
Advanced Configuration and Power
Interface (ACPI) Specification

Version 6.3

January 2019

ACPI Specification, Version 6.3
Acknowledgements

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2018, Unified Extensible Firmware Interface (UEFI) Forum, Inc. All Rights Reserved. The UEFI Forum is
the owner of all rights and title in and to this work, including all copyright rights that may exist, and all rights to use and
reproduce this work. Further to such rights, permission is hereby granted to any person implementing this specification
to maintain an electronic version of this work accessible by its internal personnel, and to print a copy of this
specification in hard copy form, in whole or in part, in each case solely for use by that person in connection with the
implementation of this Specification, provided no modification is made to the Specification.
UEFI Forum, Inc. January 2019 Page ii

ACPI Specification, Version 6.3
Revision History

ACPI
Revision

Mantis Number / Description
Affected Sections

6.3 1851 Extend GTDT to describe ARMv8.1 architected CNTHV timer Section 5.2.24

6.3 1855 ARS Error Inject Table 9-299

Section 9.20.7.7

Section 9.20.7.9.1

Section 9.20.7.12

6.3 1867 Add Trigger order to PCC Identifier structure within PDTT Section 5.2.28

6.3 1873 Peripheral-attached Memory Table 5-132

6.3 1883 Reserve the table names "CRAT" and "CDIT" http://uefi.org/acpi

6.3 1893 New NVDIMM Device methods _NCH and _NBS Section 9.20.8.1

Section 9.20.8.2

6.3 1898 PCC Operation Region Section 5.5.2.4

Section 6.5.4

Section 19.2.7

Section 19.6

Section 20.2.5.2

6.3 1900 I3C host controller support Table 6-190

Table 6-241

6.3 1904 Generic Initiator Affinity Structure Section 5.2.16

6.3 1910 NVDIMM Address Range Scrubbing (ARS) interface update Section 5.6.6

Section 9.20.7

6.3 1911 _PRD object in Table 6-186 has no definition Appendix C

6.3 1913 New NVDIMM Device methods for Health Error Injection Section 5.6.6

Section 9.20.8

6.3 1914 HMAT Enhancements Section 5.2.27

6.3 1922 _HPX Enhancements Section 6.2.9

6.3 1930 ASL: Make some arguments to ASL operators optional Section 19.6.7

Section 19.6.46

Section 19.6.63

Section 19.6.88
UEFI Forum, Inc. January 2019 Page iii

http://uefi.org/acpi
http://uefi.org/acpi

ACPI Specification, Version 6.3
6.3 1931 ASL: extend Load() operator to allow table load from an ASL
buffer

Section 19.6.76

6.3 1932 ASL: deprecate Unload operator Section 19.6.146 
and related references

6.3 1934 SPE support for ARM Section 5.2.12.14

Table 5-155

6.3 1939 Error Disconnect Recover Notification Table 5-165

Section 6.3.5

6.3 1944 Outdated copied text from PCI Firmware Spec Section 6.2.11.3

Section 6.2.11.4

6.3 1946 Generic Initiator _OSC Bit Section 5.2.16.6

Table 6-200

6.3 1948 Adds a “Hot-plug Capable” flag to the Local APIC and x2APIC
structures in MADT

Table 5-44

Table 5-47

Table 5-58

6.3 1958 PCC Operation Region Updates Section 5.5.2.4

Section 19.2.7

Table 19-420

Section 20.2.5.2

6.3 1959 Update to ECR 1914 Table 5-146

6.3 1978 GT Block Timers table - update the Timer Interrupt Mode
description

Table 5-126

6.3 1979 ACPI version change from 6.2 to 6.3 Table 5-33

6.3 1980 Fix link to local APIC flags in the Processor Local APIC Structure
table

Table 5-46

6.2 B 1819 Errata: remove support for multiple GICD structures Table 5-43

6.2 B 1852 Fix Inconsistent TranslateType Language Section 19.6.33

Section 19.6.34

Section 19.6.41

Section 19.6.42

Section 19.6.109

Section 19.6.110

Section 19.6.151

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page iv

https://mantis.uefi.org/mantis/view.php?id=1852

ACPI Specification, Version 6.3
6.2 B 1870 PPTT Clarifications Section 5.2.29.1

6.2 B 1881 Incorrect reference "Memory Devices" in "5.2.21.10
Interaction with Memory Hot Plug"

Section 5.2.21.10

6.2 B 1882 Incorrect EINJ table references/link Table 18-404

6.2 B 1894 SRAT GICC Flags Field Definition Errata Table 5-76

6.2 B 1905 Missing description in 6.1.9 title in ACPI 6.2a Section 6.1.9

6.2 B 1909 Update NFIT SPA Range Structure Table 5-132

6.2 B 1929 Miscellaneous Errata Section 19.6.38

Section 19.6.53

Section 19.6.54

Removed redundant
Interrupt section (now
Section 19.6.63).

6.2 B 1945 NFIT_SPA_ECR Section 5.2.25.2

6.2 B 1951 _PXM Clarifications Section 5.2.16

Section 5.2.16.6

Section 6.2.14

Section 6.2.15

Section 17.2

Section 17.2.1

Section 17.3

Section 17.3.1

Section 17.4

Section 17.4.1

6.2 B 1960 PWR_BUTTON desription should say "power button", not
"sleep button"

Table 5-34

6.2 B 1962 Clarifications for the use of _REG methods Section 6.5.4

6.2 B 1965 Clean up Address Space ID Table 5-25

Table 6-238

Section 19.6.114

Section 19.2.7

6.2B 1968 Clarifications for ACPI Namepaths Section 5.2

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page v

https://mantis.uefi.org/mantis/view.php?id=1881
https://mantis.uefi.org/mantis/view.php?id=1882

ACPI Specification, Version 6.3
6.2 A 1839 Missing space in title of ACPI RAS Feature Table (RASF) Section 5.2

Section 5.2.20

Table 5-29

6.2 A 1837 Typos in Extended PCC subspaces (types 3 and 4) Section 14.1.6

6.2 A 1831 Add a new NFIT Platform Capabilities Structure Section 5.2.25.1

Figure 5-22

Table 5-131

Section 5.2.25.9

6.2 A 1827 PPTT ID Type Structure offsets Section 5.2.29.3

6.2 A 1825 Remove bits 2-4 in the Platform RAS Capabilities Bitmap table Section 5.2.20.4

6.2 A 1820 Region Format Interface Code description Section 5.2.25.6

6.2 A 1819 Remove support for multiple GICD structures Section 5.2.12

Section 5.2.12.1

6.2 A 1814 PDTT typos and PPTT reference Revision History

Section 5.2

Section 5.2.28

6.2 A 1812 Minor correction to Trigger Action Table Section 18.6.4

6.2 A 1811 General Purpose Event Handling flow Section 5.6.4

6.2 1795 ACPI Table Signature Reservation Table 5-30

6.2 1781 Clarify ResourceUsage Descriptor Argument Table 6-193

6.2 1780 Add DescriptorName to PinFunction and PinConfig Macros Section 19.6.102 and
Section 19.6.103

6.2 1770 Update Revision History Revision History

6.2 1769 FADT Format: ACPI Version update to reflect 6.2 versus 6.1 Table 5-33

6.2 1755 Deprecate PCC Platform Async Notifications Section 14.4, and
Section 14.5.1

6.2 1743 PinGroupFunctionConfig resource descriptors update Section 6.4.3.11,
Section 6.4.3.12,
Section 6.4.3.13,

6.2 1738 PCIEXP_WAKE Bits description updates Table 4-15, Table 4-16, and
Table 5-34

6.2 1731 Software Delegated Exception HW error notitication Section 18-394

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page vi

ACPI Specification, Version 6.3
6.2 1725 NVST Updates - NFIT ARS Error Injection Section 9.20.7.9,
Section 9.20.7.10,and
Section 9.20.7.11

6.2 1724 NVST Updates - Platform RAS Capabilities Updates Section 5.2.20.4

6.2 1723 NVST Updates - Translate SPA DSM Interface Section 2.1, Section 9.20.7.8

6.2 1722 NVST Updates - ARS Updates Section 2.1,
Section 9.20.7.2,
Section 9.20.7.4,
Section 9.20.7.5,and
Section 9.20.7.6

6.2 1721 NVST Updates - Labels Section 2.1, Section 5-
184,and Section 6.5.10

6.2 1717 ASL Grammar Update for Reference Operators Section 19.2

6.2 1714 Reserve the table name "SDEI" Table 5-30

6.2 1705 Add Heterogeneous Memory Attributes Tables (HMAT) Section 5.2, Section 5.6.6,
Section 5.6.8, Section 6.2,
Section 6.2.18, and
Section 17.4

6.2 1703 Time & Alarm Device _GCP new bits Section 9.18.2

6.2 1680 Pin Group, Pin Group Function and Pin Group Configuration
Descriptors and Macros

Table 6-224 and
Section 6.4.3.10

6.2 1679 Pin Configuration Descriptor and Macro Table 6-224 and
Section 6.4.3.10

6.2 1677 CPPC Registers in System Memory Section 6.2.11.2 and
Section 8.4.7.1

6.2 1674 GHES_ASSIST Proposal Section 18.3.2

6.2 1669 FADT HEADLESS flag should be valid for HW_REDUCED_ACPI
platforms

Section 5.2.9

6.2 1667 Processor Properties Topology Table (PPTT) Section 5.2.29

6.2 1659 Master Slave PCC channels Chapter 14, Platform
Communications Channel
(PCC)

6.2 1656 SRAT Support for ITS Section 5.2.16

6.2 1650 CPPC Support for Multiple PCC Channels Table 6-200 and
Section 8.4.7.1.9

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page vii

ACPI Specification, Version 6.3
6.2 1649 ECR: Minor updates to IA-32 Architecture Deferred Machine
Check

Section 18.3.2.10

6.2 1645 Add _STR Support for Thermal Zones Section 6.1, Section 6.1.10,
Section 11.4,
Section 11.4.14, and
Section 11.7.1

6.2 1632 Secure Devices Table (SDEV) Table 5-30

6.2 1611 Add a _PPL object to processor devices Section 8.4.7

6.2 1597 ASL For() Conditional Loop Macro Section 19.6.51,
Section 19.2.5,
Section 19.2.6, and
Section 19.3.4

6.2 1588 Clarification on Interrupt Descriptor Usage for "Interrupt
Combining"

Section 6.2.11.2,
Section 6.4.3.6,
Section 19.6.62

6.2 1585 Reserve table signature “WSMT,” with reference to ACPI links
page for more details

Table 5-30

6.2 1583 Diverse Highest Processor Performance Table 5-158 and Table 6-200

6.2 1578 Function Config Descriptor and Macro Table 6-213 and
Section 6.4.3.9

6.2 1576 Platform Debug Trigger Table (PDTT) Section 5.2.28

6.2 1573 Extensions to the ASL Concatenate operator Section 19.2.6 and
Section 19.6.12

6.2 1569 Add new introduction (background) section Background chapter

6.1
Errata A

1796 Clarify that Type 1 can never support Level triggered platform
interrupt

Section 14.1.4

6.1
Errata A

1785 Lack of clarity on use of System Vector Base on GICD
structures

Section 5.2.12.15

6.1
Errata A

1783 Clarification on Interrupt Descriptor Usage for Bit [0]
Consumer/Producer

Table 6-237

6.1
Errata A

1760 Typo - incorrect bit offsets in the PM1 Enable Registers Fixed
Hardware Feature Enable Bits table.

Table 4-16

6.1
Errata A

1758 Minor Errata in ERST tables, Serialization Instruction Entry and
Injection Instruction Entry.

Table 18-399 and Table 18-
405

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page viii

ACPI Specification, Version 6.3
6.1
Errata A

1756 Errata: Ensure non-secure timers are accesible to non-secure
in the Flag Definitions: Common Flags table.

Table 5-126

6.1
Errata A

1740 Errata in section 9.13: wrong reference Section 9.13

6.1
Errata A

1715 0 is a valid GSIV for the secure EL1 physical timer in GTDT Table 5-120

6.1
Errata A

1687 Typo in the Reserved field of the GIC ITS Structure table. Table 5-66

6.1
Errata A

1686 Clarification of the FADT HW_REDUCED_ACPI flag description
in the FADT Format table.

Table 5-33

6.1
Errata A

1676 Clarifications for the ASL Buffer (Declare Buffer Object) Section 19.6.10

6.1
Errata A

1671 Typo in Memory Affinity Structure table Section 5-72

6.1
Errata A

1670 Update for _OSI return value Section 5.7.2

6.1
Errata A

1664 Clarification of the RSDP Structure table, Revision description. Table 5-66

6.1
Errata A

1662 Clarification of the Generic Communications Channel
Command Field table.

Table 14-370

6.1
Errata A

1661 typos in the Generic Communications Channel Status Field
table and the Platform Notification section.

Table 14-371 and
Section 14.5

6.1
Errata A

1660 type in the Generic Communications Channel Shared Memory
Region table

Table 14-369

6.1
Errata A

1651 LPI Clarifications Section 8.4.4.3

6.1
Errata A

1644 Mismatch of mantis number 1449 vs. change description Revision History

6.1
Errata A

1643 Incorrect row order in GET_EXECUTE_OPERATION_TIMINGS
table

Table 18-397

6.1
Errata A

1642 Clarifications and fixes to _PSD and _TSD Table 5-184

6.1
Errata A

1639 _WPC and _WPP are missing in the Predefined ACPI Names
table.

Table 5-164

6.1
Errata A

1616 Clarify which processor ID to use in the EINJ for ARM Table 18-403

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page ix

ACPI Specification, Version 6.3
6.1
Errata A

1606 Errata: typos in the Interrupt Resource Descriptor Macro
definition

Section 19.6.62

6.1
Errata A

1602 Updates to the PMC Method Result Codes table Table 10-338

6.1
Errata A

1601 Typos in the _CPC Implementation Example Section 8.4.7.1.11

6.1
Errata A

1600 Typos in PCC Subspace Structure Type 1 and Type 2. Table 14-366 and Table 14-
367

6.1
Errata A

1599 Add clarification to existing text (_OSC Control Field via arg3) Table 6-202

6.1
Errata A

1591 ASL grammar clarification for “executable” AML opcodes Section 5.4

6.1
Errata A

 1589 Wireless Power Calibration Device ACPI ID not defined Section 10.5 (Table 10-292
removed) and Table 5-163

6.1
Errata A

1582 Clarification for Time and Alarm wake description Section 9.18.1

6.1
Errata A

1581 Processing Sequence for Graceful Shutdown Request - need to
update section 6.3.5.1 to reflect change

Table 5-166 and
Section 6.3.5.1

6.1
Errata A

1579 typos Table 5-130 and Table 5-131

6.1
Errata A

1577 BGRT Image Orientation Offset Table 5-107

6.1
Errata A

1572 Update ASL grammar to support multiple Definition Blocks Section 19.2.3

6.1
Errata A

1571 Update AML Filename description for ASL DefinitionBlock
operator

Section 19.6.28

6.1
Errata A

1552 GIC Redistributor base address language in GICC leaves room
for ambiguity

Table 5-60

6.1
Errata A

1549 Errata: wrong offset in Generic Communications Channel
Shared Memory Region table.

Table 14-369

6.1 1527 Qualcomm feedback on ACPI 6.1 draft 2 Throughout

6.1 1524 Strange hotlink Section 5.7.5

6.1 1514 Comments against 6.1 Draft from HPE Throughout--draft
corrections and typos, but
especially Section 9.20.7.2

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page x

ACPI Specification, Version 6.3
6.1 1512 Microsoft feedbacks on ACPI 6.1 draft 2 Section 5.2.25,
Section 9.20.7,
Section 18.3.2

6.1 1503 Editorial comments against 6.1 Draft 1 Throughout--draft
corrections & typos

6.1 1500 ACPI 6.1 - Graceful Shutdown (Device Object Notification) Table 5-166

6.1 1499 _FIT and _MAT ASL nits in 6.0 and 6.1 Draft Section 6.2.10, Section 6.5.9

6.1 1490 ACPI Version update to reflect 6.1 versus 6.0 Table 5-33

6.1 1483 NFIT SPD extensions and clarifications Section 5.2.25x,
Section 6.5.9,
Section 9.20x

6.1 1478 Wireless Power Calibration ACPI Device Section 10.5 & Section 10.6

6.1 1427 Addition to Memory Device State Flags in NFIT Table 5-133

6.1 1395 _DSM interfaces associated with NVDIMM-N objects Section 9.20.2x through
Section 9.20.7

6.1 1384 ERST/EINJ max wait time Table 18-397, Table 18-404

6.1 1367 Interrupt-signaled Events Section 4.1.1.1 Section 5.6, ,
Section 5.6.10,
Section 5.6.4, Section 5.6.5
Section 5.6.5.2,
Section 6.2.11.2,
Section 7.3.13,
Section 18.3.2.7.2,
Section 18.4 Added
Section 5.6.9, through
Section 5.6.9.4

6.1 1356 ARM APEI extensions Section 18.3.2.7,
Section 18.3.2.8,
Section 18.3.2.9

6.1 1344 Sharing of Connection Resources
NOTE: The changes were included in ACPI 6.0, but was missed in the
ACPI 6.0 Revision History

Section 5.5.2.4.6 through
Section 5.5.2.4.6.3.9
Section 19.6.15

6.1 1326 Section 2.2, Table 5-37,
Section 7.4.2.5, Section 15,
Table 15-374, Section 16.1.4

6.0
Errata

1488 Typo on description of PkgLength encoding (ACPI v6.0, section
5.4)

Section 5.4

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xi

ACPI Specification, Version 6.3
6.0
Errata

1487 The Length of GIC ITS Structure is wrong Table 5-66

6.0
Errata

1470 Region Format Interface Code clarification Table 5-137

6.0
Errata

1462 5.2.21 Errata Section 5.2.21

6.0
Errata

1461 5.2.21.10 Clarification Section 5.2.21.10

6.0
Errata

1449 Graceful Shutdown Request (Device Object Notification
Values)

Section 2.1, Table 5-44,
Section 5.2.12.6,Table 5-51,
Section 5.2.12.9,
Section 5.2.12.14 through
Section 5.2.12.18,
Section 5.2.25, Section 5.6,
Table 6-193, Table 6.2.10,
Table 6-249, Table 6.5.9

6.0
Errata

1445 Section 19.6.99 "Package" of the specification needs updating Section 19.6.100

6.0
Errata

1444 GTDT CntReadBase Physical address should be optional Section 5.2.24

6.0
Errata

1433 Time and Alarm _GCP changes in support of wakes from S4/S5 Section 9.18.2

6.0
Errata

1432 Errata - Explicit Data Type Conversions Section 19.3.4,
Section 19.3.5.2,
Section 19.3.5.3

6.0
Errata

1406 NFIT RAMDisk Update Section 5.2.25.2

6.0
Errata

1403 Two distinct definitions of the MADT have the same revision
number

Table 5-43

6.0
Errata

1393 In FADT: if X_DSDT field is non-zero, DSDT field should be
ignored or deprecated

Table 5-33

6.0
Errata

1392 Incorrect length in the GIC ITS Structure Table 5-66

6.0
Errata

1386 Clarify APEI vs UEFI runtime variable support Table 18-397

6.0
Errata

1385 ACPI 6.0 typo and table misnumbering Section 18.5.2.1,

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xii

ACPI Specification, Version 6.3
6.0
Errata

1380 Unnecessary restrictions to FW vendors in ordering of GIC
structures in MADT

Section 5.2.12.14

6.0
Errata

1378 Duplication of table 5-155/156, section mismatch in GIC
redistributor

duplicates of Table 5-175 &
Table 5-180 removed;
Section 5.2.12.17

6.0
Errata

1374 section mismatch: _CCA method belongs to section 6.2 Device
Configuration Objects?

Table 6-189/Table 6-193

6.0
Errata

1372 Fix inconsistency for _PXM method in section 17 Section 17.2.1,
Section 17.3.2

6.0
Errata

1368 Various errata fixes and clarifications in chapter 18 APEI Section 18.3.1,.Section 18.3.
2.7.1, Section 18.5.1,
Section 18.6.1,
Section 18.6.2 ,
Section 18.6.4

6.0
Errata

1361 Clarify _PIC Method on ARM Section 5.8.1

6.0
Errata

1289 replace use of the term "BIOS" with more accurate
descriptions

Throughout

6.0
Errata

1154 Ensure that ACPI and UEFI specs agree on the treatment of
"holes" in the memory map

Section 15.4

6.0 1370 Changes needed for ACPI 6.0: persistent memory S4 behavior Section 16.3.4

6.0 1359 Vendor Range for E820 Address Types and UEFI memory Types Table 15-374

6.0 1354 Disambiguation of _REV Section 5.7.4

6.0 1343 Comments against v6.0 Final Draft Section 18.6.2;
Section 18.6.4

6.0 1340 comment against the Final Draft: Minor errata in register fields
of LPI example

Section 8.4.4.3.4

6.0 1332 Fixes for ACPI 6.0 Draft March 2 Table 5-37;
Section 5.2.25.2Table 5-132

6.0 1328 ACPI 6.0 Draft feedback - Mantis 1228 Table 5-62

6.0 1337 Missing reference in Extended Address Space Descriptor
Definition, Section 6.4.3.5.4

Section 6.4.3.5.4

6.0 1333 ACPI 6.0 March2 Draft Feedback - Bits and NFIT related NFIT throughout

6.0 1329 ACPI 6.0 Feb 18 Draft - Follow consistent notation for Bits and
Bytes ranges

throughout

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xiii

ACPI Specification, Version 6.3
6.0 1327 ACPI 6.0 Feb 18 draft feedback - NFIT related NFIT throughout

6.0 1324 ACPI 6.0 Feb 5 Draft1 Feeback2 - Mantis 1250 Section 5.2;
Section 5.2.25;;Section 6.1.1
Section 5.6.6

6.0 1320 ACPI 6.0 Feb 5 Draft1 Feedback - Mantis 1250 Section 5.2;
Section 5.2.25;;Section 6.1.1
Section 5.6.6

6.0 1319 Comment against ACPI 6.0 Draft 1 concerning Mantis 1279 Section 19.1;Section 19.6.3;
Section 19.6.5;Section 19.6.
26;;Section 19.6.31;Section
19.6.60;Section 19.6.61Secti
on 19.6.68 - Section 19.6.74;
Section 19.6.78Section 19.6.
85Section 19.6.86Section 19
.6.92

6.0 1312 Add USB-C Connection support to _UPC Table 9-293;Section 9.14

6.0 1306 New ACPI Version Placeholder Table 5-33

6.0 1302 Errata on reference in section 6.2.11.2 Platform-Wide OSPM
Capabilities

Section 6.2.11.2

6.0 1294 Typo in section 5.7.2: "Section" used when "Table" was meant Section 5.7.2

6.0 1293 Reserve "STAO" and "XENV" table signatures Table 5-30

6.0 1292 A Missing space in first paragraph of Section 2.4 Section 2.4

6.0 1284 Battery ACPI ECR Section 5-184

Section 10.2.2.7;Table 10-
329
;Section 10.2.2;Table 10-331

6.0 1282 AML: Improve Disassembly of Control Method Invocations Section 19.6.44;Section 20.2
.5.2;Section 20-440

6.0 1281 ASL Printf and Fprintf Debug MacrosTable 10-331Table 10-331 Section 19.2.5;Section 19.2.
6;Section 19.3.4;Section 19.
3.5.2;Section 19.3;Section 1
9.4;Section 19.6.52;Section
19.6.107;

6.0 1280 ASL Helper Macro for _PLD (Physical Location of Device) -
ToPLD()

Section 19.2.6;Section 19.3.
4;Section 19.3.5.2;Section 1
9.4;Section 19.5;Section 19.
6.140

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xiv

ACPI Specification, Version 6.3
6.0 1279 ASL Extensions for Symbolic Operators and Expressions (ASL
2.0)

Section 19.1;Section 19.6.3;
Section 19.6.5;Section 19.6.
26;;Section 19.6.31;Section
19.6.60;Section 19.6.61Secti
on 19.6.68 - Section 19.6.74;
Section 19.6.78Section 19.6.
85Section 19.6.86Section 19
.6.92

6.0 1265 Missing word in figure 1-1 Figure 1-1

6.0 1264 Device Power Management Clarifications Section 2.3;Section 2.3.1;Sec
tion 3.3.1;
Section 3.3;Section 3.4Secti
on 3.4.2Section 3.4.3Section
 3.4.3Section 3.4.4x);
Section 7;
Section 7.1Section 7.2x;
Section 7.3

6.0 1262 New Thermal Zone Objects Table 5-
184;Section 11.1.5.1;Section
 11.4.8;Section 11.4.21

6.0 1261 _OSC, add OS-->Platform information to communicate >16 p-
states are supported

Table 6-200

6.0 1258 Standby Thermal Trip Section 11.4.5

6.0 1253 Clarification of S5 (Soft-Off) and S1~S4 Sleeping States Section 2.4;Section 3.9.4;Sec
tion 4.7;Section 4.8.2.3;Secti
on 4.8.3.2.1;Section 7.3.1

6.0 1252 Incorrect Indentation in first page of Section 3 Section 3

6.0 1250 Support for Non-Volatile Memory Firmware Interfaces Section 5.2;
Section 5.2.25;;Section 6.1.1
Section 5.6.6

6.0 1241 PCC and level interrupts for HW reduced platforms Section 14.1.2;Section 14.1.
5

6.0 1232 Deprecate Processor Keyword Table 5-46;Table 5-
52;Section 5.2.12.10;Section
 5.2.12.12;Section 8.4;
;Section 11.7.1;Section 11.7.
2;
;Section 19.6.30;Section 19.
6.108

6.0 1231 Adjust max p-states Section 2.6

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xv

ACPI Specification, Version 6.3
6.0 1230 Adding Support for Faster Thermal Sampling Table 6-200; Table 5-184
;Section 11.4.17
Section 11.4.22;Section 11.6

6.0 1229 Reserve IORT and support for ARM GICv3/4 ITS in MADT Table 5-29; Table 5-45;
Section 5.2.12.18

6.0 1206 Clarify _HID/_CID/_CLS usage model Section 6.1;Section 6.1.5;Sec
tion 6.2x

6.0 1203 CPPC heterogeneous performance capabilities Section 8.4.7;Section 8.4.7.1
.10;

6.0 1197: MADT Efficiency Classes and wording change for MP Parking
update

Table 5-60

6.0 1176 FADT Hypervisor Vendor Identification Support Table 5-33

6.0 1171 Extend Address Ranger Types and UEFI Memory Type to
comprehend persistent memory.

Table 5-
37;Section 6.4.3.5.4.1;Sectio
n 15; Table 15-
379,Section 15.4

Table 15-380

6.0 1152 Support for Platform-specific device reset Section 7.3.25 and
Section 7.3.26 t; Table 7-255
Table 7-256

6.0 1132 Generic Button(s) Abstraction Table 5-183; Add new
Section 9.19 and following.

6.0 1125 ACPI Low Power Idle Table (LPIT) and _LPD proposal Section 5.6.7;Section 5.6.8;
Table 6-200;
Section 7.1;Section 7.2.5;
Section 7.4.2.1;Section 8.4;S
ection 8.4.1;
Section 8.4.2;Section 8.4.2.1
; Section 8.4.3.1

5.1
Errata

1265 Missing word in figure 1-1 Figure 1-1

5.1
Errata

1252 Incorrect Indentation in first page of Section 3 Section 3

5.1
Errata

1243 Clarify whether or not the FACS is optional or not Section 5.2.9; Table 5-33

5.1
Errata

1233 Fix broken Link and Example for _CLS Section 6.1.3

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xvi

ACPI Specification, Version 6.3
5.1
Errata

1228 Present GIC version in MADT table Table 5-62

5.1
Errata

1196 Table reference in Section 9.8.3.2 is Incorrect Section 9.9.3.2

5.1
Errata

1193 Parking protocol field link is incorrect Section 5.2.12.14;

 Table 5-60

5.1
Errata

1190 Table references in Section 18 - ACPI Platform Error Interfaces
(APEI) are incorrect

Table 18-383; Table 18-385

5.1
Errata

1189 _CCA attribute default value description does not work for
ARM systems

Section 6.2.17

5.1 1181 MADT GICC table definition is wrong Table 5-61; 5.2.12.14

5.1 1180 FADT minor version byte length is wrong 5-34

5.1 1179 Errors in GTDT Section of 5.1 draft 5.2.24, 5.2.24.1;Tables 5-
115, 5-118, 5-121, 5-122

5.1 1175 Bad section reference in ACPI 5.1 19.2.3

5.1 1164 Modifications to UEFI Forum ownership of PNP ID and ACPI ID
Registry

6.1.5

5.1 1161 Misc typos in draft documents 5.2.1.6;
5.2.16.4;5.2.24;5.2.12.14;
5.2.24.1.1; Table 5-74;Table
5-115-116;Table 5-118-119;
Table 5-121; Table 5-61; 5-
61 8.4.5.1, 8.4.5.1.2.3 Table
6-162, Table 8-229; RM
duplicates from 1123/
1130:8.4.5.1.31.1

5.1 1160 ACPI 5.1 draft corrections related to _DSD (SEE 1126 BELOW) 6.2.5;Was Table 5-133 & 6-
142 now-->5-148 & 6-157

5.1 1157 Reserve ACPI Low Power Idle Table Signature "LPIT" Table 5-31

5.1 1155 Updates to M1133 MADT Table 5-63, 5-64

5.1 1151 Bug in ASL example code PRT3 code example
following Figure 9-49

5.1 1149 GTDT changes for new GT Configurations 5.2.24, 5.24.1x

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xvii

ACPI Specification, Version 6.3
5.1 1136 Add a Notification Type for System Resource Affinity Change
Event

Table 5-119 Device Object
Notifications,

new 17.2.2

5.1 1134 FADT changes for PSCI Support on ARM platforms Table 5-34, 5-36, New table
5-37

5.1 1135 PCC Doorbell Protocol for HW-Reduced Platforms 14.1.1, 14.1.2-4, 14.2.1-2,
14.3-4

5.1 1133 MADT Updates for new GICs 5.2.12.15-17, Table 5-43,
5.2.12 table 5-45, 5-60, 5-61,
5-63, 5-66

5.1 1131 Per-device Cache-coherency Attribute 6.2, 6.2.16; Was Table 6-
142-->Table 6-153

5.1 1126 Add _DSD Predefined Object-- “DeviceSpecific Data”
properties

Was Table 5-133 & 6-142
now-->5-148 & 6-157

5.1 1123 CPPC Performance Feedback Counter Change

1130 CPPC2

[overlapping/duplicate tickets]

Tables 5-126, 8.4.5, 8.4.5.1x

8.4.5.1, 8.4.5.1.3.1-4; Was
Table 8-218-->8-229

5.1 1116 Add x2APIC and GIC structure for _MAT method 6.2.10

5.0 B 1145 Support GICs in proximity domain 5.2.16 5.2. new section 16.4
new tables, 6.2.13 Table 5-
65

5.0 B 1144 Fix the gap for Notify value description 5.6.6, new tables: Table 5-
132, 5-133

5.0 B 1142 Error Source Notifications 18.3.2.6.2, 18.4, Table 18-
290

5.0 B 1117 Move http://acpi.info/links.htm content to UEFI Forum
Website

1.10, 5.2.4, 5.2.22.3, 5.2.24,
5.6.7,9.8.3.2, 13, 13.2.2
A.2.4, A.2.5; Tables 5-31, 5-
60, 5-133

5.0 B 1113 Typos in ACPI 5.0a Table 6-184

5.0 B 1148 Inconsistent BIX object description/example Was Table 10-234-->10-250

5.0 B 1143 Typos in ACPI 5.0a 6.1.8, 8.4.1

5.0 B 1102 Clarify Use of GPE Block Devices in Hardware-Reduced ACPI 3.11.1, 4.1, 9.10

5.0 B Mantis 1114 Lack of description on Bit 4 of _STA 6.3.7

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xviii

ACPI Specification, Version 6.3
5.0 A Jira 51 incorrect type information Table 19-322

5.0 A Jira 50 Misspelling of “management” 3.10

5.0 A Jira 49 Updated description of DerefOf to specify behavior when
attempt is made to de-reference a reference (via Index) to a NULL
(empty) package element.

