field. Note that the
use of the Processor declaration operator is deprecated. See the
compatibility note in Section 5.2.12.2 and see Section 19.6.108, “Processor
(Declare Processor).”
APICID 1 3 The processor’s local APIC ID.
Flags 4 4 Local APIC flags. See Table 5-47 for a description of this field.

Table 5-47 Local APIC Flags

Bit Bit L

LocalAPIC Flags Length |Offset Description

Enabled 1 0 If this bit is set the processor is ready for use.
If this bit is clear and the Online Capable bit is set, system hardware
supports enabling this processor during OS runtime.
If this bit is clear and the Online Capable bit is also clear, this processor is
unusable, and OSPM shall ignore the contents of the Processor Local
APIC Structure.

Online Capbable 1 1 The information conveyed by this bit depends on the value of the
Enabled bit.
If the Enabled bit is set, this bit is reserved and must be zero.
Otherwise, if this this bit is set, system hardware supports enabling this
processor during OS runtime.

Reserved 30 2 Must be zero.

5.2.12.3 1/0 APIC Structure

In an APIC implementation, there are one or more I/O APICs. Each I/O APIC has a series of interrupt
inputs, referred to as INTIn, where the value of n is from 0 to the number of the last interrupt input on
the I/O APIC. The I/O APIC structure declares which global system interrupts are uniquely associated with
the 1/O APIC interrupt inputs. There is one I/O APIC structure for each I/O APIC in the system. For more
information on global system interrupts see Section 5.2.13, “Global System Interrupts.”

Table 5-48 1/0 APIC Structure

. Byte Byte s
Field Length |Offset Description
Type 1 0 1 I/0 APIC structure

UEFI Forum, Inc.

January 2019 Page 154

ACPI Specification, Version 6.3 ACPI Software Programming Model

Length 1 1 12

I/O APIC ID 1 2 The 1/0 APIC’s ID.

Reserved 1 3 0

1/O APIC Address | 4 4 The 32-bit physical address to access this I/O APIC. Each I/O APIC resides
at a unique address.

Global System 4 8 The global system interrupt number where this I/O APIC’s interrupt

Interrupt Base inputs start. The number of interrupt inputs is determined by the 1/0
APIC's Max Redir Entry register.

5.2.12.4 Platforms with APIC and Dual 8259 Support

Systems that support both APIC and dual 8259 interrupt models must map global system interrupts 0-15
to the 8259 IRQs 0-15, except where Interrupt Source Overrides are provided (see Section 5.2.12.5,
“Interrupt Source Override Structure” below). This means that I/O APIC interrupt inputs 0-15 must be
mapped to global system interrupts 0-15 and have identical sources as the 8259 IRQs 0-15 unless
overrides are used. This allows a platform to support OSPM implementations that use the APIC model as
well as OSPM implementations that use the 8259 model (OSPM will only use one model; it will not mix
models).

When OSPM supports the 8259 model, it will assume that all interrupt descriptors reporting global
system interrupts 0-15 correspond to 8259 IRQs. In the 8259 model all global system interrupts greater
than 15 are ignored. If OSPM implements APIC support, it will enable the APIC as described by the APIC
specification and will use all reported global system interrupts that fall within the limits of the interrupt
inputs defined by the 1I/O APIC structures. For more information on hardware resource configuration see
Section 6, “Configuration.”

5.2.12.5 Interrupt Source Override Structure

Interrupt Source Overrides are necessary to describe variances between the IA-PC standard dual 8259
interrupt definition and the platform’s implementation.

It is assumed that the ISA interrupts will be identity-mapped into the first I/O APIC sources. Most existing
APIC designs, however, will contain at least one exception to this assumption. The Interrupt Source
Override Structure is provided in order to describe these exceptions. It is not necessary to provide an
Interrupt Source Override for every ISA interrupt. Only those that are not identity-mapped onto the APIC
interrupt inputs need be described.

Note: This specification only supports overriding ISA interrupt sources.

For example, if your machine has the ISA Programmable Interrupt Timer (PIT) connected to ISA IRQ 0, but
in APIC mode, it is connected to I/O APIC interrupt input 2, then you would need an Interrupt Source
Override where the source entry is ‘0’ and the Global System Interrupt is ‘2.

Table 5-49 Interrupt Source Override Structure

. Byte Byte ..
Fiel D
ield Length |Offset escription
Type 1 0 2 Interrupt Source Override

UEFI Forum, Inc. January 2019 Page 155

ACPI Specification, Version 6.3

ACPI Software Programming Model

Length 1 1 10

Bus 1 2 0 Constant, meaning ISA

Source 1 3 Bus-relative interrupt source (IRQ)

Global System 4 4 The Global System Interrupt that this bus-relative interrupt source will
Interrupt signal.

Flags 2 8 MPS INTI flags. See Table 5-50 for a description of this field.

The MPS INTI flags listed in Table 5-50 are identical to the flags used in Table 4-10 of the MPS version 1.4
specifications. The Polarity flags are the PO bits and the Trigger Mode flags are the EL bits.

Table 5-50 MPS INTI Flags

Bit

Bit

Local APIC - Flags Length |Offset Description
Polarity 2 0 Polarity of the APIC I/O input signals:
00 Conforms to the specifications of the bus
(For example, EISA is active-low for level-triggered interrupts)
01 Active high
10 Reserved
11 Active low
Trigger Mode 2 2 Trigger mode of the APIC I/O Input signals:
00 Conforms to specifications of the bus
(For example, ISA is edge-triggered)
01 Edge-triggered
10 Reserved
11 Level-triggered
Reserved 12 4 Must be zero.

Interrupt Source Overrides are also necessary when an identity mapped interrupt input has a non-

standard polarity.

Note: You must have an interrupt source override entry for the IRQ mapped to the SCl interrupt if this
IRQ is not identity mapped. This entry will override the value in SCI_INT in FADT. For example, if
SCl is connected to IRQ 9 in PIC mode and IRQ 9 is connected to INTIN11 in APIC mode, you should
have 9 in SCI_INT in the FADT and an interrupt source override entry mapping IRQ 9 to INTIN11.

5.2.12.6 Non-Maskable Interrupt (NMI) Source Structure

This structure allows a platform designer to specify which I/0O (S)APIC interrupt inputs should be enabled
as non-maskable. Any source that is non-maskable will not be available for use by devices.

UEFI Forum, Inc.

January 2019

Page 156

ACPI Specification, Version 6.3

ACPI Software Programming Model

Table 5-51 NMI Source Structure

Field EZ:; " g‘;::et Description

Type 1 0 3 NMI Source

Length 1 1 8

Flags 2 2 Same as MPS INTI flags

Global System 4 4 The Global System Interrupt that this NMI will signal.
Interrupt

5.2.12.7 Local APIC NMI Structure

This structure describes the Local APIC interrupt input (LINTn) that NMlI is connected to for each of the

processors in the system where such a connection exists. This information is needed by OSPM to enable
the appropriate local APIC entry.

Each Local APIC NMI connection requires a separate Local APIC NMI structure. For example, if the

platform has 4 processors with ID 0-3 and NMl is connected LINT1 for processor 3 and 2, two Local APIC
NMI entries would be needed in the MADT.

Table 5-52 Local APIC NMI Structure
. Byte Byte ..
Field Length |Offset Description
Type 1 0 4 Local APIC NMI Structure
Length 1 1 6
ACPI Processor 1 2 Value corresponding to the _UID listed in the processor’s
uiD device object, or the Processor ID corresponding to the ID
listed in the processor object. A value of OxFF signifies that
this applies to all processors in the machine.
Note that the use of the Processor declaration operator is deprecated.
See the compatibility note in Section 5.2.12.12 and see Section 19.6.108,
“Processor (Declare Processor).”
Flags 2 3 MPS INTI flags. See Table 5-50 for a description of this field.
Local APICLINT# |1 5 Local APIC interrupt input LINTn to which NMl is connected.

5.2.12.8 Local APIC Address Override Structure

This optional structure supports 64-bit systems by providing an override of the physical address of the
local APIC in the MADT's table header, which is defined as a 32-bit field.

If defined, OSPM must use the address specified in this structure for all local APICs (and local SAPICs),

rather than the address contained in the MADT’s table header. Only one Local APIC Address Override
Structure may be defined.

UEFI Forum, Inc.

January 2019 Page 157

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-53 Local APIC Address Override Structure

. Byte Byte .

Field Length |Offset Description

Type 1 0 5 Local APIC Address Override Structure

Length 1 1 12

Reserved 2 2 Reserved (must be set to zero)

Local APIC 8 4 Physical address of Local APIC. For Itanium™ Processor Family (IPF)-

Address based platforms, this field contains the starting address of the Processor
Interrupt Block. See the Intel® Itanium ™ Architecture Software
Developer’s Manual for more information.

5.2.12.9 I/0 SAPIC Structure

The 1/0 SAPIC structure is very similar to the I/O APIC structure. If both I/O APIC and 1/O SAPIC structures
exist for a specific APIC ID, the information in the 1/O SAPIC structure must be used.

The 1/0 SAPIC structure uses the I/0 APIC ID field as defined in the I/O APIC table. The Global System
Interrupt Base field remains unchanged but has been moved. The I/O APIC Address field has been
deleted. A new address and reserved field have been added.

Table 5-54 1/0 SAPIC Structure

Field f::‘z " g‘f'::et Description

Type 1 0 6 I/O SAPIC Structure

Length 1 1 16

I/0 APIC ID 1 2 I/0 SAPIC ID

Reserved 1 3 Reserved (must be zero)

Global System 4 4 The global system interrupt number where this I/O SAPIC’s interrupt

Interrupt Base inputs start. The number of interrupt inputs is determined by the 1/0
SAPIC’s Max Redir Entry register.

I/O SAPIC Address | 8 8 The 64-bit physical address to access this I/O SAPIC. Each I/O SAPIC
resides at a unique address.

If defined, OSPM must use the information contained in the I/O SAPIC structure instead of the
information from the 1/O APIC structure.

If both I/O APIC and an I/O SAPIC structures exist in an MADT, the OEM/platform firmware writer must
prevent “mixing” 1/0 APIC and I/O SAPIC addresses. This is done by ensuring that there are at least as

many |I/O SAPIC structures as /O APIC structures and that every I/O APIC structure has a corresponding |/
O SAPIC structure (same APIC ID).

5.2.12.10 Local SAPIC Structure

The Processor local SAPIC structure is very similar to the processor local APIC structure. When using the
SAPIC interrupt model, each processor in the system is required to have a Processor Local SAPIC record in

UEFI Forum, Inc. January 2019 Page 158

ACPI Specification, Version 6.3 ACPI Software Programming Model

the MADT, and a processor device object in the DSDT. OSPM does not expect the information provided in
this table to be updated if the processor information changes during the lifespan of an OS boot. While in
the sleeping state, processors are not allowed to be added, removed, nor can their SAPIC ID or Flags
change. When a processor is not present, the Processor Local SAPIC information is either not reported or
flagged as disabled.

Table 5-55 Processor Local SAPIC Structure

. Byte Byte o

Field Length |Offset Description

Type 1 0 7 Processor Local SAPIC structure

Length 1 1 Length of the Local SAPIC Structure in bytes.

ACPI Processor ID | 1 2 OSPM associates the Local SAPIC Structure with a processor object
declared in the namespace using the Processor statement by matching
the processor object’s ProcessorlD value with this field. The use of the
Processor statement is deprecated. See the compatibility note in
Section 5.2.12.12, and Section 19.6.108, “Processor (Declare
Processor).”

Local SAPIC ID 1 3 The processor’s local SAPIC ID

Local SAPIC EID 1 4 The processor’s local SAPIC EID

Reserved 3 5 Reserved (must be set to zero)

Flags 4 8 Local SAPIC flags. See Table 5-47 for a description of this field.

ACPI Processor 4 12 OSPM associates the Local SAPIC Structure with a processor object

UID Value declared in the namespace using the Device statement, when the _UID
child object of the processor device evaluates to a numeric value, by
matching the numeric value with this field.

ACPI Processor >=1 16 OSPM associates the Local SAPIC Structure with a processor object

UID String declared in the namespace using the Device statement, when the _UID
child object of the processor device evaluates to a string, by matching
the string with this field. This value is stored as a null-terminated ASCII
string.

5.2.12.11 Platform Interrupt Source Structure

The Platform Interrupt Source structure is used to communicate which 1/0 SAPIC interrupt inputs are
connected to the platform interrupt sources.

Platform Management Interrupts (PMls) are used to invoke platform firmware to handle various events

(similar to SMI in 1A-32). The Intel® Itanium ™ architecture permits the I/0 SAPIC to send a vector value in
the interrupt message of the PMI type. This value is specified in the I/O SAPIC Vector field of the Platform
Interrupt Sources Structure.

INIT messages cause processors to soft reset.

If a platform can generate an interrupt after correcting platform errors (e.g., single bit error correction),
the interrupt input line used to signal such corrected errors is specified by the Global System Interrupt
field in the following table. Some systems may restrict the retrieval of corrected platform error

UEFI Forum, Inc. January 2019 Page 159

ACPI Specification, Version 6.3

information to a specific processor. In such cases, the firmware indicates the processor that can retrieve
the corrected platform error information through the Processor ID and EID fields in the structure below.

ACPI Software Programming Model

OSPM is required to program the I/0O SAPIC redirection table entries with the Processor ID, EID values
specified by the ACPI system firmware. On platforms where the retrieval of corrected platform error

information can be performed on any processor, the firmware indicates this capability by setting the CPEI

Processor Override flag in the Platform Interrupt Source Flags field of the structure below. If the CPEI
Processor Override Flag is set, OSPM uses the processor specified by Processor ID, and EID fields of the

structure below only as a target processor hint and the error retrieval can be performed on any processor

in the system. However, firmware is required to specify valid values in Processor ID, EID fields to ensure
backward compatibility.

If the CPEI Processor Override flag is clear, OSPM may reject a ejection request for the processor that is
targeted for the corrected platform error interrupt. If the CPEI Processor Override flag is set, OSPM can
retarget the corrected platform error interrupt to a different processor when the target processor is

ejected.

Note that the _MAT object can return a buffer containing Platform Interrupt Source Structure entries. It
is allowed for such an entry to refer to a Global System Interrupt that is already specified by a Platform
Interrupt Source Structure provided through the static MADT table, provided the value of platform

interrupt source flags are identical.

Refer to the Itanium™ Processor Family System Abstraction Layer (SAL) Specification for details on
handling the Corrected Platform Error Interrupt.

Table 5-56 Platform Interrupt Source Structure
Field EZ:‘Z th g)f,ft:et Description
Type 1 0 8 Platform Interrupt Source structure
Length 1 1 16
Flags 2 2 MPS INTI flags. See Table 5-50 for a description of this field.
Interrupt Type 1 4 1 PMI
2 INIT
3 Corrected Platform Error Interrupt
All other values are reserved.
Processor ID 1 5 Processor ID of destination.
Processor EID 1 6 Processor EID of destination.
I/0 SAPIC Vector |1 7 Value that OSPM must use to program the vector field of the I/O SAPIC
redirection table entry for entries with the PMI interrupt type.
Global System 4 8 The Global System Interrupt that this platform interrupt will signal.
Interrupt
Platform 4 12 Platform Interrupt Source Flags. See Table 5-57 for a description of this

Interrupt Source
Flags

field

UEFI Forum, Inc.

January 2019

Page 160

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-57 Platform Interrupt Source Flags

Platform Interrupt |Bit Bit Description

Source Flags Length |Offset P

CPEI Processor 1 0 When set, indicates that retrieval of error information is allowed from

Override any processor and OSPM is to use the information provided by the
processor ID, EID fields of the Platform Interrupt Source Structure
(Table 5-56) as a target processor hint.

Reserved 31 1 Must be zero.

5.2.12.12 Processor Local x2APIC Structure

The Processor X2APIC structure is very similar to the processor local APIC structure. When using the
X2APIC interrupt model, logical processors are required to have a processor device object in the DSDT
and must convey the processor's APIC information to OSPM using the Processor Local X2APIC structure.

Note: [Compatibility note] On some legacy OSes, Logical processors with APIC ID values less than 255
(whether in XAPIC or X2APIC mode) must use the Processor Local APIC structure to convey their
APIC information to OSPM, and those processors must be declared in the DSDT using the
Processor() keyword. Logical processors with APIC ID values 255 and greater must use the
Processor Local x2APIC structure and be declared using the Device() keyword. See
Section 19.6.108 "Processor (Declare Processor)" for more information.

OSPM does not expect the information provided in this table to be updated if the processor information
changes during the lifespan of an OS boot. While in the sleeping state, logical processors must not be
added or removed, nor can their X2APIC ID or x2APIC Flags change. When a logical processor is not
present, the processor local X2APIC information is either not reported or flagged as disabled.

The format of x2APIC structure is listed in Table 5-58

Table 5-58 Processor Local x2APIC Structure

. Byte Byte o

Field Length |Offset Description

Type 1 0 9 Processor Local x2APIC structure

Length 1 1 16

Reserved 2 2 Reserved - Must be zero

X2APIC ID 4 4 The processor’s local x2APIC ID.

Flags 4 8 Same as Local APIC flags. See Table 5-47 for a description of this field.

ACPIProcessorUID | 4 12 OSPM associates the X2APIC Structure with a processor object declared
in the namespace using the Device statement, when the _UID child
object of the processor device evaluates to a numeric value, by
matching the numeric value with this field

5.2.12.13 Local x2APIC NMI Structure

The Local APIC NMI and Local x2APIC NMI structures describe the interrupt input (LINTn) that NMl is
connected to for each of the logical processors in the system where such a connection exists. Each NMI

UEFI Forum, Inc. January 2019 Page 161

ACPI Specification, Version 6.3 ACPI Software Programming Model

connection to a processor requires a separate NMlI structure. This information is needed by OSPM to
enable the appropriate APIC entry.

NMI connection to a logical processor with local x2APIC ID 255 and greater requires an X2APIC NMI
structure. NMI connection to a logical processor with an x2APIC ID less than 255 requires a Local APIC
NMI structure. For example, if the platform contains 8 logical processors with x2APIC IDs 0-3 and 256-259
and NMl is connected LINT1 for processor 3, 2, 256 and 257 then two Local APIC NMI entries and two
X2APIC NMI entries must be provided in the MADT.

The Local APIC NMI structure is used to specify global LINTx for all processors if all logical processors
have x2APIC ID less than 255. If the platform contains any logical processors with an x2APIC ID of 255 or
greater then the Local X2APIC NMI structure must be used to specify global LINTx for ALL logical
processors. The format of x2APIC NMI structure is listed in Table 5-59.

Table 5-59 Local x2APIC NMI Structure

. Byte Byte ..

Field Length |Offset Description

Type 1 0 OAH Local x2APIC NMI Structure

Length 1 1 12

Flags 2 2 Same as MPS INTI flags. See Table 5-50 for a description of this
field.

ACPI Processor 4 4 UID corresponding to the ID listed in the processor Device object.

uiD A value of OxFFFFFFFF signifies that this applies to all processors in
the machine.

Local x2APIC 1 8 Local x2APIC interrupt input LINTn to which NMl is connected.

LINT#

Reserved 3 9 Reserved - Must be zero.

UEFI Forum, Inc. January 2019 Page 162

ACPI Specification, Version 6.3

Global System Interrupt Vector

(ie ACPI PnP IRQ#)

UEFI Forum, Inc.

24 input
IOAPIC

16 input
IOAPIC

24 input
IOAPIC

Interrupt Input Lines

on IOAPIC
0 INTI O
23 [INTI 23
24 FJINTI 0
39 [F|INTI 15
40 ||INTIL 0
51 PJINTI 11
55 FINTI 23

Figure 5-17 APIC—Global System Interrupts

January 2019

‘System Vector Base’
reported in IOAPIC Struc

v

0

24

40

ACPI Software Programming Model

Page 163

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.12.14 GIC CPU Interface (GICC) Structure

In the GIC interrupt model, logical processors are required to have a Processor Device object in the DSDT,
and must convey each processor’s GIC information to the OS using the GICC structure.

The format of the GICC structure is shown in Table 5-60.

Table 5-60 GICC Structure

Field EZ:‘Z th (B))flftseet Description

Type 1 0 OxB GICC structure

Length 1 1 80

Reserved 2 2 Reserved - Must be zero

CPU Interface 4 4 GIC's CPU Interface Number. In GICv1/v2 implementations, this value

Number matches the bit index of the associated processor in the GIC
distributor's GICD_ITARGETSR register.

For GICv3/4 implementations this field must be provided by the
platform, if compatibility mode is supported.

If it is not supported by the implementation, then this field must be
zero.

ACPI Processor UID |4 8 The OS associates this GICC Structure with a processor device object in
the namespace when the _UID child object of the processor device
evaluates to a numeric value that matches the numeric value in this

field.
Flags 4 12 See Table 5-61.
Parking Protocol 4 16 Version of the ARM-Processor Parking Protocol implemented. See
Version http://uefi.org/acpi. The document link is listed under

"Multiprocessor Startup for ARM Platforms"

For systems that support PSCI exclusively and do not support the
parking protocol, this field must be set to 0.

Performance 4 20 The GSIV used for Performance Monitoring Interrupts

Interrupt GSIV

Parked Address 8 24 The 64-bit physical address of the processor’s Parking Protocol
mailbox

Physical Base 8 32 On GICv1/v2 systems and GICv3/4 systems in GICv2 compatibility

Address mode, this field holds the 64-bit physical address at which the

processor can access this GIC CPU Interface. If provided here, the
"Local Interrupt Controller Address" field in the MADT must be
ignored by the OSPM.

GICcV 8 40 Address of the GIC virtual CPU interface registers. If the platform is
not presenting a GICv2 with virtualization extensions this field can be
0.

UEFI Forum, Inc. January 2019 Page 164

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

GICH

48

Address of the GIC virtual interface control block registers. If the
platform is not presenting a GICv2 with virtualization extensions this
field can be 0.

VGIC Maintenance
interrupt

56

GSIV for Virtual GIC maintenance interrupt

GICR Base Address

60

On systems supporting GICv3 and above, this field holds the 64-bit
physical address of the associated Redistributor. If all of the GIC
Redistributors are in the always-on power domain, GICR structures
should be used to describe the Redistributors instead, and this field
must be set to 0. If a GICR structure is present in the MADT then this
field must be ignored by the OSPM.

MPIDR

68

This fields follows the MPIDR formatting of ARM architecture.
If the implements ARMv7 architecure then the format must be:

Bits [63:24] Must be zero

Bits [23:16] Aff2 : Match Aff2 of target processor MPIDR
Bits [15:8] Affl : Match Aff1 of target processor MPIDR
Bits [7:0] AffO : Match AffO of target processor MPIDR

For platforms implementing ARMv8 the format must be:
Bits [63:40] Must be zero

Bits [39:32] Aff3 : Match Aff3 of target processor MPIDR
Bits [31:24] Must be zero

Bits [23:16] Aff2 : Match Aff2 of target processor MPIDR
Bits [15:8] Affl : Match Aff1 of target processor MPIDR
Bits [7:0] AffO : Match AffO of target processor MPIDR

Processor Power
Efficiency Class

76

Describes the relative power efficiency of the associated processor.
Lower efficiency class numbers are more efficient than higher ones
(e.g. efficiency class 0 should be treated as more efficient than
efficiency class 1).

However, absolute values of this number have no meaning: 2 isn't
necessarily half as efficient as 1.

Reserved

77

Must be zero.

SPE overflow
Interrupt

78

Statistical Profiling Extension buffer overflow GSIV. This interrupt is a
level triggered PPI. Zero if SPE is not supported by this processor.

UEFI Forum, Inc.

January 2019 Page 165

ACPI Specification, Version 6.3

ACPI Software Programming Model

Table 5-61 GICC CPU Interface Flags

GIC Flags f:ng th gl:fset Description

Enabled 1 0 If zero, this processor is unusable, and the operating system
support will not attempt to use it.

Performance 1 1 0 - Level-triggered

Interrupt Mode 1 - Edge-Triggered

VGIC Maintenance | 1 2 0 - Level-triggered

interrupt Mode 1- Edge-Triggered

Flags

Reserved 29 3 Must be zero.

5.2.12.15 GIC Distributor (GICD) Structure

ACPI represents all wired interrupts as “flat” values known as global system interrupts (GSIVs) as
described in Section 5.2.13. On ARM-based systems the Generic Interrupt Controller (GIC) manages
interrupts on the system. Each interrupt is identified in the GIC by an interrupt identifier (INTID). ACPI
GSIVs map one to one to GIC INTIDs for peripheral interrupts, whether shared (SPI) or private (PPI). The
GIC distributor structure describes the GIC distributor to the OS. One, and only one, GIC distributor
structure must be present in the MADT for an ARM based system.

The format of the GICD structure is listed in Table 5-62.

Table 5-62 GICD Structure

Field f:::]th g)f,ft:et Description
Type 1 0 0xC GICD structure
Length 1 1 24
Reserved 2 2 Reserved - Must be zero
GICID 4 4 This GIC Distributor’s hardware ID
Physical Base 8 8 The 64-bit physical address for this Distributor
Address
System Vector 4 16 Reserved - Must be zero
Base
GIC version 1 20 0x00: No GIC version is specified, fall back to hardware discovery
for GIC version
0x01: GICvl
0x02: GICv2
0x03: GICv3
0x04: GICv4
0x05-0xFF, Reserved for future use.
Reserved 3 21 Must be zero

UEFI Forum, Inc.

January 2019 Page 166

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.12.16 GIC MSI Frame Structure

Each GICv2m MSI frame consists of a 4k page which includes registers to generate message signaled
interrupts to an associated GIC distributor. The frame also includes registers to discover the set of
distributor lines which may be signaled by MSls from that frame. A system may have multiple MSI frames,

and separate frames may be defined for secure and non-secure access. This structure must only be used
to describe non-secure MSI frames.

The format of the GIC MSI Frame Structure is listed in Table 5-63.

Table 5-63 GIC MSI Frame Structure

Field EZ:IZ " g‘f’ft:e . |Description

Type 1 0 0xD GIC MSI Frame structure
Length 1 1 24

Reserved 2 2 Reserved - Must be zero

GIC MSI Frame ID | 4 4

GIC MSI Frame ID. In a system with multiple GIC MSI frames, this
value must be unique to each one.

Physical Base 8 8 The 64-bit physical address for this MSI Frame

Address

Flags 4 16 GIC MSI Frame Flags. See Table 5-64

SPI Count 2 20 SPI Count used by this frame. Unless the SPI Count Select flag is

set to 1 this value should match the lower 16 bits of the
MSI_TYPER register in the frame.

SPI Base 2 22 SPI Base used by this frame. Unless the SPI Base Select flag is set

to 1 this value should match the upper 16 bits of the MSI_TYPER
register in the frame.

Table 5-64 GIC MSI Frame Flags

GIC MSI Frame Bit Bit L
Description
Flags Length |Offset
SPI Count/Base 1 0 0: The SPI Count and Base fields should be ignored, and the actual
Select values should be queried from the MSI_TYPER register in the
associated GIC MSI frame.
1: The SPI Count and Base values override the values specified in
the MSI_TYPER register in the associated GIC MSI frame.
Reserved 31 1 Must be zero.

5.2.12.17 GIC Redistributor (GICR) Structure

The GICR Structure is described in Table 5-65. This structure enables the discovery of GIC Redistributor
base addresses by providing the Physical Base Address of a page range containing the GIC Redistributors.
More than one GICR Structure may be presented in the MADT. GICR structures should only be used when

UEFI Forum, Inc. January 2019 Page 167

ACPI Specification, Version 6.3 ACPI Software Programming Model

describing GIC implementations which conform to version 3 or higher of the GIC architecture and which
place all Redistributors in the always-on power domain.When a GICR structure is presented, the OSPM
must ignore the GICR Base Address field of the GICC structures (see Table 5-60).

Table 5-65 GICR Structure

Byte Byte

Field Description
Length |Offset
Type 1 0 OxE GICR structure
Length 1 1 16
Reserved 2 2 Reserved - Must be zero
Discovery Range 8 4 The 64-bit physical address of a page range containing all GIC
Base Address Redistributors
Discovery Range 4 12 Length of the GIC Redistributor Discovery page range.
Length

5.2.12.18 GIC Interrupt Translation Service (ITS) Structure

The GIC ITS is optionally supported in GICv3/v4 implementations. The format of the GIC ITS Structure is
listed in Table 5-66:

Table 5-66 GIC ITS Structure

. Byte Byte L.
Field Description
Length |Offset
Type 1 0 OxF GICITS structure
Length 1 1 20
Reserved 2 2 Reserved - Must be zero
GICITSID 4 4 GICITS ID. In a system with multiple GIC ITS units, this value must
be unique to each one.
Physical Base 8 8 The 64-bit physical address for the Interrupt Translation Service
Address
Reserved 4 16 Reserved — Must be zero

5.2.13 Global System Interrupts

Global System Interrupts can be thought of as ACPI Plug and Play IRQ numbers. They are used to
virtualize interrupts in tables and in ASL methods that perform resource allocation of interrupts. Do not

confuse global system interrupts with ISA IRQs although in the case of the IA-PC 8259 interrupts they
correspond in a one-to-one fashion.

There are two interrupt models used in ACPI-enabled systems.

The first model is the APIC model. In the APIC model, the number of interrupt inputs supported by each I/
O APIC can vary. OSPM determines the mapping of the Global System Interrupts by determining how

UEFI Forum, Inc. January 2019 Page 168

ACPI Specification, Version 6.3 ACPI Software Programming Model

many interrupt inputs each 1/0 APIC supports and by determining the global system interrupt base for
each 1/0 APIC as specified by the I/O APIC Structure. OSPM determines the number of interrupt inputs by
reading the Max Redirection register from the I/O APIC. The global system interrupts mapped to that I/O
APIC begin at the global system interrupt base and extending through the number of interrupts specified
in the Max Redirection register. This mapping is depicted in Figure 5-17.

There is exactly one /O APIC structure per I/O APIC in the system.

Global System Interrupt Vector 8259 ISA IRQs

(ie ACPI PnP IRQ#) ¢ ¢
0 IRQO
M aster iRQ3
8259
7 IRQ7
IR8
Slave)
8259 IRQ11
15 IRQI5

Figure 5-18 8259—Global System Interrupts

The other interrupt model is the standard AT style mentioned above which uses ISA IRQs attached to a
master slave pair of 8259 PICs. The system vectors correspond to the ISA IRQs. The ISA IRQs and their
mappings to the 8259 pair are part of the AT standard and are well defined. This mapping is depicted in

Figure 5-18.

5.2.14 Smart Battery Table (SBST)

If the platform supports batteries as defined by the Smart Battery Specification 1.0 or 1.1, then an Smart
Battery Table (SBST) is present. This table indicates the energy level trip points that the platform requires
for placing the system into the specified sleeping state and the suggested energy levels for warning the
user to transition the platform into a sleeping state. Notice that while Smart Batteries can report either in
current (mA/mAh) or in energy (mW/mWh), OSPM must set them to operate in energy (mW/mWh)
mode so that the energy levels specified in the SBST can be used. OSPM uses these tables with the
capabilities of the batteries to determine the different trip points. For more precise definitions of these
levels, see Section 3.9.3, “Battery Gas Gauge.”

Table 5-67 Smart Battery Description Table (SBST) Format

Byte Byte

Field Length |Offset

Description

Header

UEFI Forum, Inc. January 2019 Page 169

ACPI Specification, Version 6.3 ACPI Software Programming Model

. Byte Byte iy
Field Length |Offset Description
Signature 4 0 ‘SBST’ Signature for the Smart Battery Description Table.
Length 4 4 Length, in bytes, of the entire SBST
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the SBST, the table ID is the manufacturer model ID.
OEM Revision 4 24 OEM revision of SBST for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.
Creator Revision |4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.
Warning Energy 4 36 OEM suggested energy level in milliwatt-hours (mWh) at which
Level OSPM warns the user.
Low Energy Level 4 40 OEM suggested platform energy level in mWh at which OSPM
will transition the system to a sleeping state.
Critical Energy 4 44 OEM suggested platform energy level in mWh at which OSPM
Level performs an emergency shutdown.

5.2.15 Embedded Controller Boot Resources Table (ECDT)

This optional table provides the processor-relative, translated resources of an Embedded Controller. The
presence of this table allows OSPM to provide Embedded Controller operation region space access
before the namespace has been evaluated. If this table is not provided, the Embedded Controller region
space will not be available until the Embedded Controller device in the AML namespace has been
discovered and enumerated. The availability of the region space can be detected by providing a REG
method object underneath the Embedded Controller device.

Table 5-68 Embedded Controller Boot Resources Table Format

Field EZ:; th (B))f’ftseet Description

Header
Signature 4 0 ‘ECDT’ Signature for the Embedded Controller Table.
Length 4 4 Length, in bytes, of the entire Embedded Controller Table
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID

UEFI Forum, Inc. January 2019 Page 170

ACPI Specification, Version 6.3 ACPI Software Programming Model

Byte Byte
Length |Offset

OEM Table ID 8 16 For the Embedded Controller Table, the table ID is the
manufacturer model ID.

Field Description

OEM Revision 4 24 OEM revision of Embedded Controller Table for supplied OEM
Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision |4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

EC_CONTROL 12 36 Contains the processor relative address, represented in Generic
Address Structure format, of the Embedded Controller
Command/Status register.

Note: Only System I/O space and System Memory space are
valid for values for Address_Space_ID.

EC_DATA 12 48 Contains the processor-relative address, represented in Generic
Address Structure format, of the Embedded Controller Data
register.

Note: Only System I/O space and System Memory space are
valid for values for Address_Space_ID.

uiD 4 60 Unique ID-Same as the value returned by the _UID under the
device in the namespace that represents this embedded
controller.

GPE_BIT 1 64 The bit assignment of the SCl interrupt within the GPEx_STS
register of a GPE block described in the FADT that the embedded
controller triggers.

EC_ID Variable | 65 ASCII, null terminated, string that contains a fully qualified
reference to the namespace object that is this embedded
controller device (for example, “_SB.PCI0.ISA.EC”). Quotes are
omitted in the data field.

ACPI OSPM implementations supporting Embedded Controller devices must also support the ECDT. ACPI
1.0 OSPM implementation will not recognize or make use of the ECDT. The following example code shows
how to detect whether the Embedded Controller operation regions are available in a manner that is
backward compatible with prior versions of ACPI/OSPM.

Device(ECO) {
Name (REGC,Ones)
Method(_REG,2) {
If(Lequal (Argo, 3)) {
Store(Argl, REGC)
}

}
}
Method(ECAV,0) {
ITf(Lequal (REGC,0nes)) {

UEFI Forum, Inc. January 2019 Page 171

ACPI Specification, Version 6.3 ACPI Software Programming Model

If(LgreaterEqual (REV,2)) {

Return(One)
}
Else {
Return(Zero)
}
}
Else {
Return(REGC)
}

}
To detect the availability of the region, call the ECAV method. For example:

IT (_SB.PCIO.ECO.ECAV()) {
...regions are available...

}

else {
...regions are not available...

}

5.2.16 System Resource Affinity Table (SRAT)

This optional table provides information that allows OSPM to associate the following types of devices
with system locality / proximity domains and clock domains:

® processors,

¢ memory ranges (including those provided by hot-added memory devices), and

e generic initiators (e.g. heterogeneous processors and accelerators, GPUs, and 1/0 devices with
integrated compute or DMA engines).

On NUMA platforms, SRAT information enables OSPM to optimally configure the operating system during
a point in OS initialization when evaluation of objects in the ACPI Namespace is not yet possible.

OSPM evaluates the SRAT only during OS initialization. The Local APIC ID / Local SAPIC ID / Local x2APIC ID
or the GICC ACPI Processor UID of all processors started at boot time must be present in the SRAT. If the
Local APIC ID / Local SAPIC ID / Local x2APIC ID or the GICC ACPI Processor UID of a dynamically added
processor is not present in the SRAT, a _PXM object must exist for the processor’s device or one of its
ancestors in the ACPI Namespace.

Note: SRAT is the place where proximity domains are defined, and _PXM provides a mechanism to
associate a device object (and its children) to an SRAT-defined proximity domain.

See Section 6.2.14 (_PXM Proximity) for more information.

UEFI Forum, Inc. January 2019 Page 172

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-69 Static Resource Affinity Table Format

Field Byte Byte Description
Length | Offset
Header
Signature 4 0 ‘SRAT’. Signature for the System Resource Affinity Table.
Length 4 4 Length, in bytes, of the entire SRAT. The length implies the
number of Entry fields at the end of the table
Revision 1 8 3
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID.
OEM Table ID 8 16 For the System Resource Affinity Table, the table ID is the
manufacturer model ID.
OEM Revision 4 24 OEM revision of System Resource Affinity Table for supplied OEM
Table ID.
Creator ID 4 28 Vendor ID of utility that created the table.
Creator Revision |4 32 Revision of utility that created the table.
Reserved 4 36 Reserved to be 1 for backward compatibility
Reserved 8 40 Reserved
Static Resource --- 48 A list of static resource allocation structures for the platform. See
Allocation Section 5.2.16.1,”Processor Local APIC/SAPIC Affinity Structure”,
Structure[n] Section 5.2.16.2 “Memory Affinity Structure”, Section 5.2.16.3
“Processor Local x2APIC Affinity Structure”, and Section 5.2.16.4,
“GICC Affinity Structure.

5.2.16.1 Processor Local APIC/SAPIC Affinity Structure

The Processor Local APIC/SAPIC Affinity structure provides the association between the APIC ID or SAPIC
ID/EID of a processor and the proximity domain to which the processor belongs. Table 5-70 provides the
details of the Processor Local APIC/SAPIC Affinity structure.

UEFI Forum, Inc. January 2019 Page 173

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-70 Processor Local APIC/SAPIC Affinity Structure

. Byte Byte ..
Field Length | Offset Description
Type 1 0 0 Processor Local APIC/SAPIC Affinity Structure
Length 1 1 16
Proximity Domain |1 2 Bit [7:0] of the proximity domain to which the processor belongs.
[7:0]
APICID 1 3 The processor local APIC ID.
Flags 4 4 Flags — Processor Local APIC/SAPIC Affinity Structure. See Table 5-
71 for a description of this field.
Local SAPIC EID 1 8 The processor local SAPIC EID.
Proximity Domain | 3 9 Bit [31:8] of the proximity domain to which the processor belongs.
[31:8]
Clock Domain 4 12 The clock domain to which the processor belongs. See

Section 6.2.1, “_CDM (Clock Domain)”.

Table 5-71 Flags — Processor Local APIC/SAPIC Affinity Structure

. Bit Bit .
Field Length Offset Description
Enabled 1 0 If clear, the OSPM ignores the contents of the Processor Local
APIC/SAPIC Affinity Structure. This allows system firmware to
populate the SRAT with a static number of structures but only
enable them as necessary.
Reserved 31 1 Must be zero.

5.2.16.2 Memory Affinity Structure

The Memory Affinity structure provides the following topology information statically to the operating
system:

The association between a range of memory and the proximity domain to which it belongs
¢ Information about whether the range of memory can be hot-plugged.

Table 5-72 provides the details of the Memory Affinity structure.

UEFI Forum, Inc. January 2019 Page 174

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-72 Memory Affinity Structure

Field f::‘z " g‘f’::et Description

Type 1 0 1 Memory Affinity Structure

Length 1 1 40

Proximity Domain | 4 2 Integer that represents the proximity domain to which the
"range of memory" belongs.

Reserved 2 6 Reserved

Base Address Low | 4 8 Low 32 Bits of the Base Address of the memory range

Base Address High | 4 12 High 32 Bits of the Base Address of the memory range

Length Low 4 16 Low 32 Bits of the length of the memory range.

Length High 4 20 High 32 Bits of the length of the memory range.

Reserved 4 24 Reserved.

Flags 4 28 Flags — Memory Affinity Structure. Indicates whether the region
of memory is enabled and can be hot plugged. See Table 5-73.

Reserved 8 32 Reserved.

Table 5-73 Flags — Memory Affinity Structure

. Bit Bit .
Field Length Offset Description

Enabled 1 0 If clear, the OSPM ignores the contents of the Memory Affinity
Structure. This allows system firmware to populate the SRAT with
a static number of structures but only enable then as necessary.

Hot Pluggable 1 1 The information conveyed by this bit depends on the value of the
Enabled bit.

If the Enabled bit is set and the Hot Pluggable bit is also set. The
system hardware supports hot-add and hot-remove of this
memory region

If the Enabled bit is set and the Hot Pluggable bit is clear, the
system hardware does not support hot-add or hot-remove of this
memory region.

If the Enabled bit is clear, the OSPM will ignore the contents of
the Memory Affinity Structure

NonVolatile 1 2 If set, the memory region represents Non-Volatile memory

Reserved 29 3 Must be zero.

UEFI Forum, Inc. January 2019 Page 175

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.16.3 Processor Local x2APIC Affinity Structure

The Processor Local x2APIC Affinity structure provides the association between the local x2APIC ID of a
processor and the proximity domain to which the processor belongs. Table 5-74 provides the details of
the Processor Local x2APIC Affinity structure.

Table 5-74 Processor Local x2APIC Affinity Structure

Field f::;th g¥::et Description

Type 1 0 2 Processor Local x2APIC Affinity Structure

Length 1 1 24

Reserved 2 2 Reserved — Must be zero

Proximity Domain |4 4 The proximity domain to which the logical processor belongs.

X2APICID 4 8 The processor local x2APIC ID.

Flags 4 12 Same as Processor Local APIC/SAPIC Affinity Structure flags. See
Table 5-71 for a description of this field.

Clock Domain 4 16 The clock domain to which the logical processor belongs. See
Section 6.2.1, “_CDM (Clock Domain)”.

Reserved 4 20 Reserved.

On x86-based platforms, the OSPM uses the Hot Pluggable bit to determine whether it should shift into
PAE mode to allow for insertion of hot-plug memory with physical addresses over 4 GB.
5.2.16.4 GICC Affinity Structure

The GICC Affinity Structure provides the association between the ACPI Processor UID of a processor and

the proximity domain to which the processor belongs. Table 5-75 provides the details of the GICC Affinity
structure.

Table 5-75 GICC Affinity Structure

Field f:::]th g)f,ft:et Description

Type 1 0 3 GICC Affinity Structure.

Length 1 1 18

Proximity Domain | 4 2 The proximity domain to which the logical processor belongs.

ACPI Processor 4 6 The ACPI Processor UID of the associated GICC.

uiD

Flags 4 10 Flags — GICC Affinity Structure. See Table 5-76 for a description of
this field.

Clock Domain 4 14 The clock domain to which the logical processor belongs. See

Section 6.2.1, “_CDM (Clock Domain)”.

UEFI Forum, Inc. January 2019 Page 176

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-76 Flags — GICC Affinity Structure

: Bit Bit .
Field Length Offset Description
Enabled 1 0 If clear, the OSPM ignores the contents of the GICC Affinity Structure.
This allows system firmware to populate the SRAT with a static number
of structures but only enable them as necessary.
Reserved 31 1 Must be zero.

5.2.16.5 GIC Interrupt Translation Service (ITS) Affinity Structure

The GIC ITS Affinity Structure provides the association between a GIC ITS and a proximity domain. This
enables the OSPM to discover the memory that is closest to the ITS, and use that in allocating its
management tables and command queue. The ITS is identified using an ID matching a declaration of a GIC

ITS in the MADT, see Section 5.2.12.18 for details. The following table provides the details of the GIC ITS
Affinity structure.

Table 5-77 Architecture Specific Affinity Structure

Field f::];th (B))f,ft:et Description

Type 1 0 4 GIC ITS Affinity Structure

Length 1 1 12

Proximity domain 4 2 Integer that represents the proximity domain to which the GIC
ITS belongs to.

Reserved 2 6 Reserved must be zero

ITSID 4 8 ITS ID matching a GIC ITS entry in the MADT

5.2.16.6 Generic Initiator Affinity Structure

The Generic Initiator Affinity Structure provides the association between a generic initiator and the
proximity domain to which the initiator belongs. See Table 5-78 for details.

Support of Generic Initiator Affinity Structures by OSPM is optional, and the platform may query whether
the OS supports it via the _OSC method. See Section 6.2.11.2.

UEFI Forum, Inc. January 2019 Page 177

ACPI Specification, Version 6.3

ACPI Software Programming Model

Table 5-78 Generic Initiator Affinity Structure
Field Byte Byte Description
Length |Offset
Type 1 0 5 Generic Initiator Structure.
Length 1 1 32
Reserved 1 2 Reserved and must be zero.
Device Handle 1 3 Device Handle Type:
Type 0 — ACPI Device Handle
1 — PCI Device Handle
2-255 - Reserved
Proximity Domain |4 4 The proximity domain to which the generic initiator belongs.
Device Handle 16 8 Device Handle of the Generic Initiator. See Table 5-79 for a description of
the ACPI Device Handle, and Table 5-80 for a description of the PCI
Device Handle.
Flags 4 24 Flags — Generic Initiator Affinity Structure. See Table 5-81 for a
description of this field.
Reserved 4 28 Reserved and must be zero.
Table 5-79 Device Handle - ACPI
Field Byte Byte Description
Length |Offset
ACPI _HID 8 0 The _HID value
ACPI _UID 4 8 The _UID value
Reserved 4 12 Must be zero.
Table 5-80 Device Handle - PCI
Field Byte Byte Description
Length |Offset
PCl Segment 2 0 PCl segment number.
For systems with fewer than 255 PCI buses,
this number must be 0.
PCI BDF Number | 2 2 PCI Bus Number (Bits 7:0 of Byte 2)
PCI Device Number (Bits 7:3 of Byte 3)
PCI Function Number (Bits 2:0 of Byte 3)
Reserved 12 4 Must be zero

UEFI Forum, Inc.

January 2019 Page 178

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-81 Flags — Generic Initiator Affinity Structure

Field Bit Bit Description
Length |Offset

Enabled 1 0 Ifclear,the OSPMignores the contents ofthe Generic Initiator
Affinity Structure. This allows system firmware to populate the SRAT

Reserved 31 1 Must be zero.

Note for Implementors

If a generic device with coherent memory is attached to the system, it is recommended to define affinity
structures for both the device and memory associated with the device. They both may have the same
proximity domain.

5.2.17 System Locality Distance Information Table (SLIT)

This optional table provides a matrix that describes the relative distance (memory latency) between all
System Localities, which are also referred to as Proximity Domains. Systems employing a Non Uniform
Memory Access (NUMA) architecture contain collections of hardware resources including for example,
processors, memory, and 1/0O buses, that comprise what is known as a “NUMA node”. Processor accesses
to memory or I/0 resources within the local NUMA node is generally faster than processor accesses to
memory or 1/O resources outside of the local NUMA node.

The value of each Entry[i,j] in the SLIT table, where i represents a row of a matrix and j represents a
column of a matrix, indicates the relative distances from System Locality / Proximity Domain i to every
other System Locality j in the system (including itself).

Thei,j row and column values correlate to Proximity Domain values in the System Resource Affinity Table
(SRAT), and to values returned by _PXM objects in the ACPl namespace. See Section 5.2.16, “System
Resource Affinity Table (SRAT)”, and Section 6.2.14, “_PXM (Proximity)” for more information.

The entry value is a one-byte unsigned integer. The relative distance from System Locality i to System
Locality j is the i*N + j entry in the matrix, where N is the number of System Localities. Except for the
relative distance from a System Locality to itself, each relative distance is stored twice in the matrix. This
provides the capability to describe the scenario where the relative distances for the two directions
between System Localities is different.

The diagonal elements of the matrix, the relative distances from a System Locality to itself are normalized
to a value of 10. The relative distances for the non-diagonal elements are scaled to be relative to 10. For
example, if the relative distance from System Locality i to System Locality j is 2.4, a value of 24 is stored in
table entry i*N+ j and in j*N+ i, where N is the number of System Localities.

If one locality is unreachable from another, a value of 255 (OxFF) is stored in that table entry. Distance
values of 0-9 are reserved and have no meaning.

UEFI Forum, Inc. January 2019 Page 179

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-82 SLIT Format

. Byte Byte ..
Field Length Offset Description
Header
Signature 4 0 ‘SLIT’. Signature for the System Locality Distance Information
Table.
Length 4 4 Length, in bytes, of the entire System Locality Distance
Information Table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID.
OEM Table ID 8 16 For the System Locality Information Table, the table ID is the
manufacturer model ID.
OEM Revision 4 24 OEM revision of System Locality Information Table for
supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For the DSDT, RSDT,
SSDT, and PSDT tables, this is the revision for the ASL
Compiler.
Number of System 8 36 Indicates the number of System Localities in the system.
Localities
Entry[0][0] 1 44 Matrix entry (0,0), contains a value of 10.
Entry[0][Number of 1 Matrix entry (0, Number of System Localities-1)
System Localities-1]
Entry[1][0] 1 Matrix entry (1,0)
Entry[Number of 1 Matrix entry (Number of System Localities-1, Number of
System Localities- System Localities-1), contains a value of 10
1][Number of System
Localities-1]

5.2.18 Corrected Platform Error Polling Table (CPEP)

Platforms may contain the ability to detect and correct certain operational errors while maintaining
platform function. These errors may be logged by the platform for the purpose of retrieval. Depending on
the underlying hardware support, the means for retrieving corrected platform error information varies. If
the platform hardware supports interrupt-based signaling of corrected platform errors, the MADT
Platform Interrupt Source Structure describes the Corrected Platform Error Interrupt (CPEI). See

UEFI Forum, Inc. January 2019 Page 180

ACPI Specification, Version 6.3

Section 5.2.12.11,”Platform Interrupt Source Structure”. Alternatively, OSPM may poll processors for
corrected platform error information. Error log information retrieved from a processor may contain
information for all processors within an error reporting group. As such, it may not be necessary for OSPM
to poll all processors in the system to retrieve complete error information. This optional table provides

ACPI Software Programming Model

information that allows OSPM to poll only the processors necessary for a complete report of the
platform’s corrected platform error information.

Table 5-83 Corrected Platform Error Polling Table Format

. Byte Byte ..
Field Length | Offset Description
Header
Signature 4 0 ‘CPEP’. Signature for the Corrected Platform Error Polling Table.
Length 4 4 Length, in bytes, of the entire CPET. The length implies the
number of Entry fields at the end of the table
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID.
OEM Table ID 8 16 For the Corrected Platform Error Polling Table, the table ID is the
manufacturer model ID.
OEM Revision 4 24 OEM revision of Corrected Platform Error Polling Table for
supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table.
Creator Revision |4 32 Revision of utility that created the table.
Reserved 8 36 Reserved, must be 0.
CPEP Processor - 44 A list of Corrected Platform Error Polling Processor structures for
Structure[n] the platform. See Section 5.2.18.1,” Corrected Platform Error
Polling Processor Structure”.

5.2.18.1 Corrected Platform Error Polling Processor Structure

The Corrected Platform Error Polling Processor structure provides information on the specific processors
OSPM polls for error information. Table 5-84 provides the details of the Corrected Platform Error Polling

Processor structure.

UEFI Forum, Inc.

January 2019 Page 181

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-84 Corrected Platform Error Polling Processor Structure

Byte Byte

Field Length | Offset Description

Type 1 0 0 Corrected Platform Error Polling Processor structure for
APIC/SAPIC based processors

Length 8

Processor ID Processor ID of destination.

Processor EID Processor EID of destination.

AR R R
Al W N R

Polling Interval Platform-suggested polling interval (in milliseconds)

5.2.19 Maximum System Characteristics Table (MSCT)

This section describes the format of the Maximum System Characteristic Table (MSCT), which provides
OSPM with information characteristics of a system’s maximum topology capabilities. If the system
maximum topology is not known up front at boot time, then this table is not present. OSPM will use
information provided by the MSCT only when the System Resource Affinity Table (SRAT) exists. The MSCT
must contain all proximity and clock domains defined in the SRAT.

Table 5-85 Maximum System Characteristics Table (MSCT) Format

. Byte ...
Field Lo Byte Offset |Description
Header
Signature 4 0 ‘MSCT’ Signature for the Maximum System
Characteristics Table.
Length 4 4 Length, in bytes, of the entire MSCT.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the MSCT, the table ID is the manufacturer model
ID.
OEM Revision 4 24 OEM revision of MSCT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for the
ASL Compiler.
Offset to Proximity 4 36 Offset in bytes to the Proximity Domain Information
Domain Information Structure table entry.
Structure
[OffsetProxDomInfo]

UEFI Forum, Inc. January 2019 Page 182

ACPI Specification, Version 6.3 ACPI Software Programming Model

Field ert'negth Byte Offset |Description

Maximum Number of |4 40 Indicates the maximum number of Proximity Domains

Proximity Domains ever possible in the system. The number reported in
this field is (maximum domains — 1). For example if
there are 0x10000 possible domains in the system, this
field would report OxFFFF.

Maximum Number of |4 44 Indicates the maximum number of Clock Domains ever

Clock Domains possible in the system. The number reported in this
field is (maximum domains — 1). See Section 6.2.1,
“_CDM (Clock Domain)”.

Maximum Physical 8 48 Indicates the maximum Physical Address ever possible

Address in the system. Note: this is the top of the reachable
physical address.

Proximity Domain — [OffsetProxD | A list of Proximity Domain Information for this

Information ominfo] implementation. The structure format is defined in the

Structure[Maximum Maximum Proximity Domain Information Structure

Number of Proximity section.

Domains]

5.2.19.1 Maximum Proximity Domain Information Structure

The Maximum Proximity Domain Information Structure is used to report system maximum
characteristics. It is likely that these characteristics may be the same for many proximity domains, but
they can vary from one proximity domain to another. This structure optimizes to cover the former case,
while allowing the flexibility for the latter as well. These structures must be organized in ascending order
of the proximity domain enumerations. All proximity domains within the Maximum Number of Proximity
Domains reported in the MSCT must be covered by one of these structures.

Table 5-86 Maximum Proximity Domain Information Structure

. Byte Byte o

Field Length |Offset Description

Revision 1 0 1

Length 1 1 22

Proximity Domain |4 2 The starting proximity domain for the proximity domain range

Range (low) that this structure is providing information.

Proximity Domain |4 6 The ending proximity domain for the proximity domain range that

Range (high) this structure is providing information.

Maximum 4 10 The Maximum Processor Capacity of each of the Proximity

Processor Capacity Domains specified in the range. A value of 0 means that the
proximity domains do not contain processors. This field must be
>=the number of processor entries for the domain in the SRAT.

UEFI Forum, Inc. January 2019 Page 183

ACPI Specification, Version 6.3 ACPI Software Programming Model

Maximum 8 14 The Maximum Memory Capacity (size in bytes) of the Proximity
Memory Capacity Domains specified in the range. A value of 0 means that the
proximity domains do not contain memory.

5.2.20 ACPI RAS Feature Table (RASF)
The following table describes the structure of ACPI RAS Feature Table.

Table 5-87 RASF Table format

Field f::lz th Byte Offset |Description
Header
Signature 4 0 ‘RASF’ is Signature for RAS Feature Table
Length 4 4 Length in bytes for entire RASF. The length
implies the number of Entry fields at the end of
the table
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero
OEMID 6 10 OEM ID
OEM Table ID 8 16 The table ID is the manufacturer model ID
OEM Revision 4 24 OEM revision of table for supplied OEM Table ID
Creator ID 4 28 Vendor ID of utility that created the table
Creator Revision 4 32 Revision of utility that created the table
RASF Specific Entries
RASF Platform 12 36 Identifier of the RASF Platform Communication
Communication Channel Channel. OSPM should use this value to identify
Identifier the PCC Sub channel structure in the RASF table

5.2.20.1 RASF PCC Sub Channel Identifier

RASF PCC Sub Channel Identifier is used by the OSPM to identify the PCC Sub channel structure. RASF
table references its PCC Subspace by this identifier as shown in Table 5-87.

5.2.20.2 Using PCC registers

OSPM will write PCC registers by filling in the register value in PCC sub channel space and issuing a PCC
Execute command. See Table 5-89.

To minimize the cost of PCC transactions, OSPM should read or write all registers in the same PCC
subspace via a single read or write command.

5.2.20.3 RASF Communication Channel

RASF Action Entries are defined in the PCC sub channel as below.

UEFI Forum, Inc. January 2019 Page 184

ACPI Specification, Version 6.3

ACPI Software Programming Model

Table 5-88 RASF Platform Communication Channel Shared Memory Region
. Byte ..