19.5.29

5.0 A Jira 48 Text changes to change PM Timer from required to optional 4.8.1.4, 4.8.2.1, 4.8.3.3,
5.2.9

5.0 A Jira 46 Figure 5-29 is a printer killer Fig 5-29

5.0 A Jira 45 Typos in Figure 5-30 Fig 5-30

5.0 A Jira 44 Link issues in table 5-133 Table 5-133

5.0 A Jira 43 Invalid AddressSpaced keywords in example ASL code,
orphan _REG

6.5.4

5.0 A Jira 42 Serious bug in ASL example code for _OSC 6.2.10.4

5.0 A Jira 41 Fix problems with PCC address space description 14.5

5.0 A Jira 40 Issues with _GRT and _SRT Buffer description 9.18.3, 9.18.4

5.0 A Jira 39 Clarification needed for _CST Table 8-206

5.0 A Jira 38 Incorrect field name in "Generic Register Descriptor". 6.4.3.7

5.0 A Jira 37 Clarifications for _CPC method 8.4.5.1.2.1-2

5.0 A Jira 36 Restore legality of module-level executable AML code. 19.1.3

5.0 A Jira 35 ASL grammar: "UserTerm" is confusing 19.1

5.0 A Jira 34 Description of _GTM has a bad line with very large font 9.8.2.1.1

5.0 A Jira 33 Missing information in _CPC description 8.4.5.1

5.0 A Jira3 2 Error in description of _REG method 6.5.4

5.0 A Jira 31 Clarify length field for Serial resource descriptor 6.4.3.8.2

Table 6-190

5.0 A Jira 30 Argument descriptions in incorrect order for resource
descriptors

19.5.41,19.5.101

5.0 A Jira 29 Issues with memory descriptors (grammar and macros) 19.1, 19.5

5.0 A Jira 28 Problems with ASL grammar entry for DWordMemory 19.1.8

5.0 A Jira 27 Problems with Unicode description for _MLS method 6.1.7

5.0 A Jira 26 Incorrect grammar for "32-bits" and "64-bits" throughout

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xix

ACPI Specification, Version 6.3
5.0 A Jira 25 Incorrect table reference in 19.2.5.4 19.2.5.4

5.0 A Jira 24 Resource Descriptor tables -- formatting issues 6.4

5.0 A Jira 23 Interrupt Descriptors: Wake bit should be split from Share bit 6.4

5.0 A Jira 22 ASL grammar for ObjectType operator is incorrect 19.1.6

5.0 A Jira 21 ASL grammar is missing description of type 6 opcodes 19.1.5

5.0 A Jira 20 Problems with table 5-31 (reserved ACPI table signatures) Table 5-31

5.0 A Jira 19 Clarify description of _BQC method B.5.4

5.0 A Jira 18 Fix for EC OpRegion availability example 5.2.15

5.0 A Jira 17 Clarify meaning of BGRT status field Table 5-97

5.0 A Jira 16 Correction to _DSM example 9.14.1

5.0 A Jira 15 Clarify _DSM backward compatibility requirement and
example

9.15.1

5.0 A Jira 14 Description of _CPC is missing definition of unsupported
optional registers

8.4.5.1

5.0 A Jira 13 Incorrect _PLD name expansion Table 5-133, 6.1.8

5.0 A Jira 12 PLD description needs clarification 6.1.8

5.0 A Jira 11 Errata forwarded from HP 5.2.24,5.6.5.3

5.0 A Jira 10 More issues with ACPI table 5-133 Table 5-133

5.0 A Jira 7 Error in QWordIO, ExtendedIO descriptions 19.5.41,19.5.101

5.0 A Jira 6 Appendix A is now misnamed in ACPI 5.0 Appendix A

5.0 A Jira 5 PARTIAL--Need group agreement--Method _GTS and _BFS are
unused, should be removed from ACPI spec.

 7.3, 7.3.3, 16.1, 16.1.6-7,
fig. 7-204

5.0 A Jira 4 Table 5-133 - issues with _Sx methods Table 5-133

5.0 A Jira 3 Issues with predefined names table (table 5-133) Table 5-133

5.0 A Jira 2 Description of new sleep control register incorrect Table 4-24

5.0 A Jira 1 SystemCMOS keyword inconsistencies Table 5-114, 5.5.2.4.1, 6.5.4
19.,5.96, 9.15.1 - 2, 19.5.96,
20.2.5.2

5.0

Dec. 2,
2011

Ptec-002 5.2.6

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xx

ACPI Specification, Version 6.3
5.0 MSFT-020 Enumeration Power Controls 7.2.7, 7.2.12,

5.0 MSFT-019 GTDT table 5.2.24

5.0 MSFT_0018 Locking Targets from AML 5.7.5

5.0 MSFT-0017 PLD clarification for handhelf form factors 5.1.8

5.0 MSFT-0016 Extended GPIO-signaled Event Numbers 5.6.5.3

5.0 MSFT-0015 (0.1) D3 Cold Errata 7.2.1, 7.2.18 through 7.2.22

5.0 MSFT-0014 5.2.23

5.0 MSFT-0013_ADR for SIO 6.2

5.0 MSFT-0012 ROM (Get ROM Data) 5.6.6, 9.16

MSFT-010 Reserved Table Signatures 5.2.6

5.0 MSFT-0009 (0.4)TimeAndAlarmDevice Modification 9.18

5.0 MSFT-0008 Collaborative Processor Performance Control 8.4.5

5.0 MSFT-0007 Platform Communications Channel added (new ch. 14) Ch 14 (new)

5.0 MSFT-0007-0008 -
Platform_Communication_Channel_and_CPPC_changes

(new) 14

5.0 MSFT-0006 SPB Abstraction 3.11.3, 5.5.2.4.5.x, 6.4.3.8.2,
6.5.8,18.1.3, 18.1.6, 18.1.7,
18.5.44, 18.5x,19.2.5.2

5.0 MSFT-0005 GPIO Abstraction 5.5.2.4.x,5.6, 5.6.5.x, 6.4.3,
6.3.8.x, 18.5.51, 18.5.52,
18.5.89

5.0 MSFT-0004 (0.2) Fixed DMA Descriptor 6.4.2.9, 18.5.50

5.0 MSFT-0003 Device identification 6.1, 6.1.3, 6.1.5, 6.1.6, 6.1.9

5.0 MSFT-0002 Interrupt Descriptors for Generic Interrupt Controller 5.2.11, 5.2.14-15

5.0 MSFT-0001 HW-reduced ACPI 3.11.x, 4, 4.1.x, 4.3.7, 5.2.9,
5.2.9.1, 6.4.2.1, 6.4.3.6,
7.2.11, 7.3.4, 9.6, 12, 12.1,
12.6, 12.11, 12.11.1, 15,
15.1.x, 15.3, 15.3.1.x,
18.5.55, 18.5.57

5.0 INTC-0014 Remove a line (reference) not needed A.2.3

5.0 INTC-0013

5.0 INTC-0012 fix AML opcode table 19.3

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xxi

ACPI Specification, Version 6.3
5.0 INTC-0011 fix table offsets 18.6.x (tables)

5.0 INTC-0010 Update Constant Descriptions 18.5.88,
18.5.89,18.5.104,18.5.136

5.0 INTC0009 RASF 5.2.20.x

5.0 INTC-008 5.2.6

5.0 INTC-006 Fixed Example 6.2.10.4

5.0 INTC-005 Update Package Description 18.5.92

5.0 INTC-004 Table Definition Language 20, 21.x

5.0 INTC-003 MPST 6.1, 6.1.3, 6.1.5,6.1.6, 6.1.9

5.0 INTC-002 EINJ 17.6.1, 17.6.3, 17.6.5

5.0 INTC-001 (0.8) Firmware Performance Data Table (FPDT) 5.2.20.4, 5.2.20.6

5.0 INTC-001 Firmware Performance Data Table (FPDT) (0.4) 5.2.19- 5.2.20.6

5.0 HP-0002 Additional Hardware Error Notification Types 18.3.2.7

5.0 HP-0001 (0.2) BMC Requested Graceful Shutdown 5.6.5, 6.3.5

5.0 ACPI4.0 _DSM function 0 clarification 9.14.1

5.0 AMD-002 0.3 ROM (Get ROM Data) B.3.3

4.0a
Apr.
2010

Errata corrected and clarifications added.

Removed text concerning government requirement of mechanical
off

Clarified URL update document, Corrected section references for
APIC, SLIT, SRAT in Table 5-5, Update URLs and reformated Table 5-

2.2

5.2.6

5.2.12.4

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xxii

ACPI Specification, Version 6.3
Removed “TODO” note. Updated example

Repaired diagram that would not display properly Figure 15-1

Corrected error conditions from “fatal” to “corrected

Corrected several incorrect section references, Clarified number of
Generic Error Data Entry structures is >=1 (not Zero)

Clarified number of Generic Error Data Entry structures is >=1 (not
Zero)

Added new section clarifying SCI notification for generic error
sources

Added new section describing Firmware First error handling

Clarified purpose of the codes Table 17-17

Added reference to table of COMMAND_STATUS codes Table 17-23

Clarified purpose of the command status codes in Table 17-27 and
the error type definitions in Table 17-28

Added _ATT resource descriptor field name

Clarified rules for Buffer vs. Integer return types from a field unit

Corrected section/page reference

10.4.1

10.5

15.1

17.1

17.3.1

17.3.2.6.1

17.3.2.6.2

17.4

17.5.1.1

17.6.1

17.6.3

18.1.8

18.5.44,89

18.5.101

4.0

June
2009

Major specification revision. Clock Domains, x2APIC Support, Logical
Processor Idling, Corrected Platform Error Polling Table, Maximum
System Characteristics Table, Power Metering and Budgeting, IPMI
Operation Region, USB3 Support in _PLD, Re-evaluation of _PPC
acknowledgement via _OST, Thermal Model Enhancements, _OSC
at _SB, Wake Alarm Device, Battery Related Extensions, Memory
Bandwidth Monitoring and Reporting, ACPI Hardware Error
Interfaces, D3hot.

3.0b

Oct.
2006

Errata corrected and clarifications added.

3.0a
Dec.
2005

Errata corrected and clarifications added.

3.0 
Sept.
2004

Major specification revision. General configuration enhancements.
Inter-Processor power, performance, and throttling state
dependency support added. Support for > 256 processors added.
NUMA Distancing support added. PCI Express support added. SATA
support added. Ambient Light Sensor and User Presence device
support added. Thermal model extended beyond processor-centric
support.

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xxiii

ACPI Specification, Version 6.3
2.0c
Aug.
2003

Errata corrected and clarifications added.

2.0b
Oct.
2002

Errata corrected and clarifications added.

2.0a
Mar.
2002

Errata corrected and clarifications added. ACPI 2.0 Errata Document
Revision 1.0 through 1.5 integrated.

ACPI 2.0
Errata
Doc.
Rev. 1.5

Errata corrected and clarifications added.

ACPI 2.0
Errata
Doc.
Rev. 1.4

Errata corrected and clarifications added.

ACPI 2.0
Errata
Doc.
Rev. 1.3

Errata corrected and clarifications added.

ACPI 2.0
Errata
Doc.
Rev. 1.2

Errata corrected and clarifications added.

ACPI 2.0
Errata
Doc.
Rev. 1.1

Errata corrected and clarifications added.

ACPI 2.0
Errata
Doc.
Rev. 1.0

Errata corrected and clarifications added.

2.0
Aug.
2000

Major specification revision. 64-bit addressing support added.
Processor and device performance state support added. Numerous
multiprocessor workstation and server-related enhancements.
Consistency and readability enhancements throughout.

1.0b
Feb.
1999

Errata corrected and clarifications added. New interfaces added.

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xxiv

ACPI Specification, Version 6.3
1.0a
Jul.
1998

Errata corrected and clarifications added. New interfaces added.

1.0
Dec.
1996

Original Release.

ACPI
Revision

Mantis Number / Description
Affected Sections
UEFI Forum, Inc. January 2019 Page xxv

ACPI Specification, Version 6.3
Table of Contents

Revision History.. iii

Table of Contents.. xxvi

List of Tables.. xliii

List of Figures ... lii

 Overview.. 1

1 Introduction... 8
1.1 Principal Goals.. 8
1.2 Power Management Rationale.. 9
1.3 Legacy Support... 10
1.4 OEM Implementation Strategy.. 10
1.5 Power and Sleep Buttons ... 11
1.6 ACPI Specification and the Structure of ACPI .. 11
1.7 OS and Platform Compliance ... 13

1.7.1 Platform Implementations of ACPI-defined Interfaces .. 13
1.7.2 OSPM Implementations .. 17
1.7.3 OS Requirements.. 17

1.8 Target Audience.. 18
1.9 Document Organization .. 18

1.9.1 ACPI Introduction and Overview ... 19
1.9.2 Programming Models .. 19
1.9.3 Implementation Details.. 19
1.9.4 Technical Reference ... 21
1.9.5 Revsion Numbers.. 21

1.10 Related Documents .. 21

2 Definition of Terms... 23
2.1 General ACPI Terminology ... 23
2.2 Global System State Definitions ... 33
2.3 Device Power State Definitions... 35

2.3.1 Device Performance States ... 37
2.4 Sleeping and Soft-off State Definitions ... 37
2.5 Processor Power State Definitions ... 38
2.6 Device and Processor Performance State Definitions .. 38

3 ACPI Concepts.. 40
3.1 System Power Management... 42
3.2 Power States... 42

3.2.1 Power Button... 43
3.2.2 Platform Power Management Characteristics... 43

3.3 Device Power Management.. 44
3.3.1 Device Power Management Model .. 45
3.3.2 Power Management Standards... 46
UEFI Forum, Inc. December 2018 Page xxvi

ACPI Specification, Version 6.3
3.3.3 Device Power States... 46
3.3.4 Device Power State Definitions... 46

3.4 Controlling Device Power.. 47
3.4.1 Getting Device Power Capabilities.. 47
3.4.2 Setting Device Power States... 48
3.4.3 Getting Device Power Status .. 48
3.4.4 Waking the System ... 48
3.4.5 Example: Modem Device Power Management ... 49

3.5 Processor Power Management... 52
3.6 Device and Processor Performance States .. 52
3.7 Configuration and “Plug and Play” .. 53

3.7.1 Device Configuration Example: Configuring the Modem 53
3.7.2 NUMA Nodes .. 53

3.8 System Events .. 54
3.9 Battery Management... 54

3.9.1 Battery Communications ... 55
3.9.2 Battery Capacity.. 55
3.9.3 Battery Gas Gauge ... 55
3.9.4 Low Battery Levels.. 56
3.9.5 Battery Calibration... 58

3.10 Thermal Management... 58
3.10.1 Active and Passive Cooling Modes... 59
3.10.2 Performance vs. Energy Conservation ... 60
3.10.3 Acoustics (Noise) .. 60
3.10.4 Multiple Thermal Zones... 60

3.11 Flexible Platform Architecture Support ... 60
3.11.1 Hardware-reduced ACPI ... 61
3.11.2 Low-Power Idle ... 61
3.11.3 Connection Resources.. 61

4 ACPI Hardware Specification .. 64
4.1 Hardware-Reduced ACPI ... 64

4.1.1 Hardware-Reduced Events ... 65
4.2 Fixed Hardware Programming Model ... 65
4.3 Generic Hardware Programming Model ... 66
4.4 Diagram Legends.. 68
4.5 Register Bit Notation ... 69
4.6 The ACPI Hardware Model .. 69

4.6.1 Hardware Reserved Bits ... 74
4.6.2 Hardware Ignored Bits .. 74
4.6.3 Hardware Write-Only Bits.. 74
4.6.4 Cross Device Dependencies... 74

4.7 ACPI Hardware Features.. 75
4.8 ACPI Register Model .. 77

4.8.1 ACPI Register Summary ... 80
4.8.2 Fixed Hardware Features.. 82
4.8.3 Fixed Hardware Registers... 93
UEFI Forum, Inc. December 2018 Page xxvii

ACPI Specification, Version 6.3
4.8.4 Generic Hardware Registers... 102

5 ACPI Software Programming Model ... 109
5.1 Overview of the System Description Table Architecture .. 109

5.1.1 Address Space Translation ... 112
5.2 ACPI System Description Tables.. 112

5.2.1 Reserved Bits and Fields .. 113
5.2.2 Compatibility.. 113
5.2.3 Address Format... 113
5.2.4 Universally Unique Identifiers (UUIDs).. 116
5.2.5 Root System Description Pointer (RSDP)... 116
5.2.6 System Description Table Header .. 118
5.2.7 Root System Description Table (RSDT) ... 124
5.2.8 Extended System Description Table (XSDT) .. 125
5.2.9 Fixed ACPI Description Table (FADT) .. 126
5.2.10 Firmware ACPI Control Structure (FACS)... 142
5.2.11 Definition Blocks.. 148
5.2.12 Multiple APIC Description Table (MADT).. 151
5.2.13 Global System Interrupts... 168
5.2.14 Smart Battery Table (SBST) ... 169
5.2.15 Embedded Controller Boot Resources Table (ECDT) 170
5.2.16 System Resource Affinity Table (SRAT) ... 172
5.2.17 System Locality Distance Information Table (SLIT) .. 179
5.2.18 Corrected Platform Error Polling Table (CPEP) .. 180
5.2.19 Maximum System Characteristics Table (MSCT) ... 182
5.2.20 ACPI RAS Feature Table (RASF) ... 184
5.2.21 Memory Power State Table (MPST) ... 188
5.2.22 Boot Graphics Resource Table (BGRT).. 206
5.2.23 Firmware Performance Data Table (FPDT) .. 209
5.2.24 Generic Timer Description Table (GTDT) ... 216
5.2.25 NVDIMM Firmware Interface Table (NFIT) ... 222
5.2.26 Secure Devices (SDEV) ACPI Table .. 239
5.2.27 Heterogeneous Memory Attribute Table (HMAT).. 243
5.2.28 Platform Debug Trigger Table (PDTT) .. 252
5.2.29 Processor Properties Topology Table (PPTT) .. 256

5.3 ACPI Namespace .. 265
5.3.1 Predefined Root Namespaces .. 268
5.3.2 Objects .. 268

5.4 Definition Block Encoding ... 268
5.4.1 AML Encoding... 269
5.4.2 Definition Block Loading.. 269

5.5 Control Methods and the ACPI Source Language (ASL).. 271
5.5.1 ASL Statements .. 272
5.5.2 Control Method Execution... 272

5.6 ACPI Event Programming Model .. 302
5.6.1 ACPI Event Programming Model Components.. 302
5.6.2 Types of ACPI Events ... 303
UEFI Forum, Inc. December 2018 Page xxviii

ACPI Specification, Version 6.3
5.6.3 Fixed Event Handling .. 304
5.6.4 General-Purpose Event Handling ... 304
5.6.5 GPIO-signaled ACPI Events ... 309
5.6.6 Device Object Notifications ... 311
5.6.7 Device Class-Specific Objects .. 318
5.6.8 Predefined ACPI Names for Objects, Methods, and Resources....................... 320
5.6.9 Interrupt-signaled ACPI events .. 331
5.6.10 Managing a Wake Event Using Device _PRW Objects 334

5.7 Predefined Objects ... 335
5.7.1 _GL (Global Lock Mutex) ... 335
5.7.2 _OSI (Operating System Interfaces) .. 335
5.7.3 _OS (OS Name Object) ... 338
5.7.4 _REV (Revision Data Object)... 339
5.7.5 _DLM (DeviceLock Mutex).. 339

5.8 System Configuration Objects .. 341
5.8.1 _PIC Method ... 341

6 Device Configuration ... 342
6.1 Device Identification Objects... 342

6.1.1 _ADR (Address) .. 343
6.1.2 _CID (Compatible ID).. 344
6.1.3 _CLS (Class Code) ... 345
6.1.4 _DDN (DOS Device Name)... 346
6.1.5 _HID (Hardware ID) .. 346
6.1.6 _HRV (Hardware Revision)... 347
6.1.7 _MLS (Multiple Language String).. 347
6.1.8 _PLD (Physical Location of Device).. 348
6.1.9 _SUB (Subsystem ID) ... 357
6.1.10 _STR (String) .. 357
6.1.11 _SUN (Slot User Number)... 357
6.1.12 _UID (Unique ID)... 358

6.2 Device Configuration Objects ... 358
6.2.1 _CDM (Clock Domain) .. 359
6.2.2 _CRS (Current Resource Settings)... 360
6.2.3 _DIS (Disable)... 360
6.2.4 _DMA (Direct Memory Access)... 361
6.2.5 _DSD (Device Specific Data) .. 362
6.2.6 _FIX (Fixed Register Resource Provider) ... 365
6.2.7 _GSB (Global System Interrupt Base) .. 367
6.2.8 _HPP (Hot Plug Parameters) .. 368
6.2.9 _HPX (Hot Plug Parameter Extensions) ... 371
6.2.10 _MAT (Multiple APIC Table Entry) .. 385
6.2.11 _OSC (Operating System Capabilities)... 386
6.2.12 _PRS (Possible Resource Settings) ... 396
6.2.13 _PRT (PCI Routing Table) .. 397
6.2.14 _PXM (Proximity) .. 399
6.2.15 _SLI (System Locality Information) ... 400
UEFI Forum, Inc. December 2018 Page xxix

ACPI Specification, Version 6.3
6.2.16 _SRS (Set Resource Settings).. 402
6.2.17 _CCA (Cache Coherency Attribute) .. 403
6.2.18 _HMA(Heterogeneous Memory Attributes) ... 405

6.3 Device Insertion, Removal, and Status Objects.. 405
6.3.1 _EDL (Eject Device List) ... 407
6.3.2 _EJD (Ejection Dependent Device)... 408
6.3.3 _EJx (Eject)... 409
6.3.4 _LCK (Lock) .. 410
6.3.5 _OST (OSPM Status Indication) ... 410
6.3.6 _RMV (Remove) ... 416
6.3.7 _STA (Status).. 417

6.4 Resource Data Types for ACPI... 418
6.4.1 ASL Macros for Resource Descriptors.. 418
6.4.2 Small Resource Data Type ... 418
6.4.3 Large Resource Data Type ... 424

6.5 Other Objects and Control Methods ... 470
6.5.1 _INI (Init) ... 470
6.5.2 _DCK (Dock) ... 471
6.5.3 _BDN (BIOS Dock Name)... 472
6.5.4 _REG (Region).. 472
6.5.5 _BBN (Base Bus Number) .. 474
6.5.6 _SEG (Segment)... 474
6.5.7 _GLK (Global Lock)... 476
6.5.8 _DEP (Operation Region Dependencies) ... 476
6.5.9 _FIT (Firmware Interface Table) ... 477
6.5.10 NVDIMM Label Methods ... 478

7 Power and Performance Management ... 481
7.1 Power Resource Objects and the Power Management Models 481
7.2 Declaring a Power Resource Object ... 482

7.2.1 Defined Methods for a Power Resource ... 484
7.2.2 _OFF ... 484
7.2.3 _ON... 484
7.2.4 _STA (Status).. 485
7.2.5 Passive Power Resources .. 485

7.3 Device Power Management Objects... 485
7.3.1 _DSW (Device Sleep Wake) ... 487
7.3.2 _PS0 (Power State 0) ... 488
7.3.3 _PS1 (Power State 1) ... 488
7.3.4 _PS2 (Power State 2) ... 488
7.3.5 _PS3 (Power State 3) ... 488
7.3.6 _PSC (Power State Current)... 489
7.3.7 _PSE (Power State for Enumeration) ... 489
7.3.8 _PR0 (Power Resources for D0)... 489
7.3.9 _PR1 (Power Resources for D1)... 490
7.3.10 _PR2 (Power Resources for D2)... 490
7.3.11 _PR3 (Power Resources for D3hot).. 491
UEFI Forum, Inc. December 2018 Page xxx

ACPI Specification, Version 6.3
7.3.12 _PRE (Power Resources for Enumeration) .. 491
7.3.13 _PRW (Power Resources for Wake)... 492
7.3.14 _PSW (Power State Wake)... 493
7.3.15 _IRC (In Rush Current) ... 494
7.3.16 _S1D (S1 Device State) .. 494
7.3.17 _S2D (S2 Device State) .. 495
7.3.18 _S3D (S3 Device State) .. 496
7.3.19 _S4D (S4 Device State) .. 496
7.3.20 _S0W (S0 Device Wake State) ... 497
7.3.21 _S1W (S1 Device Wake State) ... 497
7.3.22 _S2W (S2 Device Wake State) ... 497
7.3.23 _S3W (S3 Device Wake State) ... 498
7.3.24 _S4W (S4 Device Wake State) ... 498
7.3.25 _RST (Device Reset) .. 499
7.3.26 _PRR (Power Resource for Reset) ... 499

7.4 OEM-Supplied System-Level Control Methods .. 499
7.4.1 _PTS (Prepare To Sleep)... 500
7.4.2 _Sx (System States) .. 500
7.4.3 _SWS (System Wake Source) .. 505
7.4.4 _TTS (Transition To State)... 506
7.4.5 _WAK (System Wake) ... 507

7.5 OSPM usage of _PTS, _TTS, and _WAK... 508

8 Processor Configuration and Control .. 509
8.1 Processor Power States ... 509

8.1.1 Processor Power State C0.. 511
8.1.2 Processor Power State C1.. 513
8.1.3 Processor Power State C2.. 513
8.1.4 Processor Power State C3.. 513
8.1.5 Additional Processor Power States... 514

8.2 Flushing Caches ... 515
8.3 Power, Performance, and Throttling State Dependencies.. 515
8.4 Declaring Processors... 516

8.4.1 _PDC (Processor Driver Capabilities)... 516
8.4.2 Processor Power State Control... 518
8.4.3 Processor Hierarchy.. 524
8.4.4 Lower Power Idle States ... 525
8.4.5 Processor Throttling Controls.. 551
8.4.6 Processor Performance Control.. 559
8.4.7 Collaborative Processor Performance Control.. 567
8.4.8 _PPE (Polling for Platform Errors) .. 586

8.5 Processor Aggregator Device ... 586
8.5.1 Logical Processor Idling .. 586
8.5.2 OSPM _OST Evaluation ... 587

9 ACPI-Defined Devices and Device-Specific Objects................................. 589
9.1 Device Object Name Collision .. 589

9.1.1 _DSM (Device Specific Method) ... 589
UEFI Forum, Inc. December 2018 Page xxxi

ACPI Specification, Version 6.3
9.2 _SI System Indicators .. 592
9.2.1 _SST (System Status)... 592
9.2.2 _MSG (Message) .. 592
9.2.3 _BLT (Battery Level Threshold) .. 593

9.3 Ambient Light Sensor Device.. 593
9.3.1 Overview ... 594
9.3.2 _ALI (Ambient Light Illuminance) .. 595
9.3.3 _ALT (Ambient Light Temperature)... 595
9.3.4 _ALC (Ambient Light Color Chromaticity) ... 595
9.3.5 _ALR (Ambient Light Response)... 596
9.3.6 _ALP (Ambient Light Polling) .. 600
9.3.7 Ambient Light Sensor Events.. 600
9.3.8 Relationship to Backlight Control Methods ... 601

9.4 Battery Device... 601
9.5 Control Method Lid Device.. 601

9.5.1 _LID... 601
9.6 Control Method Power and Sleep Button Devices.. 602
9.7 Embedded Controller Device .. 602
9.8 Generic Container Device... 602
9.9 ATA Controller Devices... 603

9.9.1 Objects for Both ATA and SATA Controllers... 603
9.9.2 IDE Controller Device.. 604
9.9.3 Serial ATA (SATA) Controller Device.. 607

9.10 Floppy Controller Device Objects ... 609
9.10.1 _FDE (Floppy Disk Enumerate) .. 609
9.10.2 _FDI (Floppy Disk Information) ... 610
9.10.3 _FDM (Floppy Disk Drive Mode)... 611

9.11 GPE Block Device... 611
9.11.1 Matching Control Methods for Events in a GPE Block Device........................ 612

9.12 Module Device .. 613
9.13 Memory Devices ... 616

9.13.1 Address Decoding... 616
9.13.2 Memory Bandwidth Monitoring and Reporting .. 616
9.13.3 _OSC Definition for Memory Device ... 618
9.13.4 Example: Memory Device ... 619

9.14 _UPC (USB Port Capabilities) .. 619
9.14.1 USB 2.0 Host Controllers and _UPC and _PLD ... 624

9.15 PC/AT RTC/CMOS Devices ... 626
9.15.1 PC/AT-compatible RTC/CMOS Devices (PNP0B00)...................................... 626
9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNP0B02) 628

9.16 User Presence Detection Device .. 628
9.16.1 _UPD (User Presence Detect) .. 628
9.16.2 _UPP (User Presence Polling).. 629
9.16.3 User Presence Sensor Events .. 629

9.17 I/O APIC Device.. 629
9.18 Time and Alarm Device... 630

9.18.2 _GCP (Get Capability) .. 634
UEFI Forum, Inc. December 2018 Page xxxii

ACPI Specification, Version 6.3
9.18.3 _GRT (Get Real Time) .. 634
9.18.4 _SRT (Set Real Time)... 635
9.18.5 _GWS (Get Wake alarm status).. 636
9.18.6 _CWS (Clear Wake alarm status) ... 637
9.18.7 _STP (Set Expired Timer Wake Policy) .. 637
9.18.8 _STV (Set Timer Value) .. 637
9.18.9 _TIP (Expired Timer Wake Policy) .. 638
9.18.10 _TIV (Timer Values) .. 638
9.18.11 ACPI Wakeup Alarm Events ... 638
9.18.12 Relationship to Real Time Clock Alarm ... 639
9.18.13 Time and Alarm device as a replacement to the RTC 639
9.18.14 Relationship to UEFI time source.. 639
9.18.15 Example ASL code ... 639

9.19 Generic Buttons Device .. 643
9.19.1 Button Interrupts.. 643
9.19.2 Button Usages and Collections ... 644
9.19.3 Example .. 645

9.20 NVDIMM Devices.. 647
9.20.1 Overview ... 647
9.20.2 NVDIMM Root Device ... 647
9.20.3 NVDIMM Device.. 647
9.20.4 Example .. 647
9.20.5 Loading NVDIMM drivers .. 648
9.20.6 Hot Plug Support.. 649
9.20.7 NVDIMM Root Device _DSMs ... 650
9.20.8 NVDIMM Device Methods... 665

10 Power Source and Power Meter Devices ... 673
10.1 Smart Battery Subsystems ... 673

10.1.1 ACPI Smart Battery Status Change Notification Requirements...................... 675
10.1.2 Smart Battery Objects ... 676
10.1.3 _SBS (Smart Battery Subsystem) .. 676

10.2 Control Method Batteries .. 680
10.2.1 Battery Events... 680
10.2.2 Battery Control Methods ... 681

10.3 AC Adapters and Power Source Objects.. 695
10.3.1 _PSR (Power Source)... 696
10.3.2 _PCL (Power Consumer List) ... 696
10.3.3 _PIF (Power Source Information).. 696
10.3.4 _PRL (Power Source Redundancy List) ... 697

10.4 Power Meters.. 698
10.4.1 _PMC (Power Meter Capabilities)... 698
10.4.2 _PTP (Power Trip Points) ... 700
10.4.3 _PMM (Power Meter Measurement) ... 701
10.4.4 _PAI (Power Averaging Interval)... 701
10.4.5 _GAI (Get Averaging Interval)... 702
10.4.6 _SHL (Set Hardware Limit) ... 702
UEFI Forum, Inc. December 2018 Page xxxiii

ACPI Specification, Version 6.3
10.4.7 _GHL (Get Hardware Limit) .. 702
10.4.8 _PMD (Power Metered Devices)... 703

10.5 Wireless Power Controllers... 703
10.5.1 Wireless Power Calibration Device ... 704
10.5.2 Wireless Power Calibration (_WPC) ... 704
10.5.3 Wireless Power Polling (_WPP).. 704

10.6 Wireless Power Calibration Event .. 705
10.7 Example: Power Source and Power Meter Namespace... 705

11 Thermal Management... 707
11.1 Thermal Control .. 707

11.1.1 Active, Passive, and Critical Policies .. 708
11.1.2 Dynamically Changing Cooling Temperature Trip Points 709
11.1.3 Detecting Temperature Changes .. 710
11.1.4 Active Cooling .. 712
11.1.5 Passive Cooling .. 713
11.1.6 Critical Shutdown .. 714

11.2 Cooling Preferences .. 715
11.2.1 Evaluating Thermal Device Lists... 716
11.2.2 Evaluating Device Thermal Relationship Information 717

11.3 Fan Device.. 717
11.3.1 Fan Objects... 718

11.4 Thermal Objects.. 721
11.4.1 _ACx (Active Cooling) ... 722
11.4.2 _ALx (Active List) .. 723
11.4.3 _ART (Active Cooling Relationship Table).. 723
11.4.4 _CRT (Critical Temperature)... 726
11.4.5 _CR3 (Warm/Standby Temperature) .. 726
11.4.6 _DTI (Device Temperature Indication) .. 727
11.4.7 _HOT (Hot Temperature) .. 727
11.4.8 _MTL (Minimum Throttle Limit) ... 727
11.4.9 _NTT (Notification Temperature Threshold) ... 728
11.4.10 _PSL (Passive List)... 728
11.4.11 _PSV (Passive) ... 728
11.4.12 _RTV (Relative Temperature Values) ... 729
11.4.13 _SCP (Set Cooling Policy) .. 729
11.4.14 _STR (String) .. 733
11.4.15 _TC1 (Thermal Constant 1) .. 733
11.4.16 _TC2 (Thermal Constant 2) .. 733
11.4.17 _TFP (Thermal fast Sampling Period) .. 733
11.4.18 _TMP (Temperature)... 734
11.4.19 _TPT (Trip Point Temperature) ... 734
11.4.20 _TRT (Thermal Relationship Table).. 734
11.4.21 _TSN (Thermal Sensor Device) .. 735
11.4.22 _TSP (Thermal Sampling Period) ... 735
11.4.23 _TST (Temperature Sensor Threshold) .. 736
11.4.24 _TZD (Thermal Zone Devices).. 736
UEFI Forum, Inc. December 2018 Page xxxiv

ACPI Specification, Version 6.3
11.4.25 _TZM (Thermal Zone Member)... 737
11.4.26 _TZP (Thermal Zone Polling).. 737

11.5 Native OS Device Driver Thermal Interfaces .. 737
11.6 Thermal Zone Interface Requirements ... 738
11.7 Thermal Zone Examples... 738

11.7.1 Example: The Basic Thermal Zone... 738
11.7.2 Example: Multiple-Speed Fans ... 740
11.7.3 Example: Thermal Zone with Multiple Devices ... 742

12 ACPI Embedded Controller Interface Specification 750
12.1 Embedded Controller Interface Description .. 750
12.2 Embedded Controller Register Descriptions... 753

12.2.1 Embedded Controller Status, EC_SC (R) ... 753
12.2.2 Embedded Controller Command, EC_SC (W).. 755
12.2.3 Embedded Controller Data, EC_DATA (R/W)... 755

12.3 Embedded Controller Command Set .. 755
12.3.1 Read Embedded Controller, RD_EC (0x80) ... 755
12.3.2 Write Embedded Controller, WR_EC (0x81)... 755
12.3.3 Burst Enable Embedded Controller, BE_EC (0x82).. 756
12.3.4 Burst Disable Embedded Controller, BD_EC (0x83)....................................... 756
12.3.5 Query Embedded Controller, QR_EC (0x84).. 757

12.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT 757
12.5 Embedded Controller Firmware .. 757
12.6 Interrupt Model.. 758

12.6.1 Event Interrupt Model.. 758
12.6.2 Command Interrupt Model .. 758

12.7 Embedded Controller Interfacing Algorithms .. 759
12.8 Embedded Controller Description Information .. 759
12.9 SMBus Host Controller Interface via Embedded Controller 760

12.9.1 Register Description.. 760
12.9.2 Protocol Description .. 764

12.10 SMBus Devices... 771
12.10.1 SMBus Device Access Restrictions .. 771
12.10.2 SMBus Device Command Access Restriction .. 771

12.11 Defining an Embedded Controller Device in ACPI Namespace 772
12.11.1 Example: EC Definition ASL Code ... 772

12.12 Defining an EC SMBus Host Controller in ACPI Namespace................................... 773
12.12.1 Example: EC SMBus Host Controller ASL-Code .. 773

13 ACPI System Management Bus Interface Specification 775
13.1 SMBus Overview .. 775

13.1.1 SMBus Slave Addresses... 775
13.1.2 SMBus Protocols... 776
13.1.3 SMBus Status Codes .. 777
13.1.4 SMBus Command Values ... 777

13.2 Accessing the SMBus from ASL Code ... 777
13.2.1 Declaring SMBus Host Controller Objects .. 777
13.2.2 Declaring SMBus Devices... 778
UEFI Forum, Inc. December 2018 Page xxxv

ACPI Specification, Version 6.3
13.2.3 Declaring SMBus Operation Regions ... 778
13.2.4 Declaring SMBus Fields.. 780
13.2.5 Declaring and Using an SMBus Data Buffer ... 782

13.3 Using the SMBus Protocols .. 783
13.3.1 Read/Write Quick (SMBQuick).. 783
13.3.2 Send/Receive Byte (SMBSendReceive) ... 784
13.3.3 Read/Write Byte (SMBByte).. 785
13.3.4 Read/Write Word (SMBWord)... 785
13.3.5 Read/Write Block (SMBBlock) .. 786
13.3.6 Word Process Call (SMBProcessCall) .. 787
13.3.7 Block Process Call (SMBBlockProcessCall) ... 788

14 Platform Communications Channel (PCC)... 789
14.1 Platform Communications Channel Table .. 789

14.1.1 Platform Communications Channel Global Flags ... 790
14.1.2 Platform Communications Channel Subspace Structures 790
14.1.3 Generic Communications Subspace Structure (type 0) 790
14.1.4 HW-Reduced Communications Subspace Structure (type 1) 791
14.1.5 HW-Reduced Communications Subspace Structure (type 2) 793
14.1.6 Extended PCC subspaces (types 3 and 4) ... 794

14.2 Generic Communications Channel Shared Memory Region 798
14.2.1 Generic Communications Channel Command Field 798
14.2.2 Generic Communications Channel Status Field ... 798

14.3 Extended PCC Subspace Shared Memory Region .. 799
14.4 Doorbell Protocol .. 800
14.5 Platform Notification.. 802

14.5.1 Platform Notification for Subspace Types 0, 1 and 2 802
14.5.2 Platform Notification for slave PCC subspaces (type 4) 802

14.6 Referencing the PCC address space.. 804

15 System Address Map Interfaces ... 805
15.1 INT 15H, E820H - Query System Address Map ... 806
15.2 E820 Assumptions and Limitations... 808
15.3 UEFI GetMemoryMap() Boot Services Function... 809
15.4 UEFI Assumptions and Limitations ... 810
15.5 Example Address Map.. 810
15.6 Example: Operating System Usage.. 811

16 Waking and Sleeping ... 813
16.1 Sleeping States... 814

16.1.1 S1 Sleeping State ... 816
16.1.2 S2 Sleeping State ... 817
16.1.3 S3 Sleeping State ... 817
16.1.4 S4 Sleeping State ... 818
16.1.5 S5 Soft Off State ... 820
16.1.6 Transitioning from the Working to the Sleeping State..................................... 820
16.1.7 Transitioning from the Working to the Soft Off State....................................... 821

16.2 Flushing Caches ... 821
UEFI Forum, Inc. December 2018 Page xxxvi

ACPI Specification, Version 6.3
16.3 Initialization ... 822
16.3.1 Placing the System in ACPI Mode .. 825
16.3.2 Platform Boot Firmware Initialization of Memory... 825
16.3.3 OS Loading ... 827
16.3.4 Exiting ACPI Mode .. 829

17 Non-Uniform Memory Access (NUMA) Architecture Platforms 830
17.1 NUMA Node.. 830
17.2 System Locality... 830

17.2.1 System Resource Affinity Table Definition .. 831
17.2.2 System Resource Affinity Update ... 831

17.3 System Locality Distance Information... 831
17.3.1 Online Hot Plug ... 832
17.3.2 Impact to Existing Localities.. 832

17.4 Heterogeneous Memory Attributes Information .. 832
17.4.1 Online Hot Plug ... 833
17.4.2 Impact to Existing Localities.. 833

18 ACPI Platform Error Interfaces (APEI).. 834
18.1 Hardware Errors and Error Sources ... 834
18.2 Relationship between OSPM and System Firmware .. 835
18.3 Error Source Discovery... 835

18.3.1 Boot Error Source ... 835
18.3.2 ACPI Error Source .. 836

18.4 Firmware First Error Handling... 854
18.4.1 Example: Firmware First Handling Using NMI Notification 854

18.5 Error Serialization ... 855
18.5.1 Serialization Action Table.. 856
18.5.2 Operations... 862

18.6 Error Injection.. 866
18.6.1 Error Injection Table (EINJ)... 866
18.6.2 Injection Instruction Entries ... 869
18.6.3 Injection Instructions ... 870
18.6.4 Trigger Action Table.. 873
18.6.5 Error Injection Operation ... 873

19 ACPI Source Language (ASL) Reference... 875
19.1 ASL 2.0 Symbolic Operators and Expressions ... 875
19.2 ASL Language Grammar .. 876

19.2.1 ASL Grammar Notation... 877
19.2.2 ASL Name and Pathname Terms ... 878
19.2.3 ASL Root and Secondary Terms .. 879
19.2.4 ASL Data and Constant Terms ... 880
19.2.5 ASL Opcode Terms... 883
19.2.6 ASL Primary (Terminal) Terms ... 885
19.2.7 ASL Parameter Keyword Terms ... 903
19.2.8 ASL Resource Template Terms.. 905

19.3 ASL Concepts ... 916
UEFI Forum, Inc. December 2018 Page xxxvii

ACPI Specification, Version 6.3
19.3.1 ASL Names ... 916
19.3.2 ASL Literal Constants ... 917
19.3.3 ASL Resource Templates ... 919
19.3.4 ASL Macros... 920
19.3.5 ASL Data Types .. 921

19.4 ASL Operator Summary ... 933
19.5 ASL Operator Summary by Type ... 937
19.6 ASL Operator Reference ... 942

19.6.1 AccessAs (Change Field Unit Access).. 942
19.6.2 Acquire (Acquire a Mutex)... 943
19.6.3 Add (Integer Add).. 943
19.6.4 Alias (Declare Name Alias) ... 944
19.6.5 And (Integer Bitwise And) ... 944
19.6.6 Argx (Method Argument Data Objects) ... 944
19.6.7 BankField (Declare Bank/Data Field).. 945
19.6.8 Break (Break from While).. 946
19.6.9 BreakPoint (Execution Break Point).. 946
19.6.10 Buffer (Declare Buffer Object)... 946
19.6.11 Case (Expression for Conditional Execution).. 948
19.6.12 Concatenate (Concatenate Data) ... 948
19.6.13 ConcatenateResTemplate (Concatenate Resource Templates) 950
19.6.14 CondRefOf (Create Object Reference Conditionally) 950
19.6.15 Connection (Declare Field Connection Attributes) .. 951
19.6.16 Continue (Continue Innermost Enclosing While) .. 952
19.6.17 CopyObject (Copy and Store Object).. 952
19.6.18 CreateBitField (Create 1-Bit Buffer Field) .. 952
19.6.19 CreateByteField (Create 8-Bit Buffer Field) .. 952
19.6.20 CreateDWordField (Create 32-Bit Buffer Field) .. 953
19.6.21 CreateField (Create Arbitrary Length Buffer Field) 953
19.6.22 CreateQWordField (Create 64-Bit Buffer Field) .. 953
19.6.23 CreateWordField (Create 16-Bit Buffer Field) .. 954
19.6.24 DataTableRegion (Create Data Table Operation Region) 954
19.6.25 Debug (Debugger Output)... 954
19.6.26 Decrement (Integer Decrement) ... 955
19.6.27 Default (Default Execution Path in Switch) .. 955
19.6.28 DefinitionBlock (Declare Definition Block)... 956
19.6.29 DerefOf (Dereference an Object Reference) .. 956
19.6.30 Device (Declare Device Package) .. 957
19.6.31 Divide (Integer Divide)... 958
19.6.32 DMA (DMA Resource Descriptor Macro) .. 958
19.6.33 DWordIO (DWord IO Resource Descriptor Macro) 959
19.6.34 DWordMemory (DWord Memory Resource Descriptor Macro)..................... 961
19.6.35 DWordSpace (DWord Space Resource Descriptor Macro) 963
19.6.36 EISAID (EISA ID String To Integer Conversion Macro) 964
19.6.37 Else (Alternate Execution)... 964
19.6.38 ElseIf (Alternate/Conditional Execution).. 965
19.6.39 EndDependentFn (End Dependent Function Resource Descriptor Macro) .. 966
UEFI Forum, Inc. December 2018 Page xxxviii

ACPI Specification, Version 6.3
19.6.40 Event (Declare Event Synchronization Object) ... 966
19.6.41 ExtendedIO (Extended IO Resource Descriptor Macro) 967
19.6.42 ExtendedMemory (Extended Memory Resource Descriptor Macro) 968
19.6.43 ExtendedSpace (Extended Address Space Resource Descriptor Macro) 970
19.6.44 External (Declare External Objects).. 971
19.6.45 Fatal (Fatal Error Check)... 972
19.6.46 Field (Declare Field Objects)... 972
19.6.47 FindSetLeftBit (Find First Set Left Bit)... 975
19.6.48 FindSetRightBit (Find First Set Right Bit) .. 975
19.6.49 FixedDMA (DMA Resource Descriptor Macro) ... 976
19.6.50 FixedIO (Fixed IO Resource Descriptor Macro).. 976
19.6.51 For (Conditional Loop) .. 977
19.6.52 Fprintf (Create and Store formatted string) ... 978
19.6.53 FromBCD (Convert BCD To Integer) .. 978
19.6.54 Function (Declare Control Method) ... 979
19.6.55 GpioInt (GPIO Interrupt Connection Resource Descriptor Macro)................ 980
19.6.56 GpioIo (GPIO Connection IO Resource Descriptor Macro) 981
19.6.57 I2CSerialBusV2 (I2C Serial Bus Connection Resource Descriptor (Version 2)

Macro) .. 982
19.6.58 If (Conditional Execution) .. 983
19.6.59 Include (Include Additional ASL File) .. 983
19.6.60 Increment (Integer Increment)... 984
19.6.61 Index (Indexed Reference To Member Object)... 984
19.6.62 IndexField (Declare Index/Data Fields)... 986
19.6.63 Interrupt (Interrupt Resource Descriptor Macro) ... 987
19.6.64 IO (IO Resource Descriptor Macro) .. 988
19.6.65 IRQ (Interrupt Resource Descriptor Macro) .. 989
19.6.66 IRQNoFlags (Interrupt Resource Descriptor Macro) 990
19.6.67 LAnd (Logical And).. 990
19.6.68 LEqual (Logical Equal) .. 990
19.6.69 LGreater (Logical Greater) .. 991
19.6.70 LGreaterEqual (Logical Greater Than Or Equal) .. 991
19.6.71 LLess (Logical Less) ... 991
19.6.72 LLessEqual (Logical Less Than Or Equal).. 992
19.6.73 LNot (Logical Not) ... 992
19.6.74 LNotEqual (Logical Not Equal)).. 993
19.6.75 Load (Load Definition Block) ... 993
19.6.76 LoadTable (Load Definition Block From XSDT) .. 994
19.6.77 Localx (Method Local Data Objects) ... 995
19.6.78 LOr (Logical Or) .. 995
19.6.79 Match (Find Object Match).. 995
19.6.80 Memory24 (Memory Resource Descriptor Macro) .. 996
19.6.81 Memory32 (Memory Resource Descriptor Macro) 997
19.6.82 Memory32Fixed (Memory Resource Descriptor Macro) 998
19.6.83 Method (Declare Control Method)... 999
19.6.84 Mid (Extract Portion of Buffer or String) .. 1000
19.6.85 Mod (Integer Modulo).. 1001
UEFI Forum, Inc. December 2018 Page xxxix

ACPI Specification, Version 6.3
19.6.86 Multiply (Integer Multiply) .. 1001
19.6.87 Mutex (Declare Synchronization/Mutex Object).. 1001
19.6.88 Name (Declare Named Object)... 1002
19.6.89 NAnd (Integer Bitwise Nand)... 1003
19.6.90 NoOp Code (No Operation) .. 1003
19.6.91 NOr (Integer Bitwise Nor).. 1003
19.6.92 Not (Integer Bitwise Not) ... 1003
19.6.93 Notify (Notify Object of Event)... 1004
19.6.94 Offset (Change Current Field Unit Offset)... 1004
19.6.95 ObjectType (Get Object Type) .. 1004
19.6.96 One (Constant One Integer).. 1005
19.6.97 Ones (Constant Ones Integer) .. 1005
19.6.98 OperationRegion (Declare Operation Region) .. 1006
19.6.99 Or (Integer Bitwise Or) .. 1007
19.6.100 Package (Declare Package Object) .. 1007
19.6.101 Pin Configuration... 1009
19.6.102 Pin Function .. 1013
19.6.103 Pin Group .. 1017
19.6.104 Pin Group Configuration.. 1017
19.6.105 Pin Group Function ... 1022
19.6.106 PowerResource (Declare Power Resource) ... 1023
19.6.107 Printf (Create and Store formatted string) ... 1023
19.6.108 Processor (Declare Processor) ... 1024
19.6.109 QWordIO (QWord IO Resource Descriptor Macro)................................... 1025
19.6.110 QWordMemory (QWord Memory Resource Descriptor Macro) 1027
19.6.111 QWordSpace (QWord Space Resource Descriptor Macro)...................... 1028
19.6.112 RawDataBuffer.. 1030
19.6.113 RefOf (Create Object Reference).. 1030
19.6.114 Register (Generic Register Resource Descriptor Macro).......................... 1031
19.6.115 Release (Release a Mutex Synchronization Object)................................. 1032
19.6.116 Reset (Reset an Event Synchronization Object)....................................... 1032
19.6.117 ResourceTemplate (Resource To Buffer Conversion Macro) 1033
19.6.118 Return (Return from Method Execution) ... 1033
19.6.119 Revision (Constant Revision Integer).. 1033
19.6.120 Scope (Open Named Scope) .. 1033
19.6.121 ShiftLeft (Integer Shift Left) ... 1035
19.6.122 ShiftRight (Integer Shift Right) .. 1035
19.6.123 Signal (Signal a Synchronization Event) ... 1035
19.6.124 SizeOf (Get Data Object Size) .. 1036
19.6.125 Sleep (Milliseconds Sleep).. 1036
19.6.126 SPISerialBusV2 (SPI Serial Bus Connection Resource Descriptor (Version 2)

Macro) .. 1036
19.6.127 Stall (Stall for a Short Time) .. 1037
19.6.128 StartDependentFn (Start Dependent Function Resource Descriptor Macro)....

1038
19.6.129 StartDependentFnNoPri (Start Dependent Function Resource Descriptor

Macro) ... 1038
UEFI Forum, Inc. December 2018 Page xl

ACPI Specification, Version 6.3
19.6.130 Store (Store an Object) ... 1039
19.6.131 Subtract (Integer Subtract).. 1039
19.6.132 Switch (Select Code To Execute Based On Expression).......................... 1040
19.6.133 ThermalZone (Declare Thermal Zone).. 1042
19.6.134 Timer (Get 64-Bit Timer Value) .. 1042
19.6.135 ToBCD (Convert Integer to BCD).. 1043
19.6.136 ToBuffer (Convert Data to Buffer) ... 1043
19.6.137 ToDecimalString (Convert Data to Decimal String)................................... 1044
19.6.138 ToHexString (Convert Data to Hexadecimal String) 1044
19.6.139 ToInteger (Convert Data to Integer) .. 1044
19.6.140 ToPLD (Creates a _PLD Buffer Object) .. 1045
19.6.141 ToString (Convert Buffer To String) .. 1047
19.6.142 ToUUID (Convert String to UUID Macro) ... 1047
19.6.143 UARTSerialBusV2 (UART Serial Bus Connection Resource Descriptor

(Version 2) Macro).. 1048
19.6.144 Unicode (String To Unicode Conversion Macro)....................................... 1050
19.6.145 VendorLong (Long Vendor Resource Descriptor)..................................... 1050
19.6.146 {deprec ated} Unload (Unload Definition Block).. 1051
19.6.147 VendorShort (Short Vendor Resource Descriptor).................................... 1051
19.6.148 Wait (Wait for a Synchronization Event) ... 1051
19.6.149 While (Conditional Loop)... 1052
19.6.150 WordBusNumber (Word Bus Number Resource Descriptor Macro)......... 1052
19.6.151 WordIO (Word IO Resource Descriptor Macro) .. 1053
19.6.152 WordSpace (Word Space Resource Descriptor Macro)) 1055
19.6.153 XOr (Integer Bitwise Xor) .. 1057
19.6.154 Zero (Constant Zero Integer) .. 1057

20 ACPI Machine Language (AML) Specification 1058
20.1 Notation Conventions.. 1058
20.2 AML Grammar Definition .. 1059

20.2.1 Table and Table Header Encoding ... 1059
20.2.2 Name Objects Encoding ... 1060
20.2.3 Data Objects Encoding ... 1060
20.2.4 Package Length Encoding .. 1061
20.2.5 Term Objects Encoding... 1061
20.2.6 Miscellaneous Objects Encoding .. 1069

20.3 AML Byte Stream Byte Values.. 1070
20.4 AML Encoding of Names in the Namespace ... 1076

21 ACPI Data Tables and Table Definition Language 1079
21.1 Types of ACPI Data Tables .. 1079
21.2 ACPI Table Definition Language Specification ... 1079

21.2.1 Overview of the Table Definition Language (TDL) .. 1080
21.2.2 TDL Grammar Specification.. 1081
21.2.3 Data Types.. 1083
21.2.4 Fields Set Automatically by the Compiler.. 1086
21.2.5 Special Fields.. 1086
21.2.6 TDL Generic Data Types .. 1087
UEFI Forum, Inc. December 2018 Page xli

ACPI Specification, Version 6.3
21.2.7 Defining a Known ACPI Table in TDL ... 1087
21.2.8 Defining an Unknown or New ACPI table in TDL.. 1088
21.2.9 Table Definition Language Examples ... 1088
21.2.10 Minimal ECDT Definition ... 1090

Device Class Specifications ... 1092

Video Extensions... 1116

Deprecated Content... 1133
UEFI Forum, Inc. December 2018 Page xlii

ACPI Specification, Version 6.3
List of Tables

Table 1-1 Hardware Type vs. OS Type Interaction..10
Table 2-1 Summary of Global Power States ...34
Table 2-2 Summary of Device Power States ...36
Table 3-3 Low Battery Levels ..57
Table 3-4 Implementable Platform Types ..62
Table 4-5 Feature/Programming Model Summary...75
Table 4-6 PM1 Event Registers ...80
Table 4-7 PM1 Control Registers ..80
Table 4-8 PM2 Control Register..80
Table 4-9 PM Timer Register ..80
Table 4-10 Processor Control Registers..80
Table 4-11 General-Purpose Event Registers ...81
Table 4-12 Power Button Support ..84
Table 4-13 Sleep Button Support..86
Table 4-14 Alarm Field Decodings within the FADT..91
Table 4-15 PM1 Status Registers Fixed Hardware Feature Status Bits...93
Table 4-16 PM1 Enable Registers Fixed Hardware Feature Enable Bits ...96
Table 4-17 PM1 Control Registers Fixed Hardware Feature Control Bits...97
Table 4-18 PM Timer Bits..98
Table 4-19 PM2 Control Register Bits ..99
Table 4-20 Processor Control Register Bits...99
Table 4-21 Processor LVL2 Register Bits ...100
Table 4-22 Processor LVL3 Register Bits ...100
Table 4-23 Sleep Control Register ..101
Table 4-24 Sleep Status Register ..101
Table 5-25 Generic Address Structure (GAS) ..115
Table 5-26 Address Space Format ..116
Table 5-27 RSDP Structure..118
Table 5-28 DESCRIPTION_HEADER Fields ...119
Table 5-29 DESCRIPTION_HEADER Signatures for tables defined by ACPI ...120
Table 5-30 DESCRIPTION_HEADER Signatures for tables reserved by ACPI122
Table 5-31 Root System Description Table Fields (RSDT) ...124
Table 5-32 Extended System Description Table Fields (XSDT)..125
Table 5-33 FADT Format ..126
Table 5-34 Fixed ACPI Description Table Fixed Feature Flags ..136
Table 5-35 Fixed ACPI Description Table Boot IA-PC Boot Architecture Flags....................................141
Table 5-36 Fixed ACPI Description Table ARM Boot Architecture Flags ...142
Table 5-37 Firmware ACPI Control Structure (FACS) ..142
Table 5-38 Firmware Control Structure Feature Flags..146
Table 5-39 OSPM Enabled Firmware Control Structure Feature Flags ...146
Table 5-40 Global Lock Structure within the FACS ...147
Table 5-41 Differentiated System Description Table Fields (DSDT)..149
Table 5-42 Secondary System Description Table Fields (SSDT) ..150
Table 5-43 Multiple APIC Description Table (MADT) Format ...151
Table 5-44 Multiple APIC Flags ...152
Table 5-45 Interrupt Controller Structure Types ..152
Table 5-46 Processor Local APIC Structure ..154
Table 5-47 Local APIC Flags...154
Table 5-48 I/O APIC Structure ..154
Table 5-49 Interrupt Source Override Structure ..155
Table 5-50 MPS INTI Flags...156
Table 5-51 NMI Source Structure ..157
UEFI Forum, Inc. December 2018 Page xliii

ACPI Specification, Version 6.3
Table 5-52 Local APIC NMI Structure ...157
Table 5-53 Local APIC Address Override Structure ..158
Table 5-54 I/O SAPIC Structure ..158
Table 5-55 Processor Local SAPIC Structure ..159
Table 5-56 Platform Interrupt Source Structure...160
Table 5-57 Platform Interrupt Source Flags..161
Table 5-58 Processor Local x2APIC Structure ..161
Table 5-59 Local x2APIC NMI Structure ...162
Table 5-60 GICC Structure ..164
Table 5-61 GICC CPU Interface Flags ..166
Table 5-62 GICD Structure ..166
Table 5-63 GIC MSI Frame Structure ...167
Table 5-64 GIC MSI Frame Flags ...167
Table 5-65 GICR Structure ..168
Table 5-66 GIC ITS Structure ..168
Table 5-67 Smart Battery Description Table (SBST) Format ...169
Table 5-68 Embedded Controller Boot Resources Table Format ...170
Table 5-69 Static Resource Affinity Table Format ..173
Table 5-70 Processor Local APIC/SAPIC Affinity Structure ...174
Table 5-71 Flags – Processor Local APIC/SAPIC Affinity Structure..174
Table 5-72 Memory Affinity Structure..175
Table 5-73 Flags – Memory Affinity Structure..175
Table 5-74 Processor Local x2APIC Affinity Structure...176
Table 5-75 GICC Affinity Structure ... 176
Table 5-76 Flags – GICC Affinity Structure ... 177
Table 5-77 Architecture Specific Affinity Structure ..177
Table 5-78 Generic Initiator Affinity Structure ...178
Table 5-79 Device Handle - ACPI...178
Table 5-80 Device Handle - PCI ...178
Table 5-81 Flags – Generic Initiator Affinity Structure ...179
Table 5-82 SLIT Format ...180
Table 5-83 Corrected Platform Error Polling Table Format ..181
Table 5-84 Corrected Platform Error Polling Processor Structure..182
Table 5-85 Maximum System Characteristics Table (MSCT) Format..182
Table 5-86 Maximum Proximity Domain Information Structure ...183
Table 5-87 RASF Table format ..184
Table 5-88 RASF Platform Communication Channel Shared Memory Region....................................185
Table 5-89 PCC Command Codes used by RASF Platform Communication Channel186
Table 5-90 Platform RAS Capabilities Bitmap ...186
Table 5-91 Parameter Block Structure for PATROL_SCRUB..187
Table 5-92 MPST Table Structure ...190
Table 5-93 PCC Command Codes used by MPST Platform Communication Channel191
Table 5-94 MPST Platform Communication Channel Shared Memory Region...................................191
Table 5-95 Power state Values ..193
Table 5-96 Command Status ..194
Table 5-97 Memory Power Node Structure definition ...195
Table 5-98 Flag format..197
Table 5-99 Memory Power State Structure definition ...197
Table 5-100 Memory Power State Characteristics Structure ..198
Table 5-101 Flag format of Memory Power State Characteristics Structure199
Table 5-102 Platform Memory Topology Table..201
Table 5-103 Common Memory Aggregator Device Structure ..203
Table 5-104 Socket Structure ...204
Table 5-105 Memory Controller Structure ...204
Table 5-106 Physical Components Identifier Structure ..206
UEFI Forum, Inc. December 2018 Page xliv

ACPI Specification, Version 6.3
Table 5-107 Boot Graphics Resource Table Fields..207
Table 5-108 Status Description Field ..208
Table 5-109 Image Type Description Field..208
Table 5-110 Firmware Performance Data Table (FPDT) Format...209
Table 5-111 Performance Record Structure ..210
Table 5-112 Performance Record Types...211
Table 5-113 Runtime Performance Record Types ..211
Table 5-114 S3 Performance Table Pointer Record ...212
Table 5-115 S4 Performance Table Pointer Record ...212
Table 5-116 S3 Performance Table Header ...213
Table 5-117 Basic S3 Resume Performance Record ..213
Table 5-118 Basic S3 Suspend Performance Record ..214
Table 5-119 Firmware Basic Boot Performance Table Header ..214
Table 5-120 Firmware Basic Boot Performance Data Record Structure ..214
Table 5-121 GTDT Table Structure..216
Table 5-122 Flag Definitions: Secure EL1 Timer, Non-Secure EL1 Timer, EL2 Timer, Virtual EL1 Timer

and Virtual EL2 Timer..218
Table 5-123 Platform Timer Type Structures..218
Table 5-124 GT Block Structure Format..219
Table 5-125 GT Block Timer Structure Format ...219
Table 5-126 Flag Definitions: GT Block Physical Timers and Virtual Timers220
Table 5-127 Flag Definitions: Common Flags..220
Table 5-128 SBSA Generic Watchdog Structure Format...221
Table 5-129 Flag Definitions: SBSA Generic Watchdog Timer ..221
Table 5-130 NVDIMM Firmware Interface Table (NFIT) ...224
Table 5-131 NFIT Structure Types...224
Table 5-132 SPA Range Structure ...225
Table 5-133 NVDIMM Region Mapping Structure ...227
Table 5-134 Interleave Structure Index and Interleave Ways definition..230
Table 5-135 Interleave Structure..231
Table 5-136 SMBIOS Management Information Structure...231
Table 5-137 NVDIMM Control Region Structure Mark...232
Table 5-138 NVDIMM Block Data Windows Region Structure ...236
Table 5-139 Flush Hint Address Structure ..237
Table 5-140 Platform Capabilities Structure...237
Table 5-141 SDEV ACPI Table..240
Table 5-142 PCIe Endpoint Device Based Device Structure Example ...242
Table 5-143 Heterogeneous Memory Attribute Table Header...244
Table 5-144 HMAT Structure Types..245
Table 5-145 Memory Proximity Domain Attributes Structure ...246
Table 5-146 System Locality Latency and Bandwidth Information Structure.....................................248
Table 5-147 Memory Side Cache Information Structure..250
Table 5-148 PDTT Structure..253
Table 5-149 PDTT Platform Communication Channel Identifier Structure...253
Table 5-150 PCC Commands Codes used by Platform Debug Trigger Table254
Table 5-151 PDTT Platform Communication Channel ..254
Table 5-152 Example: Platform with 4 debug triggers ...255
Table 5-153 Processor Properties Topology Table ...257
Table 5-154 Processor Hierarchy Node Structure ..259
Table 5-155 Processor Structure Flags ...260
Table 5-156 Cache Type Structure..263
Table 5-157 Cache Structure Flags ...263
Table 5-158 ID Type Structure ..265
Table 5-159 Namespaces Defined Under the Namespace Root...268
Table 5-160 Operation Region Address Space Identifiers ..275
UEFI Forum, Inc. December 2018 Page xlv