Field Byte Length Offset Description

Signature 4 0 The PCC Signature of 0x52415346 (corresponds to
ASCII signature of RASF)

Command 2 4 PCC command field; see Table 5-89 and
Section 14.

Status 2 6 PCC status field, see Section 14.

Communication Space

Version 2 8 Byte O — Minor Version
Byte 1 — Major Version

RAS Capabilities 16 10 Bit Map describing the platform RAS capabilities
as shown in Section 5.2.20.4.

The Platform populates this field. The OSPM uses
this field to determine the RAS capabilities of the
platform.

Set RAS Capabilities 16 26 Bit Map of the RAS features for which the OSPM is
invoking the command. The Bit Map is described
in Section 5.2.20.4.

OSPM sets the bit corresponding to a RAS
capability to invoke a command on that capability.
The bitmap implementation allows OSPM to
invoke a command on each RAS feature supported
by the platform at the same time.

Number of RASF Parameter | 2 42 The Number of parameter blocks will depend on

blocks how many RAS Capabilities the Platform Supports.
Typically, there will be one Parameter Block per
RAS Feature, using which that feature can be
managed by OSPM.

Set RAS Capabilities Status | 4 44 Status

0000b = Success
0001b = Not Valid
0010b = Not Supported
0011b = Busy

0100b = Failed

0101b = Aborted
0110b = Invalid Data

UEFI Forum, Inc.

January 2019

Page 185

ACPI Specification, Version 6.3 ACPI Software Programming Model

. Byte ..

Field Byte Length Offset Description

Parameter Blocks Varies (N 48 Start of the parameter blocks, the structure of
Bytes) which is shown in Table 5-91.

These parameter blocks are used as
communication mailbox between the OSPM and

the platform, and there is 1 parameter block for
each RAS feature.

NOTE: There can be only on parameter block per
type.

Table 5-89 PCC Command Codes used by RASF Platform Communication Channel

Command Description

0x00 Reserved

0x01 Execute RASF Command.
0x02-0xFF All other values are reserved.

5.2.20.4 Platform RAS Capabilities
The following table defines the Platform RAS capabilities:

Table 5-90 Platform RAS Capabilities Bitmap

Bit RAS Feature Description

0 Hardware based patrol Indicates that the platform supports hardware based patrol scrub of
scrub supported DRAM memory

1 Hardware based patrol

Indicates that the platform supports hardware based patrol scrub of
scrub supported and DRAM memory and platform exposes this capability to software
exposed to software using this RASF mechanism

2-127 Reserved

Reserved for future use

5.2.20.5 Parameter Block

The following table describes the Parameter Blocks. The structure is used to pass parameters for
controlling the corresponding RAS Feature.

Each RAS Feature is assigned a TYPE number, which is the bit index into the RAS capabilities bitmap
described in Table 5-90.

UEFI Forum, Inc. January 2019 Page 186

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-91 Parameter Block Structure for PATROL_SCRUB

Field Byte Length Byte Offset Description
Type 2 0 0x0000 — Patrol scrub
Version 2 2 Byte 0 — Minor Version
Byte 1 — Major Version
Length 2 4 Length, in bytes of the entire parameter
block structure
Patrol Scrub 2 6 0x01 - GET_PATROL_PARAMETERS
Command 0x02 - START_PATROL_SCRUBBER
(INPUT) 0x03 — STOP_PATROL_SCRUBBER
Requested Address | 16 8 OSPM Specifies the BASE (Bytes 7-0) and
Range SIZE (Bytes 15-8) of the address range to be
(INPUT) patrol scrubbed.

OSPM sets this parameter for the following
commands

GET_PATROL_PARAMETERS
START_PATROL_SCRUBBER

Actual Address 16 24 The platform returns this value in response
Range to GET_PATROL_PARAMETERS. The
(OUTPUT) platform calculates the nearest patrol scrub

boundary address from where it can start.
This range should be a superset of the
Requested Address Range.

BASE (Bytes 7-0) and SIZE (Bytes 15-8) of
the address

Flags (OUTPUT) 2 40 The platform returns this value in response
to GET_PATROL_PARAMETERS

Bit [0]: Will be set if patrol scrubber is
already running for address range specified
in “Actual Address Range”

Bits [3:1]: Current Patrol Speeds, if Bit [0] is
set

000b — Slow
100b — Medium
111b — Fast

All other combinations are reserved.

Bits [15:4]: RESERVED

UEFI Forum, Inc. January 2019 Page 187

ACPI Specification, Version 6.3 ACPI Software Programming Model

Field Byte Length Byte Offset Description
Requested Speed |1 42 The OSPM Sets this field as follows, for the
(INPUT) START_PATROL_SCRUBBER command

Bit [0]: Will be set if patrol scrubber is
already running for address range specified
in “Actual Address Range”

Bits [2:0]: Requested Patrol Speeds
000b — Slow

100b — Medium

111b — Fast

All other combinations are reserved.

Bits [7:3]: RESERVED

5.2.20.5.1 Sequence of Operations:

The following sequence documents the steps for OSPM to identify whether the platform supports
hardware based patrol scrub and invoke commands to request hardware to patrol scrub the specified
address range.

1. Identify whether the platform supports hardware based patrol scrub and exposes the support
to software by reading the RAS capabilities bitmap in RASF table

Call GET_PATROL_PARAMETERS, by setting the Requested Address Range.
Platform Returns Actual Address Range and Flags.

Based on the above two data, if the OPSM decides to start the patrol scrubber or change the
speed of the patrol scrubber, then the OSPM calls START_PATROL_SCRUBBER, by setting the
Requested Address Range and Requested Speed.

5.2.21 Memory Power State Table (MPST)

The following table describes the structure of new ACPI memory power state table (MPST). This table
defines the memory power node topology of the configuration, as described earlier in Section 1. The
configuration includes specifying memory power nodes and their associated information. Each memory
power node is specified using address ranges, supported memory power states. The memory power
states will include both hardware controlled and software controlled memory power states. There can be
multiple entries for a given memory power node to support non contiguous address ranges. MPST table
also defines the communication mechanism between OSPM and platform runtime firmware for
triggering software controlled memory powerstate transitions implemented in platform runtime
firmware.

UEFI Forum, Inc. January 2019 Page 188

ACPI Specification, Version 6.3 ACPI Software Programming Model

Figure 5-19 below provides structure organization overview of MPST table.

Memory Power
Node Structure
Memory Power
State Structure
Flag, Mem Power Node ld ,
Power State Value lenetc..
(m0,M1,M2...)
Address range (low, high
Power State address bits , lengthlow ,
— 3 high)
Information Ind
rromaancex MPST Top Memory Power State
Memory Power State - 0 level Structure Characteristics Structure
| .
| . Flags
' I Header etc..
Power State Value \ Memory Power State - M Memory Power State Avg. Power Consumed
(M0, M1, M2, .. Command fields ...
Power State ! liziegy o s Exit Latenc,
Information Index I structure) MPN-0 Y
]
|
MPN-Y
I
M i Memory Power State
I Characteristics (0)
' Flags

Avg. Power Consumed

Flag, Mem Power Node Id ,
lenefc ..

Memory Power State Exit Latency

RAEBIEITE (EED Characteristics (M)

address bits , length low ,
high)

Memory Power State - 0

Memory Power State - M

Figure 5-19 MPST ACPI Table Overview

UEFI Forum, Inc. January 2019 Page 189

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-92 MPST Table Structure

. Byte Byte .-
Fiel D
ield Length Offset escription
Header
Signature 4 0 ‘MPST’. Signature for Memory Power State Table
Length 4 4 Length in bytes for entire MPST. The length implies the
number of Entry fields at the end of the table
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the memory power state table, the table ID is the
manufacturer model ID
OEM Revision 4 24 OEM revision of memory power state Table for supplied
OEM Table ID
Creator ID 4 28 Vendor ID of utility that created the table
Creator Revision 4 32 Revision of utility that created the table
Memory PCC
MPST Platform 1 36 Identifier of the MPST Platform Communication
Communication Channel Channel.
Identifier
Reserved 3 37 Reserved
Memory Power Node
Memory Power Node 2 40 Number of Memory power Node structure entries
Count
Reserved 2 42 Reserved
Memory Power Node - - This field provides information on the memory power
Structure[Memory Power nodes present in the system. The information includes
Node Count] memory node id, power states supported & associated
latencies. Further details of this field are specified in
Section 5.2.21.4
Memory Power State
Characteristics
Memory Power State 2 - Number of Memory power State Characteristics
Characteristics Count Structure entries
Reserved 2 Reserved
Memory Power State - - This field provides information of memory power states
Characteristics Structure supported in the system. The information includes
[m] power consumed, transition latencies, relevant flags.

UEFI Forum, Inc. January 2019 Page 190

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.21.1 MPST PCC Sub Channel

The MPST PCC Sub Channel Identifier value provided by the platform in this field should be programmed
to the Type field of PCC Communications Subspace Structure. The MPST table references its PCC
Subspace in a given platform by this identifier, as shown in Table 5-92.

5.2.21.1.1 Using PCC registers

OSPM will write PCC registers by filling in the register value in PCC sub channel space and issuing a PCC
Execute command. See Table 5-93, below. All other command values are reserved.

Table 5-93 PCC Command Codes used by MPST Platform Communication Channel

Command Description

0x00-0x02 All other values are reserved.
0x03 Execute MPST Command.
0x04-0xFF All other values are reserved.

Table 5-94 MPST Platform Communication Channel Shared Memory Region

. Byte Byte s

Field Length |Offset Description

Signature 4 0 The PCC signature. The signature of a subspace is computed by
a bitwise-or of the value 0x50434300 with the subspace ID. For
example, subspace 3 has signature 0x50434303.

Command 2 4 PCC command field, seeSection 14 and Table 5-93.

Status 2 6 PCC status field, see Section 14

Communication Space

4 8 Memory region for OSPM to write the requested memory

MEMORY_POWER_ power state.

COMMAND_REGIST Write:

ER

1 to this field to GET the memory power state
2 to this field to set the memory power state
3 — GET AVERAGE POWER CONSUMED

4 — GET MEMORY ENERGY CONSUMED

UEFI Forum, Inc. January 2019 Page 191

ACPI Specification, Version 6.3 ACPI Software Programming Model

MEMORY_POWER_ | 4 12 Bits [3:0]: Status (specific to
STATUS_REGISTER MEMORY_POWER_COMMAND_REGISTER)
* 0000b = Success

* 0001b = Not Valid

* 0010b = Not Supported

+ 0011b = Busy

* 0100b = Failed

* 0101b = Aborted

* 0110b = Invalid Data

» Other values reserved

Bit [4]: Background Activity specific to the following
MEMORY_POWER _COMMAND_REGISTER value:

3 - GET AVERAGE POWER CONSUMED
4 - GET MEMORY ENERGY CONSUMED

Ob = inactive

1b = background memory activity is in progress

Bits [31:5]: Reserved

POWER STATE ID 4 16 On completion of a GET operation, OSPM reads the current

platform state ID from this field. Prior to a SET operation, OSPM
populates this field with the power state value which needs to
be triggered. Power State values will be based on the platform

capability
MEMORY_POWER_ |4 20 This field identifies Memory power node number for the
NODE_ID command.
MEMORY_ENERGY_ | 8 24 This field returns the energy consumed by the memory that
CONSUMED constitutes the MEMORY_POWER_NODE_ID specified in the

previous field. A value of all 1s in this field indicates that
platform does not implement this field.

EXPECTED_AVERAG | 8 32 This field returns the expected average power consumption for
E_POWER_CONSU the memory constituted by MEMORY_POWER_NODE_ID. A
MED value of all 1s in this field indicates that platform does not

implement this field.

Note: OSPM should use the ratio of computed memory power consumed to expected average power
consumed in determining the memory power management action.

5.2.21.2 Memory Power State

Memory Power State represents the state of a memory power node (which maps to a memory address
range) while the platform is in the GO working state. Memory power node could be in active state named
MPSO or in one of the power manage states MPS1-MPSn.

UEFI Forum, Inc. January 2019 Page 192

ACPI Specification, Version 6.3 ACPI Software Programming Model

It should be noted that active memory power state (MPS0) does not preclude memory power
management in that state. It only indicates that any active state memory power management in MPSO is
transparent to the OSPM and more importantly does not require assist from OSPM in terms of restricting
memory occupancy and activity.

MPS1-MPSn states are characterized by non-zero exit latency for exit from the state to MPSO. These
states could require explicit OSPM-initiated entry and exit, explicit OSPM-initiated entry but autonomous
exit or autonomous entry and exit. In all three cases, these states require explicit OSPM action to isolate
and free the memory address range for the corresponding memory power node.

Transitions to more aggressive memory power states (for example, from MPS1 to MPS2) can be entered
on progressive idling but require transition through MPSO (i.e. MPS1->MPS0->MPS2). Power state
transition diagram is shown in Figure 5-20.

It is possible that after OSPM request a memory power state, a brief period of activity returns the
memory power node to MPSO state . If platform is capable of returning to a memory power state on
subsequent period of idle, the platform must treat the previously requested memory power state as a
persistent hint.

Exit

Figure 5-20 Memory Power State Transitions

The following table enumerates the power state values that a node can transition to.

Table 5-95 Power state Values

Value State Name |Description

0 MPSO This state value maps to active state of memory node (Normal operation).
OSPM can access memory during this state.

1 MPS1 This state value can be mapped to any memory power state depending on
the platform capability. The platform will inform the features of MPS1 state
using the Memory Power State Structure. By convention, it is required that
low value power state will have lower power savings and lower latencies
than the higher valued power states.

UEFI Forum, Inc. January 2019 Page 193

ACPI Specification, Version 6.3 ACPI Software Programming Model

MPS2, MPS3,

MPSn

Same description as MPS1.

The following provides the list of command status:

Table 5-96 Command Status

. . Bit oy

Field Bit Length Offset Description

Command 1 0 If set, the platform has completed processing the last

Complete command.

SCI Doorbell 1 1 If set, then this PCC Sub-Channel has signaled the SCI door bell.
In Response to this SCI, OSPM should probe the Command
Complete and the Platform Notification fields to determine the
cause of SCI.

Error 1 2 If set, an error occurred executing the last command.

Platform 1 3 Indicates that the SCI doorbell was invoked by the platform.

Notification

Reserved 12 4 Reserved.

5.2.21.3 Action Sequence

SetMemoryPowerState: The following sequence needs to be done to set a memory power state

1. Write target POWER NODE ID value to MEMORY_POWER_NODE_ID register of PCC sub
channel.

o vk~ wnwN

complete.

Write desired POWER STATE ID value to POWER STATE ID register of PCC sub channel .
Write SET (See Table 5-94) to MEMORY_POWER_STATE register of PCC sub channel.
Werite PCC EXECUTE (See Table 5-93) to PCC Command register for the PCC sub channel.
OSPM rings the door bell by writing to Doorbell register.

Platform completes the request and will generate SCI to indicate that the command is

7. OSPM reads the Status register for the PCC sub channel and confirms that the command was
successfully completed.

GetMemoryPowerState: The following sequence needs to be done to get the current memory power

state

1. Write target POWER NODE ID value to MEMORY_POWER_NODE_ID register of PCC sub
channel.

e W

UEFI Forum, Inc.

Write GET (See Table 5-94) to MEMORY_POWER_STATE register of PCC sub channel.

Write PCC EXECUTE (See Table 5-93) to PCC Command register for the PCC sub channel.
OSPM rings the door bell by writing to Doorbell register.

Platform completes the request and will generate SCI to indicate that command is complete.

January 2019 Page 194

ACPI Specification, Version 6.3 ACPI Software Programming Model

6. OSPM reads Status register for the PCC sub channel and confirms that the command was
successfully completed.

7. OSPM reads POWER STATE from POWER_STATE_ID register of PCC sub channel.

5.2.21.4 Memory Power Node

Memory Power Node is a representation of a logical memory region that needs to be transitioned in and
out of a memory power state as a unit. This logical memory region is made up of one more system
memory address range(s). A Memory Power Node is uniquely identified by Memory Power Node ID.

Note that memory power node structure defined in Table 5-97 can only represent a single address range.
This address range should be 4K aligned. If a Memory Power Node contains more than one memory
address range (i.e. non-contiguous range), firmware must construct a Memory power Node structure for
each of the memory address ranges but specify the same Memory Power Node ID in all the structures.

Memory Power Nodes are not hierarchical. However, a given memory address range covered by a
Memory power node could be fully covered by another memory power node if that nodes memory
address range is inclusive of the other node’s range. For example, memory power node MPNO may cover
memory address range 1G-2G and memory power node MPN1 covers 1-4G. Here MPN1 memory address
range also comprehends the range covered by MPNO.

OSPM is expected to identify the memory power node(s) that corresponds to the maximum memory
address range that OSPM is able to power manage at a given time. For example, if MPNO covers 1G-2G
and MPN1 covers 1-4G and OSPM is able to power manage 1-4G, it should select MPN1. If MPNO is in a
non-active memory power state, OSPM must move MPNO to MPSO (Active state) before placing MPN1 in
desired Memory Power State. Further, MPN1 can support more power states than MPNO. If MPN1 is in
such a state , say MPS3, that MPNO does not support, software must not query MPNO. If queried, MPNO
will return "not Valid" until MPN1 returns to MPSO0.

Note: [Implementation Note] In general, memory nodes corresponding to larger address space ranges
correspond to higher memory aggregation (e.g. memory covered by a DIMM vs. memory covered
by a memory channel) and hence typically present higher power saving opportunities.

5.2.21.4.1 Memory Power Node Structure

The following structure specifies the fields used for communicating memory power node information.
Each entry in the MPST table will be having corresponding memory power node structure defined.

This structure communicates address range, number of power states implemented, information about
individual power states, number of distinct physical components that comprise this memory power node.

The physical component identifiers can be cross-referenced against the memory topology table entries.

Table 5-97 Memory Power Node Structure definition

. Byte Byte ..
Field Length |Offset Description
Flag 1 0 The flag describes type of memory node. Refer to
Table 5-98 for details.
Reserved 1 1 For future use

UEFI Forum, Inc. January 2019 Page 195

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

Memory Power Node Id

2

This field provides memory power node number.
This is a unique identification for Memory Power
State Command and creation of freelists/cache lists
in OSPM memory manager to bias allocation of non
power managed nodes vs. power managed nodes.

Length

Length in bytes for Memory Power Node Structure.
The length implies the number of Entry fields at the
end of the table

Base Address Low

Low 32 bits of Base Address of the memory range.

Base Address High

12

High 32 bits of Base Address of the memory range.

Length Low

16

Low 32 bits of Length of the memory range. This
field along with “Length High” field is used to derive
the end physical address of this address range.

Length High

20

High 32 bits of Length of the memory range.

Number of Power States (n)

24

This field indicates number of power states
supported for this memory power node and in turn
determines the number of entries in memory
power state structure.

Number of Physical Components

28

This field indicates the number of distinct Physical
Components that constitute this memory power
node. This field is also used to identify the number
of entries of Physical Component Identifier entries
present at end of this table.

Memory Power State Structure

[n]

32

This field provides information of various power
states supported in the system for a given memory
power node

Physical Component Identifierl

2 byte identifier of distinct physical component that
makes up this memory power node

Physical Component Identifier m

2 byte identifier of distinct physical component that
makes up this memory power node

UEFI Forum, Inc.

January 2019

Page 196

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-98 Flag format

Bit Name Description

0 Enabled If clear, the OSPM ignores this Memory Power Node Structure. This allows
system firmware to populate the MPST with a static number of structures
but enable them as necessary.

1 Power Managed | 1 — Memory node is power managed

Flag 0 — Memory node is not power managed. For non power managed node,

OSPM shall not attempt to transition node into low power state. System
behavior is undefined if OSPM attempts this.

NOTE: If the memory range corresponding to the memory node includes
platform firmware reserved memory that cannot be power managed, the
platform should indicate such memory as “not power managed” to
OSPM. This allows OSPM to ignore such ranges from its power
optimization.

2 Hot Pluggable This flag indicates that the memory node supports the hot plug feature.
Refer to Section 5.2.21.10 for interaction with memory hot plug.

3-7 Reserved Reserved for future use

5.2.21.5 Memory Power State Structure

Table 5-99 Memory Power State Structure definition

Byte Byte

Field Length |Offset

Description

Power State Value |1 0 This field provides value of power state. The specific value to be
used is system dependent. However convention needs to be
maintained where higher numbers indicates deeper power
states with higher power savings and higher latencies. For
example, a power state value of 2 will have higher power savings
and higher latencies than a power state value of 1.

Power State 1 1 This field provides unique index into the memory power state
Information Index characteristics entries which will provide details about the
power consumed, power state characteristics and transition
latencies. The indexing mechanism is to avoid duplication (and
hence reduce potential for mismatch errors) of memory power
state characteristics entries across multiple memory nodes.

5.2.21.6 Memory Power State Characteristics structure

The table below describes the power consumed, exit latency and the characteristics of the memory
power state. This table is referenced by a memory power node.

UEFI Forum, Inc. January 2019 Page 197

ACPI Specification, Version 6.3

ACPI Software Programming Model

Table 5100 Memory Power State Characteristics Structure

Field Byte Length Byte Offset
Power State 1 0 Bit [5:0] = This field describes the format of table Structure
Structure ID
Power State Structure ID Value =1
Bit [7:6] = Structure Revision
Current revision is 1
Flag 1 1 The flag describes the caveats associated with entering the
specified power state. Refer to Table 5-101 for details.
Reserved 2 2 Reserved
Average Power 4 4 This field provides average power consumed for this memory
Consumed in power node in MPSO state. This power is measured in
MPSO state (in milliWatts and signifies the total power consumed by this
milli watts) memory the given power state as measured in DC watts.
Note that this value should be used as guideline only for
estimating power savings and not as actual power
consumed. Also memory power node can map to single or
collection of RANKs/DIMMs. The actual power consumed is
dependent on DIMM type, configuration and memory load.
Relative Power 4 8 This is a percentage of power saved in MPSx state relative to
Saving to MPSO MPSO0 state and should be calculated as ((MPSO power —
state MPSx power)/MPS0 Power)*100. When this entry is
describing MPSO state itself, OSPM should ignore this field.
Exit Latency (inns) |8 12 This field provides latency of exiting out of a power state
(MPSx—> MPS0) (MPSx) to active state (MPSO0). The unit of this field is
nanoseconds.
When this entry is describing MPSO0 state itself, OSPM should
ignore this field.
Reserved 8 20 Reserved for future use.

UEFI Forum, Inc.

January 2019

Page 198

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-101 Flag format of Memory Power State Characteristics Structure

Bit Name Description
0 Memory Content If Bit [0] is set, it indicates memory contents will be preserved in the
Preserved specified power state

If Bit [0] is clear, it indicates memory contents will be lost in the
specified power state (e.g. for states like offline)

1 Autonomous Memory | If Bit [1] is set, this field indicates that given memory power state
Power State Entry entry transition needs to be triggered explicitly by OSPM by calling the
Set Power State command.

If Bit [1] is clear, this field indicates that given memory power state
entry transition is automatically implemented in hardware and does
not require a OSPM trigger. The role of OSPM in this case is to ensure
that the corresponding memory region is idled from a software
standpoint to facilitate entry to the state.

Not meaningful for MPSO — write it for this table

2 Autonomous Memory | If Bit [1] is set, this field indicates that given memory power state exit
Power State Exit needs to be explicitly triggered by the OSPM before the memory can
be accessed. System behavior is undefined if OSPM or other software
agents attempt to access memory that is currently in a low power
state.

If Bit [1] is clear, this field indicates that given memory power state is
exited automatically on access to the memory address range
corresponding to the memory power node.

3-7 Reserved Reserved for future use

5.2.21.6.1 Power Consumed

Average Power Consumed in MPSO state indicates the power in milli Watts for the MPSO state. Relative
power savings to MPSO indicates the savings in the MPSx state as a percentage of savings relative to
MPSO0 state.

5.2.21.6.2 Exit Latency

Exit Latency provided in the Memory Power Characteristics structure for a specific power state is
inclusive of the entry latency for that state.

Exit latency must always be provided for a memory power state regardless of whether the memory
power state entry and/or exit are autonomous or requires explicit trigger from OSPM.

5.2.21.7 Autonomous Memory Power Management

Not all memory power management states require OSPM to actively transition a memory power node in
and out of the memory power state. Platforms may implement memory power states that are fully
handled in hardware in terms of entry and exit transition. In such fully autonomous states, the decision to
enter the state is made by hardware based on the utilization of the corresponding memory region and
the decision to exit the memory power state is initiated in response to a memory access targeted to the
corresponding memory region.

UEFI Forum, Inc. January 2019 Page 199

ACPI Specification, Version 6.3 ACPI Software Programming Model

The role of OSPM software in handling such autonomous memory power states is to vacate the use of
such memory regions when possible in order to allow hardware to effectively save power. No other
OSPM initiated action is required for supporting these autonomously power managed regions. However,
it is not an error for OSPM explicitly initiates a state transition to an autonomous entry memory power
state through the MPST command interface. The platform may accept the command and enter the state
immediately in which case it must return command completion with SUCCESS (00000b) status. If
platform does not support explicit entry, it must return command completion with NOT SUPPORTED
(00010b) status.

5.2.21.8 Handling BIOS Reserved Memory

Platform firmware may have regions of memory reserved for its own use that are unavailable to OSPM
for allocation. Memory nodes where all (or a portion) of the memory is reserved by platform firmware
may pose a problem for OSPM because it does not know whether the platform firmware reserved
memory is in use.

If the platform firmware reserved memory impacts the ability of the memory power node to enter
memory power state(s), the platform must indicate to OSPM (by clearing the Power Managed Flag — see
Table 5-98 for details) that this memory power node cannot be power managed. This allows OSPM to
ignore such ranges from its memory power optimization.

5.2.21.9 Interaction with NUMA processor and memory affinity tables

The memory power state table describes address range for each of the memory power nodes specified.
OSPM can use the address ranges information provided in MPST table and derive processor affinity of a
given memory power node based on the SRAT entries created by the platform boot firmware. The
association of memory power node to proximity domain can be used by OSPM to implement memory
coalescing taking into account NUMA node topology for memory allocation/release and manipulation of
different page lists in memory management code (implementation specific).

An example of policy which can be implemented in OSPM for memory coalescing is: OSPM can prefer
allocating memory from local memory power nodes before going to remote memory power nodes. The
later sections provide sample NUMA configurations and explain the policy for various memory power
nodes.

5.2.21.10 Interaction with Memory Hot Plug

The hot pluggable memory regions are described using memory device objects (see Section 9.13). The
memory address ranges of these memory device objects are defined using the _CRS method.

Scope (_SB) {
Device (MEMO) {
Name (_HID, EISAID (“PNPOC807))
Name (_CRS, ResourceTemplate () {
QwordMemory (

ResourceConsumer,
MinFixed,
MaxFixed,
Cacheable,
ReadWrite,
OXFFFFFFF,

UEFI Forum, Inc. January 2019 Page 200

ACPI Specification, Version 6.3 ACPI Software Programming Model

0x10000000,
0x30000000,
0 ’ ’ ’

D
}

The memory power state table (MPST) is a static structure created for all memory objects independent of
hot plug status (online or offline) during initialization. The OSPM will populate the MPST table during the
boot. If hot-pluggable flag is set for a given memory power node in MPST table, OSPM will not use this
node till physical presence of memory is communicated through ACPI notification mechanism.

The association between memory device object (e.g. MEMO) to the appropriate memory power node id
in the MPST table is determined by comparing the address range specified using _CRS method and
address ranges configured in the MPST table entries. This association needs to be identified by OSPM as
part of ACPI memory hot plug implementation. When memory device is hot added, as part of existing
acpi driver for memory hot plug, OSPM will scan device object for _CRS method and get the relevant
address ranges for the given memory object, OSPM will determine the appropriate memory power node
ids based on the address ranges from _CRS and enable it for power management and memory coalescing.

Similarly when memory is hot removed, the corresponding memory power nodes will be disabled.

5.2.21.11 OS Memory Allocation Considerations

OSes (non-virtualized OS or a hypervisor/VMM) may need to allocate non-migratable memory. It is
recommended that the OSes (if possible) allocate this memory from memory ranges corresponding to
memory power nodes that indicate they are not power manageable. This allows OS to optimize the
power manageable memory power nodes for optimal power savings.

OSes can assume that memory ranges that belong to memory power nodes that are power manageable
(as indicated by the flag) are interleaved in a manner that does no impact the ability of that range to
enter power managed states. For example, such memory is not cacheline interleaved.

Reference to memory in this document always refers to host physical memory. For virtualized
environments, this requires hypervisors to be responsible for memory power management. Hypervisors
also have the ability to create opportunities for memory power management by vacating appropriate
host physical memory through remapping guest physical memory.

OSes can assume that the memory ranges included in MPST always refer to memory store — either
volatile or non-volatile and never to MMIO or MMCFG ranges.

5.2.21.12 Memory Topology Table (PMTT)

This table describes the memory topology of the system to OSPM, where the memory topology can be
logical or physical. The topology is provided to the last level physical component (e.g. DIMM).

Table 5-102 Platform Memory Topology Table

Byte Byte

Field Length |Offset

Description

Header

UEFI Forum, Inc. January 2019 Page 201

ACPI Specification, Version 6.3 ACPI Software Programming Model

Field EZ:Z th (B))f'ftseet Description
Signature 4 0 ‘PMTT’. Signature for Platform Memory Topology Table.
Length 4 4 Length in bytes of the entire PMTT. The length implies the number
of Memory Aggregator structures at the end of the table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the PMTT, the table ID is the manufacturer model ID
OEM Revision 4 24 OEM revision of the PMTT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table.
Creator Revision 4 32 Revision of utility that created the table.
Reserved 4 36 Reserved, must be zero.
Memory Aggregator | --- 40 A list of memory aggregator device structures for the platform. See
Device Structure [n] Table 5-103.

UEFI Forum, Inc. January 2019 Page 202

ACPI Specification, Version 6.3

ACPI Software Programming Model

Table 5-103 Common Memory Aggregator Device Structure

Field Byte Byte Description
Length | Offset

Type 1 0 The field describes type of the Memory Aggregator Device.
0 — Socket
1 - Memory Controller
2 -DIMM
3 — OxFF - Reserved

Reserved 1 1 Reserved, must be zero.

Length 2 2 Length in bytes for this Structure. This length implies the length of
the Type Specific Data at the end of the structure.

Flags 2 4 Bit [0] — set to 1 to indicate that this is a top level aggregator device.
This device must be counted in the number of top level aggregator
devices in PMTT table and must be surfaces via PMTT.

Bit [0] — 0 indicates that this is not a top level aggregator device.
Bit [1] - 1 indicates a physical element of the topology.
0 indicates a logical element of topology
Bit [2] and [3] —
» 00 - Indicates that all components aggregated by this device
implement volatile memory
* 01 - Indicates that components aggregated by this device
implement both volatile and non-volatile memory
* 10 - Indicates that all components aggregated by this device
implement non-volatile memory
* 11 - Reserved
Bits [15:4] Reserved, must be zero
Reserved 2 6 Reserved, must be zero.
Type Specific Data 8 Type specific data. Interpretation of this data is specific to the type

of the memory aggregator device. See Table 5-104, Table 5-105, and
Table 5-106.

UEFI Forum, Inc.

January 2019 Page 203

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-104 Socket Structure

. Byte Byte .
Field Length |Offset Description
Type 1 0 0 — Socket
Reserved 1 1 Reserved, must be zero.
Length 2 2 Length in bytes for this Structure. The length implies the number of
memory controller structures at the end of this structure.
Flags 2 4 Bit [0] — 1 indicates that this is a top level aggregator device.
Bit [1] — Set to 1 since socket is a physical element of the topology
Bit [2] and [3] —
* 00 - Indicates that all components aggregated by this device
implement volatile memory
* 01 - Indicates that components aggregated by this device
implement both volatile and non-volatile memory
* 10 - Indicates that all components aggregated by this device
implement non-volatile memory
* 11 - Reserved
Bit [4] — Bit [15] Reserved, must be zero
Reserved 2 6 Reserved, must be zero.
Socket Identifier 2 8 Uniquely identifies the socket in the system.
Reserved 2 10 Reserved, must be zero.
Memory Controller - 12 A list of Memory Controller Structures.This list provides information
Structure [n] on the memory controllers present in the socket. See Table 5-105.

Table 5-105 Memory Controller Structure

. Byte Byte .
Field Length Offset Description
Type 1 0 1 - Memory Controller
Reserved 1 1 Reserved, must be zero.
Length 2 2 Length in bytes for this Structure. The length implies the
number of physical component identifier structures at the end
of this structure.

UEFI Forum, Inc. January 2019 Page 204

ACPI Specification, Version 6.3

ACPI Software Programming Model

Byte

Byte

Field Langth Offset Description
Flag 2 4 Bit [0] — 1 indicates that this is a top level aggregator device.
Bit [1] — 1 indicates a physical element of the topology.
0 indicates a logical element of the topology
Bit [2] and [3] —
» 00 - Indicates that all components aggregated by this device
implement volatile memory
« 01 - Indicates that components aggregated by this device
implement both volatile and non-volatile memory
* 10 - Indicates that all components aggregated by this device
implement non-volatile memory
* 11 - Reserved
Bit [4] — Bit [15] Reserved
Reserved 2 6 Reserved, must be zero.
Read Latency (typical) |4 8 In nanoseconds as seen at the controller for a cacheline access.
Write latency (typical) |4 12 In nanoseconds as seen at the controller for a cacheline access.
Read Bandwidth 4 16 In MB/s
(typical)
Write Bandwidth 4 20 In MB/s
(typical)
Optimal access unit 2 24 In bytes
Optimal access 2 26 In bytes
alignment
Reserved 2 28 Reserved , must be zero.
Number of Proximity 2 30 Number of Proximity Domains that immediately follow. A zero
Domains (m) in this field indicates that proximity domain information is not
provided by the platform and that no 4-byte domains follow
Proximity Domain [m] | 4*m 32 Proximity domains for memory address space(s) spawned by

this memory controller. Each proximity domain is a 4-byte
entity as defined in the System Resource Allocation Table
(SRAT).

Physical Component
Identifier Structure [n]

A list of Physical Components structures for this memory
controller. See Table 5-106.

UEFI Forum, Inc.

January 2019

Page 205

ACPI Specification, Version 6.3

ACPI Software Programming Model

Table 5-106 Physical Components Identifier Structure

. Byte Byte .

Field Length Offset Description

Type 1 0 2—- DIMM

Reserved 1 1 Reserved, must be zero.

Length 2 2 Length in bytes for this Structure.

Flag 2 4 Bit [0] — O indicates that this is not a top level memory
aggregator. DIMM is typically behind a memory controller or a
socket device or both.

Bit [1] — 1 indicates a physical element of the topology.

Set to O to indicate a logical element of the topology

Bit [2] and [3] —

» 00 - Indicates that all components aggregated by this device
implement volatile memory

» 01 - Indicates that components aggregated by this device
implement both volatile and non-volatile memory

* 10 - Indicates that all components aggregated by this device
implement non-volatile memory

* 11 - Reserved

Bit [4] — Bit [15] Reserved

Reserved 2 6 Reserved, must be zero.

Physical Component 2 8 Uniquely identifies the physical memory component in the

Identifier system.

Reserved 2 10 Reserved, must be zero.

Size of DIMM 4 12 Size in MB of the DIMM device.

SMBIOS Handle 4 16 Refers to Type 17 table handle of corresponding SMBIOS

record. The platform indicates that this field is not valid by
setting a value of OXFFFFFFFF. If the platform provides a valid
handle, the upper 2 bytes must be 0 (since SMBIOS handles are
2 bytes only).

NOTE: The use of this handle is for management software to be
able to cross-reference the physical DIMM described in
SMBIOS against the topology described in this table. It is not
expected that OSPM will utilize this field.

5.2.22 Boot Graphics Resource Table (BGRT)

The Boot Graphics Resource Table (BGRT) is an optional table that provides a mechanism to indicate that
an image was drawn on the screen during boot, and some information about the image.

The table is written when the image is drawn on the screen. This should be done after it is expected that
any firmware components that may write to the screen are done doing so and it is known that the image
is the only thing on the screen. If the boot path is interrupted (e.g., by a key press), the valid bit within the
status field should be changed to 0 to indicate to the OS that the current image is invalidated.

UEFI Forum, Inc.

January 2019

Page 206

ACPI Specification, Version 6.3 ACPI Software Programming Model

This table is only supported on UEFI systems.

Table 5-107 Boot Graphics Resource Table Fields

Field f::;th (B)::ft:et Description
Header
Signature 4 0 “BGRT” Signature for the table.
Length 4 4 Length, in bytes, of the entire table
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 The table ID is the manufacturer model ID.
OEM Revision 4 24 OEM revision for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table.
Creator Revision |4 32 Revision of utility that created the table.
Version 2 36 2-bytes (16 bit) version ID. This value must be 1.
Status 1 38 1-byte status field indicating current status of the image.
Bits [7:3] = Reserved (must be zero)
Bits [2:1] = Orientation Offset. These bits describe the clockwise
degree offset from the image’s default orientation.
[00] = 0, no offset
[01] =90
[10] = 180
[11] = 270
Image Type 1 39 1-byte enumerated type field indicating format of the image.
0 = Bitmap
1 - 255 Reserved (for future use)
Image Address 8 40 8-byte (64 bit) physical address pointing to the firmware’s in-
memory copy of the image bitmap.
Image Offset X 4 48 A 4-byte (32-bit) unsigned long describing the display X-offset of
the boot image. (X, Y) display offset of the top left corner of the
boot image. The top left corner of the display is at offset (0, 0).
Image Offset Y 4 52 A 4-byte (32-bit) unsigned long describing the display Y-offset of
the boot image. (X, Y) display offset of the top left corner of the
boot image. The top left corner of the display is at offset (0, 0).

The BGRT is a dynamic ACPI table that enables boot firmware to provide OPSM with a pointer to the
location in memory where the boot graphics image is stored.

UEFI Forum, Inc. January 2019 Page 207

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.22.1 Version

The version field identifies which revision of the BGRT table is implemented. The version field should be
setto 1.

5.2.22.2 Status

Table 5-108 Status Description Field

Offset Field Name

Bit 0 Displayed

The status field contains information about the current status of the table. The Valid bit is bit 0 of the
lowest byte. It should be set to 1 while the image resource is displayed on the screen, and set to 0 while
it is not displayed.

All other bits are reserved.

5.2.22.3 Image Type

Table 5-109 Image Type Description Field

Value Definition

0 Image Type is Bitmap

The Image type field contains information about the format of the image being returned. If the value is
0, the Image Type is Bitmap. The format for a Bitmap is defined atthe reference located in “Links to ACPI-
Related Documents” (http://uefi.org/acpi) under the heading "Types of Bitmaps".

All other values not defined in the table are reserved for future use.

5.2.22.4 Image Address

The Image Address contains the location in memory where an in-memory copy of the boot image can be
found. The image should be stored in EfiBootServicesData, allowing the system to reclaim the memory
when the image is no longer needed.

Implementations must present the image in a 24 bit bitmap with pixel format 0OxRRGGBB, or a32-bit
bitmap with the pixel format OxrrRRGGBB, where ‘rr’ is reserved.

5.2.22.5 Image Offset

The Image Offset contains 2 consecutive 4 byte unsigned longs describing the (X, Y) display offset of the
top left corner of the boot image. The top left corner of the display is at offset (0, 0).

UEFI Forum, Inc. January 2019 Page 208

ACPI Specification, Version 6.3 ACPI Software Programming Model

Figure 5-21 Image Offset

5.2.23 Firmware Performance Data Table (FPDT)

This section describes the format of the Firmware Performance Data Table (FPDT), which provides
sufficient information to describe the platform initialization performance records. This information
represents the boot performance data relating to specific tasks within the firmware boot process. The
FPDT includes only those mileposts that are part of every platform boot process:

¢ End of reset sequence (Timer value noted at beginning of platform boot firmware initialization
- typically at reset vector)
¢ Handoff to OS Loader

This information represents the firmware boot performance data set that would be used to track
performance of each UEFI phase, and would be useful for tracking impacts resulting from changes due to
hardware/software configuration.

All timer values are express in 1 nanosecond increments. For example, if a record indicates an event
occurred at a timer value of 25678, this means that 25.678 microseconds have elapsed from the last reset
of the timer measurement. All timer values will be required to have an accuracy of +/- 10%.

Table 5-110 Firmware Performance Data Table (FPDT) Format

Field f::;th Byte Offset |Description
Header
Signature 4 0 ‘FPDT’ Signature for the Firmware Performance Data
Table.
Length 4 4 The length of the table, in bytes, of the entire FPDT.

UEFI Forum, Inc. January 2019 Page 209

ACPI Specification, Version 6.3 ACPI Software Programming Model

. Byte o
Field Leangth Byte Offset |Description
Revision 1 8 The revision of the structure corresponding to the
signature field for this table.
For the Firmware Performance Data Table conforming to
this revision of the specification, the revision is 1.
Checksum 1 9 The entire table, including the checksum field, must add
to zero to be considered valid.
OEMID 6 10 An OEM-supplied string that identifies the OEM.
OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify
this particular data table.
OEM Revision 4 24 An OEM-supplied revision number.
Creator ID 4 28 The Vendor ID of the utility that created this table.
Creator Revision 4 32 The revision of the utility that created this table.
Performance Records | — 36 The set of Performance Records.

5.2.23.1 Performance Record Format

A performance record is comprised of a sub-header including a record type and length, and a set of data,
which may include a timer. The format of the record layout is specific to the record type. In this manner,
records are only as large as needed to contain the specific type of data to be conveyed.

Table 5-111 Performance Record Structure

. Byte Byte o

Field Length |Offset Description

Performance 2 0 This value depicts the format and contents of the performance

Record Type record.

Record Length 1 2 This value depicts the length of the performance record, in bytes.

Revision 1 3 This value is updated if the format of the record type is extended.
Any changes to a performance record layout must be backwards-
compatible in that all previously defined fields must be
maintained if still applicable, but newly defined fields allow the
length of the performance record to be increased. Previously
defined record fields must not be redefined, but are permitted to
be deprecated.

Data — 4 The content of this field is defined by the Performance Record
Type definition.

5.2.23.2 Performance Record Types

The table below describes the various types of records contained within the FPDT, and their associated
Performance Record Type. Note that unless otherwise specified, multiple performance records are

permitted in the FPDT for a given type, because some events can occur multiple times during the boot
process.

UEFI Forum, Inc. January 2019 Page 210

ACPI Specification, Version 6.3

ACPI Software Programming Model

Table 5-112 Performance Record Types

Record Type Value |Type Description

0x0000 Firmware Record containing a pointer to the Basic Boot Performance Data
Basic Boot Record.
Performance
Pointer Record

0x0001 S3 Record containing a pointer to an S3 Performance Table.
Performance
Table Pointer
Record

0x0002 — OxOFFF Reserved Reserved for ACPI specification usage.

0x1000 — Ox1FFF Reserved Reserved for Platform Vendor usage.

0x2000 — Ox2FFF Reserved Reserved for Hardware Vendor usage.

0x3000 — Ox3FFF Reserved Reserved for platform firmware Vendor usage.

0x4000 — OxFFFF Reserved Reserved for future use

5.2.23.3 Runtime Performance Record Types

The table below describes the various types of runtime records and their associated Runtime
Performance Record types. These Records are not contained within the FPDT; they are referenced by
their respective pointer records in the FPDT.

Table 5113 Runtime Performance Record Types

Record Type Value | Type Description

0x0000 Basic S3 Performance record describing minimal firmware
Resume performance metrics for S3 resume operations
Performance
Record

0x0001 Basic S3 Performance record describing minimal firmware
Suspend performance metrics for S3 suspend operations
Performance
Record

0x0002 Firmware Performance record showing basic performance metrics for
Basic Boot critical phases of the firmware boot process.
Performance

Data Record

0x0003 — OxOFFF Reserved Reserved for ACPI specification usage.

0x1000 — Ox1FFF Reserved Reserved for Platform Vendor usage.

0x2000 — Ox2FFF Reserved Reserved for Hardware Vendor usage.

0x3000 — Ox3FFF Reserved Reserved for platform firmware Vendor usage.
0x4000 — OxFFFF Reserved Reserved for future use

UEFI Forum, Inc.

January 2019

Page 211

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.23.4 S3 Performance Table Pointer Record

The S3 Performance Table Pointer Record contains a pointer to the S3 Performance Table. The S3
Performance Table itself exists in a range of memory described as ACPI AddressRangeReserved in the
system memory map. The record pointer is a required entry in the FPDT for any system supporting the S3

state, and the pointer must point to a valid static physical address. Only one of these records will be
produced.

Table 5-114 S3 Performance Table Pointer Record

. Byte Byte o

Field Length |Offset Description

Performance 2 0 1 - S3 Performance Table Record

Record Type

Record Length 1 2 16 - This value depicts the length of the performance record, in
bytes.

Revision 1 3 1 - Revision of this Performance Record

Reserved 4 4 Reserved

S3PT Pointer 8 8 64-bit processor-relative physical address of the S3 Performance
Table

5.2.23.5 Firmware Basic Boot Performance Pointer Record

The Firmware Basic Boot Performance Pointer Record contains a pointer to the Firmware Basic Boot
Performance Data Record. The Firmware Basic Boot Performance Data Record itself exists in a range of
memory described as ACPI AddressRangeReserved in the system memory map. The record pointer is a
required entry in the FPDT for any system and the pointer must point to a valid static physical address.
Only one of these records will be produced.

Table 5-115 S4 Performance Table Pointer Record

. Byte Byte o

Field Length |Offset Description

Performance 2 0 0 — Firmware Basic Boot Performance Pointer Record

Record Type

Record Length 1 2 16 - This value depicts the length of the performance record, in
bytes.

Revision 1 3 1 - Revision of this Performance Record

Reserved 4 4 Reserved

FBPT Pointer 8 8 64-bit processor-relative physical address of the Firmware Basic
Boot Performance Table

5.2.23.6 S3 Performance Table

The S3 Performance Table resides outside of the FPDT. It includes a header, defined in Table 5-117, and
one or more Performance Records.

UEFI Forum, Inc. January 2019 Page 212

ACPI Specification, Version 6.3 ACPI Software Programming Model

All event entries must be initialized to zero during the initial boot sequence, and overwritten during the
platform runtime firmware S3 resume sequence. The S3 Performance Table must include the Basic S3
Resume Performance Record. Other entries are optional.

Table 5-116 S3 Performance Table Header

. Byte Byte s
Field Length | Offset Description
Signature 4 0 ‘S3PT’ is the signature to use.
Length 4 4 Length of the S3 Performance Table. This includes the header and

allocated size of the subsequent records. This size would at
minimum include the size of the header and the Basic S3 Resume
Performance Record.

Table 5-117 Basic S3 Resume Performance Record

. Byte Byte s

Field Length | Offset Description

Runtime 2 0 0 - The Basic S3 Resume Performance Record Type. Zero to one of

Performance these records will be produced.

Record Type

Record Length 1 2 24 - The value depicts the length of this performance record, in
bytes.

Revision 1 3 1 - Revision of this Performance Record

Resume Count 4 4 A count of the number of S3 resume cycles since the last full boot
sequence.

FullResume 8 8 Timer recorded at the end of platform runtime firmware S3
resume, just prior to handoff to the OS waking vector. Only the
most recent resume cycle’s time is retained.

AverageResume 8 16 Average timer value of all resume cycles logged since the last full
boot sequence, including the most recent resume. Note that the
entire log of timer values does not need to be retained in order to
calculate this average. AverageResume,,, = (AverageResume 4
* (ResumeCount -1) + FullResume) / ResumeCount

UEFI Forum, Inc. January 2019 Page 213

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-118 Basic S3 Suspend Performance Record

. Byte Byte ..

Field Length |Offset Description

Runtime 2 0 1-The Basic S3 Suspend Performance Record Type. Zero to one of

Performance these records will be produced.

Record Type

Record Length 1 2 20 - The value depicts the length of this performance record, in
bytes.

Revision 1 3 1 - Revision of this Performance Record

SuspendStart 8 4 Timer value recorded at the OS write to SLP_TYP upon entry to S3.
Only the most recent suspend cycle’s timer value is retained.

SuspendEnd 8 12 Timer value recorded at the final firmware write to SLP_TYP (or
other mechanism) used to trigger hardware entry to S3. Only the
most recent suspend cycle’s timer value is retained.

5.2.23.7 Firmware Basic Boot Performance Table

The Firmware Basic Boot Performance Table resides outside of the FPDT. It includes a header, defined in
Table 5-119, and one or more Performance Records.

All event entries will be overwritten during the platform runtime firmware S4 resume sequence. The
Firmware Basic Boot Performance Table must include the Firmware Basic Boot Performance Table.

Table 5-119 Firmware Basic Boot Performance Table Header

. Byte Byte ..
Field Length |Offset Description
Signature 4 0 ‘FBPT’ is the signature to use.
Length 4 4 Length of the Firmware Basic Boot Performance Table. This

includes the header and allocated size of the subsequent records.
This size would at minimum include the size of the header and the
Firmware Basic Boot Performance Record.

5.2.23.8 Firmware Basic Boot Performance Data Record

A firmware basic boot performance data record which contains timer information associated with final
OS loader activity as well as the data associated with starting and ending boot time information. Only
one of these records will be produced.

Table 5-120 Firmware Basic Boot Performance Data Record Structure

. Byte Byte ..
Field Length |Offset Description
Performance 2 0 2 — Firmware Basic Boot Performance Data Record

Record Type

UEFI Forum, Inc. January 2019 Page 214

ACPI Specification, Version 6.3

ACPI Software Programming Model

Exit

. Byte Byte o
Field Length |Offset Description
Record Length 1 2 48 - This value depicts the length of the performance record, in
bytes.
Revision 1 3 2 - Revision of this Performance Record
Reserved 4 4 Reserved
Reset End 8 8 Timer value logged at the beginning of firmware image execution.
This may not always be zero or near zero.
OS Loader 8 16 Timer value logged just prior to loading the OS boot loader into
Loadlmage Start memory.
For non-UEFI compatible boots, this field must be zero.
OS Loader 8 24 Timer value logged just prior to launching the currently loaded OS
Startimage Start boot loader image.
For non-UEFI compatible boots, the timer value logged will be just
prior to the INT 19h handler invocation.
ExitBootServices 8 32 Timer value logged at the point when the OS loader calls the
Entry ExitBootServices function for UEFI compatible firmware.
For non-UEFI compatible boots, this field must be zero.
ExitBootServices 8 40 Timer value logged at the point just prior to the OS loader gaining

control back from the ExitBootServices function for UEFI
compatible firmware.

For non-UEFI compatible boots, this field must be zero.

UEFI Forum, Inc.

January 2019

Page 215

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.24 Generic Timer Description Table (GTDT)

This section describes the format of the Generic Timer Description Table (GTDT), which provides OSPM
with information about a system’s Generic Timers configuration. The Generic Timer (GT) is a standard
timer interface implemented on ARM processor-based systems. The GT hardware specification can be
found at Links to ACPI-Related Documents (http://uefi.org/acpi) under the heading ARM Architecture.
The GTDT provides OSPM with information about a system's GT interrupt configurations, for both per-
processor timers, and platform (memory-mapped) timers.

The GT specification defines the following per-processor timers:

e Secure EL1 timer,

e Non-Secure EL1 timer,
e EL2timer,

e Virtual EL1 timer,

e Virtual EL2 timer,

and defines the following memory-mapped Platform timers:

e GT Block,
e Server Base System Architecture (SBSA) Generic Watchdog.

Table 5-121 GTDT Table Structure

Field SZ:IZ " CB))flftseet Description
Header
Signature 4 0 ‘GTDT'. Signature for the Generic Timer Description Table.
Length 4 4 Length, in bytes, of the entire Generic Timer Description Table.
Revision 1 8 3
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID.
OEM Table ID 8 16 The manufacturer model ID.
OEM Revision 4 24 OEM revision for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table.
Creator Revision 4 32 Revision of utility that created the table.
CntControlBase 8 36 The 64-bit physical address at which the Counter Control block is
Physical Address located.This value is optional if the system implements EL3 (Security
Extensions). If not provided, this field must be OxFFFFFFFFFFFFFFFF.
Reserved 4 44 Must be zero
Secure EL1 Timer GSIV | 4 48 GSIV for the secure EL1 timer. This value is optional, as an operating
system executing in the non-secure world (EL2 or EL1), will ignore
the content of these fields.

UEFI Forum, Inc. January 2019 Page 216

ACPI Specification, Version 6.3 ACPI Software Programming Model

. Byte Byte o

Field Length |Offset Description

Secure EL1 Timer Flags | 4 52 Flags for the secure EL1 timer (defined below). This value is optional,
as an operating system executing in the non-secure world (EL2 or
EL1) will ignore the content of this field.

Non-Secure EL1 Timer |4 56 GSIV for the non-secure EL1 timer.

GSIV

Non-Secure EL1 Timer | 4 60 Flags for the non-secure EL1 timer (defined below).

Flags

Virtual EL1 Timer GSIV | 4 64 GSIV for the virtual EL1 timer.

Virtual EL1 Timer Flags | 4 68 Flags for the virtual EL1 timer (defined below)

EL2 Timer GSIV 4 72 GSIV for the EL2 timer.

EL2 Timer Flags 4 76 Flags for the EL2 timer(defined below).

CntReadBase Physical | 8 80 The 64-bit physical address at which the Counter Read block is

Address located. This value is optional if the system implements EL3
(Security Extensions). If not provided, this field must be
OXFFFFFFFFFFFFFFFF.

Platform Timer Count |4 88 Number of entries in the Platform Timer Structure[] array

Platform Timer Offset | 4 92 Offset to the Platform Timer Structure[] array from the start of this
table

Virtual EL2 Timer GSIV | 4 96 GSIV for the virtual EL2 timer. This field is mandatory for systems
implementing ARMv8.1 VHE. For systems not implementing
ARMVS8.1 VHE, this field is 0.

Virtual EL2 Timer Flags | 4 100 Flags for the virtual EL2 timer (defined below). This field is
mandatory for systems implementing ARMv8.1 VHE. For systems not
implementing ARMv8.1 VHE, this field is O.

Platform Timer - Platfor | Array of Platform Timer Type structures describing memory-mapped

Structure[] m Timers available on this platform. These structures are described in

Timer | the below sections.
Offset

UEFI Forum, Inc. January 2019 Page 217

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-122 Flag Definitions: Secure EL1 Timer, Non-Secure EL1 Timer, EL2 Timer, Virtual EL1
Timer and Virtual EL2 Timer

Secure EL1 Timer Flags, Non-Secure EL1 Timer Flags, EL2 Timer Flags, Virtual EL1 Timer Flags, and Virtual
EL2 Timer Flags all have the same definition as follows.

I Bit Number .

Bit Field Offset | of bits Description

Timer interrupt 0 1 This bit indicates the mode of the timer interrupt

Mode
1: Interrupt is Edge triggered
0: Interrupt is Level triggered

Timer Interrupt 1 1 This bit indicates the polarity of the timer interrupt

polarity
1: Interrupt is Active low
0: Interrupt is Active high

Always-on 2 1 This bit indicates the always-on capability of the timer

Capability implementation.
1: This timer is guaranteed to assert its interrupt and wake a
processor, regardless of the processor’s power state. All of the
methods by which an ARM Generic Timer may generate an
interrupt must be supported, and must be capable of waking the
processor.
0: This timer may lose context or may not be guaranteed to assert
interrupts when its associated processor enters a low-power
state

Reserved 3 29 Reserved, must be zero.

The GTDT Platform Timer Structure [] field is an array of Platform Timer Type structures, each of which
describes the configuration of an available platform timer. These timers are in addition to the per-
processor timers described above them in the GTDT.

Table 5-123 Platform Timer Type Structures

Value Description

0 GT Block

1 SBSA Generic Watchdog
0x02-0xFF Reserved for future use

The first byte of each structure declares the type of that structure and the second and third bytes declare
the length of that structure.

UEFI Forum, Inc. January 2019 Page 218

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.24.1 GT Block Structure

The GT Block is a standard timer block that is mapped into the system address space. Each GT Block
implements up to 8 GTs (GTO — GT7).

The format of the GT Block structure is shown in Table 5-124.