ACPI Specification, Version 6.3
Table 5-161 IPMI Status Codes ...281
Table 5-162 Accsessor Type Values ..284
Table 5-163 ACPI Event Programming Model Components ...303
Table 5-164 Fixed ACPI Events..304
Table 5-165 Device Object Notification Values ..312
Table 5-166 System Bus Notification Values ..313
Table 5-167 Control Method Battery Device Notification Values ..314
Table 5-168 Power Source Object Notification Values...314
Table 5-169 Thermal Zone Object Notification Values...314
Table 5-170 Control Method Power Button Notification Values..314
Table 5-171 Control Method Sleep Button Notification Values ...315
Table 5-172 Control Method Lid Notification Values ...315
Table 5-173 NVDIMM Root Device Notification Values ...315
Table 5-174 NVDIMM Device Notification Values ..315
Table 5-175 Processor Device Notification Values ...316
Table 5-176 User Presence Device Notification Values ..316
Table 5-177 Ambient Light Sensor Device Notification Values...316
Table 5-178 Power Meter Object Notification Values..317
Table 5-179 Processor Aggregator Device Notification Values ..317
Table 5-180 Error Device Notification Values ..317
Table 5-181 Fan Device Notification Values ...317
Table 5-182 Memory Device Notification Values ...318
Table 5-183 ACPI Device IDs ...318
Table 5-184 Predefined ACPI Names ..320
Table 5-185 Predefined Object Names...335
Table 5-186 Predefined Operating System Vendor String Prefixes ..336
Table 5-187 Standard ACPI-Defined Feature Group Strings ...336
Table 5-188 DeviceLockInfo Package Values ..340
Table 6-189 Device Identification Objects..342
Table 6-190 ADR Object Address Encodings...343
Table 6-191 Additional Language ID Alias Strings...348
Table 6-192 PLD Back Panel Example Settings ...355
Table 6-193 Device Configuration Objects ...359
Table 6-194 HPP Package Contents ..368
Table 6-195 PCI Setting Record Content...372
Table 6-196 PCI-X Setting Record Content ...373
Table 6-197 PCI Express Setting Record Content ...374
Table 6-198 PCI Express Descriptor Setting Record Content..378
Table 6-199 PCI Express Register Descriptor ..379
Table 6-200 Platform-Wide _OSC Capabilities DWORD 2 ..390
Table 6-201 Mapping Fields..397
Table 6-202 Example Relative Distances Between Proximity Domains ...401
Table 6-203 Example System Locality Information Table...401
Table 6-204 Example Relative Distances Between Proximity Domains - 5 Node402
Table 6-205 Device Insertion, Removal, and Status Objects ..407
Table 6-206 OST Source Event Codes ...411
Table 6-207 General Processing Status Codes..412
Table 6-208 Operating System Shutdown Processing (Source Events : 0x100) Status Codes............412
Table 6-209 Ejection Request / Ejection Processing (Source Events: 0x03 and 0x103) Status Codes413
Table 6-210 Insertion Processing (Source Event: 0x200) Status Codes ..413
Table 6-211 Small Resource Data Type Tag Bit Definitions ..418
Table 6-212 Small Resource Items..418
Table 6-213 IRQ Descriptor Definition..419
Table 6-214 DMA Descriptor Definition ...420
Table 6-215 Start Dependent Functions Descriptor Definition ..421
UEFI Forum, Inc. December 2018 Page xlvi

ACPI Specification, Version 6.3
Table 6-216 Start Dependent Function Priority Byte Definition...421
Table 6-217 End Dependent Functions Descriptor Definition ..422
Table 6-218 I/O Port Descriptor Definition...422
Table 6-219 Fixed-Location I/O Port Descriptor Definition ..423
Table 6-220 Fixed DMA Resource Descriptor ...423
Table 6-221 Vendor-Defined Resource Descriptor Definition ..424
Table 6-222 End Tag Definition...424
Table 6-223 Large Resource Data Type Tag Bit Definitions ..425
Table 6-224 Large Resource Items..425
Table 6-225 24-bit Memory Range Descriptor Definition. ...426
Table 6-226 Large Vendor-Defined Resource Descriptor Definition ..427
Table 6-227 32-Bit Memory Range Descriptor Definition ..427
Table 6-228 32-bit Fixed-Location Memory Range Descriptor Definition ..430
Table 6-229 Valid combination of Address Space Descriptors fields..431
Table 6-230 QWORD Address Space Descriptor Definition ..431
Table 6-231 DWORD Address Space Descriptor Definition ..435
Table 6-232 WORD Address Space Descriptor Definition...437
Table 6-233 Extended Address Space Descriptor Definition ..439
Table 6-234 Memory Resource Flag (Resource Type = 0) Definitions ..443
Table 6-235 I/O Resource Flag (Resource Type = 1) Definitions...444
Table 6-236 Bus Number Range Resource Flag (Resource Type = 2) Definitions444
Table 6-237 Extended Interrupt Descriptor Definition...445
Table 6-238 Generic Register Descriptor Definition ...447
Table 6-239 GPIO Connection Descriptor Definition ..448
Table 6-240 GenericSerialBus Connection Descriptors ..451
Table 6-241 I2C Serial Bus Connection Descriptor ...453
Table 6-242 SPI Serial Bus Connection Descriptor..455
Table 6-243 UART Serial Bus Connection Descriptor..457
Table 6-244 Pin Function Description Definition ..460
Table 6-245 Pin Configuration Descriptor Definition..462
Table 6-246 Pin Group Descriptor Definition ...464
Table 6-247 Pin Group Function Descriptor Definition ..465
Table 6-248 Pin Group Configuration Descriptor Description ..467
Table 6-249 Other Objects and Methods ...470
Table 6-250 OSPM _INI Object Actions ..471
Table 6-251 NVDIMM Label Methods ..478
Table 6-252 _LSI Return Package Values ..478
Table 6-253 _LSR Return Package Values ...480
Table 7-254 Power Resource Object Provisions for Information and Control....................................481
Table 7-255 Power Resource Methods...484
Table 7-256 Device Power Management Child Objects ...486
Table 7-257 PSC Device State Codes...489
Table 7-258 Power Resource Requirements Package ..490
Table 7-259 S1 Action / Result Table ..495
Table 7-260 S2 Action / Result Table ..495
Table 7-261 S3 Action / Result Table ..496
Table 7-262 S4 Action / Result Table ..497
Table 7-263 BIOS-Supplied Control Methods for System-Level Functions...499
Table 7-264 System State Package ...501
Table 8-265 Cstate Package Values ..520
Table 8-266 CStateDependency Package Values..522
Table 8-267 Processor Container Device Objects...525
Table 8-268 Valid Local State Combinations in Figure 2 example system..527
Table 8-269 Extended LPI fields..534
Table 8-270 Flags for LPI states ..536
UEFI Forum, Inc. December 2018 Page xlvii

ACPI Specification, Version 6.3
Table 8-271 Enabled Parent State values for example system...537
Table 8-272 Entry method example ...544
Table 8-273 PTC Package Values ..552
Table 8-274 TState Package Values ..553
Table 8-275 TStateDependency Package Values ..555
Table 8-276 PCT Package Values ..560
Table 8-277 PState Package Values ..561
Table 8-278 PStateDependency Package Values..564
Table 8-279 Continuous Performance Control Package Values ...569
Table 8-280 Performance Limited Register Status Bits ..581
Table 8-281 PCC Commands Codes used by Collaborative Processor Performance Control583
Table 8-282 Processor Aggregator Device Objects..586
Table 9-283 System Indicator Control Methods...592
Table 9-284 Control Method Ambient Light Sensor Device ...594
Table 9-285 Control Method Lid Device ...601
Table 9-286 ATA Specific Objects ...603
Table 9-287 GTM Method Result Codes...606
Table 9-288 Tape Presence...610
Table 9-289 ACPI Floppy Drive Information ...610
Table 9-290 MBM Package Details ...617
Table 9-291 MSM Result Encoding ...618
Table 9-292 Memory Device _OSC Capabilities DWORD number 2 ...618
Table 9-293 UPC Return Package Values..620
Table 9-294 User Presence Detection Device...628
Table 9-295 Time and Alarm Device ...630
Table 9-296 Generic Buttons Device Child Objects ..643
Table 9-297 Usage Types and Interrupt Polarity ..644
Table 9-298 Common HID Button Usages ..644
Table 9-299 NVDIMM Root Device Function Index ..650
Table 9-300 Status and Extended Status Field Generic Interpretations...652
Table 9-301 Query ARS Capabilities – Input Buffer ..653
Table 9-302 Query ARS Capabilities – Output Buffer ...653
Table 9-303 Start ARS – Input Buffer ..654
Table 9-304 Start ARS – Output Buffer ...655
Table 9-305 Query ARS Status – Output Buffer ..656
Table 9-306 ARS Data ...656
Table 9-307 ARS Error Record Format..657
Table 9-308 Clear Uncorrectable Error – Input Buffer..658
Table 9-309 Clear Uncorrectable Error – Output Buffer...659
Table 9-310 Translate SPA - Input Payload Format ..659
Table 9-311 Translate SPA - Output Payload Format ...660
Table 9-312 Translate SPA – Translated NVDIMM Device List Output Payload Format.....................661
Table 9-313 ARS Error Inject – Input Format ..661
Table 9-314 ARS Error Inject – Output Format ...663
Table 9-315 ARS Error Inject Clear – Input Format...663
Table 9-316 ARS Error Inject Clear – Output Format..663
Table 9-317 ARS Error Inject Status Query – Output Format ...664
Table 9-318 ARS Error Inject Status Query – Error Record Format ..664
Table 9-319 ARS Error Inject Options Support..665
Table 9-320 NVDIMM Device Method Return Status Code..665
Table 9-321 _NCH Return Value ...666
Table 9-322 _NBS Return Value..668
Table 9-323 _NIC Output Buffer ...669
Table 9-324 _NIH Input Buffer..670
Table 9-325 _NIH Output Buffer...671
UEFI Forum, Inc. December 2018 Page xlviii

ACPI Specification, Version 6.3
Table 9-326 _NIG Output Buffer...672
Table 10-327 Example SMBus Device Slave Addresses ..674
Table 10-328 Smart Battery Objects...676
Table 10-329 Battery Control Methods ..681
Table 10-330 BIF Return Package Values..682
Table 10-331 BIX Return Package Values ...684
Table 10-332 Control Method Battery _OSC Capabilities DWORD2 Bit Definitions...........................687
Table 10-333 BST Return Package Values ..689
Table 10-334 BMD Return Package Values...693
Table 10-335 Power Source Objects...696
Table 10-336 PIF Method Result Codes..697
Table 10-337 Power Meter Objects..698
Table 10-338 PMC Method Result Codes ...699
Table 10-339 Wireless Power Calibration...704
Table 10-340 Wireless Power Control Notification Values:..705
Table 11-341 Fan Specific Objects ..717
Table 11-342 FIF Package Details ...718
Table 11-343 FPS FanPstate Package Details..720
Table 11-344 FST Package Details...721
Table 11-345 Thermal Objects..721
Table 11-346 Thermal Relationship Package Values ..724
Table 11-347 Thermal Relationship Package Values ..735
Table 12-348 Read only register table..753
Table 12-349 Register details ...754
Table 12-350 Embedded Controller Commands ..755
Table 12-351 Events for Which Embedded Controller Must Generate SCIs.......................................758
Table 12-352 Read Command (3 Bytes) ...758
Table 12-353 Write Command (3 Bytes) ..759
Table 12-354 Query Command (2 Bytes...759
Table 12-355 Burst Enable Command (2 Bytes) ...759
Table 12-356 Burst Disable Command (1 Byte) ..759
Table 12-357 SMBus Status Codes ...761
Table 12-358 SMB EC Interface ..770
Table 12-359 Embedded Controller Device Object Control Methods ..772
Table 12-360 EC SMBus HC Device Objects ..773
Table 13-361 SMBus Protocol Types ..776
Table 14-362 Platform Communications Channel Table (PCCT)...789
Table 14-363 Platform Communications Channel Global Flags..790
Table 14-364 Generic PCC Subspace Structure ..790
Table 14-365 PCC Subspace Structure type 0 (Generic Communications Subspace).........................790
Table 14-366 PCC Subspace Structure type 1 (HW-Reduced Communications Subspace)791
Table 14-367 PCC Subspace Structure type 2 (HW-Reduced Communications Subspace)793
Table 14-368 PCC Subspace Structure type 3 and type 4, master and slave respectively795
Table 14-369 Generic Communications Channel Shared Memory Region...798
Table 14-370 Generic Communications Channel Command Field ...798
Table 14-371 Generic Communications Channel Status Field ..798
Table 14-372 Master Slave Communications Channel Shared Memory Region799
Table 14-373 Master Slave Communications Channel Flags ...799
Table 15-374 Address Range Types ..805
Table 15-375 Input to the INT 15h E820h Call ..807
Table 15-376 Output from the INT 15h E820h Call ..807
Table 15-377 Address Range Descriptor Structure...807
Table 15-378 Extended Attributes for Address Range Descriptor Structure......................................808
Table 15-379 UEFI Memory Types and mapping to ACPI address range types809
Table 15-380 Sample Memory Map ...811
UEFI Forum, Inc. December 2018 Page xlix

ACPI Specification, Version 6.3
Table 18-381 Boot Error Record Table (BERT) Table ..836
Table 18-382 Hardware Error Source Table (HEST) ..837
Table 18-383 IA-32 Architecture Machine Check Exception Structure ..837
Table 18-384 IA-32 Architecture Machine Check Error Bank Structure ...838
Table 18-385 IA-32 Architecture Corrected Machine Check Structure ..839
Table 18-386 IA-32 Architecture NMI Error Structure..840
Table 18-387 PCI Express Root Port AER Structure ..841
Table 18-388 PCI Express Device AER Structure...842
Table 18-389 PCI Express Bridge AER Structure ...844
Table 18-390 Generic Hardware Error Source Structure..845
Table 18-391 Generic Error Status Block ..847
Table 18-392 Generic Error Data Entry...848
Table 18-393 Generic Hardware Error Source version 2 (GHESv2) Structure851
Table 18-394 Hardware Error Notification Structure ...852
Table 18-395 Architecture Deferred Machine Check Structure ...853
Table 18-396 Error Record Serialization Table (ERST) ..856
Table 18-397 Error Record Serialization Actions ..857
Table 18-398 Command Status Definition..858
Table 18-399 Serialization Instruction Entry...859
Table 18-400 Serialization Instructions ..859
Table 18-401 Instruction Flags..860
Table 18-402 Error Record Serialization Info..862
Table 18-403 Error Injection Table (EINJ) ...866
Table 18-404 Error Injection Actions ..867
Table 18-405 Injection Instruction Entry ..869
Table 18-406 Instruction Flags..869
Table 18-407 Injection Instructions ..870
Table 18-408 Command Status Definition..870
Table 18-409 Error Type Definition ..870
Table 18-410 SET_ERROR_TYPE_WITH_ADDRESS Data Structure ...871
Table 18-411 Vendor Error Type Extension Structure ..872
Table 18-412 Trigger Error Action ..873
Table 19-413 ASL Grammar Notation...877
Table 19-414 Named Object Reference Encodings ..916
Table 19-415 Definition Block Name Modifier Encodings ..916
Table 19-416 ASL Escape Sequences ..918
Table 19-417 Summary of ASL Data Types ...921
Table 19-418 Data Types and Type Conversions ..925
Table 19-419 Object Conversion Rules ...927
Table 19-420 Object Storing and Copying Rules...930
Table 19-421 Reading from ArgX Objects...931
Table 19-422 Writing to ArgX Objects ..931
Table 19-423 Reading from LocalX Objects ..932
Table 19-424 Writing to LocalX Objects ...932
Table 19-425 Reading from Named Objects...932
Table 19-426 Writing to Named Objects ..933
Table 19-427 Concatenate Data Types ...948
Table 19-428 Concatenate Object Types..949
Table 19-429 Debug Object Display Formats ...955
Table 19-430 Field Unit list entires ...973
Table 19-431 OperationRegion Address Spaces and Access Types ..974
Table 19-432 Match Term Operator Meanings ..996
Table 19-433 TValues Returned By the ObjectType Operator ...1005
Table 19-434 Pin Configuration Types and Values ...1010
Table 19-435 Pin Group Configuration Types and Values ..1018
UEFI Forum, Inc. December 2018 Page l

ACPI Specification, Version 6.3
Table 19-436 PLD Keywords and Assignment Types ..1045
Table 19-437 PLD Keywords and assignable String Values...1046
Table 19-438 UUID Buffer Format ..1048
Table 20-439 AML Grammar Notation Conventions ..1058
Table 20-440 AML Byte Stream Byte Values ..1070
Table A-1 Default Power State Definitions ...1095
Table B-1 Video Extension Object Requirements ...1116
Table B-2 Video Output Device Attributes ...1121
Table B-3 Example Device Ids ...1122
Table B-4 Notifications for Display Devices. ..1125
Table B-5 Device Status ..1128
Table B-6 Device State for _DGS...1129
Table B-7 Device State for _DSS ...1130
Table B-8 Notification Values for Output Devices ..1130
UEFI Forum, Inc. December 2018 Page li

ACPI Specification, Version 6.3
List of Figures

Figure 0-1 ACPI overview .. 2
Figure 0-2 ACPI structure .. 2
Figure 0-3 ASL and AML... 3
Figure 0-4 ACPI initialization.. 5
Figure 0-5 Runtime thermal event... 6
Figure 1-1 OSPM/ACPI Global System ..12
Figure 3-1 Global System Power States and Transitions ..42
Figure 3-2 Example Modem and COM Port Hardware..50
Figure 3-3 Reporting Battery Capacity...55
Figure 3-4 Low Battery and Warning..56
Figure 3-5 Thermal Zone...59
Figure 4-1 Generic Hardware Feature Model..67
Figure 4-2 Global States and Their Transitions ...71
Figure 4-3 Example Event Structure for a Legacy/ACPI Compatible Event Model72
Figure 4-4 Block Diagram of a Status/Enable Cell..77
Figure 4-5 Example Fixed Hardware Feature Register Grouping ...78
Figure 4-6 Register Blocks versus Register Groupings ...79
Figure 4-7 Power Management Timer ...83
Figure 4-8 Fixed Power Button Logic ...84
Figure 4-9 Fixed Hardware Sleep Button Logic ...86
Figure 4-10 Sleeping/Wake Logic..88
Figure 4-11 RTC Alarm ...90
Figure 4-12 Power Management Events to SMI/SCI Control Logic...92
Figure 4-13 Example of General-Purpose vs. Generic Hardware Events...................................103
Figure 4-14 Example Generic Address Space Lid Switch Logic ...106
Figure 5-15 Root System Description Pointer and Table...109
Figure 5-16 Description Table Structures ...110
Figure 5-17 APIC–Global System Interrupts ..163
Figure 5-18 8259–Global System Interrupts ...169
Figure 5-19 MPST ACPI Table Overview..189
Figure 5-20 Memory Power State Transitions...193
Figure 5-21 Image Offset..209
Figure 5-22 NVDIMM Firmware Interface Table (NFIT) Overview...223
Figure 5-23 HMAT Representation...244
Figure 5-24 Memory Side Cache Example ..245
Figure 5-25 Example: Platform with 4 debug triggers ...255
Figure 5-26 Cache Type Structure - Type 1 Example ..262
Figure 5-27 Example ACPI NameSpace..267
Figure 5-28 AML Encoding...269
Figure 6-29 System Panel and Panel Origin Positions ..349
Figure 6-30 Laptop Panel and Panel Origin Positions...349
Figure 6-31 Default Shape Definitions ...354
Figure 6-32 PLD Back Panel Rendering ..356
Figure 6-33 System Locality information Table ...400
UEFI Forum, Inc. December 2018 Page lii

ACPI Specification, Version 6.3
Figure 6-34 Device Ejection Flow Example Using _OST ...414
Figure 7-35 Working / Sleeping State object evaluation flow..508
Figure 8-36 Processor Power States ...510
Figure 8-37 Throttling Example...511
Figure 8-38 Equation 1 Duty Cycle Equation...511
Figure 8-39 Example Control for the STPCLK# ..512
Figure 8-40 ACPI Clock Logic (One per Processor) ...512
Figure 8-41 Processor Hierarchy...524
Figure 8-42 Power states for processor hierarchy ..526
Figure 8-43 Worst case wake latency ...538
Figure 8-44 Energy of states A,B and C versus sleep duration ..538
Figure 8-45 Platform performance thresholds...573
Figure 8-46 OSPM performance controls ...576
Figure 9-47 A five-point ALS Response Curve ..597
Figure 9-48 A two-point ALS Response Curve..598
Figure 9-49 Example Response Curve for a Transflective Display...599
Figure 9-50 USB ports ...621
Figure 9-51 Persistence of expired timer events ...632
Figure 9-52 System transitions with WakeAlarm -- Timer...633
Figure 9-53 System transitions with WakeAlarm -- Policy ..633
Figure 9-54 Vendor/Device Specific Driver Loading ..648
Figure 10-55 Typical Smart Battery Subsystem (SBS)...674
Figure 10-56 Single Smart Battery Subsystem...678
Figure 10-57 Smart Battery Subsystem...679
Figure 10-58 Remaining Battery Percent Formula..690
Figure 10-59 Remaining Battery Life Formula ..690
Figure 10-60 Power Meter and Power Source/Docking Namespace Example706
Figure 11-61 ACPI Thermal Zone ...708
Figure 11-62 Thermal Events ...711
Figure 11-63 Temperature and CPU Performance Versus Time...713
Figure 11-64 Active and Passive Threshold Values..715
Figure 11-65 Cooling Preferences..716
Figure 12-66 Shared Interface ...751
Figure 12-67 Private Interface..752
Figure 12-68 Interrupt Model...758
Figure 13-69 Bit Encoding Example ..776
Figure 13-70 Smart Battery Subsystem Devices..779
Figure 13-71 Smart Battery Device Virtual Registers...781
Figure 14-72 Communication flow of the doorbell protocol ...800
Figure 14-73 Communication flow for notifications on slave subspaces803
Figure 16-74 Example Sleeping States ..814
Figure 16-75 Platform Firmware Initialization ..823
Figure 16-76 Example Physical Memory Map ...826
Figure 16-77 Memory as Configured after Boot...827
Figure 16-78 OS Initialization...828
Figure 18-79 APEI error flow example with external RAS controller ..851
Figure B-1 Example Display Architecture ...1122
UEFI Forum, Inc. December 2018 Page liii

Overview

This chapter provides a high-level overview of the Advanced Configuration and Power Interface (ACPI). To
make it easier to understand ACPI, this section focuses on broad and general statements about ACPI and
does not discuss every possible exception or detail about ACPI. The rest of the ACPI specification provides
much greater detail about the inner workings of ACPI than is discussed here, and is recommended
reading for developers using ACPI.

History of ACPI
ACPI was developed through collaboration between Intel, Microsoft*, Toshiba*, HP*, and Phoenix* in
the mid-1990s. Before the development of ACPI, operating systems (OS) primarily used BIOS (Basic Input/
Output System) interfaces for power management and device discovery and configuration. This power
management approach used the OS’s ability to call the system BIOS natively for power management. The
BIOS was also used to discover system devices and load drivers based on probing input/output (I/O) and
attempting to match the correct driver to the correct device (plug and play). The location of devices could
also be hard coded within the BIOS because the platform itself was non-enumerable.

These solutions were problematic in three key ways. First, the behavior of OS applications could be
negatively affected by the BIOS-configured power management settings, causing systems to go to sleep
during presentations or other inconvenient times. Second, the power management interface was
proprietary on each system. This required developers to learn how to configure power management for
each individual system. Finally, the default settings for various devices could also conflict with each other,
causing devices to crash, behave erratically, or become undiscoverable.

ACPI was developed to solve these problems and others.

What is ACPI?
ACPI can first be understood as an architecture-independent power management and configuration
framework that forms a subsystem within the host OS. This framework establishes a hardware register
set to define power states (sleep, hibernate, wake, etc). The hardware register set can accommodate
operations on dedicated hardware and general purpose hardware.

The primary intention of the standard ACPI framework and the hardware register set is to enable power
management and system configuration without directly calling firmware natively from the OS. ACPI
serves as an interface layer between the system firmware (BIOS) and the OS, as shown in Figure 0-1 and
Figure 0-2, with certain restrictions and rules.
UEFI Forum, Inc. January 2019 Page 1

ACPI Specification, Version 6.3 Overview

Figure 0-1 ACPI overview

Fundamentally, ACPI defines two types of data structures that are shared between the system firmware
and the OS: data tables and definition blocks. These data structures are the primary communication
mechanism between the firmware and the OS. Data tables store raw data and are consumed by device
drivers. Definition blocks consist of byte code that is executable by an interpreter.

Figure 0-2 ACPI structure

This definition block byte code is compiled from the ACPI Source Language (ASL) code. ASL is the
language used to define ACPI objects and to write control methods. An ASL compiler translates ASL into
ACPI Machine Language (AML) byte code. AML is the language processed by the AML interpreter, as
shown in Figure 0-3.
UEFI Forum, Inc. January 2019 Page 2

ACPI Specification, Version 6.3 Overview
Figure 0-3 ASL and AML

The AML interpreter executes byte code and evaluates objects in the definition blocks to allow the byte
code to perform loop constructs, conditional evaluations, access defined address spaces, and perform
other operations that applications require. The AML interpreter has read/write access to defined address
spaces, including system memory, I/O, PCI configuration, and more. It accesses these address spaces by
defining entry points called objects. Objects can either have a directly defined value or else must be
evaluated and interpreted by the AML interpreter.

This collection of enumerable objects is an OS construct called the ACPI namespace. The namespace is a
hierarchical representation of the ACPI devices on a system. The system bus is the root of enumeration
for these ACPI devices. Devices that are enumerable on other buses, like PCI or USB devices, are usually
not enumerated in the namespace. Instead, their own buses enumerate the devices and load their
drivers. However, all enumerable buses have an encoding technique that allows ACPI to encode the bus-
specific addresses of the devices so they can be found in ACPI, even though ACPI usually does not load
drivers for these devices.

Generally, devices that have a _HID object (hardware identification object) are enumerated and have
their drivers loaded by ACPI. Devices that have an _ADR object (physical address object) are usually not
enumerated by ACPI and generally do not have their drivers loaded by ACPI. _ADR devices usually can
perform all necessary functions without involving ACPI, but in cases where the device driver cannot
UEFI Forum, Inc. January 2019 Page 3

ACPI Specification, Version 6.3 Overview
perform a function, or if the driver needs to communicate to system firmware, ACPI can evaluate objects
to perform the needed function.

As an example of this, PCI does not support native hotplug. However, PCI can use ACPI to evaluate
objects and define methods that allow ACPI to fill in the functions necessary to perform hotplug on PCI.

An additional aspect of ACPI is a runtime model that handles any ACPI interrupt events that occur during
system operation. ACPI continues to evaluate objects as necessary to handle these events. This interrupt-
based runtime model is discussed in greater detail in the Runtime model section below.

ACPI Initialization
The best way to understand how ACPI works is chronologically. The moment the user powers up the
system, the system firmware completes its setup, initialization, and self tests.

The system firmware then uses information obtained during firmware initialization to update the ACPI
tables as necessary with various platform configurations and power interface data, before passing
control to the bootstrap loader. The extended root system description table (XSDT) is the first table used
by the ACPI subsystem and contains the addresses of most of the other ACPI tables on the system. The
XSDT points to the fixed ACPI description table (FADT) as well as other major tables that the OS processes
during initialization. After the OS initializes, the FADT directs the ACPI subsystem to the differentiated
system description table (DSDT), which is the beginning of the namespace because it is the first table that
contains a definition block.

The ACPI subsystem then processes the DSDT and begins building the namespace from the ACPI
definition blocks. The XSDT also points to the secondary system description tables (SSDTs) and adds them
to the namespace. The ACPI data tables give the OS raw data about the system hardware.

After the OS has built the namespace from the ACPI tables, it begins traversing the namespace and
loading device drivers for all the _HID devices it encounters in the namespace.
UEFI Forum, Inc. January 2019 Page 4

ACPI Specification, Version 6.3 Overview

Figure 0-4 ACPI initialization

Runtime Model
After the system is up and running, ACPI works with the OS to handle any ACPI events that occur via an
interrupt. This interrupt invokes ACPI events in one of two general ways: fixed events and general
purpose events (GPEs).

Fixed events are ACPI events that have a predefined meaning in the ACPI specification. These fixed events
include actions like pressing the power button or ACPI timer overflows. These events are handled directly
by the OS handlers.

GPEs are ACPI events that are not predefined by the ACPI specification. These events are usually handled
by evaluating control methods, which are objects in the namespace and can access system hardware.
When the ACPI subsystem evaluates the control method with the AML interpreter, the GPE object
handles the events according to the OS’s implementation. Typically this might involve issuing a
notification to a device to invoke the device driver to perform a function.

We discuss a generic example of this runtime model in the next section.
UEFI Forum, Inc. January 2019 Page 5

ACPI Specification, Version 6.3 Overview
Thermal Event Example
ACPI includes a thermal model to allow systems to control the system temperature either actively (by
performing actions like turning a fan on) or passively by reducing the amount of power the system uses
(by performing actions like throttling the processor). We can use an example of a generic thermal event
shown in Figure 5 to demonstrate how the ACPI runtime model works.

Figure 0-5 Runtime thermal event

The ACPI thermal zone includes control methods to read the current system temperature and trip points.

When the OS initially finds a thermal zone in the namespace, it loads the thermal zone driver, which
evaluates the thermal zone to obtain the current temperature and trip points.

When a system component heats up enough to trigger a trip point, a thermal zone GPE occurs.

The GPE causes an interrupt to occur. When the ACPI subsystem receives the interrupt, it first checks
whether any fixed events have occurred. In this example, the thermal zone event is a GPE, so no fixed
event has occurred.
UEFI Forum, Inc. January 2019 Page 6

ACPI Specification, Version 6.3 Overview
The ACPI subsystem then searches the namespace for the control method that matches the GPE number
of the interrupt. Upon finding it, the ACPI subsystem evaluates the control method, which might then
access hardware and/or notify the thermal zone handler.

The operating system’s thermal zone handler then takes whatever actions are necessary to handle the
event, including possibly accessing hardware.

ACPI is a very robust interface implementation. The thermal zone trip point could notify the system to
turn on a fan, reduce a device’s performance, read the temperature, shut down the system, or any
combination of these and other actions depending on the need.

This runtime model is used throughout the system to manage all of the ACPI events that occur during
system operation.

Summary
ACPI can best be described as a framework of concepts and interfaces that are implemented to form a
subsystem within the host OS. The ACPI tables, handlers, interpreter, namespace, events, and interrupt
model together form this implementation of ACPI, creating the ACPI subsystem within the host OS. In this
sense, ACPI is the interface between the system hardware/firmware and the OS and OS applications for
configuration and power management. This gives various OS a standardized way to support power
management and configuration via the ACPI namespace.

The ACPI namespace is the enumerable, hierarchical representation of all ACPI devices on the system and
is used to both find and load drivers for ACPI devices on the system. The namespace can be dynamic by
evaluating objects and sending interrupts in real time, all without the need for the OS to call native
system firmware code. This enables device manufacturers to code their own instructions and events into
devices. It also reduces incompatibility and instability by implementing a standardized power
management interface.
UEFI Forum, Inc. January 2019 Page 7

1 Introduction

The Advanced Configuration and Power Interface (ACPI) specification was developed to establish industry
common interfaces enabling robust operating system (OS)-directed motherboard device configuration
and power management of both devices and entire systems. ACPI is the key element in Operating
System-directed configuration and Power Management (OSPM).

ACPI evolved the existing pre-ACPI collection of power management BIOS code, Advanced Power
Management (APM) application programming interfaces (APIs, PNPBIOS APIs, Multiprocessor
Specification (MPS) tables and so on into a well-defined power management and configuration interface
specification. ACPI provides the means for an orderly transition from existing (legacy) hardware to ACPI
hardware, and it allows for both ACPI and legacy mechanisms to exist in a single machine and to be used
as needed.

Further, system architectures being built at the time of the original ACPI specification’s inception,
stretched the limits of historical “Plug and Play” interfaces. ACPI evolved existing motherboard
configuration interfaces to support advanced architectures in a more robust, and potentially more
efficient manner.

The interfaces and OSPM concepts defined within this specification are suitable to all classes of
computers including (but not limited to) desktop, mobile, workstation, and server machines. From a
power management perspective, OSPM/ACPI promotes the concept that systems should conserve
energy by transitioning unused devices into lower power states including placing the entire system in a
low-power state (sleeping state) when possible.

This document describes ACPI hardware interfaces, ACPI software interfaces and ACPI data structures
that, when implemented, enable support for robust OS-directed configuration and power management
(OSPM).