Table 5-124 GT Block Structure Format

. Byte Byte s
Field g Offset Description
Type 1 0 0x0 GT Block
Length 2 1 20+n*40, where n is the number of timers implemented in the

GT Block
Reserved 1 3 Must be zero
GT Block 8 4 The 64-bit physical address at which the GT CntCTLBase Block
Physical address is located
(CntCtIBase)
GT Block Timer 4 12 Number of Timers implemented in this GT Block ('n'). . Must be
Count less than or equal to 8.
GT Block Timer 4 16 Offset to the Platform Timer Structure array from the start of
Offset this structure
GT Block Timer n*40 GTBlock | Array of GT Block Timer Structures. See Table 5-125.
Structure[] Timer
Offset

Table 5-125 GT Block Timer Structure Format

. Byte Byte oy
Field Length |Offset Description
GT Frame Number 1 0 The frame number (0-7) for this timer (‘x’)
Reserved 3 1 Must be zero
GTx Physical 8 4 Physical Address at which the CntBase block for GTx is located
Address (CntBaseX)
GTx Physical 8 12 Physical Address at which the CntELOBase block for GTx is
Address located. If this block is not implemented for GTx, must be
(CntELOBaseX) OXFFFFFFFFFFFFFFFF.
GTx Physical Timer |4 20 GSIV for the GTx physical timer
GSIV
GTx Physical Timer |4 24 Flags for the GTx physical timer. See Table 5-126
Flags
GTx Virtual Timer 4 28 GSIV for the GTx virtual timer If the Virtual Timer is not
GSIV implemented for GTx, this field must be 0.

UEFI Forum, Inc. January 2019 Page 219

ACPI Specification, Version 6.3 ACPI Software Programming Model

GTx Virtual Timer 4 32 Flags for the GTx virtual timer, if implemented. See Table 5-126.
Flags
GTx Common Flags |4 36 See Table 5-127.

Table 5-126 Flag Definitions: GT Block Physical Timers and Virtual Timers

o Bit Number L.
Bit Field . Description
Offset |of bits
Timer interrupt 0 1 This bit indicates the mode of the timer interrupt.
Mode » 1: Interrupt is Edge triggered.
» 0: Interrupt is Level triggered.
Timer Interrupt 1 1 This bit indicates the polarity of the timer interrupt
polarity 1: Interrupt is Active low
0: Interrupt is Active high
Reserved 2 30 Reserved, must be zero.

Table 5-127 Flag Definitions: Common Flags

Bit Number
Offset |of bits

Bit Field Description

Secure Timer 0 1 | This bit indicates whether the timer is secure or non-secure

1: Timer is Secure

0: Timer is Non-secure

Always-on 1 1 | This bit indicates the always-on capability of the Physical and

Capability Virtual Timers implementation.

1: This timer is guaranteed to assert its interrupt and wake a
processor, regardless of the processor’s power state. All of the
methods by which an ARM Generic Timer may generate an

interrupt must be supported, and must be capable of waking the
processor.

0: This timer may lose context or may not be guaranteed to assert

interrupts when its associated processor enters a low-power
state.

Reserved 2 30 | Reserved, must be zero.

UEFI Forum, Inc. January 2019 Page 220

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.24.2 SBSA Generic Watchdog Structure

The SBSA Generic Watchdog is a Platform GT with built-in support for use as the Watchdog timer on
Server Base System Architecture (SBSA)-compliant platforms.

The format of the SBSA Generic Watchdog structure is shown in Table 5-128.

The link for SBSA is http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0029/index.html.

Table 5-128 SBSA Generic Watchdog Structure Format

Field E::; th (B))f:t:e t Description

Type 1 0 0x1 Watchdog GT

Length 2 1 28

Reserved 1 3 Must be zero

RefreshFrame Physical 8 4 Physical Address at which the RefreshFrame block is
Address located

WatchdogControlFrame 8 12 Physical Address at which the Watchdog Control Frame
Physical Address block is located

Watchdog Timer GSIV 4 20 GSIV for the SBSA Generic Watchdog timer

Watchdog Timer Flags 4 2| Flags for the SBSA Generic Watchdog timer. See

4| Table 5-129

Table 5-129 Flag Definitions: SBSA Generic Watchdog Timer

L Bit Number L.
Bit Field . Description
Offset |of bits
Timer 0 1 This bit indicates the mode of the timer interrupt
interrupt
Mode

1: Interrupt is Edge triggered

0: Interrupt is Level triggered

Timer 1 1 This bit indicates the polarity of the timer interrupt
Interrupt
polarity

1: Interrupt is Active low

0: Interrupt is Active high

Secure 2 1 This bit indicates whether the timer is secure or non-secure
Timer
1: Timer is Secure

0: Timer is Non-secure
Reserved 3 29 Reserved, must be zero.

UEFI Forum, Inc. January 2019 Page 221

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.25 NVDIMM Firmware Interface Table (NFIT)

5.2.25.1 NFIT Overview

This optional table provides information that allows OSPM to enumerate NVDIMMSs present in the
platform and associate system physical address ranges created by the NVDIMMs. NVDIMMs are
represented by zero or more NVDIMM devices under a single NVDIMM root device in ACPl namespace.

OSPM evaluates NFIT only during system initialization. Any changes to the NVDIMM state at runtime or
information regarding hot added NVDIMMSs are communicated using the _FIT method (See Section 6.5.9)
of the NVDIMM root device.

The NFIT consists of the following structures:

1. System Physical Address (SPA) Range Structure(s) (see Section 5.2.25.2) — Describes the SPA
ranges occupied by NVDIMMs and the types of the SPA ranges.

2. NVDIMM Region Mapping Structure(s) (see Section 5.2.25.3) — Describes mappings of
NVDIMM regions to SPA ranges and NVDIMM region properties.

3. Interleave Structure(s) (see Section 5.2.25.4) — Describes the various interleave options used
by NVDIMM regions.

4. SMBIOS Management Information Structure(s) (see Section 5.2.25.5) — Describes SMBIOS
Table entries for hot added NVDIMMs.

5. NVDIMM Control Region Structure(s) (see Section 5.2.25.6) — Describes NVDIMM function
interfaces, and if applicable, their Block Control Windows.

6. NVDIMM Block Data Window Region Structure(s) (see Section 5.2.25.7) — Describes Block Data
Windows for a NVDIMM function interfaces that have Block Control Windows.

7. Flush Hint Address Structure(s) (see Section 5.2.25.8) — Describes special system physical
addresses that when written help achieve durability for writes to NVDIMM regions.

8. Platform Capabilities Structure (see Section 5.2.25.9) — Describes the Platform Capabilities to
inform OSPM of platform-wide NVDIMM capabilities.

Figure 5-22 illustrates the above structures and how they are associated with each other.

UEFI Forum, Inc. January 2019 Page 222

ACPI Specification, Version 6.3 ACPI Software Programming Model

+—— 3P4 Range Structure Index

Implicit
Association

Interleave Structune
Index

NFIT Device Handle

MVDHMM
Control Region
Structure Indes

NVDIMM Control Regio
Structure index

Figure 5-22 NVDIMM Firmware Interface Table (NFIT) Overview

The following table defines the NFIT.

UEFI Forum, Inc. January 2019 Page 223

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-130 NVDIMM Firmware Interface Table (NFIT)

Field Byte Length |Byte Offset ‘Description
Header
Signature 4 0 ‘NFIT’ is Signature for this table
Length 4 4 Length in bytes for entire table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero
OEMID 6 10 OEM ID
OEM Table ID 8 16 The table ID is the manufacturer model ID
OEM Revision 4 24 OEM revision of table for supplied OEM
Table ID
Creator ID 4 28 Vendor ID of utility that created the table
Creator Revision 4 32 Revision of utility that created the table
Reserved 4 36
NFIT Structure[n] _ 40 A list of NFIT structures for this
implementation.

Each NFIT Structure must start with a 2 byte Type field followed by a 2 byte length field. This allows OSPM
to ignore unrecognized types. Supported NFIT Structure types are listed in Table 5-131.

Table 5-131 NFIT Structure Types

Value Description

System Physical Address (SPA) Range Structure

NVDIMM Region Mapping Structure

Interleave Structure

SMBIOS Management Information Structure

NVDIMM Control Region Structure

NVDIMM Block Data Window Region Structure

Flush Hint Address Structure

Platform Capabilities Structure

O N[O | | W| N|

-OxFFFF Reserved

UEFI Forum, Inc. January 2019 Page 224

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.25.2 System Physical Address (SPA) Range Structure

This structure describes the system physical address ranges occupied by NVDIMMs, and their
corresponding Region Types.

System physical address ranges described as Virtual CD or Virtual Disk shall be described as
AddressRangeReserved in E820, and EFI Reserved Memory Type in the UEFI GetMemoryMap.

Platform is allowed to implement this structure just to describe system physical address ranges that
describe Virtual CD and Virtual Disk. For Virtual CD Region and Virtual Disk Region (both volatile and
persistent), the following fields - Proximity Domain, SPA Range Structure Index, Flags, and Address Range
Memory Mapping Attribute, are not relevant and shall be set to 0.

The default mapping of the NVDIMM Control Region shall be UC memory attributes with
AddressRangeReserved type in E820 and EfiMemoryMappedIO type in UEFI GetMemoryMap. The default
mapping of the NVDIMM Block Data Window Region shall be WB memory attributes with
AddressRangeReserved type in E820 and EfiMemoryMappedIO type in UEFI GetMemoryMap.

Table 5-132 SPA Range Structure

. Byte Byte ..

Field Length Offset Description

Type 2 0 0 - SPA Range Structure

Length 2 2 Length in bytes for entire structure.

SPA Range Structure Index |2 4 Used by NVDIMM Region Mapping Structure to uniquely
refer to this structure. Value of 0 is Reserved and shall not
be used as an index.

Flags 2 6 Bit [0] set to 1 indicates that Control region is strictly for
management during hot add/online operation.

Bit [1] set to 1 to indicate that data in Proximity Domain
field is valid.
Bits [15:2] : Reserved

Reserved 4 8 Reserved

Proximity Domain 4 12 Integer that represents the proximity domain to which the
memory belongs. This number must match with
corresponding entry in the SRAT table.

Address Range Type GUID | 16 16 GUID that defines the type of the Address Range Type. The
GUID can be any of the values defined in this section, or a
vendor defined GUID.

System Physical Address 8 32 Start Address of the System Physical Address Range

Range Base

System Physical Address 8 40 Range Length of the region in bytes

Range Length

UEFI Forum, Inc. January 2019 Page 225

ACPI Specification, Version 6.3

ACPI Software Programming Model

Byte

Byte

Field Length Offset Description

Address Range Memory 8 48 Memory mapping attributes for this address range:

Mapping Attribute EFI_MEMORY_UC = 0x00000001
EFI_MEMORY_WC = 0x00000002
EFI_MEMORY_WT = 0x00000004
EFI_MEMORY WB = 0x00000008
EF1_MEMORY_UCE = 0x00000010
EF1_MEMORY_WP = 0x00001000
EFI_MEMORY_RP = 0x00002000
EFI_MEMORY_XP = 0x00004000
EFI_MEMORY_NV = 0x00008000

EF1_MEMORY_MORE_RELIABLE = 0x00010000
EFI_MEMORY_RO = 0x00020000
EFI_MEMORY_SP = 0x00040000

These types can be OR’d together as needed.

Refer to UEFI Specification for memory attributes
description

The following GUIDs are used to describe the NVDIMM Region Types. Additional GUIDs can be generated
to describe additional Address Range Types.

Persistent Memory (PM) Region:

{ Ox66F0D379, 0xB4F3, 0x4074, OxAC, 0x43, 0x0D, 0x33, 0x18, 0xB7, 0x8C, OxDB }
NVDIMM Control Region:

{ O0x92F701F6, 0x13B4, 0x405D, 0x91, OxOB, 0x29, 0x93, 0x67, OxE8, 0x23, 0x4C }
NVDIMM Block Data Window Region:

{ O0x91AF0530, 0x5D86, 0x470E, OxA6, OxBO, OxO0A, 0x2D, O0xB9, 0x40, 0x82, 0x49 }

RAM Disk supporting a Virtual Disk Region — Volatile (a volatile memory region that contains a raw
disk format):

{ Ox77AB535A,0x45FC,0x624B,0x55,0x60,0xF7,0xB2,0x81,0xD1,0xF9,0x6E }

RAM Disk supporting a Virtual CD Region — Volatile (a volatile memory region that contains an I1SO
image):

{ Ox3D5ABD30,0x4175,0x87CE,0x6D,0x64,0xD2,0xAD,0xE5,0x23,0xC4,0xBB }

RAM Disk supporting a Virtual Disk Region — Persistent (a persistent memory region that contains a
raw disk format):

{ Ox5CEA02C9,0x4D07,0x69D3,0x26,0x9F,0x44,0x96,0xFB,0xE0,0x96 ,0xF9 }

RAM Disk supporting a Virtual CD Region — Persistent (a persistent memory region that contains an
ISO image):

{ 0x08018188,0x42CD,0xBB48,0x10,0x0F,0x53,0x87,0xD5,0x3D,0xED,0x3D }

UEFI Forum, Inc. January 2019 Page 226

ACPI Specification, Version 6.3 ACPI Software Programming Model

Note: The Address Range Type GUID values used in the ACPI NFIT must match the corresponding values
in the Disk Type GUID of the RAM Disk device path that describe the same RAM Disk Type. Refer
to the UEFI specification for details.

5.2.25.3 NVDIMM Region Mapping Structure

The NVDIMM Region Mapping structure describes an NVDIMM region and its mapping, if any, to a SPA
range.

Table 5-133 NVDIMM Region Mapping Structure

Byte Byte

Field Length |Offset

Description

Type 2 0 1 - NVDIMM Region Mapping Structure

Length 2 2 Length in bytes for entire structure.

NFIT Device Handle 4 4 The _ADR of the NVDIMM device (see Section 9.20.3)
containing the NVDIMM region

NVDIMM Physical ID 2 8 Handle (i.e., instance number) for the SMBIOS* Memory
Device (Type 17) structure describing the NVDIMM
containing the NVDIMM region

NVDIMM Region ID 2 10 Unique identifier for the NVDIMM region.

This identifier shall be unique across all the NVDIMM regions
in the NVDIMM.

There could be multiple regions within the device
corresponding to different address types. Also, for a given
address type, there could be multiple regions due to
interleave discontinuity.

SPA Range Structure Index |2 12 The SPA range, if any, associated with the NVDIMM region.
0x0000: The NVDIMM region does not map to a SPA range.
The following fields are not valid and should be ignored:

* NVDIMM Region Size;

* Region Offset;

* NVDIMM Physical Address Region Base;

* Interleave Structure Index; and

* Interleave Ways.

Fields other than those (e.g., NFIT Device Handle, NVDIMM
Physical ID, NVDIMM Region ID, and NVDIMM State Flags)
are valid.

0x0001 to OxFFFF: The index of the SPA Range Structure (see
Section 5.2.25.2) for the NVDIMM region.

NVDIMM Control Region 2 14 The index of the NVDIMM Control Region Structure (see
Structure Index Section 5.2.25.6) for the NVDIMM region.

UEFI Forum, Inc. January 2019 Page 227

ACPI Specification, Version 6.3

ACPI Software Programming Model

: Byte Byte o

Field Length |Offset Description

NVDIMM Region Size 8 16 In bytes.
The size of the NVDIMM region.
If SPA Range Structure Index and Interleave Ways are both
non-zero, this field shall match System Physical Address
Range Length divided by Interleave Ways.
NOTE: the size in SPA Range occupied by the NVDIMM for
this region will not be the same as the NVDIMM Region Size
when Interleave Ways is greater than 1.

Region Offset 8 24 In bytes.
The Starting Offset for the NVDIMM region in the Interleave
Set. This offset is with respect to System Physical Address
Range Base in the SPA Range Structure.
NOTE: The starting SPA of the NVDIMM region in the
NVDIMM is provided by System Physical Address Range Base
+ Region Offset

NVDIMM Physical Address | 8 32 In bytes. The base physical address within the NVDIMM of

Region Base the NVDIMM region.

Interleave Structure Index 2 40 The Interleave Structure (see Table 5.2.25.4), if any, for the
NVDIMM region, as defined in Table 5-134.

Interleave Ways 2 42 Number of NVDIMMs in the interleave set, including the

NVDIMM containing the NVDIMM region, as defined in
Table 5-134.

UEFI Forum, Inc.

January 2019 Page 228

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

NVDIMM State Flags

44

Bit [0] set to 1 indicates that the previous SAVE operation to
the NVDIMM containing the NVDIMM region failed.

Bit [0] set to 0 indicates that the previous SAVE succeeded,
or there was no previous SAVE.

Bit [1] set to 1 indicates that the last RESTORE operation
from the NVDIMM containing the NVDIMM region failed.

Bit [1] set to O indicates that the last RESTORE succeeded or
there was no last RESTORE.

Bit [2] set to 1 indicates that the platform flush of data to the
NVDIMM containing the NVDIMM region before the
previous SAVE failed. As a result, the restored data content
may be inconsistent even if Bit [0] and Bit [1] do not indicate
failure.

Bit [2] set to 0 indicates that the platform flush succeeded,
or there was no platform flush.

Bit [3] set to 1 indicates that the NVDIMM containing the
NVDIMM region is not able to accept persistent writes. For
an energy-source backed NVDIMM device, Bit [3] is set if it is
not armed or the previous ERASE operation did not
complete.

Bit [3] set to 0 indicates that the NVDIMM containing the
NVDIMM region is armed.

Bit [4] set to 1 indicates that the NVDIMM containing the
NVDIMM region observed SMART and health events prior to
OSPM handoff.

Bit [5] set to 1 indicates that platform firmware is enabled to
notify OSPM of SMART and health events related to the
NVDIMM containing the NVDIMM region using Notify codes
as specified in Table 5-174.

Bit [6] set to 1 indicates that the platform firmware did not
map the NVDIMM containing the NVDIMM region into an
SPA range. This could be due to various issues such as a
device initialization error, device error, insufficient hardware
resources to map the device, or a disabled device.

Implementation Note: In case of device error, Bit [4] might
be set along with Bit [6].

Bit [7] to Bit [15] are reserved.

Implementation Note: Platform firmware might report
several set bits.

Reserved

2

46

* See DSP0134 System Management BIOS (SMBIOS) Reference Specification, Version 3.0.0 (2015-02-12) by the
Distributed Management Task Force, Inc. (DMTF) at http://www.dmtf.org/standards/smbios.

UEFI Forum, Inc.

January 2019 Page 229

http://www.dmtf.org/standards/smbios
http://www.dmtf.org/standards/smbios

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-134 Interleave Structure Index and Interleave Ways definition

Interleave

Structure Interleave Ways |Interpretation

Index

0 0 Interleaving, if any, of the NVDIMM region is not reported

0 1 The NVDIMM region is not interleaved with other NVDIMMs (i.e., it is
one-way interleaved)

0 >1 The NVDIMM region is part of an interleave set with the number of
NVDIMMs indicated in the Interleave Ways field, including the
NVDIMM containing the NVDIMM region, but the Interleave Structure
is not described.

>0 >1 The NVDIMM region is part of an interleave set with:
a) the number of NVDIMM s indicated in the Interleave Ways field,
including the NVDIMM containing the NVDIMM region; and
b) the Interleave Structure (see Section 5.2.25.4) indicated by the
Interleave Structure Index field.

All other combinations Invalid case

Note: Interleave Structure Index=0, Interleave Ways !=1 is to allow a PM range which is interleaved but
the actual interleave is not described but only provides the physical Memory Devices (as described
by SMBIOS Type 17) that contribute to the PM region. Typically, only block region requires the
interleave structure since software has to undo the effect of interleave.

5.2.25.4 Interleave Structure

Memory from DIMMs/NVDIMMs could be interleaved across memory channels, memory controller and
processor sockets. This structure describes the memory interleave for a given address range. Since
interleave is a repeating pattern, this structure only describes the lines involved in the memory interleave
before the pattern start to repeat.

UEFI Forum, Inc. January 2019 Page 230

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-135 Interleave Structure

. Byte Byte o

Field Length |Offset Description

Type 2 0 2 - Interleave Structure

Length 2 2 Length in bytes for entire structure.

Interleave Structure Index | 2 4 Index Number uniquely identifies the interleave
description — this allows reuse of interleave
description across multiple NVDIMMs. Index must be
non-zero.

Reserved 2 6

Number of Lines Described | 4 8 Only need to describe the number of lines needed

(m) before the interleave pattern repeats

Line Size (in bytes) 4 12 e.g. 64,128, 256, 4096

Line 1 Offset 4 16 Line 1 Offset refers to the offset of the line, in
multiples of Line Size, from the corresponding SPA
Range Base for the NVDIMM region.

Line 1 SPA = SPA Range Base + Region Offset + (Line 1
Offset*Line Size). Line SPA is naturally aligned to the
Line size.
4
Line m Offset 4 16+((m- Line m Offset refers to the offset of the line, in
1)*4) multiples of Line Size, from the corresponding SPA
Range Base for the NVDIMM region.
Line m SPA = SPA Range Base + Region Offset + (Line
m Offset*Line Size) where m is the last line number
before the pattern repeats.
Line SPA is naturally aligned to the Line size.

5.2.25.5 SMBIOS Management Information Structure

This structure enables platform to communicate the additional SMBIOS entries beyond the entries
provided by SMBIOS Table at boot to the OS (e.g. Type 17 entries corresponding to hot added NVDIMM:s).

Table 5-136 SMBIOS Management Information Structure

Field f:rtnegth Byte Offset |Description

Type 2 0 3 - SMBIOS Management Information Structure
Length 2 2 Length in bytes for entire structure.

Reserved 4 4

Data _ 8 SMBIOS Table Entries

UEFI Forum, Inc. January 2019 Page 231

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.25.6 NVDIMM Control Region Structure

The system shall include an NVDIMM Control Region Structure for every Function Interface in the
NVDIMM.

Table 5-137 NVDIMM Control Region Structure Mark

Field Byte Byte

Length Offset Description
Type 2 0 4 - NVDIMM Control Region Structure
Length 2 2 Length in bytes for entire structure.

The length of this structure is either 32 bytes or 80 bytes. The
length of the structure can be 32 bytes only if the Number of Block
Control Windows field has a value of 0.

NVDIMM Control 2 4 Index Number uniquely identifies the NVDIMM Control Region
Region Structure Structure.

Index

Vendor ID 2 6 Identifier indicating the vendor of the NVDIMM.

This field shall be set to the value of the NVDIMM SPD Module

Manufacturer ID Code field with byte 0 set to DDR4 SPD byte 320
and byte 1 set to DDR4 SPD byte 321.

Device ID 2 8 Identifier for the NVDIMM, assigned by the module vendor.

This field shall be set to the value of the NVDIMM SPD Module

Product Identifier field ® with byte 0 set to SPD byte 192 and byte
1 set to SPD byte 193.

Revision ID 2 10 Revision of the NVDIMM, assigned by the module vendor.
Byte 1 of this field is reserved.

Byte 0 of this field shall be set to the value of the NVDIMM SPD
Module Revision Code field 2 (i.e., SPD byte 349).

Subsystem Vendor | 2 12 Vendor of the NVDIMM non-volatile memory subsystem

ID controller €.

This field shall be set to the value of the NVDIMM SPD Non-

Volatile Memory Subsystem Controller Vendor ID field b with byte
0 set to SPD byte 194 and byte 1 set to SPD byte 195.

UEFI Forum, Inc. January 2019 Page 232

ACPI Specification, Version 6.3 ACPI Software Programming Model

. Byte Byte o
Field Uanigth Offset Description
Subsystem Device |2 14 Identifier for the NVDIMM non-volatile memory subsystem
ID controller, assigned by the non-volatile memory subsystem

controller vendor.

This field shall be set to the value of the NVDIMM SPD Non-

Volatile Memory Subsystem Controller Device ID field b with byte
0 set to SPD byte 196 and byte 1 set to SPD byte 197.

Subsystem 2 16 Revision of the NVDIMM non-volatile memory subsystem
Revision ID controller, assigned by the non-volatile memory subsystem
controller vendor.

Byte 1 of this field is reserved.

Byte 0 of this field shall be set to the value of the NVDIMM SPD

Non-Volatile Memory Subsystem Controller Revision Code field b
(i.e., SPD byte 198).

Valid Fields 1 18 Valid bits for fields defined after the initial NFIT definition in ACPI
6.0 within the initially defined lengths of 32 and 80 bytes.

Bits [7-1]: Reserved
Bit [0]: Manufacturing Location field and Manufacturing Date field

Bit [0] set to one indicates that the Manufacturing Location field
and Manufacturing Date field are valid. Bit [0] set to zero indicates
that the Manufacturing Location field and Manufacturing Date
field are not valid and should be ignored.

Systems compliant with this specification shall set Bit [0] to one.
Systems that were compliant with ACPI 6.0 had Bit [0] set to zero,
meaning they did not have Manufacturing Location and
Manufacturing Date fields.

Manufacturing 1 19 Manufacturing location for the NVDIMM, assigned by the module
Location vendor.

This field shall be set to the value of the NVDIMM SPD Module
Manufacturing Location field @ (SPD byte 322).

Validity of this field is indicated in Valid Fields Bit [0].

UEFI Forum, Inc. January 2019 Page 233

ACPI Specification, Version 6.3

ACPI Software Programming Model

. Byte Byte o
Field Uanigth Offset Description
Manufacturing 2 20 Date the NVDIMM was manufactured, assigned by the module
Date vendor.
This field shall be set to the value of the NVDIMM SPD Module
Manufacturing Date field ? with byte 0 set to SPD byte 323 and
byte 1 set to SPD byte 324.
Validity of this field is indicated in Valid Fields Bit [0].
Reserved 2 22
Serial Number 4 24 Serial number of the NVDIMM, assigned by the module vendor.
This field shall be set to the value of the NVDIMM SPD Module
Serial Number field @ with byte 0 set to SPD byte 325, byte 1 set to
SPD byte 326, byte 2 set to SPD byte 327, and byte 3 set to SPD
byte 328.
Region Format 2 28 Identifier for the programming interface.
Interface Code
This field shall be set to the value of the NVDIMM SPD Function
Interface descriptor b for the function interface represented by
the NVDIMM Control Region structure, with:
a) byte 0 bits 7:5 set to 000b;
b) byte 0 bits 4:0 set to the Function Interface field (i.e., Function
Interface descriptor bits 4:0);
c) byte 1 bits 7:5 set to 000b; and
d) byte 1 bits 4:0 set to the Function Class field (i.e., Function
Interface descriptor bits 9:5).
EXAMPLE: A Function Interface Descriptor of 0x8021 means:
a) Function Interface Descriptor is implemented;
b) there is no Extended Function Parameter Block;
c) function class is byte-addressable energy backed (0x01); and
d) function interface is byte addressable energy backed function
interface 1 (0x01) d,
and maps to a Region Format Interface Code of 0x0101.
Number of Block 2 30 Number of Block Control Windows must match the corresponding
Control Windows number of Block Data Windows. Fields that follow this field are
valid only if the number of Block Control Windows is non-zero.
Size of Block 8 32 In Bytes

Control Window

UEFI Forum, Inc.

January 2019 Page 234

ACPI Specification, Version 6.3 ACPI Software Programming Model

Field Byte Byte

Length Offset Description

Command Register | 8 40 In Bytes.
Offset in Block

Logical offset. Refer to Note. The start of the subsequent Block
Control Window

Control Windows is calculated by adding Size of Block Control

Window.
Size of Command | 8 48 In Bytes
Register in Block
Control Windows
Status Register 8 56 In Bytes.

Offset in Block

Logical offset. Refer to Notel. The start of the subsequent Block
Control Window

Control Window is calculated by adding Size of Block Control

Window.
Size of Status 8 64 In Bytes
Register in Block
Control Windows
NVDIMM Control 2 72 Bit [0] — set to 1 to indicate that the Block Data Windows
Region Flag implementation is buffered. The content of the data window is

only valid when so indicated by Status Register.

Reserved 6 74

@ See JEDEC Standard No. 21-C JEDEC Configurations for Solid State Memories, Annex L: Serial Presence Detect
(SPD) for DDR4 SDRAM modules, DDR4 SPD Document Release 2.

bSee JEDEC Standard No. 21-C JEDEC Configurations for Solid State Memories, Annex L: Serial Presence Detect
(SPD) for DDR4 SDRAM modules, DDR4 SPD Document Release 3 (forthcoming).

¢1n an NVDIMM, the module contains a non-volatile memory subsystem controller.

dSee JEDEC Standard No. 2233-22 Byte Addressable Energy Backed Interface, Version 1.0 (forthcoming).

Note: Logical offset in structure above refers to offset from the start of NVDIMM Control Region. The
logical offset is with respect to the device not with respect to system physical address space.
Software should construct the device address space (accounting for interleave) before applying
the block control start offset.

5.2.25.7 NVDIMM Block Data Window Region Structure

This structure shall be provided only if the number of Block Data Windows is non-zero.

UEFI Forum, Inc. January 2019 Page 235

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-138 NVDIMM Block Data Windows Region Structure

. Byte . ..

Field Length Byte Offset |Description

Type 2 0 5 - NVDIMM Block Data Window Region
Structure

Length 2 2 Length in bytes for entire structure.

NVDIMM Control Region 2 4 Provides association for the corresponding

Structure Index NVDIMM Control Region. Shall be Non-zero.

Number of Block Data 2 6 Number of Block Data Windows shall match the

Windows corresponding number of Block Control
Windows.

Block Data Window Start 8 8 In Bytes.

Offset Logical offset. Refer to Note2. The start of the
subsequent Block Data Window is calculated by
adding Size of Block Data Window.

Size of Block Data Window 8 16 In Bytes

Block Accessible Memory 8 24 In Bytes

Capacity

Beginning address of first 8 32 In Bytes. The address of the next block is

block in Block Accessible obtained by adding the value of this field to

Memory Size of Block Data Window.

Note: Logical offset in table above refers to offset from the start of NVDIMM Data Window Region. The
logical offset is with respect to the device not with respect to system physical address space.
Software should construct the device address space (accounting for interleave) before applying
the Block Data Window start offset.

5.2.25.8 Flush Hint Address Structure

Software needs an assurance of durability (i.e. a guarantee that the writes have reached the target
NVDIMM) after writing to a NVDIMM region. The Flush Hint feature is platform specific and if supported,
the platform exposes this durability mechanism to OSPM by providing a Flush Hint Address Structure.

For a given NVDIMM (as indicated by the NFIT Device Handle in the Flush Hint Address Structure),
software can write to any one of these Flush Hint Addresses to cause any preceding writes to the

NVDIMM region to be flushed out of the intervening platform buffers! to the targeted NVDIMM (to
achieve durability).

1. Note that the platform buffers do not include processor cache(s)! Processors typically include ISA to flush
data out of processor caches.

UEFI Forum, Inc. January 2019 Page 236

ACPI Specification, Version 6.3

Table 5-139 Flush Hint Address Structure

ACPI Software Programming Model

. Byte o

Field Length Byte Offset |Description

Type 2 0 6 - Flush Hint Address Structure

Length 2 2 Length in bytes for entire structure.

NFIT Device Handle 4 4 Indicates the NVDIMM supported by the Flush
Hint Addresses in this structure.

Number of Flush Hint 2 8 Number of Flush Hint Addresses in this

Addresses in this structure structure.

(m)

Reserved 6 10 Reserved

Flush Hint Address 1 8 16 64-bit system physical address that needs to be
written to cause durability flush. Software is
allowed to write up to a cache line of data. The
content of the data is not relevant to the
functioning of the flush hint mechanism.

8 24
Flush Hint Address m 8 16+ ((m- 64-bit system physical address that needs to be
1)*8) written to cause durability flush. Software is

allowed to write up to a cache line of data. The
content of the data is not relevant to the
functioning of the flush hint mechanism.

5.2.25.9 Platform Capabilities Structure
This structure informs OSPM of the NVDIMM platform capabilities.

Table 5-140 Platform Capabilities Structure

Field Byte Length Byte Offset Description

Type 2 0 7 — Platform Capabilities Structure

Length 2 2 Length in bytes for entire structure.
The bit index of the highest valid capability

Highest Valid 1 4 implemented by the platform. The subsequent bits

Capability shall not be considered to determine the capabilities
supported by the platform.

Reserved 3 5 Reserved (0)

UEFI Forum, Inc.

January 2019

Page 237

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field Byte Length Byte Offset

Capabilities 4 8

Description

Bit[0] — CPU Cache Flush to NVDIMM Durability on
Power Loss Capable. If set to 1, indicates that platform
ensures the entire CPU store data path is flushed to
persistent memory on system power loss.

Bit[1] — Memory Controller Flush to NVDIMM
Durability on Power Loss Capable. If set to 1, indicates
that platform provides mechanisms to automatically
flush outstanding write data from the memory
controller to persistent memory in the event of platform
power loss. Note: If bit 0 is set to 1 then this bit shall be
set to 1 as well.

Bit[2] — Byte Addressable Persistent Memory
Hardware Mirroring Capable. If set to 1, indicates that
platform supports mirroring multiple byte addressable
persistent memory regions together. If this feature is
supported and enabled, healthy hardware mirrored
interleave sets will have the
EFI_MEMORY_MORE_RELIABLE Address Range
Memory Mapping Attribute set in the System Physical
Address Range structure in the NFIT table.

Bits[31:3] - Reserved

Reserved 4 12

Reserved (1)

5.2.25.10 NVDIMM Representation Format

If software or an NVDIMM manufacturer displays, prints on a label, or otherwise makes available an
identifier for an NVDIMM (e.g., to uniquely identify the NVDIMM), then the following hexadecimal

format should be used:

e If the Manufacturing Location and Manufacturing Date fields are valid:
C language format string: "%02x%02x-%02x-%02x%02x-%02x%02x%02x%02x"

Format values:

Vendor ID byte 0 (including the parity bit)

Vendor ID byte 1
Manufacturing Location byte

Serial Number byte 0
Serial Number byte 1
Serial Number byte 2
Serial Number byte 3

c0 PN O U A WN

Manufacturing Date byte O (i.e., the year)
Manufacturing Date byte 1 (i.e., the week)

If the Manufacturing Location and Manufacturing Date fields are not valid:

C language format string: "%02x%02x-%02x%02x%02x%02x"

Format values:

UEFI Forum, Inc.

January 2019

Page 238

ACPI Specification, Version 6.3 ACPI Software Programming Model

Vendor ID byte 0 (including the parity bit)
Vendor ID byte 1

Serial Number byte 0

Serial Number byte 1

ik w e

Serial Number byte 2

6. Serial Number byte 3
This format matches the order of SPD bytes 320 to 328 from low to high (i.e., showing the lowest or first
byte on the left).

5.2.26 Secure Devices (SDEV) ACPI Table

The Secure DEVices (SDEV) table is a list of secure devices known to the system. The table is applicable to
systems where a secure OS partition and a non-secure OS partition co-exist. A secure device is a device
that is protected by the secure OS, preventing accesses from non-secure OS.

The table provides a hint as to which devices should be protected by the secure OS. The enforcement of
the table is provided by the secure OS and any pre-boot environment preceding it. The table itself does
not provide any security guarantees. It is the responsibility of the system manufacturer to ensure that the
operating system is configured to enable security features that make use of the SDEV table.

There are three options for each device in the system:
1) Device is listed in SDEV. “Allow handoff...” flag is clear.
This provides a hint that the device should be always protected within the secure OS.

For example, the secure OS may require that a device used for user authentication must be protected to
guard against tampering by malicious software.

2) Device is listed in SDEV. “Allow handoff...” flag is set.

This provides a hint that the device should be initially protected by the secure OS, but it is up to the
discretion of the secure OS to allow the device to be handed off to the non-secure OS when requested.
Any OS component that expected the device to be operating in secure mode would not correctly function
after the handoff has been completed.

For example, a device may be used for variety of purposes, including user authentication. If the secure OS
determines that the necessary components for driving the device are missing, it may release control of
the device to the non-secure OS. In this case, the device cannot be used for secure authentication, but
other operations can correctly function.

3) Device not listed in SDEV

For example, the status quo is that no hints are provided. Any OS component that expected the device to
be in secure mode would not correctly function.

The OS vendor provides guidance on which devices can be listed in the SDEV table; in other words, which
devices are compatible with the secure OS, and which devices should have the “allow handoff” flag set.

See table below for the SDEV ACPI definition.

UEFI Forum, Inc. January 2019 Page 239

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-141 SDEV ACPI Table

Header

Signature 4 0 ‘SDEV’. Signature for the Table

Length 4 4 Length, in bytes, of the entire Table.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEM ID 6 10 OEM ID

OEM Table ID 8 16 For the SDEV Table, the table ID is the manufacturer model
ID.

OEM Revision 4 24 OEM revision of SDEV Table for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator Revision 4 32 Revision of utility that created the table.

Secure Device - 36 A list of structures containing one or more Secure Device

Structures [] Structures as defined in next section.

5.2.26.1 Secure Device Structures

1 PCle Endpoint Device based Secure Device.
0 ACPI_NAMESPACE_DEVICE based Secure Device.
All Other Values Reserved for future use. For forward compatibility, software skips structures it

does not comprehend by skipping the appropriate number of bytes indicated by
the Length field.

All new device structures must include the Type, Flags, and Length fields as the
first 3 fields respectively.

UEFI Forum, Inc. January 2019 Page 240

ACPI Specification, Version 6.3

ACPI Software Programming Model

5.2.26.2 PCle Endpoint Device Based Device Structure

. Byte Byte ..

Field Length |Offset Description

Type 1 0 0x01: PCle Endpoint device.

Flags 1 1 Bit 0: Allow handoff to non-secure OS.

All other bits are reserved and must be zero.

Length 2 2 Length of this Entry in Bytes.

PCI Segment Number 2 4 PCl segment number of the device .

Start Bus Number 2 6 This field describes the bus number (bus number of the first
PCI Bus produced by the PCI Host Bridge) under which the
secure device resides.

PCI Path Offset 2 8 Pointer to the PCl path* entry offset in the Secure PCl Device
Structure data region.

A PCI Path describes the hierarchal path from the Host
Bridge to the device.

For example, a device in an N-deep hierarchy is identified by
N {PCI Device Number, PCI Function Number} pairs, where N
is a positive integer. Even offsets contain the Device
numbers, and odd offsets contain the Function numbers.
The first {Device, Function} pair resides on the bus identified
by the ‘Start Bus Number’ field. Each subsequent pair
resides on the bus directly behind the bus of the device
identified by the previous pair. The identity (Bus, Device and
Function) of the target device is obtained by recursively
walking down these N {Device, Function} pairs.

PCI Path Length 2 10 Length of the PCI path entry.

Vendor specific data 2 12 Offset of the data specific to the device.

Offset

Vendor specific data 2 14 Length of the data specific to the device.

Length

Example:

The following table is an example for implementing a PCle Endpoint Device Based Device Structure for a
PCle device (Bus 1, Dev 2, Function 1), that is a child of a PCle Root Port (Bus 0, Dev 18, Function 0).

UEFI Forum, Inc. January 2019 Page 241

ACPI Specification, Version 6.3

ACPI Software Programming Model

Table 5-142 PCle Endpoint Device Based Device Structure Example

Field Byte Byte Value
Length |Offset
Type 1 0 0x01: PCle Endpoint device.
Flags 1 1 0x01
Length 2 2 0x18
PCI Segment Number 2 4 0x0
Start Bus Number 2 6 0x0
PCl Path Offset 2 8 0x10 (16 DEC)
PCI Path Length 2 10 0x4
Vendor specific data 2 12 0x14 (20 DEC)
Offset
Vendor specific data 2 14 0x4
Length
PCl Path
PCI Device 1 16 0x12 (18 DEC)
PCI Function 1 17 0x0
PCl Device 1 18 0x2
PCI Function 1 19 0x1
Vendor specific data 4 20 OxDEADBEEF

5.2.26.3 ACPI_NAMESPACE_DEVICE based Secure Device Structure

Field Byte Byte Offset Description
Length

Type 1 0 0x00: ACPI integrated devices

Flags 1 1 Bit 0: Allow handoff to non-secure OS.
All other bits are reserved and must be zero.

Length 2 2 Length of this entry in bytes.

Device Identifier Offset | 2 4 Offset, in Secure ACPI Device structure of null terminated
ASCII string that contains a fully qualified reference to the
ACPI name-space object that is this device. (For example,
“_SB.I2C0” represents the ACPI object name for an
embedded I2C Device in southbridge; Quotes are omitted in
the data field). Refer to ACPI specification for fully qualified
references for ACPl name-space objects.

Device Identifier Length | 2 6 Length of Device Identifier string in bytes, including the

termination byte

UEFI Forum, Inc.

January 2019

Page 242

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field Byte Byte Offset Description

Length
Vendor specific data 2 8 Offset, in Secure ACPI Device Structure, of the data specific
Offset to the device supplied by the vendor
Vendor specific data 2 10 Length of the data specific to the device supplied by the
Length vendor

5.2.27 Heterogeneous Memory Attribute Table (HMAT)

5.2.27.1 HMAT Overview

Heterogeneous Memory Attribute Table (HMAT) describes the memory attributes, such as memory
side cache attributes and bandwidth and latency details, related to Memory Proximity Domains.
The software is expected to use this information as hint for optimization.

OSPM evaluates HMAT only during system initialization. Any changes to the HMAT state at runtime
or information regarding HMAT for hot plug are communicated using the _HMA method (see

Section 6.2.18).

The HMAT consists of the following structures:

1. Memory Proximity Domain Attributes Structure(s) (see Section 5.2.27.3) — Describes attributes
of memory proximity domains.

2. System Locality Latency and Bandwidth Information Structure (s) (see Section 5.2.27.4) —
Describes the memory access latency and bandwidth information from various memory access
initiator proximity domains.

3. Memory Side Cache Information Structure(s) (see Section 5.2.27.5) — Describes memory side
cache information for memory proximity domains if the memory side cache is present and the
physical device (SMBIOS handle) forms the memory side cache.

These structures are illustrated by the following figure.

UEFI Forum, Inc.

January 2019 Page 243

ACPI Specification, Version 6.3

ACPI Software Programming Model

Figure 5-23 HMAT Representation

Table 5-143 Heterogeneous Memory Attribute Table Header

Field Byte Length Byte Offset Description

Header

Signature 4 0 ‘HMAT is Signature for this table

Length 4 4 Length in bytes for entire table.

Revision 1 8 2

Checksum 1 9 Entire table must sum to zero

OEMID 6 10 OEM ID

OEM Table ID 8 16 The table ID is the manufacturer model ID

OEM Revision 4 24 OEM revision of table for supplied OEM
Table ID

Creator ID 4 28 Vendor ID of utility that created the table

Creator Revision 4 32 Revision of utility that created the table

Reserved 4 36 To make the structures 8 byte aligned

HMAT Table _ 40 A list of HMAT table structures for this

Structures[n] implementation.

UEFI Forum, Inc.

January 2019

'
SRAT |
Proximity Domain 1 |---- Prosimity
Proximity Domain 2 Proximity Memory pomans
Domain # Proximity
— e Domain - 1
ACPI Root Proximity Domain n /,!’ Attributes
Table // Structure(s)
-
2,/
//
//
Heterogeneous /’/ system Locality

Latency and

sy » Bandwidth

Attributes § Information Prml:ﬂ:':g:;"alr&
Table (HMAT) \\\\ Structure(s)
\\\
\\\
. o
S Memory Side
&Rl Cache
Information
Structure(s)

Page 244

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-144 HMAT Structure Types

Value Description

0 Memory Proximity Domain Attributes Structure

1 System Locality Latency and Bandwidth Information Structure
2 Memory Side Cache Information Structure

3-OxFFFF Reserved

5.2.27.2 Memory Side Cache Overview

Memory side cache allows to optimize the performance of memory subsystems. Table 5-24 shows an
example of system physical address (SPA) range with memory side cache in front of actual memory that is
seen by the software. When the software accesses an SPA, if it is present in the near memory (hit) it

would be returned to the software, if it is not present in the near memory (miss) it would access the next
level of memory and so on.

Memory Side Cache(s)

Size < Level 0

Size < Level n-1
Level O
Software visible M{Eamk:w
System Physical Level 1 last level
Address Range Memory

memary
Or far
memory)

Bandwidth = Level n-1
andior

- _L'_alancy < Level I'I.-'1. o _Ela_nd_wndlh > Level 0

and/or
Latency < Level 0

Figure 5-24 Memory Side Cache Example

The term “far memory” is used to denote the last level memory (Level 0 Memory) in the memory
hierarchy as shown in Table 5-24. The Level n Memory acts as memory side cache to Level n-1 Memory
and Level n-1 memory acts as memory side cache for Level n-2 memory and so on. If Non-Volatile
memory is cached by memory side cache, then platform is responsible for persisting the modified

contents of the memory side cache corresponding to the Non-Volatile memory area on power failure,
system crash or other faults.

UEFI Forum, Inc. January 2019 Page 245

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.27.3 Memory Proximity Domain Attributes Structure

This structure describes the system physical address (SPA) range occupied by the memory subsystem and
its associativity with processor proximity domain as well as hint for memory usage.

Table 5-145 Memory Proximity Domain Attributes Structure

Field Byte Length Byte Offset Description

Type 2 0 0 - Memory Proximity Domain Attributes
Structure

Reserved 2 2

Length 4 4 40 - Length in bytes for entire structure.

Flags 2 8 Bit [0]: set to 1 to indicate that data in the
Proximity Domain for the Attached Initiator field is
valid.

Bit [1]: Reserved. Previously defined as Memory
Proximity Domain field is valid. Deprecated since
ACPI 6.3.

Bit [2]: Reserved. Previously defined as
Reservation Hint. Deprecated since ACPI 6.3.

Bits [15:3] : Reserved.

Reserved 2 10

Proximity Domain for 4 12 This field is valid only if the memory controller
the Attached Initiator responsible for satisfying the access to memory
belonging to the specified memory proximity
domain is directly attached to an initiator that
belongs to a proximity domain. In that case, this
field contains the integer that represents the
proximity domain to which the initiator (Generic
Initiator or Processor) belongs. This number shall
match the corresponding entry in the SRAT table’s
processor affinity structure (e.g., Processor Local
APIC/SAPIC Affinity Structure, Processor Local
Xx2APIC Affinity Structure, GICC Affinity Structure) if
the initiator is a processor, or the Generic Initiator
Affinity Structure if the initator is a generic
initiator.

Note: this field provides additional information as
to the initiator node that is closest (as in directly
attached) to the memory address ranges within
the specified memory proximity domain, and
therefore should provide the best performance.

Proximity Domain for 4 16 Integer that represents the memory proximity
the Memory domain to which this memory belongs.

Reserved 4 20

UEFI Forum, Inc. January 2019 Page 246

ACPI Specification, Version 6.3 ACPI Software Programming Model

Reserved 8 24 Previously defined as the Start Address of the
System Physical Address Range. Deprecated since
ACPI Specification 6.3.

Reserved 8 32 Previously defined as the Range Length of the
region in bytes. Deprecated since ACPI
Specification 6.3.

Note: The Proximity Domain values must first be assigned and described in the SRAT table, the same
values are then used in the SLIT, HMAT, MSCT, and NFIT tables when the associated characteristics need
to be described for the matching Proximity Domains.

5.2.27.4 System Locality Latency and Bandwidth Information Structure

This optional structure provides a matrix that describes the normalized memory read/write latency,
read/write bandwidth between Initiator Proximity Domains (Processor or 1/0) and Target Proximity
Domains (Memory).

The Entry Base Unit for latency is in picoseconds. The Entry Base Unit for bandwidth is in megabytes per
second (MB/s). The Initiator to Target Proximity Domain matrix entry can have one of the following
values.

e 0: the corresponding latency or bandwidth information is not provided.

e 1-OxFFFE: the corresponding latency or bandwidth information expressed in multiples of Entry
Base Unit.

e OxFFFF: the initiator and target domains are unreachable from each other.

The represented latency or bandwidth value is determined as follows:

e Represented latency = (Initiator to Target Proximity Domain matrix entry value * Entry Base
Unit) picoseconds.

e Represented bandwidth = (Initiator to Target Proximity Domain matrix entry value * Entry Base
Unit) MB/s.

The following examples show how to report latency and throughput values:

e [f the “Entry Base Unit” is 1 for latency and the matrix entry has the value of 10, the latency is
10 picoseconds.

e If the “Entry Base Unit” is 1000 for latency and the matrix entry has the value of 100, the
latency is 100 nanoseconds.

e Ifthe “Entry Base Unit” is 1 for BW and the matrix entry has the value of 10, the BW is 10 MB/s.

e [f the “Entry Base Unit” is 1024 for BW and the matrix entry has the value of 100, the BW is 100
GB/s.

Note: The lowest latency number represents best performance and the highest bandwidth number
represents best performance. The latency and bandwidth numbers represented in this structure
correspond to specification rated latency and bandwidth for the platform. The represented
latency is determined by aggregating the specification rated latencies of the memory device and
the interconnects from initiator to target. The represented bandwidth is determined by the lowest
bandwidth among the specification rated bandwidth of the memory device and the interconnects
from the initiator to target.

UEFI Forum, Inc. January 2019 Page 247

ACPI Specification, Version 6.3

ACPI Software Programming Model

Table 5-146 System Locality Latency and Bandwidth Information Structure

Byte Byte
Field Description
Length Offset P
Type 2 0 1 - System Locality Latency and Bandwidth Information
Structure
Reserved 2 2
Length 4 4 Length in bytes for entire structure.
Flags 1 8 Bits [3:0] Memory Hierarchy:
* 0—Memory
If the memory side cache is not present, this structure
represents the memory performance. If memory side cache is
present, this structure represents the memory performance
when no hits occur in any of the memory side caches
associated with the memory
* 1-—1stlevel memory side cache
* 2 —2nd level memory side cache
» 3 - 3rd level memory side cache
Other bits:
* Bits[7:4] Reserved
Data Type 1 9 Type of data represented by this structure instance.
If Memory Hierarchy = 0
e 0 - Access Latency (if read and write latencies are same)
e 1-—Read Latency
e 2 —Write Latency
e 3 —Access Bandwidth (if read and write bandwidth are same)
e 4 —Read Bandwidth
e 5 —Write Bandwidth
If Memory Hierarchy =1, 2, 3, or 4
e 0 - Access Hit Latency (if read hit and write hit latencies are same)
e 1 —Read Hit Latency
e 2 —Write Hit Latency
e 3 —Access Hit Bandwidth (if read hit and write hit latency are same)
e 4 —Read Hit Bandwidth
e 5— Write Hit Bandwidth
Other values reserved
Reserved 2 10
Number of Initiator 4 12 Indicates total number of Proximity Domains that can initiate memory
Proximity Domains (s) access requests to other proximity domains.
This is typically the processor or I/O proximity domains.
Number of Target 4 16 Indicates total number of Proximity Domains that can act as target. This
Proximity Domains (t) is typically the Memory Proximity Domains.
Reserved 4 20

UEFI Forum, Inc.

January 2019 Page 248

ACPI Specification, Version 6.3

ACPI Software Programming Model

. Byte Byte ..
Field Description
Length Offset P

Entry Base Unit 8 24 Base unit for Matrix Entry Values (latency or bandwidth).
Base unit for latency in picoseconds.
Base unit for bandwidth in megabytes per second (MB/s).
This field shall be non-zero.

Initiator Proximity Domain | 4 32

List[0]

Initiator Proximity Domain | 4

List[1]

Initiator Proximity Domain | 4

List[s-1]

Target Proximity Domain 4 32+4xs

List[0]

Target Proximity Domain 4

List[1]

Target Proximity Domain 4

List[t-1]

The following list of entries provides latency/bandwidth values. Total Number Entry shall be equal to Number of Initiator
Proximity Domains * Number of Target Proximity Domains

Proximity Domains - 1][
Number of Target
Proximity Domains -1]

Entry[0][0] 2 32 +4xs | Matrix entry (Initiator Proximity Domain List[0], Target Proximity
+4xt Domain List[0])

Entry[0][1] 2 Matrix entry (Initiator Proximity Domain List[0], Target Proximity
Domain List[1])

Entry[O][Number of Target | 2 Matrix entry (Initiator Proximity Domain List[0], Target Proximity

Proximity Domains -1] Domain List[t-1])

Entry[1][O] 2 Matrix entry (Initiator Proximity Domain List[1], Target Proximity
Domain List[0])

Entry[1][1] 2 Matrix entry (Initiator Proximity Domain List[1], Target Proximity
Domain List[1])

Entry[1][Number of Target | 2 Matrix entry (Initiator Proximity Domain List[1], Target Proximity

Proximity Domains -1] Domain List[t-1])

Entry[Number of Initiator | 2 Matrix entry (Initiator Proximity Domain List[s-1], Target Proximity

Domain List[t-1])

UEFI Forum, Inc.

January 2019 Page 249

ACPI Specification, Version 6.3 ACPI Software Programming Model

Implementation Note: The Flag field in this table allows read latency, write latency, read bandwidth and
write bandwidth as well as Memory Hierarchy levels. Hence this structure could be repeated up to 4 x
number of Memory Hierarchy levels if memory attributes expressed for each memory level.

If both SLIT table and the HMAT table with the memory latency information are present, the OSPM
should attempt to use the data in the HMAT rather than the data in the SLIT.
5.2.27.5 Memory Side Cache Information Structure

System memory hierarchy could be constructed to have a large size of low performance far memory and
smaller size of high performance near memory. Table 5-147 describes memory side cache information for
a given memory domain. The software could use this information to effectively place the data in memory
to maximize the performance of the system memory that use the memory side cache.

Table 5-147 Memory Side Cache Information Structure

Field Byte Length Byte Offset Description

Type 2 0 2 — Memory Side Cache Information Structure
Reserved 2 2

Length 4 4 Length in bytes for entire structure.

Proximity Domain for |4 8 Integer that represents the memory proximity

the Memory domain to which the memory side cache information
applies. This number shall match the corresponding
entry in the SRAT table’s Memory Affinity Structure

Reserved 4 12
Memory Side Cache 8 16 Size of memory side cache in bytes for the above
Size memory proximity domain.

UEFI Forum, Inc. January 2019 Page 250

ACPI Specification, Version 6.3 ACPI Software Programming Model

Field Byte Length Byte Offset Description

Cache Attributes 4 24 Bits [3:0] — Total Cache Levels for this Memory
Proximity Domain

* 0-None

* 1-0One level cache

* 2 -—Two level cache

¢ 3 —Three level cache

» Other values reserved

Bits [7:4] : Cache Level described in this structure
* 0-None

* 1 —0ne level cache

* 2 -—Two level cache

* 3 -Three level cache

* Other values reserved

Bits [11:8] - Cache Associativity
* 0-None
¢ 1 — Direct Mapped

* 2 - Complex Cache Indexing (implementation
specific)
» Other values reserved

Bits [15:12] - Write Policy
* 0-None

* 1 - Write Back (WB)

* 2 — Write Through (WT)
* Other values reserved

Bits [31:16] - Cache Line size in bytes

Number of bytes accessed from next cache level on

cache miss.
Reserved 2 28
Number of SMBIOS 2 30 Number of SMBIOS handles that contributes to the
handles (n) memory side cache physical devices.
SMBIOS Handles 2xn 32 Refers to corresponding SMBIOS Type-17 Handles

Structure that contains Physical Memory Component
related information

Implementation Note: A proximity domain should contain only one set of memory attributes. If memory
attributes differ, represent them in different proximity domains. If the Memory Side Cache Information
Structure is present, the System Locality Latency and Bandwidth Information Structure shall contain
latency and bandwidth information for each memory side cache level.

UEFI Forum, Inc. January 2019 Page 251

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.28 Platform Debug Trigger Table (PDTT)

This section describes the format of the Platform Debug Trigger Table (PDTT) description table, which is
an optional table that describes one or more PCC subspace identifiers that can be used to trigger/notify
the platform specific debug facilities to capture non-architectural system state. This is intended as a

standard mechanism for the OSPM to notify the platform of a fatal crash (e.g. kernel panic or bug check).

This table is intended for platforms that provide debug hardware facilities that can capture system info
beyond the normal OS crash dump. This trigger could be used to capture platform specific state
information (e.g. firmware state, on-chip hardware facilities, auxiliary controllers, etc.). This type of
debug feature could be leveraged on mobile, client, and enterprise platforms.

Certain platforms may have multiple debug subsystems that must be triggered individually. This table
accommodates such systems by allowing multiple triggers to be listed.