1.1 Principal Goals

ACPI is the key element in implementing OSPM. ACPI-defined interfaces are intended for wide adoption
to encourage hardware and software vendors to build ACPI-compatible (and, thus, OSPM-compatible)
implementations.

The principal goals of ACPI and OSPM are to:

• Enable all computer systems to implement motherboard configuration and power
management functions, using appropriate cost/function tradeoffs.

— Computer systems include (but are not limited to) desktop, mobile, workstation, and
server machines.

— Machine implementers have the freedom to implement a wide range of solutions, from
the very simple to the very aggressive, while still maintaining full OS support.

— Wide implementation of power management will make it practical and compelling for
applications to support and exploit it. It will make new uses of PCs practical and existing
uses of PCs more economical.
UEFI Forum, Inc. January 2019 Page 8

ACPI Specification, Version 6.3 Introduction
• Enhance power management functionality and robustness.

— Power management policies too complicated to implement in platform firmware can be
implemented and supported in the OS, allowing inexpensive power managed hardware to
support very elaborate power management policies.

— Gathering power management information from users, applications, and the hardware
together into the OS will enable better power management decisions and execution.

— Unification of power management algorithms in the OS will reduce conflicts between the
firmware and OS and will enhance reliability.

• Facilitate and accelerate industry-wide implementation of power management.

— OSPM and ACPI reduces the amount of redundant investment in power management
throughout the industry, as this investment and function will be gathered into the OS. This
will allow industry participants to focus their efforts and investments on innovation rather
than simple parity.

— The OS can evolve independently of the hardware, allowing all ACPI-compatible machines
to gain the benefits of OS improvements and innovations.

• Create a robust interface for configuring motherboard devices.

— Enable new advanced designs not possible with existing interfaces.

1.2 Power Management Rationale

It is necessary to move power management into the OS and to use an abstract interface (ACPI) between
the OS and the hardware to achieve the principal goals set forth above. Because ACPI is abstract, the OS
can evolve separately from the hardware and, likewise, the hardware from the OS.

ACPI is by nature more portable across operating systems and processors. ACPI control methods allow for
very flexible implementations of particular features.

Issues with older power management approaches include the following:

• Minimal support for power management inhibits application vendors from supporting or
exploiting it.

— Moving power management functionality into the OS makes it available on every machine
on which the OS is installed. The level of functionality (power savings, and so on) varies
from machine to machine, but users and applications will see the same power interfaces
and semantics on all OSPM machines.

— This will enable application vendors to invest in adding power management functionality to
their products.

• Legacy power management algorithms were restricted by the information available to the
platform firmware that implemented them. This limited the functionality that could be
implemented.

— Centralizing power management information and directives from the user, applications,
and hardware in the OS allows the implementation of more powerful functionality. For
example, an OS can have a policy of dividing I/O operations into normal and lazy. Lazy I/O
operations (such as a word processor saving files in the background) would be gathered up
into clumps and done only when the required I/O device is powered up for some other
reason. A non-lazy I/O request made when the required device was powered down would
cause the device to be powered up immediately, the non-lazy I/O request to be carried
out, and any pending lazy I/O operations to be done. Such a policy requires knowing when
UEFI Forum, Inc. January 2019 Page 9

ACPI Specification, Version 6.3 Introduction
I/O devices are powered up, knowing which application I/O requests are lazy, and being
able to assure that such lazy I/O operations do not starve.

• Appliance functions, such as answering machines, require globally coherent power decisions.
For example, a telephone-answering application could call the OS and assert, “I am waiting for
incoming phone calls; any sleep state the system enters must allow me to wake and answer the
telephone in 1 second.” Then, when the user presses the “off” button, the system would pick
the deepest sleep state consistent with the needs of the phone answering service.

— Platform firmware has become very complex to deal with power management. It is difficult
to make work with an OS and is limited to static configurations of the hardware.

— There is much less state information for the platform firmware to retain and manage
(because the OS manages it).

— Power management algorithms are unified in the OS, yielding much better integration
between the OS and the hardware.

— Because additional ACPI tables (Definition Blocks) can be loaded, for example, when a
mobile system docks, the OS can deal with dynamic machine configurations.

— Because the platform firmware has fewer functions and they are simpler, it is much easier
(and therefore cheaper) to implement and support.

• The legacy PC platform structure constrains OS and hardware designs.

1.3 Legacy Support

ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and allows for
both mechanisms to exist in a single machine and be used as needed.

Table 1-1 Hardware Type vs. OS Type Interaction

Hardware\OS Legacy OS ACPI OS with OSPM

Legacy hardware A legacy OS on legacy hardware
does what it always did.

If the OS lacks legacy support, legacy
support is completely contained within
the hardware functions.

Legacy and ACPI
hardware support in
machine

It works just like a legacy OS on
legacy hardware.

During boot, the OS tells the hardware to
switch from legacy to OSPM/ACPI mode
and from then on, the system has full
OSPM/ACPI support.

ACPI-only hardware There is no power management. There is full OSPM/ACPI support.

1.4 OEM Implementation Strategy

Any OEM is, as always, free to build hardware as they see fit. Given the existence of the ACPI
specification, two general implementation strategies are possible:

• An original equipment manufacturer (OEM) can adopt the OS vendor-provided ACPI OSPM
software and implement the hardware part of the ACPI specification (for a given platform) in
one of many possible ways.

• An OEM can develop a driver and hardware that are not ACPI-compatible. This strategy opens
up even more hardware implementation possibilities. However, OEMs who implement
hardware that is OSPM-compatible but not ACPI-compatible will bear the cost of developing,
testing, and distributing drivers for their implementation.
UEFI Forum, Inc. January 2019 Page 10

ACPI Specification, Version 6.3 Introduction
1.5 Power and Sleep Buttons

OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button that
is a “soft” button that does not turn the machine physically off but signals the OS to put the machine in a
soft off or sleeping state. ACPI defines two types of these “soft” buttons: one for putting the machine to
sleep and one for putting the machine in soft off.

This gives the OEM two different ways to implement machines: A one-button model or a two-button
model. The one-button model has a single button that can be used as a power button or a sleep button as
determined by user settings. The two-button model has an easily accessible sleep button and a separate
power button. In either model, an override feature that forces the machine to the soft-off state without
OSPM interaction is also needed to deal with various rare, but problematic, situations.

1.6 ACPI Specification and the Structure of ACPI

This specification defines ACPI hardware interfaces, ACPI software interfaces and ACPI data structures.
This specification also defines the semantics of these interfaces.

Figure 1-1 lays out the software and hardware components relevant to OSPM/ACPI and how they relate
to each other. This specification describes the interfaces between components, the contents of the ACPI
System Description Tables, and the related semantics of the other ACPI components. Notice that the ACPI
System Description Tables, which describe a particular platform’s hardware, are at heart of the ACPI
implementation and the role of the ACPI System Firmware is primarily to supply the ACPI Tables (rather
than a native instruction API).

ACPI is not a software specification; it is not a hardware specification, although it addresses both
software and hardware and how they must behave. ACPI is, instead, an interface specification comprised
of both software and hardware elements.
UEFI Forum, Inc. January 2019 Page 11

ACPI Specification, Version 6.3 Introduction

Figure 1-1 OSPM/ACPI Global System

There are three run-time components to ACPI:

ACPI System Description Tables

Describe the interfaces to the hardware. Some descriptions limit what can be built (for example,
some controls are embedded in fixed blocks of registers and the table specifies the address of the
register block). Most descriptions allow the hardware to be built in arbitrary ways and can
describe arbitrary operation sequences needed to make the hardware function. ACPI Tables
containing “Definition Blocks” can make use of a pseudo-code type of language, the
interpretation of which is performed by the OS. That is, OSPM contains and uses an interpreter
UEFI Forum, Inc. January 2019 Page 12

ACPI Specification, Version 6.3 Introduction
that executes procedures encoded in the pseudo-code language and stored in the ACPI tables
containing “Definition Blocks.” The pseudo-code language, known as ACPI Machine Language
(AML), is a compact, tokenized, abstract type of machine language.

ACPI Registers.

The constrained part of the hardware interface, described (at least in location) by the ACPI
System Description Tables.

ACPI Platform Firmware.

Refers to the portion of the firmware that is compatible with the ACPI specifications. Typically,
this is the code that boots the machine (as legacy BIOSs have done) and implements interfaces
for sleep, wake, and some restart operations. It is called rarely, compared to a legacy BIOS. The
ACPI Description Tables are also provided by the ACPI Platform Firmware.

1.7 OS and Platform Compliance

The ACPI specification contains only interface specifications. ACPI does not contain any platform
compliance requirements. The following sections provide guidelines for class specific platform
implementations that reference ACPI-defined interfaces and guidelines for enhancements that operating
systems may require to completely support OSPM/ACPI. The minimum feature implementation
requirements of an ACPI-compatible OS are also provided.

1.7.1 Platform Implementations of ACPI-defined Interfaces

System platforms implement ACPI-defined hardware interfaces via the platform hardware and ACPI-
defined software interfaces and system description tables via the ACPI system firmware. Specific ACPI-
defined interfaces and OSPM concepts while appropriate for one class of machine (for example, a mobile
system), may not be appropriate for another class of machine (for example, a multi-domain enterprise
server). It is beyond the capability and scope of this specification to specify all platform classes and the
appropriate ACPI-defined interfaces that should be required for the platform class.

Platform design guide authors are encouraged to require the appropriate ACPI-defined interfaces and
hardware requirements suitable to the particular system platform class addressed in a particular design
guide. Platform design guides should not define alternative interfaces that provide similar functionality to
those defined in the ACPI specification.

1.7.1.1 Recommended Features and Interface Descriptions for Design Guides

Common description text and category names should be used in design guides to describe all features,
concepts, and interfaces defined by the ACPI specification as requirements for a platform class. Listed
below is the recommended set of high-level text and category names to be used to describe the features,
concepts, and interfaces defined by ACPI.

Note: Where definitions or relational requirements of interfaces are localized to a specific section, the
section number is provided. The interface definitions and relational requirements of the interfaces
specified below are generally spread throughout the ACPI specification. The ACPI specification
defines:

• System address map reporting interfaces (Section 14)
• ACPI System Description Tables (Section 5.2):
UEFI Forum, Inc. January 2019 Page 13

ACPI Specification, Version 6.3 Introduction
• Root System Description Pointer (RSDP)
• System Description Table Header
• Root System Description Table (RSDT)
• Fixed ACPI Description Table (FADT)
• Firmware ACPI Control Structure (FACS)
• Differentiated System Description Table (DSDT)
• Secondary System Description Table (SSDT)
• Multiple APIC Description Table (MADT)
• Smart Battery Table (SBST)
• Extended System Description Table (XSDT)
• Embedded Controller Boot Resources Table (ECDT)
• System Resource Affinity Table (SRAT)
• System Locality Information Table (SLIT)
• Corrected Platform Error Polling Table (CPEP)
• Maximum System Characteristics Table (MSCT)
• ACPI RAS FeatureTable (RASF)
• Memory Power StateTable (MPST)
• Platform Memory Topology Table (PMTT)
• Boot Graphics Resource Table (BGRT)
• Firmware Performance Data Table (FPDT)
• Generic Timer Description Table (GTDT)
• ACPI-defined Fixed Registers Interfaces (Section 4, Section 5.2.9):
• Power management timer control/status
• Power or sleep button with S5 override (also possible in generic space)
• Real time clock wakeup alarm control/status
• SCI /SMI routing control/status for Power Management and General-purpose events
• System power state controls (sleeping/wake control) (Section 7)
• Processor power state control (c states) (Section 8)
• Processor throttling control/status (Section 8)
• Processor performance state control/status (Section 8)
• General-purpose event control/status
• Global Lock control/status
• System Reset control (Section 4.7.3.6)
• Embedded Controller control/status (Section 12)
• SMBus Host Controller (HC) control/status (Section 13)
• Smart Battery Subsystem (Section 10.1)
• ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace

(Section 4.2, Section 5.6.5):
• General-purpose event processing
• Motherboard device identification, configuration, and insertion/removal (Section 6)
• Thermal zones (Section 11)
• Power resource control (Section 7.1)
• Device power state control (Section 7.2)
• System power state control (Section 7.3)
• System indicators (Section 9.1)
UEFI Forum, Inc. January 2019 Page 14

ACPI Specification, Version 6.3 Introduction
• Devices and device controls (Section 9):

— Processor (Section 8)

— Control Method Battery (Section 10)

— Smart Battery Subsystem (Section 10)

— Mobile Lid

— Power or sleep button with S5 override (also possible in fixed space)

— Embedded controller (Section 12)

— Fan

— Generic Bus Bridge

— ATA Controller

— Floppy Controller

— GPE Block

— Module

— Memory
• Global Lock related interfaces
• ACPI Event programming model (Section 5.6)
• ACPI-defined Platform Firmware Responsibilities (Section 15)
• ACPI-defined State Definitions (Section 2):

— Global system power states (G-states, S0, S5)

— System sleeping states (S-states S1-S4) (Section 15)

— Device power states (D-states (Appendix B))

— Processor power states (C-states) (Section 8)

— Device and processor performance states (P-states) (Section 3, Section 8)

1.7.1.2 Terminology Examples for Design Guides

The following example shows how a client platform design guide could use the recommended
terminology to define ACPI requirements, with a goal of requiring robust configuration and power
management for the system class.

Note: This example is provided as a guideline for how ACPI terminology can be used. It should not be
interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system
features, concepts, and interfaces, along with their associated event models:

• System address map reporting interfaces
• ACPI System Description Tables provided in the system firmware
• ACPI-defined Fixed Registers Interfaces:
• Power management timer control/status
• Power or sleep button with S5 override (may also be implemented in generic register space)
• Real time clock wakeup alarm control/status
• General-purpose event control/status
• SCI /SMI routing control/status for Power Management and General-purpose events
• (control required only if system supports legacy mode)
• System power state controls (sleeping/wake control)
• Processor power state control (for C1)
• Global Lock control/status (if Global Lock interfaces are required by the system)
UEFI Forum, Inc. January 2019 Page 15

ACPI Specification, Version 6.3 Introduction
• ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:

— General-purpose event processing

— Motherboard device identification, configuration, and insertion/removal (Section 6)

— System power state control (Section 7.3)

— Devices and device controls:
Processor
Control Method Battery (or Smart Battery Subsystem on a mobile system)
Smart Battery Subsystem (or Control Method Battery on a mobile system)
Power or sleep button with S5 override (may also be implemented in fixed register
space)

— Global Lock related interfaces when a logical register in the hardware is shared between OS
and firmware environments

• ACPI Event programming model (Section 5.6)
• ACPI-defined Platform Firmware Responsibilities (Section 15)
• ACPI-defined State Definitions:

— System sleeping states (At least one system sleeping state, S1-S4, must be implemented)

— Device power states (D-states must be implemented in accordance with device class
specifications)

— Processor power states (All processors must support the C1 Power State)

The following example shows how a design guide could use the recommended terminology to define
ACPI related requirements for systems that execute multiple OS instances, with a goal of requiring robust
configuration and continuous availability for the system class.

Note: This example is provided as a guideline for how ACPI terminology can be used. It should not be
interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system
features and interfaces, along with their associated event models:

• System address map reporting interfaces
• ACPI System Description Tables provided in the system firmware
• ACPI-defined Fixed Registers Interfaces:
• Power management timer control/status
• General-purpose event control/status
• SCI /SMI routing control/status for Power Management and General-purpose events
• (control required only if system supports legacy mode)
• System power state controls (sleeping/wake control)
• Processor power state control (for C1)
• Global Lock control/status (if Global Lock interfaces are required by the system)
•
• ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:

— General-purpose event processing

— Motherboard device identification, configuration, and insertion/removal (Section 6)

— System power state control (Section 7.3)

— System indicators
UEFI Forum, Inc. January 2019 Page 16

ACPI Specification, Version 6.3 Introduction
— Devices and device controls:
Processor

• Global Lock related interfaces when a logical register in the hardware is shared between OS
and firmware environments

• ACPI Event programming model (Section 5.6)
• ACPI-defined Platform Firmware Responsibilities (Section 15)
• ACPI-defined State Definitions:

Processor power states (All processors must support the C1 Power State)

1.7.2 OSPM Implementations

OS enhancements are needed to support ACPI-defined features, concepts, and interfaces, along with
their associated event models appropriate to the system platform class upon which the OS executes. This
is the implementation of OSPM. The following outlines the OS enhancements and elements necessary to
support all ACPI-defined interfaces. To support ACPI through the implementation of OSPM, the OS needs
to be modified to:

• Use system address map reporting interfaces.
• Find and consume the ACPI System Description Tables.
• Interpret ACPI machine language (AML).
• Enumerate and configure motherboard devices described in the ACPI Namespace.
• Interface with the power management timer.
• Interface with the real-time clock wake alarm.
• Enter ACPI mode (on legacy hardware systems).
• Implement device power management policy.
• Implement power resource management.
• Implement processor power states in the scheduler idle handlers.
• Control processor and device performance states.
• Implement the ACPI thermal model.
• Support the ACPI Event programming model including handling SCI interrupts, managing fixed

events, general-purpose events, embedded controller interrupts, and dynamic device support.
• Support acquisition and release of the Global Lock.
• Use the reset register to reset the system.
• Provide APIs to influence power management policy.
• Implement driver support for ACPI-defined devices.
• Implement APIs supporting the system indicators.
• Support all system states S1–S5.

1.7.3 OS Requirements

The following list describes the minimum requirements for an OSPM/ACPI-compatible OS:

• Use system address map reporting interfaces to get the system address map on Intel
Architecture (IA) platforms:

• INT 15H, E820H - Query System Address Map interface (see Section 15,“System Address
Map Interfaces”)

• EFI GetMemoryMap() Boot Services Function (see Section 15, “System Address Map
Interfaces”)
UEFI Forum, Inc. January 2019 Page 17

ACPI Specification, Version 6.3 Introduction
• Find and consume the ACPI System Description Tables (see Section 5, “ACPI Software
Programming Model”).

• Implementation of an AML interpreter supporting all defined AML grammar elements (see
Section 20, ACPI Machine Language Specification”).

• Support for the ACPI Event programming model including handling SCI interrupts, managing
fixed events, general-purpose events, embedded controller interrupts, and dynamic device
support.

• Enumerate and configure motherboard devices described in the ACPI Namespace.
• Implement support for the following ACPI devices defined within this specification:

• Embedded Controller Device (see Section 12, “ACPI Embedded Controller Interface
Specification”)

• GPE Block Device (see Section 9.11, “GPE Block Device”)

• Module Device (see Section 9.12, “Module Device”)
• Implementation of the ACPI thermal model (see Section 11, “Thermal Management”).
• Support acquisition and release of the Global Lock.
• OS-directed power management support (device drivers are responsible for maintaining device

context as described by the Device Power Management Class Specifications described in
Section A).

1.8 Target Audience

This specification is intended for the following users:

• OEMs building hardware containing ACPI-compatible interfaces
• Operating system and device driver developers
• All platform system firmware developers
• CPU and chip set vendors
• Peripheral vendors

1.9 Document Organization

The ACPI specification document is organized into the following four parts:

• The first part of the specification (sections 1 through 3) introduces ACPI and provides an
executive overview.

• The second part (sections 4 and 5) defines the ACPI hardware and software programming
models.

• The third part (sections 6 through 17) specifies the ACPI implementation details; this part of
the specification is primarily for developers.

• The fourth part (sections 18 and 19) is technical reference material; section 18 is the ACPI
Source Language (ASL) reference, parts of which are referred to by most of the other sections
in the document.

• Appendices contain device class specifications, describing power management characteristics
of specific classes of devices, and device class-specific ACPI interfaces.
UEFI Forum, Inc. January 2019 Page 18

ACPI Specification, Version 6.3 Introduction
1.9.1 ACPI Introduction and Overview

The first three sections of the specification provide an executive overview of ACPI.

Section 1: Introduction.

 Discusses the purpose and goals of the specification, presents an overview of the ACPI-
compatible system architecture, specifies the minimum requirements for an ACPI-compatible
system, and provides references to related specifications.

Section 2: Definition of Terms.

 Defines the key terminology used in this specification. In particular, the global system states
(Mechanical Off, Soft Off, Sleeping, Working, and Non-Volatile Sleep) are defined in this section,
along with the device power state definitions: Off (D3), D3hot, D2, D1, and Fully-On (D0). Device
and processor performance states (P0, P1, …Pn) are also discussed.

Section 3: ACPI Overview.

Gives an overview of the ACPI specification in terms of the functional areas covered by the
specification: system power management, device power management, processor power
management, Plug and Play, handling of system events, battery management, and thermal
management.

1.9.2 Programming Models

Sections 4 and 5 define the ACPI hardware and software programming models. This part of the
specification is primarily for system designers, developers, and project managers.

All of the implementation-oriented, reference, and platform example sections of the specification that
follow (all the rest of the sections of the specification) are based on the models defined in sections 4 and
5. These sections are the heart of the ACPI specification. There are extensive cross-references between
the two sections.

Section 4: ACPI Hardware Specification.

Defines a set of hardware interfaces that meet the goals of this specification.

Section 5: ACPI Software Programming Model.

Defines a set of software interfaces that meet the goals of this specification.

1.9.3 Implementation Details

The third part of the specification defines the implementation details necessary to actually build
components that work on an ACPI-compatible platform. This part of the specification is primarily for
developers.

Section 6: Configuration.

Defines the reserved Plug and Play objects used to configure and assign resources to devices, and
share resources and the reserved objects used to track device insertion and removal. Also defines
the format of ACPI-compatible resource descriptors.
UEFI Forum, Inc. January 2019 Page 19

ACPI Specification, Version 6.3 Introduction
Section 7: Power and Performance Management.

Defines the reserved device power-management objects and the reserved-system power-
management objects.

Section 8: Processor Configuration and Control.

Defines how the OS manages the processors’ power consumption and other controls while the
system is in the working state.

Section 9: ACPI-Specific Device Objects.

Lists the integrated devices that need support for some device-specific ACPI controls, along with
the device-specific ACPI controls that can be provided. Most device objects are controlled
through generic objects and control methods and have generic device IDs; this section discusses
the exceptions.

Section 10: Power Source Devices.

Defines the reserved battery device and AC adapter objects.

Section 11: Thermal Management.

Defines the reserved thermal management objects.

Section 12: ACPI Embedded Controller Interface Specification.

Defines the interfaces between an ACPI-compatible OS and an embedded controller.

Section 13: ACPI System Management Bus Interface Specification.

Defines the interfaces between an ACPI-compatible OS and a System Management Bus (SMBus)
host controller.

Section 14: Platform Communications Channel.

 Explains the generic mechanism for OSPM to communicate with an entity in the platform
defines a new address space type

Section 15: System Address Map Interfaces.

 Explains the special INT 15 call for use in ISA/EISA/PCI bus-based systems. This call supplies the
OS with a clean memory map indicating address ranges that are reserved and ranges that are
available on the motherboard. UEFI-based memory address map reporting interfaces are also
described.

Section 16: Waking and Sleeping.

 Defines in detail the transitions between system working and sleeping states and their
relationship to wake events. Refers to the reserved objects defined in sections 6, 7, and 8.

Section 17: Non-Uniform Memory Access (NUMA) Architecture Platforms.

Discusses in detail how ACPI define interfaces can be used to describe a NUMA architecture
platform. Refers to the reserved objects defined in sections 5, 6, 8, and 9.
UEFI Forum, Inc. January 2019 Page 20

ACPI Specification, Version 6.3 Introduction
Section 18: ACPI Platform Error Interfaces.

Defines interfaces that enable OSPM to processes different types of hardware error events that
are detected by platform-based error detection hardware.

1.9.4 Technical Reference

The fourth part of the specification contains reference material for developers.

Section 19: ACPI Source Language Reference.

 Defines the syntax of all the ASL statements that can be used to write ACPI control methods,
along with example syntax usage.

Section 20: ACPI Machine Language Specification.

Defines the grammar of the language of the ACPI virtual machine language. An ASL translator
(compiler) outputs AML.

Section 21: ACPI Data Tables and Table Language Definition.

Describes a simple language (the Table Definition Language or TDL) that can be used to generate
any ACPI data table.

Appendix A: Device class specifications.

Describes device-specific power management behavior on a per device-class basis.

Appendix B: Video Extensions.

Contains video device class-specific ACPI interfaces.

1.9.5 Revsion Numbers

Updates to the ACPI specification are considered either new revisions or errata as described below:

• A new revision is produced when there is substantive new content or changes that may modify
existing behavior. New revisions are designated by a Major.Minor version number (e.g. 6.3). In
cases where the changes are exceptionally minor, we may have a Major.Minor.Minor naming
convention (e.g. 6.3.1).

• An errata is produced when proposed changes or fixes of the specification do not include any
significant new material or modify existing behavior. Errata are designated by adding an upper-
case letter at the end of the version number, such as 6.2A.

1.10 Related Documents

Power management and Plug and Play specifications for legacy hardware platforms are the following,
available from “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Legacy PNP
Guidelines".

• Advanced Power Management (APM) BIOS Specification, Revision 1.2.
• Plug and Play BIOS Specification, Version 1.0a.

Intel Architecture specifications are available from http://developer.intel.com:
UEFI Forum, Inc. January 2019 Page 21

ACPI Specification, Version 6.3 Introduction
Intel® ItaniumTM Architecture Software Developer’s Manual, see “Links to ACPI-Related Documents”
(http://uefi.org/acpi) under the heading "Intel Architecture Specifications".

ItaniumTM Processor Family System Abstraction Layer Specification, Intel Corporation, December 2003
(June 2004 Update).

Unified Extensible Firmware Interface Specifications are available from http://www.uefi.org:

Unified Extensible Firmware Interface Specification, see “Links to ACPI-Related Documents” (http://
uefi.org/acpi) under the heading "Unified Extensible Firmware Interface Specifications"

Documentation and specifications for the Smart Battery System components and the SMBus are available
from http://www.sbs-forum.org:

• “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Smart Battery
System Components and SMBus Specification".

• Smart Battery Data Specification, see “Links to ACPI-Related Documents” (http://uefi.org/acpi)
under the heading "Smart Battery System Components and SMBus Specification".

• Smart Battery Selector Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

• Smart Battery System Manager Specification, Revision 1.0, Smart Battery System Implementers
Forum, December, 1998.

• System Management Bus Specification, Revision 1.1, Smart Battery System Implementers
Forum, December, 1998.
UEFI Forum, Inc. January 2019 Page 22

2 Definition of Terms

This specification uses a particular set of terminology, defined in this section. This section has three parts:

General ACPI terms are defined and presented alphabetically.

The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global system
states apply to the entire system, and are visible to the user.

The ACPI device power states are defined. Device power states are states of particular devices; as such,
they are generally not visible to the user. For example, some devices may be in the off state even though
the system as a whole is in the working state. Device states apply to any device on any bus.

2.1 General ACPI Terminology

Advanced Configuration and Power Interface (ACPI)

As defined in this document, ACPI is a method for describing hardware interfaces in terms
abstract enough to allow flexible and innovative hardware implementations and concrete
enough to allow shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware

Computer hardware with the features necessary to support OSPM and with the interfaces to
those features described using the Description Tables as specified by this document.

ACPI Namespace

A hierarchical tree structure in OS-controlled memory that contains named objects. These
objects may be data objects, control method objects, bus/device package objects, and so on. The
OS dynamically changes the contents of the namespace at run-time by loading definition blocks
from the ACPI Tables that reside in the ACPI system firmware. All the information in the ACPI
Namespace comes from the Differentiated System Description Table (DSDT), which contains the
Differentiated Definition Block, and one or more other definition blocks.

ACPI Machine Language (AML)

Pseudo-code for a virtual machine supported by an ACPI-compatible OS and in which ACPI
control methods and objects are written. The AML encoding definition is provided in section 19,
“ACPI Machine Language (AML) Specification.”

Add-in Card

A generic term used to refer to any device which can be inserted or removed from a platform
through a connection bus, such as PCI. Add-in cards are typically inserted within a platform’s
physical enclosure, rather than residing physically external to a platform. An add-in card will have
its own devices and associated firmware, and may have its own Expansion ROM Firmware.

Advanced Programmable Interrupt Controller (APIC)

An interrupt controller architecture commonly found on Intel Architecture-based 32-bit PC
systems. The APIC architecture supports multiprocessor interrupt management (with symmetric
interrupt distribution across all processors), multiple I/O subsystem support, 8259A
UEFI Forum, Inc. January 2019 Page 23

ACPI Specification, Version 6.3 Definition of Terms
compatibility, and inter-processor interrupt support. The architecture consists of local APICs
commonly attached directly to processors and I/O APICs commonly in chip sets.

ACPI Source Language (ASL)

The programming language equivalent for AML. ASL is compiled into AML images. The ASL
statements are defined in section 18, “ACPI Source Language (ASL) Reference.”

Address Range Scrub (ARS)

Process by which regions of memory can be scrubbed to look for memory locations that contain
correctable or uncorrectable errors.

BIOS

BIOS (Basic Input/Output System) is firmware that provides basic boot capabilities for a platform;
it is used here to refer specifically to traditional x86 BIOS, and not as a general term for all
firmware, or a replacement term for UEFI Core System BIOS. The ambiguity of this the term is
what we are trying to remove. See also: Legacy BIOS, System BIOS.

Boot Firmware

Generic term to describe any firmware on a platform used during the boot process. Use a more
specific term, if possible.

Component

Synonym for device. Please use the term “device” if possible.

Control Method

A control method is a definition of how the OS can perform a simple hardware task. For example,
the OS invokes control methods to read the temperature of a thermal zone. Control methods are
written in an encoded language called AML that can be interpreted and executed by the ACPI-
compatible OS. An ACPI-compatible system must provide a minimal set of control methods in the
ACPI tables. The OS provides a set of well-defined control methods that ACPI table developers
can reference in their control methods. OEMs can support different revisions of chip sets with
one version of platform firmware by either including control methods in the platform firmware
that test configurations and respond as needed or including a different set of control methods for
each chip set revision.

Central Processing Unit (CPU) or Processor

The part of a platform that executes the instructions that do the work. An ACPI-compatible OS
can balance processor performance against power consumption and thermal states by
manipulating the processor performance controls. The ACPI specification defines a working state,
labeled G0 (S0), in which the processor executes instructions. Processor sleeping states, labeled
C1 through C3, are also defined. In the sleeping states, the processor executes no instructions,
thus reducing power consumption and, potentially, operating temperatures. The ACPI
specification also defines processor performance states, where the processor (while in C0)
executes instructions, but with lower performance and (potentially) lower power consumption
and operating temperature. For more information, see section 8, “Processor Configuration and
Control.”
UEFI Forum, Inc. January 2019 Page 24

ACPI Specification, Version 6.3 Definition of Terms
A definition block contains information about hardware implementation and configuration
details in the form of data and control methods, encoded in AML. An OEM can provide one or
more definition blocks in the ACPI Tables. One definition block must be provided: the
Differentiated Definition Block, which describes the base system. Upon loading the
Differentiated Definition Block, the OS inserts the contents of the Differentiated Definition Block
into the ACPI Namespace. Other definition blocks, which the OS can dynamically insert and
remove from the active ACPI Namespace, can contain references to the Differentiated Definition
Block. For more information, see Section 5.2.11

Device

A generic term used to refer to any computing, input/output or storage element, or any
collection of computing, input/output or storage elements, on a platform. An example of a
device is a CPU, APU, embedded controller (EC), BMC, Trusted Platform Module (TPM), graphics
processing unit (GPU), network interface controller (NIC), hard disk drive (HDD), solid state drive
(SSD), Read Only Memory (ROM), flash ROM, or any of the large number of other possible
devices. If at all possible, use a more specific term.

Device Context

The variable data held by the device; it is usually volatile. The device might forget this
information when entering or leaving certain states (for more information, see section 2.3,
“Device Power State Definitions.”), in which case the OS software is responsible for saving and
restoring the information. Device Context refers to small amounts of information held in device
peripherals. See System Context.

Device Firmware

Firmware that is only used by a specific device and cannot be used with any other device. This
firmware is typically provided by the device manufacturer.

Differentiated System Description Table (DSDT)

An OEM must supply a DSDT to an ACPI-compatible OS. The DSDT contains the Differentiated
Definition Block, which supplies the implementation and configuration information about the
base system. The OS always inserts the DSDT information into the ACPI Namespace at system
boot time and never removes it.

DIMM Physical Address (DPA)

An NVDIMM relative memory address.