After triggering debug facilities, the CPU may continue to operate as expected so that the kernel may
continue with crash processing/handling (e.g. possibly attempting to attach a debugger or proceed with a
full crash dump prior to rebooting the system), depending on the value defined in Trigger order. Please
refer to Section 5.2.28.2 for more details.

After triggering debug facilities, the CPU must continue to operate as expected so that the kernel may
continue with crash processing/handling (e.g. possibly attempting to attach a debugger or proceed with a
full crash dump prior to rebooting the system).

On some platforms, the debug trigger may put some hardware components/peripherals into a frozen
non-operational state, and so the debug trigger is not recommended to be used during normal run-time
operation.

Other platforms may allow the debug trigger for capture system state to debug run-time behavioral
issues (e.g. system performance and power issues), specified by the "Run-time" flag field in
Table 5-149.

When multiple triggers exist, the triggers within each of the two groups, defined by trigger order, will be
executed in order. OSPM may need to wait for PCC completion before executing next trigger based on
the “Wait for Completion” flag field in Table 5-149.

Note: The mechanism by which this system debug state information is retrieved by the user is platform
and vendor specific. This will most likely will require special tools and privileges in order to access and
parse the platform debug information captured by this trigger.

UEFI Forum, Inc. January 2019 Page 252

ACPI Specification, Version 6.3

Table 5-148 PDTT Structure

ACPI Software Programming Model

Field Byte Byte Offset | Description
Length
Signature 4 0 ‘PDTT’
Length 4 4 Length in bytes of the entire Platform Debug Trigger Table
Revision 1 8 0
Checksum 1 9 Entire table must sum to zero.
OEM ID 6 10 OEM ID
OEM Table ID 8 16 The table ID is the manufacturer model ID.
OEM Revision 4 24 OEM revision for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table.
Creator Revision 4 32 Revision of utility that created the table.
Trigger Count 1 36 Number of PDTT Platform Communication Channel Identifiers
Reserved 3 37 Must be zero
Trigger Identifier 4 40 Offset to the “PDTT Platform Communication Channel
Array Offset Identifiers[]” Array
PDTT Platform - Trigger Array of PDTT Platform Communication Channel Identifiers to
Communication Identifier notify various platform debug facilities. This identifier selects the
Channel Identifiers [] Array PCC subspace index that must be listed in the PCCT. It also
Offset describes per trigger flags.

Each Identifier is 2 bytes. Must provide a minimum of one
identifier

Described in Table 5-149 below.

Table 5-149 PDTT

Platform Communication Channel Identifier Structure

Field Bit Length | Bit Description
Offset

PDTT PCC Sub 8 0 PCC sub channel ID

Channel Identifier Note: this must be an index listed in the PCCT

Run-time 1 8 0: Trigger must only be invoked in fatal crash scenarios. This debug
trigger may put some hardware components/peripherals into a
frozen non-operational state
1: Trigger may be invoked at run-time as well as in fatal crash
scenarios

Wait for Completion |1 9 0: OSPM may initiate next trigger immediately
1: OSPM must wait for PCC complete prior to initiating the next
trigger in the list

UEFI Forum, Inc.

January 2019 Page 253

ACPI Specification, Version 6.3 ACPI Software Programming Model

Trigger Order 1 10 Used in fatal crash scenarios.
0: OSPM must initiate trigger before kernel crash dump processing

1: OSPM must initiate trigger at the end of crash dump processing.

Reserved 5 11 Must be zero

5.2.28.1 PDTT PCC Sub Channel

The PDTT PCC Sub Channel Identifier value provided by the platform in this field should be programmed
to the Type field of PCC Communications Subspace Structure. The PDTT references its PCC Subspace in a
given platform by this identifier, as shown in Table 5-149.

5.2.28.1.1 Using PCC registers

OSPM will write PCC registers by filling in the register value in PCC sub channel space and issuing a PCC
execute platform debug trigger command. See Table 5-150. All other command values are reserved.

Table 5150 PCC Commands Codes used by Platform Debug Trigger Table

Command Description
0x00 Execute Platform Debug Trigger (doorbell only — no command/response)
0x01 Execute Platform Debug Trigger (with vendor specific command in

communication space)

0x01-OxFF All other values are reserved.

Table 5-151 PDTT Platform Communication Channel

Field Byte Byte Description
Length Offset

Signature 4 0 The PCC signature. The signature of a subspace is computed
by a bitwise-or of the value 0x50434300 with the subspace
ID. For example, subspace 3 has signature 0x50434303.

Command 2 4 PCC command field, see Section 14 and Table YYY

Status 2 6 PCC status field, see Section 14

Communication

Space

Vendor Specific variable |8 Optional vendor specific command/response area written
by OSPM — must be zero if not supported

5.2.28.2 PDTT PCC Trigger Order

The trigger order defines two categories for triggers
Trigger Order O: Triggers are invoked by OSPM before executing its crash dump processing functions.

Trigger Order 1: Triggers are invoked by OSPM at the end of crash dump processing functions, typically
after the kernel has processed crash dumps.

UEFI Forum, Inc. January 2019 Page 254

ACPI Specification, Version 6.3 ACPI Software Programming Model

Capturing platform specific debug information from certain IPs would require intrusive mechanism which
may limit kernel operations after the operations. Trigger order allows the platform to define such
operations that will be invoked at the end of kernel operations by OSPM.

5.2.28.3 Example: OS Invoking Multiple Debug Triggers

To illustrate how these debug triggers are intended to be used by the OS, consider this example of a
system with 4 independent debug triggers as shown in Table 5-25. These triggers are described to the OS
via the PDTT example in Table 5-152.

Note: This example assumes no vendor specific communication is required, so only PCC command 0x0 is
used.

When the OS encounters a fatal crash, prior to collecting a crash dump and rebooting the system, the OS
may choose to invoke the debug triggers in the order listed in the PDTT. The addresses of the doorbell
register and the PCC general communication space (if needed) are retrieved from the PCCT, depending
on the PCC subspace type (see Table 14-365, Table 14-366, or Table 14-367).

® h/w

oarbell—— sUbsystem

A
@ f/w
oorbell————
subsystem
@ PCCgeneral |
o comm channel [~ A

OSPM

® f/w

corbell——— sUbsystem

B
@ f/w
porbell————————# b t
suDsystem
PCC general | "?!
o comm channel C

Figure 5-25 Example: Platform with 4 debug triggers

Table 5-152 Example: Platform with 4 debug triggers

Field Value |Notes
Signature ‘PDTT’
Trigger Count | 4 Describing the 4 triggers illustrated in Figure XXX above

UEFI Forum, Inc. January 2019 Page 255

ACPI Specification, Version 6.3

ACPI Software Programming Model

Field Value |[Notes

Reserved 0

Trigger 44

Identifier

Array Offset

PDTT PCC 0x0004 | [Bits 0:7] - 4 (channel subspace ID 4)

Identifiers [0] [Bit 8] - O (Trigger may only be invoked in fatal crash scenarios)
[Bit 9] - 0 (OSPM may initiate next trigger immediately)

PDTT PCC 0x0201 | [Bits 0:7] — 1 (channel ID subspace 1)

Identifiers [1] [Bit 8] - O (Trigger may only be invoked in fatal crash scenarios)
[Bit 9] - 1 (OSPM must wait for PCC complete prior to initiating the next trigger in the
list)

PDTT PCC 0x0002 | [Bits 0:7] - 2 (channel ID subspace 2)

Identifiers [2] [Bit 8] - O (Trigger may only be invoked in fatal crash scenarios)
[Bit 9] - 0 (OSPM may initiate next trigger immediately)

PDTT PCC 0x0203 | [Bits 0:7] - 3 (channel ID subspace 3)

Identifiers [3] [Bit 8] - O (Trigger may only be invoked in fatal crash scenarios)
[Bit 9] - 1 (OSPM must wait for PCC complete prior to initiating the next trigger in the
list)

Walking through the list of triggers in the PDTT, the OS may execute the following steps:

1.

For Trigger O, retrieves doorbell register address from PCCT per PCC subspace ID 4 and writes
to it with appropriate write/preserve mask. Since OS does not need to wait for completion, OS
does not need to send a PCC command and should ignore the PCC subspace base address

For Trigger 1, retrieves doorbell register address and PCC subspace address from PCCT per PCC
subspace ID 1. Since OS must wait for completion, OS must write PCC command (0x0) and write
to the doorbell register per section 14 and poll for the completion bit.

For Trigger 2, , retrieves doorbell register address from PCCT per PCC subspace ID 2 and writes
to it with appropriate write/preserve mask. Since OS does not need to wait for completion, OS
does not need to send a PCC command and should ignore the PCC subspace base address

For Trigger 3, retrieves doorbell register address and PCC subspace address from PCCT per PCC
subspace ID 3. Since OS must wait for completion, OS must write PCC command (0x0) and write
to the doorbell register per section 14 and poll for the completion bit.

Note: When wait for completion is necessary, the OS must poll bit zero (completion bit) of the status field
of that PCC channel (see Table 14-367 and Table 14-369).

5.2.29 Processor Properties Topology Table (PPTT)

This optional table is used to describe the topological structure of processors controlled by the OSPM,
and their shared resources, such as caches. The table can also describe additional information such as
which nodes in the processor topology constitute a physical package. The structure of PPTT is described
in Table 5-153.

UEFI Forum, Inc.

January 2019 Page 256

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-153 Processor Properties Topology Table

Field EZ:‘Z " CB))f’ftseet Description
Header
Signature 4 0 ‘PPTT’ Processor Properties Topology Table
Length 4 4 Length of entire PPTT table in bytes
Revision 1 8 2
Checksum 1 9 The entire table must sum to zero.
OEMID 6 10 OEM ID.
OEM Table ID 8 16 OEM revision of table for supplied OEM Table ID
OEM Revision 4 24 OEM revision of the PPTT for the supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table
Creator Revision 4 32 Revision of utility that created the table
Body
Processor topology - 36 List of processor topology structures
structure[N]

Processor topology structures are described in the following sections.

5.2.29.1 Processor hierarchy node structure (Type 0)

The processor hierarchy node structure is described in Table 5-154. This structure can be used to describe
a single processor or a group. To describe topological relationships, each processor hierarchy node
structure can point to a parent processor hierarchy node structure. This allows representing tree like
topology structures. Multiple trees may be described, covering for example multiple packages. For the
root of a tree, the parent pointer should be 0.

If PPTT is present, one instance of this structure must be present for every individual processor presented
through the MADT interrupt controller structures. In addition, an individual entry must be present for
every instance of a group of processors that shares a common resource described in the PPTT. Resources
are described in other PPTT structures such as Type 1 cache structures. Each physical package in the
system must also be represented by a processor node structure.

Each processor node includes a list of resources that are private to that node. Resources are described in
other PPTT structures such as Type 1 cache structures. The processor node’s private resource list includes
a reference to each of the structures that represent private resources to a given processor node. For
example, an SoC level processor node might contain two references, one pointing to a Level 3 cache
resource and another pointing to an ID structure. For compactness, separate instances of an identical

UEFI Forum, Inc. January 2019 Page 257

ACPI Specification, Version 6.3 ACPI Software Programming Model

resource can be represented with a single structure that is listed as a resource of multiple processor
nodes.

For example, is expected that in the common case all processors will have identical L1 caches. For these
platforms a single L1 cache structure could be listed by all processors:

L1S — type 1

CPUOD type O

Private Resources: [EL1S5] —memmammm dnms!

CPUL - type O

Private Rescurces: [&L1 3] mmmmmmmm oo

Note: though less space efficient, it is also acceptable to declare a node for each instance of a resource. In
the example above, it would be legal to declare an L1 for each processor.

UEFI Forum, Inc. January 2019 Page 258

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-154 Processor Hierarchy Node Structure

Field Byte Byte Description
Length |Offset

Type 1 0 0 — processor structure

Length Length of the local processor structure in bytes

Reserved Must be zero

1 1
2 2

Flags 4 4 See Table 5-155
4 8

Parent Reference to parent processor hierarchy node structure. The
reference is encoded as the difference between the start of
the PPTT table and the start of the parent processor

structure entry. A value of zero must be used where a node

has no parent.

ACPI Processor ID 4 12 If the processor structure represents an actual processor,
this field must match the value of ACPI processor ID field in
the processor’s entry in the MADT.

If the processor structure represents a group of associated
processors, the structure might match a processor container
in the name space. In that case this entry will match the
value of the _UID method of the associated processor
container. Where there is a match it must be represented.

The flags field, described in Table 5-155 includes a bit to
describe whether the ACPI processor ID is valid.

Number of private 4 16 Number of resource structure references in Private
resources Resources (below)

Private resources[N] N*4 20 Each resource is a reference to another PPTT structure. The
structure referred to must not be a processor hierarchy
node. Each resource structure pointed to represents
resources that are private the processor hierarchy node. For
example, for cache resources, the cache type structure
represents caches that are private to the instance of
processor topology represented by this processor hierarchy
node structure.

The references are encoded as the difference between the
start of the PPTT table and the start of the resource
structure entry.

Processor Structure Flags are described in Table 5-155.

UEFI Forum, Inc. January 2019 Page 259

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-155 Processor Structure Flags

. Bit Bit .
Field Length |Offset Description
Physical package 1 0 Set to 1 if this node of the processor topology represents the
boundary of a physical package, whether socketed or surface
mounted.

Set to 0 if this instance of the processor topology does not
represent the boundary of a physical package.

Each valid processor must belong to exactly one package.
That is, the leaf must itself be a physical package or have an
ancestor marked as a physical package.

ACPI Processor ID valid |1 1 For non-leaf entries in the processor topology, the ACPI
Processor ID entry can relate to a Processor container in the
namespace. The processor container will have a matching ID
value returned through the _UID method. As not every
processor hierarchy node structure in PPTT may have a
matching processor container, this flag indicates whether
the ACPI processor ID points to valid entry. Where a valid
entry is possible the ACPI Processor ID and _UID method are
mandatory.

For leaf entries in PPTT that represent processors listed in
MADT, the ACPI Processor ID must always be provided and
this flag must be set to 1.

Processor is a Thread 1 2 For leaf entries: must be set to 1 if the processing element
representing this processor shares functional units with
sibling nodes.

For non-leaf entries: must be set to 0.

Node is a Leaf 1 3 Must be set to 1 if node is a leaf in the processor hierarchy.
Else must be set to 0.

Identical 1 4 A value of 1 indicates that all children processors share an
Implementation identical implementation revision.

This field should be ignored on leaf nodes by the OSPM.

Note: this implies an identical processor version and
identical implementation reversion, not just a matching
architecture revision.

Reserved 27 5 Must be zero

Note: Threads sharing a core must be grouped under a unique Processor hierarchy node structure
for each group of threads.

Note: processors may be marked as disabled in the MADT. In this case, the corresponding
processor hierarchy node structures in PPTT should be considered as disabled. Additionally, all
processor hierarchy node structures representing a group of processors with all child processors
disabled should be considered as being disabled. All resources attached to disabled processor
hierarchy node structures in PPTT should also be considered disabled.

UEFI Forum, Inc. January 2019 Page 260

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.2.29.2 Cache Type Structure - Type 1

The cache type structure is described in Table 5-156. The cache type structure can be used to represent a
set of caches that are private to a particular processor hierarchy node structure, that is, to a particular
node in the processor topology tree. The set of caches is described as a NULL, or zero, terminated linked
list. Only the head of the list needs to be listed as a resource by a processor node (and counted toward
Number of Private Resources), as the cache node itself contains a link to the next level of cache.

Cache type structures are optional, and can be used to complement or replace cache discovery
mechanisms provided by the processor architecture. For example, some processor architectures describe
individual cache properties, but do not provide ways of discovering which processors share a particular
cache. When cache structures are provided, all processor caches must be described in a cache type
structure.

Each cache type structure includes a reference to the cache type structure that represents the next level
cache. The level in this context must relate to the CPU architecture’s definition of cache level. The list
must include all caches that are private to a processor hierarchy node. It is not permissible to skip levels.
That is, a cache node included in a given hierarchy processor node level must not point to a cache
structure referred to by a processor node in a different level of the hierarcy.

For example, if a node represents a CPU that has a private L1 and private L2 cache, the list would contain
both caches (L1->L2->0). If on the other hand the L2 cache was shared, the list would just include the L1
(L1->0), and a parent processor topology node, to all processors that share the L2, would contain the
cache type structure that represents the shared L2.

Processors, or higher level nodes within the hierarchy, with separate instruction and data caches must
describe the instruction and data caches with separate linked lists of cache type structures both listed as
private resources of the relevant processor hierarchy node structure. If the separate instruction are data
caches are unified at a higher level of cache then the linked lists should converge.

UEFI Forum, Inc. January 2019 Page 261

ACPI Specification, Version 6.3 ACPI Software Programming Model

Consider the following example.

FPTT

L2:
Hext Lewel: NOLL

Cluder 0

L2 :
Hext Lewel: NOLL

L1I:
Hext Level: [EL2]

L1D:
Hext Level: [EL2]

Clusterl:

Private Resource=s: [EL2]
Parent: [ENULL]

CETO:
Private Bespurces: [EL10, £111]
Farent: [&Clustecl]

CPTL1:
Erivate Bespurces=s: [EL1D, £L1I]
Farent: [EClusterl]

Figure 5-26 Cache Type Structure - Type 1 Example

In this example:

Each processor has private L1 data, L1 intruction and L2 caches. The two processors are
contained in a cluster which provides an L3 cache.

Each processor’s hierarchy node has two separate cache type structures as private resources
for L1l and L1D

Both the L1l and L1D cache structures point to the L2 cache structure as their next level of
cache

L2 cache type structure terminates the linked list of the CPU’s caches. The resulting list denotes
all private caches at the processor level

Both processor nodes have their parent pointer pointing to node that represents the cluster.
The cluster node includes the L3 cache as it’s private resource. The L3 node in turn has no next
level of cache.

An entry in the list indicates primarily that a cache exists at this node in the hierarchy. Where possible,
cache properties should be discovered using processor architectural mechanisms, but the cache type
structure may also provide the properties of the cache. A flag is provided to indicate whether properties
provided in the table are valid, in which case the table content should be used in preference to processor
architected discovery. On Arm-based systems, all cache properties must be provided in the table.

UEFI Forum, Inc. January 2019 Page 262

ACPI Specification, Version 6.3

Table 5-156 Cache Type Structure

ACPI Software Programming Model

. Byte Byte e

Field Length Offset Description

Type 1 0 1 — Cache type structure

Length 1 1 24

Reserved 2 2 Must be zero

Flags 4 4 See Table 5-157

Next Level of Cache 4 8 Reference to next level of cache that is private to the
processor topology instance. The reference is encoded as
the difference between the start of the PPTT table and the
start of the cache type structure entry. This value will be
zero if this entry represents the last cache level appropriate
to the the processor hierarchy node structures using this
entry.

Size 4 12 Size of the cache in bytes.

Number of sets 4 16 Number of sets in the cache

Associativity 1 20 Integer number of ways.

Attributes 1 21 Bits 1:0: Allocation type
0x0 - Read allocate
0x1 - Write allocate
0x2 or 0x03 indicate Read and Write allocate
Bits:3:2: Cache type:
0x0 Data
0x1 Instruction
0x2 or 0x3 Indicate a unified cache
Bits 4: Write policy:
0x0 Write back
0x1 Write through
Bits:7:5 Reserved must be zero.

Line size 2 22 Line size in bytes

The cache type structure flags are described in Table 5-157.

Table 5-157 Cache Structure Flags

Field Bit Bit Off-|Description
Length |[set
Size property valid 1 0 Set to 1 if the size properties described is valid. A value of 0

indicates that, where possible, processor architecture
specific discovery mechanisms should be used to ascertain
the value of this property.

UEFI Forum, Inc.

January 2019 Page 263

ACPI Specification, Version 6.3 ACPI Software Programming Model

Field Bit Bit Off-|Description
Length |[set
Number of sets valid 1 1 Set to 1 if the number of sets property described is valid. A

value of 0 indicates that, where possible, processor
architecture specific discovery mechanisms should be used
to ascertain the value of this property.

Associativity valid 1 2 Set to 1 if the associativity property described is valid. A
value of 0 indicates that, where possible, processor
architecture specific discovery mechanisms should be used
to ascertain the value of this property.

Allocation type valid 1 3 Set to 1 if the allocation type attribute described is valid. A
value of 0 indicates that, where possible, processor
architecture specific discovery mechanisms should be used
to ascertain the value of this attribute.

Cache type valid 1 4 Set to 1 if the cache type attribute described is valid. A value
of 0 indicates that, where possible, processor architecture
specific discovery mechanisms should be used to ascertain
the value of this attribute.

Write policy valid 1 5 Set to 1 if the write policy attribute described is valid. A value
of 0 indicates that, where possible, processor architecture
specific discovery mechanisms should be used to ascertain
the value of this attribute.

Line size valid 1 6 Set to 1 if the line size property described is valid. A value of
0 indicates that, where possible, processor architecture
specific discovery mechanisms should be used to ascertain
the value of this property.

Reserved 25 7 Must be zero

5.2.29.3 ID structure — Type 2

The ID type structure is described in Table 5-158. The ID structure can be used to provide an ID (or vendor
specific part number) for a particular processor hierarchy node structure. The ID structure is optional,
and may be used by software to determine special features and/or errata workarounds for that
processor hierarchy node. This ID structure can also be used to identify all underlying hierarchy nodes
and components, which may include identifying proprietary hardware components that are not explicitly
described in this table.

This ID structure would typically be used to describe an ID of a physical package node, but may be
optionally used at any node level.

Example: In the case where this ID structure is used to uniquely describe a physical package node, it could
represent a single system-on-chip (SoC) on a single die and all nodes and components within that node
(e.g. processors, caches, system buses and DMA engines, interrupt controllers, on-chip peripherals, etc.).
The silicon vendor of this SoC has a known erratum with a particular hardware component in that SoC
that could impact behavior and/or correctness. An operating system vendor may query this ID structure
to first determine the silicon vendor, then later acquire the remaining ID fields to determine part

UEFI Forum, Inc. January 2019 Page 264

ACPI Specification, Version 6.3 ACPI Software Programming Model

number, matching it against the part with a known erratum. The operating system may then remedy
errata by either disabling relevant features or applying an appropriate software work around.

Table 5-158 ID Type Structure

. Byte Byte s

Field Length |Offset Description

Type 1 0 2 —|D structure

Length 1 1 30

Reserved 2 2 Must be zero

VENDOR_ID 4 4 This identifies the node vendor using the vendor ACPI ID as
described in the ACPI ID registry is available at http://
www.uefi.org/acpi_id_list

LEVEL_1_ID 8 8 Vendor specific value to identify first level unique node ID
(e.g. chip family ID)

LEVEL_2_ID 8 16 Vendor specific value to identify second level unique node ID
(e.g. chip ID)

MAJOR_REV 2 24 Vendor specific value to identify major revision of the node

MINOR_REV 2 26 Vendor specific value to identify minor revision of the node

SPIN_REV 2 28 Vendor specific value to identify spin revision of the node

5.3 ACPI Namespace

For all Definition Blocks, the system maintains a single hierarchical namespace that it uses to refer to
objects. All Definition Blocks load into the same namespace. Although this allows one Definition Block to
reference objects and data from another (thus enabling interaction), it also means that OEMs must take

care to avoid any naming collisions®. A name collision in an attempt to load a Definition Block is
considered fatal. The contents of the namespace changes only on a load operation.

The namespace is hierarchical in nature, with each name allowing a collection of names “below” it. The
following naming conventions apply to all names:

¢ All names are a fixed 32 bits.

e The first byte of a name is inclusive of: ‘A’=Z’, “ ', (0x41-0x5A, Ox5F).

e The remaining three bytes of a name are inclusive of: ‘A’-Z’, ‘0'='9’, *_’, (0x41-0x5A, 0x30—
0x39, Ox5F).

e By convention, when an ASL compiler pads a name shorter than 4 characters, it is done so with
trailing underscores (‘_’). See the language definition for AML NameSeg in the ACPI Source
Language (ASL) Reference chapter.

e Names beginning with *_’ are reserved by this specification. Definition Blocks can only use
names beginning with *_’ as defined by this specification.

2. For the most part, since the name space is hierarchical, typically the bulk of a dynamic definition file will
load into a different part of the hierarchy. The root of the name space and certain locations where interaction is
being designed are the areas in which extra care must be taken.

UEFI Forum, Inc. January 2019 Page 265

http://www.uefi.org/acpi_id_list

ACPI Specification, Version 6.3 ACPI Software Programming Model

¢ A name proceeded with ‘\’ causes the name to refer to the root of the namespace (‘\’ is not
part of the 32-bit fixed-length name).

¢ A name proceeded with ‘A’ causes the name to refer to the parent of the current namespace
(‘M is not part of the 32-bit fixed-length name).

Except for names preceded with a ‘\’, the current namespace determines where in the namespace
hierarchy a name being created goes and where a name being referenced is found. A name is located by
finding the matching name in the current namespace, and then in the parent namespace. If the parent
namespace does not contain the name, the search continues recursively upwards until either the name is
found or the namespace does not have a parent (the root of the namespace). This indicates that the

name is not found>.
An attempt to access names in the parent of the root will result in the name not being found.

There are two types of namespace paths: an absolute namespace path (that is, one that starts with a ‘\
prefix), and a relative namespace path (that is, one that is relative to the current namespace). The
namespace search rules discussed above, only apply to single NameSeg paths, which is a relative
namespace path. For those relative name paths that contain multiple NameSegs or Parent Prefixes, ‘',
the search rules do not apply. If the search rules do not apply to a relative namespace path, the
namespace object is looked up relative to the current namespace. For example:

ABCD //search rules apply

~ABCD //search rules do not apply
XYZ .ABCD //search rules do not apply
\XYZ.ABCD //search rules do not apply

All name references use a 32-bit fixed-length name or use a Name Extension prefix to concatenate
multiple 32-bit fixed-length name components together. This is useful for referring to the name of an
object, such as a control method, that is not in the scope of the current namespace.

Namepaths are used primarily for two purposes:

¢ To reference an existing object. In this case, all NameSegs within the Namepath must already
exist.
e To create a new object. For example:

Device (XYZ.ABCD) {.}
OperationRegion (AXYZ.ABCD, SystemMemory, 0, 0x200)

Each of these declarations is intended to create a new object with the name ABCD according the following
rules:

¢ Object XYZ must already exist for the ABCD object to be created
e |f XYZ does not exist, that will cause a fatal error

In general, it is only the final Nameseg that will be used as the name of the new object. If any other
Nameseg along the Namepath does not exist, it is a fatal error. In this sense, the Namepath is similar to a
file pathname in a filesystem consisting of some number of existing directories followed by a final
filename.

3. Unless the operation being performed is explicitly prepared for failure in name resolution, this is consid-
ered an error and may cause the system to stop working.

UEFI Forum, Inc. January 2019 Page 266

ACPI Specification, Version 6.3 ACPI Software Programming Model

The figure below shows a sample of the ACPI namespace after a Differentiated Definition Block has been
loaded.

[C] Root
™3 _PR — Processor Tree
CPUO — Processor 0 object
&3 \PIDO — Power resource for IDEO
—1 _STA — Method to return status of power resource
——1 _ON — Method to turn on power resource
L™ _OFF — Method to turn off power resource
L) \.SB — System bus tree
— PCl bus
— Device ID

— Current resources (PCIl bus number)

— IDEO device Key

— PCI device #, function # EI Package
— Power resource requirements for DO Processor Object
— General purpose events (GP_STS) gct))\jléecrt Resource
_LO1 — Method to handle level GP_STS.1 Bus/Device Object
_EO02 — Method to handle edge GP_STS.2 [Data Object
=

LE _Lo3 — Method to handle level GP_STS.3 Control Method (AML code)

Figure 5-27 Example ACPI NameSpace

Care must be taken when accessing namespace objects using a relative single segment name because of
the namespace search rules. An attempt to access a relative object recurses toward the root until the
object is found or the root is encountered. This can cause unintentional results. For example, using the
namespace described in Figure 5.5, attempting to access a _CRS named object from within the
SB.PCIO.IDEO will have different results depending on if an absolute or relative path name is used. If an
absolute pathname is specified (_SB_.PCI0.IDEQ._CRS) an error will result since the object does not exist.
Access using a single segment name (_CRS) will actually access the _SB_.PCIO._CRS object. Notice that
the access will occur successfully with no errors.

UEFI Forum, Inc. January 2019 Page 267

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.3.1 Predefined Root Namespaces

The following namespaces are defined under the namespace root.

Table 5-159 Namespaces Defined Under the Namespace Root

Name Description
_GPE General events in GPE register block.
_PR ACPI 1.0 Processor Namespace. ACPI 1.0 requires all Processor objects to be defined under

this namespace. ACPI 2.0 and later allow Processor object definitions under the _SB
namespace. Platforms may maintain the _PR namespace for compatibility with ACPI 1.0
operating systems, but it is otherwise deprecated. see the compatibility note in

Section 5.2.12.12. An ACPIl-compatible namespace may define Processor objects in either
the _SB or _PR scope but not both.

For more information about defining Processor objects, see Section 8, “Processor
Configuration and Control.”

_SB All Device/Bus Objects are defined under this namespace.

_SI System indicator objects are defined under this namespace. For more information about
defining system indicators, see Section 9.2, _SI System Indicators.”

_TZ ACPI 1.0 Thermal Zone namespace. ACPI 1.0 requires all Thermal Zone objects to be defined
under this namespace. Thermal Zone object definitions may now be defined under the _SB
namespace. ACPI-compatible systems may maintain the _TZ namespace for compatibility
with ACPI 1.0 operating systems. An ACPIl-compatible namespace may define Thermal Zone
objects in either the _SB or _TZ scope but not both.

For more information about defining Thermal Zone objects, see Section 11, “Thermal
Management.”

5.3.2 Objects

All objects, except locals, have a global scope. Local data objects have a per-invocation scope and lifetime
and are used to process the current invocation from beginning to end.

The contents of objects vary greatly. Nevertheless, most objects refer to data variables of any supported
data type, a control method, or system software-provided functions.

Objects may contain a revision field. Successive ACPI specifications define object revisions so that they
are backwards compatible with OSPM implementations that support previous specifications / object
revisions. New object fields are added at the end of previous object definitions. OSPM interprets objects
according to the revision number it supports including all earlier revisions. As such, OSPM expects that an
object’s length can be greater than or equal to the length of the known object revision. When evaluating
objects with revision numbers greater than that known by OSPM, OSPM ignores internal object fields
values that are beyond the defined object field range for the known revision.

5.4 Definition Block Encoding

This section specifies the encoding used in a Definition Block to define names (load time only), objects,
and packages.

UEFI Forum, Inc. January 2019 Page 268

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.4.1 AML Encoding

The Definition Block is encoded as a stream from beginning to end. The lead byte in the stream comes
from the AML encoding tables shown in Section 19, “ACPI Source Language (ASL) Reference,” and
signifies how to interpret some number of following bytes, where each following byte can in turn signify
how to interpret some number of following bytes. For a full specification of the AML encoding, see
Section 19, “ACPI Source Language (ASL) Reference.”

Within the stream there are two levels of data being defined. One is the packaging and object
declarations (load time), and the other is an object reference (package contents/run-time).

All encodings are such that the lead byte of an encoding signifies the type of declaration or reference
being made. The type either has an implicit or explicit length in the stream. All explicit length declarations
take the form shown below, where PkglLength is the length of the inclusive length of the data for the
operation.

LeadByte PkgLength data... LeadByte ...

\—> PkgLength —T

Figure 5-28 AML Encoding

Encodings of implicit length objects either have fixed length encodings or allow for nested encodings
that, at some point, either result in an explicit or implicit fixed length.

The PkglLength is encoded as a series of 1 to 4 bytes in the stream with the most significant two bits of
byte zero, indicating how many following bytes are in the PkgLength encoding. The next two bits are only
used in one-byte encodings, which allows for one-byte encodings on a length up to Ox3F. Longer
encodings, which do not use these two bits, have a maximum length of the following: two-byte encodings
of OXOFFF, three-byte encodings of OXOFFFFF, and four-byte length encodings of OXOFFFFFFFF.

It is fatal for a package length to not fall on a logical boundary. For example, if a package is contained in
another package, then by definition its length must be contained within the outer package, and similarly
for a datum of implicit length.

5.4.2 Definition Block Loading

At some point, the system software decides to “load” a Definition Block. Loading is accomplished when
the system makes a pass over the data and populates the ACPl namespace and initializes objects
accordingly. The namespace for which population occurs is either from the current namespace location,
as defined by all nested packages or from the root if the name is preceded with ‘\'.

The first object present in a Definition Block must be a named control method. This is the Definition
Block’s initialization control.

Packages are objects that contain an ordered reference to one or more objects. A package can also be
considered a vertex of an array, and any object contained within a package can be another package. This
permits multidimensional arrays of fixed or dynamic depths and vertices.

Unnamed objects are used to populate the contents of named objects. Unnamed objects cannot be
created in the “root.” Unnamed objects can be used as arguments in control methods.

UEFI Forum, Inc. January 2019 Page 269

ACPI Specification, Version 6.3 ACPI Software Programming Model

Control method execution may generate errors when creating objects. This can occur if a Method that
creates named objects blocks and is reentered while blocked. This will happen because all named objects
have an absolute path. This is true even if the object name specified is relative. For example, the
following ASL code segments are functionally identical.

(1)

Method (DEAD,) {
Scope (_SB_.F00) {
Name (BAR,) // Run time definition
}

(2)

Scope (\.SB) {
Name (_SB_. FO0.BAR,) // Load time definition
}

Notice that in the above example the execution of the DEAD method will always fail because the object
SB.FOO.BAR is created at load time.

The term of "Definition Block level" is used to refer to the AML byte streams that are not contained in any
control method. Such AML byte streams can appear in the "root" scope or in the scopes created/opened
by the "Device, PowerResource, Processor, Scope and ThermalZone" operators. Please refer to

"Section 19.6, ASL Operator Reference"for detailed descriptions.

Not only the named objects, but all term objects (mathematical, logical, and conditional expressions, etc.,
see "Section 20.2.5, Term Object Encoding") are allowed at the Definition Block level. Allowing such
executable AML opcodes at the Definition Block level allows BIOS writers to define dynamic object lists
according to the system settings. For example:

DefinitionBlock ("DSDT.aml™, "DSDT™, 2, "OEM", "FOOBOOK", 0x1000)
{
If (LEqual (CFG1 (), 1))
{
Scope (_SB.PCI0.XHC.RHUB)
If (LEqual (CFG2 (), 1))
{
Bevice (HS11)
If (LEqual (CFG3 (), 1))
{
Bevice (CAMO)

{
}

UEFI Forum, Inc. January 2019 Page 270

ACPI Specification, Version 6.3 ACPI Software Programming Model

}

The interpretation of the definition block during the definition block loading is similar to the
interpretation of the control method during the control method execution.

5.5 Control Methods and the ACPI Source Language (ASL)

OEMs and platform firmware vendors write definition blocks using the ACPI Source Language (ASL) and
use a translator to produce the byte stream encoding described in Section 5.4, “Definition Block
Encoding”. For example, the ASL statements that produce the example byte stream shown in that earlier
section are shown in the following ASL example. For a full specification of the ASL statements, see
Section 19, “ACPI Source Language (ASL) Reference.”

// ASL Example
DefinitionBlock (

"forbook.aml", // Output Filename

"DSDT", // Signature

0x02, // DSDT Compliance Revision
"OEM™, // OEMID

"forbook™, // TABLE ID

0x1000 // OEM Revision

// start of definition block
OperationRegion(\GIO, SystemlO, 0x125, 0x1)
Field(\GIO, ByteAcc, NoLock, Preserve) {

v

CT01, 1,
}
Scope(_SB) // start of scope
Device(PCI0) { // start of device

PowerResource(FETO, 0, 0) { // start of pwr
Method (ON) {
Store (Ones, CTOl) // assert power
Sleep (30) // wait 30ms
}
Method (_OFF) {
Store (Zero, CT01l) // assert reset#
}

Method (_STA) {
Return (CTO01)
}

¥ // end of power
} // end of device
} /7 end of scope
} 7/ end of definition block

UEFI Forum, Inc. January 2019 Page 271

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.5.1 ASL Statements

ASL is principally a declarative language. ASL statements declare objects. Each object has three parts, two
of which can be null:

Object := ObjectType FixedList VariableList

FixedList refers to a list of known length that supplies data that all instances of a given ObjectType must
have. It is written as (a, b, c,), where the number of arguments depends on the specific ObjectType, and
some elements can be nested objects, thatis (a, b, (q, r, s, t), d). Arguments to a FixedList can have
default values, in which case they can be skipped. Some ObjectTypes can have a null FixedList.

Variablelist refers to a list, not of predetermined length, of child objects that help define the parent. It is
written as {x, y, z, aa, bb, cc}, where any argument can be a nested object. ObjectType determines what
terms are legal elements of the VariableList. Some ObjectTypes can have a null variable list.

For a detailed specification of the ASL language, see Section 19, “ACPI Source Language (ASL) Reference.”
For a detailed specification of the ACPI Control Method Machine Language (AML), upon which the output
of the ASL translator is based, see Section 20, “ACPI Machine Language (AML) Specification.”

5.5.2 Control Method Execution

OSPM evaluates control method objects as necessary to either interrogate or adjust the system-level
hardware state. This is called an invocation.

A control method can use other internal, or well defined, control methods to accomplish the task at
hand, which can include defined control methods provided by the operating software. Control Methods
can reference any objects anywhere in the Namespace. Interpretation of a Control Method is not
preemptive, but it can block. When a control method does block, OSPM can initiate or continue the
execution of a different control method. A control method can only assume that access to global objects
is exclusive for any period the control method does not block.

Global objects are those NameSpace objects created at table load time.

5.5.2.1 Arguments

Up to seven arguments can be passed to a control method. Each argument is an object that in turn could
be a “package” style object that refers to other objects. Access to the argument objects is provided via
the ASL ArgTerm (ArgX) language elements. The number of arguments passed to any control method is
fixed and is defined when the control method package is created.

Method arguments can take one of the following forms:

e An ACPl name or namepath that refers to a named object. This includes the LocalX and ArgX
names. In this case, the object associated with the name is passed as the argument.

e An ACPl name or namepath that refers to another control method. In this case, the method is
invoked and the return value of the method is passed as the argument. A fatal error occurs if
no object is returned from the method. If the object is not used after the method invocation it
is automatically deleted.

UEFI Forum, Inc. January 2019 Page 272

ACPI Specification, Version 6.3 ACPI Software Programming Model

e Avalid ASL expression. In the case, the expression is evaluated and the object that results from
this evaluation is passed as the argument. If this object is not used after the method invocation
it is automatically deleted.

5.5.2.2 Method Calling Convention

The calling convention for control methods can best be described as call-by-reference-constant. In this
convention, objects passed as arguments are passed by “reference”, meaning that they are not copied to
new objects as they are passed to the called control method (A calling convention that copies objects or
object wrappers during a call is known as call-by-value or call-by-copy).

This call-by-reference-constant convention allows internal objects to be shared across each method
invocation, therefore reducing the number of object copies that must be performed as well as the
number of buffers that must be copied. This calling convention is appropriate to the low-level nature of
the ACPI subsystem within the kernel of the host operating system where non-paged dynamic memory is
typically at a premium. The ASL programmer must be aware of the calling convention and the related side
effects.

However, unlike a pure call-by-reference convention, the ability of the called control method to modify
arguments is extremely limited. This reduces aliasing issues such as when a called method unexpectedly
modifies a object or variable that has been passed as an argument by the caller. In effect, the arguments
that are passed to control methods are passed as constants that cannot be modified except under
specific controlled circumstances.

Generally, the objects passed to a control method via the ArgX terms cannot be directly written or
modified by the called method. In other words, when an ArgX term is used as a target operand in an ASL
statement, the existing ArgX object is not modified. Instead, the new object replaces the existing object
and the ArgX term effectively becomes a LocalX term.

The only exception to the read-only argument rule is if an ArgX term contains an Object Reference
created via the RefOf ASL operator. In this case, the use of the ArgX term as a target operand will cause
any existing object stored at the ACPI name referred to by the RefOf operation to be overwritten.

In some limited cases, a new, writable object may be created that will allow a control method to change
the value of an ArgX object. These cases are limited to Buffer and Package objects where the “value” of
the object is represented indirectly. For Buffers, a writable Index or Field can be created that refers to the
original buffer data and will allow the called method to read or modify the data. For Packages, a writable
Index can be created to allow the called method to modify the contents of individual elements of the
Package.

5.5.2.3 Local Variables and Locally Created Data Objects

Control methods can access up to eight local data objects. Access to the local data objects have
shorthand encodings. On initial control method execution, the local data objects are NULL. Access to local
objects is via the ASL LocalTerm language elements.

Upon control method execution completion, one object can be returned that can be used as the result of
the execution of the method. The “caller” must either use the result or save it to a different object if it
wants to preserve it. See the description of the Return ASL operator for additional details

NameSpace objects created within the scope of a method are dynamic. They exist only for the duration of
the method execution. They are created when specified by the code and are destroyed on exit. A method

UEFI Forum, Inc. January 2019 Page 273

ACPI Specification, Version 6.3 ACPI Software Programming Model

may create dynamic objects outside of the current scope in the NameSpace using the scope operator or
using full path names. These objects will still be destroyed on method exit. Objects created at load time
outside of the scope of the method are static. For example:

Scope (\XY2) {
Name (BAR, 5) // Creates \XYZ.BAR
Method (FOO, 1) {
Store (BAR, CREG) // same effect as Store (\XYZ.BAR, CREG)
Name (BAR, 7) // Creates \XYZ.FO0O.BAR
Store (BAR, DREG) // same effect as Store (\XYZ.FOO.BAR, DREG
Name (\XYZ.FOOB, 3) // Creates \XYZ.FOOB
} /7 end method
} // end scope

The object \XYZ.BAR is a static object created when the table that contains the above ASL is loaded. The
object \XYZ.FOO.BAR is a dynamic object that is created when the Name (BAR, 7) statement in the FOO
method is executed. The object \XYZ.FOOB is a dynamic object created by the \XYZ.FOO method when
the Name (\XYZ.FOOB, 3) statement is executed. Notice that the \XYZ.FOOB object is destroyed after the
\XYZ.FOO method exits.

5.5.2.4 Access to Operation Regions

5.5.2.4.1 Operation Regions

Control Methods read and write data to locations in address spaces (for example, System memory and
System 1/0) by using the Field operator (see Section 19.6.46 Field (Declare Field Objects)”) to declare a
data element within an entity known as an “Operation Region” and then performing accesses using the
data element name. An Operation Region is a specific region of operation within an address space that is
declared as a subset of the entire address space using a starting address (offset) and a length (see
Section 19.6.98 “OperationRegion (Declare Operation Region)”). Control methods must have exclusive
access to any address accessed via fields declared in Operation Regions. Control methods may not
directly access any other hardware registers, including the ACPI-defined register blocks. Some of the ACPI
registers, in the defined ACPI registers blocks, are maintained on behalf of control method execution. For
example, the GPEx_BLK is not directly accessed by a control method but is used to provide an extensible
interrupt handling model for control method invocation.

Note: Accessing an OpRegion may block, even if the OpRegion is not protected by a mutex. For example,
because of the slow nature of the embedded controller, an embedded controller OpRegion field
access may block.

Table 5-160 defines Operation Region spaces.

UEFI Forum, Inc. January 2019 Page 274

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-160 Operation Region Address Space Identifiers

Value Name (RegionSpace Keyword)

SystemMemory
1 SystemlO
2 PCl_Config
3 EmbeddedControl Section 12
4 SMBus Section 13
5 SystemCMOS Section 5.5.2.4.2
6 PciBarTarget Section 5.5.2.4.3
7 IPMI Section 5.5.2.4.4
8 GeneralPurposelO Section 5.5.2.4.5
9 GenericSerialBus Section 5.5.2.4.6
0x0A PCC Section 5.5.2.4.7
0x0B-Ox7F Reserved
0x80 to OxFF OEM defined

5.5.2.4.2 CMOS Protocols

This section describes how CMOS battery-backed non-volatile memory can be accessed from ASL. Most
computers contain an RTC/CMOS device that can be represented as a linear array of bytes of non-volatile
memory. There is a standard mechanism for accessing the first 64 bytes of non-volatile RAM in devices
that are compatible with the Motorola RTC/CMOS device used in the original IBM PC/AT. Existing RTC/
CMOS devices typically contain more than 64 bytes of non-volatile RAM, and no standard mechanism
exists for access to this additional storage area. To provide access to all of the non-volatile memory in
these devices from AML, PnP IDs exist for each type of extension. These are PNPOB0OO, PNPOBO1, and
PNPOBO2. The specific devices that these PnP IDs support are described in Section 9.15, “PC/AT RTC/
CMOS Device”, along with field definition ASL example code. The drivers corresponding to these device
handle operation region accesses to the SystemCMOS operation region for their respective device types.

All bytes of CMOS that are related to the current time, day, date, month, year and century are read-only.

5.5.2.4.3 PCI Device BAR Target Protocols

This section describes how PCl devices’ control registers can be accessed from ASL. PCl devices each have
an address space associated with them called the Configuration Space. At offset 0x10 through offset
0x27, there are as many as six Base Address Registers, (BARs). These BARs contain the base address of a
series of control registers (in 1/0 or Memory space) for the PCI device. Since a Plug and Play OS may
change the values of these BARs at any time, ASL cannot read and write from these deterministically
using I/0 or Memory operation regions. Furthermore, a Plug and Play OS will automatically assign
ownership of the I/O and Memory regions associated with these BARs to a device driver associated with
the PCl device. An ACPI OS (which must also be a Plug and Play operating system) will not allow ASL to
read and write regions that are owned by native device drivers.

UEFI Forum, Inc. January 2019 Page 275

ACPI Specification, Version 6.3 ACPI Software Programming Model

If a platform uses a PCI BAR Target operation region, an ACPI OS will not load a native device driver for
the associated PCl function. For example, if any of the BARs in a PCl function are associated with a PCI
BAR Target operation region, then the OS will assume that the PCl function is to be entirely under the
control of the ACPI system firmware. No driver will be loaded. Thus, a PCI function can be used as a
platform controller for some task (hot-plug PCl, and so on) that the ACPI system firmware performs.

5.5.2.4.3.1 Declaring a PCI BAR Target Operation Region

PClI BARs contain the base address of an 1/0 or Memory region that a PCI device’s control registers lie
within. Each BAR implements a protocol for determining whether those control registers are within /0 or
Memory space and how much address space the PCl device decodes. (See the PCI Specification for more
details.)

PCI BAR Target operation regions are declared by providing the offset of the BAR within the PCl device’s
PCI configuration space. The BAR determines whether the actual access to the device occurs through an
I/0 or Memory cycle, not by the declaration of the operation region. The length of the region is similarly
implied.

In the term OperationRegion(PBAR, PciBarTarget, 0x10, 0x4), the offset is the offset of the BAR
within the configuration space of the device. This would be an example of an operation region that uses
the first BAR in the device.

5.5.2.4.3.2 PCIl Header Types and PCI BAR Target Operation Regions

PCI BAR Target operation regions may only be declared in the scope of PCl devices that have a PClI Header
Type of 0. PCl devices with other header types are bridges. The control of PCl bridges is beyond the scope
of ASL.

5.5.2.4.4 Declaring IPMI Operation Regions

This section describes the Intelligent Platform Management Interface (IPMI) address space and the use of
this address space to communicate with the Baseboard Management Controller (BMC) hardware from
AML.

Similar to SMBus, IPMI operation regions are command based, where each offset within an IPMI address
space represent an IPMI command and response pair. Given this uniqueness, IPMI operation regions
include restrictions on their field definitions and require the use of an IPMI-specific data buffer for all
transactions. The IPMI interface presented in this section is intended for use with any hardware
implementation compatible with the IPMI specification, regardless of the system interface type.

Support of the IPMI generic address space by ACPl-compatible operating systems is optional, and is
contingent on the existence of an ACPI IPMI device, i.e. a device with the “IPI0001” plug and play ID. If
present, OSPM should load the necessary driver software based on the system interface type as specified
by the _IFT (IPMI Interface Type) control method under the device, and register handlers for accesses
into the IPMI operation region space.

For more information, refer to the IPMI specification.

Each IPMI operation region definition identifies a single IPMI network function. Operation regions are
defined only for those IPMI network functions that need to be accessed from AML. As with other regions,
IPMI operation regions are only accessible via the Field term (see Section 5.5.2.4.4.1, “Declaring IPMI
Fields”).

UEFI Forum, Inc. January 2019 Page 276

ACPI Specification, Version 6.3 ACPI Software Programming Model

This interface models each IPMI network function as having a 256-byte linear address range. Each byte
offset within this range corresponds to a single command value (for example, byte offset 0xC1 equates to
command value 0xC1), with a maximum of 256 command values. By doing this, IPMI address spaces
appear linear and can be processed in a manner similar to the other address space types.

The syntax for the OperationRegion term (from Section 19.6.98, “OperationRegion (Declare Operation
Region]”) is described below.

OperationRegion (

RegionName, // NameString
RegionSpace, // RegionSpaceKeyword
Offset, // TermArg=>Integer
Length // TermArg=>Integer

)

Where:

* RegionName specifies a name for this IPMI network function (for example, “POWR”).

* RegionSpace must be set to IPMI (operation region type value 0x07).

e Offsetis a word-sized value specifying the network function and initial command value offset
for the target device. The network function address is stored in the high byte and the
command value offset is stored in the low byte. For example, the value 0x3000 would be used
for a device with the network function of 0x06, and an initial command value offset of zero (0).

e Length is set to the 0x100 (256), representing the maximum number of possible command
values, for regions with an initial command value offset of zero (0). The difference of these two
values is used for regions with non-zero offsets. For example, a region with an Offset value of
0x3010 would have a corresponding Length of 0xFO (0x100 minus 0x10).

For example, a Baseboard Management Controller will support power metering capabilities at the
network function 0x30, and IPMI commands to query the BMC device information at the network
function 0x06.

The following ASL code shows the use of the OperationRegion term to describe these IPMI functions:

Device (IPMI)

{
Name(_HID, "1P10001™) // 1PMI device
Name(_IFT, Ox1) // KCS system interface type
OperationRegion(DEVC, IPMI, 0x0600, 0x100) // Device info network function
OperationRegion(POWR, IPMI, 0x3000, 0x100) // Power network function

}

Notice that these operation regions in this example are defined within the immediate context of the
‘owning’ IPMI device. This ensures the correct operation region handler will be used, based on the value
returned by the _IFT object. Each definition corresponds to a separate network function, and happens to
use an initial command value offset of zero (0).

5.5.2.4.4.1 Declaring IPMI Fields

As with other regions, IPMI operation regions are only accessible via the Field term. Each field element is
assigned a unique command value and represents a virtual command for the targeted network function.

UEFI Forum, Inc. January 2019 Page 277

ACPI Specification, Version 6.3 ACPI Software Programming Model

The syntax for the Field term (from Section 19.6.40, “Event (Declare Event Synchronization Object]”) is
described below.

Field(
RegionName, // NameString=>OperationRegion
AccessType, // AccessTypeKeyword - BufferAcc
LockRule, // LockRuleKeyword
UpdateRule // UpdateRuleKeyword — ignored

) {FieldUnitList}

Where:

e RegionName specifies the operation region name previously defined for the network function.

e AccessType must be set to BufferAcc. This indicates that access to field elements will be done
using a region-specific data buffer. For this access type, the field handler is not aware of the
data buffer’s contents which may be of any size. When a field of this type is used as the source
argument in an operation it simply evaluates to a buffer. When used as the destination,
however, the buffer is passed bi-directionally to allow data to be returned from write
operations. The modified buffer then becomes the response message of that command. This is
slightly different than the normal case in which the execution result is the same as the value
written to the destination. Note that the source is never changed, since it only represents a
virtual register for a particular IPMI command.

e LockRule indicates if access to this operation region requires acquisition of the Global Lock for
synchronization. This field should be set to Lock on system with firmware that may access the
BMC via IPMI, and NoLock otherwise.

e UpdateRule is not applicable to IPMI operation regions since each virtual register is accessed in
its entirety. This field is ignored for all IPMI field definitions.

IPMI operation regions require that all field elements be declared at command value granularity. This
means that each virtual register cannot be broken down to its individual bits within the field definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. This limitation
is imposed both to simplify the IPMI interface and to maintain consistency with the physical model
defined by the IPMI specification.

Since the system interface used for IPMI communication is determined by the _IFT object under the IPMI
device, there is no need for using of the AccessAs term within the field definition. In fact its usage will be
ignored by the operation handler.

For example, the register at command value 0xC1 for the power meter network function might represent
the command to set a BMC enforced power limit, while the register at command value 0xC2 for the same
network function might represent the current configured power limit. At the same time, the register at
command value 0xC8 might represent the latest power meter measurement.

UEFI Forum, Inc. January 2019 Page 278

ACPI Specification, Version 6.3 ACPI Software Programming Model

The following ASL code shows the use of the OperationRegion, Field, and Offset terms to represent these
virtual registers:

OperationRegion(POWR, IPMI, 0x3000, 0x100) // Power network function
Field(POWR, BufferAcc, NoLock, Preserve)

{
Offset(0xCl), // Skip to command value OxCl
SPWL, 8, // Set power limit [command value OxC1]
GPWL, 8, // Get power limit [command value OxC2]
Offset(0xC8), // Skip to command value OxC8
GPMM, 8 // Get power meter measurement [command
value 0xC8]
}

Notice that command values are equivalent to the field element’s byte offset (for example, SPWL=0xC1,
GPWL=0xC2, GPMM=0xC8).

5.5.2.4.4.2 Declaring and Using IPMI Request and Response Buffer

Since each virtual register in the IPMI operation region represents an individual IPMI command, and the
operation relies on use of bi-directional buffer, a common buffer structure is required to represent the
request and response messages. The use of a data buffer for IPMI transactions allows AML to receive
status and data length values.

The IPMI data buffer is defined as a fixed-length 66-byte buffer that, if represented using a ‘C’-styled
declaration, would be modeled as follows:

typedef struct

{
BYTEStatus; // Byte 0 of the data buffer
BYTELength; // Byte 1 of the data buffer
BYTE[64]Data; // Bytes 2 through 65 of the data buffer
}
Where:

e Status (byte 0) indicates the status code of a given IPMI command. See Section 5.5.2.4.4.3,
“IPMI Status Code,” for more information.

e Length (byte 1) specifies the number of bytes of valid data that exists in the data buffer. Valid
Length values are 0 through 64. Before the operation is carried out, this value represents the
length of the request data buffer. Afterwards, this value represents the length of the result
response data buffer.

e Data (bytes 65-2) represents a 64-byte buffer, and is the location where actual data is stored.
Before the operation is carried out, this represents the actual request message payload.
Afterwards, this represents the response message payload as returned by the IPMI command.

For example, the following ASL shows the use of the IPMI data buffer to carry out a command for a power
function. This code is based on the example ASL presented in Section 5.5.2.4.4.1, “Declaring IPMI Fields,”
which lists the operation region and field definitions for relevant IPMI power metering commands.

UEFI Forum, Inc. January 2019 Page 279

ACPI Specification, Version 6.3 ACPI Software Programming Model

/* Create the IPMI data buffer */

Name(BUFF, Buffer(66){}) // Create IPMI data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, LENG) // LENG = Length (Byte)
CreateByteField(BUFF, 0x02, MODE) // MODE = Mode (Byte)
CreateByteField(BUFF, 0x03, RESV) // RESV = Reserved (Byte)
Store(0x2, LENG) // Request message is 2 hytes long
Store(0x1, MODE) // Set Mode to 1

Store(Store(BUFF, GPMM), BUFF) // Write the request into the GPMM
command,

// then read the results

CreateByteField(BUFF, 0x02, CMPC) // CMPC = Completion code (Byte)
CreateWordField(BUFF, 0x03, APOW) // APOW = Average power measurement
(Word)
IT(LAnd(LEqual (STAT, 0x0), LEqual(CMPC, 0x0))) // Successful?
{

Return(APOW) // Return the average power measurement
}
Else
{

Return(Ones) // Return invalid
}

Notice the use of the CreateField primitives to access the data buffer’s sub-elements (Status, Length, and
Data), where Data (bytes 65-2) is ‘typecast’ into different fields (including the result completion code).

The example above demonstrates the use of the Store() operator and the bi-directional data buffer to
invoke the actual IPMI command represented by the virtual register. The inner Store() writes the request
message data buffer to the IPMI operation region handler, and invokes the command. The outer Store()
takes the result of that command and writes it back into the data buffer, this time representing the
response message.

5.5.2.4.4.3 IPMI Status Code

Every IPMI command results in a status code returned as the first byte of the response message,
contained in the bi-directional data buffer. This status code can indicate success, various errors, and
possibly timeout from the IPMI operation handler. This is necessary because it is possible for certain IPMI
commands to take up to 5 seconds to carry out, and since an AML Store() operation is synchronous by
nature, it is essential to make sure the IPMI operation returns in a timely fashion so as not to block the
AML interpreter in the OSPM.

UEFI Forum, Inc. January 2019 Page 280

ACPI Specification, Version 6.3 ACPI Software Programming Model

Note: This status code is different than the IPMI completion code, which is returned as the first byte of
the response message in the data buffer payload. The completion code is described in the
complete IPMI specification.

Table 5-161 IPMI Status Codes

Status Code |Name Description
00h IPMI OK Indicates the command has been successfully completed.
07h IPMI Unknown Indicates failure because of an unknown IPMI error.
Failure
10h IPMI Command Indicates the operation timed out.
Operation Timeout

5.5.2.4.5 Declaring GeneralPurposelO Operation Regions

For GeneralPurposelO Operation Regions, the syntax for the OperationRegion term (from section
Section 19.6.98, “OperationRegion (Declare Operation Region]”) is described below.

OperationRegion (

RegionName, // NameString
RegionSpace, // RegionSpaceKeyword
Offset, // TermArg=>Integer
Length // TermArg=>Integer

)

Where:

¢ RegionName specifies a name for this GeneralPurposelO region (for example, “GPI1”).

¢ RegionSpace must be set to GeneralPurposelO (operation region type value 0x08).

e Offsetisignored for the GeneralPurposelO RegionSpace.

¢ Length is the maximum number of GPIO 10 pins to be included in the Operation Region,
rounded up to the next byte.

GeneralPurposelO OpRegions must be declared within the scope of the GPIO controller device being
accessed.

5.5.2.4.5.1 Declaring GeneralPurposelO Fields

As with other regions, GeneralPurposelO operation regions are only accessible via the Field term. Each
field element represents a subset of the Iength bits declared in the OpRegion declaration. The pins
within the OpRegion that are accessed via a given field name are defined by a Connection descriptor. The
total number of defined field bits following a connection descriptor must equal the number of pins listed
in the descriptor.

UEFI Forum, Inc. January 2019 Page 281

ACPI Specification, Version 6.3 ACPI Software Programming Model

The syntax for the Field term (from Section 19.6.46) is described below.

Field(
RegionName, // NameString=>OperationRegion
AccessType, // AccessTypeKeyword
LockRule, // LockRuleKeyword
UpdateRule // UpdateRuleKeyword — ignored
) {FieldUnitList}
Where:

¢ RegionName specifies the operation region name previously declared.

e AccessType must be set to ByteAcc.

e LockRule indicates if access to this operation region requires acquisition of the Global Lock
for synchronization. Note that, on HW-reduced ACPI platforms, this field must be set to
NoLock.

¢ UpdateRule is not applicable to GeneralPurposelO operation regions since Preserve is
always required. This field is ignored for all GeneralPurposelO field definitions.

The following ASL code shows the use of the OperationRegion, Field, and Offset terms as they apply to
GeneralPurposelO space.

Device(DEVA) //An Arbitrary Device Scope

...//0ther required stuff for this device
Name (GMOD, ResourceTemplate () //An existing GPIO Connection (to be used later)
{

//2 Outputs that define the Power mode of the device

Gpiolo (Exclusive, PullDown, , , , "_SB.GPI2"™) {10, 12}

1))
} //End DEVA

Device (GPI2) //The OpRegion declaration, and the REG method, must be in the
controller’s namespace scope
{
...//0ther required stuff for the GPIO controller
OperationRegion(GP02, GeneralPurposelO, 0, 1) // Note: length of 1 means region is
// less than 1 byte (8 pins) long

(or
Method(_REG,2) {} // Track availability of GeneralPurposelO space
} //End GPI2
Device (DEVB) //Access some GPIO Pins from this device scope
//to change the device®s power mode
{

...//0ther required stuff for this device

Name(_DEP, Package() {''_SB.GPI12"}) //0pRegion Dependency hint for OSPM
Field(_SB.GPI12.GP02, ByteAcc, NoLock, Preserve)
{

Connection (GMOD), // Re-Use an existing connection (defined elsewhere)
MODE, 2, // Power Mode

Connection (Gpiolo(Exclusive, PullUp, , , , "™_SB.GPI12™) {7}),

UEFI Forum, Inc. January 2019 Page 282

ACPI Specification, Version 6.3 ACPI Software Programming Model

STAT, 1, // e.g. Status signal from the device
Connection (Gpiolo (Exclusive, PullUp, , , , "™_SB.GPI2"™) {9}),
RSET, 1 // e.g. Reset signal to the device
}
Method(_PS3)
{
IT (1) // Make sure GeneralPurposelO OpRegion is available
{
Store(0x03, MODE) //Set both MODE bits. Power Mode 3
}
}

} //End DEVB

5.5.2.4.6 Declaring GenericSerialBus Operation Regions

For GenericSerialBus Operation Regions, the syntax for the OperationRegion term (from Section 19.6.98,
“OperationRegion (Declare Operation Region]”) is described below.

OperationRegion (

RegionName, // NameString
RegionSpace, // RegionSpaceKeyword
Offset, // TermArg=>Integer
Length // TermArg=>Integer

)

Where:

* RegionName specifies a name for this region (for example, TOP1).

* RegionSpace must be set to GenericSerialBus (operation region type value 0x09).

e Offset specifies the initial command value offset for the target device. For example, the value
0x00 refers to a command value offset of zero (0). Raw protocols ignore this value.

e length is set to the 0x100 (256), representing the maximum number of possible command
values.

Note: The Operation Region must be declared within the scope of the Serial Bus controller device.

The following ASL code shows the use of the OperationRegion, Field, and Offset terms as they apply to
SPB space.

<.>
Scope(_SB.12C){
OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device
at command
// offset 0x00

Name (SDBO, ResourceTemplate() {
12CSerialBusv2(0x4a, ,100000, ,”_SB.l12C”,,,, ,RawDataBuffer(){1,2,3,4,5,6})

1))
Field(TOP1, BufferAcc, NoLock, Preserve)
{

Connection(SDB0) // Use the Resource Descriptor defined above

UEFI Forum, Inc. January 2019 Page 283

ACPI Specification, Version 6.3 ACPI Software Programming Model

AccessAs(BufferAcc, AttribWord) // Use the GenericSerialBus Read/Write
Word protocol
FLDO, 8, // Virtual register at command value O.
FLD1, 8 // Virtual register at command value 1.
}
Field(TOP1, BufferAcc, NoLock, Preserve)
{
Connection(l12CSerialBusVv2(0x5a, ,100000,,”_SB.12C”,,,, ,RawDataBuffer(){1,63}))
AccessAs(BufferAcc, AttribBytes (16))
FLD2, 8 // Virtual register at command value 0.
}
// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(34){}) // Create GenericSerialBus data buffer
as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)
}
<.>

The Operation Region in this example is defined within the scope of the target controller device, 12C.

GenericSerialBus regions are only accessible via the Field term (see Section 19.6.46 “Field (Declare Field
Objects)) GenericSerialBus protocols are assigned to field elements using the AccessAs term (see
Section 19.3.4 “ASL Macros”) within the field definition.

Table 5-162 Accsessor Type Values

Accessor Type Value Description
AttribQuick 0x02 Read/Write Quick Protocol
AttribSendReceive 0x04 Send/Receive Byte Protocol
AttribByte 0x06 Read/Write Byte Protocol
AttribWord 0x08 Read/Write Word Protocol
AttribBlock O0x0A Read/Write Block Protocol
AttribBytes 0x0B Read/Write N-Bytes Protocol
AttribProcessCall 0x0C Process Call Protocol
AttribBlockProcessCall 0x0D Write Block-Read Block
Process Call Protocol
AttribRawBytes O0xO0E Raw Read/Write N-Bytes
Protocol
AttribRawProcessBytes OxOF Raw Process Call Protocol

UEFI Forum, Inc. January 2019 Page 284

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.5.2.4.6.1 Declaring GenericSerialBus Fields

As with other regions, GenericSerialBus operation regions are only accessible via the Field term. Each
field element is assigned a uniqgue command value and represents a virtual register on the targeted
GenericSerialBus device.

The syntax for the Field term (see Section 19.6.46 “Field (Declare Field Objects)) is described below.

Field(
RegionName, // NameString=>OperationRegion
AccessType, // AccessTypeKeyword
LockRule, // LockRuleKeyword — ignored for Hardware-reduced ACPI platforms
UpdateRule // UpdateRuleKeyword — ignored
) {FieldUnitList}
Where:

* RegionName specifies the operation region name previously defined for the device.

e AccessType must be set to BufferAcc. This indicates that access to field elements will be done
using a region-specific data buffer. For this access type, the field handler is not aware of the
data buffer’s contents which may be of any size. When a field of this type is used as the source
argument in an operation it simply evaluates to a buffer. When used as the destination,
however, the buffer is passed bi-directionally to allow data to be returned from write
operations. The modified buffer then becomes the execution result of that operation. This is
slightly different than the normal case in which the execution result is the same as the value
written to the destination. Note that the source is never changed, since it could be a read only
object (see Section 5.5.2.4.6.2, “Declaring an GenericSerialBus Data Buffer” and Section 19.2.5,
“Opcode Terms”).

e LockRule indicates if access to this operation region requires acquisition of the Global Lock for
synchronization. This field should be set to Lock on system with firmware that may access the
GenericSerialBus, and NoLock otherwise. On Hardware-reduced ACPI platforms, there is not a
global lock so this parameter is ignored.

e UpdateRule is not applicable to GenericSerialBus operation regions since each virtual register is
accessed in its entirety. This field is ignored for all GenericSerialBus field definitions.

GenericSerialBus operation regions require that all field elements be declared at command value
granularity. This means that each virtual register cannot be broken down to its individual bits within the
field definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. This limitation
is imposed to simplify the GenericSerialBus interface.

GenericSerialBus protocols are assigned to field elements using the AccessAs term within the field
definition. The syntax for this term (from Section 19.2.3, “ASL Root and SecondaryTerms”) is described
below.

AccessAs(

AccessType, //AccessTypeKeyword

AccessAttribute //Nothing | ByteConst | AccessAttribKeyword
)
Where:

UEFI Forum, Inc. January 2019 Page 285

ACPI Specification, Version 6.3 ACPI Software Programming Model

e AccessType must be set to BufferAcc.

e AccessAttribute indicates the GenericSerialBus protocol to assign to command values that
follow this term. SeeSection 5.5.2.4.6.3, “Using the GenericSerialBus Protocols,” for a listing of
the GenericSerialBus protocols.

An AccessAs term must appear in a field definition to set the initial GenericSerialBus protocol for the field
elements that follow. A maximum of one GenericSerialBus protocol may be defined for each field
element. Devices supporting multiple protocols for a single command value can be modeled by specifying
multiple field elements with the same offset (command value), where each field element is preceded by
an AccessAs term specifying an alternate protocol.

For GenericSerialBus operation regions, connection attributes must be defined for each set of field
elements. GenericSerialBus resources are assigned to field elements using the Connection term within
the field definition. The syntax for this term (from Section 19.6.15 “Connection (Declare Field Connection
Attributes)”) is described below.

Connection (ConnectionResourceObj)
Where:

e ConnectionResourceObj points to a Serial Bus Resource Connection Descriptor (see
Section 6.4.3.8.2, “Serial Bus Connection Resource Descriptors” for valid types), or a named
object that specifies a buffer field containing the connection resource information.

Each Field definition references the initial command offset specified in the operation region definition.
The offset is iterated for each subsequent field element defined in that respective Field. If a new
connection is described in the same Field definition, the offset will not be returned to its initial value and
a new Field must be defined to inherit the initial command value offset from the operation region
definition. The following example illustrates this point.

<.>
OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) //Initial offset is 0O

Field(TOP1, BufferAcc, NoLock, Preserve)

{

Connection(l12CSerialBusVv2(0x5a,,100000,, '"_SB.I12C",,,,,RawDataBuffer(){1,6}))
Offset(0x0),
AccessAs(BufferAcc, AttribBytes (4)),
TFK1, 8, //TFK1 at command value offset 0
TFK2, 8 //TFK2 at command value offset 1

Connection(l12CSerialBusVv2(0x5c,,100000,, '"_SB.l12C",,,,,RawDataBuffer(){3,1}))
Offset(0x0),
AccessAs(BufferAcc, AttribBytes (12)),
TS1, 8 //TS1 at command value offset 2
}

UEFI Forum, Inc. January 2019 Page 286

ACPI Specification, Version 6.3 ACPI Software Programming Model

Field(TOP1, BufferAcc, NoLock, Preserve)

{
Connection(l12CSerialBusv2(0x5b, ,100000,, "_SB.12C",,,,,RawDataBuffer(){2,9}))

AccessAs(BufferAcc, AttribByte),
™1, 8 //TM1 at command value offset O

<.>

5.5.2.4.6.2 Declaring and Using a GenericSerialBus Data Buffer

The use of a data buffer for GenericSerialBus transactions allows AML to receive status and data length
values, as well as making it possible to implement the Process Call protocol. The BufferAcc access type is
used to indicate to the field handler that a region-specific data buffer will be used.

For GenericSerialBus operation regions, this data buffer is defined as an arbitrary length buffer that, if
represented using a ‘C’-styled declaration, would be modeled as follows:

typedef struct

{
BYTEStatus; // Byte 0 of the data buffer
BYTELength; // Byte 1 of the data buffer
BYTE[x-1]Data; // Bytes 2-x of the arbitrary length data buffer,
} // where x is the last index of the overall buffer
Where:

e Status (byte 0) indicates the status code of a given GenericSerialBus transaction.

e Length (byte 1) specifies the number of bytes of valid data that exists in the data buffer. Use of
this field is only defined for the Read/Write Block protocol. For other protocols—where the
data length is implied by the protocol—this field is reserved.

e Data (bytes 2-x) represents an arbitrary length buffer, and is the location where actual data is
stored.

For example, the following ASL shows the use of the GenericSerialBus data buffer for performing
transactions to a Smart Battery device.

/* Create the GenericSerialBus data buffer */

Name(BUFF, Buffer(34){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)

CreateByteField(BUFF, 0x01, LEN) // LEN = Length (Byte)

CreateWordField(BUFF, 0x02, DATW) // DATW = Data (Word — Bytes 2 & 3)
CreateField(BUFF, 0x10, 256, DBUF) // DBUF = Data (Block — Bytes 2-33)

/* Read the battery temperature */
Store(BTMP, BUFF) // Invoke Read Word transaction
If(LEqual (STAT, 0x00)) // Successful?

{

// DATW = Battery temperature in 1710t degrees
// Kelvin

UEFI Forum, Inc. January 2019 Page 287

ACPI Specification, Version 6.3 ACPI Software Programming Model

}

/* Read the battery manufacturer name */

Store(MFGN, BUFF) // Invoke Read Blocktransaction
If(LEqual (STAT, 0x00)) // Successful?

{

// LEN = Length of the manufacturer name
// DBUF = Manufacturer name (as a counted string)

}

Notice the use of the CreateField primitives to access the data buffer’s sub-elements (Status, Length, and
Data), where Data (bytes 2-33) is ‘typecast’ as both word (DATW) and block (DBUF) data.

The example above demonstrates the use of the Store() operator to invoke a Read Block transaction to
obtain the name of the battery manufacturer. Evaluation of the source operand (MFGN) results in a 34-
byte buffer that gets copied by Store() to the destination buffer (BUFF).

Capturing the results of a write operation, for example to check the status code, requires an additional
Store() operator, as shown below.

Store(Store(BUFF, MFGN), BUFF) // Invoke Write Block transaction
If(LEqual (STAT, 0x00)) {.} // Transaction successful?

Note that the outer Store() copies the results of the Write Block transaction back into BUFF. This is the
nature of BufferAcc’s bi-directionality. It should be noted that storing (or parsing) the result of a
GenericSerialBus Write transaction is not required although useful for ascertaining the outcome of a
transaction.

GenericSerialBus Process Call protocols require similar semantics due to the fact that only destination
operands are passed bi-directionally. These transactions require the use of the double-Store() semantics
to properly capture the return results.

5.5.2.4.6.3 Using the GenericSerialBus Protocols

This section provides information and examples on how each of the GenericSerialBus protocols can be
used to access GenericSerialBus devices from AML.

5.5.2.4.6.3.1 Read/Write Quick (AttribQuick)

The GenericSerialBus Read/Write Quick protocol (AttribQuick) is typically used to control simple devices
using a device-specific binary command (for example, ON and OFF). Command values are not used by this
protocol and thus only a single element (at offset 0) can be specified in the field definition. This protocol
transfers no data.

The following ASL code illustrates how a device supporting the Read/Write Quick protocol should be
accessed:

UEFI Forum, Inc. January 2019 Page 288

ACPI Specification, Version 6.3 ACPI Software Programming Model

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at
command value offset 0
Field(TOP1, BufferAcc, NoLock, Preserve)
{
Connection(l12CSerialBusVv2(0x5a, ,100000,,"_SB.12C",,,,,RawDataBuffer(){1,6}))
AccessAs(BufferAcc, AttribQuick) // Use the GenericSerialBus Read/Write Quick
protocol
FLDO, 8 // Virtual register at command value O.

}

/* Create the GenericSerialBus data buffer */

Name(BUFF, Buffer(2){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)

/* Signal device (e.g. OFF) */

Store(FLDO, BUFF) // Invoke Read Quick transaction

If(LEqual (STAT, 0x00)) {.} // Successful?

/* Signal device (e.g. ON) */
Store(BUFF, FLDO) // Invoke Write Quick transaction

In this example, a single field element (FLDO) at offset O is defined to represent the protocol’s read/write
bit. Access to FLDO will cause a GenericSerialBus transaction to occur to the device. Reading the field
results in a Read Quick, and writing to the field results in a Write Quick. In either case data is not
transferred—access to the register is simply used as a mechanism to invoke the transaction.

5.5.2.4.6.3.2 Send/Receive Byte (AttribSendReceive)

The GenericSerialBus Send/Receive Byte protocol (AttribSendReceive) transfers a single byte of data. Like
Read/Write Quick, command values are not used by this protocol and thus only a single element (at
offset 0) can be specified in the field definition.

The following ASL code illustrates how a device supporting the Send/Receive Byte protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at
command value offset 0
Field(TOP1, BufferAcc, NoLock, Preserve)

{
Connection(l12CSerialBusv2(0x5a, ,100000,,"_SB.12C",,,,,RawDataBuffer(){1,6}))
AccessAs(BufferAcc, AttribSendReceive) // Use the GenericSerialBus Send/Receive
// Byte protocol
FLDO, 8 // Virtual register at command value O.
}

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(3){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x02, DATA) // DATA = Data (Byte)
// Receive a byte of data from the device

UEFI Forum, Inc. January 2019 Page 289

ACPI Specification, Version 6.3 ACPI Software Programming Model

Store(FLDO, BUFF) // Invoke a Receive Byte transaction
If(LEqual (STAT, 0x00)) // Successful?

{
}

// DATA = Received hyte..

// Send the byte “0x16” to the device
Store(0x16, DATA) // Save 0x16 into the data buffer
Store(BUFF, FLDO) // Invoke a Send Byte transaction

In this example, a single field element (FLDO) at offset 0 is defined to represent the protocol’s data byte.
Access to FLDO will cause a GenericSerialBus transaction to occur to the device. Reading the field results
in a Receive Byte, and writing to the field results in a Send Byte.

5.5.2.4.6.3.3 Read/Write Byte (AttribByte)

The GenericSerialBus Read/Write Byte protocol (AttribByte) also transfers a single byte of data. But
unlike Send/Receive Byte, this protocol uses a command value to reference up to 256 byte-sized virtual
registers.

The following ASL code illustrates how a device supporting the Read/Write Byte protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at
command value offset
Field(TOP1, BufferAcc, NoLock, Preserve)
{
Connection(I12CSerialBusVv2(0x5a, ,100000,,"\ SB.I12C",,,,,RawDataBuffer(){1,6}))
AccessAs(BufferAcc, AttribByte) // Use the GenericSerialBus Read/Write Byte
protocol

FLDO, 8, // Virtual register at command value 0.
FLD1, 8, // Virtual register at command value 1.
FLD2, 8 // Virtual register at command value 2.

}

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(3){})
// Create GenericSerialBus data buffer as BUFF

CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x02, DATA) // DATA = Data (Byte)
// Read a byte of data from the device using command value 1
Store(FLD1, BUFF) // Invoke a Read Byte transaction
If(LEqual (STAT, 0x00)) // Successful?
{

// DATA = Byte read from FLD1..
}
// Write the byte “0x16” to the device using command value 2
Store(0x16, DATA) // Save 0x16 into the data buffer
Store(BUFF, FLD2) // Invoke a Write Byte transaction

UEFI Forum, Inc. January 2019 Page 290

ACPI Specification, Version 6.3 ACPI Software Programming Model

In this example, three field elements (FLDO, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause a GenericSerialBus
transaction to occur to the device. Reading FLD1 results in a Read Byte with a command value of 1, and
writing to FLD2 results in a Write Byte with command value 2.

5.5.2.4.6.3.4 Read/Write Word (AttribWord)

The GenericSerialBus Read/Write Word protocol (AttribWord) transfers 2 bytes of data. This protocol
also uses a command value to reference up to 256 word-sized virtual device registers.

The following ASL code illustrates how a device supporting the Read/Write Word protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at
command value offset 0
Field(TOP1, BufferAcc, NoLock, Preserve)
{
Connection(l12CSerialBusVv2(0x5a, ,100000,,"\ _SB.I12C",,,,,RawDataBuffer(){1,6}))
AccessAs(BufferAcc, AttribWord)// Use the GenericSerialBus Read/Write Word
protocol

FLDO, 8, // Virtual register at command value 0.
FLD1, 8, // Virtual register at command value 1.
FLD2, 8 // Virtual register at command value 2.

}

// Create the GenericSerialBus data buffer

Name(BUFF, Buffer(6){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)

CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

// Read two bytes of data from the device using command value 1

Store(FLD1, BUFF) // Invoke a Read Word transaction
If(LEqual (STAT, 0x00)) // Successful?

// DATA = Word read from FLD1..
}
// Write the word “0x5416”° to the device using command value 2
Store(0x5416, DATA) // Save 0x5416 into the data buffer
Store(BUFF, FLD2) // Invoke a Write Word transaction

In this example, three field elements (FLDO, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause a GenericSerialBus
transaction to occur to the device. Reading FLD1 results in a Read Word with a command value of 1, and
writing to FLD2 results in a Write Word with command value 2.

Notice that although accessing each field element transmits a word (16 bits) of data, the fields are listed
as 8 bits each. The actual data size is determined by the protocol. Every field element is declared with a
length of 8 bits so that command values and byte offsets are equivalent.

5.5.2.4.6.3.5 Read/Write Block (AttribBlock)

The GenericSerialBus Read/Write Block protocol (AttribBlock) transfers variable-sized data. This protocol
uses a command value to reference up to 256 block-sized virtual registers.

UEFI Forum, Inc. January 2019 Page 291

ACPI Specification, Version 6.3 ACPI Software Programming Model

The following ASL code illustrates how a device supporting the Read/Write Block protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100)
Field(TOP1, BufferAcc, NoLock, Preserve)
{
Connection(12CSerialBusVvV2(0x5a, ,100000,,"_SB.12C",,,, ,RawDataBuffer(){1,6}))
Offset(0x0),
AccessAs(BufferAcc, AttribBlock),
TFK1, 8,
TFK2, 8

// Create the GenericSerialBus data buffer

Name(BUFF, Buffer(34){}) // Create SerialBus buf as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)

CreateBytefield(BUFF, 0x01, LEN) // LEN = Length (Byte)

CreateWordField(BUFF, 0x03, DATW) // DATW = Data (Word - Bytes 2 & 3, or 16 bits)
CreateField(BUFF, 16, 256, DBUF) // DBUF = Data (Bytes 2-33)

CreateField(BUFF, 16, 32, DATD) // DATD Data (DWord)

// Read block of data from the device using command value 0
Store(TFK1, BUFF)
If(LNotEqual (STAT, 0x00)) {
Return(0)
¥

// Read block of data from the device using command value 1
Store(TFK2, BUFF)
If(LNotEqual (STAT, 0x00)) {
Return(0)
}

<.>

In this example, two field elements (TFK1, and TFK2) are defined to represent the virtual registers for
command values 0 and 1. Access to any of the field elements will cause a GenericSerialBus transaction to
occur to the device.

Writing blocks of data requires similar semantics, such as in the following example.

Store(16, LEN) // In bits, so 4 bytes
Store(Store(BUFF, TFK1), BUFF) // Invoke Write Block transaction
If(LEqual (STAT, 0x00)) {.} // Transaction successful?

This accessor is not viable for some SPBs because the bus may not support the appropriate functionality.
In cases that variable length buffers are desired but the bus does not support block accessors, refer to the
SerialBytes protocol.

UEFI Forum, Inc. January 2019 Page 292

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.5.2.4.6.3.6 Word Process Call (AttribProcessCall)

The GenericSerialBus Process Call protocol (AttribProcessCall) transfers 2 bytes of data bi-directionally
(performs a Write Word followed by a Read Word as an atomic transaction). This protocol uses a
command value to reference up to 256 word-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at
slave address 0x42
Field(TOP1, BufferAcc, NoLock, Preserve)

{
Connection(12CSerialBusVvV2(0x5a, ,100000,,"_SB.I12C",,,,,RawDataBuffer(){1,6}))
AccessAs(BufferAcc, AttribProcessCall) // Use the GenericSerialBus Process
Call protocol
FLDO, 8, // Virtual register at command value O.
FLD1, 8, // Virtual register at command value 1.
FLD2, 8 // Virtual register at command value 2.
3

// Create the GenericSerialBus data buffer

Name(BUFF, Buffer(6){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)

CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

// Process Call with input value “0x5416”° to the device using command value 1

Store(0x5416, DATA) // Save 0x5416 into the data buffer
Store(Store(BUFF, FLD1), BUFF) // Invoke a Process Call transaction
If(LEqual (STAT, 0x00)) // Successful?

// DATA = Word returned from FLD1..
}

In this example, three field elements (FLDO, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause a GenericSerialBus
transaction to occur to the device. Reading or writing FLD1 results in a Process Call with a command value
of 1. Notice that unlike other protocols, Process Call involves both a write and read operation in a single
atomic transaction. This means that the Data element of the GenericSerialBus data buffer is set with an
input value before the transaction is invoked, and holds the output value following the successful
completion of the transaction.

5.5.2.4.6.3.7 Block Process Call (AttribBlockProcessCall)

The GenericSerialBus Block Write-Read Block Process Call protocol (AttribBlockProcessCall) transfers a
block of data bi-directionally (performs a Write Block followed by a Read Block as an atomic transaction).
This protocol uses a command value to reference up to 256 block-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at
// slave address 0x42
Field(TOP1, BufferAcc, NoLock, Preserve)

UEFI Forum, Inc. January 2019 Page 293

ACPI Specification, Version 6.3 ACPI Software Programming Model

{
Connection(l12CSerialBusv2(0x5a, ,100000, ,"_SB.12C",,,, ,RawDataBuffer(){1,6}))

AccessAs(BufferAcc, AttribBlockProcessCall) // Use the Block Process Call
// protocol

FLDO, 8, // Virtual register representing
// a command value of 0O
FLD1, 8 // Virtual register representing
// a command value of 1
}
// Create the GenericSerialBus data buffer as BUFF
Name (BUFF, Buffer(35)()) // Create GenericSerialBus data buffer as
BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateField(BUFF, 0x10, 256, DATA) // Data (Block)

// Process Call with input value "ACPI" to the device using command value 1

Store("ACPI™, DATA) // Fill in outgoing data
Store(8, LEN) // Length of the valid data
Store(Store(BUFF, FLD1), BUFF) // Execute the PC

if (LEqual (STAT, 0x00)) // Test the status

{

// BUFF now contains information returned from PC
// LEN now equals size of data returned

}
5.5.2.4.6.3.8 Read/Write N Bytes (AttribBytes)

The GenericSerialBus Read/Write N Bytes protocol (AttribBytes) transfers variable-sized data. The actual
number of bytes to read or write is specified as part of the AccessAs attribute.

The following ASL code illustrates how a device supporting the Read/Write N Bytes protocol should be
accessed:

OperationRegion(TOP1l, GenericSerialBus, 0x00, 0x100)
Field(TOP1, BufferAcc, NoLock, Preserve)

{
Connection(l12CSerialBusv2(0x5a, ,100000, ,"_SB.12C",,,, ,RawDataBuffer(){1,6}))
Offset(0x0),
AccessAs(BufferAcc, AttribBytes (4)),
TFK1, 8, //TFK1 at command value O
TFK2, 8, //TFK2 at command value 1

Connection(l12CSerialBus(0x5b, ,100000, ,"_SB.12C",,, ,RawDataBuffer(){2,9}))
// same connection attribute, but different vendor data passed to driver
AccessAs(BufferAcc, AttribByte)
™1, 8 //TVM1 at command value 2

}

// Create the GenericSerialBus data buffer

UEFI Forum, Inc. January 2019 Page 294

ACPI Specification, Version 6.3 ACPI Software Programming Model

Name(BUFF, Buffer(34){}) // Create SerialBus buf as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)

CreateBytefield(BUFF, 0x01, LEN) // LEN = Length (Byte)

CreateWordField(BUFF, 0x02, DATW) // DATW = Data (Word - Bytes 2 & 3, or 16 bits)
CreateField(BUFF, 16, 256, DBUF) // DBUF = Data (Bytes 2-34)

CreateField(BUFF, 16, 32, DATD) // DATD = Data (DWord)

// Read block of data from the device using command value 0O
Store(TFK1, BUFF)
IF(LNotEqual (STAT, 0x00)) {

Return(0)

}

// Write block of data to the device using command value 1
Store(Store(BUFF,TFK2), BUFF)
IFf(LNotEqual (STAT, 0x00)) {

Return(0)

}

In this example, two field elements (TFK1, and TFK2) are defined to represent the virtual registers for
command values 0 and 1. Access to any of the field elements will cause a GenericSerialBus transaction to
occur to the device of the length specified in the AccessAttributes.

5.5.2.4.6.3.9 Raw Read/Write N Bytes (AttribRawBytes)

The GenericSerialBus Raw Read/Write N Bytes protocol (AttribRawBytes) transfers variable-sized data.
The actual number of bytes to read or write is specified as part of the AccessAs attribute. The initial
command value specified in the operation region definition is ignored by Raw accesses.

The following ASL code illustrates how a device supporting the Read/Write N Bytes protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100)
Field(TOP1, BufferAcc, NoLock, Preserve)
{
Connection(I12CSerialBusVv2(0x5a, ,100000,,"\ SB.I12C",,,,,RawDataBuffer(){1,6}))
AccessAs(BufferAcc, AttribRawBytes (4))

TFK1, 8
}
// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(34){}) // Create SerialBus buf as BUFF

CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)

CreateByteField(BUFF, 0x01, LEN) // LEN = Length (Byte)

CreateWordField(BUFF, 0x02, DATW) // DATW = Data (Word - Bytes 2 & 3, or 16 bits)
CreateField(BUFF, 16, 256, DBUF) // DBUF = Data (Bytes 2-34)

CreateField(BUFF, 16, 32, DATD) // DATD = Data (DWord)

Store(0x0B,DATW) //Store appropriate reference data for driver to
interpret

//Read from TFK1

UEFI Forum, Inc. January 2019 Page 295

ACPI Specification, Version 6.3 ACPI Software Programming Model

Store(TFK1, BUFF)
IF(LNotEqual (STAT, 0x00)) {
Return(0)

}

//\irite to TFK1

Store(Store(BUFF,TFK1), BUFF)

IFf(LNotEqual (STAT, 0x00)) {
Return(0)

}

Access to any field elements will cause a GenericSerialBus transaction to occur to the device of the length
specified in the AccessAttributes.

Raw accesses assume that the writer has knowledge of the bus that the access is made over and the
device that is being accessed. The protocol may only ensure that the buffer is transmitted to the
appropriate driver, but the driver must be able to interpret the buffer to communicate to a register.

5.5.2.4.6.3.10 Raw Block Process Call (AttribRawProcessBytes)

The GenericSerialBus Raw Write-Read Block Process Call protocol (AttribRawProcessBytes) transfers a
block of data bi-directionally (performs a Write Block followed by a Read Block as an atomic transaction).
The initial command value specified in the operation region definition is ignored by Raw accesses.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at
slave address 0x42
Field(TOP1, BufferAcc, NoLock, Preserve)
{
Connection(I12CSerialBusV2(0x5a, ,100000,,"_SB.12C",,,,,RawDataBuffer(){1,6}))
AccessAs(BufferAcc, AttribRawProcessBytes) // Use the Raw Bytes Process Call
protocol
FLDO, 8
}

// Create the GenericSerialBus data buffer as BUFF

Name(BUFF, Buffer(34)()) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)

CreateByteField(BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateWordField(BUFF,0x02, DATW) // Data (Bytes 2 and 3)

CreateField(BUFF, 0x10, 256, DATA) // Data (Block)

Store(0x0B,DATW) //Store appropriate reference data for driver to
interpret

// Process Call with input value "ACPI" to the device

Store("ACPI™, DATA) // Fill in outgoing data
Store(8, LEN) // Length of the valid data
Store(Store(BUFF, FLDO), BUFF) // Execute the PC

if (LEqual (STAT, 0x00)) // Test the status

UEFI Forum, Inc. January 2019 Page 296

ACPI Specification, Version 6.3 ACPI Software Programming Model

// BUFF now contains information returned from PC
// LEN now equals size of data returned

}

Raw accesses assume that the writer has knowledge of the bus that the access is made over and the
device that is being accessed. The protocol may only ensure that the buffer is transmitted to the
appropriate driver, but the driver must be able to interpret the buffer to communicate to a register.

5.5.2.4.7 Declaring PCC Operation Regions

The Platform Communication Channel (PCC) is described in Chapter 14. The PCC table, described in
Section 14.1, contains information about PCC subspaces implemented in a given platform, where each
subspace is a unique channel.

5.5.2.4.7.1 Overview

The PCC Operation Region works in conjunction with the PCC Table (Section 14.1). The PCC Operation
Region is associated with the region of the shared memory that follows the PCC signature. PCC Operation
Region must not be used for extended subspaces of Type 4 (Slave subspaces). PCC subspaces that are
earmarked for use as PCC Operation Regions must not be used as PCC subspaces for standard ACPI
features such as CPPC, RASF, PDTT and MPST. These standard features must always use the PCC Table
instead.

5.5.2.4.7.2 Declaring a PCC OperationRegion

The syntax for the OperationRegion term (Section 19.6.98) is described below:

OperationRegion (

RegionName, // NameString
RegionSpace, // RegionSpaceKeyword
Offset, // TermArg=>Integer
Length // TermArg=>Integer

)
The PCC Operation Region term in ACPI namespace will be defined thus:
OperationRegion ([subspace-name], PCC, [subspace-id], Length)
Where:

* RegionName is set to [subspace-name], which is a unique name for this PCC subspace.

* RegionSpace must be set to PCC, operation region type 0x0A

e Offset must be set to [subspace-id], the subspace ID of this channel, as defined in the PCC
table (PCCT).

e Length is the total size of the operation region, and is equal to the total size of the fields that
succeed the PCC signature in the shared memory.

5.5.2.4.7.3 Declaring message fields within a PCC OperationRegion

For all PCC subspace types, the PCC Operation Region pertains to the region of PCC subspace that
succeeds the PCC signature. The layout of the Shared Memory Regions is specific to the PCC subspace.

UEFI Forum, Inc. January 2019 Page 297

ACPI Specification, Version 6.3 ACPI Software Programming Model

The Operation Region handler must therefore obtain the subspace type first before it can comprehend
and access individual fields within the subspace.

Fields within an Operation region are accessed using the Field keyword, and correspond to the fields
that succeed the PCC signature in the subspace shared memory. The syntax for the Field term (from
Section 19.6.46) is as follows:

Field (
RegionName,
AccessType,
LockRule,
UpdateRule

) {FieldUnitList}

For PCC Operation Regions:

* RegionName specifies the name of the operation region, declared above the field term.

e AccessType must be set to ByteAcc.

e LockRule indicates if access to this operation region requires acquisition of the Global lock for
synchronization. This field must be set to NoLock.

e UpdateRule is not applicable to PCC operation regions, since each command region is accessed
in its entirety.

The FieldUnitList specifies individual fields within the Shared Memory Region of the subspace, which
depends on the type of subspace. The declaration of the fields must match the layout of the subspace.
Accordingly, for the Generic Communications subspaces (Types 0-2), the FieldUnitList may be
declared as follows:

Field(NAME, ByteAcc, NolLock, Preserve)

{
CvmD, 16, // Command field
STAT, 16, // Status field, to be read on completion of the command
DATA, [Size] // Communication space of size [Size] bits

}

Likewise, for the Extended Communication subspaces (Type 3), the FieldUnitList may be declared as
follows:

Field(NAME, ByteAcc, NoLock, Preserve)

{

FLGS, 32, // Command Flags field

LEN, 32, // Length field

CvmD, 32, // Command field

DATA, [Size] // Communication space of size [Size] bits
}

5.5.2.4.7.4 An Example of PCC Operation Region Declaration

As an example, if a platform feature uses PCC subspace with subspace ID of 0x02 of subspace Type 3
(Extended PCC communication channel), then the caller may declare the operation region as follows:

UEFI Forum, Inc. January 2019 Page 298

ACPI Specification, Version 6.3 ACPI Software Programming Model

OperationRegion(PFRM, PCC, 0x02, 0x10C)
Field(PFRM, ByteAcc, NoLock, Preserve)

{
Offset (4), // Flags start at offset 4 from beginning of shared memory
FLGS, 32, // Command Flags field
LGTH, 32, // Length field
ComD, 32, // Command field
COSP, 0x800 // Communication space of size 256 bytes
}

In this example, PFRM is the name of the subspace dedicated to the platform feature, and the size of the
shared memory region is 0x10C bytes (256 bytes of communication space and 16 bytes of fields excluding
the PCC Signature).

5.5.2.4.7.5 Using a PCC OperationRegion

The PCC Operation Region handler begins transmission of the message on the channel when it detects a
write to the CMD field. The caller must therefore update all other fields relevant to the operation region
first, and then in the final step, write the command itself. As explained in Section 5.5.2.4.7.3, the fields to
be updated are specific to the subspace type.

For the Generic Communication subspace type (Types 0, 1 and 2), the order of Operation Region writes
would be as follows:

1. Write the command payload into the DATA field.

2. Write the command into the CMD field.

For the Extended Communication subspace type (Type 3), the order of Operation Region writes would be
as follows:

1. Write the command payload, length and flags into the CMD, LEN and FLGS fields, respectively,
in any order of preference.

2. Write the command into the CMD field.

In the above steps, the fields are as described inSection 5.5.2.4.7.4. When the platform completes
processing the command, it uses the same subspace Shared Memory Region to return the response data.
The caller can thus read the Operation Region to retrieve the response data.

If channel errors are encountered during transmission of the command or its response, the channel
reports an error status in the Channel Status register. The caller must therefore first check the Channel
Status register before processing the return data. For the Generic PCC Communication Subspaces, the
Channel Status register is located in the Shared Memory Region itself, as described in Section 14.2.2. The
caller must thus check the STAT field in the Operation Region for the purpose. For the Extended PCC
Communication Subspaces, the Channel Status register is located anywhere in system memory or 10, and
pointed to by the Error Status register field within the Type 3 PCC Subspace structure, as described in
Section 14.1.6.

5.5.2.4.7.6 Using the _REG Method for PCC Operation Regions

It is possible for the OS to include PCC operation region handlers that only comprehend and support a
subset of the possible subspaces defined in this specification. The OS can provide supplementary
information in the REG method in order to indicate which exact subspaces(s) are supported. To

UEFI Forum, Inc. January 2019 Page 299

ACPI Specification, Version 6.3 ACPI Software Programming Model

accomplish this, the Arg0 parameter passed to the _REG method must include both the Address Space ID
(PCC) and a qualifying Address Space sub-type in Byte 1, as follows:

Arg0, Byte 0 = PCC = OxO0A
Arg0, Byte 1 = subspace type as defined in Section 14.1.2.

The OS may now indicate support for handling PCC operation region subspace Type 3 by invoking the
_REG method with Arg0=0x030A and Argl = Ox01.

5.5.2.4.7.7 Example Use of a PCC OperationRegion

The following sample ACPI Power Meter (Section 10.4) implementation describes how a PCC Operation
Region can be used to read a platform power sensor that is exposed through a platform services channel.
In this sample system, the platform services channel is implemented as an Extended PCC Communication
Channel (Type 3), and assigned a PCC subspace ID of 0x07 in the PCCT. The sample platform implements
three sensors — two power sensors, associated with CPU cluster 0 and cluster 1 respectively, and a SoC-
level thermal sensor. The power sensors are read using command 0x15 (READ_POWER_SENSOR), while
the thermal sensor is read using command 0x16 (READ_THERMAL_SENSOR), both on the platform
services channel. The READ_POWER_SENSOR command take two input parameters called
SensorInstance and MeasurementFormat, which are appended together to the command as the
payload. SensorInstance specifies which power sensor is being referenced. MeasurementFormat
specifies the measurement unit (watts or milliwatts) in which the power consumption is expressed. The
command payload is thus formatted as follows:

typedef struct
{

BYTE Sensorlnstance; // Which instance of the sensor is being read
BYTE MeasurementFormat; // 0 = mW, 1 =W
} COMMAND_PAYLOAD;

The power sensor for CPU cluster 0 is read by setting Sensorinstance to 0x01, while the power sensor for
CPU cluster 1 is read by setting SensorInstance to 0x02.

The response to the command from the platform is of the form:

typedef struct

{

DWORD Reading; // The sensor value read

DWORD Status; // Status of the operation — 0: success, hon-zero:
error

} SENSOR_RESPONSE;

Here, the field Status pertains to the success or failure of the requested service. Channel errors can
occur independent of the service, during transmission of the request. A generic placeholder register,
CHANNEL_STATUS_REG, and an associated error status field, ERROR_STATUS BIT, is used as an illustration
of how the channel status register may be read to detect channel errors during transit.

UEFI Forum, Inc. January 2019 Page 300

ACPI Specification, Version 6.3 ACPI Software Programming Model

The ACPI Power Meter object may now be implemented for this example platform as follows:

Device (PMTO) // ACPI Power Meter object for CPU Cluster O Power

{

Sensor

Name (_HID, "ACPIOOOD™) // ACPl Power Meter device

// The Operation Region declaration based on section 5.5.2.4.7.4
OperationRegion (PFRM, PCC, 0x07, 0x8C)
Field(PFRM, ByteAcc, NoLock, Preserve)

{
FLGS, 32, // Command Flags field
LEN, 32, // Length field
CMD, 32, // Command field
DATA, 0x400 // Communication space of size 128 bytes
}
Method (_REG, 2) // Check if OS Op region handler is available
{
// Check if Arg0.ByteO = OxA, PCC Operation Region Supported?
// Check if Arg0.Bytel = 0x3, subchannel type 3 as defined in Table 14-357
// Disallow further processing until support for Type 3 becomes available
}

Method (_PMM, 0, Serialized)

{

// Read a Power sensor

// Create the command buffer
Name(BUFF, Buffer(0x80){}) // Create PCC data buffer as BUFF
Name(PAYL, Buffer(2) {Ox02, 0x01}) // Instance = CPU cluster 1

// Read power in units of Watts

Store (PAYL, DATA) // Only first two bytes written
// the rest default to O

// Update the length and status fields
Store (0x06, LEN) // 4B (command) + 2B (payload)
Store (0x01, FLGS) // Set Notify on Completion

// All done. Now write to the command field to begin transmission of
// the message over the PCC subspace. On receipt, the platform will

// read power sensor of CPU cluster 0 and return the power consumption
// reading in the Operation Region itself

//

Store (0x15, CMD) // READ_POWER_SENSOR command = 0x15

IT(LEqual (LAnd (CHANNEL_STATUS_REG, ERROR_STATUS_BIT), 0x01)
{

Return (Ones). // Return invalid, so that the caller

UEFI Forum, Inc. January 2019 Page 301

ACPI Specification, Version 6.3 ACPI Software Programming Model

can take remedial steps

}

Store (DATA, BUFF)
CreateDWordField(BUFF, 0x00, PCL1) // Power consumed by CPU cluster 1
CreateDWordField(BUFF, 0x01, STAT) // Return status

ITf(LEqual (STAT, 0x0)) // Successful?
{
Return(PCL1) // Return the power measurement for CPU
cluster 1
}
Else
{
Return(Ones) // Return invalid
}

}
}

5.6 ACPI Event Programming Model

The ACPI event programming model is based on the SCl interrupt and General-Purpose Event (GPE)
register. ACPI provides an extensible method to raise and handle the SCI interrupt, as described in this
section.

Hardware-reduced ACPI platforms (Section 4.1) use GPIO Interrupt Connections to signal ACPI Events,
described in Section 5.6.5, or Interrupt-signaled ACPI Events, described in Section 5.6.9. Note that any
ACPI platform may utilize GP10O-signaled and/or Interrupts-signaled ACPI events (i.e. they are not limited
to Hardware-reduced ACPI platforms).

5.6.1 ACPI Event Programming Model Components
The components of the ACPI event programming model are the following:

e OSPM

e FADT

e PM1la_STS, PM1b_STS and PM1a_EN, PM1b_EN fixed register blocks
e GPEO_BLK and GPE1_BLK register blocks

e GPE register blocks defined in GPE block devices

e SClinterrupt

e ACPI AML code general-purpose event model

e ACPI device-specific model events

e ACPI Embedded Controller event model

The role of each component in the ACPI event programming model is described in the following table.

UEFI Forum, Inc. January 2019 Page 302

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-163 ACPI Event Programming Model Components

Component Description

OSPM Receives all SCl interrupts raised (receives all SCl events). Either handles the
event or masks the event off and later invokes an OEM-provided control method
to handle the event. Events handled directly by OSPM are fixed ACPI events;
interrupts handled by control methods are general-purpose events.

FADT Specifies the base address for the following fixed register blocks on an ACPI-
compatible platform: PM1x_STS and PM1x_EN fixed registers and the GPEx_STS
and GPEx_EN fixed registers.

PM1x_STS and PM1x_STS bits raise fixed ACPI events. While a PM1x_STS bit is set, if the
PM1x_EN fixed matching PM1x_EN bit is set, the ACPI SCI event is raised.
registers

GPEx_STSand GPEx_EN | GPEx_STS bits that raise general-purpose events. For every event bit

fixed registers implemented in GPEx_STS, there must be a comparable bit in GPEx_EN. Up to
256 GPEx_STS bits and matching GPEx_EN bits can be implemented. While a
GPEx_STS bit is set, if the matching GPEx_EN bit is set, then the general-purpose
SCl event is raised.

SCl interrupt A level-sensitive, shareable interrupt mapped to a declared interrupt vector. The
SCl interrupt vector can be shared with other low-priority interrupts that have a
low frequency of occurrence.

ACPI AML code A model that allows OEM AML code to use GPEx_STS events. This includes using
general-purpose event | GPEx_STS events as “wake” sources as well as other general service events
model defined by the OEM (“button pressed,” “thermal event,” “device present/not

present changed,” and so on).

ACPI device-specific Devices in the ACPl namespace that have ACPI-specific device IDs can provide
model events additional event model functionality. In particular, the ACPI embedded controller
device provides a generic event model.

ACPI Embedded A model that allows OEM AML code to use the response from the Embedded
Controller event model | Controller Query command to provide general-service event defined by the OEM.

5.6.2 Types of ACPI Events

At the ACPI hardware level, two types of events can be signaled by an SCl interrupt:

e Fixed ACPI events
e General-purpose events

In turn, the general-purpose events can be used to provide further levels of events to the system. And, as
in the case of the embedded controller, a well-defined second-level event dispatching is defined to make
a third type of typical ACPI event. For the flexibility common in today’s designs, two first-level general-
purpose event blocks are defined, and the embedded controller construct allows a large number of
embedded controller second-level event-dispatching tables to be supported. Then if needed, the OEM
can also build additional levels of event dispatching by using AML code on a general-purpose event to
sub-dispatch in an OEM defined manner.

UEFI Forum, Inc. January 2019 Page 303

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.6.3 Fixed Event Handling

When OSPM receives a fixed ACPI event, it directly reads and handles the event registers itself. The
following table lists the fixed ACPI events. For a detailed specification of each event, see Section 4, “ACPI
Hardware Specification.”

Table 5-164 Fixed ACPI Events

timer carry bit
set.

Event Comment
Power For more information, see the description of the TMR_STS and TMR_EN bits of the
management PM1x fixed register block in Section 4.8.3.1, “PM1 Event Grouping,” as well as the

TMR_VAL register in the PM_TMR_BLK in Section 4.8.3.3, “Power Management Timer.”

Power button
signal

A power button can be supplied in two ways. One way is to simply use the fixed status
bit, and the other uses the declaration of an ACPI power device and AML code to
determine the event. For more information about the alternate-device based power
button, see Section 4.8.2.2.1.2, Control Method Power Button.”

Notice that during the SO state, both the power and sleep buttons merely notify OSPM
that they were pressed.

If the system does not have a sleep button, it is recommended that OSPM use the
power button to initiate sleep operations as requested by the user.

Sleep button
signal

A sleep button can be supplied in one of two ways. One way is to simply use the fixed
status button. The other way requires the declaration of an ACPI sleep button device
and AML code to determine the event.

RTC alarm

ACPI-defines an RTC wake alarm function with a minimum of one-month granularity.
The ACPI status bit for the device is optional. If the ACPI status bit is not present, the
RTC status can be used to determine when an alarm has occurred. For more
information, see the description of the RTC_STS and RTC_EN bits of the PM1x fixed
register block in Section 4.8.3.1, “PM1 Event Grouping.”

Wake status

The wake status bit is used to determine when the sleeping state has been completed.
For more information, see the description of the WAK_STS and WAK_EN bits of the
PM1x fixed register block in Section 4.8.3.1, “PM1 Event Grouping.”

System bus
master request

The bus-master status bit provides feedback from the hardware as to when a bus
master cycle has occurred. This is necessary for supporting the processor C3 power
savings state. For more information, see the description of the BM_STS bit of the PM1x
fixed register block in Section 4.8.3.1, “PM1 Event Grouping.”

Global release
status

This status is raised as a result of the Global Lock protocol, and is handled by OSPM as
part of Global Lock synchronization. For more information, see the description of the
GBL_STS bit of the PM1x fixed register block in Section 4.8.3.1, “PM1 Event Grouping.”
For more information on Global Lock, see Section 5.2.10.1, “Global Lock.”

5.6.4 General-Purpose Event Handling

When OSPM receives a general-purpose event, it either passes control to an ACPl-aware driver, or uses
an OEM-supplied control method to handle the event. An OEM can implement up to 128 general-
purpose event inputs in hardware per GPE block, each as either a level or edge event. It is also possible to
implement a single 256-pin block as long as it’s the only block defined in the system.

UEFI Forum, Inc. January 2019 Page 304

ACPI Specification, Version 6.3 ACPI Software Programming Model

An example of a general-purpose event is specified in Section 4, “ACPI Hardware Specification,” where
EC_STS and EC_EN bits are defined to enable OSPM to communicate with an ACPl-aware embedded
controller device driver. The EC_STS bit is set when either an interface in the embedded controller space
has generated an interrupt or the embedded controller interface needs servicing. Notice that if a
platform uses an embedded controller in the ACPI environment, then the embedded controller’s SCI
output must be directly and exclusively tied to a single GPE input bit.

Hardware can cascade other general-purpose events from a bit in the GPEx_BLK through status and
enable bits in Operational Regions (I/O space, memory space, PCl configuration space, or embedded
controller space). For more information, see the specification of the General-Purpose Event Blocks
(GPEx_BLK) in Section 4.8.4.1, “General-Purpose Event Register Blocks.”

OSPM manages the bits in the GPEx blocks directly, although the source to those events is not directly
known and is connected into the system by control methods. When OSPM receives a general-purpose
event (the event is from either a GPEx_BLK STS bit, a GPIO pin, or an Interrupt), OSPM does the following:
1. Disables the interrupt source
e (GPEx_BLK EN bit).
e GPIO interrupt for GPIO-signaled events
e Interrupt for Interrupt-signaled events
If an edge event, clears the status bit.
Performs one of the following:
¢ Dispatches to an ACPl-aware device driver.
¢ Queues the matching control method for execution.
¢ Manages a wake event using device PRW objects.
4. If alevel event, waits for the control method handler to complete and clears the status bit.
5. Enables the interrupt source.

For OSPM to manage the bits in the GPEx_BLK blocks directly:

e Enable bits must be read/write.
e Status bits must be latching.
e Status bits must be read/clear, and cleared by writing a “1” to the status bit.

5.6.4.1 _Exx, _Lxx, and _Qxx Methods for GPE Processing

The OEM AML code can perform OEM-specific functions custom to each event the particular platform
might generate by executing a control method that matches the event. For GPE events, OSPM will
execute the control method of the name _GPE._TXX where XX is the hex value format of the event that
needs to be handled and T indicates the event handling type (T must be either ‘E’ for an edge event or ‘L’
for a level event). The event values for status bits in GPEO_BLK start at zero (_7T00) and end at the
(GPEO_BLK_LEN / 2) - 1. The event values for status bits in GPE1_BLK start at GPE1_BASE and end at
GPE1_BASE + (GPE1_BLK_LEN /2)- 1. GPEO_BLK_LEN, GPE1_BASE, and GPE1_BLK_LEN are all defined in
the FADT.

The _Qxx methods are used for the Embedded Controller and SMBus (below.)

UEFI Forum, Inc. January 2019 Page 305

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.6.4.1.1 Queuing the Matching Control Method for Execution

When a general-purpose event is raised, OSPM uses a naming convention to determine which control
method to queue for execution and how the GPE EOI is to be handled. The GPEx_STS bits in the GPEx_BLK
are indexed with a number from 0 through FF. The name of the control method to queue for an event
raised from an enable status bit is always of the form _GPE._Txx where xx is the event value and T
indicates the event EOI protocol to use (either ‘E’ for edge triggered, or ‘L’ for level triggered). The event
values for status bits in GPEO_BLK start at zero (_T700), end at the (GPEO_BLK_LEN / 2) - 1, and correspond
to each status bit index within GPEO_BLK. The event values for status bits in GPE1_BLK are offset by
GPE_BASE and therefore start at GPE1_BASE and end at GPE1_BASE + (GPE1_BLK_LEN /2)- 1.

For example, suppose an OEM supplies a wake event for a communications port and uses bit 4 of the
GPEO_STS bits to raise the wake event status. In an OEM-provided Definition Block, there must be a
Method declaration that uses the name _GPE._L04 or \GPE._E04 to handle the event. An example of a
control method declaration using such a name is the following:

Method (_GPE. LO04) { // GPE 4 level wake handler
Notify (_SB.PCI0.COMO, 2)

}

The control method performs whatever action is appropriate for the event it handles. For example, if the
event means that a device has appeared in a slot, the control method might acknowledge the event to
some other hardware register and signal a change notify request of the appropriate device object. Or, the
cause of the general-purpose event can result from more then one source, in which case the control
method for that event determines the source and takes the appropriate action.