Embedded Controller

The general class of micro-controllers used to support OEM-specific implementations, mainly in
mobile environments. The ACPI specification supports embedded controllers in any platform
design, as long as the micro-controller conforms to one of the models described in this section.
The embedded controller performs complex low-level functions through a simple interface to the
host microprocessor(s).

Embedded Controller Interface

A standard hardware and software communications interface between an OS driver and an
embedded controller. This allows any OS to provide a standard driver that can directly
UEFI Forum, Inc. January 2019 Page 25

ACPI Specification, Version 6.3 Definition of Terms
communicate with an embedded controller in the system, thus allowing other drivers within the
system to communicate with and use the resources of system embedded controllers (for
example, Smart Battery and AML code). This in turn enables the OEM to provide platform
features that the OS and applications can use.

Expansion ROM Firmware

Peripheral Component Interconnect (PCI) term for firmware executed on a host processor which
is used by an add-in device during the boot process. This includes Option ROM Firmware and
UEFI drivers. Expansion ROM Firmware may be embedded as part of the Host Processor Boot
Firmware, or may be separate (e.g., from an add-in card). See also: Option ROM Firmware

Firmware

Generic term to describe any BIOS or firmware on a platform; it refers to the general class of
things, not a specific type. Use a more specific term, if possible.

Firmware ACPI Control Structure (FACS)

A structure in read/write memory that the platform runtime firmware uses for handshaking
between the firmware and the OS. The FACS is passed to an ACPI-compatible OS via the Fixed
ACPI Description Table (FADT). The FACS contains the system’s hardware signature at last boot,
the firmware waking vector, and the Global Lock.

Firmware Storage Device

A memory device used to store firmware. This could include Read Only Memory (ROM), flash
memory, eMMC, UFS drives, etc.

Fixed ACPI Description Table (FADT)

A table that contains the ACPI Hardware Register Block implementation and configuration details
that the OS needs to directly manage the ACPI Hardware Register Blocks, as well as the physical
address of the DSDT, which contains other platform implementation and configuration details.
An OEM must provide an FADT to an ACPI-compatible OS in the RSDT/XSDT. The OS always
inserts the namespace information defined in the Differentiated Definition Block in the DSDT into
the ACPI Namespace at system boot time, and the OS never removes it.

Fixed Features

A set of features offered by an ACPI interface. The ACPI specification places restrictions on where
and how the hardware programming model is generated. All fixed features, if used, are
implemented as described in this specification so that OSPM can directly access the fixed feature
registers.

Fixed Feature Events

A set of events that occur at the ACPI interface when a paired set of status and event bits in the
fixed feature registers are set at the same time. When a fixed feature event occurs, a system
control interrupt (SCI is raised. For ACPI fixed feature events, OSPM (or an ACPI-aware driver)
acts as the event handler.
UEFI Forum, Inc. January 2019 Page 26

ACPI Specification, Version 6.3 Definition of Terms
Fixed Feature Registers

A set of hardware registers in fixed feature register space at specific address locations in system
I/O address space. ACPI defines register blocks for fixed features (each register block gets a
separate pointer from the FADT). For more information, see section 4.6, “ACPI Hardware
Features.”

General-Purpose Event Registers

The general-purpose event registers contain the event programming model for generic features.
All general-purpose events generate SCIs.

Generic Feature

A generic feature of a platform is value-added hardware implemented through control methods
and general-purpose events.

Generic Interrupt Controller (GIC)

An interrupt controller architecture for ARM processor-based systems.

Global System Status

Global system states apply to the entire system, and are visible to the user. The various global
system states are labeled G0 through G3 in the ACPI specification. For more information, see
Section 2.2, “Global System State Definitions.”

Host Processor

A host processor is the primary processing unit in a platform, traditionally called a Central
Processing Unit (CPU), now also sometimes referred to as an Application Processing Unit (APU),
or a System on Chip (SoC). This is the processing unit on which the primary operating system
(and/or hypervisor), as well as user applications run. This is the processor that is responsible for
loading and executing the Host Processor Boot Firmware. This term and "Boot Processor" should
be considered synonyms for this particular text clean-up effort (i.e., making them consistent
should probably be part of a different ECR, if needed).

Host Processor Boot Firmware

Generic term used to describe firmware loaded and executed by the Host Processor which
provides basic boot capabilities for a platform. This class of firmware is a reference to Legacy
BIOS and UEFI, which were sometimes referred to as System BIOS. Where the distinction
between Legacy BIOS and UEFI is not important, the term Host Processor Boot Firmware will be
used. Where the distinction is important, it will be referenced appropriately. Expansion ROM
firmware may also be considered as part of the Host Processor Boot Firmware. Expansion ROM
Firmware may be embedded as part of the Host Processor Boot Firmware, or may be separate
from the Host Processor Boot Firmware (e.g., loaded from an add-in card).

Host Processor Runtime Firmware

Host processor runtime firmware is any runtime firmware which executes on the host processor.

Ignored Bits

Some unused bits in ACPI hardware registers are designated as “ignored” in the ACPI
specification. Ignored bits are undefined and can return zero or one (in contrast to reserved bits,
UEFI Forum, Inc. January 2019 Page 27

ACPI Specification, Version 6.3 Definition of Terms
which always return zero). Software ignores ignored bits in ACPI hardware registers on reads and
preserves ignored bits on writes.

Intel Architecture-Personal Computer (IA-PC)

A general descriptive term for computers built with processors conforming to the architecture
defined by the Intel processor family based on the Intel Architecture instruction set and having
an industry-standard PC architecture.

I/O APIC

An Input/Output Advanced Programmable Interrupt Controller routes interrupts from devices to
the processor’s local APIC.

I/O SAPIC

An Input/Output Streamlined Advanced Programmable Interrupt Controller routes interrupts
from devices to the processor’s local APIC.

Label Storage Area

A persistent storage area reserved for Label storage.

Legacy

A computer state where power management policy decisions are made by the platform
hardware/firmware shipped with the system. The legacy power management features found in
today’s systems are used to support power management in a system that uses a legacy OS that
does not support the OS-directed power management architecture.

Legacy BIOS

One form of Host Processor Boot Firmware used on x86 platforms which uses a legacy x86 BIOS
structure. This form of host processor boot firmware has been or is being replaced by UEFI. This
term will likely be most useful in distinguishing and comparing older forms of firmware to newer
forms (e.g., "it was done this way in legacy BIOS, but is now done another way in UEFI). See also:
BIOS, System BIOS

Legacy Hardware

A computer system that has no ACPI or OSPM power management support.

Legacy OS

An OS that is not aware of and does not direct the power management functions of the system.
Included in this category are operating systems with APM 1.x support.

Local APIC

A local Advanced Programmable Interrupt Controller receives interrupts from the I/O APIC.

Local SAPIC

A local Streamlined Advanced Programmable Interrupt Controller receives interrupts from the I/
O SAPIC.
UEFI Forum, Inc. January 2019 Page 28

ACPI Specification, Version 6.3 Definition of Terms
Management Firmware

Firmware used only by a Baseboard Management Controller (BMC) or other Out-of-Band (OOB)
management controller.

Multiple APIC Description Table (MADT)

The Multiple APIC Description Table (MADT) is used on systems supporting the APIC and SAPIC to
describe the APIC implementation. Following the MADT is a list of APIC/SAPIC structures that
declare the APIC/SAPIC features of the machine.

Namespace

A namespace defines a contiguously-addressed range of Non-Volatile Memory, conceptually
similar to a SCSI Logical Unit (LUN) or an NVM Express namespace. A namespace can be
described by one or more Labels.

Non-Host Processor

A non-host processor is a generic term used to describe any processing unit on a platform which
is not a host processor (e.g. a microcontroller, co-processor, etc). For the purposes of this
particular ECR, this should also be considered a synonym for "secondary processor", those CPUs
that might be on an SoC, for example, that are not the host (or "boot") processor.

NVDIMM

Non Volatile Dual In-line Memory Module.

Object

The nodes of the ACPI Namespace are objects inserted in the tree by the OS using the
information in the system definition tables. These objects can be data objects, package objects,
control method objects, and so on. Package objects refer to other objects. Objects also have
type, size, and relative name.

Object name

Part of the ACPI Namespace. There is a set of rules for naming objects.

Operating System-directed Power Management (OSPM)

A model of power (and system) management in which the OS plays a central role and uses global
information to optimize system behavior for the task at hand.

Option ROM FirmwareDevice Firmware

Legacy term for boot firmware typically executed on a host processor which is used by a device
during the boot process. Option ROM firmware may be included with the host processor boot
firmware or may be carried separately by a device (such as an add-in card). See also: Expansion
ROM Firmware

Package

An array of objects.
UEFI Forum, Inc. January 2019 Page 29

ACPI Specification, Version 6.3 Definition of Terms
Peripheral

A peripheral (also known as an external device) is a device which resides physically external to a
platform and is connected to a platform, either wired or wirelessly. A peripheral is comprised of
its own devices which may have their own firmware.

Persistent Memory (pmem)

Byte-addressable memory that retains its contents across power loss.

Platform

A platform consists of multiple devices assembled and working together to deliver a specific
computing function, but does not include any other software other than the firmware as part of
the devices in the platform. Examples of platforms include a notebook, a desktop, a server, a
network switch, a blade, etc. - all without and independent of any operating system, user
applications, or user data.

Platform Boot Firmware

The collection of all boot firmware on a platform. This firmware is initially loaded by a platform
(such as an SoC, a motherboard, or a complete system) at power-on to do basic initialization of
the platform hardware and then hand control to a boot loader or OS. In some cases this will be
x86 BIOS, or it may be UEFI Core System BIOS, or it could be something else entirely. Once
control has been handed over to a boot loader or an OS, this firmware has no further role.

Platform Runtime Firmware

The collection of all run-time firmware on a platform. This is firmware that can provide functions
that can be invoked by an OS, but those functions are still concerned only with the platform
hardware (e.g., PSCI on ARM). The assumption is that platform boot firmware has since been
superceded by the OS since the OS is now up and running, but that there is still a need for an OS
to access specific features of hardware that may only be possible via firmware.

Platform Firmware

The collection of platform boot firmware and platform runtime firmware.

Power Button

A user push button or other switch contact device that switches the system from the sleeping/
soft off state to the working state, and signals the OS to transition to a sleeping/soft off state
from the working state.

Power Management

Mechanisms in software and hardware to minimize system power consumption, manage system
thermal limits, and maximize system battery life. Power management involves trade-offs among
system speed, noise, battery life, processing speed, and alternating current (AC) power
consumption. Power management is required for some system functions, such as appliance (for
example, answering machine, furnace control) operations.

Power Resources

Resources (for example, power planes and clock sources) that a device requires to operate in a
given power state.
UEFI Forum, Inc. January 2019 Page 30

ACPI Specification, Version 6.3 Definition of Terms
Power Sources

The battery (including a UPS battery) and AC line powered adapters or power supplies that
supply power to a platform.

Register Grouping

Consists of two register blocks (it has two pointers to two different blocks of registers). The fixed-
position bits within a register grouping can be split between the two register blocks. This allows
the bits within a register grouping to be split between two chips.

Reserved Bits

Some unused bits in ACPI hardware registers are designated as “Reserved” in the ACPI
specification. For future extensibility, hardware-register reserved bits always return zero, and
data writes to them have no side effects. OSPM implementations must write zeros to all reserved
bits in enable and status registers and preserve bits in control registers.

Root System Description Pointer (RSDP)

An ACPI-compatible system must provide an RSDP in the system’s low address space. This
structure’s only purpose is to provide the physical address of the RSDT and XSDT.

Root System Description Table (RSDT)

A table with the signature ‘RSDT,’ followed by an array of physical pointers to other system
description tables. The OS locates that RSDT by following the pointer in the RSDP structure.

Runtime Firmware

Generic term to describe any firmware on a platform used during runtime (i.e., after the boot
process has completed). Use a more specific term, if possible.

Secondary System Description Table (SSDT)

SSDTs are a continuation of the DSDT. Multiple SSDTs can be used as part of a platform
description. After the DSDT is loaded into the ACPI Namespace, each secondary description table
listed in the RSDT/XSDT with a unique OEM Table ID is loaded. This allows the OEM to provide the
base support in one table, while adding smaller system options in other tables.

System Physical Address (SPA)

The platform physical address assigned and programmed by the platform and utilized by the OS.

Sleep Button

A user push button that switches the system from the sleeping/soft off state to the working
state, and signals the OS to transition to a sleeping state from the working state.

Smart Battery Subsystem

A battery subsystem that conforms to the following specifications: Smart Battery and either
Smart Battery System Manager or Smart Battery Charger and Selector—and the additional ACPI
requirements.
UEFI Forum, Inc. January 2019 Page 31

ACPI Specification, Version 6.3 Definition of Terms
Smart Battery Table

An ACPI table used on platforms that have a Smart Battery subsystem. This table indicates the
energy-level trip points that the platform requires for placing the system into different sleeping
states and suggested energy levels for warning the user to SMBus Interface

A standard hardware and software communications interface between an OS bus driver and an
SMBus controller.

Software

Software is comprised of elements required to load the operating system and all user
applications and user data subsequently handled by the operating system.

Streamlined Advanced Programmable Interrupt Controller (SAPIC)

An advanced APIC commonly found on Intel ItaniumTM Processor Family-based 64-bit systems.

transition the platform into a sleeping state.

System

A system is the entirety of a computing entity, including all elements in a platform (hardware,
firmware) and software (operating system, user applications, user data). A system can be
thought of both as a logical construct (e.g. a software stack) or physical construct (e.g. a
notebook, a desktop, a server, a network switch, etc).

System BIOS

A term sometimes used in industry to refer to either Legacy BIOS, or to UEFI Core System BIOS, or
both. Please use this term only when referring to Legacy BIOS. See also: BIOS, Legacy BIOS.

System Context

The volatile data in the system that is not saved by a device driver.

System Control Interrupt (SCI)

A system interrupt used by hardware to notify the OS of ACPI events. The SCI is an active, low,
shareable, level interrupt.

System Management Bus (SMBus)

A two-wire interface based upon the I²C protocol. The SMBus is a low-speed bus that provides
positive addressing for devices, as well as bus arbitration.

System Management Interrupt (SMI)

An OS-transparent interrupt generated by interrupt events on legacy systems. By contrast, on
ACPI systems, interrupt events generate an OS-visible interrupt that is shareable (edge-style
interrupts will not work). Hardware platforms that want to support both legacy operating
systems and ACPI systems must support a way of re-mapping the interrupt events between SMIs
and SCIs when switching between ACPI and legacy models.

Thermal States

Thermal states represent different operating environment temperatures within thermal zones of
a system. A system can have one or more thermal zones; each thermal zone is the volume of
UEFI Forum, Inc. January 2019 Page 32

ACPI Specification, Version 6.3 Definition of Terms
space around a particular temperature-sensing device. The transitions from one thermal state to
another are marked by trip points, which are implemented to generate an SCI when the
temperature in a thermal zone moves above or below the trip point temperature.

UEFI

One form of Host Processor Boot Firmware which uses a Unified Extensible Firmware Interface
(UEFI) structure (as defined by the UEFI Forum). This is the current host processor boot firmware
structure being adopted as a standard in the industry. This term should be used when referring
specifically to UEFI code on a platform.

UEFI Drivers

Standalone binary executables in PECOFF format which are loaded by UEFI during the boot
process to handle specific pieces of hardware.

Extended Root System Description Table (XSDT)

The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERs that are larger than 32 bits. Notice that both the XSDT and the RSDT can
be pointed to by the RSDP structure.

2.2 Global System State Definitions

Global system states (Gx states) apply to the entire system and are visible to the user.

Global system states are defined by six principal criteria:

1. Does application software run?

2. What is the latency from external events to application response?

3. What is the power consumption?

4. Is an OS reboot required to return to a working state?

5. Is it safe to disassemble the computer?

6. Can the state be entered and exited electronically?

Following is a list of the system states:

G3 Mechanical Off

A computer state that is entered and left by a mechanical means (for example, turning off the
system’s power through the movement of a large red switch). It is implied by the entry of this off
state through a mechanical means that no electrical current is running through the circuitry and
that it can be worked on without damaging the hardware or endangering service personnel. The
OS must be restarted to return to the Working state. No hardware context is retained. Except for
the real-time clock, power consumption is zero.

G2/S5 Soft Off

A computer state where the computer consumes a minimal amount of power. No user mode or
system mode code is run. This state requires a large latency in order to return to the Working
state. The system’s context will not be preserved by the hardware. The system must be restarted
to return to the Working state. It is not safe to disassemble the machine in this state.
UEFI Forum, Inc. January 2019 Page 33

ACPI Specification, Version 6.3 Definition of Terms
G1 Sleeping

A computer state where the computer consumes a small amount of power, user mode threads
are not being executed, and the system “appears” to be off (from an end user’s perspective, the
display is off, and so on). Latency for returning to the Working state varies on the wake
environment selected prior to entry of this state (for example, whether the system should
answer phone calls). Work can be resumed without rebooting the OS because large elements of
system context are saved by the hardware and the rest by system software. It is not safe to
disassemble the machine in this state.

G0 Working

A computer state where the system dispatches user mode (application) threads and they
execute. In this state, peripheral devices (peripherals) are having their power state changed
dynamically. The user can select, through some UI, various performance/power characteristics of
the system to have the software optimize for performance or battery life. The system responds
to external events in real time. It is not safe to disassemble the machine in this state.

S4 Non-Volatile Sleep

A special global system state that allows system context to be saved and restored (relatively
slowly) when power is lost to the motherboard. If the system has been commanded to enter S4,
the OS will write all system context to a file on non-volatile storage media and leave appropriate
context markers. The machine will then enter the S4 state. When the system leaves the Soft Off
or Mechanical Off state, transitioning to Working (G0) and restarting the OS, a restore from a
NVS file can occur. This will only happen if a valid non-volatile sleep data set is found, certain
aspects of the configuration of the machine have not changed, and the user has not manually
aborted the restore. If all these conditions are met, as part of the OS restarting, it will reload the
system context and activate it. The net effect for the user is what looks like a resume from a
Sleeping (G1) state (albeit slower). The aspects of the machine configuration that must not
change include, but are not limited to, disk layout and memory size. It might be possible for the
user to swap a PC Card or a Device Bay device, however.

Notice that for the machine to transition directly from the Soft Off or Sleeping states to S4, the system
context must be written to non-volatile storage by the hardware; entering the Working state first so that
the OS or platform runtime firmware can save the system context takes too long from the user's point of
view. The transition from Mechanical Off to S4 is likely to be done when the user is not there to see it.

Because the S4 state relies only on non-volatile storage, a machine can save its system context for an
arbitrary period of time (on the order of many years).

Table 2-1 Summary of Global Power States

Global system
state

Software
runs

Latency Power
consumption

OS restart
required

Safe to
disassemble
computer

Exit state
electronically

G0 Working Yes 0 Large No No Yes
UEFI Forum, Inc. January 2019 Page 34

ACPI Specification, Version 6.3 Definition of Terms
Notice that the entries for G2/S5 and G3 in the Latency column of the above table are “Long.” This
implies that a platform designed to give the user the appearance of “instant-on,” similar to a home
appliance device, will use the G0 and G1 states almost exclusively (the G3 state may be used for moving
the machine or repairing it).

2.3 Device Power State Definitions

Device power states are states of particular devices; as such, they are generally not visible to the user. For
example, some devices may be in the Off state even though the system as a whole is in the Working
state.

Device states apply to any device on any bus. They are generally defined in terms of four principal
criteria:

• Power consumption-How much power the device uses.
• Device context--How much of the context of the device is retained by the hardware. The OS is

responsible for restoring any lost device context (this may be done by resetting the device).
• Device driver--What the device driver must do to restore the device to full on.
• Restore time--How long it takes to restore the device to full on.

The device power states are defined below, although very generically. Many devices do not have all four
power states defined. Devices may be capable of several different low-power modes, but if there is no
user-perceptible difference between the modes, only the lowest power mode will be used. The Device
Class Power Management Specifications, included in Appendix A of this specification, describe which of
these power states are defined for a given type (class) of device and define the specific details of each
power state for that device class. For a list of the available Device Class Power Management
Specifications, see “Appendix A: Device Class Specifications.”

D3 (Off)

Power has been fully removed from the device. Also referred to as D3cold in this and other specs.
All device context is lost when this state is entered, so the OS software will reinitialize the device
when powering it back on. Since all device context and power are lost, devices in this state do not
decode their address lines, and cannot be enumerated by software. Devices in this state have the
longest restore times.

D3hot

The meaning of the D3hot State is defined by each device class. In general, D3hot is expected to
save as much power as possible without affecting PNP Enumeration. Devices in D3hot must have

G1 Sleeping No >0, varies
with
sleep
state

Smaller No No Yes

G2/S5 Soft Off No Long Very near 0 Yes No Yes

G3 Mechanical Off No Long RTC battery Yes Yes No

Global system
state

Software
runs

Latency Power
consumption

OS restart
required

Safe to
disassemble
computer

Exit state
electronically
UEFI Forum, Inc. January 2019 Page 35

ACPI Specification, Version 6.3 Definition of Terms
enough power to remain enumerable by software. For example, PCI Configuration space access
and contents must operate as in shallower power states. Similarly, ACPI identification and
configuration objects must operate as in shallower power states. Otherwise, no device
functionality is supported, and Driver software is required to restore any lost context, or
reinitialize the device, during its transition back to D0.

Devices in this state can have long restore times. All classes of devices define this state.

Note: For devices that support both D3hot and D3 exposed to OSPM via _PR3, device software/drivers
must always assume OSPM will target D3and must assume all device context will be lost and the
device will no longer be enumerable.

D2

The meaning of the D2 Device State is defined by each device class. Many device classes may not
define D2. In general, D2 is expected to save more power and preserve less device context than
D1 or D0. Buses in D2 may cause the device to lose some context (for example, by reducing
power on the bus, thus forcing the device to turn off some of its functions).

D1

The meaning of the D1 Device State is defined by each device class. Many device classes may not
define D1. In general, D1 is expected to save less power and preserve more device context than
D2.

D0 (Fully-On)

This state is assumed to be the highest level of power consumption. The device is completely
active and responsive, and is expected to remember all relevant context continuously.

Transitions amongst these power states are restricted for simplicity. Power-down transitions (from
higher-power, or shallower, to lower-power, or deeper) are allowed between any two states. However,
power-up transitions (from deeper to shallower) are required to go through D0; i.e. Dy to Dx<y is illegal
for all x !=0.

Table 2-2

Device State Power Consumption Device Context Retained Driver Restoration

D0 - Fully-On As needed for operation All None

D1 D0>D1>D2> D3hot>D3 >D2 <D2

D2 D0>D1>D2> D3hot>D3 <D1 >D1

D3hot D0>D1>D2>D3hot>D3 Optional None <->Full initialization and
load

D3 - Off 0 None Full initialization and load

Summary of Device Power States
UEFI Forum, Inc. January 2019 Page 36

ACPI Specification, Version 6.3 Definition of Terms
Note: Devices often have different power modes within a given state. Devices can use these modes as
long as they can automatically transparently switch between these modes from the software,
without violating the rules for the current Dx state the device is in. Low-power modes that
adversely affect performance (in other words, low speed modes) or that are not transparent to
software cannot be done automatically in hardware; the device driver must issue commands to
use these modes.

2.3.1 Device Performance States

Device performance states (Px states) are power consumption and capability states within the active (D0)
device power state. Performance states allow OSPM to make tradeoffs between performance and energy
conservation. Device performance states have the greatest impact when the implementation is such that
the states invoke different device efficiency levels as opposed to a linear scaling of performance and
energy consumption. Since performance state transitions occur in the active device states, care must be
taken to ensure that performance state transitions do not adversely impact the system.

Device performance states, when necessary, are defined on a per device class basis (See Appendix A for
more information).

2.4 Sleeping and Soft-off State Definitions

S1-S4 are types of sleeping states within the global system state, G1, while S5 is a soft-off state associated
with the G2 system state. The Sx states are briefly defined below. For a detailed definition of the system
behavior within each Sx state, see Section 7.4.2, “System _Sx States.” For a detailed definition of the
transitions between each of the Sx states, see Section 16.1, “Sleeping States.”

S1 Sleeping State

The S1 sleeping state is a low wake latency sleeping state. In this state, no system context is lost
(CPU or chip set) and hardware maintains all system context.

S2 Sleeping State

The S2 sleeping state is a low wake latency sleeping state. This state is similar to the S1 sleeping
state except that the CPU and system cache context is lost (the OS is responsible for maintaining
the caches and CPU context). Control starts from the processor’s reset vector after the wake
event.

S3 Sleeping State

The S3 sleeping state is a low wake latency sleeping state where all system context is lost except
system memory. CPU, cache, and chip set context are lost in this state. Hardware maintains
memory context and restores some CPU and L2 configuration context. Control starts from the
processor’s reset vector after the wake event.

S4 Sleeping State

The S4 sleeping state is the lowest power, longest wake latency sleeping state supported by ACPI.
In order to reduce power to a minimum, it is assumed that the hardware platform has powered
off all devices. Platform context is maintained.

S5 Soft Off State

The S5 state is similar to the S4 state except that the OS does not save any context. The system is
in the “soft” off state and requires a complete boot when it wakes. Software uses a different
UEFI Forum, Inc. January 2019 Page 37

ACPI Specification, Version 6.3 Definition of Terms
state value to distinguish between the S5 state and the S4 state to allow for initial boot
operations within the platform boot firmware to distinguish whether the boot is going to wake
from a saved memory image.

2.5 Processor Power State Definitions

Processor power states (Cx states) are processor power consumption and thermal management states
within the global working state, G0. The Cx states possess specific entry and exit semantics and are briefly
defined below. For a more detailed definition of each Cx state, see section 8.1, “Processor Power States.”

C0 Processor Power State

While the processor is in this state, it executes instructions.

C1 Processor Power State

This processor power state has the lowest latency. The hardware latency in this state must be
low enough that the operating software does not consider the latency aspect of the state when
deciding whether to use it. Aside from putting the processor in a non-executing power state, this
state has no other software-visible effects.

C2 Processor Power State

The C2 state offers improved power savings over the C1 state. The worst-case hardware latency
for this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C1 state should be used instead of the C2 state. Aside from
putting the processor in a non-executing power state, this state has no other software-visible
effects.

C3 Processor Power State

The C3 state offers improved power savings over the C1 and C2 states. The worst-case hardware
latency for this state is provided via the ACPI system firmware and the operating software can
use this information to determine when the C2 state should be used instead of the C3 state.
While in the C3 state, the processor’s caches maintain state but ignore any snoops. The operating
software is responsible for ensuring that the caches maintain coherency.

2.6 Device and Processor Performance State Definitions

Device and Processor performance states (Px states) are power consumption and capability states within
the active/executing states, C0 for processors and D0 for devices. The Px states are briefly defined below.
For a more detailed definition of each Px state from a processor perspective, see section 8.4.4,
“Processor Performance Control.” For a more detailed definition of each Px state from a device
perspective see section 3.6, “Device and Processor Performance States,” and the device class
specifications in Appendix A.

P0 Performance State

While a device or processor is in this state, it uses its maximum performance capability and may
consume maximum power.
UEFI Forum, Inc. January 2019 Page 38

ACPI Specification, Version 6.3 Definition of Terms
P1 Performance State

In this performance power state, the performance capability of a device or processor is limited
below its maximum and consumes less than maximum power.

Pn Performance State

In this performance state, the performance capability of a device or processor is at its minimum
level and consumes minimal power while remaining in an active state. State n is a maximum
number and is processor or device dependent. Processors and devices may define support for an
arbitrary number of performance states not to exceed 255.
UEFI Forum, Inc. January 2019 Page 39

3 ACPI Concepts

Platforms compliant with the ACPI specification provide OSPM with direct and exclusive control over the
power management and motherboard device configuration functions of a computer. During OS
initialization, OSPM takes over these functions from legacy implementations such as the APM BIOS,
SMM-based firmware, legacy applications, and the PNPBIOS. Having done this, OSPM is responsible for
handling motherboard device configuration events as well as for controlling the power, performance,
and thermal status of the system based on user preference, application requests and OS imposed Quality
of Service (QOS) / usability goals. ACPI provides low-level interfaces that allow OSPM to perform these
functions. The functional areas covered by the ACPI specification are:

System power management

ACPI defines mechanisms for putting the computer as a whole in and out of system sleeping
states. It also provides a general mechanism for any device to wake the computer.

Device power management

ACPI tables describe motherboard devices, their power states, the power planes the devices are
connected to, and controls for putting devices into different power states. This enables the OS to
put devices into low-power states based on application usage.

Processor power management

While the OS is idle but not sleeping, it will use commands described by ACPI to put processors in
low-power states.

Device and processor performance management

 While the system is active, OSPM will transition devices and processors into different
performance states, defined by ACPI, to achieve a desirable balance between performance and
energy conservation goals as well as other environmental requirements (for example, visibility
and acoustics).

Configuration / Plug and Play

ACPI specifies information used to enumerate and configure motherboard devices. This
information is arranged hierarchically so when events such as docking and undocking take place,
the OS has precise, a priori knowledge of which devices are affected by the event.

System Events

ACPI provides a general event mechanism that can be used for system events such as thermal
events, power management events, docking, device insertion and removal, and so on. This
mechanism is very flexible in that it does not define specifically how events are routed to the
core logic chip set.

Battery management

Battery management policy moves from the APM BIOS to the ACPI OS. An ACPI-compatible
battery device needs either a Smart Battery subsystem interface, which is controlled by the OS
directly through the embedded controller interface, or a Control Method Battery interface. A
Control Method Battery interface is completely defined by AML control methods, allowing an
UEFI Forum, Inc. January 2019 Page 40

ACPI Specification, Version 6.3 ACPI Concepts
OEM to choose any type of the battery and any kind of communication interface supported by
ACPI. The battery must comply with the requirements of its interface, as described either herein
or in other applicable standards. The OS may choose to alter the behavior of the battery, for
example, by adjusting the Low Battery or Battery Warning trip point. When there are multiple
batteries present, the battery subsystem is not required to perform any synthesis of a
“composite battery” from the data of the separate batteries. In cases where the battery
subsystem does not synthesize a “composite battery” from the separate battery’s data, the OS
must provide that synthesis.

Thermal management

Since the OS controls the power and performance states of devices and processors, ACPI also
addresses system thermal management. It provides a simple, scalable model that allows OEMs to
define thermal zones, thermal indicators, and methods for cooling thermal zones.

Embedded Controller

ACPI defines a standard hardware and software communications interface between an OS bus
enumerator and an embedded controller. This allows any OS to provide a standard bus
enumerator that can directly communicate with an embedded controller in the system, thus
allowing other drivers within the system to communicate with and use the resources of system
embedded controllers. This in turn enables the OEM to provide platform features that the OS and
applications can use.

SMBus Controller

ACPI defines a standard hardware and software communications interface between an OS bus
driver and an SMBus Controller. This allows any OS to provide a standard bus driver that can
directly communicate with SMBus devices in the system. This in turn enables the OEM to provide
platform features that the OS and applications can use.

OSPM’s mission is to optimally configure the platform and to optimally manage the system’s power,
performance, and thermal status given the user’s preferences and while supporting OS imposed Quality
of Service (QOS) / usability goals. To achieve these goals, ACPI requires that once an ACPI compliant
platform is in ACPI mode, the platform’s hardware, firmware, or other non-OS software must not
manipulate the platform’s configuration, power, performance, and thermal control interfaces
independently of OSPM. OSPM alone is responsible for coordinating the configuration, power
management, performance management, and thermal control policy of the system. Manipulation of
these interfaces independently of OSPM undermines the purpose of OSPM/ACPI and may adversely
impact the system’s configuration, power, performance, and thermal policy goals. There are two
exceptions to this requirement. The first is in the case of the possibility of damage to a system from an
excessive thermal conditions where an ACPI compatible OS is present and OSPM latency is insufficient to
remedy an adverse thermal condition. In this case, the platform may exercise a failsafe thermal control
mechanism that reduces the performance of a system component to avoid damage. If this occurs, the
platform must notify OSPM of the performance reduction if the reduction is of significant duration (in
other words, if the duration of reduced performance could adversely impact OSPM’s power or
performance control policy - operating system vendors can provide guidance in this area). The second
exception is the case where the platform contains Active cooling devices but does not contain Passive
cooling temperature trip points or controls,. In this case, a hardware based Active cooling mechanism
may be implemented without impacting OSPM’s goals. Any platform that requires both active and
UEFI Forum, Inc. January 2019 Page 41

ACPI Specification, Version 6.3 ACPI Concepts
passive cooling must allow OSPM to manage the platform thermals via ACPI defined active and passive
cooling interfaces.