When a general-purpose event is raised from the GPE bit tied to an embedded controller, the embedded
controller driver uses another naming convention defined by ACPI for the embedded controller driver to
determine which control method to queue for execution. The queries that the embedded controller
driver exchanges with the embedded controller are numbered from 0 through FF, yielding event codes 01
through FF. (A query response of 0 from the embedded controller is reserved for “no outstanding
events.”) The name of the control method to queue is always of the form _Qxx where xx is the number of
the query acknowledged by the embedded controller. An example declaration for a control method that
handles an embedded controller query is the following:

Method(Q34) { // embedded controller event for thermal
Notify (_SB.TZO.THM1, 0x80)

}

When an SMBus alarm is handled by the SMBus driver, the SMBus driver uses a similar naming
convention defined by ACPI for the driver to determine the control method to queue for execution.
When an alarm is received by the SMBus host controller, it generally receives the SMBus address of the
device issuing the alarm and one word of data. On implementations that use SMBALERT# for
notifications, only the device address will be received. The name of the control method to queue is
always of the form _Qxx where xx is the SMBus address of the device that issued the alarm. The SMBus
address is 7 bits long corresponding to hex values 0 through 7F, although some addresses are reserved
and will not be used. The control method will always be queued with one argument that contains the
word of data received with the alarm. An exception is the case of an SMBus using SMBALERT# for

UEFI Forum, Inc. January 2019 Page 306

ACPI Specification, Version 6.3 ACPI Software Programming Model

notifications, in this case the argument will be 0. An example declaration for a control method that
handles a SMBus alarm follows:

Method(Q18, 1) { // Thermal sensor device at address 001 1000

// Arg0 contains notification value (if any)
// Arg0 = 0 if device supports only SMBALERT#

Notify (_SB.TZO.THM1, 0x80)
}

5.6.4.1.2 Dispatching to an ACPI-Aware Device Driver

Certain device support, such as an embedded controller, requires a dedicated GPE to service the device.
Such GPEs are dispatched to native OS code to be handled and not to the corresponding GPE-specific
control method.

In the case of the embedded controller, an OS-native, ACPl-aware driver is given the GPE event for its
device. This driver services the embedded controller device and determines when events are to be
reported by the embedded controller by using the Query command. When an embedded controller
event occurs, the ACPl-aware driver dispatches the requests to other ACPI-aware drivers that have
registered to handle the embedded controller queries or queues control methods to handle each event.
If there is no device driver to handle specific queries, OEM AML code can perform OEM-specific functions
that are customized to each event on the particular platform by including specific control methods in the
namespace to handle these events. For an embedded controller event, OSPM will queue the control
method of the name _QXX, where XX is the hex format of the query code. Notice that each embedded
controller device can have query event control methods.

Similarly, for an SMBus driver, if no driver registers for SMBus alarms, the SMBus driver will queue
control methods to handle these. Methods must be placed under the SMBus device with the name _QXX
where XX is the hex format of the SMBus address of the device sending the alarm.

5.6.4.2 GPE Wake Events

An important use of the general-purpose events is to implement device wake events. The components of
the ACPI event programming model interact in the following way:

e When a device asserts its wake signal, the general-purpose status event bit used to track that
device is set.

e While the corresponding general-purpose enable bit is enabled, the SCl interrupt is asserted.

e If the system is sleeping, this will cause the hardware, if possible, to transition the system into
the SO state.

e Once the system is running, OSPM will dispatch the corresponding GPE handler.

¢ The handler needs to determine which device object has signaled wake and performs a wake
Notify

e command on the corresponding device object(s) that have asserted wake.

¢ In turn OSPM will notify OSPM native driver(s) for each device that will wake its device to
service it.

UEFI Forum, Inc. January 2019 Page 307

ACPI Specification, Version 6.3 ACPI Software Programming Model

Events that wake may not be intermixed with non-wake (runtime) events on the same GPE input. The
only exception to this rule is made for the special devices below. Only the following devices are allowed
to utilize a single GPE for both wake and runtime events:

1. Button Devices
e PNPOCOC — Power Button Device
e PNPOCOD — Lid Device
e PNPOCOE — Sleep Button Device
2. PCI Bus Wakeup Event Reporting (PME)
e PNPOAO3 — PCl Host Bridge

All wake events that are not exclusively tied to a GPE input (for example, one input is shared for multiple
wake events) must have individual enable and status bits in order to properly handle the semantics used
by the system.

5.6.4.2.1 Managing a Wake Event Using Device _PRW Objects

A device’s _PRW object provides the zero-based bit index into the general-purpose status register block
to indicate which general-purpose status bit from either GPEO_BLK or GPE1_BLK is used as the specific
device’s wake mask. Although the hardware must maintain individual device wake enable bits, the
system can have multiple devices using the same general-purpose event bit by using OEM-specific
hardware to provide second-level status and enable bits. In this case, the OEM AML code is responsible
for the second-level enable and status bits.

OSPM enables or disables the device wake function by enabling or disabling its corresponding GPE and by
executing its _PSW control method (which is used to take care of the second-level enables). When the
GPE is asserted, OSPM still executes the corresponding GPE control method that determines which
device wakes are asserted and notifies the corresponding device objects. The native OS driver is then
notified that its device has asserted wake, for which the driver powers on its device to service it.

If the system is in a sleeping state when the enabled GPE bit is asserted the hardware will transition the
system into the SO state, if possible.

5.6.4.2.2 Determining the System Wake Source Using _Wxx Control Methods

After a transition to the SO state, OSPM may evaluate the _SWS object in the _GPE scope to determine
the index of the GPE that was the source of the transition event. When a single GPE is shared among
multiple devices, the platform provides a_ Wxx control method, where xx is GPE index as described in
Section 5.6.4.2.2, that allows the source device of the transition to be determined. If implemented, the
_ Wxx control method must exist in the _GPE scope or in the scope of a GPE block device.

If _Wxx is implemented, either hardware or firmware must detect and save the source device as
described in Section 7.4.3, “_SWS (System Wake Source)”. During invocation, the _Wxx control method
determines the source device and issues a Notify(<device>,0x2) on the device that caused the system to
transition to the SO state. If the device uses a bus-specific method of arming for wakeup, then the Notify
must be issued on the parent of the device that has a _PRW method. The _Wxx method must issue a
Notify(<device>,0x2) only to devices that contain a _PRW method within their device scope. OSPM’s
evaluation of the _SWS and _Wxx objects is indeterminate. As such, the platform must not rely on _SWS
or _Waxx evaluation to clear any hardware state, including GPEx_STS bits, or to perform any wakeup-
related actions.

UEFI Forum, Inc. January 2019 Page 308

ACPI Specification, Version 6.3 ACPI Software Programming Model

If the GPE index returned by the _SWS object is only referenced by a single _PRW object in the system, it
is implied that the device containing that _PRW is the wake source. In this case, it is not necessary for the
platform to provide a_ Wxx method.

5.6.5 GPIO-signaled ACPI Events

On Hardware-reduced ACPI platforms, ACPI events can be signaled when a GPIO Interrupt is received by
OSPM, and that GPIO Interrupt Connection is listed in a GPIO controller device’s _AEl object. OSPM
claims all such GPIO interrupts, and maps them to the appropriate event method required by the ACPI
event model.

5.6.5.1 Declaring GPIO Controller Devices

A GPIO controller is modeled as a device in the namespace, with _HID or _ADR and _CRS objects, at a
minimum. Optionally, the GPIO controller device scope may include GeneralPurposelO OpRegion
declarations (Section 5.5.2.4.5) and GPIO interrupt-to-ACPl Event mappings (Section 5.6.5.2). Note that
for GPIO-signaled ACPI events, the corresponding event method (e.g. Exx, _Lxx, or EVT) must also
appear in the target GPIO controller’s scope. For GPIO event numbers larger than 255 (OxFF), the EVT
method is used.

Each pin on a GPIO Controller has a configuration (e.g. level-sensitive interrupt, de-bounced input, high-
drive output, etc.), which is described to OSPM in the GPIO Interrupt or GPIO |0 Connection resources
claimed by peripheral devices or used in operation region accesses.

5.6.5.2 _AEI Object for GPIO-signaled Events

The _AEIl object designates those GPIO interrupts that shall be handled by OSPM as ACPI events (See
Section 5.6.5). This object appears within the scope of the GPIO controller device whose pins are to be
used as GPIO-signaled events.

Arguments:

None

Return Value:

A resource template Buffer containing only GPIO Interrupt Connection descriptors.

Example:

Device (_SB.GPI12)
{
Name(_HID, *“XYZ0003)
Name(_UID, 2) //Third instance of this controller on
the platform
Name(_CRS, ResourceTemplate ()

{
//Register Interface
MEMORY32FIXED(ReadWrite, 0x30000000, 0x200,)
//Interrupt line (GSIV 21)
Interrupt(ResourceConsumer, Level, ActiveHigh, Exclusive) {21}
1)

Name(_AEl, ResourceTemplate ()

UEFI Forum, Inc. January 2019 Page 309

ACPI Specification, Version 6.3 ACPI Software Programming Model

{
//Thermal Zone Event
Gpiolnt(Edge, ActiveHigh, Exclusive, PullDown, , ™ _SB.GPI12") {14}
//Power Button
Gpiolnt(Edge, ActiveLow, ExclusiveAndWake, PullUp, , " _SB.GPI2") {36}
b

}
5.6.5.3 The Event (_EVT) Method for Handling GPIO-signaled Events

GPIO Interrupt Connection Descriptors assign GPIO pins a controller-relative, 0-based pin number. GPIO
Pin numbers can be as large as 65, 535. GPIO Interrupt Connections that are assigned by the platform to
signal ACPI events are listed in the _AEl object under the GPIO controller. Since the GPIO interrupt
connection descriptor also provides the mode of the interrupt associated with an event, it gives OSPM all
the information it needs to invoke a handler method for the event. No naming convention is required to
encode the mode and pin number of the event. Instead, a handler for a GPIO-signaled event simply needs
to have a well-known name and take the pin number of the event as a parameter. A single instance of the
method handles all ACPI events for a given GPIO controller device.

For GPIO-signaled events, the Event (_EVT) method is used.
_EVT is defined as follows:

Arguments: (1)

Arg0 - EventNumber. An Integer indicating the event number (Controller-relative zero-based GPIO pin
number) of the current event. Must be in the range 0x0000 - Oxffff.

Return Value:

None

Description

The _EVT method handles a GPIO-signaled event. It must appear within the scope of the GPIO controller
device whose pins are used to signal the event.

OSPM handles GPIO-signaled events as follows:

e The GPIO interrupt is handled by OSPM because it is listed in the _AEIl object under a GPIO
controller.

¢ When the event fires, OSPM handles the interrupt according to its mode and invokes the EVT
method, passing it the pin number of the event.

e From this point on, handling is exactly like that for GPEs. The _EVT method does a Notify() on
the appropriate device, and OS-specific mechanisms are used to notify the driver of the event.

Note: For event numbers less than 255, _Exx and _Lxx methods may be used instead. In this case, they
take precedence and _EVT will not be invoked.

UEFI Forum, Inc. January 2019 Page 310

ACPI Specification, Version 6.3 ACPI Software Programming Model

Example:

Scope (_SB.GPI2)
{

Method (_EVT,1) { // Handle all ACPI Events signaled by GPI10 Controller GPI2

Switch (Arg0)

{
Case (300) {

Notify (_SB.DEVX, 0x80)

}
Case (1801) {

Notify (_SB.DEVY, 0x80)

}
Case (14.) {

Notify (_SB.DEVZ, 0x80)

}
} //End of Method

} //End of Scope

5.6.6 Device Object Notifications

During normal operation, the platform needs to notify OSPM of various device-related events. These
notifications are accomplished using the Notify operator, which indicates a target device, thermal zone,
or processor object and a notification value that signifies the purpose of the notification. Notification
values from 0 through 0x7F are common across all device object types. Notification values of 0xC0O and
above are reserved for definition by hardware vendors for hardware specific notifications. Notification
values from 0x80 to OxBF are device-specific and defined by each such device. For more information on
the Notify operator, see Section 19.6.93, “Notify”.

UEFI Forum, Inc. January 2019 Page 311

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-165 Device Object Notification Values

Value

Description

0

Bus Check. This notification is performed on a device object to indicate to OSPM that it needs to
perform a Plug and Play re-enumeration operation on the device tree starting from the point
where it has been notified. OSPM will typically perform a full enumeration automatically at boot
time, but after system initialization it is the responsibility of the ACPI AML code to notify OSPM
whenever a re-enumeration operation is required. The more accurately and closer to the actual
change in the device tree the notification can be done, the more efficient the operating system’s
response will be; however, it can also be an issue when a device change cannot be confirmed.
For example, if the hardware cannot recognize a device change for a particular location during a
system sleeping state, it issues a Bus Check notification on wake to inform OSPM that it needs to
check the configuration for a device change.

Device Check. Used to notify OSPM that the device either appeared or disappeared. If the device
has appeared, OSPM will re-enumerate from the parent. If the device has disappeared, OSPM
will invalidate the state of the device. OSPM may optimize out re-enumeration. If _DCK is
present, then Notify(object,1) is assumed to indicate an undock request. If the device is a bridge,
OSPM may re-enumerate the bridge and the child bus.

Device Wake. Used to notify OSPM that the device has signaled its wake event, and that OSPM
needs to notify OSPM native device driver for the device. This is only used for devices that
support _PRW.

Eject Request. Used to notify OSPM that the device should be ejected, and that OSPM needs to
perform the Plug and Play ejection operation. OSPM will run the _EJx method.

Device Check Light. Used to notify OSPM that the device either appeared or disappeared. If the
device has appeared, OSPM will re-enumerate from the device itself, not the parent. If the
device has disappeared, OSPM will invalidate the state of the device.

Frequency Mismatch. Used to notify OSPM that a device inserted into a slot cannot be attached
to the bus because the device cannot be operated at the current frequency of the bus. For
example, this would be used if a user tried to hot-plug a 33 MHz PCl device into a slot that was on
a bus running at greater than 33 MHz.

Bus Mode Mismatch. Used to notify OSPM that a device has been inserted into a slot or bay that
cannot support the device in its current mode of operation. For example, this would be used if a
user tried to hot-plug a PCl device into a slot that was on a bus running in PCI-X mode.

Power Fault. Used to notify OSPM that a device cannot be moved out of the D3 state because of
a power fault.

Capabilities Check. This notification is performed on a device object to indicate to OSPM that it
needs to re-evaluate the _OSC control method associated with the device.

Device _PLD Check. Used to notify OSPM to reevaluate the _PLD object, as the Device’s
connection point has changed.

OxA

Reserved.

OxB

System Locality Information Update. Dynamic reconfiguration of the system may cause existing
relative distance information to change. The platform sends the System Locality Information
Update notification to a point on a device tree to indicate to OSPM that it needs to invoke the
_SLI objects associated with the System Localities on the device tree starting from the point
notified.

UEFI Forum, Inc.

January 2019 Page 312

ACPI Specification, Version 6.3 ACPI Software Programming Model

Value

Description

0x0C

Reserved.

0x0D

System Resource Affinity Update. Dynamic migration of devices may cause existing system
resource affinity to change. The platform software issues the System Resource Affinity Update
notification to a point on a device tree to indicate to OSPM that it needs to invoke the _PXM
object of the notified device to update the resource affinity.

OxO0E

Heterogeneous Memory Attributes Update. Dynamic reconfiguration of the system may cause
existing latency, bandwidth or memory side caching attribute to change. The platform software
issues the Heterogeneous Memory Attributes Update notification to a point on a device tree to
indicate to OSPM that it needs to invoke the _HMA objects associated with the Heterogeneous
Memory Attributes on the device tree starting from the point notified.

OxOF

Error Disconnect Recover: Used to notify OSPM of asynchronous removal of devices for error
containment purposes. The notification is issued on a bus device that is still present, but one or
more of its child device have been disconnected from the system due to an error condition.
OSPM should invalidate the software state associated with the disconnected child devices
without attempting to access these child devices. Subsequently, OSPM can optionally attempt to
recover the disconnected child devices and ,if possible, bring them back to functional state via
bus specific methods. OSPM communicates the status of these recovery operations to the
Firmware via the _OST method. Section 6.3.5.2 describes the associated _OST status codes.
OSPM support for Error Disconnect Recover notification for a given type of bus is enumerated via
a bus specific mechanism.

0x10-OxFF

Reserved.

Below are the notification values defined for specific ACPI devices. For more information concerning the
object-specific notification, see the section on the corresponding device/object.

Table 5-166 System Bus Notification Values

Hex Description
value
0x80 Reserved.
0x81 Graceful Shutdown Request. Used to notify OSPM that a graceful shutdown of the operating

system has been requested. Once the operating system has finished its graceful shutdown
procedure it should initiate a transition to the G2 "soft off" state. The Notify operator must
target the System Bus: (_SB). See Section 6.3.5 for a description of shutdown processing.

UEFI Forum, Inc.

January 2019 Page 313

ACPI Specification, Version 6.3

Table 5-167 Control Method Battery Device Notification Values
Hex value Description
0x80 Battery Status Changed. Used to notify OSPM that the Control Method Battery device
status has changed.
0x81 Battery Information Changed. Used to notify OSPM that the Control Method Battery
device information has changed. This only occurs when a battery is replaced.
0x82 Battery Maintenance Data Status Flags Check. Used to notify OSPM that the Control
Method Battery device battery maintenance data status flags should be checked.
0x83-0xBF Reserved.
Table 5-168 Power Source Object Notification Values
Hex value Description
0x80 Power Source Status Changed. Used to notify OSPM that the power source status has
changed.
0x81 Power Source Information Changed. Used to notify OSPM that the power source
information has changed.
0x82-0xBF Reserved.
Table 5-169 Thermal Zone Object Notification Values
Hex value Description
0x80 Thermal Zone Status Changed. Used to notify OSPM that the thermal zone temperature
has changed.
0x81 Thermal Zone Trip points Changed. Used to notify OSPM that the thermal zone trip points
have changed.
0x82 Device Lists Changed. Used to notify OSPM that the thermal zone device lists (_ALx, _PSL,
_TZD) have changed.
0x83 Thermal / Active Cooling Relationship Table Changed. Used to notify OSPM that values in
the either the thermal relationship table or the active cooling relationship table have
changed.
0x84-0xBF Reserved.
Table 5170 Control Method Power Button Notification Values
Hex value Description
0x80 S0 Power Button Pressed. Used to notify OSPM that the power button has been pressed
while the system is in the SO state. Notice that when the button is pressed while the system
is in the S1-54 state, a Device Wake notification must be issued instead.
0x81-0xBF Reserved.

UEFI Forum, Inc.

January 2019

ACPI Software Programming Model

Page 314

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5171 Control Method Sleep Button Notification Values

Hex value Description

0x80 SO Sleep Button Pressed. Used to notify OSPM that the sleep button has been pressed while the
system is in the SO state. Notice that when the button is pressed while the system is in the S1-S4
state, a Device Wake notification must be issued instead.

0x81-0xBF Reserved.

Table 5-172 Control Method Lid Notification Values

Hex value Description

0x80 Lid Status Changed. Used to notify OSPM that the control method lid device status has changed.
0x81-0xBF Reserved.

Table 5-173 NVDIMM Root Device Notification Values

Hex Value Description

0x80 NFIT Update Notification. Used to notify OSPM that it needs to re-evaluate the _FIT
method under the NVDIMM root device (see Section 9.20.2).

0x81 Unconsumed Uncorrectable Memory Error Detected. Used to pro-actively notify OSPM

of uncorrectable memory errors detected (for example a memory scrubbing engine that

continuously scans the NVDIMMs memory). This is an optional notification. Only locations
that were mapped in to SPA by the platform will generate a notification.

0x82 ARS Stopped Notification. This is an optional notification, used to notify OSPM when the
platform completes ARS or when ARS has stopped prematurely for any ARS that was
either started by the platform or by OSPM via Start ARS (see Section 9.20.7.5). The OSPM
can evaluate Query ARS Status on receiving this event notification.

0x83-0xBF Reserved

Table 5-174 NVDIMM Device Notification Values

Hex Value Description
0x80 Reserved
0x81 NFIT Health Event Notification. Used to notify OSPM of health event(s) for the NVDIMM

device (see Section 9.20.3). On receiving the NFIT Health Event Notification, the OSPM is
required to determine new health event by re-enumerating the health of the
corresponding NVDIMM device. This could be accomplished by evaluating _NCH method
(see Section 9.20.8.1) or _DSM method under the NVDIMM device.

This is also used to notify OSPM of a change in “Overall Health Status Attributes” field
reported by _NCH method.

0x82-0xBF Reserved

UEFI Forum, Inc. January 2019 Page 315

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-175 Processor Device Notification Values

Hex value Description

0x80 Performance Present Capabilities Changed. Used to notify OSPM that the number of
supported processor performance states has changed. This notification causes OSPM to re
evaluate the _PPC object. See Section 8 “Processor Configuration and Control,” for more
information.

0x81 C States Changed. Used to notify OSPM that the number or type of supported processor C
States has changed. This notification causes OSPM to re-evaluate the _CST object. See
Section 8, “Processor Configuration and Control,” for more information.

0x82 Throttling Present Capabilities Changed. Used to notify OSPM that the number of
supported processor throttling states has changed. This notification causes OSPM to re-
evaluate the _TPC object. See Section 8, “Processor Configuration and Control,” for more

information.

0x83 Guaranteed Changed. Used to notify OSPM that the value of the CPPC Guaranteed Register
has changed.

0x84 Minimum Excursion. Used to notify OSPM that an excursion to CPPC Minimum has
occurred.

0x85 Highest Performance Changed. Used to notify OSPM that the value of the CPPC Highest

Performance Register has changed.

0x86-0xBF Reserved.

Table 5-176 User Presence Device Notification Values

Hex value Description

0x80 User Presence Changed. Used to notify OSPM that a meaningful change in user presence
has occurred, causing OSPM to re-evaluate the _UPD object.

0x81-0xBF Reserved.

Table 5-177 Ambient Light Sensor Device Notification Values

Hex value Description

0x80 ALS llluminance Changed. Used to notify OSPM that a meaningful change in ambient light
illuminance has occurred, causing OSPM to re-evaluate the _ALl object.

0x81 ALS Color Temperature Changed. Used to notify OSPM that a meaningful change in
ambient light color temperature or chromaticity has occurred, causing OSPM to re-evaluate
the _ALT and/or _ALC objects.

0x82 ALS Response Changed. Used to notify OSPM that the set of points used to convey the
ambient light response has changed, causing OSPM to re-evaluate the _ALR object.

0x83-0xBF Reserved.

UEFI Forum, Inc. January 2019 Page 316

ACPI Specification, Version 6.3

Table 5-178 Power Meter Object Notification Values

Hex value Description
0x80 Power Meter Capabilities Changed. Used to notify OSPM that the power meter
information has changed.
0x81 Power Meter Trip Points Crossed. Used to notify OSPM that one of the power meter trip
points has been crossed.
0x82 Power Meter Hardware Limit Changed. Used to notify OSPM that the hardware limit has
been changed by the platform.
0x83 Power Meter Hardware Limit Enforced. Used to notify OSPM that the hardware limit has
been enforced by the platform.
0x84 Power Meter Averaging Interval Changed. Used to notify OSPM that the power averaging
interval has changed.
0x85-0xBF Reserved.
Table 5-179 Processor Aggregator Device Notification Values
Hex value Description
0x80 Processor Utilisation Request. Used to notify OSPM that OSPM evaluates the _PUR object
which indicates to OSPM the number of logical processors to be idled.
0x81-0xBF Reserved.
Table 5-180 Error Device Notification Values
Hex value Description
0x80 Notification For Generic Error Sources. Used to notify OSPM to respond to this notification
by checking the error status block of all generic error sources to identify the source
reporting the error.
0x81-0xBF Reserved.
Table 5-181 Fan Device Notification Values
Hex value Description
0x80 Low Fan Speed. Used to notify OSPM of a low (errant) fan speed. Causes OSPM to re-
evaluate the _FSL object.
0x81-0xBF Reserved.

UEFI Forum, Inc.

January 2019

ACPI Software Programming Model

Page 317

ACPI Specification, Version 6.3 ACPI Software Programming Model

Table 5-182 Memory Device Notification Values

Hex value Description

0x80 Memory Bandwidth Low Threshold crossed. Used to notify OSPM that bandwidth of
memory described by the memory device has been reduced by the platform to less than
the low memory bandwidth threshold.

0x81 Memory Bandwidth High Threshold crossed. Used to notify OSPM that bandwidth of
memory described by the memory device has been increased by the platform to greater
than or equal to the high memory bandwidth threshold.

0x82-0xBF Reserved.

5.6.7 Device Class-Specific Objects

Most device objects are controlled through generic objects and control methods and they have generic
device IDs. These generic objects, control methods, and device IDs are specified in Section 6, through
Section 11 . Section 5.6.8, “Predefined ACPI Names for Objects, Methods, and Resources,” lists all the
generic objects and control methods defined in this specification.

However, certain integrated devices require support for some device-specific ACPI controls. This section
lists these devices, along with the device-specific ACPI controls that can be provided.

Some of these controls are for ACPl-aware devices and as such have Plug and Play IDs that represent
these devices. The table below lists the Plug and Play IDs defined by the ACPI specification.

Note: Plug and Play IDs that are not defined by the ACPI specification are defined and described in the
“Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Legacy PNP
Guidelines".

Table 5-183 ACPI Device IDs

Plug and Play

D Description

PNPOCO8 ACPI. Not declared in ACPI as a device. This ID is used by OSPM for the hardware resources
consumed by the ACPI fixed register spaces, and the operation regions used by AML code. It
represents the core ACPI hardware itself.

PNPOAO5 Generic Container Device. A device whose settings are totally controlled by its ACPI resource
information, and otherwise needs no device or bus-specific driver support. This was originally
known as Generic ISA Bus Device. This ID should only be used for containers that do not produce
resources for consumption by child devices. Any system resources claimed by a PNPOAO5
device’s _CRS object must be consumed by the container itself.

PNPOAO6 Generic Container Device. This device behaves exactly the same as the PNPOAOQS device. This was
originally known as Extended 1/0O Bus. This ID should only be used for containers that do not
produce resources for consumption by child devices. Any system resources claimed by a
PNPOAO6 device’s _CRS object must be consumed by the container itself.

PNPOCO9 Embedded Controller Device. A host embedded controller controlled through an ACPl-aware
driver.

UEFI Forum, Inc. January 2019 Page 318

ACPI Specification, Version 6.3 ACPI Software Programming Model

Plug and Play Description

ID

PNPOCOA Control Method Battery. A device that solely implements the ACPI Control Method Battery
functions. A device that has some other primary function would use its normal device ID. This ID
is used when the devices primary function is that of a battery.

PNPOCOB Fan. A device that causes cooling when “on” (DO device state).

PNPOCOC Power Button Device. A device controlled through an ACPl-aware driver that provides power
button functionality. This device is only needed if the power button is not supported using the
fixed register space.

PNPOCOD Lid Device. A device controlled through an ACPI-aware driver that provides lid status
functionality. This device is only needed if the lid state is not supported using the fixed register
space.

PNPOCOE Sleep Button Device. A device controlled through an ACPl-aware driver that provides power
button functionality. This device is optional.

PNPOCOF PCl Interrupt Link Device. A device that allocates an interrupt connected to a PCl interrupt pin.
See Section 6., “Device Configuration,” for more details.

PNPOC80 Memory Device. This device is a memory subsystem.

ACPIO001 SMBus 1.0 Host Controller. An SMBus host controller (SMB-HC) compatible with the embedded
controller-based SMB-HC interface (as specified in Section 12.9 “SMBus Host Controller Interface
via Embedded Controller”) and implementing the SMBus 1.0 Specification.

ACPI0002 Smart Battery Subsystem. The Smart battery Subsystem specified in Section 10, “Power Source
Devices.”

ACPI0003 Power Source Device. The Power Source device specified in Section 10, “Power Source Devices.”
This can represent either an AC Adapter (on mobile platforms) or a fixed Power Supply.

ACPI10004 Module Device. This device is a container object that acts as a bus node in a namespace. A
Module Device without any of the _CRS, _PRS and _SRS methods behaves the same way as the
Generic Container Devices (PNPOAO5 or PNPOAO06). If the Module Device contains a _CRS
method, only these resources described in the _CRS are available for consumption by its child
devices. Also, the Module Device can support _PRS and _SRS methods if _CRS is supported.

ACPIO005 SMBus 2.0 Host Controller. An SMBus host controller (SMB-HC compatible with the embedded
controller-based SMB-HC interface (as specified in Section 12.9, “SMBus Host Controller Interface
via Embedded Controller”) and implementing the SMBus 2.0 Specification.

ACPI0006 GPE Block Device. This device allows a system designer to describe GPE blocks beyond the two
that are described in the FADT.

ACPI0007 Processor Device. This device provides an alternative to declaring processors using the Processor
ASL statement. See Section 8.4, “Declaring Processors”, for more details.

ACPI0008 Ambient Light Sensor Device. This device is an ambient light sensor. See Section 9.3, “Ambient

Light Sensor Device”.

UEFI Forum, Inc.

January 2019 Page 319

ACPI Specification, Version 6.3 ACPI Software Programming Model

Plug and Play Description

ID

ACPI0009 I/OXAPIC Device. This device is an I/0O unit that complies with both the APIC and SAPIC interrupt
models.

ACPIO00A 1/0 APIC Device. This device is an I/0 unit that complies with the APIC interrupt model.

ACPI000B 1/0 SAPIC Device. This device is an I/0 unit that complies with the SAPIC interrupt model.

ACPI1000C Processor Aggregator Device. This device provides a control point for all processors in the

platform. See Section 8.5, “Processor Aggregator Device”.

ACPIO00D Power Meter Device. This device is a power meter. See Section 10.4. “Power Meters”.

ACPIO00E Time and Alarm Device. This device is a control method-based real-time clock and wake alarm.
See Section 9.18. “Time and Alarm Device”.

ACPIOOOF User Presence Detection Device. This device senses user presence (proximity). See Section 9.16,
"User Presence Detection Device")

ACPIO010 Processor container device. Used to declare hierarchical processor topologies (See Section 8.5
“Processor Hierarchy”, and Section 8.4.3.1, “Processor Container Device”.)

ACPIOO11 Generic Buttons Device. This device reports button events corresponding to Human Interface
Device (HID) control descriptors. (See Section 9.19, "Generic Button Device")

ACPI0012 NVDIMM Root Device. This device contains the NVDIMM devices. See Section 9.20 “NVDIMM
Devices” and Section 5.2.25 for “NVDIMM Firmware Interface Table”

ACPI0013 Generic Event Device. This device maps Interrupt-signaled events. See Section 5.6.9.

ACPIO014 Wireless Power Calibration Device. This device uses user presence and notification.

5.6.8 Predefined ACPI Names for Objects, Methods, and Resources

The following table summarizes the predefined names for the ACPI namespace objects, control methods,
and resource descriptor fields defined in this specification. Provided for each name is a short description
and a reference to the section number and page number of the actual definition of the name. ACPI
names that are predefined by other specifications are also listed along with their corresponding
specification reference.

Note: All names that begin with an underscore are reserved for ACPI use only

Table 5-184 Predefined ACPlI Names

Name Description Heading

_ACx Active Cooling — returns the active cooling policy threshold values. Section 11.4.1

_ADR Address — (1) returns the address of a device on its parent bus. Section 6.1.1
(2) returns a unique ID for the display output device. Section A.5.1
(3) resource descriptor field. Section 19.2.8

_AEI Designates those GPIO interrupts that shall be handled by OSPM as ACPI Section 5.6.5.2
events

_ALC Ambient Light Chromaticity — returns the ambient light color chromaticity. Section 9.3.4

UEFI Forum, Inc. January 2019 Page 320

ACPI Specification, Version 6.3

ACPI Software Programming Model

Name Description Heading

_ALI Ambient Light llluminance — returns the ambient light brightness. Section 9.3.2

_ALN Alignment — base alignment, resource descriptor field. Section 19.2.8

_ALP Ambient Light Polling — returns the ambient light sensor polling frequency. Section 9.3.6

_ALR Ambient Light Response — returns the ambient light brightness to display Section 9.3.5
brightness mappings.

_ALT Ambient Light Temperature — returns the ambient light color temperature. Section 9.3.3

_Alx Active List — returns a list of active cooling device objects. Section 11.4.2

_ART Active cooling Relationship Table — returns thermal relationship information | Section 11.4.3
between platform devices and fan devices.

_ASI Address Space Id — resource descriptor field. Section 19.2.8

_ASZ Access Size — resource descriptor field. Section 19.2.8

_ATT Type-Specific Attribute — resource descriptor field. Section 19.2.8

_BAS Base Address — range base address, resource descriptor field. Section 19.2.8

_BBN Bios Bus Number — returns the PCl bus number returned by the platform Section 6.5.5
firmware.

_BCL Brightness Control Levels — returns a list of supported brightness control Section A.5.2
levels.

_BCM Brightness Control Method — sets the brightness level of the display device. Section A.5.3

_BCT Battery Charge Time — returns time remaining to complete charging battery. | Section 10.2.2.10

_BDN Bios Dock Name — returns the Dock ID returned by the platform firmware. Section 6.5.3

_BIF Battery Information — returns a Control Method Battery information block. Section 10.2.2.1

_BIX Battery Information Extended — returns a Control Method Battery extended Section 10.2.2.2
information block.

_BLT Battery Level Threshold — set battery level threshold preferences. Section 19.6.114

_BM Bus Master — resource descriptor field. Section 19.2.8

_BMA Battery Measurement Averaging Interval — Sets battery measurement Section 10.2.2.4
averaging interval.

_BMC Battery Maintenance Control — Sets battery maintenance and control Section 10.2.2.12
features.

_BMD Battery Maintenance Data — returns battery maintenance, control, and state | Section 10.2.2.11
data.

_BMS Battery Measurement Sampling Time — Sets the battery measurement Section 10.2.2.5
sampling time.

_BQC Brightness Query Current — returns the current display brightness level. Section A.5.4

_BST Battery Status — returns a Control Method Battery status block. Section 10.2.2.6

UEFI Forum, Inc.

January 2019

Page 321

ACPI Specification, Version 6.3

ACPI Software Programming Model

Name Description Heading
_BTH Battery Throttle Limit - specifies the thermal throttle limit of battery for the Section 10.2.2.7
firmware when engaging charging.
_BT™M Battery Time — returns the battery runtime. Section 10.2.2.9
_BTP Battery Trip Point — sets a Control Method Battery trip point. Section 10.2.2.8
_CBA Configuration Base Address — sets the CBA for a PCl Express host bridge. See
the PCI Firmware Specification, Revision 3.0 at “Links to ACPI-Related
Documents” (http://uefi.org/acpi) under the heading "PCI Sig".
_CCA Cache Coherency Attribute -- specifies whether a device and its descendants | Section 6.2.17
support hardware managed cache coherency.
_Cbm Clock Domain — returns a logical processor’s clock domain identifier. Section 6.2.1
_CID Compatible ID — returns a device’s Plug and Play Compatible ID list. Section 6.1.2
_CLS Class Code — supplies OSPM with the PCl-defined class, subclass and Section 6.1.3
programming interface for a device. Optional.
_CPC Continuous Performance Control — declares an interface that allows OSPM to | Section 8.4.7.1
transition the processor into a performance state based on a continuous
range of allowable values.
_CRS Current Resource Settings — returns the current resource settings for a device. | Section 6.2.2
_CRT Critical Temperature — returns the shutdown critical temperature. Section 11.4.4
_CSD C State Dependencies — returns a list of C-state dependencies. Section 8.4.2.2
_CST C States — returns a list of supported C-states. Section 8.4.2.1
_CWS Clear Wake Status — Clears the wake status of a Time and Alarm Control Section 9.18.6
Method Device.
_DBT Debounce Timeout -Debounce timeout setting for a GPIO input connection, Section 19.6.55
resource descriptor field
_DCK Dock — sets docking isolation. Presence indicates device is a docking station. | Section 6.5.2
_DCs Display Current Status — returns status of the display output device. Section A.5.6
_DbDC Display Data Current — returns the EDID for the display output device. Section A.5.5
_DDN Dos Device Name — returns a device logical name. Section 6.1.4
_DEC Decode — device decoding type, resource descriptor field. Section 19.2.8
_DEP Operation Region Dependencies -- evaluates to a package and designates Section 6.5.8
device objects that OSPM should assign a higher priority in start ordering due
to future operation region accesses.
_DGS Display Graphics State — returns the current state of the output device. Section A.5.7
_DIS Disable — disables a device. Section 6.2.3
_DLM Device Lock Mutex- Designates a mutex as a Device Lock Section 5.7.5
_DMA Direct Memory Access — returns a device’s current resources for DMA Section 6.2.4
transactions.
UEFI Forum, Inc. January 2019 Page 322

http://www.pcisig.com/home/
http://www.pcisig.com/home/

ACPI Specification, Version 6.3

ACPI Software Programming Model

(performance state).

Name Description Heading

_DOD Display Output Devices — enumerate all devices attached to the display Section A.3.2
adapter.

_DOS Disable Output Switching — sets the display output switching mode. Section A.3.1

_DPL Device Selection_Polarity - The polarity of the Device Selection signal on a Section 19.6
SPISerialBus connection, resource descriptor field

_DRS Drive Strength — Drive strength setting for a GPIO output connection, resource | Section 19.6.56
descriptor field

_DSD Device Specific Data— returns device-specific information. Section 6.2.5

_DSM Device Specific Method — executes device-specific functions. Section 9.1.1

_DsS Device Set State — sets the display device state. Section A.5.8

_Dsw Device Sleep Wake — sets the sleep and wake transition states for a device. Section 7.3.1

_DTI Device Temperature Indication — conveys native device temperature to the Section 11.4.6
platform.

_Exx Edge GPE — method executed as a result of a general-purpose event. Section 5.6.4.1

_EC Embedded Controller — returns EC offset and query information. Section 12.12

_EDL Eject Device List — returns a list of devices that are dependent on a device Section 6.3.1
(docking).

_EID Ejection Dependent Device — returns the name of dependent (parent) device | Section 6.3.2
(docking).

_EJx Eject — begin or cancel a device ejection request (docking). Section 6.3.3

_END Endian-ness — Endian orientation of a UART SerialBus connection, resource Section 19.6
descriptor field

_EVT Event Method - Event method for GPIO-signaled events numbered larger than | Section 5.6.5.3
255.

_FDE Floppy Disk Enumerate — returns floppy disk configuration information. Section 9.10.1

_FDI Floppy Drive Information — returns a floppy drive information block. Section 9.10.2

_FDM Floppy Drive Mode — sets a floppy drive speed. Section 9.10.3

_FIF Fan Information — returns fan device information. Section 11.3.1.1

_FIT Firmware Interface Table - returns a list of NFIT Structures. Section 6.5.9

_FIX Fixed Register Resource Provider — returns a list of devices that implement Section 6.2.5
FADT register blocks.

_FLC Flow Control — Flow Control mechanism for a UART SerialBus connection, Section 19.6
resource descriptor field

_FPS Fan Performance States — returns a list of supported fan performance states. | Section 11.3.1.2

_FSL Fan Set Level — Control method that sets the fan device’s speed level Section 11.3.1.3

UEFI Forum, Inc.

January 2019

Page 323

ACPI Specification, Version 6.3

ACPI Software Programming Model

Name Description Heading

_FST Fan Status — returns current status information for a fan device. Section 11.3.1.4

_GAI Get Averaging Interval — returns the power meter averaging interval. Section 10.4.5

_GCP Get Capabilities — Returns the capabilities of a Time and Alarm Control Section 9.18.2
Method Device

_GHL Get Hardware Limit — returns the hardware limit enforced by the power Section 10.4.7
meter.

_GL Global Lock — OS-defined Global Lock mutex object. Section 5.7.1

_GLK Global Lock — returns a device’s Global Lock requirement for device access. Section 6.5.7

_GPD Get Post Data — returns the value of the VGA device that will be posted at Section A.3.4
boot.

_GPE General Purpose Events — (1) predefined Scope (_GPE.) Section 5.3.1
(2) Returns the SCl interrupt associated with the Embedded Controller. Section 12.11

_GRA Granularity — address space granularity, resource descriptor field. Section 19.2.8

_GRT Get Real Time — Returns the current time from a Time and Alarm Control Section 9.18.3
Method Device.

_GSB Global System Interrupt Base — returns the GSB for a I/O APIC device. Section 6.2.7

_GTF Get Task File — returns a list of ATA commands to restore a drive to default Section 9.9.1.1
state.

_GT™M Get Timing Mode — returns a list of IDE controller timing information. Section 9.9.2.1.1

_GWS Get Wake Status — Gets the wake status of a Time and Alarm Control Method | Section 9.18.5
Device.

_HE High-Edge — interrupt triggering, resource descriptor field. Section 19.2.8

_HID Hardware ID — returns a device’s Plug and Play Hardware ID. Section 6.1.5

_HMA Heterogeneous Memory Attributes - returns a list of HMAT structures. Section 6.2.18

_HOT Hot Temperature — returns the critical temperature for sleep (entry to S4). Section 11.4.7

_HPP Hot Plug Parameters — returns a list of hot-plug information for a PCl device. | Section 6.2.8

_HPX Hot Plug Parameter Extensions — returns a list of hot-plug information for a Section 6.2.9
PCl device. Supersedes _HPP.

_HRV Hardware Revision— supplies OSPM with the device’s hardware revision. Section 6.1.6
Optional

_IFT IPM Interface Type. See the Intelligent Platform Management Interface Section 19.6
Specification at “Links to ACPI-Related Documents” (http://uefi.org/acpi)
under the heading "Server Platform Management Interface Table".

_INI Initialize — performs device specific initialization. Section 6.5.1

_INT Interrupts — interrupt mask bits, resource descriptor field. Section 19.2.8

UEFI Forum, Inc.

January 2019

Page 324

ACPI Specification, Version 6.3

ACPI Software Programming Model

Name Description Heading

_IOR 10 Restriction — 10 restriction setting for a GPIO 10 connection, resource Section 19.6.56
descriptor field

_IRC Inrush Current — presence indicates that a device has a significant inrush Section 7.3.15
current draw.

_Lxx Level GPE — Control method executed as a result of a general-purpose event. | Section 5.6.4.1

_LCK Lock — locks or unlocks a device (docking). Section 6.3.4

_LEN Length — range length, resource descriptor field. Section 19.2.8

_LID Lid — returns the open/closed status of the lid on a mobile system. Section 9.5.1

_LIN Lines in Use - Handshake lines in use in a UART SerialBus connection, resource | Section 19.6
descriptor field

_LL Low Level — interrupt polarity, resource descriptor field. Section 19.2.8

_LPI Low Power Idle States — returns the list of low power idle states supported by | Section 8.4.4.3
a processor or processor container.

_Lsl Label Storage Information — Returns information about the Label Storage Area | Section 6.5.10.1
associated with the NVDIMM object, including its size.

_LSR Label Storage Read — Returns label data from the Label Storage Area of the Section 6.5.10.2
NVDIMM object.

_LSW Label Storage Write — Writes label data in to the Label Storage Area of the Section 6.5.10.3
NVDIMM object.

_MAF Maximum Address Fixed — resource descriptor field. Section 19.2.8

_MAT Multiple Apic Table Entry — returns a list of Interrupt Controller Structures. Section 6.2.10

_MAX Maximum Base Address — resource descriptor field. Section 19.2.8

_MBM Memory Bandwidth Monitoring Data — returns bandwidth monitoring data for | Section 9.13.2.1
a memory device.

_MEM Memory Attributes — resource descriptor field. Section 19.2.8

_MIF Minimum Address Fixed — resource descriptor field. Section 19.2.8

_MIN Minimum Base Address — resource descriptor field. Section 19.2.8

_MLS Multiple Language String — returns a device description in multiple languages. | Section 6.1.7

_MOD Mode —Resource descriptor field Section 19.6,

Section 19.6.55

_MSG Message — sets the system message waiting status indicator. Section 9.2.2

_MSM Memory Set Monitoring — sets bandwidth monitoring parameters for a Section 9.13.2.2
memory device.

_MTL Minimum Throttle Limit — returns the minimum throttle limit of a specific Section 11.4.8
thermal

_MTP Memory Type — resource descriptor field. Section 19.2.8

UEFI Forum, Inc.

January 2019

Page 325

ACPI Specification, Version 6.3

ACPI Software Programming Model

descriptor field

Name Description Heading

_NTT Notification Temperature Threshold — returns a threshold for device Section 11.4.9
temperature change that requires platform notification.

_OFF Off — sets a power resource to the off state. Section 7.2.2

_ON On — sets a power resource to the on state. Section 7.2.3

_0s Operating System — returns a string that identifies the operating system. Section 5.7.3

_0scC Operating System Capabilities — inform AML of host features and capabilities. | Section 6.2.11

_0sl Operating System Interfaces — returns supported interfaces, behaviors, and Section 5.7.2
features.

_OST Ospm Status Indication — inform AML of event processing status. Section 6.3.5

_PAI Power Averaging Interval — sets the averaging interval for a power meter. Section 10.4.4

_PAR Parity — Parity for a UART SerialBus connection, resource descriptor field Section 19.6

_PCL Power Consumer List — returns a list of devices powered by a power source. Section 10.3.2

_PCT Performance Control — returns processor performance control and status Section 8.4.6.1
registers.

_PDC Processor Driver Capabilities — inform AML of processor driver capabilities. Section 8.4.1

_PDL P-state Depth Limit — returns the lowest available performance P-state. Section 8.4.6.6

_PHA Clock Phase — Clock phase for a SPISerialBus connection, resource descriptor | Section 19.6
field

_PIC PIC — inform AML of the interrupt model in use. Section 5.8.1

_PIF Power Source Information — returns a Power Source information block. Section 10.3.3

_PIN Pin List — List of GPIO pins described, resource descriptor field. Section 19.6.55

_PLD Physical Location of Device — returns a device’s physical location information. | Section 6.1.8

_PMC Power Meter Capabilities — returns a list of Power Meter capabilities info. Section 10.4.1

_PMD Power Metered Devices — returns a list of devices that are measured by the Section 10.4.8
power meter device.

_PMM Power Meter Measurement — returns the current value of the Power Meter. | Section 10.4.3

_POL Polarity — Resource descriptor field Section 19.6

Section 19.6.55

_PPC Performance Present Capabilites — returns a list of the performance states Section 8.4.6.3
currently supported by the platform.

_PPE Polling for Platform Error — returns the polling interval to retrieve Corrected Section 8.4.8
Platform Error information.

_PPI Pin Configuration — Pin configuration for a GPIO connection, resource Section 19.6.55

UEFI Forum, Inc.

January 2019

Page 326

ACPI Specification, Version 6.3

ACPI Software Programming Model

Name Description Heading

_PR Processor — predefined scope for processor objects. Section 5.3.1

_PRO Power Resources for DO — returns a list of dependent power resources to Section 7.3.8
enter state DO (fully on).

_PR1 Power Resources for D1 — returns a list of dependent power resources to Section 7.3.9
enter state D1.

_PR2 Power Resources for D2 — returns a list of dependent power resources to Section 7.3.10
enter state D2.

_PR3 Power Resources for D3hot — returns a list of dependent power resources to | Section 7.3.11
enter state D3hot.

_PRE Power Resources for Enumeration - Returns a list of dependent power Section 7.3.12
resources to enumerate devices on a bus.

_PRL Power Source Redundancy List — returns a list of power source devices in the | Section 10.3.4
same redundancy grouping.

_PRR Power Resource for Reset — executes a reset on the associated device or Section 7.3.26
devices.

_PRS Possible Resource Settings — returns a list of a device’s possible resource Section 6.2.12
settings.

_PRT Pci Routing Table — returns a list of PCl interrupt mappings. Section 6.2.13

_PRW Power Resources for Wake — returns a list of dependent power resources for | Section 7.3.12
waking.

_PSO Power State 0 — sets a device’s power state to DO (device fully on). Section 7.3.2

_PS1 Power State 1 — sets a device’s power state to D1. Section 7.3.3

_PS2 Power State 2 — sets a device’s power state to D2. Section 7.3.4

_PS3 Power State 3 — sets a device’s power state to D3 (device off). Section 7.3.5

_PSC Power State Current — returns a device’s current power state. Section 7.3.6

_PSD Power State Dependencies — returns processor P-State dependencies. Section 8.4.6.5

_PSE Power State for Enumeration Section 7.3.14

_PSL Passive List — returns a list of passive cooling device objects. Section 11.4.10

_PSR Power Source — returns the power source device currently in use. Section 10.3.1

_PSS Performance Supported States — returns a list of supported processor Section 8.4.6.2
performance states.

_PSv Passive — returns the passive trip point temperature. Section 11.4.11

_PSW Power State Wake — sets a device’s wake function. Section 7.3.14

_PTC Processor Throttling Control — returns throttling control and status registers. | Section 8.4.5.1

_PTP Power Trip Points — sets trip points for the Power Meter device. Section 10.4.2

_PTS Prepare To Sleep — inform the platform of an impending sleep transition. Section 7.4.1

UEFI Forum, Inc. January 2019 Page 327

ACPI Specification, Version 6.3

ACPI Software Programming Model

Name Description Heading
_PUR Processor Utilization Request — returns the number of processors that the Section 8.5.1.1
platform would like to idle.
_PXM Proximity — returns a device’s proximity domain identifier. Section 6.2.14
_Qxx Query — Embedded Controller query and SMBus Alarm control method. Section 5.6.4.1
_RBO Register Bit Offset — resource descriptor field. Section 19.2.8
_RBW Register Bit Width — resource descriptor field. Section 19.2.8
_RDI Resource Dependencies for |dle - returns the list of power resource Section 8.5
dependencies for system level low power idle states.
_REG Region — inform AML code of an operation region availability change. Section 6.5.4
_REV Revision — returns the revision of the ACPI specification that is implemented. | Section 5.7.4
_RMmV Remove — returns a device’s removal ability status (docking). Section 6.3.6
_RNG Range — memory range type, resource descriptor field. Section 19.2.8
_ROM Read-Only Memory — returns a copy of the ROM data for a display device. Section A.3.3
_RST Device Reset — executes a reset on the associated device or devices. Section 7.3.25
_RT Resource Type — resource descriptor field. Section 19.2.8
_RTV Relative Temperature Values — returns temperature value information. Section 11.4.12
_RW Read-Write Status — resource descriptor field. Section 19.2.8
_RXL Receive Buffer Size - Size of the receive buffer in a UART Serialbus connection, | Section 19.6
resource descriptor field.
_SO S0 System State — returns values to enter the system into the SO state. Section 7.4.2
_S1 S1 System State — returns values to enter the system into the S1 state. Section 7.4.2
_S2 S2 System State — returns values to enter the system into the S2 state. Section 7.4.2
_S3 S$3 System State — returns values to enter the system into the S3 state. Section 7.4.2
sS4 S4 System State — returns values to enter the system into the S4 state. Section 7.4.2
_S5 S5 System State — returns values to enter the system into the S5 state. Section 7.4.2
_S1D S1 Device State — returns the highest D-state supported by a device when in Section 7.3.16
the S1 state.
_S2D S2 Device State — returns the highest D-state supported by a device when in Section 7.3.17
the S2 state.
_S3D S3 Device State — returns the highest D-state supported by a device when in Section 7.3.18
the S3 state.
_S4D S4 Device State — returns the highest D-state supported by a device when in Section 7.3.19
the S4 state.
_Sow S0 Device Wake State — returns the lowest D-state that the device can wake Section 7.3.20
itself from SO.

UEFI Forum, Inc.

January 2019

Page 328

ACPI Specification, Version 6.3 ACPI Software Programming Model

Name Description Heading

_S1w S1 Device Wake State — returns the lowest D-state for this device that can Section 7.3.21
wake the system from S1.

_S2w S2 Device Wake State — returns the lowest D-state for this device that can Section 7.3.22
wake the system from S2.

_S3w S3 Device Wake State — returns the lowest D-state for this device that can Section 7.3.23
wake the system from S3.

_Saw S4 Device Wake State — returns the lowest D-state for this device that can Section 7.3.24
wake the system from S4.

_SB System Bus — scope for device and bus objects. Section 5.3.1

_SBS Smart Battery Subsystem — returns the subsystem configuration. Section 10.1.3

_Scp Set Cooling Policy — sets the cooling policy (active or passive). Section 11.4.13

_SDD Set Device Data — sets data for a SATA device. Section 9.9.3.3.1

_SEG Segment — returns a device’s PCI Segment Group number. Section 6.5.6

_SHL Set Hardware Limit — sets the hardware limit enforced by the Power Meter. Section 10.4.6

_SHR Sharable — interrupt share status, resource descriptor field. Section 19.2.8

_SI System Indicators — predefined scope. Section 5.3.1

_Slz Size — DMA transfer size, resource descriptor field. Section 19.2.8

_SL System Locality Information — returns a list of NUMA system localities. Section 6.2.15

_SLvV Slave Mode — Slave mode setting for a SerialBus connection, resource Section 19.6

descriptor field.

_SPD Set Post Device — sets which video device will be posted at boot. Section A.3.5

_SPE Connection Speed — Connection speed for a SerialBus connection, resource Section 19.6
descriptor field

_SRS Set Resource Settings — sets a device’s resource allocation. Section 6.2.16

_SRT Set Real Time — Sets the current time to a Time and Alarm Control Method Section 9.18.4
Device.

_SRV IPMI Spec Revision. See the Intelligent Platform Management Interface

Specification at “Links to ACPI-Related Documents” (http://uefi.org/acpi)
under the heading "Server Platform Management Interface Table".

_SST System Status — sets the system status indicator. Section 9.2.1
_STA Status — (1) returns the current status of a device. Section 6.3.7

(2) Returns the current on or off state of a Power Resource. Section 7.2.4
_STB Stop Bits - Number of stop bits used in a UART SerialBus connection, resource | Section 19.6

descriptor field

_STM Set Timing Mode — sets an IDE controller transfer timings. Section 9.9.2.1.2

UEFI Forum, Inc. January 2019 Page 329

ACPI Specification, Version 6.3

ACPI Software Programming Model

Name Description Heading

_STP Set Expired Timer Wake Policy — sets expired timer policies of the wake alarm | Section 9.18.7
device.

_STR String — returns a device’s description string. Section 6.1.10

_STV Set Timer Value — set timer values of the wake alarm device. Section 9.18.8

_SUB Supplies OSPM with the device's Subsystem ID. Optional. Section 6.1.9

_SUN Slot User Number — returns the slot unique ID number. Section 6.1.11

_SWS System Wake Source — returns the source event that caused the system to Section 7.4.3
wake.

T x Temporary — reserved for use by ASL compilers. Section 19.3.1.1

_TC1 Thermal Constant 1 — returns TC1 for the passive cooling formula. Section 11.4.15

_TC2 Thermal Constant 2 — returns TC2 for the passive cooling formula. Section 11.4.16

_TDL T-State Depth Limit — returns the _TSS entry number of the lowest power Section 8.4.5.5
throttling state.

_TFP Thermal Fast Sampling Period - returns the thermal sampling period for Section 11.4.17
passive cooling.

_TIP Expired Timer Wake Policy — returns timer policies of the wake alarm device. | Section 9.18.9

_TIV Timer Values — returns remaining time of the wake alarm device. Section 9.18.10

_TMP Temperature — returns a thermal zone’s current temperature. Section 11.4.18

_TPC Throttling Present Capabilities — returns the current number of supported Section 8.4.5.3
throttling states.

_TPT Trip Point Temperature —inform AML that a devices’ embedded temperature | Section 11.4.19
sensor has crossed a temperature trip point.

_TRA Translation — address translation offset, resource descriptor field. Section 19.2.8

_TRS Translation Sparse — sparse/dense flag, resource descriptor field. Section 19.2.8

_TRT Thermal Relationship Table — returns thermal relationships between platform | Section 11.4.20
devices.

_TSD Throttling State Dependencies — returns a list of T-state dependencies. Section 8.4.5.4

_TSF Type-Specific Flags — resource descriptor field. Section 19.2.8

_TSN Thermal Sensor Device - returns a reference to the thermal sensor reporting a | Section 11.4.21
zone temperature

_TSP Thermal Sampling Period — returns the thermal sampling period for passive Section 11.4.22
cooling.

_TSS Throttling Supported States — returns supported throttling state information. | Section 8.4.5.2

_TST Temperature Sensor Threshold — returns the minimum separation for a Section 11.4.23
device’s temperature trip points.

_TTP Translation Type — translation/static flag, resource descriptor field. Section 19.2.8

UEFI Forum, Inc.

January 2019

Page 330

ACPI Specification, Version 6.3 ACPI Software Programming Model

Name Description Heading

_TTS Transition To State — inform AML of an S-state transition. Section 7.4.4

_TXL Transmit Buffer Size — Size of the transmit buffer in a UART Serialbus Section 19.6
connection, resource descriptor field

_TYpP Type — DMA channel type (speed), resource descriptor field. Section 19.2.8

YA Thermal Zone — predefined scope: ACPI 1.0. Section 5.3.1

_TzD Thermal Zone Devices — returns a list of device names associated with a Section 11.4.24

Thermal Zone.

_TZm Thermal Zone Member — returns a reference to the thermal zone of which a Section 11.4.25
device is a member.

_TzP Thermal Zone Polling — returns a Thermal zone’s polling frequency. Section 11.4.26
_UID Unique ID — return a device’s unique persistent ID. Section 6.1.12
_UPC USB Port Capabilities — returns a list of USB port capabilities. Section 9.14
_UPD User Presence Detect — returns user detection information. Section 9.16.1
_UPP User Presence Polling — returns the recommended user presence polling Section 9.16.2
interval.
_VEN Vendor-defined Data — Vendor-defined data for a GPIO or SerialBus Section 19.6.55
connection, resource descriptor field
_VPO Video Post Options — returns the implemented video post options. Section A.3.6
_WAK Wake — inform AML that the system has just awakened. Section 7.4.5
_WPC Wireless Power Calibration - returns the notifier to wireless power controller | Section 10.5.1
_WPP Wireless Power Polling - returns the recommended polling frequency Section 10.5.3
Wxx Woake Event — method executed as a result of a wake event. Section 5.6.4.2.2

5.6.9 Interrupt-signaled ACPI events

ACPI 6.1introduces support for generating ACPI events when an interrupt is received by the OSPM, and
that interrupt is listed in the Generic Event Device (GED) _CRS object. OSPM claims all such interrupts,
and maps them to the appropriate event method required by the ACPI event model.

5.6.9.1 Declaring Generic Event Device

The Generic Event Device (GED) is modelled as a device in the namespace with a _HID defined to be
ACPI0013. The GED must also provide one _CRS and _EVT object for claiming interrupts and mapping
them to ACPI events, as described in the following sections. The platform declare its support for the GED,
and query whether an OS supports it, via the _OSC method, see Section 6.2.11.2.

5.6.9.2 _CRS Object for Interrupt-signaled Events

The _CRS object designates those interrupts that shall be handled by OSPM as ACPI events. This object
appears within the scope of the GED whose interrupts sources are to be used as Interrupt-signaled
events.

UEFI Forum, Inc. January 2019 Page 331

ACPI Specification, Version 6.3 ACPI Software Programming Model

Arguments:

None

Return Value:
A resource template Buffer containing only Interrupt Resource descriptors.

Note: For event numbers less than 255, _Exx and _Lxx methods may be used instead. In this case, they
take precedence and _EVT will not be invoked.

Example:
Device (_SB.GED1)

{
Name(HID,”ACP10013")

Name(_CRS, ResourceTemplate ()
{

Interrupt(ResourceConsumer, Level, ActiveHigh, Exclusive) {41}
Interrupt(ResourceConsumer, Level, ActiveHigh, Shared) {42}
Interrupt(ResourceConsumer, Level, ActiveHigh, ExclusiveAndWake) {43}

D

} //End of Scope

5.6.9.3 The Event (_EVT) Method for Handling Interrupt-signaled Events

Interrupts that are assigned by the platform to signal ACPI events are listed in the _CRS object under the
GED device. Since the interrupt descriptor also provides the mode of the interrupt associated with an
event, it gives OSPM all the information it needs to invoke a handler method for the event. A single
instance of the method handles all ACPI events for a given GED.

Note: Please refer to Section 5.6.4 for the OSPM requirements of handling an event (steps 1 —5).

For Interrupt-signaled events, the Event (_EVT) method is used.
_EVT is defined as follows:

Arguments: (1)

Arg0 - EventNumber. An Integer indicating the event number (GSIV number) of the current event.
Must be in the range 0x00000000 - Oxffffffff.

Return Value:

None

Description

The _EVT method handles an Interrupt-signaled event. It must appear within the scope of the GED whose
interrupts are used to signal the event.

OSPM handles Interrupt-signaled events as follows:

e The interrupt is handled by OSPM because it is listed in the _CRS object under a GED.

UEFI Forum, Inc. January 2019 Page 332

ACPI Specification, Version 6.3 ACPI Software Programming Model

¢ When the event fires, OSPM handles the interrupt according to its mode and invokes the _EVT
method, passing it the interrupt number of the event. In the case of level interrupts, the ASL
within the EVT method must be responsible for clearing the interrupt at the device.

e From this point on, handling is exactly like that for GPEs. The _EVT method may optionally call
Notify() on the appropriate device, and OS-specific mechanisms are used to notify the driver of

the event.
Example:
Device (_SB.GED1)
{
Name(HID,”’ACP10013"")
Name(_CRS, ResourceTemplate ()
{
Interrupt(ResourceConsumer, Level, ActiveHigh, Exclusive) {41}
Interrupt(ResourceConsumer, Edge, ActiveHigh, Shared) {42}
Interrupt(ResourceConsumer, Level, ActiveHigh, ExclusiveAndWake) {43}
}
Method (_EVT,1) { // Handle all ACPI Events signaled by the Generic Event
Device(GED1)
Switch (Arg0) // Arg0 = GSIV of the interrupt
{
Case (41) { // interrupt 41
Store(One, ISTS) // clear interrupt status register at
device X
// which is mapped via an operation region
Notify (_SB.DEVX, 0x0) // insertion request
}
Case (42) { // interrupt 42
Notify (_SB.DEVX, 0x3) // ejection request
}
Case (43) { // interrupt 43
Store(One, ISTS) // clear interrupt status register at
device X

// which is mapped via an operation region
Notify (_SB.DEVX, 0x2) // wake event

}

}
} //End of Method
} //End of GED1 Scope
Device (_SB.DEVX)

{
Name(_PRW,Package()
{

Package(2){ // Eventlnfo
\ SB.GED1, // device reference
0x2 // event (zero-based CRS index) = 2 (maps to interrupt 43)
}1

0x03, // Can wake up from S3 state

PWRA // PWRA must be ON for DEVX to wake system

UEFI Forum, Inc. January 2019 Page 333

ACPI Specification, Version 6.3 ACPI Software Programming Model

1))

} //End of DEVX Scope

5.6.9.4 GED Wake Events

An important use of the interrupt-signaled events is to implement device wake events. Interrupt-based
Wake Events are described in Section 4.1.1.2. Note that the interrupt associated with that wake event
must be wake-capable per the Extended Interrupt resource descriptor listed under the _CRS object.

Consider the ASL example in the previous section, note that the interrupts that map to the wake event
for DEVX are wake-capable. The components of the Interrupt-signaled ACPI event programming model
interact in the following way:

e When a device asserts its wake signal and the interrupt has been enabled by the GED driver,
the interrupt is asserted.

e If the system is sleeping, this will cause the hardware, if possible, to transition the system into
the SO state.

e Once the system is running, OSPM will dispatch the GED interrupt service routine.

e The GED needs to determine which interrupt has been asserted and may perform a Notify
command on the corresponding device object(s) that have asserted wake.

¢ Inturn OSPM will notify OSPM native driver(s) for each device that will wake its device to
service it.

Wake events must be exclusively tied to a GED interrupt (for example, one interrupt cannot be shared by
multiple wake events) in order to properly handle the semantics used by the system

Note that any ACPI platform may utilize GPIO-signaled and/or Interrupts-signaled ACPI events (i.e. they
are not limited to Hardware-reduced ACPI platforms).

5.6.10 Managing a Wake Event Using Device _PRW Objects

A device’s _PRW object provides the zero-based bit index into the general-purpose status register block
to indicate which general-purpose status bit from either GPEO_BLK or GPE1_BLK is used as the specific
device’s wake mask. Although the hardware must maintain individual device wake enable bits, the
system can have multiple devices using the same general-purpose event bit by using OEM-specific
hardware to provide second-level status and enable bits. In this case, the OEM AML code is responsible
for the second-level enable and status bits.

A device’s _PRW object provides the zero-based index into the _AEl object of a GPIO controller device or
zero-based index into the _CRS object of a Generic Event Device (GED).

OSPM enables or disables the device wake function by enabling or disabling its corresponding event and
by executing its _PSW control method (which is used to take care of the second-level enables). When the
event is asserted, OSPM still executes the corresponding event control method that determines which
device wakes are asserted and notifies the corresponding device objects. The native OS driver is then
notified that its device has asserted wake, for which the driver powers on its device to service it.

If the system is in a sleeping state when the enabled event is asserted the hardware will transition the
system into the SO state, if possible.

UEFI Forum, Inc. January 2019 Page 334

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.7 Predefined Objects

The AML interpreter of an ACPl compatible operating system supports the evaluation of a number of

predefined objects. The objects are considered “built in” to the AML interpreter on the target operating
system.

A list of predefined object names are shown in the following table.

Table 5-185 Predefined Object Names

Name Description

_GL Global Lock mutex

_0S Name of the operating system

_OSI Operating System Interface support

_REV Revision of the ACPI specification that is implemented

5.7.1_GL (Global Lock Mutex)

This predefined object is a Mutex object that behaves like a Mutex as defined in Section 19.6.87, “Mutex
(Declare Synchronization/Mutex Object),” with the added behavior that acquiring this Mutex also
acquires the shared environment Global Lock defined in Section 5.2.10.1, “Global Lock.” This allows
Control Methods to explicitly synchronize with the Global Lock if necessary.

5.7.2 _OSI (Operating System Interfaces)

This method is used by the system firmware to query OSPM about interfaces and features that are

supported by the host operating system. The usage and implementation model for this method is as
follows:

e The _OSI method is implemented within the operating system.

e OSlis called by the firmware AML code, usually during initialization (such as via _INI method).
Thus, _OSl is actually an “up-call” from the firmware AML to the OS — exactly the opposite of
other control methods.

e An _OSlinvocation by the firmware is a request to the operating system: "Do you support this
interface/feature?"

¢ The host responds to this _OSI request with a simple yes or no (Ones/Zero, TRUE/FALSE,
Supported/NotSupported).

The _OSI method requires one argument and returns an integer. The argument is a string that contains
an optional ACPI-defined OsVendorString followed by a required FeatureGroupString. The feature group
string can be either ACPI-defined or OS vendor defined.

_0Sl cannot and should not be used by the firmware in an attempt to identify the host operating system;
rather, this method is intended to be used to identify specific features and interfaces that are supported
by the OS. The example below illustrates this:

_0S1 (“Windows 2009)

UEFI Forum, Inc. January 2019 Page 335

ACPI Specification, Version 6.3 ACPI Software Programming Model

In the _OSI invocation above, “Windows” is the OsVendorString, and “2009” is the vendor-defined
FeatureGroupString. A return value of TRUE (Ones) from this call does NOT indicate that the executing
operating system is Windows. It simply indicates that the actual OS conforms to “Windows 2009”

features and interfaces, and is thus compatible with Windows 2009. ACPI implementations other than
Windows often reply TRUE to all Windows _OSlI requests.

The OsVendorString should always be accompanied by a FeatureGroupString. However, the
OsVendorsString itself is optional and can be omitted if the feature group string applies to all operating
systems. The ACPI-defined feature group strings may be used in this standalone manner. For example:

_0SI ('3.0 Thermal Model™)
Arguments: (1)

Arg0 — A String containing the optional OS vendor prefix (as defined in Table 5-186) and/or the required
Feature Group string (as ACPI-defined in Table 5-187 , or a vendor-defined custom feature/interface
string). The optional OS vendor string is not needed in the case of the ACPI-defined feature group strings.

Return Value:

An Integer containing a Boolean that indicates whether the requested feature is supported:

0x0 (Zero) — The interface, behavior, or feature is not supported

Ones (-1) — The interface, behavior, or feature is supported. Note: The value of Ones is OxFFFFFFFF in 32-
bit mode (DSDT revision 1) or OXFFFFFFFFFFFFFFFF in 64-bit mode (DSDT revision 2 and greater).

Table 5-186 Predefined Operating System Vendor String Prefixes

Operating System Vendor String Prefix Description

“FreeBSD” <FeatureGroupString> | Free BSD OS features/interfaces

“HP-UX” <FeatureGroupString> HP Unix Operating Environment OS features/interfaces

“Linux” <FeatureGroupString> GNU/Linux Operating system OS features/interfaces
“OpenVMS” HP OpenVMS Operating Environment OS features/
<FeatureGroupString> interfaces

“Windows” <FeatureGroupString> | Microsoft Windows OS features/interfaces

Table 5-187 Standard ACPI-Defined Feature Group Strings

Feature Group String Description

“Module Device” OSPM supports the declaration of module device (ACPI0004) in the
namespace and will enumerate objects under the module device scope.

“Processor Device” OSPM supports the declaration of processors in the namespace using the
ACPI0007 processor device HID.

“3.0 Thermal Model” OSPM supports the extensions to the ACPI thermal model in Revision 3.0.

“Extended Address Space OSPM supports the Extended Address Space Descriptor

Descriptor”

UEFI Forum, Inc. January 2019 Page 336

ACPI Specification, Version 6.3 ACPI Software Programming Model

Feature Group String Description

“3.0 _SCP Extensions” OSPM evaluates _SCP with the additional acoustic limit and power limit
arguments defined in ACPI 3.0.

“Processor Aggregator OSPM supports the declaration of the processor aggregator device in the

Device” namespace using the ACPI000C processor aggregator device HID.

OSPM may indicate support for multiple OS interface / behavior strings if the operating system supports
the behaviors. For example, a newer version of an operating system may indicate support for strings from
all or some of the prior versions of that operating system.

_0SlI provides the platform with the ability to support new operating system versions and their
associated features when they become available. OSPM can choose to expose new functionality based on
the _OSI argument string. That is, OSPM can use the strings passed into _OSI to ensure compatibility
between older platforms and newer operating systems by maintaining known compatible behavior for a
platform. As such, it is recommended that _OSI be evaluated by the _SB.INI control method so that
platform compatible behavior or features are available early in operating system initialization.

Since feature group functionality may be dependent on OSPM implementation, it may be required that
OS vendor-defined strings be checked before feature group strings.

Platform developers should consult OS vendor specific information for OS vendor defined strings
representing a set of OS interfaces and behaviors. ACPI defined strings representing an operating system
and an ACPI feature group are listed in the following tables.

_OSI Examples
Use of standard ACPI-defined feature group strings:

Scope (_SB)

{
Name (PAD1, 0)
Name (MDEV, 0)
Method (_INI)

IT (CondrefOf (_OSI) // Ensure _0OSI exists in the 0S

{
IT (_OSI (“Processor Aggregator Device™)

{
Store (1, PAD1)

}
If (_OSI (“Module Device”)

{
// Expose PCI Root Bridge under Module Device —
// 0S support Module Device
Store (0, MDEV1)
Loadtable (“OEM1”, “OEMID”, “Tablel™)
}
Else
{

// Expose PCI Root Bridge under _SB —
// 0S does not support Module Device

UEFI Forum, Inc. January 2019 Page 337

ACPI Specification, Version 6.3 ACPI Software Programming Model

Store (1, MDEV1)
Loadtable (“OEM2”, “OEMID”, “Table2”)

Use of OS vendor-defined feature group strings:

//

// In this example, “Windows” is the OsVendorString, and the year strings
// (2009, 2012, and 2105) are the vendor-defined FeatureGroupStrings

//

Scope (_SB)
{
Name (OSYS, 0x7D0) // Type of OS indicating supported features
Method (_INI)
{
If (CondrRefOf (_OSI) // Ensure _0OSI exists in the 0S
{

If (_OSI (“Windows 2009

Store (0x7D1, OSYS)

“

If (_OSI (“Windows 2012”)

Store (0x7D1, OSYS)

“

If (_0OSI (“Windows 2015”)

Store (0x7D1, OSYS)

“

}
5.7.3_OS (OS Name Object)

This predefined object evaluates to a string that identifies the operating system. In robust OSPM
implementations, _OS evaluates differently for each OS release. This may allow AML code to
accommodate differences in OSPM implementations. This value does not change with different revisions
of the AML interpreter.

Arguments:
None
Return Value:

A String containing the operating system name.

UEFI Forum, Inc. January 2019 Page 338

ACPI Specification, Version 6.3 ACPI Software Programming Model

5.7.4_REV (Revision Data Object)

This predefined object evaluates to an Integer (DWORD) representing the revision of the ACPI
Specification implemented by the specified _OS.

Arguments:

None

Return Value:

An Integer representing the revision of the currently executing ACPl implementation.

1. Only ACPI 1 is supported, only 32-bit integers.
2. ACPI 2 or greater is supported. Both 32-bit and 64-bit integers are supported.

Actual integer width depends on the revision of the DSDT (revision < 2 means 32-bit. >=2
means 64-bit).

Other values - Reserved

5.7.5 _DLM (DevicelLock Mutex)

This object appears in a device scope when AML access to the device must be synchronized with the OS
environment. It is used in conjunction with a standard Mutex object. With _DLM, the standard Mutex
provides synchronization within the AML environment as usual, but also synchronizes with the OS
environment.

_DLM evaluates to a package of packages, each containing a reference to a Mutex and an optional
resource template protected by the Mutex, If only the Mutex name is specified, then the sharing rules
(i.e. which resources are protected by the lock) are defined by a predefined contract between the AML
and the OS device driver. If the resource template is specified, then only those resources within the
resource template are protected.

Arguments:
None
Return Value:

A variable-length Package containing sub-packages of Mutex References and resource templates. The
resource template in each subpackage is optional.

Return Value Information
Package {
DevicelLockInfo [0] // Package

DevicelLockInfo [n] // Package
}

Each variable-length DeviceLockinfo sub-Package contains either one element or 2 elements, as
described below:

Package {
DevicelLockMutex // Reference to a Mutex object
Resources // Buffer or Reference (Resource Template)

UEFI Forum, Inc. January 2019 Page 339

ACPI Specification, Version 6.3 ACPI Software Programming Model

}
Table 5-188 DeviceLockinfo Package Values
Element Object Type Description
DeviceLockMutex Reference A reference to the mutex that is to be shared between the AML
code and the host operating system.
Resources Buffer (or Optional. Contains a Resource Template that describes the
reference toa | resources that are to be protected by the Device Lock Mutex.
Buffer)
Example:
Device (DEV1)
{

Mutex (MTX1, 0)
Name (RES1, ResourceTemplate ()

{
I2cSerialBusV2 (0x0400, Devicelnitiated, 0x00001000,
AddressingModel0Bit, ""_SB.DEV1",
0, ResourceConsumer, 12C1)
P
Name (_DLM, Package (1)
{
Package (2)
{
MTX1,
RES1
}
1))
}
Device (DEV2)
{

Mutex (MTX2, 0)
Mutex (MTX3, 0)
Name (_DLM, Package (2)

{
Package (2)
{
\DEV2_MTX2,
ResourceTemplate ()
{
12cSerialBusV2 (0x0400, Devicelnitiated, 0x00001000,
AddressingModelOBit, ""_SB.DEV2",
0, ResourceConsumer, 12C2)
}
}1
Package (1) // Optional resource not needed
{

UEFI Forum, Inc. January 2019 Page 340

ACPI Specification, Version 6.3 ACPI Software Programming Model

\DEV2_MTX3

}
D
}

5.8 System Configuration Objects
5.8.1 _PIC Method

The _PIC optional method is used to report to the platform runtime firmware the current interrupt
model used by the OS. This control method returns nothing. The argument passed into the method
signifies the interrupt model OSPM has chosen, PIC mode, APIC mode, or SAPIC mode. Notice that calling
this method is optional for OSPM. If the platform CPU architecture supports PIC mode and the method is
never called, the platform runtime firmware must assume PIC mode. It is important that the platform
runtime firmware save the value passed in by OSPM for later use during wake operations.

Arguments: (1)

Arg0 — An Integer containing a code for the current interrupt model:

0- PIC mode
1- APIC mode
2-— SAPIC mode

Other values —Reserved

Return Value:

None

UEFI Forum, Inc. January 2019 Page 341

6 Device Configuration

This section specifies the objects OSPM uses to configure devices. There are three types of configuration
objects:

Device identification objects associate platform devices with Plug and Play IDs.

¢ Device configuration objects declare and configure hardware resources and characteristics for
devices enumerated via ACPI.

¢ Device insertion and removal objects provide mechanisms for handling dynamic insertion and
removal of devices.

This section also defines the ACPI device—resource descriptor formats. Device—-resource descriptors are
used as parameters by some of the device configuration objects.

6.1 Device Identification Objects

Device identification objects associate each platform device with a Plug and Play device ID for each
device. All the device identification objects are listed in the table below:

Table 6-189 Device Identification Objects

Object Description

_ADR Object that evaluates to a device’s address on its parent bus.

_CID Object that evaluates to a device’s Plug and Play-compatible ID list.

_CLS Object that evaluates to a package of coded device-class information.

_DDN Object that associates a logical software name (for example, COM1) with a device.

_HID Object that evaluates to a device’s Plug and Play hardware ID.

_HRV Object that evaluates to an integer hardware revision number.

_MLS Object that provides a human readable description of a device in multiple languages.
_PLD Object that provides physical location description information.

_PRD Object that evaluates to a package of device property subpackages.

{deprecated}

_SuB Object that evaluates to a device's Plug and Play subsystem ID.

_SUN Object that evaluates to the slot-unique ID number for a slot.

_STR Object that contains a Unicode identifier for a device. Can also be used for thermal zones.
_uID Object that specifies a device’s unique persistent ID, or a control method that generates it.

For any device that is on a non-enumerable type of bus (for example, an ISA bus), OSPM enumerates the
devices' identifier(s) and the ACPI system firmware must supply an _HID object (plus one or more
optional objects such as _CID, _CLS, _HRV, _SUB) for each device to enable OSPM to do that. For devices
on an enumerable type of bus, such as a PCl bus, the ACPI system must identify which device on the
enumerable bus is identified by a particular address; the ACPI system firmware must supply an _ADR

UEFI Forum, Inc. January 2019 Page 342

ACPI Specification, Version 6.3 Device Configuration

object for each device to enable this. A device object must contain either an _HID object or an _ADR
object, but should not contain both.

If any of these objects are implemented as control methods, these methods may depend on operation
regions. Since the control methods may be evaluated before an operation region provider becomes
available, the control method must be structured to execute in the absence of the operation region
provider. (_REG methods notify the platform runtime firmware of the presence of operation region
providers.) When a control method cannot determine the current state of the hardware due to a lack of
operation region provider, it is recommended that the control method should return the condition that
was true at the time that control passed from the platform boot firmware to the OS. (The control method
should return a default, boot value).

6.1.1 _ADR (Address)

This object is used to supply OSPM with the address of a device on its parent bus. An _ADR object must
be used when specifying the address of any device on a bus that has a standard enumeration algorithm
(see Section 3.7, “Configuration and Plug and Play”, for the situations when these devices do appear in
the ACPl namespace).

Arguments:

None

Return Value:

An Integer containing the address of the device

An _ADR object can be used to provide capabilities to the specified address even if a device is not
present. This allows the system to provide capabilities to a slot on the parent bus.

OSPM infers the parent bus and segment from the location of the _ADR object’s device package in the
ACPI namespace. For more information about the positioning of device packages in the ACPI namespace,
see Section 19.6.30, “Device (Declare Bus/Device Package)”

_ADR object information must be static and can be defined for the following bus types listed in Table 6-
190.

Table 6-190 ADR Object Address Encodings

BUS Address Encoding
EISA EISA slot number 0—F
Floppy Bus Drive select values used for programming the floppy controller to access the specified INT13

unit number. The _ADR Objects should be sorted based on drive select encoding from 0-3.

13C Bits [63:52] - Reserved
Bits [51:48] - Master Instance

Bits [47:0] - I3C Device Provisional ID, following encoding defined in the MIPI Specification
for I3C (Version 1.0, section 5.1.4.1).

If an I3C device supports a static address instead of a Provisional ID, then bits [47:7] are
Reserved (zero), and bits [6:0] are the 7-bit static address.

IDE Controller 0—Primary Channel, 1-Secondary Channel

UEFI Forum, Inc. January 2019 Page 343

ACPI Specification, Version 6.3 Device Configuration

BUS Address Encoding
IDE Channel 0—Master drive, 1-Slave drive
Intel® High

Definition Audio High word — SDI (Serial Data In) ID of the codec that contains the function group.

Low word — Node ID of the function group.

PCI High word—Device #, Low word—Function #. (for example, device 3, function 2 is
0x00030002). To refer to all the functions on a device #, use a function number of FFFF).

PCMCIA Socket #; O—First Socket
PC CARD Socket #; O—First Socket
Serial ATA SATA Port: High word—Root port #, Low word—port number off of a SATA port multiplier, or

OXFFFF if no port multiplier attached. (For example, root port 2 would be 0x0002FFFF. If
instead a port multiplier had been attached to root port 2, the ports connected to the
multiplier would be encoded 0x00020000, 0x00020001, etc.) The value OXFFFFFFFF is

reserved.

SMBus Lowest Slave Address

USB Root HUB Only one child of the host controller. It must have an _ADR of 0. No other children or values
of _ADR are allowed.

USB Ports Port number (1-n)

SDIO Bus High word - Slot number (0-First Slot)

Low word - Function number (see SD specification for definitions.)

NVDIMM NFIT Device handle as defined by Section 5.2.25.3 (Memory Device to System Physical
Address Range Mapping Structure)

6.1.2 _CID (Compatible ID)

This optional object is used to supply OSPM with a device’s Plug and Play-Compatible Device ID. Use CID
objects when a device has no other defined hardware standard method to report its compatible IDs.

Arguments:
None
Return Value:

An Integer or String containing a single CID or a Package containing a list of CIDs

A _CID object evaluates to either:

e Asingle Compatible Device ID
e A package of Compatible Device IDs for the device — in the order of preference, highest
preference first.

Each Compatible Device ID must be either:

e Avalid HID value (a 32-bit compressed EISA type ID or a string such as “ACP10004”).

UEFI Forum, Inc. January 2019 Page 344

ACPI Specification, Version 6.3 Device Configuration

e Astring that uses a bus-specific nomenclature. For example, _CID can be used to specify the
PCI ID. The format of a PCI ID string is one of the following:

“PCI\CC_ccss”

“PCI\CC_ccsspp”
“PCI\VEN_vvvVv&DEV_ dddd&SUBSYS ssSSSSSSS&REV_rr”
“PCI\VEN_vvvVv&DEV_dddd&SUBSYS ssssssss”
“PCI\VEN_vvvv&DEV_dddd&REV_rr”
“PCI\VEN_vvvv&DEV_dddd”

Where:
cc — hexadecimal representation of the Class Code byte
ss — hexadecimal representation of the Subclass Code byte
pp — hexadecimal representation of the Programming Interface
byte
VWV — hexadecimal representation of the Vendor ID
dddd — hexadecimal representation of the Device ID
SSSSSSSS — hexadecimal representation of the Subsystem ID
rr — hexadecimal representation of the Revision byte

A compatible ID retrieved from a _CID object is only meaningful if it is a non-NULL value.

Example ASL:

Device (XY2) {
Name (_HID, EISAID ("'PNP0303')) // PC Keyboard Controller
Name (_CID, EISAID ("*PNP0O30B™))

}
6.1.3 _CLS (Class Code)

This object is used to supply OSPM with the PCI-defined base-class, sub-class and programming interface
for a device. This object is optional. However, it may be useful for loading generic drivers on hardware
that is compatible with PCI -defined device classes, but that is not implemented on the PCl bus (and is
therefore enumerated by ACPI.)

Arguments:

None

Return Value:

A Package containing the PCI -defined class information as a list of Integers:

Package(3) {<Base-Class code>, <Sub-class code>, <Programming Interface code>}

A list of available class codes and programming interface codes is provided by the PCI SIG. See "PCl Code
and ID Assignment Specification", available from "Links to ACPI-Related Documents" (http://uefi.or
acpi) under the heading "PCl Code and ID Assignment Specification

UEFI Forum, Inc. January 2019 Page 345

ACPI Specification, Version 6.3 Device Configuration

Example ASL:

Device(SATA) //AHCI- compatible SATA controller

{
Name(_HID, ".')

Name(_CLS, Package (3)

{
0x01, // Base Class (0lh == Mass Storage)

0x06, // Sub-Class (06h == SATA)
0x01, // Programming Interface (01h == AHCI)

b))
Name(_CRS, ResourceTemplate()

{

.. // AHCI-defined system resources

D
}

6.1.4 _DDN (DOS Device Name)

This object is used to associate a logical name (for example, COM1) with a device. This name can be used
by applications to connect to the device.

Arguments:
None
Return Value:

A String containing the DOS device name

6.1.5 _HID (Hardware ID)

This object is used to supply OSPM with the device’s PNP ID or ACPI ID.}

When describing a platform, use of any _HID objects is optional. However, a_HID object must be used to
describe any device that will be enumerated by OSPM. OSPM only enumerates a device when no bus
enumerator can detect the device ID. For example, devices on an ISA bus are enumerated by OSPM. Use
the ADR object to describe devices enumerated by bus enumerators other than OSPM.

Arguments:

None

Return Value:

An Integer or String containing the HID

A _HID object evaluates to either a numeric 32-bit compressed EISA type ID or a string. If a string,
the format must be an alphanumeric PNP or ACPI ID with no asterisk or other leading
characters.

A valid PNP ID must be of the form "AAA#i##" where A is an uppercase letter and # is a hex digit.
A valid ACPI ID must be of the form "NNNN####" where N is an uppercase letter or a digit

1. PNP ID and ACPI ID Registry is at http://www.uefi.org/PNP_ACPI_Registry.

UEFI Forum, Inc. January 2019 Page 346

ACPI Specification, Version 6.3 Device Configuration

('0'-'9') and # is a hex digit. This specification reserves the string "ACPI" for use only with
devices defined herein. It further reserves all strings representing 4 HEX digits for exclusive
use with PCl-assigned Vendor IDs.

Example ASL:
Name (_HID, EISAID ("'PNPOCOC™)) // Control-Method Power Button
Name (_HID, EISAID ("'INT0800™)) // Firmware Hub
Name (_HID, "ACPI0003"™) // AC adapter device
Name (_HID, "MSFT0003'™) // Vendor-defined device
Name (_HID, ""80860003') // PCl-assigned device identifier

6.1.6 _HRV (Hardware Revision)

This object is used to supply OSPM with the device’s hardware revision. The use of HRV is optional.
Arguments:

None

Return Value:

An Integer (DWORD) containing the hardware revision number

Example ASL:
Name (_HRV, 0x0003)// Revision number 3 of this hardware device

6.1.7 _MLS (Multiple Language String)

The _MLS object provides OSPM a human readable description of a device in multiple languages. This
information may be provided to the end user when the OSPM is unable to get any other information
about this device. Although this functionality is also provided by the _STR object, MLS expands that
functionality and provides vendors with the capability to provide multiple strings in multiple languages.
The _MLS object evaluates to a package of packages. Each sub-package consists of a Language identifier
and corresponding unicode string for a given locale. Specifying a language identifier allows OSPM to
easily determine if support for displaying the Unicode string is available. OSPM can use this information
to determine whether or not to display the device string, or which string is appropriate for a user’s
preferred locale.

It is assumed that OSPM will always support the primary English locale to accommodate English
embedded in a non-English string, such as a brand name.

If OSPM doesn’t support the specific sub-language ID it may choose to use the primary language ID for
displaying device text.

Arguments:

None

Return Value:

A variable-length Package containing a list of language descriptor Packages as described below.

Return Value Information
Package {

UEFI Forum, Inc. January 2019 Page 347

ACPI Specification, Version 6.3 Device Configuration

LanguageDescriptor[0] // Package

LanguageDescriptor[n] // Package
}

Each Language Descriptor sub-Package contains the elements described below:

Package {
Languageld // String
UnicodeDescription // Buffer
}

Languageld is a string identifying the language. This string follows the format specified in the Internet
RFC 3066 document (Tags for the Identification of Languages). In addition to supporting the existing
strings in RFC 3066, Table 6-191 lists aliases that are also supported.

Table 6-191 Additional Language ID Alias Strings

RFC String Supported Alias String
zh-Hans zh-chs
zh-Hant zh-cht

UnicodeDescription is a Buffer containing a Unicode (UTF-16) string. This string contains the language-
specific description of the device corresponding to the LanguagelD. The Unicode() ASL macro can be used
to create this Buffer.

Example:
Device (XY2Z2) {

Name (_ADR, 0x00020001)

Name (_MLS, Package(Q{(2){*en”, Unicode("’ACME super DVD controller™)}})
}

6.1.8 _PLD (Physical Location of Device)

This optional object is a method that conveys to OSPM a general description of the physical location of a
device’s external connection point. The _PLD may be child object for any ACPI Namespace object the
system wants to describe. This information can be used by system software to describe to the user which
specific connector or device input mechanism may be used for a given task or may need user intervention
for correct operation. The _PLD should only be evaluated when its parent device is present as indicated
by the device’s presence mechanism (i.e. _STA or other)

An externally exposed device connection point can reside on any surface of a system’s housing. The
respective surfaces of a system’s housing are identified by the “Panel” field (described below). The _PLD
method returns data to describe the location of where the device’s connection point resides and a Shape
(described below) that may be rendered at that position. One physical device may have several
connection points. A _PLD describes the offset and rotation of a single device connection point from an
“origin” that resides in the lower left hand corner of its Panel.

All Panel references (Top, Bottom, Right, Left, etc.) are interpreted as though the user is facing the front
of the system. For handheld mobile devices, the front panel is the one holding the display screen, and its

UEFI Forum, Inc. January 2019 Page 348

ACPI Specification, Version 6.3 Device Configuration

origin is in the lower-left corner when the display is viewed in the Portrait orientation. For example, the
Right Panel is the right side of the system as viewed from the front.

All “origin” references for a Panel are interpreted as its lower left corner when the user is facing the
respective Panel. The Top Panel shall be viewed with the system is viewed resting on its Front Panel, and
the Bottom Panel shall be viewed with the system resting on its Back Panel. All other Panels shall be
viewed with the system resting on its Bottom Panel. Refer to Figure 6-29 for more information.

Figure 6-29 System Panel and Panel Origin Positions

Top
Top Panel
Origin
L | Back
— - Panel
&3 Origin
Left 53 9
Panel Front .
i Right
O Panel ©
rigin anel O Panel
o Origin
Origin Bottom
Bottom Panel
Origin

The data bits also assume that if the system is capable of opening up like a laptop that the device may
exist on the base of the laptop system or on the lid. In the case of the latter, the “Lid” bit (described
below) should be set indicating the device connection point is on the lid. If the device is on the lid, the
description describes the device’s connection point location when the system is opened with the lid up. If
the device connection point is not on the lid, then the description describes the device’s connection point
location when the system with the lid closed.

Figure 6-30 Laptop Panel and Panel Origin Positions

Front
Panel (base)
Lid Top Panel

Lid Origin
Front Panel N
Origin N

(base) =00 =

Front Panel

Origin

To render a view of a system Panel, all _PLDs that define the same Panel and Lid values are collected. The
_PLDs are then sorted by the value of their Order field and the view of the panel is rendered by drawing
the shapes of each connection point (in their correct Shape, Color, Horizontal Offset, Vertical Offset,
Width, Height, and Orientation) starting with all Order = 0 _PLDs first. Refer to Figure 6-32 for an
example.

The location of a device connection point may change as a result of the system connecting or
disconnecting to a docking station or a port replicator. As such, Notify event of type 0x09 will cause OSPM
to re-evaluate the _PLD object residing under the particular device notified. If a platform is unable to

UEFI Forum, Inc. January 2019 Page 349

ACPI Specification, Version 6.3 Device Configuration

detect the change of connecting or disconnecting to a docking station or port replicator, a _PLD object
should not be used to describe the device connection points that will change location after such an event.

Arguments:

None

Return Value:

A variable-length Package containing a list of Buffers

This method returns a package containing a single or multiple buffer entries. At least one buffer entry

must be returned using the bit definitions below.

Buffer 0 Return Value

Name Definition DWORD Bit Offset | Bit Length
(DWORD) | Offset (bits)
(Buffer)
Revision The current Revision is 0x2 0 0 0 7
Ignore Color If this bit is set, the Color field is ignored, as |0 7 7 1

the color is unknown.

Color 24-bit RGB value for the color of the device |0 8 8 24
connection point.

Bits [15:8]=red value
Bits [23:16]=green value
Bits [31:24]=blue value

Width Width of the widest point of the device 1 0 32 16
connection point, in millimeters

Height Height of the tallest point of the device 1 16 48 16
connection point, in millimeters

User Visible Set if the device connection point can be 2 0 64 1
seen by the user without disassembly.

Dock Set if the device connection point resides in | 2 65 1
a docking station or port replicator.

Lid Set if this device connection point resides on | 2 66 1
the lid of laptop system.

UEFI Forum, Inc. January 2019 Page 350

ACPI Specification, Version 6.3

Device Configuration

point resides.

Panel Describes which panel surface of the 67 3
system’s housing the device connection
point resides on.
0-Top
1 - Bottom
2 — Left
3 —Right
4 —Front
5 —Back
6 — Unknown (Vertical Position and
Horizontal Position will be ignored)
Vertical 0 - Upper 70 2
Position on 1 - Center
the panel
where the 2~ Lower
device
connection
point resides.
Horizontal 72 2
Position on
the panel
where the
device
connection

UEFI Forum, Inc.

January 2019

Page 351

ACPI Specification, Version 6.3

Device Configuration

Name Definition DWORD Bit Offset @ Bit Length
(DWORD) @ Offset (bits)
(Buffer)
Shape Describes the shape of the device 2 74 4
connection point. The Width and Height
fields may be used to distort a shape, e.g. A
Round shape will look like an Oval shape if
the Width and Height are not equal. And a
Vertical Rectangle or Horizontal Rectangle
may look like a square if Width and Height
are equal. Refer to Figure 6-31.
0-Round
1-0val
2 —Square
3 — Vertical Rectangle
4 — Horizontal Rectangle
5 — Vertical Trapezoid
6 — Horizontal Trapezoid
7 — Unknown — Shape rendered as a
Rectangle with dotted lines
8 — Chamfered
15:9 — Reserved
Group if Set, indicates vertical grouping, otherwise |2 78 1
Orientation horizontal is assumed.
Group Token | Unique numerical value identifying a group. | 2 79 1
Group Identifies this device connection point’s 2 87 8
Position position in the group (i.e. 15, 2"9)
Bay Set if describing a device in a bay or if device | 2 95 1
connection point is a bay.
Ejectable Set if the device is ejectable. Indicates 2 96 1
ejectability in the absence of _EJx objects.
OSPM OSPM Ejection required: Set if OSPM needs |2 97 1
Ejection to be involved with ejection process. User-
required operated physical hardware ejection is not
possible.
Cabinet For single cabinet system, this field is always | 2 98 8
Number 0.
Card Cage For single card cage system, this field is 2 106 8
Number always 0.
UEFI Forum, Inc. January 2019 Page 352

ACPI Specification, Version 6.3

Device Configuration

Name

Definition

DWORD

Bit Offset
(DWORD)

Bit Length
Offset (bits)
(Buffer)

reference

if Set, this _PLD defines a “reference” shape
that is used to help orient the user with
respect to the other shapes when rendering
_PLDs.

114 1

Rotation

Rotates the Shape clockwise in 45 degree
steps around its origin where:

0-0°
1-45°
2-90°
3-135°
4 -180°
5-225°
6-—270°
7-315°

115 4

Order

Identifies the drawing order of the
connection point described by a_PLD. Order
= 0 connection points are drawn before
Order = 1 connection points. Order = 1
before Order = 2, and so on. Order = 31
connection points are drawn last. Order
should always start at 0 and be
consecutively assigned.

119 5

Reserved

Reserved, must contain a value of 0.

124 4

Vertical Offset

Offset of Shape Origin from Panel Origin (in
mm). A value of OxFFFFFFFF indicates that
this field is not supplied.

128 16

Horizontal
Offset

Offset of Shape Origin from Panel Origin (in
mm). A value of OxFFFFFFFF indicates that
this field is not supplied.

144 16

UEFI Forum, Inc.

January 2019

Page 353

ACPI Specification, Version 6.3 Device Configuration

Note: All additional buffer entries returned may contain OEM-specific data, but must begin in a {GUID,
data} pair. These additional data may provide complimentary physical location information
specific to certain systems or class of machines.

Shape = Round/Oval Shape = Square/

Vertical Rectangle/ Shape = Trapezoid
Horizontal Rectangle/

Unknown
FWidtM

Height I

i
1

FW'dth ‘ re——Width—
[{ |
Origin: Lower, Left

Origin: Lower, Left Origin: Lower, Left

Shape = Chamfered

Rotation = 0 for all
The Origin of a shape is always in displayed reference
rigi pe is always i Height I playe

the in lower left corner. shapes
/ » Width
Origin: Lower, Left

Figure 6-31 Default Shape Definitions

Buffers 1 — N Return Value (Optional):
Buffer 1 Bit [127:0] - GUID 1

Buffer 2 Bit [127:0] — Data 1
Buffer 3 Bit [127:0] — GUID 2
Buffer 4 Bit [127:0] — Data 2

Figure 6-32 provides an example of a rendering of the external device connection points that may be
conveyed to the user by _PLD information. Note that three _PLDs (System Back Panel, Power Supply, and
Motherboard (MB) Connector Area) that are associated with the System Bus tree (_SB) object. Their
Reference flag is set indicating that are used to provide the user with visual queues for identifying the
relative locations of the other device connection points.

The connection points (C1 through C16) are defined by _PLD objects found in the System bus tree.

The following connection points all have their Panel and Lid fields set to Back and 0, respectively. And the
Reference flag of the System Back Panel, Power Supply, and MB Connector Area connection points are
set to 1. in this example are used to render Figure 6-32:

UEFI Forum, Inc. January 2019 Page 354

ACPI Specification, Version 6.3

Table 6-192 PLD Back Panel Example Settings

Device Configuration

s g [*]°|~[§] £ |g|&| g | 5] ¢]z¢2
3) 2 a = = 3 2 s &
® 2 = = ® = = &
o - s | 3 8
= o S
o =
=)
=
Back Yes 0 0 0 2032 4318 0 0 V Rect 1 0
Panel
MB Yes 0 0 0 445 1556 1588 | 127 V Rect 2 0
Conn
area
Power | Yes 0 0 0 1524 889 3302 127 H Rect 2 0
Supply
USB No 0 0 0 125 52 2223 | 159 H Rect C1 3 90
Port 1
USB No 0 0 0 125 52 2223 | 254 H Rect C2 3 90
Port 2
USB No 0 0 0 125 52 2223 | 350 H Rect Cc3 3 90
Port 3
USB No 0 0 0 125 52 2223 | 445 H Rect c4 3 90
Port 4
USB No 0 0 0 125 52 2007 | 159 H Rect C5 3 90
Port 5
USB No 0 0 0 125 52 2007 | 254 H Rect Cé 3 90
Port 6
Etherne | No 0 0 0 157 171 2007 | 350 V Rect c7 3 90
t
Audiol1 | No FF FF FF 127 127 1945 | 151 Round C8 3 90
Audio 2 | No 151 | 247 | 127 | 127 127 1945 | 286 Round C9 3 90
Audio 3 | No 0 0 0 127 127 1945 | 427 Round Cc10 3 90
SPDIF No 0 0 0 112 126 1756 | 176 V Trap Cl11 3 90
Audio 4 | No 0 FF |0 127 127 1765 | 288 Round C12 3 90
Audio 5 | No 0 0 FF 127 127 1765 | 429 Round C13 3 90
SATA No 0 0 0 239 88 3091 | 159 H Rect Cl4 3 90
1394 No 0 0 0 112 159 2890 | 254 H Trap C15 3 0
Coax No 0 0 0 159 159 2842 | 143 Round Cl6 3 90
PClI 1 No 0 0 0 1016 127 127 127 H Rect 1 3 0
UEFI Forum, Inc. January 2019 Page 355

ACPI Specification, Version 6.3

Device Configuration

K ° £ 5 | 8] 3| 2] 2] ¢ | 2
3 o = [=3 = 3 8 = y
® a =) = ® =2 = &
o - E S)
= o 5
) =
= o
S
PCI 2 No 0 0 0 1016 127 334 127 HRect |2 3 0
PCI3 No 0 0 0 1016 127 540 127 HRect |3 3 0
PCl 4 No 0 0 0 1016 127 747 127 HRect |4 3 0
PCI5 No 0 0 0 1016 127 953 127 HRect |5 3 0
PCI 6 No 0 0 0 1016 127 1159 | 127 HRect |6 3 0
PCI7 No 0 0 0 1016 127 1366 | 127 HRect |7 3 0

Note that the origin is in the lower left hand corner of the Back Panel, where positive Horizontal and
Vertical Offset values are to the right and up, respectively.

UEFI Forum, Inc.

Figure 6-32 PLD Back Panel Rendering

/E)wer Supply
A
Votherboard
connector area
EEEE
o]
Vertical /ECI Backpanels
Offset
rienen)
\ 7 |
\ 6 | System
\ 5 | Backpanel
\ 4 |
\ 3 |
\ 2 |
\ 1 |
2l
Origin 0 Horizontal Offset

January 2019

Page 356

ACPI Specification, Version 6.3 Device Configuration

6.1.9 _SUB (Subsystem ID)

This object is used to supply OSPM with the device's Subsystem ID. The use of _SUB is optional.
Arguments:

None

Return Value:

A String containing the SUB

A _SUB object evaluates to a string and the format must be a valid PNP or ACPI ID with no asterisk or
other leading characters.

See the definition of _HID (Section 6.1.5) for the definition of PNP and ACPI ID strings.

Example ASL:
Name (_SUB, "MSFT3000')// Vendor-defined subsystem
6.1.10 _STR (String)

The _STR object evaluates to a Unicode string that describes the device or thermal zone. It may be used
by an OS to provide information to an end user. This information is particularly valuable when no other
information is available.

Arguments:
None
Return Value:

A Buffer containing a Unicode string that describes the device

Example ASL:

Device (XY2) {
Name (_ADR, 0x00020001)
Name (_STR, Unicode (“'ACME super DVD controller™))

}

Then, when all else fails, an OS can use the info included in the _STR object to describe the hardware to
the user.

6.1.11 _SUN (Slot User Number)

_SUN is an object that evaluates to the slot-unique ID number for a slot. _SUN is used by OSPM Ul to
identify slots for the user. For example, this can be used for battery slots, PCl slots, PCMCIA slots, or
swappable bay slots to inform the user of what devices are in each slot. _SUN evaluates to an integer that
is the number to be used in the user interface.

Arguments:

None
Return Value:

An Integer containing the slot’s unique ID

UEFI Forum, Inc. January 2019 Page 357

ACPI Specification, Version 6.3 Device Configuration

The _SUN value is required to be unique among the slots of the same type. It is also recommended that
this number match the slot number printed on the physical slot whenever possible.

6.1.12 _UID (Unique ID)

This object provides OSPM with a logical device ID that does not change across reboots. This object is
optional, but is required when the device has no other way to report a persistent unique device ID. The
__UID must be unique across all devices with either a common _HID or _CID. This is because a device
needs to be uniquely identified to the OSPM, which may match on either a _HID or a _CID to identify the
device. The uniqueness match must be true regardless of whether the OSPM uses the _HID or the _CID.
OSPM typically uses the unique device ID to ensure that the device-specific information, such as network
protocol binding information, is remembered for the device even if its relative location changes. For most
integrated devices, this object contains a unique identifier.

A _UID object evaluates to either a numeric value or a string.

Arguments:

None
Return Value:

An Integer or String containing the Unique ID

6.2 Device Configuration Objects

This section describes objects that provide OSPM with device specific information and allow OSPM to
configure device operation and resource utilization.

OSPM uses device configuration objects to configure hardware resources for devices enumerated via
ACPI. Device configuration objects provide information about current and possible resource
requirements, the relationship between shared resources, and methods for configuring hardware
resources.

Note: these objects must only be provided for devices that cannot be configured by any other hardware
standard such as PCl, PCMCIA, and so on.

When OSPM enumerates a device, it calls _PRS to determine the resource requirements of the device. It
may also call _CRS to find the current resource settings for the device. Using this information, the Plug
and Play system determines what resources the device should consume and sets those resources by
calling the device’s _SRS control method.

In ACPI, devices can consume resources (for example, legacy keyboards), provide resources (for example,
a proprietary PCl bridge), or do both. Unless otherwise specified, resources for a device are assumed to
be taken from the nearest matching resource above the device in the device hierarchy.

Some resources, however, may be shared amongst several devices. To describe this, devices that share a
resource (resource consumers) must use the extended resource descriptors (0x7-0xA) described in
Section 6.4.3, “Large Resource Data Type.” These descriptors point to a single device object (resource
producer) that claims the shared resource in its _PRS. This allows OSPM to clearly understand the
resource dependencies in the system and move all related devices together if it needs to change
resources. Furthermore, it allows OSPM to allocate resources only to resource producers when devices
that consume that resource appear.

UEFI Forum, Inc. January 2019 Page 358

ACPI Specification, Version 6.3 Device Configuration

The device configuration objects are listed in Table 6-193

Table 6-193 Device Configuration Objects

Object Description

_CCA Cache Coherency Attribute -- specifies whether a device and its descendants support hardware
managed cache coherency.

_CDM Object that specifies a clock domain for a processor.

_CRS Object that specifies a device’s current resource settings, or a control method that generates such an
object.

_DIS Control method that disables a device.

_DMA Object that specifies a device’s current resources for DMA transactions.

_DSD Object that evaluates to device specific information

_FIX Object used to provide correlation between the fixed-hardware register blocks defined in the FADT

and the devices that implement these fixed-hardware registers.

_GSB Object that provides the Global System Interrupt Base for a hot-plugged I/O APIC device.
_HMA Object that provides updated HMAT structures.
_HPP Object that specifies the cache-line size, latency timer, SERR enable, and PERR enable values to be

used when configuring a PCl device inserted into a hot-plug slot or initial configuration of a PCI
device at system boot.

_HPX Object that provides device parameters when configuring a PCI device inserted into a hot-plug slot
or initial configuration of a PCI device at system boot. Supersedes HPP.

_MAT Object that evaluates to a buffer of Interrupt Controller Structures.

_0scC An object OSPM evaluates to convey specific software support / capabilities to the platform allowing
the platform to configure itself appropriately.

_PRS An object that specifies a device’s possible resource settings, or a control method that generates
such an object.

_PRT Object that specifies the PCl interrupt routing table.

_PXM Object that specifies a proximity domain for a device.

_SL Object that provides updated distance information for a system locality.
_SRS Control method that sets a device’s settings.

6.2.1 _CDM (Clock Domain)

This optional object conveys the processor clock domain to which a processor belongs. A processor clock
domain is a unique identifier representing the hardware clock source providing the input clock for a given
set of processors. This clock source drives software accessible internal counters, such as the Time Stamp
Counter, in each processor. Processor counters in the same clock domain are driven by the same
hardware clock source. In multi-processor platforms that utilize multiple clock domains, such counters
may exhibit drift when compared against processor counters on different clock domains.

UEFI Forum, Inc. January 2019 Page 359

ACPI Specification, Version 6.3 Device Configuration

The _CDM object evaluates to an integer that identifies the device as belonging to a specific clock
domain. OSPM assumes that two devices in the same clock domain are connected to the same hardware
clock.

Arguments:

None
Return Value:
An Integer (DWORD) containing a clock domain identifier.

In the case the platform does not convey any clock domain information to OSPM via the SRAT or the
__CDM object, OSPM assumes all logical processors to be on a common clock domain. If the platform
defines _CDM object under a logical processor then it must define _CDM objects under all logical
processors whose clock domain information is not provided via the SRAT.

6.2.2 _CRS (Current Resource Settings)

This required object evaluates to a byte stream that describes the system resources currently allocated to
a device. Additionally, a bus device must supply the resources that it decodes and can assign to its
children devices. If a device is disabled, then _CRS returns a valid resource template for the device, but
the actual resource assignments in the return byte stream are ignored. If the device is disabled when
_CRS is called, it must remain disabled.

The format of the data contained in a _CRS object follows the formats defined in Section 6.4 “Resource

Data Types for ACPI,” a compatible extension of the formats specified in the PNPBIOS specification.? The
resource data is provided as a series of data structures, with each of the resource data structures having
a unique tag or identifier. The resource descriptor data structures specify the standard PC system
resources, such as memory address ranges, I/0 ports, interrupts, and DMA channels.

Arguments:
None
Return Value:

A Buffer containing a resource descriptor byte stream

6.2.3 _DIS (Disable)

This control method disables a device. When the device is disabled, it must not be decoding any
hardware resources. Prior to running this control method, OSPM will have already put the device in the
D3 state.

When a device is disabled via the _DIS, the _STA control method for this device must return with the
Disabled bit set.

Arguments:

None

2. Plug and Play BIOS Specification Version 1.0A, May 5, 1994, Compaq Computer Corp., Intel Corp., Phoenix
Technologies Ltd.

UEFI Forum, Inc. January 2019 Page 360

ACPI Specification, Version 6.3 Device Configuration

Return Value:

None

6.2.4 _DMA (Direct Memory Access)

This optional object returns a byte stream in the same format as a _CRS object. _DMA is only defined
under devices that represent buses. It specifies the ranges the bus controller (bridge) decodes on the
child-side of its interface. (This is analogous to the _CRS object, which describes the resources that the
bus controller decodes on the parent-side of its interface.) Any ranges described in the resources of a
_DMA object can be used by child devices for DMA or bus master transactions.

The _DMA obiject is only valid if a _CRS object is also defined. OSPM must re-evaluate the _DMA object
after an _SRS object has been executed because the _DMA ranges resources may change depending on
how the bridge has been configured.

If the DMA object is not present for a bus device, the OS assumes that any address placed on a bus by a
child device will be decoded either by a device on the bus or by the bus itself, (in other words, all address
ranges can be used for DMA).

For example, if a platform implements a PCl bus that cannot access all of physical memory, it has a _DMA
object under that PCl bus that describes the ranges of physical memory that can be accessed by devices
on that bus.

A _DMA object is not meant to describe any “map register” hardware that is set up for each DMA
transaction. It is meant only to describe the DMA properties of a bus that cannot be changed without
reevaluating the _SRS method.

Arguments:

None

Return Value:

A Buffer containing a resource descriptor byte stream
_DMA Example ASL:

Device(BUSO)
{

//

// The _DMA method returns a resource template describing the
// addresses that are decoded on the child side of this

// bridge. The contained resource descriptors thus indicate
// the address ranges that bus masters living below this

// bridge can use to send accesses through the bridge toward a
// destination elsewhere in the system (e.g. main memory).

//

// In our case, any bus master addresses need to fall between
// 0 and 0x80000000 and will have 0x200000000 added as they
// cross the bridge. Furthermore, any child-side accesses

// falling into the range claimed in our _CRS will be

// interpreted as a peer-to-peer traffic and will not be

// forwarded upstream by the bridge.

UEFI Forum, Inc. January 2019 Page 361

ACPI Specification, Version 6.3

}

//

// Our upstream address decoder will only claim one range from
// 0x20000000 to Ox5FFFFFff in the _CRS. Therefore _DMA

// should return two QWORDMemory descriptors, one describing
// the range below and one describing the range above this

// "peer-to-peer” address range.

//
Method(_DMA, ResourceTemplate()
{

QWORDMemory (
ResourceConsumer,
PosDecode, // _DEC
MinFixed, // MIF
MaxFixed, // _MAF
Prefetchable, // _MEM
ReadWrite, // _RW
0, // _GRA
0, // _MIN
OX1FFFFfFfT, // _MAX
0x200000000, // _TRA
0x20000000, // _LEN

)

QWORDMemory (
ResourceConsumer,
PosDecode, // _DEC
MinFixed, // MIF
MaxFixed, // _MAF
Prefetchable, // _MEM
ReadWrite, // _RW
0, // _GRA
0x60000000, // _MIN
OX7FFFFfFfT, // _MAX
0x200000000, // _TRA
0x20000000, // _LEN

)

1))

6.2.5 _DSD (Device Specific Data)

This optional object is used to provide device drivers (via OSPM) with additional device properties and
information. _DSD returns a variable-length package containing a list of Device Data Descriptor structures
each consisting of a UUID (see Section 5.2.4) and a package (Data Structure). The UUID is all that is
needed to define the Data Structure. The UUID itself may place a restriction based on _HID or the

UEFI Forum, Inc. January 2019

Device Configuration

Page 362

ACPI Specification, Version 6.3 Device Configuration

optional _CID, _CLS, HRV, _SUB objects, or _HID and one of those optional objects. However, it also may
not place such a restriction.