3.1 System Power Management

Under OSPM, the OS directs all system and device power state transitions. Employing user preferences
and knowledge of how devices are being used by applications, the OS puts devices in and out of low-
power states. Devices that are not being used can be turned off. Similarly, the OS uses information from
applications and user settings to put the system as a whole into a low- power state. The OS uses ACPI to
control power state transitions in hardware.

3.2 Power States

From a user-visible level, the system can be thought of as being in one of the states in the following
diagram:

Figure 3-1Global System Power States and Transitions

See Section 2.2, “Global System State Definitions,” for detailed definitions of these states.

In general use, computers alternate between the Working and Sleeping states. In the Working state, the
computer is used to do work. User-mode application threads are dispatched and running. Individual
devices can be in low-power (Dx) states and processors can be in low-power (Cx) states if they are not
being used. Any device the system turns off because it is not actively in use can be turned on with short
latency. (What “short” means depends on the device. An LCD display needs to come on in sub-second
times, while it is generally acceptable to wait a few seconds for a printer to wake.)
UEFI Forum, Inc. January 2019 Page 42

ACPI Specification, Version 6.3 ACPI Concepts
The net effect of this is that the entire machine is functional in the Working state. Various Working sub-
states differ in speed of computation, power used, heat produced, and noise produced. Tuning within the
Working state is largely about trade-offs among speed, power, heat, and noise.

When the computer is idle or the user has pressed the power button, the OS will put the computer into
one of the sleeping (Sx) states. No user-visible computation occurs in a sleeping state. The sleeping sub-
states differ in what events can arouse the system to a Working state, and how long this takes. When the
machine must awaken to all possible events or do so very quickly, it can enter only the sub-states that
achieve a partial reduction of system power consumption. However, if the only event of interest is a user
pushing on a switch and a latency of minutes is allowed, the OS could save all system context into an NVS
file and transition the hardware into the S4 sleeping state. In this state, the machine draws almost zero
power and retains system context for an arbitrary period of time (years or decades if needed).

The other states are used less often. Computers that support legacy BIOS power management interfaces
boot in the Legacy state and transition to the Working state when an ACPI OS loads. A system without
legacy support (for example, a RISC system) transitions directly from the Mechanical Off state to the
Working state. Users typically put computers into the Mechanical Off state by flipping the computer’s
mechanical switch or by unplugging the computer.

3.2.1 Power Button

In legacy systems, the power button typically either forces the machine into Soft Off or Mechanical Off
or, on a laptop, forces it to some sleeping state. No allowance is made for user policy (such as the user
wants the machine to “come on” in less than 1 second with all context as it was when the user turned the
machine “off”), system alert functions (such as the system being used as an answering machine or fax
machine), or application function (such as saving a user file).

In an OSPM system, there are two switches. One is to transition the system to the Mechanical Off state. A
mechanism to stop current flow is required for legal reasons in some jurisdictions (for example, in some
European countries). The other is the “main” power button. This is in some obvious place (for example,
beside the keyboard on a laptop). Unlike legacy on/off buttons, all it does is send a request to the system.
What the system does with this request depends on policy issues derived from user preferences, user
function requests, and application data.

3.2.2 Platform Power Management Characteristics

3.2.2.1Mobile PC

Mobile PCs will continue to have aggressive power management functionality. Going to OSPM/ACPI will
allow enhanced power savings techniques and more refined user policies.

Aspects of mobile PC power management in the ACPI specification are thermal management (see
Section 11, “Thermal Management”) and the embedded controller interface (see Section 12, “ACPI
Embedded Controller Interface Specification”).

3.2.2.2 Desktop PCs

Power-managed desktops will be of two types, though the first type will migrate to the second over time.
UEFI Forum, Inc. January 2019 Page 43

ACPI Specification, Version 6.3 ACPI Concepts
Ordinary “Green PC”

Here, new appliance functions are not the issue. The machine is really only used for productivity
computations. At least initially, such machines can get by with very minimal function. In
particular, they need the normal ACPI timers and controls, but don’t need to support elaborate
sleeping states, and so on. They, however, do need to allow the OS to put as many of their
devices/resources as possible into device standby and device off states, as independently as
possible (to allow for maximum compute speed with minimum power wasted on unused
devices). Such PCs will also need to support wake from the sleeping state by means of a timer,
because this allows administrators to force them to turn on just before people are to show up for
work.

Home PC

Computers are moving into home environments where they are used in entertainment centers
and to perform tasks like answering the phone. A home PC needs all of the functionality of the
ordinary green PC. In fact, it has all of the ACPI power functionality of a laptop except for docking
and lid events (and need not have any legacy power management). Note that there is also a
thermal management aspect to a home PC, as a home PC user wants the system to run as quietly
as possible, often in a thermally constrained environment.

3.2.2.3 Multiprocessor and Server PCs

Perhaps surprisingly, server machines often get the largest absolute power savings. Why? Because they
have the largest hardware configurations and because it’s not practical for somebody to hit the off switch
when they leave at night.

Day Mode

 In day mode, servers are power-managed much like a corporate ordinary green PC, staying in the
Working state all the time, but putting unused devices into low-power states whenever possible.
Because servers can be very large and have, for example, many disk spindles, power
management can result in large savings. OSPM allows careful tuning of when to do this, thus
making it workable.

Night Mode

In night mode, servers look like home PCs. They sleep as deeply as they can and are still able to
wake and answer service requests coming in over the network, phone links, and so on, within
specified latencies. So, for example, a print server might go into deep sleep until it receives a
print job at 3 A.M., at which point it wakes in perhaps less than 30 seconds, prints the job, and
then goes back to sleep. If the print request comes over the LAN, then this scenario depends on
an intelligent LAN adapter that can wake the system in response to an interesting received
packet.

3.3 Device Power Management

This section describes ACPI-compatible device power management. The ACPI device power states are
introduced, the controls and information an ACPI-compatible OS needs to perform device power
management are discussed, the wake operation devices use to wake the computer from a sleeping state
is described, and an example of ACPI-compatible device management using a modem is given
UEFI Forum, Inc. January 2019 Page 44

ACPI Specification, Version 6.3 ACPI Concepts
3.3.1 Device Power Management Model

ACPI Device Power Management is based on an integrated model consisting of:

Distributed device power state policy
For each hardware device on the system, there is a Power Policy Owner in the Operating System
that is responsible for continuously determining the best power state for the device. The best
device power state is the one that, at any point in time, minimizes the consumption of power by
the device consistent with the usage requirements of the device by the system and its user.
Policy is typically defined for a class of devices, and incorporates application activity, user
scenarios and other operating state as necessary. It is applied to all devices of a given class.

Layered device power state control
Once power state decisions are made for a device, they must be carried-out by device drivers.
The model partitions the control functionality between the device, bus and platform layers.
Device drivers at each layer perform control using mechanisms available at that level,
coordinated by OSPM. In general, the ordering proceeds from Device/Class level, to Bus level, to
Platform level when a device is powering down, and the inverse when powering-up.

For instance, a device-level driver has access, via the device programming interface, to settings
and control registers that invoke specific, sometimes proprietary, power control features in the
device. The device driver uses these controls as appropriate for the target ACPI-defined power
state determined by the policy owner. Similarly, classes of devices may have standardized power
features, invoked in standardized ways that Class Drivers might use when entering a target
power state.

At the bus level, power management standards come into play to provide bus-specific controls
that work for every device connected to the bus, regardless of device class. PCI, for instance,
defines fields in the device Configuration Space for setting the device’s power state (D0-D3). Bus-
level drivers utilize these standards to perform control in addition to that applied by the device-
specific or device class driver. Bus-specific mechanisms also enable additional power savings in
the system by enabling the bus infrastructure hardware itself to enter lower power states, as
defined in the bus standard.

Finally, for platform-level power state control, ACPI defines mechanisms (_PRx, _PSx, _ON, _OFF)
for putting a device into a given power state. The Operating System’s ACPI software (“OSPM”)
utilizes these mechanisms to execute the lowest-level, platform-specific control for a given
device, such as turning off and on power rails and clocks, resetting HW, etc.

Operating System coordination
Finally, ACPI defines information and behavior requirements that enable OSPM to inform the
Power Policy Owner about supported state and wake-up capabilities, and to coordinate the
actions of the various levels of device drivers in controlling power. OSPM, in this role, is
responsible for ensuring that device power management is coordinated with System Power
Management such as entering sleep states (S1-S4) or Low-power Idle states (LPI). Integrated with
device power state policy and control, wake-up policy and control are also coordinated by OSPM.
Power Policy Owners, which decide when the device might be needed to wake the system,
ensure that only device power states that the device can wake from are selected when the
UEFI Forum, Inc. January 2019 Page 45

ACPI Specification, Version 6.3 ACPI Concepts
platform enters a Sleep or LPI state. Enabling of wake-up hardware is also performed at the
device, bus and platform levels and coordinated by OSPM. OSPM ensures further that the Sleep
or LPI state selected for the system is compatible with the device state and wake-up capabilities
of all the devices currently enabled for wake.

3.3.2 Power Management Standards

To manage power of all the devices in the system, the OS needs standard methods for sending
commands to a device. These standards define the operations used to manage power of devices on a
particular I/O interconnect and the power states that devices can be put into. Defining these standards
for each I/O interconnect creates a baseline level of power management support the OS can utilize.
Independent Hardware Vendors (IHVs) do not have to spend extra time writing software to manage
power of their hardware, because simply adhering to the standard gains them direct OS support. For OS
vendors, the I/O interconnect standards allow the power management code to be centralized in the
driver for each I/O interconnect. Finally, I/O interconnect-driven power management allows the OS to
track the states of all devices on a given I/O interconnect. When all the devices are in a given state (or
example, D3 - off), the OS can put the entire I/O interconnect into the power supply mode appropriate
for that state (for example, D3 - off).

I/O interconnect-level power management specifications are written for a number of buses including:

• PCI
• PCI Express
• CardBus
• USB
• IEEE 1394

3.3.3 Device Power States

To unify nomenclature and provide consistent behavior across devices, standard definitions are used for
the power states of devices. Generally, these states are defined in terms of the following criteria:

• Power consumption--How much power the device uses.
• Device context--How much of the context of the device is retained by the hardware.
• Device driver--What the device driver must do to restore the device to fully on.
• Restore latency--How long it takes to restore the device to fully on.

More specifically, power management specifications for each class of device (for example, modem,
network adapter, hard disk, and so on) more precisely define the power states and power policy for the
class. See Section 2.3, “Device Power State Definitions,” for the detailed description of the general device
power states (D0-D3).

3.3.4 Device Power State Definitions

The device power state definitions are device-independent, but classes of devices on a bus must support
some consistent set of power-related characteristics. For example, when the bus-specific mechanism to
set the device power state to a given level is invoked, the actions a device might take and the specific
sorts of behaviors the OS can assume while the device is in that state will vary from device type to device
type. For a fully integrated device power management system, these class-specific power characteristics
must also be standardized:
UEFI Forum, Inc. January 2019 Page 46

ACPI Specification, Version 6.3 ACPI Concepts
Device Power State Characteristics

Each class of device has a standard definition of target power consumption levels, state-change
latencies, and context loss.

Minimum Device Power Capabilities

Each class of device has a minimum standard set of power capabilities.

Device Functional Characteristics

Each class of device has a standard definition of what subset of device functionality or features is
available in each power state (for example, the net card can receive, but cannot transmit; the
sound card is fully functional except that the power amps are off, and so on).

Device Wakeup Characteristics

Each class of device has a standard definition of its wake policy.

The Device Class Power Management specifications define these power state characteristics for each
class of device. See Appendix A.

3.4 Controlling Device Power

ACPI interfaces provide the control methods and information needed to manage device power. OSPM
leverages these interfaces to perform tasks like determining the capabilities of a device, executing
methods to set a device's power state or get its status, and enabling a device to wake the machine.

Note: Other buses enumerate some devices on the main board. For example, PCI devices are reported
through the standard PCI enumeration mechanisms. Power management of these devices is
handled through their own bus specification (in this case, PCI). All other devices on the main board
are handled through ACPI. Specifically, the ACPI table lists legacy devices that cannot be reported
through their own bus specification, the root of each bus in the system, and devices that have
additional power management or configuration options not covered by their own bus
specification.

For more detailed information see Section 7, “Power and Performance Management.”

3.4.1 Getting Device Power Capabilities

As the OS enumerates devices in the system, it gets information about the power management features
that the device supports. The Differentiated Definition Block given to the OS by the platform boot
firmware describes every device handled by ACPI. This description contains the following information:

• A description of what power resources (power planes and clock sources) the device needs in
each power state that the device supports. For example, a device might need a high power bus
and a clock in the D0 state but only a low-power bus and no clock in the D2 state.

• A description of what power resources a device needs in order to wake the machine (or none
to indicate that the device does not support wake). The OS can use this information to infer
what device and system power states from which the device can support wake.

• The optional control method the OS can use to set the power state of the device and to get and
set resources.
UEFI Forum, Inc. January 2019 Page 47

ACPI Specification, Version 6.3 ACPI Concepts
In addition to describing the devices handled by ACPI, the table lists the power planes and clock sources
themselves and the control methods for turning them on and off. For detailed information, see Section 7,
“Power and Performance Management.”

3.4.2 Setting Device Power States

OSPM uses the Set Power State operation to put a device into one of the four power states.

When a device is put in a lower power state, it configures itself to draw as little power from the bus as
possible. The OS tracks the state of all devices on the bus, and will put the bus in the best power state
based on the current device requirements on that bus. For example, if all devices on a bus are in the D3
state, the OS will send a command to the bus control chip set to remove power from the bus (thus
putting the bus in the D3 state). If a particular bus supports a low-power supply state, the OS puts the bus
in that state if all devices are in the D1 or D2 state. Whatever power state a device is in, the OS must be
able to issue a Set Power State command to resume the device.

Note: The device does not need to have power to do this. The OS must turn on power to the device
before it can send commands to the device.

OSPM also uses the Set Power State operation to enable power management features such as wake
(described in Section 7, “Power and Performance Management.”).

For power-down operations (transitions from Dx to some deeper Dy), OSPM first evaluates the
appropriate control method for the target state (_PSx), then turns-off any unused power resources.
Notice that this might not mean that power is actually removed from the device. If other active devices
are sharing a power resource, the power resource will remain on. In the power-up case (transitions from
some Dx back to the shallower D0), the power resources required for D0 are first turned on, and then the
control method (_PS0) is evaluated.

3.4.3 Getting Device Power Status

OSPM uses the Get Power Status operation to determine the current power configuration (states and
features), as well as the status of any batteries supported by the device. The device can signal an SCI to
inform the OS of changes in power status. For example, a device can trigger an interrupt to inform the OS
that the battery has reached low power level.

Devices use the ACPI event model to signal power status changes (for example, battery status changes) to
OSPM. The platform signals events to the OS via an interrupt, either SCI, or GPIO. An interrupt status bit is
set to indicate the event to the OS. The OS runs the control method associated with the event. This
control method signals to the OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information and
batteries that support the Smart Battery System Implementers Forum Smart Battery Specification. For
batteries that report only basic battery status information (such as total capacity and remaining
capacity), the OS uses control methods from the battery’s description table to read this information. To
read status information for Smart Batteries, the OS can use a standard Smart Battery driver that directly
interfaces to Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the System

The wake operation enables devices to wake the system from a sleeping or low-power idle state. This
operation must not depend on the CPU because the CPU will not be executing instructions.
UEFI Forum, Inc. January 2019 Page 48

ACPI Specification, Version 6.3 ACPI Concepts
The OS ensures any bridges between the device and the core logic are in the lowest power state in which
they can still forward the wake signal. When a device with wake enabled decides to wake the system, it
sends the defined signal on its bus. Bus bridges must forward this signal to upstream bridges using the
appropriate signal for that bus. Thus, the signal eventually reaches the core chip set (for example, an ACPI
chip set), which in turn wakes the system.

Before putting the system in a sleeping power state, the OS determines which devices are needed to
wake the system based on application requests, and then enables wake on those devices in a device and
bus specific manner.

The OS enables the wake feature on devices by setting that device's SCI Enable bit or unmasking its wake
interrupt. The location of this control is listed in the device's entry in the description table. Only devices
that have their wake feature enabled can wake the system. The OS keeps track of the power states that
the wake devices support, and keeps the system in a power state in which the wake can still wake the
system (based on capabilities reported in the description table).

When the system is in a Sleeping or low-power idle state and a wake device decides to wake the system,
it signals to the core logic. The status bit corresponding to the device waking the system is set, and the
core logic resumes the system. After the OS is running again, it determines the device responsible for the
wake event by either running a control method (for wake events) or processing the device's ISR (for wake
interrupts).

Note: Besides using ACPI mechanism to enable a particular device to wake the system, an ACPI platform
must also be able to record and report the wake source to OSPM. When a system is woken from
certain states (such as the S4 state), it may start out in non-ACPI mode. In this case, the SCI status
bit may be cleared when ACPI mode is re-entered. However the platform must still attempt to
record the wake source for retrieval by OSPM at a later point.

Note: Although the above description explains how a device can wake the system, note that a device
can also be put into a low power state during the S0 system state, and that this device may
generate a wake signal in the S0 state as the following example illustrates.

3.4.5 Example: Modem Device Power Management

To illustrate how these power management methods function in ACPI, consider an integrated modem.
(This example is greatly simplified for the purposes of this discussion.) The power states of a modem are
defined as follows (this is an excerpt from the Modem Device Class Power Management Specification):

D0

Modem controller on
Phone interface on
Speaker on
Can be on hook or off hook
Can be waiting for answer

D1

Modem controller in low-power mode (context retained by device)
Phone interface powered by phone line or in low-power mode
Speaker off
Must be on hook
UEFI Forum, Inc. January 2019 Page 49

ACPI Specification, Version 6.3 ACPI Concepts
D2

Same as D3

D3

Modem controller off (context lost)
Phone interface powered by phone line or off
Speaker off
On hook

The power policy for the modem is defined as follows:

D3 D0

COM port opened

D0, D1 D3

COM port closed

D0 D1

Modem put in answer mode

D1 D0

Application requests dial or the phone rings while the modem is in answer mode

The wake policy for the modem is very simple: When the phone rings and wake is enabled, wake the
system.

Based on that policy, the modem and the COM port to which it is attached can be implemented in
hardware as shown in Figure 3-2. This is just an example for illustrating features of ACPI. This example is
not intended to describe how OEMs should build hardware.

Figure 3-2 Example Modem and COM Port Hardware

S
w

itc
he

d
po

w
er

S
w

itc
he

d
po

w
er

ACPI core
chip set Phone

interface
Modem

controller

I/O

Control
Phone

line

PWR1 PWR2

RI

WAKE

PWR1_EN

PWR2_EN

MDM_D1
MDM_D3

I/O COM port
(UART)

I/O

COM_D3
UEFI Forum, Inc. January 2019 Page 50

ACPI Specification, Version 6.3 ACPI Concepts
Note: Although not shown above, each discrete part has some isolation logic so that the part is isolated
when power is removed from it. Isolation logic controls are implemented as power resources in
the ACPI Differentiated Description Block so that devices are isolated as power planes are
sequenced off.

3.4.5.1 Obtaining the Modem Capabilities

The OS determines the capabilities of this modem when it enumerates the modem by reading the
modem’s entry in the Differentiated Definition Block. In this case, the entry for the modem would report:

The device supports D0, D1, and D3:

• D0 requires PWR1 and PWR2 as power resources
D1 requires PWR1 as a power resource
(D3 implicitly requires no power resources)

• To wake the system, the modem needs no power resources (implying it can wake the system
from D0, D1, and D3)

Control methods for setting power state and resources

3.4.5.2 Setting the Modem Power State

While the OS is running (G0 state), it switches the modem to different power states according to the
power policy defined for modems.

When an application opens the COM port, the OS turns on the modem by putting it in the D0 state. Then
if the application puts the modem in answer mode, the OS puts the modem in the D1 state to wait for the
call. To make this power-down transition, OSPM first runs a control method (_PS1) provided in the
modem's entry to put the device in the D1 state. In this example, this control method asserts the
MDM_D1 signal that tells the modem controller to go into a low-power mode. OSPM then checks to see
what power resources are no longer needed by the modem device. In this case, PWR2 is no longer
needed. Then it checks to make sure no other device in the system requires the use of the PWR2 power
resource. If the resource is no longer needed, the OSPM uses the _OFF control method associated with
that power resource in the Differentiated Definition Block to turn off the PWR2 power plane. This control
method sends the appropriate commands to the core chip set to stop asserting the PWR2_EN line.

OSPM does not always turn off power resources when a given device is put in a lower power state. For
example, assume that the PWR1 power plane also powers an active line printer (LPT) port. Suppose the
user terminates the modem application, causing the COM port to be closed, and therefore causing the
modem to be shut off (state D3). As always, OSPM begins the state transition process by running the
modem's control method to switch the device to the D3 power state. The control method causes the
MDM_D3 line to be asserted. Notice that these registers might not be in the device itself. For example,
the control method could read the register that controls MDM_D3.The modem controller now turns off
all its major functions so that it draws little power, if any, from the PWR1 line. OSPM continues by
checking to see which power resources are no longer needed. Because the LPT port is still active, PWR1 is
in use. OSPM does not turn off the PWR1 resource. Because the COM port is closed, the same sequence
of events take place to put it in the D3 state, but the power resource is not turned off due to the LPT
dependency.
UEFI Forum, Inc. January 2019 Page 51

ACPI Specification, Version 6.3 ACPI Concepts
3.4.5.3 Obtaining the Modem Power Status

Integrated modems have no batteries; the only power status information for the device is the power
state of the modem. To determine the modem’s current power state (D0-D3), OSPM runs a control
method (_PSC) supplied in the modem’s entry in the Differentiated Definition Block. This control method
reads from the necessary registers to determine the modem’s power state.

3.4.5.4 Waking the System

As indicated in the modem capabilities, this modem can wake the machine from any device power state.
Before putting the system in a Sleep or LPI state, the OS enables wake on any devices that applications
have requested to be able to wake the system. Then, it chooses the deepest sleeping or LPI state that can
still provide the power resources necessary to allow all enabled wake devices to wake the system. Next,
the OS puts each of those devices in the appropriate power state. In this case, the OS puts the modem in
the D3 state because it supports wake from that state. Finally, the OS puts the system into a sleep or LPI
state.

Waking the system via modem starts with the modem's phone interface asserting its ring indicate (RI)
line when it detects a ring on the phone line. This line is routed to the core logic to generate a wake
event. The chipset then wakes the system and the hardware will eventually pass control back to the OS
(the wake mechanism differs depending on the sleeping state, or LPI). After the OS is running, it puts the
device in the D0 state and begins handling interrupts from the modem to process the event.

3.5 Processor Power Management

To further save power in the Working state, the OS puts the CPU into low-power states (C1, C2, and C3)
when the OS is idle. In these low-power states, the CPU does not run any instructions, and wakes when
an interrupt, such as the OS scheduler’s timer interrupt, occurs.

The OS determines how much time is being spent in its idle loop by reading the ACPI Power Management
Timer. This timer runs at a known, fixed frequency and allows the OS to precisely determine idle time.
Depending on this idle time estimate, the OS will put the CPU into different quality low-power states
(which vary in power and latency) when it enters its idle loop.

The CPU states are defined in detail in Section 8, “Processor Configuration and Control.”

3.6 Device and Processor Performance States

This section describes the concept of device and processor performance states. Device and processor
performance states (Px states) are power consumption and capability states within the active/executing
states, C0 for processors and D0 for devices. Performance states allow OSPM to make tradeoffs between
performance and energy conservation. Device and processor performance states have the greatest
impact when the states invoke different device and processor efficiency levels as opposed to a linear
scaling of performance and energy consumption. Since performance state transitions occur in the active/
executing device states, care must be taken to ensure that performance state transitions do not
adversely impact the system.

Examples of device performance states include:

• A hard drive that provides levels of maximum throughput that correspond to levels of power
consumption.
UEFI Forum, Inc. January 2019 Page 52

ACPI Specification, Version 6.3 ACPI Concepts
• An LCD panel that supports multiple brightness levels that correspond to levels of power
consumption.

• A graphics component that scales performance between 2D and 3D drawing modes that
corresponds to levels of power consumption.

• An audio subsystem that provides multiple levels of maximum volume that correspond to
levels of maximum power consumption.

• A Direct-RDRAMTM controller that provides multiple levels of memory throughput
performance, corresponding to multiple levels of power consumption, by adjusting the
maximum bandwidth throttles.

Processor performance states are described in Section 8, “Processor Configuration and Control.”

3.7 Configuration and “Plug and Play”

In addition to power management, ACPI interfaces provide controls and information that enable OSPM
to configure the required resources of motherboard devices along with their dynamic insertion and
removal. ACPI Definition Blocks, including the Differentiated System Description Table (DSDT) and
Secondary System Description Tables (SSDTs), describe motherboard devices in a hierarchical format
called the ACPI namespace. The OS enumerates motherboard devices simply by reading through the ACPI
Namespace looking for devices with hardware IDs.

Each device enumerated by ACPI includes ACPI-defined objects in the ACPI Namespace that report the
hardware resources that the device could occupy, an object that reports the resources that are currently
used by the device, and objects for configuring those resources. The information is used by the Plug and
Play OS (OSPM) to configure the devices.

Note: When preparing to boot a system, the platform boot firmware only needs to configure boot
devices. This includes boot devices described in the ACPI system description tables as well as
devices that are controlled through other standards.

3.7.1 Device Configuration Example: Configuring the Modem

Returning to the modem device example above, the OS will find the modem and load a driver for it when
the OS finds it in the DSDT. This table will have control methods that give the OS the following
information:

• The device can use IRQ 3, I/O 3F8-3FF or IRQ 4, I/O 2E8-2EF
• The device is currently using IRQ 3, I/O 3F8-3FF

The OS configures the modem’s hardware resources using Plug and Play algorithms. It chooses one of the
supported configurations that does not conflict with any other devices. Then, OSPM configures the
device for those resources by running a control method supplied in the modem’s section of the
Differentiated Definition Block. This control method will write to any I/O ports or memory addresses
necessary to configure the device to the given resources.

3.7.2 NUMA Nodes

Systems employing a Non Uniform Memory Access (NUMA) architecture contain collections of hardware
resources including processors, memory, and I/O buses, that comprise what is commonly known as a
“NUMA node”. Processor accesses to memory or I/O resources within the local NUMA node is generally
faster than processor accesses to memory or I/O resources outside of the local NUMA node. ACPI defines
UEFI Forum, Inc. January 2019 Page 53

ACPI Specification, Version 6.3 ACPI Concepts
interfaces that allow the platform to convey NUMA node topology information to OSPM both statically at
boot time and dynamically at run time as resources are added or removed from the system.

3.8 System Events

ACPI includes a general event model used for Plug and Play, Thermal, and Power Management events.
There are two registers that make up the event model: an event status register and an event enable
register.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If the
corresponding bit in the enable register is set, the core logic will assert the SCI to signal the OS. When the
OS receives this interrupt, it will run the control methods corresponding to any bits set in the event status
register. These control methods use AML commands to tell the OS what event occurred.

For example, assume a machine has all of its Plug and Play, Thermal, and Power Management events
connected to the same pin in the core logic. The event status and event enable registers would only have
one bit each: the bit corresponding to the event pin.

When the system is docked, the core logic sets the status bit and signals the SCI. The OS, seeing the status
bit set, runs the control method for that bit. The control method checks the hardware and determines
the event was a docking event (for example). It then signals to the OS that a docking event has occurred,
and can tell the OS specifically where in the device hierarchy the new devices will appear.

Since the event model registers are generalized, they can describe many different platform
implementations. The single pin model above is just one example. Another design might have Plug and
Play, Thermal, and Power Management events wired to three different pins so there would be three
status bits (and three enable bits). Yet another design might have every individual event wired to its own
pin and status bit. This design, at the opposite extreme from the single pin design, allows very complex
hardware, yet very simple control methods. Countless variations in wiring up events are possible.
However, note that care must be taken to ensure that if events share a signal that the event that
generated the signal can be determined in the corresponding event handling control method allowing
the proper device notification to be sent.

3.9 Battery Management

Battery management policy moves from the APM BIOS to the ACPI-compatible OS. Batteries must comply
with the requirements of their associated interfaces, as described either herein or in other applicable
standards. The OS may choose to alter the behavior of the battery, for example, by adjusting the Low
Battery or Battery Warning trip point. When there are multiple batteries present, the battery subsystem
is not required to perform any synthesis of a “composite battery” from the data of the separate batteries.
In cases where the battery subsystem does not synthesize a “composite battery” from the separate
battery's data, the OS must provide that synthesis.

An ACPI-compatible battery device needs either a Smart Battery subsystem interface or a Control
Method Battery interface.

• Smart Battery is controlled by the OS directly through the embedded controller (EC). For more
information about the ACPI Embedded Controller SMBus interface, see Section 12.9, “SMBus
Host Controller Interface via Embedded Controller.” For additional information about the
Smart Battery subsystem interface, see Section 10.1, “Smart Battery Subsystems.”
UEFI Forum, Inc. January 2019 Page 54

ACPI Specification, Version 6.3 ACPI Concepts
• Control Method Battery is completely accessed by AML code control methods, allowing the
OEM to choose any type of battery and any kind of communication interface supported by
ACPI. For more information about the Control Method Battery Interface, see Section 10.2,
“Control Method Batteries.”

This section describes concepts common to all battery types.

3.9.1 Battery Communications

Both the Smart Battery and Control Method Battery interfaces provide a mechanism for the OS to query
information from the platform’s battery system. This information may include full charged capacity,
present battery capacity, rate of discharge, and other measures of the battery’s condition. All battery
system types must provide notification to the OS when there is a change such as inserting or removing a
battery, or when a battery starts or stops discharging. Smart Batteries and some Control Method
Batteries are also able to give notifications based on changes in capacity. Smart batteries provide extra
information such as estimated run-time, information about how much power the battery is able to
provide, and what the run-time would be at a predetermined rate of consumption.

3.9.2 Battery Capacity

Each battery must report its designed capacity, latest full-charged capacity, and present remaining
capacity. Remaining capacity decreases during usage, and it also changes depending on the environment.
Therefore, the OS must use latest full-charged capacity to calculate the battery percentage. In addition
the battery system must report warning and low battery levels at which the user must be notified and the
system transitioned to a sleeping state. See Figure 3-3 for the relation of these five values.

A system may use either rate and capacity [mA/mAh] or power and energy [mW/mWh] for the unit of
battery information calculation and reporting. Mixing [mA] and [mW] is not allowed on a system.

Figure 3-3 Reporting Battery Capacity

3.9.3 Battery Gas Gauge

At the most basic level, the OS calculates Remaining Battery Percentage [%] using the following formula:

OEM designed initial capacity for warning

OEM designed initial capacity for low

Last full charged capacity
Designed capacity

Present remaining capacity
UEFI Forum, Inc. January 2019 Page 55

ACPI Specification, Version 6.3 ACPI Concepts
Control Method Battery also reports the Present Drain Rate [mA or mW] for calculating the remaining
battery life. At the most basic level, Remaining Battery life is calculated by following formula:

Smart Batteries also report the present rate of drain, but since they can directly report the estimated run-
time, this function should be used instead as it can more accurately account for variations specific to the
battery.

3.9.4 Low Battery Levels

A system has an OEM-designed initial capacity for warning, initial capacity for low, and a critical battery
level or flag. The values for warning and low represent the amount of energy or battery capacity needed
by the system to take certain actions. The critical battery level or flag is used to indicate when the
batteries in the system are completely drained. OSPM can determine independent warning and low
battery capacity values based on the OEM-designed levels, but cannot set these values lower than the
OEM-designed values, as shown in the figure below

Figure 3-4 Low Battery and Warning

Each Control Method Battery in a system reports the OEM-designed initial warning capacity and OEM-
designed initial low capacity as well as a flag to report when that battery has reached or is below its
critical energy level. Unlike Control Method Batteries, Smart Batteries are not necessarily specific to one
particular machine type, so the OEM-designed warning, low, and critical levels are reported separately in
a Smart Battery Table described in Section 5.2.14.