New UUIDs may be created by OEMs and IHVs or other interface or device governing bodies (e.g. the PCI
SIG or the UEFI Forum), as long as the UUID is different from other published UUIDs.

The list of well-known UUIDs allocated for _DSD and the definition of data formats associated with them
is available in an auxiliary document hosted on the UEFI Forum: http://www.uefi.org/acpi.

Arguments:

None

Return Value:
A variable-length Package containing a list of Device Data Descriptor structures as described below.
Return Value Information

Package ()
{

Device Data Descriptor 0

Device Data Descriptor n

}

Each Device Data Descriptor structure consists of two elements, as follows:

uulID // Buffer (16 bytes)
Data Structure // Package (depending on UUID)

UUID uniquely determines the format of Data Structure.

Data Structure is a set of device specific data items the format of which is uniquely determined by the
UUID and the meaning of which is uniquely determined by the UUID possibly in combination with a PNP
or ACPI device ID.

Multiple Device Data Descriptor structures with the same UUID are not permitted.

_DSD must return the same data each time it is evaluated. Firmware should not expect it to be evaluated
every time (in case it is implemented as a method).

UEFI Forum, Inc. January 2019 Page 363

http://www.uefi.org/acpi

ACPI Specification, Version 6.3 Device Configuration

Examples:

Note: The UUID used in the following examples is assumed to define the data format for Data Structure
as a list of packages of length 2 (Properties) whose first element (Key) must be a String and the
second element is a Value associated with that key. The set of valid Keys and the format and
interpretation of the Values associated with them is then dependent on the PNP or ACPI device ID
of the device.

Device (MDEV) {
Name (_HID, “PNP####7)

Name (_DSD, Package () {
ToUUID("'daffd814-6eba-4d8c-8a91-bc9bbf4aa30l™),
Package () {

Package (2) {...}.,// Property 1

ééékage (2) {...}// Property n
}
1))
}

//
// PWM controller with two pins that can be driven and a device using
// those pins with the periods of 5000000 and 4500000 nanoseconds,
// respectively.
//
Device (_SB.PCIO.PWM) {
Name (_HID, “PNP####)

Name (_DSD, Package () {
ToUUID("'daffd814-6eba-4d8c-8a91-bc9bbf4aa30nl™),
Package () {

Package (2) {"#pwm-cells", 2}
}
1))
}

Device (_SB.PCI0.BL) {
Name (_HID, “ACPI####™)

Name (_DSD, Package () {
ToUUID("'daffd814-6eba-4d8c-8a91-bc9bbf4aa301™),
Package () {

Package (2) {
"pwms",
Package () {
_SB.PCI0.PWM, 0, 5000000,
_SB.PCIO.PWM, 1, 4500000

UEFI Forum, Inc. January 2019 Page 364

http://git-amr-4.devtools.intel.com/gerrit/gitweb?p=mwesterb-linux.git;a=blob;f=Documentation/acpi/properties.txt;h=1a0aa514a0c096e4f0ec64aa799845f9e4d71f17;hb=a34670c12e90be4daca053d3c2dc9222ae236919#l227
http://git-amr-4.devtools.intel.com/gerrit/gitweb?p=mwesterb-linux.git;a=blob;f=Documentation/acpi/properties.txt;h=1a0aa514a0c096e4f0ec64aa799845f9e4d71f17;hb=a34670c12e90be4daca053d3c2dc9222ae236919#l228
http://git-amr-4.devtools.intel.com/gerrit/gitweb?p=mwesterb-linux.git;a=blob;f=Documentation/acpi/properties.txt;h=1a0aa514a0c096e4f0ec64aa799845f9e4d71f17;hb=a34670c12e90be4daca053d3c2dc9222ae236919#l233
http://git-amr-4.devtools.intel.com/gerrit/gitweb?p=mwesterb-linux.git;a=blob;f=Documentation/acpi/properties.txt;h=1a0aa514a0c096e4f0ec64aa799845f9e4d71f17;hb=a34670c12e90be4daca053d3c2dc9222ae236919#l234
http://git-amr-4.devtools.intel.com/gerrit/gitweb?p=mwesterb-linux.git;a=blob;f=Documentation/acpi/properties.txt;h=1a0aa514a0c096e4f0ec64aa799845f9e4d71f17;hb=a34670c12e90be4daca053d3c2dc9222ae236919#l239

ACPI Specification, Version 6.3 Device Configuration

}
}

b
}

//
// SPI controller using a fixed frequency clock represented by the CLKO
// device object.
//
Device (_SB_.PCIO) {
Device (CLKO) {
Name (_HID, “PNP####")

Name (_DSD, Package () {
ToUUID("'daffd814-6eba-4d8c-8a91-bc9bbf4aa30l™),
Package () {

Package (2) {"#clock-cells™, 0},
Package (2) {"clock-frequency', 120000000}
}
1)
}

Device (SPI0) {
Name (_HID, “PNP####")

Name (_DSD, Package () {
ToUUID("'daffd814-6eba-4d8c-8a91-bc9bbf4aa30l™),
Package () {

Package (2) {'clocks"™, Package () {1, ~CLKO}}
}
1)

L
}

6.2.6 _FIX (Fixed Register Resource Provider)

This optional object is used to provide a correlation between the fixed-hardware register blocks defined
in the FADT and the devices in the ACPI namespace that implement these fixed-hardware registers. This
object evaluates to a package of Plug and Play-compatible IDs (32-bit compressed EISA type IDs) that
correlate to the fixed-hardware register blocks defined in the FADT. The device under which _FIX appears
plays a role in the implementation of the fixed-hardware (for example, implements the hardware or
decodes the hardware’s address). _FIX conveys to OSPM whether a given device can be disabled,
powered off, or should be treated specially by conveying its role in the implementation of the ACPI fixed-
hardware register interfaces. This object takes no arguments.

The CRS object describes a device’s resources. That _CRS object may contain a superset of the resources
in the FADT, as the device may actually decode resources beyond what the FADT requires. Furthermore,

UEFI Forum, Inc. January 2019 Page 365

http://git-amr-4.devtools.intel.com/gerrit/gitweb?p=mwesterb-linux.git;a=blob;f=Documentation/acpi/properties.txt;h=1a0aa514a0c096e4f0ec64aa799845f9e4d71f17;hb=a34670c12e90be4daca053d3c2dc9222ae236919#l239
http://git-amr-4.devtools.intel.com/gerrit/gitweb?p=mwesterb-linux.git;a=blob;f=Documentation/acpi/properties.txt;h=1a0aa514a0c096e4f0ec64aa799845f9e4d71f17;hb=a34670c12e90be4daca053d3c2dc9222ae236919#l241

ACPI Specification, Version 6.3 Device Configuration

in a machine that performs translation of resources within 1/O bridges, the processor-relative resources
in the FADT may not be the same as the bus-relative resources in the _CRS.

Arguments:

None
Return Value:
A variable-length Package containing a list of Integers, each containing a PNP ID

Each of fields in the FADT has its own corresponding Plug and Play ID, as shown below:

PNPOC20 - SMI_CMD

PNPOC21 - PMla_EVT BLK / X_ PMla_EVT BLK
PNPOC22 - PM1b_EVT BLK / X_PM1b_EVT_BLK
PNPOC23 - PMla_CNT_BLK / X_PMla CNT_BLK
PNPOC24 - PM1b_CNT BLK / X_ PM1b_CNT BLK
PNPOC25 - PM2_CNT BLK / X_ PM2_CNT_BLK
PNPOC26 - PM_TMR_BLK / X_ PM_TMR_BLK
PNPOC27 - GPEO_BLK / X_GPEO_BLK

PNPOC28 - GPE1_BLK / X_ GPE1_BLK

PNPOBOO — FIXED_RTC

PNPOBO1 — FIXED_RTC

PNPOBO2 — FIXED_RTC

Example ASL for _FIX usage:
Scope(_SB) {

Device(PCI0) { // Root PCl Bus

Name(_HID, EISAID(*'PNPOA0O3™)) // Need _HID for root device

Method (_CRS,0){ // Need current resources for root device
// Return current resources for root bridge 0

}

Name(_PRT, Package(){ // Need PCI IRQ routing for PCIl bridge
// Package with PCI IRQ routing table information

1)

Name(_FIX, Package(1) {

EISAID(""PNPOC25™)} // PM2 control 1D
)
Device (PX40) { // ISA

Name (_ADR,0x00070000)
Name(_FIX, Package(l) {
EISAID('PNPOC20")} // SM1 command port
)
Device (NS17) { // NS17 (Nat. Semi 317, an ACPI part)
Name(_HID, EISAID('PNP0OC02'))
Name(_FIX, Package(3) {
EISAID('PNPOC22'), // PM1b event ID
EISAID("'PNPOC24'), // PM1lb control ID
EISAID('PNPOC28')} // GPE1l 1D

UEFI Forum, Inc. January 2019 Page 366

ACPI Specification, Version 6.3 Device Configuration

} // end PX40

Device (PX43) { // PM Control
Name (_ADR,0x00070003)
Name(_FIX, Package(4) {

EISAID("'PNPOC21™), // PMla event ID
EISAID("'PNPOC23™), // PMla control 1D
EISAID("'PNPOC26™), // PM Timer 1D
EISAID("'PNPOC27'")} // GPEO ID
)
} // end PX43
} // end PCIO
} // end scope SB

6.2.7 _GSB (Global System Interrupt Base)

_GSB is an optional object that evaluates to an integer that corresponds to the Global System Interrupt
Base for the corresponding I/O APIC device. The I/O APIC device may either be bus enumerated (e.g. as a
PCl device) or enumerated in the namespace as described in Section 9.17,”1/0 APIC Device”. Any I/O APIC
device that either supports hot-plug or is not described in the MADT must contain a _GSB object.

If the 1/O APIC device also contains a _MAT object, OSPM evaluates the _GSB object first before
evaluating the _MAT object. By providing the Global System Interrupt Base of the I/O APIC, this object
enables OSPM to process only the _MAT entries that correspond to the I/0O APIC device. See

Section 6.2.10, “_MAT (Multiple APIC Table Entry)”. Since _MAT is allowed to potentially return all the
MADT entries for the entire platform, GSB is needed in the I/O APIC device scope to enable OSPM to
identify the entries that correspond to that device.

If an 1/O APIC device is activated by a device-specific driver, the physical address used to access the I/0
APIC will be exposed by the driver and cannot be determined from the _MAT object. In this case, OSPM
cannot use the _MAT object to determine the Global System Interrupt Base corresponding to the I/O
APIC device and hence requires the _GSB object.

The Global System Interrupt Base is a 64-bit value representing the corresponding I/OAPIC device as
defined in Section 5.2.13, “Global System Interrupts”.

Arguments:

None

Return Value:

An Integer containing the interrupt base

Example ASL for _GSB usage for a non-PCl based I/O APIC Device:

Scope(_SB) {

Device(APIC) { // 1/0 APIC Device
Name(_HID, “ACP10009™) // ACPI 1D for 1/0 APIC
Name(_CRS, ResourceTemplate()
{.} // only one resource pointing to 1/0 APIC register base
Method(_GSB){

UEFI Forum, Inc. January 2019 Page 367

ACPI Specification, Version 6.3 Device Configuration

Return (0x10) // Global System Interrupt Base for 1/0 APIC starts at 16

}
} // end APIC

} // end scope SB
Example ASL for _GSB usage for a PCl-based 1/0O APIC Device:

Scope(_SB) {

Device(PCI0) // Host bridge
Name(_HID, EISAID(*'PNPOA03™)) // Need _HID for root device
Device(PCIl) { // 1/0 APIC PCI Device

Name (_ADR,0x00070000)
Method(_GSB){
Return (0x18) // Global System Interrupt Base for 1/0 APIC starts at 24

}

} // end PCI1
} // end PCI0
} // end scope SB

6.2.8 _HPP (Hot Plug Parameters)

This optional object evaluates to a package containing the cache-line size, latency timer, SERR enable,
and PERR enable values to be used when configuring a PCI device inserted into a hot-plug slot or for
performing configuration of a PCl devices not configured by the platform boot firmware at system boot.
The object is placed under a PClI bus where this behavior is desired, such as a bus with hot-plug slots.
_HPP provided settings apply to all child buses, until another _HPP object is encountered.

Arguments:

None
Return Value:

A Package containing the Integer hot-plug parameters
Example:

Method (_HPP, 0) {
Return (Package(4){

0x08, // CacheLineSize in DWORDS
0x40, // LatencyTimer in PCl clocks
0x01, // Enable SERR (Boolean)
0x00 // Enable PERR (Boolean)
b))
}
Table 6-194 HPP Package Contents
Field Object Type Definition
Cache-line size Integer Cache-line size reported in number of DWORDs.

UEFI Forum, Inc. January 2019 Page 368

ACPI Specification, Version 6.3 Device Configuration

Latency timer Integer Latency timer value reported in number of PCI clock cycles.

Enable SERR Integer When set to 1, indicates that action must be performed to enable SERR
in the command register.

Enable PERR Integer When set to 1, indicates that action must be performed to enable PERR
in the command register.

6.2.8.1 Example: Using _HPP
Scope(_SB) {

Device(PCIO0) { // Root PCI Bus
Name(_HID, EISAID("PNPOA0O3™)) // _HID for root device
Method (_CRS,0){ // Need current resources for root dev
// Return current resources for root bridge 0
}
Name(_PRT, Package(){ // Need PCl IRQ routing for PCl bridge
// Package with PCI IRQ routing table information
1))
Device (P2P1) { // First PCI-to-PCl bridge (No Hot Plug slots)

Name(_ADR,0x000C0000) // Device#Ch, Func#0 on bus PCIO
Name(_PRT, Package(){ // Need PCl IRQ routing for PCI bridge
// Package with PCI IRQ routing table information

1))
} // end P2P1

Device (P2P2) { // Second PCI-to-PCl bridge (Bus contains Hot plug slots)
Name (_ADR, 0xO0O0E0O000) // Device#Eh, Func#0 on bus PCIO
Name(_PRT, Package(){ // Need PCl IRQ routing for PCI bridge
// Package with PCI IRQ routing table information

1)
Name(_HPP, Package(){0x08,0x40, 0x01, 0x00})

// Device definitions for Slot 1- HOT PLUG SLOT

Device (S1F0) { // Slot 1, Func#0 on bus P2P2
Name (_ADR,0x00020000)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S1F1) { // Slot 1, Func#l on bus P2P2
Name(_ADR,0x00020001)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S1F2) { // Slot 1, Func#2 on bus P2P2
Name(_ADR,0x000200 02)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S1F3) { // Slot 1, Func#3 on bus P2P2

Name (_ADR,0x00020003)
Method(_EJO, 1) { // Remove all power to device}

UEFI Forum, Inc. January 2019 Page 369

UEFI Forum, Inc.

ACPI Specification, Version 6.3

}
Device (S1F4) { // Slot 1, Func#4 on

Name (_ADR, 0x00020004)

Method(_EJO, 1) { // Remove all power

}
Device (S1F5) { // Slot 1, Func#5 on
Name (_ADR, 0x00020005)

Method(_EJO, 1) { // Remove all power

}
Device (S1F6) { // Slot 1, Func#6 on
Name (_ADR, 0x00020006)

Method(_EJO, 1) { // Remove all power

}
Device (S1F7) { // Slot 1, Func#7 on
Name (_ADR,0x00020007)

Method(_EJO, 1) { // Remove all power

}

// Device definitions for Slot 2- HOT PLUG
Device (S2F0) { // Slot 2, Func#0 on
Name(_ADR,0x00030000)

Method(_EJO, 1) { // Remove all power

}
Device (S2F1) { // Slot 2, Func#l on
Name (_ADR,0x00030001)

Method(_EJO, 1) { // Remove all power

}
Device (S2F2) { // Slot 2, Func#2 on
Name (_ADR, 0x00030002)

Method(_EJO, 1) { // Remove all power

}
Device (S2F3) { // Slot 2, Func#3 on
Name (_ADR, 0x00030003)

Method(_EJO, 1) { // Remove all power

}
Device (S2F4) { // Slot 2, Func#4 on
Name (_ADR,0x00030004)

Method(_EJO, 1) { // Remove all power

}
Device (S2F5) { // Slot 2, Func#5 on
Name (_ADR, 0x00030005)

Method(_EJO, 1) { // Remove all power

}
Device (S2F6) { // Slot 2, Func#6 on
Name (_ADR, 0x00030006)

Method(_EJO, 1) { // Remove all power

}
Device (S2F7) { // Slot 2, Func#7 on
Name (_ADR, 0x00030007)

Method(_EJO, 1) { // Remove all power

}

January 2019

bus P2P2
to device}
bus P2P2
to device}
bus P2P2
to device}
bus P2P2
to device}
SLOT

bus P2P2
to device}
bus P2P2
to device}
bus P2P2
to device}
bus P2P2
to device}
bus P2P2
to device}
bus P2P2
to device}
bus P2P2
to device}
bus P2P2

to device}

Device Configuration

Page 370

ACPI Specification, Version 6.3 Device Configuration

} // end P2P2
} // end PCIO
} // end Scope (_SB)

OSPM will configure a PCI device on a card hot-plugged into slot 1 or slot 2, with a cache line size of 32
(Notice this field is in DWORDs), latency timer of 64, enable SERR, but leave PERR alone.

6.2.9 _HPX (Hot Plug Parameter Extensions)

This optional object provides platform-specific information to the OSPM PCI driver component
responsible for configuring PCl, PCI-X, or PCl Express Functions. The information conveyed applies to the
entire hierarchy downward from the scope containing the _HPX object. If another HPX object is
encountered downstream, the settings conveyed by the lower-level object apply to that scope
downward.

OSPM uses the information returned by _HPX to determine how to configure PCl Functions that are hot-
plugged into the system, to configure Functions not configured by the platform firmware during initial
system boot, and to configure Functions any time they lose configuration space settings (e.g. OSPM
issues a Secondary Bus Reset/Function Level Reset or Downstream Port Containment is triggered). The
_HPX object is placed within the scope of a PCl-compatible bus where this behavior is desired, such as a
bus with hot-plug slots. It returns a single package that contains one or more sub-packages, each
containing a single Setting Record. Each such Setting Record contains a Setting Type (INTEGER), a
Revision number (INTEGER) and type/revision specific contents.

The format of data returned by the _HPX object is extensible. The Setting Type and Revision number
determine the format of the Setting Record. OSPM ignores Setting Records of types that it does not
understand. A Setting Record with higher Revision number supersedes that with lower revision number,
however, the _HPX method can return both together, OSPM shall use the one with highest revision
number that it understands. Type 3 records may have multiple records with the same revision or
different revision (refer to the Revision field in Table 6-198. Out of all the Type 3 records, the OSPM shall
determine the highest revision number that it understands and use all Type 3 records with that revision.

_HPX may return multiple types or Record Settings (each setting in a single sub-package.) OSPM is
responsible for detecting the type of Function and for applying the appropriate settings. OSPM is also
responsible for detecting the device / port type of the PCl Express Function and applying the appropriate
settings provided. For example, the Secondary Uncorrectable Error Severity and Secondary
Uncorrectable Error Mask settings of Type 2 record are only applicable to PCI Express to PCI-X/PCl Bridge
whose device / port type is 1000b. Similarly, AER settings are only applicable to hot plug PCI Express
devices that support the optional AER capability.

Arguments:
None
Return Value:

A variable-length Package containing a list of Packages, each containing a single PCl, PCI-X, PCl Express,
or PCl Express Descriptor Record Setting as described below

The HPX object supersedes the HPP object. If the HPP and _HPX objects exist within a device’s scope,
OSPM will only evaluate the _HPX object.

UEFI Forum, Inc. January 2019 Page 371

ACPI Specification, Version 6.3 Device Configuration

Note: OSPM may override the settings provided by the _HPX object’s Type2 record (PCl Express Settings)
or Type3 record (PCl Express Descriptor Settings) when OSPM has assumed native control of the
corresponding feature. For example, if OSPM has assumed ownership of AER (via _0SC), OSPM
may override AER related settings returned by _HPX.

Note: Since error status registers do not drive error signaling, OSPM is not required to clear error status
registers as part of _HPX handling.

Note: There are other mechanisms besides HPX that provide platform-specific information to the
OSPM PClI driver component responsible for configuring PCI, PCI-X, or PCl Express Functions (e.g.,
_DSM Definitions for Latency Tolerance Reporting as defined in the PCl Firmware Specification).
System firmware should only provide platform-specific information via one of these mechanisms
for any given register or feature (i.e., if Latency Tolerance Reporting information is provided via
_DSM Definitions for Latency Tolerance Reporting then no information related to Latency
Tolerance Reporting should be provided by _HPX and vice versa). Failure to do so will result in
undefined behavior from the OSPM.

6.2.9.1 PCI Setting Record (Type 0)

The PCI setting record contains the setting type 0, the current revision 1 and the type/revision specific
content: cache-line size, latency timer, SERR enable, and PERR enable values.

Table 6-195 PCI Setting Record Content

Field Object Type |Definition

Header:

Type Integer 0x00: Type 0 (PCI) setting record.

Revision Integer 0x01: Revision 1, defining the set of fields below.

Cache-line size Integer Cache-line size reported in number of DWORDs.

Latency timer Integer Latency timer value reported in number of PCI clock cycles.

Enable SERR Integer When set to 1, indicates that action must be performed to enable
SERR in the command register.

Enable PERR Integer When set to 1, indicates that action must be performed to enable
PERR in the command register.

If the hot plug device includes bridge(s) in the hierarchy, the above settings apply to the primary side
(command register) of the hot plugged bridge(s). The settings for the secondary side of the bridge(s)
(Bridge Control Register) are assumed to be provided by the bridge driver.

The Type 0 record is applicable to hot plugged PCI, PCI-X and PCI Express devices. OSPM will ignore
settings provided in the TypeO record that are not applicable (for example, Cache-line size and Latency
Timer are not applicable to PCl Express).

6.2.9.2 PCI-X Setting Record (Type 1)

The PCI-X setting record contains the setting type 1, the current revision 1 and the type/revision specific
content: the maximum memory read byte count setting, the average maximum outstanding split
transactions setting and the total maximum outstanding split transactions to be used when configuring
PCI-X command registers for PCI-X buses and/or devices.

UEFI Forum, Inc. January 2019 Page 372

ACPI Specification, Version 6.3 Device Configuration

Table 6-196 PCI-X Setting Record Content

Field Object Type |Definition

Header:

Type Integer 0x01: Type 1 (PCI-X) setting record.

Revision Integer 0x01: Revision 1, defining the set of fields below.
Maximum Integer Maximum memory read byte count reported:
memory read byte Value 0: Maximum byte count 512

count

Value 1: Maximum byte count 1024
Value 2: Maximum byte count 2048
Value 3: Maximum byte count 4096

Average Integer The following values are defined:

maximum Value 0: Maximum outstanding split transaction 1
outstanding split

. Value 1: Maximum outstanding split transaction 2
transactions

Value 2: Maximum outstanding split transaction 3
Value 3: Maximum outstanding split transaction 4
Value 4: Maximum outstanding split transaction 8
Value 5: Maximum outstanding split transaction 12
Value 6: Maximum outstanding split transaction 16
Value 7: Maximum outstanding split transaction 32

Total maximum Integer See the definition for the average maximum outstanding split
outstanding split transactions.
transactions

For simplicity, OSPM could use the Average Maximum Outstanding Split Transactions value as the
Maximum Outstanding Split Transactions register value in the PCI-X command register for each PCI-X
device. Another alternative is to use a more sophisticated policy and the Total Maximum Outstanding
Split Transactions Value to gain even more performance. In this case, the OS would examined each PCI-X
device that is directly attached to the host bridge, determine the number of outstanding split
transactions supported by each device, and configure each device accordingly. The goal is to ensure that
the aggregate number of concurrent outstanding split transactions does not exceed the Total Maximum
Outstanding Split Transactions Value: an integer denoting the number of concurrent outstanding split
transactions the host bridge can support (the minimum value is 1).

This object does not address providing additional information that would be used to configure registers
in bridge devices, whether architecturally-defined or specification-defined registers or device specific
registers. It is expected that a driver for a bridge would be the proper implementation mechanism to
address both of those issues. However, such a bridge driver should have access to the data returned by
the _HPX object for use in optimizing its decisions on how to configure the bridge. Configuration of a
bridge is dependent on both system specific information such as that provided by the HPX object, as
well as bridge specific information.

UEFI Forum, Inc. January 2019 Page 373

ACPI Specification, Version 6.3 Device Configuration

6.2.9.3 PCI Express Setting Record (Type 2)

The PCI Express setting record contains the setting type 2, the current revision 1 and the type/revision
specific content (the control registers as listed in the table below) to be used when configuring registers
in the Advanced Error Reporting Extended Capability Structure or PCl Express Capability Structure for the
PCl Express devices.

The Type 2 Setting Record allows a PCI Express-aware OS that supports native hot plug to configure the
specified registers of the hot plugged PCl Express device. A PCI Express-aware OS that has assumed
ownership of native hot plug (via _OSC) but does not support or does not have ownership of the AER
register set must use the data values returned by the _HPX object’s Type 2 record to program the AER
registers of a hot-added PCl Express device. However, since the Type 2 record also includes register bits
that have functions other than AER, OSPM must ignore values contained within this setting record that
are not applicable.

To support PCle RsvdP semantics for reserved bits, two values for each register are provided: an “AND
mask” and an “OR mask”. Each bit understood by firmware to be RsvdP shall be set to 1 in the “AND
mask” and 0 in the “OR mask”. Each bit that firmware intends to be configured as 0 shall be set to 0 in
both the “AND mask” and the “OR mask”. Each bit that firmware intends to be configured a 1 shall be set
to 1 in both the “AND mask” and the “OR mask”.

When configuring a given register, OSPM uses the following algorithm:

Read the register’s current value, which contains the register’s default value.

2. Perform a bit-wise AND operation with the “AND mask” from the table below.
3. Perform a bit-wise OR operation with the “OR mask” from the table below.
4. Override the computed settings for any bits if deemed necessary. For example, if OSPM is aware

of an architected meaning for a bit that firmware considers to be RsvdP, OSPM may choose to
override the computed setting for that bit. Note that firmware sets the “AND value” to 1 and the
“OR value” to 0 for each bit that it considers to be RsvdP.

5. Write the end result value back to the register.

Note that the size of each field in the following table matches the size of the corresponding PCl Express
register.

Table 6-197 PCI Express Setting Record Content

Field Object Type |Definition

Header:

Type Integer 0x02: Type 2 (PCI Express) setting record.

Revision Integer 0x01: Revision 1, defining the set of fields below.
Uncorrectable Error Mask Register Integer Bits [31:0] contain the “AND mask” to be used in the
AND Mask OSPM algorithm described above.

Uncorrectable Error Mask Register Integer Bits [31:0] contain the “OR mask” to be used in the
OR Mask OSPM algorithm described above.

Uncorrectable Error Severity Integer Bits [31:0] contain the “AND mask” to be used in the
Register AND Mask OSPM algorithm described above.

UEFI Forum, Inc. January 2019 Page 374

ACPI Specification, Version 6.3 Device Configuration

Field Object Type |Definition

Uncorrectable Error Severity Integer Bits [31:0] contain the “OR mask” to be used in the

Register OR Mask OSPM algorithm described above.

Correctable Error Mask Register AND | Integer Bits [31:0] contain the “AND mask” to be used in the

Mask OSPM algorithm described above.

Correctable Error Mask Register OR | Integer Bits [31:0] contain the “OR mask” to be used in the

Mask OSPM algorithm described above.

Advanced Error Capabilities and Integer Bits [31:0] contain the “AND mask” to be used in the

Control Register AND Mask OSPM algorithm described above.

Advanced Error Capabilities and Integer Bits [31:0] contain the “OR mask” to be used in the

Control Register OR Mask OSPM algorithm described above.

Device Control Register AND Mask Integer Bits [15 :0] contain the “AND mask” to be used in
the OSPM algorithm described above.

Device Control Register OR Mask Integer Bits [15:0] contain the “OR mask” to be used in the
OSPM algorithm described above.

Link Control Register AND Mask Integer Bits [15 :0] contain the “AND mask” to be used in
the OSPM algorithm described above.

Link Control Register OR Mask Integer Bits [15 :0] contain the “OR mask” to be used in the
OSPM algorithm described above.

Secondary Uncorrectable Error Integer Bits [31 :0] contain the “AND mask” to be used in

Severity Register AND Mask the OSPM algorithm described above

Secondary Uncorrectable Error Integer Bits [31 :0] contain the “OR mask” to be used in the

Severity Register OR Mask OSPM algorithm described above

Secondary Uncorrectable Error Mask | Integer Bits [31 :0] contain the “AND mask” to be used in

Register AND Mask the OSPM algorithm described above

Secondary Uncorrectable Error Mask | Integer Bits [31 :0] contain the “OR mask” to be used in the

Register OR Mask OSPM algorithm described above

6.2.9.4 PCI Express Descriptor Setting Record (Type 3)

The PCI Express Descriptor setting record contains the setting type 3, the current revision 1 and the type/
revision specific content (the control registers as listed in the tables below) to be used when configuring
registers in PCl Express Functions. There may be multiple PCI Express Descriptor setting records in a
single _HPX object with the same or different revision. Each PCI Express Descriptor setting record shall
contain at least one, and may contain more than one, PCl Express Register Descriptors as defined in
Table 6-199.

The Type 3 Setting Record allows a PCl Express-aware OS to configure the indicated registers of the PCI
Express Function. A PCl Express-aware OS that does not support or does not have ownership of a register
in this record must use the data values returned by the _HPX object’s Type 3 record to program that
register of a PCl Express Function that has lost its configuration space settings (e.g. a hot-added device, a
device not configured by the platform firmware during initial system boot, a Device/Function that was
reset via Secondary Bus Reset/Function Level Reset, Downstream Port Containment was triggered, etc.).

UEFI Forum, Inc. January 2019 Page 375

ACPI Specification, Version 6.3 Device Configuration

To support PCle RsvdP semantics for reserved bits, two values for each register indicated by Write
Register Offset are provided: a Write AND Mask and a Write OR Mask. Each bit understood by firmware
to be RsvdP shall be set to 1 in the Write AND Mask and 0 in the Write OR Mask. Each bit that firmware
intends to be configured as 0 shall be set to 0 in both the Write AND Mask and the Write OR Mask. Each
bit that firmware intends to be configured a 1 shall be set to 1 in both the Write AND Mask and the Write
OR Mask.

OSPM evaluates each PCl Express Register Descriptor in order starting with the first PCl Express Register
Descriptor and continuing through the Nth PCI Express Register Descriptor as shown in Table 6-198 for
each PCI Express Function that has lost its configuration space settings (e.g. a hot-added device, a device
not configured by the platform firmware during initial system boot, a Device/Function that was reset via
Secondary Bus Reset/Function Level Reset, Downstream Port Containment was triggered, etc.) in the
scope of the _HPX method using the following algorithm:

1. Verify the PCI Express Register Descriptor applies to the PCI Express Function.
a Read the PCl Express Function’s Device Type/Port from its PCl Express Capabilities Register.

b. Read the bit corresponding to the PCl Express Function’s Device Port/Type in the Device/Port
Type from Table 6-199 below.

e |If set to Ob, then the PCl Express Register Descriptor does not apply to the PCl Express
Function and OSPM moves to the next Function in the scope of the HPX method or the
next PCl Express Register Descriptor if there are no more Functions.

e If set to 1b, then continue to the next step.

c. Determine if the PCl Express Function is a non-SR-IOV Function, an SR-IOV Physical Function,
or an SR-IOV Virtual Function.

d. Read the bit corresponding to the PCl Express Function’s type in the Function Type from
Table 6-199 below.

e |If set to Ob, then the PCl Express Register Descriptor does not apply to the PCl Express
Function and OSPM moves to the next Function in the scope of the HPX method or to
the next PCI Express Register Descriptor if there are no more Functions.

e If set to 1b, then the PCl Express Register Descriptor applies to the PCl Express Function
and OSPM continues to the next step.

2. Read the Configuration Space Location from Table 6-199 below.

a If Configuration Space Location is 0, then the Match Register Offset and Write Register Offset
field’s byte offset is relative to offset 0 of the Function’s configuration space.

b. If Configuration Space Location is 1, then the Match Register Offset and Write Register Offset
field’s byte offset is relative to the starting offset of the Capability Structure indicated by PCle
Capability ID.

If the Capability ID is 01h (PCl Power Management Capability Structure) or 10h (PCI Express
Capability Structure) then OSPM shall check the Capability Version of the Function’s
Capability Structure against the PCle Capability ID field. In the event that there are more
than one PCI Express Register Descriptors for a given PCle Capability ID with different PCle
Capability Versions, OSPM shall use the PCl Express Register Descriptors with the highest
PCle Capability Version supported by the Function.

There may be more than one instance of a Capability Structure that matches the indicated

UEFI Forum, Inc. January 2019 Page 376

ACPI Specification, Version 6.3 Device Configuration

PCle Capability ID. Continue to step 3 for each such instance. If no Capability Structures
indicated by PCle Capability ID are found, then start back at step 1 above for the next
Function in the scope of the _HPX method or the next PCl Express Register Descriptor if there
are no more Functions.

c. If Configuration Space Location is 2, then the Match Register Offset and Write Register Offset
field’s byte offset is relative to the starting offset of the Extended Capability Structure
indicated by PCle Capability ID and PCle Capability Version.

In the event that there are more than one PCl Express Register Descriptors for a given PCle
Capability ID with different PCle Capability Versions, OSPM shall use the PCI Express Register
Descriptors with the highest PCle Capability Version supported by the Function.

There may be more than one instance of an Extended Capability Structure that matches the
indicated PCle Capability ID and PCle Capability Version. Continue to step 3 for each such
instance. If no Extended Capability Structures indicated by PCle Capability ID and PCle
Capability Version are found, then start back at step 1 above for the next Function in the
scope of the HPX method or the next PCl Express Register Descriptor if there are no more
Functions.

d. If Configuration Space Location is 3, then the Match Register Offset and Write Register Offset
field’s byte offset is relative to the starting offset of the Extended Capability Structure
indicated by PCle Capability ID, PCle Capability Version, PCle Vendor ID, VSEC ID, and VSEC
Rev.

In the event that there are more than one PCl Express Register Descriptors for a given PCle
Capability ID with different PCle Capability Versions, OSPM shall use the PCl Express Register
Descriptors with the highest PCle Capability Version supported by the Function.

Once the PCl Express Register Descriptors that match the PCle Capability ID with the highest
PCle Capability Version supported by the Function are found, the OSPM shall use PCI Express
Register Descriptors among those with the highest VSEC Rev supported by the Function.

There may be more than one instance of an Extended Capability Structure that matches the
indicated PCle Capability ID, PCle Capability Version, PCle Vendor ID, VSEC ID, and VSEC Rev.
Continue to step 3 for each such instance. If no Extended Capability Structures indicated by
PCle Capability ID, PCle Capability Version, PCle Vendor ID, VSEC ID, and VSEC Rev are found,
then start back at step 1 above for the next Function in the scope of the _HPX method or the
next PCl Express Register Descriptor if there are no more Functions.

e. If Configuration Space Location is 4, then the Match Register Offset and Write Register Offset
field’s byte offset is relative to the starting offset of the Extended Capability Structure
indicated by PCle Capability ID, PCle Capability Version, PCle Vendor ID, DVSEC ID, and DVSEC
Rev.

In the event that there are more than one PCl Express Register Descriptors for a given PCle

Capability ID with different PCle Capability Versions, OSPM shall use the PCl Express Register
Descriptors with the highest PCle Capability Version supported by the Function.

UEFI Forum, Inc. January 2019 Page 377

ACPI Specification, Version 6.3 Device Configuration

Once the PCl Express Register Descriptors that match the PCle Capability ID with the highest
PCle Capability Version supported by the Function are found, the OSPM shall use PCI Express
Register Descriptors among those with the highest DVSEC Rev supported by the Function.

There may be more than one instance of an Extended Capability Structure that matches the
indicated PCle Capability ID, PCle Capability Version, PCle Vendor ID, DVSEC ID, and DVSEC
Rev. Continue to step 3 for each such instance. If no Extended Capability Structures
indicated by PCle Capability ID, PCle Capability Version, PCle Vendor ID, DVSEC ID, and DVSEC
Rev are found, then start back at step 1 above for the next Function in the scope of the HPX
method or the next PCl Express Register Descriptor if there are no more Functions.

3. Check the Match Register to see if the Write Register should be updated.

a
b.
C.

Read the current value from the register indicated by the Match Register Offset.
Perform a bit-wise AND operation on the result of step 3a with the Match AND Mask.

Compare the result of step 3b with the Match Value. If they are equal then continue to step
4, else start back at step 1 above for the next Function

in the scope of the _HPX method or the next PCl Express Register Descriptor if there are no
more Functions.

4. Update the Write Register.

a

b
C.
d

e.

Read the current value from the register indicated by the Write Register Offset.
Perform a bit-wise AND operation on the result of step 4a with the Write AND Mask.
Perform a bit-wise OR operation on the result of step 4b with the Write OR Mask.

Override the computed settings from step 4c for any bits if deemed necessary. For example,
if OSPM is aware of an architected meaning for a bit that firmware considers to be RsvdP,
OSPM may choose to override the computed setting for that bit. Note that firmware sets the
Write AND Mask to 1 and the Write OR Mask to O for each bit that it considers to be RsvdP.

Write the result of step 4d back to the register indicated by the Write Register Offset.

Table 6-198 PCI Express Descriptor Setting Record Content

[Field (-)bject Type Definition
Header:
Type Integer 0x03: Type 3 (PCl Express Descriptor) setting
record.
Revision Integer 0x01: Revision 1, defining the set of fields below.
PCl Express Register Descriptor Count |Integer Number of Register Descriptors in this setting
record.
First PCl Express Register Descriptor PCI Express The first PCI Express Register Descriptor as defined
Register in Table 6-199.
Descriptor
Second PCl Express Register Descriptor |PCl Express The second PCI Express Register Descriptor as
Register defined in Table 6-199.
Descriptor

UEFI Forum,

Inc. January 2019 Page 378

ACPI Specification, Version 6.3 Device Configuration

[Field Object Type |Definition

Nt PCI Express Register Descriptor PCl Fxpress The N™ PCI Express Register Descriptor as defined
Reglst_er in Table 6-199 where N is equal to the PCI Express
Descriptor Register Descriptor Count.

Table 6-199 PCI Express Register Descriptor

Field 5bject Type Definition
Device/Port Type Integer This field is a bitmask of Device/Port Types to which

the PCl Express Register Descriptor applies. A bit is
set to 1 to indicate the PCl Express Register
Descriptor applies to the corresponding Device/Port
Type and is set to 0 to indicate it does not apply to
the corresponding Device/Port Type.

At least one bit shall be set. More than one bit may
be set.

Bit [0]: PCI Express Endpoint

Bit [1]: Legacy PCI Express Endpoint

Bit [2]: RCIEP

Bit [3]: Root Complex Event Collector

Bit [4]: Root Port of PCl Express Root Complex
Bit [5]: Upstream Port of PCI Express Switch
Bit [6]: Downstream Port of PCl Express Switch
Bit [7]: PCl Express to PCI/PCI-X Bridge

Bit [8]: PCI/PCI-X to PCl Express Bridge

All other bits are reserved.

Function Type Integer This field is a bitmask of Function Types to which the
PCI Express Register Descriptor applies. A bit is set to
1 to indicate the PCI Express Register Descriptor
applies to the corresponding Function Type and is set
to 0 to indicate it does not apply to the
corresponding Function Type.

At least one bit shall be set. More than one bit may
be set.

Bit [0]: Non-SR-IOV Function
Bit [1]: SR-IOV Physical Function

Bit [2]: SR-IOV Virtual Function
All other bits are reserved.

UEFI Forum, Inc. January 2019 Page 379

ACPI Specification, Version 6.3 Device Configuration

[Field 5bject Type Definition
Configuration Space Location Integer A value of 0 indicates the Match Register Offset and

Write Register Offset fields are relative to offset 0 of
the Function’s configuration space.

A value of 1 indicates the Match Register Offset and
Write Register Offset fields are located in a Capability
Structure within the first 256 bytes of PCle
configuration space and are relative to offset 0 of the
Capability Structure.

A value of 2 indicates the Match Register Offset and
Write Register Offset fields are located in an
Extended Capability Structure beyond the first 256
bytes of PCI configuration space and are relative to
offset 0 of the Extended Capability Structure.

A value of 3 indicates the Match Register Offset and
Write Register fields are located in a PCl Express
Vendor-Specific Extended Capability and are relative
to offset 0 of the Vendor-Specific Extended
Capability.

A value of 4 indicates the Match Register Offset and
Write Register Offset fields are located in a PCI
Express Designated Vendor-Specific Extended
Capability and are relative to offset 0 of the
Designated Vendor-Specific Extended Capability.

All other values are reserved.

PCle Capability ID Integer PCle Capability ID indicates the capability ID of the
Capability Structure (if Configuration Space Location
is 1) or Extended Capability Structure (if
Configuration Space Location is 2) to which the PCI
Express Register Descriptor applies. This field only
applies if Configuration Space Location is 1
(Capability Structure), 2 (Extended Capability
Structure), 3 (Vendor-Specific Extended Capability),
or 4 (Designated Vendor-Specific Extended
Capability).

UEFI Forum, Inc. January 2019 Page 380

ACPI Specification, Version 6.3 Device Configuration

[Field 5bject Type Definition
PCle Capability Version Integer This field contains information about the Capability

Version/Extended Capability Version and applies in
the following conditions:

Configuration Space Location is 1 (Capability
Structure) and Capability ID is 01h (PCI Power
Management Capability Structure); or

Configuration Space Location is 1 (Capability
Structure) and Capability ID is 10h (PCI Express
Capability Structure); or Configuration Space
Location is 2 (Extended Capability Structure); or

Configuration Space Location is 3 (Vendor-Specific
Extended Capability); or Configuration Space
Location is 4 (Designated Vendor-Specific Extended
Capability).

Bit [4] indicates the applicability of the Capability
Version/Extended Capability Version in bits [3:0].
Defined values are:

Ob

The PCI Express Register Descriptor applies to
Capability Structures/Extended Capability Structures
with Capability Versions that are equal to the version
in bits [3:0].

1b

The PCI Express Register Descriptor applies to
Capability Structures/Extended Capability Structures
with Capability Versions that are greater than or
equal to the version in bits [3:0].

Bits [3:0] indicate the Capability Version of the
Capability Structures/Extended Capability Structure.
Note that the version of the Capability Structure/
Extended Capability Structure is always 4 bits except
for the PCl Power Management Capability Structure
whose Version field is only 3 bits. For the PCl Power
Management Capability structure, this field shall
contain the Version in bits [2:0] and bit [3] shall be
Ob.

All other bits are reserved.

UEFI Forum, Inc. January 2019 Page 381

ACPI Specification, Version 6.3 Device Configuration

[Field 5bject Type Definition
PCle Vendor ID Integer If Configuration Space Location is 3 (Vendor-Specific

Extended Capability Structure), this field indicates
the vendor in the Vendor ID register at offset 0 of the
Function’s configuration space to which the PCI
Express Register Descriptor applies.

If Configuration Space Location is 4 (Designated
Vendor-Specific Extended Capability Structure), this
field indicates the vendor in the DVSEC Vendor ID
register at offset 4 in the Designated Vendor-Specific
Extended Capability Structure to which the PCI
Express Register Descriptor applies.

This field only applies if Configuration Space Location
is 3 (Vendor-Specific Extended Capability Structure)
or 4 (Designated Vendor-Specific Extended Capability
Structure).

VSEC/DVSEC ID Integer If Configuration Space Location is 3 (Vendor-Specific
Extended Capability Structure), this field indicates
the vendor-defined ID number (VSEC ID) of the
Vendor-Specific Extended Capability Structure to
which the PCl Express Register Descriptor applies.

If Configuration Space Location is 4 (Designated
Vendor-Specific Extended Capability Structure), this
field indicates the DVSEC ID of the Designated
Vendor-Specific Extended Capability Structure to
which the PCI Express Register Descriptor applies.

This field only applies if Configuration Space Location
is 3 (Vendor-Specific Extended Capability Structure)
or 4 (Designated Vendor-Specific Extended Capability
Structure).

UEFI Forum, Inc. January 2019 Page 382

ACPI Specification, Version 6.3 Device Configuration

[Field 5bject Type Definition
VSEC/DVSEC Rev Integer This field contains information about the VSEC/

DVSEC Rev and only applies if Configuration Space
Location is 3 (Vendor-Specific Extended Capability
Structure) or 4 (Designated Vendor-Specific Extended
Capability Structure).

Bit [4] indicates the applicability of the VSEC/DVSEC
Rev in bits [3:0]. Defined values are:

Ob

The PCl Express Register Descriptor applies to Vendor
Specific Extended Capabilities/Designated Vendor-
Specific Capabilities with VSEC/DVSEC Revs that are
equal to the revision in bits [3:0].

1b

The PCl Express Register Descriptor applies to Vendor
Specific Extended Capabilities/Designated Vendor-
Specific Capabilities with VSEC/DVSEC Revs that are
greater than or equal to the revision in bits [3:0].

Bits [3:0] - If Configuration Space Location is 3
(Vendor-Specific Extended Capability Structure), this
field indicates the VSEC Rev of the Vendor-Specific
Extended Capability Structure. If Configuration Space
Location is 4 (Designated Vendor-Specific Extended
Capability Structure), this field indicates the DVSEC
Revision of the Designated Vendor-Specific Extended
Capability Structure.

All other bits are reserved.

Match Register Offset Integer Byte offset of the PCle configuration space register
that is checked before the write. This offset shall be
dword aligned (i.e. bits [1:0] are 00b).

Match AND Mask Integer Bits 0 to 31 contain the AND mask to be used by the
operating system engine during the check.
Match Value Integer Bits 0 to 31 contain the value to be compared by

Operating system engine before the write.

Write Register Offset Integer Byte offset of the PCle configuration space register to
be modified. This offset shall be dword aligned (i.e.
bits [1:0] are 00b).

Write AND Mask Integer Bits 0 to 31 contain the AND mask to be used by the
operating system engine to modify the value to be
written to the register indicated by Write Register
Offset.

Write OR Mask Integer Bits 0 to 31 contain the OR mask to be used by the
operating system engine to modify the value to be
written to the register indicated by Write Register
Offset.

UEFI Forum, Inc. January 2019 Page 383

ACPI Specification, Version 6.3 Device Configuration

6.2.9.5 HPX Example

Method (_HPX, 0) {
Return (Package(2){

Package(6){ // PCI Setting Record
0x00, // Type 0O
0x01, // Revision 1
0x08, // CacheLineSize in DWORDS
0x40, // LatencyTimer in PCI clocks
0x01, // Enable SERR (Boolean)
0x00 // Enable PERR (Boolean)
¥,
Package(5){ // PCI-X Setting Record
0x01, // Type 1
0x01, // Revision 1
0x03, // NMaximum Memory Read Byte Count
0x04, // Average Maximum Outstanding Split Transactions
0x07 // Total Maximum Outstanding Split Transactions
}
Package(17){ // PCl Express Descriptor setting Record (Type 3)
0x03, // Type 3
0x01, // Revision 1
0x01, // Number of Register Descriptors
OxO01FF, // Device/Port Type — All types in PCle 4.0
0x03, // Function Type — All but VFs
0x01, // Configuration Space Location — Capability Structure
0x10, // PCle Capability ID — PCI Express Cap Struct
0x12, // PCle Capability Version — Applies to rev 2 and higher
0x0000, // PCle Vendor ID — N/A
0x00, // VSEC/DVSEC ID — N/A
0x00, // VSEC/DVSEC Rev — N/A
0x24, // Natch Register Offset — Device Cap 2
0x00000002, // Natch AND Mask — Check Range B
0x00000002 // Natch Value — CTO Range B supported?
0x28, // Write Register Offset — Device Ctrl 2
OXFFFFFFFO, // Write AND Mask — Clear CTO Range
0x00000006 // Write OR Mask — Set CTO range 65 ms to 210 ms
}
Package(17){ // PCl Express Descriptor setting Record (Type 3)
0x03, // Type 3
0x01, // Revision 1
0x01, // Number of Register Descriptors
OxO01FF, // Device/Port Type — All types in PCle 4.0
0x03, // Function Type — All but VFs
0x01, // Configuration Space Location — Capability Structure
0x10, // PCle Capability ID — PCl Express Cap Struct
0x12, // PCle Capability Version — Applies to rev 2 and higher
0x0000, // PCle Vendor ID — N/A
0x00, // VSEC/DVSEC ID — N/A
0x00, // VSEC/DVSEC Rev — N/A
0x24, // Match Register Offset — Device Cap 2

UEFI Forum, Inc. January 2019 Page 384

ACPI Specification, Version 6.3 Device Configuration

0x00000006, // Match AND Mask — Check Range B/C
0x00000004 // Match Value — CTO Range B not supported but C is?
0x28, // Write Register Offset — Device Ctrl 2
OXFFFFFFFO, // Write AND Mask — Clear CTO Range
0x00000009 // Write OR Mask — Set CTO range 260 to 900 ms
}
Package (17){ // PCIl Express Descriptor setting Record (Type 3)
0x03, // Type 3
0x01, // Revision 1
0x01, // Number of Register Descriptors
OxO01FF, // Device/Port Type — All types in PCle 4.0
0x03, // Function Type — All but VFs
0x01, // Configuration Space Location — Capability Structure
0x10, // PCle Capability ID — PCl Express Cap Struct
0x12, // PCle Capability Version — Applies to rev 2 and higher
0x0000, // PCle Vendor ID — N/A
0x00, // VSEC/DVSEC ID — N/A
0x00, // VSEC/DVSEC Rev — N/A
0x24, // Match Register Offset — Device Cap 2
0x00000016, // Match AND Mask — Check Range B/C and CTO Disable
0x00000010 // Match Value — CTO Disable support but no range B/C?
0x28, // Write Register Offset — Device Ctrl 2
OXFFFFFFFF, // Write AND Mask — Don’t mask anything
0x00000010 // Write OR Mask — Set CTO Disable
}

D

6.2.10 _MAT (Multiple APIC Table Entry)

This optional object evaluates to a buffer returning data in the format of a series of Multiple APIC
Description Table (MADT) APIC Structure entries. This object can appear under an I/O APIC or processor
object definition as processors may contain Local APICs. Specific types of MADT entries are meaningful to
(in other words, is processed by) OSPM when returned via the evaluation of this object as described in
Table 5-45. Other entry types returned by the evaluation of _MAT are ignored by OSPM.

When _MAT appears under a Processor object, OSPM uses the ACPI processor ID in the entries returned
from the object’s evaluation to identify the entries corresponding to either the ACPI processor ID of the
Processor object or the value returned by the _UID object under a Processor device.

Arguments:

None
Return Value:

A Buffer containing a list of Interrupt Controller Structures.

UEFI Forum, Inc. January 2019 Page 385

ACPI Specification, Version 6.3 Device Configuration

Example ASL for _MAT usage:
Scope(_SB) {

Device(PCIO) { // Root PCI Bus
Name(_HID, EISAID(*PNPOA03™)) // Need _HID for root device
Device (P64A) { // P64A ACPI

Name (_ADR,0)
OperationRegion (OPRM, SystemMemory,
Offset in system memory of Interrupt Controller Structures,
Length in bytes)
Field (OPRM, ByteAcc, NoLock, Preserve) {
MATD, Length in bits

}
Method(_MAT, 0){

Return (MATD)
}

} // end P64A
} // end PCIO
} // end scope SB

6.2.11 _OSC (Operating System Capabilities)

This optional object is a control method that is used by OSPM to communicate to the platform the
feature support or capabilities provided by a device’s driver. This object is a child object of a device and
may also exist in the _SB scope, where it can be used to convey platform wide OSPM capabilities. When
supported, OSC is invoked by OSPM immediately after placing the device in the DO power state. Device
specific objects are evaluated after _OSC invocation. This allows the values returned from other objects
to be predicated on the OSPM feature support / capability information conveyed by _OSC. OSPM may
evaluate _OSC multiple times to indicate changes in OSPM capability to the device but this may be
precluded by specific device requirements. As such, _OSC usage descriptions in Section 9, “ACPI-Defined
Devices and Device Specific Objects”, or other governing specifications describe superseding device
specific _OSC capabilities and / or preclusions.

_0SC enables the platform to configure its ACPI namespace representation and object evaluations to
match the capabilities of OSPM. This enables legacy operating system support for platforms with new
features that make use of new namespace objects that if exposed would not be evaluated when running
alegacy 0S. OSC provides the capability to transition the platform to native operating system support of
new features and capabilities when available through dynamic namespace reconfiguration. _OSC also
allows devices with Compatible IDs to provide superset functionality when controlled by their native (For
example, HID matched) driver as appropriate objects can be exposed accordingly as a result of OSPM’s
evaluation of _OSC.

Arguments: (4)
Arg0 — A Buffer containing a UUID

Argl — An Integer containing a Revision ID of the buffer format

Arg2 — An Integer containing a count of entries in Arg3

UEFI Forum, Inc. January 2019 Page 386

ACPI Specification, Version 6.3 Device Configuration

Arg3 — A Buffer containing a list of DWORD capabilities
Return Value:

A Buffer containing a list of capabilities

Argument Information

Arg0: UUID — used by the platform in conjunction with Revision ID to ascertain the format of the
Capabilities buffer.

Argl: Revision ID — The revision of the Capabilities Buffer format. The revision level is specific to the
uulID.

Arg2: Count — Number of DWORDs in the Capabilities Buffer in Arg3

Arg3: Capabilities Buffer — Buffer containing the number of DWORDs indicated by Count. The first
DWORD of this buffer contains standard bit definitions as described below. Subsequent DWORDs contain
UUID-specific bits that convey to the platform the capabilities and features supported by OSPM.
Successive revisions of the Capabilities Buffer must be backwards compatible with earlier revisions. Bit
ordering cannot be changed.

Capabilities Buffers are device-specific and as such are described under specific device definitions. See
Section 9, “ACPI Devices and Device Specific Objects” for any _OSC definitions for ACPI devices. The
format of the Capabilities Buffer and behavior rules may also be specified by OEMs and IHVs for custom
devices and other interface or device governing bodies for example, the PCI SIG.

The first DWORD in the capabilities buffer is used to return errors defined by _OSC. This DWORD must
always be present and may not be redefined/reused by unique interfaces utilizing _OSC.

e Bit [0]- Query Support Flag. If set, the OSC invocation is a query by OSPM to determine or
negotiate with the platform the combination of capabilities for which OSPM may take control.
In this case, OSPM sets bits in the subsequent DWORDs to specify the capabilities for which
OSPM intends to take control. If clear, OSPM is attempting to take control of the capabilities
corresponding to the bits set in subsequent DWORDs. OSPM may only take control of
capabilities as indicated by the platform by the result of the query.

e Bit [1] — Always clear (0).

e Bit [2] — Always clear (0).

e Bit [3] — Always clear (0).

¢ All others — reserved.

Return Value Information

Capabilities Buffer (Buffer) — The platform acknowledges the Capabilities Buffer by returning a buffer of
DWORDs of the same length. Set bits indicate acknowledgment that OSPM may take control of the
capability and cleared bits indicate that the platform either does not support the capability or that OSPM
may not assume control.

The first DWORD in the capabilities buffer is used to return errors defined by _OSC. This DWORD must
always be present and may not be redefined/reused by unique interfaces utilizing _OSC.

e Bit [0] — Reserved (not used)

UEFI Forum, Inc. January 2019 Page 387

ACPI Specification, Version 6.3 Device Configuration

e Bit [1] — _OSC failure. Platform Firmware was unable to process the request or query.
Capabilities bits may have been masked.

e Bit [2] — Unrecognized UUID. This bit is set to indicate that the platform firmware does not
recognize the UUID passed in via Arg0. Capabilities bits are preserved.

e Bit [3] — Unrecognized Revision. This bit is set to indicate that the platform firmware does not
recognize the Revision ID passed in via Argl. Capabilities bits beyond those comprehended by
the firmwa