Remaining Battery Percentage[%] =
Battery Remaining Capacity [mAh/mWh]

Last Full Charged Capacity [mAh/mWh]
* 100

Remaining Battery Life [h]=
Battery Remaining Capacity [mAh/mWh]
Battery Present Drain Rate [mA/mW]

Warning

Low

Full

Critical

OEM-designed initial capacity for warning (minimum)

OEM-designed initial capacity for low (minimum)

Last full charged capacity

OSPM-selected low battery

OSPM-selected low battery warning capacity

OEM-defined Battery Critical flag

F

E
UEFI Forum, Inc. January 2019 Page 56

ACPI Specification, Version 6.3 ACPI Concepts
The table below describes how these values should be set by the OEM and interpreted by the OS.

Table 3-3 Low Battery Levels

Level Description

Warning When the total available energy (mWh) or capacity (mAh) in the batteries falls below this level,
the OS will notify the user through the UI. This value should allow for a few minutes of run-time
before the “Low” level is encountered so the user has time to wrap up any important work,
change the battery, or find a power outlet to plug the system in.

Low This value is an estimation of the amount of energy or battery capacity required by the system
to transition to any supported sleeping state. When the OS detects that the total available
battery capacity is less than this value, it will transition the system to a user defined system
state (S1-S4). In most situations this should be S4 so that system state is not lost if the battery
eventually becomes completely empty. The design of the OS should consider that users of a
multiple battery system may remove one or more of the batteries in an attempt replace or
charge it. This might result in the remaining capacity falling below the “Low” level not leaving
sufficient battery capacity for the OS to safely transition the system into the sleeping state.
Therefore, if the batteries are discharging simultaneously, the action might need to be initiated
at the point when both batteries reach this level.

Critical The Critical battery state indicates that all available batteries are discharged and do not appear
to be able to supply power to run the system any longer. When this occurs, the OS must
attempt to perform an emergency shutdown as described below.

For a smart battery system, this would typically occur when all batteries reach a capacity of 0,
but an OEM may choose to put a larger value in the Smart Battery Table to provide an extra
margin of safely.

For a Control Method Battery system with multiple batteries, the flag is reported per battery. If
any battery in the system is in a critically low state and is still providing power to the system (in
other words, the battery is discharging), the system is considered to be in a critical energy state.
The _BST control method is required to return the Critical flag on a discharging battery only

when all batteries have reached a critical state; the ACPI system firmware is otherwise
required to switch to a non-critical battery.

3.9.4.1 Emergency Shutdown

Running until all batteries in a system are critical is not a situation that should be encountered normally,
since the system should be put into a sleeping state when the battery becomes low. In the case that this
does occur, the OS should take steps to minimize any damage to system integrity. The emergency
shutdown procedure should be designed to minimize bad effects based on the assumption that power
may be lost at any time. For example, if a hard disk is spun down, the OS should not try to spin it up to
write any data, since spinning up the disk and attempting to write data could potentially corrupt files if
the write were not completed. Even if a disk is spun up, the decision to attempt to save even system
settings data before shutting down would have to be evaluated since reverting to previous settings might
be less harmful than having the potential to corrupt the settings if power was lost halfway through the
write operation.
UEFI Forum, Inc. January 2019 Page 57

ACPI Specification, Version 6.3 ACPI Concepts
3.9.5 Battery Calibration

The reported capacity of many batteries generally degrade over time, providing less run time for the
user. However, it is possible with many battery systems to provide more usable runtime on an old battery
if a calibration or conditioning cycle is run occasionally. The user has typically been able to perform a
calibration cycle either by going into the platform boot firmware setup menu, or by running a custom
driver and calibration application provided by the OEM. The calibration process typically takes several
hours, and the laptop must be plugged in during this time. Ideally the application that controls this should
make this as good of a user experience as possible, for example allowing the user to schedule the system
to wake up and perform the calibration at some time when the system will not be in use. Since the
calibration user experience does not need to be different from system to system it makes sense for this
service to be provided by the OSPM. In this way OSPM can provide a common experience for end users
and eliminate the need for OEMs to develop custom battery calibration software.

In order for OSPM to perform generic battery calibration, generic interfaces to control the two basic
calibration functions are required. These functions are defined in Section 10.2.2.5 and Section 10.2.2.6.
First, there is a means to detect when it would be beneficial to calibrate the battery. Second there is a
means to perform that calibration cycle. Both of those functions may be implemented by dedicated
hardware such as a battery controller chip, by firmware in the embedded controller, by the platform
firmware, or by OSPM. From here on any function implemented through AML, whether or not the AML
code relies on hardware, will be referred to as “AML controlled” since the interface is the same whether
the AML passes control to the hardware or not.

Detection of when calibration is necessary can be implemented by hardware or AML code and be
reported through the _BMD method. Alternately, the _BMD method may simply report the number of
cycles before calibration should be performed and let the OS attempt to count the cycles. A counter
implemented by the hardware or the platform firmware will generally be more accurate since the
batteries can be used without the OS running, but in some cases, a system designer may opt to simplify
the hardware or firmware implementation.

When calibration is desirable and the user has scheduled the calibration to occur, the calibration cycle
can be AML controlled or OSPM controlled. OSPM can only implement a very simple algorithm since it
doesn’t have knowledge of the specifics of the battery system. It will simply discharge the battery until it
quits discharging, then charge it until it quits charging. In the case where the AC adapter cannot be
controlled through the _BMC, it will prompt the user to unplug the AC adapter and reattach it after the
system powers off. If the calibration cycle is controlled by AML, the OS will initiate the calibration cycle by
calling _BMC. That method will either give control to the hardware, or will control the calibration cycle
itself. If the control of the calibration cycle is implemented entirely in AML code, the platform runtime
firmware may avoid continuously running AML code by having the initial call to _BMC start the cycle, set
some state flags, and then exit. Control of later parts of the cycle can be accomplished by putting code
that checks these state flags in the battery event handler (_Qxx, _Lxx, or _Exx).

Details of the control methods for this interface are defined in Section 10.2.

3.10 Thermal Management

ACPI allows the OS to play a role in the thermal management of the system while maintaining the
platform’s ability to mandate cooling actions as necessary. In the passive cooling mode, OSPM can make
cooling decisions based on application load on the CPU as well as the thermal heuristics of the system.
OSPM can also gracefully shutdown the computer in case of high temperature emergencies.
UEFI Forum, Inc. January 2019 Page 58

ACPI Specification, Version 6.3 ACPI Concepts
The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is one
large thermal zone, but an OEM can partition the system into several logical thermal zones if necessary.
Figure 3-5 is an example mobile PC diagram that depicts a single thermal zone with a central processor as
the thermal-coupled device. In this example, the whole notebook is covered as one large thermal zone.
This notebook uses one fan for active cooling and the CPU for passive cooling.

Figure 3-5 Thermal Zone

The following sections are an overview of the thermal control and cooling characteristics of a computer.
For some thermal implementation examples on an ACPI platform, see Section 11.6, “Thermal Zone
Interface Requirements.”

3.10.1 Active and Passive Cooling Modes

ACPI defines two cooling modes, Active and Passive:

Passive cooling

OS reduces the power consumption of devices at the cost of system performance to reduce the
temperature of the system.

Active cooling

OS increases the power consumption of the system (for example, by turning on a fan) to reduce
the temperature of the system.

F0: PIC, PITs,
 DMA, RTC, EIO, ...

CPU

CPU/
Memory/

PCI Bridge

F2:
USB

F1: BM
IDE

SIO:
COMs,
LPT,
FDC,
ACPI

EPROM

Graphics

Embedded
Controller

D
R
A
M

L
2

D
R
A
M

PCI/PCI
Bridge

L
A
N

M
P
E
G

NVRAM

LCD

LPT

COM

HDD
1

USB
Port 1

CRT

Keyboard

PS/2
Ports

Mouse

Docking

HDD
0

FDD

Momentary

Thermal
Zone

DPR0

DPR1

P
L
L

Fan
(Active Cooling)

(Passive Cooling)
UEFI Forum, Inc. January 2019 Page 59

ACPI Specification, Version 6.3 ACPI Concepts
These two cooling modes are inversely related to each other. Active cooling requires increased power to
reduce the heat within the system while Passive cooling requires reduced power to decrease the
temperature. The effect of this relationship is that Active cooling allows maximum system performance,
but it may create undesirable fan noise, while Passive cooling reduces system performance, but is
inherently quiet.

3.10.2 Performance vs. Energy Conservation

A robust OSPM implementation provides the means for the end user to convey to OSPM a preference (or
a level of preference) for either performance or energy conservation. Allowing the end user to choose
this preference is most critical to mobile system users where maximizing system run-time on a battery
charge often has higher priority over realizing maximum system performance.

A user’s preference for performance corresponds to the Active cooling mode while a user’s preference
for energy conservation corresponds to the Passive cooling mode. ACPI defines an interface to convey
the cooling mode to the platform. Active cooling can be performed with minimal OSPM thermal policy
intervention. For example, the platform indicates through thermal zone parameters that crossing a
thermal trip point requires a fan to be turned on. Passive cooling requires OSPM thermal policy to
manipulate device interfaces that reduce performance to reduce thermal zone temperature.

3.10.3 Acoustics (Noise)

Active cooling mode generally implies that fans will be used to cool the system and fans vary in their
audible output. Fan noise can be quite undesirable given the loudness of the fan and the ambient noise
environment. In this case, the end user’s physical requirement for fan silence may override the
preference for either performance or energy conservation.

A user’s desire for fan silence corresponds to the Passive cooling mode. Accordingly, a user’s desire for
fan silence also means a preference for energy conservation.

For more information on thermal management and examples of platform settings for active and passive
cooling, see Section 11, “Thermal Management.”

3.10.4 Multiple Thermal Zones

The basic thermal management model defines one thermal zone, but in order to provide extended
thermal control in a complex system, ACPI specifies a multiple thermal zone implementation. Under a
multiple thermal zone model, OSPM will independently manage several thermal-coupled devices and a
designated thermal zone for each thermal-coupled device, using Active and/or Passive cooling methods
available to each thermal zone. Each thermal zone can have more than one Passive and Active cooling
device. Furthermore, each zone might have unique or shared cooling resources. In a multiple thermal
zone configuration, if one zone reaches a critical state then OSPM must shut down the entire system.

3.11 Flexible Platform Architecture Support

ACPI defines mechanisms and models to accommodate platform architectures that deviate from the
traditional PC. ACPI provides support for platform technologies that enable lower-power, lower cost,
more design flexibility and more device diversity. This support is described in the following sections, and
detailed in later chapters.
UEFI Forum, Inc. January 2019 Page 60

ACPI Specification, Version 6.3 ACPI Concepts
3.11.1 Hardware-reduced ACPI

ACPI offers an alternative platform interface model that removes ACPI hardware requirements for
platforms that do not implement the PC Architecture. In the Hardware-reduced ACPI model, the Fixed
hardware interface requirements of Chapter 4 are removed, and Generic hardware interfaces are used
instead. This provides the level of flexibility needed to innovate and differentiate in low-power hardware
designs while enabling support by multiple Operating Systems.

Hardware-reduced ACPI has the following requirements:

• UEFI firmware interface for boot (Legacy BIOS is not supported).
• Boot in ACPI mode only (ACPI Enable, ACPI Disable, SMI_CMD and Legacy mode are not

supported)
• No hardware resource sharing between OSPM and other asynchronous operating

environments, such as UEFI Runtime Services or System Management Mode. (The Global Lock
is not supported)

• No dependence on OS-support for maintaining cache coherency across processor sleep states
(Bus Master Reload and Arbiter Disable are not supported)

• GPE block devices are not supported

Systems that do not meet the above requirements must implement the ACPI Fixed Hardware interface.

3.11.1.1 Interrupt-based Wake Events

On HW-reduced ACPI platforms, wakeup is an attribute of connected interrupts. Interrupts that are
designed to wake the processor or the entire platform are defined as wake-capable. Wake-capable
interrupts, when enabled by OSPM, wake the system when they assert.

3.11.2 Low-Power Idle

Platform architectures may support hardware power management models other than the traditional
ACPI Sleep/Resume model. These are typically implemented in proprietary hardware and are capable of
delivering low-latency, connected idle while saving as much energy as ACPI Sleep states. To support the
diversity of hardware implementations, ACPI provides a mechanism for the platform to indicate to OSPM
that such capability is available.

3.11.2.1 Low Power S0 Idle Capable Flag

This flag in the FADT informs OSPM whether a platform has advanced idle power capabilities such that S0
idle achieves savings similar to or better than those typically achieved in S3. With this flag, OSPM can
keep the system in S0 idle for its low-latency response and its connectedness rather than transitioning to
a system sleep state which has neither. The flag enables support for a diversity of platform
implementations: traditional Sleep/Resume systems, systems with advanced idle power, systems that
support neither, and systems that can support both, depending on the capabilities of the installed OS.

3.11.3 Connection Resources

General-purpose I/O (GPIO) and Simple Peripheral Bus (SPB) controllers are hardware resources provided
in silicon solutions to enable flexible configuration of a broad range of system designs. These controllers
can provide input, output, interrupt and serial communication connections to arbitrary devices in a
system. The function to which one of these connections is put depends on the specific device involved
UEFI Forum, Inc. January 2019 Page 61

ACPI Specification, Version 6.3 ACPI Concepts
and the needs of the platform design. In order to support these platform technologies, ACPI defines a
general abstraction for flexible connections.

In order to maintain compatibility with existing software models, ACPI abstracts these connections as
hardware resources.

The Connection Resource abstraction mirrors the hardware functionality of GPIO and SPB controllers.
Like other resources, these connections are allocated and configured before use. With the resources
described by the platform, OSPM abstracts the underlying configuration from device drivers. Drivers,
then, can be written for the device's function only, and reused with that functional hardware regardless
of how it is integrated into a given system.

The key aspects of the Connection Resource abstraction are:

• GPIO and SPB controllers are enumerated as devices in the ACPI Namespace.
• GPIO Connection and SPB Connection resource types are defined.
• Namespace devices that are connected to GPIO or SPB controllers use Resource Template

Macros to add Connection Resources to their resource methods (_CRS, _SRS, etc.).
• GPIO Connection Resources can be designated by the platform for use as GPIO-signaled ACPI

Events.
• Connection Resources can be used by AML methods to access pins and peripherals through

GPIO and SPB operation regions.

3.11.3.1 Supported Platforms

The HW-reduced ACPI and Low power S0 Idle Capable flags combine to represent 4 platform types that
can be implemented. The following table enumerates these, as well as the intended OSPM behavior and
specific platform requirements.

Table 3-4 Implementable Platform Types

Low Power
S0 Idle
Capable

Hardware-
reduced
ACPI

OSPM Behavior Platform Implementation

0 0 Fixed hardware interface accessed
for features, events and system
power management.

Traditional Sleep/Resume power
management.

Implement Fixed-feature hardware
interface.

0 1 Fixed-feature hardware interface not
accessed.

Sleep/Resume Power Management
using FADT SLEEP_*_REG fields and
Interrupt-based wake signaling.

Implement GPIO-signaled ACPI Events;

Implement software alternatives to any
ACPI fixed features, including the Sleep
registers.

Implement wake-capable interrupts for
wake events.
UEFI Forum, Inc. January 2019 Page 62

ACPI Specification, Version 6.3 ACPI Concepts
1 0 Fixed hardware interface accessed
for features and events.

Platform-specific Low-power Idle
power management.

Implement Fixed-feature hardware
interface.

Implement low-power hardware such
that the platform achieves power
savings in S0 similar to or better than
those typically achieved in S3.

1 1 Fixed-feature hardware interface not
accessed.

Platform-specific Low-power Idle
power management.

Implement GPIO-signaled ACPI Events;

Implement software alternatives to any
ACPI fixed features desired;

Implement wake-capable interrupts for
any wake events.

Implement low-power hardware such
that the platform achieves power
savings in S0 similar to or better than
those typically achieved in S3.

Low Power
S0 Idle
Capable

Hardware-
reduced
ACPI

OSPM Behavior Platform Implementation
UEFI Forum, Inc. January 2019 Page 63

4 ACPI Hardware Specification

ACPI defines standard interface mechanisms that allow an ACPI-compatible OS to control and
communicate with an ACPI-compatible hardware platform. These interface mechanisms are optional
(See "Hardware-Reduced ACPI", below).However, if the ACPI Hardware Specification is implemented,
platforms must comply with the requirements in this section.

This section describes the hardware aspects of ACPI.

ACPI defines “hardware” as a programming model and its behavior. ACPI strives to keep much of the
existing legacy programming model the same; however, to meet certain feature goals, designated
features conform to a specific addressing and programming scheme. Hardware that falls within this
category is referred to as “fixed.”

Although ACPI strives to minimize these changes, hardware engineers should read this section carefully
to understand the changes needed to convert a legacy-only hardware model to an ACPI/Legacy hardware
model or an ACPI-only hardware model.

ACPI classifies hardware into two categories: Fixed or Generic. Hardware that falls within the fixed
category meets the programming and behavior specifications of ACPI. Hardware that falls within the
generic category has a wide degree of flexibility in its implementation.

4.1 Hardware-Reduced ACPI

For certain classes of systems the ACPI Hardware Specification may not be adequate. Examples include
legacy-free, UEFI-based platforms with recent processors, and those implementing mobile platform
architectures. For such platforms, a Hardware-reduced ACPI mode is defined. Under this definition, the
ACPI Fixed Hardware interface is not implemented, and software alternatives for many of the features it
supports are used instead. Note, though, that Hardware-reduced ACPI is not intended to support every
possible ACPI system that can be built today. Rather, it is intended to introduce new systems that are
designed to be HW-reduced from the start. The ACPI HW Specification should be used if the platform
cannot be designed to work without it. Specifically, the following features are not supported under the
HW-reduced definition:

• The Global Lock, SMI_CMD, ACPI Enable and ACPI Disable. Hardware-reduced ACPI systems
always boot in ACPI mode, and do not support hardware resource sharing between OSPM and
other asynchronous operating environments, such as UEFI Runtime Services or System
Management Mode.

• Bus Master Reload and Arbiter Disable. Systems that depend on OS use of these bits to
maintain cache coherency across processor sleep states are not supported.

• GPE block devices are not supported.

Platforms that require the above features must implement the ACPI Hardware Specification.

Platforms that are designed for the Hardware-reduced ACPI definition must implement Revision 5 or
greater of the Fixed ACPI Descriptor Table, and must set the HW_REDUCED_ACPI flag in the Flags field.
UEFI Forum, Inc. January 2019 Page 64

ACPI Specification, Version 6.3 ACPI Hardware Specification
Note: FFH is permitted and applicable to both full and HW-reduced ACPI implementations.

4.1.1 Hardware-Reduced Events

HW-reduced ACPI platforms require alternatives to some of the features supported in the ACPI HW
Specification, where none already exists. There are two areas that require such alternatives: The ACPI
Platform Event Model, and System and Device Wakeup.

4.1.1.1 GPIO-Signaled Events or Interrupt Signaled Events

General Purpose Input/Output (GPIO) hardware can be used for signaling platform events. GPIO HW is a
generalization of the GPE model, and is a shared hardware resource used for many applications. ACPI
support for GPIO is described in section Section 3.11.3, "Connection Resources". ACPI 6.1introduces the
capability to signal events via interrupts. See Section 5.6.9 for further details.

GPIO based event signaling is provided through GPIO interrupt connections, which describe the
connection to a GPIO controller and pin, and which are mapped to the ACPI Event Handling mechanism
via the ACPI Event Information namespace object (_AEI). OSPM treats GPIO Interrupt Connections listed
in _AEI exactly as it does SCI interrupts: it executes the Event Method associated with the specific event.
The name of the method to run is determined by the pin information contained in the GPIO Interrupt
Connection resource. See Section 5.6.5 for further details.

GPIO-signaled events can also be wake events, just as GPE events can on traditional ACPI platforms.
Designating which events are wake events is done through attributes of the GPIO Interrupt Connection
resource used.Devices may use _PRW to manage wake events as described in Section 7.3.13.

Interrupt based event signaling follows a similar methodology, a generic event device (GED) is declared
which in turn describes all interrupts associated with event generation. The interrupts are listed in a _CRS
object. When an interrupt is asserted the OSPM will execute the event method (_EVT) declared in the
GED object specifying the interrupt identifier as a parameter. In this way the interrupt can be associated
with specific platform events.

4.1.1.2 Interrupt-based Wake Events

Wake events on HW-reduced ACPI platforms are always caused by an interrupt reaching the processor.
Therefore, there are two requirements for waking the system from a sleep or low-power idle state, or a
device from a low-power state. First, the interrupt line must be Wake-Capable. Wake-capable interrupts
are designed to be able to be delivered to the processor from low-power states. This implies that it must
also cause the processor and any required platform hardware to power-up so that an Interrupt Service
Routine can run. Secondly, an OS driver must enable the interrupt before entering a low-power state, or
before OSPM puts the system into a sleep or low-power idle state.

Wake-capable interrupts are designated as such in their Extended Interrupt or GPIO Interrupt Connection
resource descriptor.

4.2 Fixed Hardware Programming Model

Because of the changes needed for migrating legacy hardware to the fixed category, ACPI limits the
features specified by fixed hardware. Fixed hardware features are defined by the following criteria:

• Performance sensitive features
• Features that drivers require during wake
UEFI Forum, Inc. January 2019 Page 65

ACPI Specification, Version 6.3 ACPI Hardware Specification
• Features that enable catastrophic OS software failure recovery

ACPI defines register-based interfaces to fixed hardware. CPU clock control and the power management
timer are defined as fixed hardware to reduce the performance impact of accessing this hardware, which
will result in more quickly reducing a thermal condition or extending battery life. If this logic were
allowed to reside in PCI configuration space, for example, several layers of drivers would be called to
access this address space. This takes a long time and will either adversely affect the power of the system
(when trying to enter a low-power state) or the accuracy of the event (when trying to get a time stamp
value).

Access to fixed hardware by OSPM allows OSPM to control the wake process without having to load the
entire OS. For example, if PCI configuration space access is needed, the bus enumerator is loaded with all
drivers used by the enumerator. Defining these interfaces in fixed hardware at addresses with which
OSPM can communicate without any other driver’s assistance, allows OSPM to gather information prior
to making a decision as to whether it continues loading the entire OS or puts it back to sleep.

If elements of the OS fail, it may be possible for OSPM to access address spaces that need no driver
support. In such a situation, OSPM will attempt to honor fixed power button requests to transition the
system to the G2 state. In the case where OSPM event handler is no longer able to respond to power
button events, the power button override feature provides a back-up mechanism to unconditionally
transition the system to the soft-off state.

4.3 Generic Hardware Programming Model

Although the fixed hardware programming model requires hardware registers to be defined at specific
address locations, the generic hardware programming model allows hardware registers to reside in most
address spaces and provides system OEMs with a wide degree of flexibility in the implementation of
specific functions in hardware. OSPM directly accesses the fixed hardware registers, but relies on OEM-
provided ACPI Machine Language (AML) code to access generic hardware registers.

AML code allows the OEM to provide the means for OSPM to control a generic hardware feature’s
control and event logic.

The section entitled “ACPI Source Language Reference” describes the ACPI Source Language (ASL)—a
programming language that OEMs use to create AML. The ASL language provides many of the operators
found in common object-oriented programming languages, but it has been optimized to enable the
description of platform power management and configuration hardware. An ASL compiler converts ASL
source code to AML, which is a very compact machine language that the ACPI AML code interpreter
executes.

AML does two things:

• Abstracts the hardware from OSPM
• Buffers OEM code from the different OS implementations

One goal of ACPI is to allow the OEM “value added” hardware to remain basically unchanged in an ACPI
configuration. One attribute of value-added hardware is that it is all implemented differently. To enable
OSPM to execute properly on different types of value added hardware, ACPI defines higher level “control
methods” that it calls to perform an action. The OEM provides AML code, which is associated with control
methods, to be executed by OSPM. By providing AML code, generic hardware can take on almost any
form.
UEFI Forum, Inc. January 2019 Page 66

ACPI Specification, Version 6.3 ACPI Hardware Specification
Another important goal of ACPI is to provide OS independence. To do this, the OEM AML code has to
execute the same under any ACPI-compatible OS. ACPI allows for this by making the AML code
interpreter part of OSPM. This allows OSPM to take care of synchronizing and blocking issues specific to
each particular OS.

The generic feature model is represented in the following block diagram. In this model the generic
feature is described to OSPM through AML code. This description takes the form of an object that sits in
the ACPI Namespace associated with the hardware to which it is adding value.

Figure 4-1 Generic Hardware Feature Model

As an example of a generic hardware control feature, a platform might be designed such that the IDE
HDD’s D3 state has value-added hardware to remove power from the drive. The IDE drive would then
have a reference to the AML PowerResource object (which controls the value added power plane) in its
namespace, and associated with that object would be control methods that OSPM invokes to control the
D3 state of the drive:

• _PS0: A control method to sequence the IDE drive to the D0 state.
• _PS3: A control method to sequence the IDE drive to the D3 state.
• _PSC: A control method that returns the status of the IDE drive (on or off).

The control methods under this object provide an abstraction layer between OSPM and the hardware.
OSPM understands how to control power planes (turn them on or off or to get their status) through its
defined PowerResource object, while the hardware has platform-specific AML code (contained in the
appropriate control methods) to perform the desired function. In this example, the platform would
describe its hardware to the ACPI OS by writing and placing the AML code to turn the hardware off within
the _PS3 control method. This enables the following sequence:

When OSPM decides to place the IDE drive in the D3 state, it calls the IDE driver and tells it to place the
drive into the D3 state (at which point the driver saves the device’s context).

When the IDE driver returns control, OSPM places the drive in the D3 state.

OSPM finds the object associated with the HDD and then finds within that object any AML code
associated with the D3 state.

OSPM executes the appropriate _PS3 control method to control the value-added “generic” hardware to
place the HDD into an even lower power state.

Generic Event
Logic

Control
Events

ACPI Driver
and AML-
Interpreter

Generic
Control
Logic

AML Rds

GP Event Status

Generic Child
Event Status
UEFI Forum, Inc. January 2019 Page 67

ACPI Specification, Version 6.3 ACPI Hardware Specification
As an example of a generic event feature, a platform might have a docking capability. In this case, it will
want to generate an event. Notice that all ACPI events generate an SCI, which can be mapped to any
shareable system interrupt. In the case of docking, the event is generated when a docking has been
detected or when the user requests to undock the system. This enables the following sequence:

OSPM responds to the SCI and calls the AML code event handler associated with that generic event. The
ACPI table associates the hardware event with the AML code event handler.

The AML-code event handler collects the appropriate information and then executes an AML Notify
command to indicate to OSPM that a particular bus needs re-enumeration.

The following sections describe the fixed and generic hardware feature set of ACPI. These sections enable
a reader to understand the following:

• Which hardware registers are required or optional when an ACPI feature, concept or interface
is required by a design guide for a platform class

• How to design fixed hardware features
• How to design generic hardware features
• The ACPI Event Model

4.4 Diagram Legends

The hardware section uses simplified logic diagrams to represent how certain aspects of the hardware
are implemented. The following symbols are used in the logic diagrams to represent programming bits.

Write-only control bit

Enable, control or status bit

Sticky status bit

Query value

The half round symbol with an inverted “V” represents a write-only control bit. This bit has the behavior
that it generates its control function when it is set. Reads to write-only bits are treated as ignore by
software (the bit position is masked off and ignored).

The round symbol with an “X” represents a programming bit. As an enable or control bit, software setting
or clearing this bit will result in the bit being read as set or clear (unless otherwise noted). As a status bit
it directly represents the value of the signal.

The square symbol represents a sticky status bit. A sticky status bit is set by the level (not edge) of a
hardware signal (active high or active low). The bit is only cleared by software writing a “1” to its bit
position.

The rectangular symbol represents a query value from the embedded controller. This is the value the
embedded controller returns to the system software upon a query command in response to an SCI event.
The query value is associated with the event control method that is scheduled to execute upon an
embedded controller event.
UEFI Forum, Inc. January 2019 Page 68

ACPI Specification, Version 6.3 ACPI Hardware Specification
4.5 Register Bit Notation

Throughout this section there are logic diagrams that reference bits within registers. These diagrams use
a notation that easily references the register name and bit position. The notation is as follows:

Registername.Bit

Registername contains the name of the register as it appears in this specification

Bit contains a zero-based decimal value of the bit position.

For example, the SLP_EN bit resides in the PM1x_CNT register bit 13 and would be represented in
diagram notation as:

SLP_EN
PM1x_CNT.13

4.6 The ACPI Hardware Model

The ACPI hardware model is defined to allow OSPM to sequence the platform between the various global
system states (G0-G3) as illustrated in the following figure by manipulating the defined interfaces. When
first powered on, the platform finds itself in the global system state G3 or “Mechanical Off.” This state is
defined as one where power consumption is very close to zero—the power plug has been removed;
however, the real-time clock device still runs off a battery. The G3 state is entered by any power failure,
defined as accidental or user-initiated power loss.

The G3 state transitions into either the G0 working state or the Legacy state depending on what the
platform supports. If the platform is an ACPI-only platform, then it allows a direct boot into the G0
working state by always returning the status bit SCI_EN set (1) (for more information, see Section 4.8.2.5,
“Legacy/ACPI Select and the SCI Interrupt”). If the platform supports both legacy and ACPI operations
(which is necessary for supporting a non-ACPI OS), then it would always boot into the Legacy state
(illustrated by returning the SCI_EN clear (0)). In either case, a transition out of the G3 state requires a
total boot of OSPM.

The Legacy system state is the global state where a non-ACPI OS executes. This state can be entered from
either the G3 “Mechanical Off,” the G2 “Soft Off,” or the G0 “Working” states only if the hardware
supports both Legacy and ACPI modes. In the Legacy state, the ACPI event model is disabled (no SCIs are
generated) and the hardware uses legacy power management and configuration mechanisms. While in
the Legacy state, an ACPI-compliant OS can request a transition into the G0 working state by performing
an ACPI mode request. OSPM performs this transition by writing the ACPI_ENABLE value to the
SMI_CMD, which generates an event to the hardware to transition the platform into ACPI mode. When
hardware has finished the transition, it sets the SCI_EN bit and returns control back to OSPM. While in
the G0 “working state,” OSPM can request a transition to Legacy mode by writing the ACPI_DISABLE
value to the SMI_CMD register, which results in the hardware going into legacy mode and resetting the
SCI_EN bit LOW (for more information, see Section 4.8.2.5, “Legacy/ACPI Select and the SCI Interrupt”).

The G0 “Working” state is the normal operating environment of an ACPI system. In this state different
devices are dynamically transitioning between their respective power states (D0, D1, D2, D3hot, or D3)
and processors are dynamically transitioning between their respective power states (C0, C1, C2 or C3). In
this state, OSPM can make a policy decision to place the platform into the system G1 “sleeping” state.
The platform can only enter a single sleeping state at a time (referred to as the global G1 state); however,
the hardware can provide up to four system sleeping states that have different power and exit latencies
UEFI Forum, Inc. January 2019 Page 69

ACPI Specification, Version 6.3 ACPI Hardware Specification
represented by the S1, S2, S3, or S4 states. When OSPM decides to enter a sleeping state it picks the most
appropriate sleeping state supported by the hardware (OS policy examines what devices have enabled
wake events and what sleeping states these support). OSPM initiates the sleeping transition by enabling
the appropriate wake events and then programming the SLP_TYPx field with the desired sleeping state
and then setting the SLP_ENx bit. The system will then enter a sleeping state; when one of the enabled
wake events occurs, it will transition the system back to the working state (for more information, see
Section 16, “Waking and Sleeping”).

Another global state transition option while in the G0 “working” state is to enter the G2 “soft off” or the
G3 “mechanical off” state. These transitions represent a controlled transition that allows OSPM to bring
the system down in an orderly fashion (unloading applications, closing files, and so on). The policy for
these types of transitions can be associated with the ACPI power button, which when pressed generates
an event to the power button driver. When OSPM is finished preparing the operating environment for a
power loss, it will either generate a pop-up message to indicate to the user to remove power, in order to
enter the G3 “Mechanical Off” state, or it will initiate a G2 “soft-off” transition by writing the value of the
S5 “soft off” system state to the SLP_TYPx register and setting the SLP_EN bit.

The G1 sleeping state is represented by four possible sleeping states that the hardware can support. Each
sleeping state has different power and wake latency characteristics. The sleeping state differs from the
working state in that the user’s operating environment is frozen in a low-power state until awakened by
an enabled wake event. No work is performed in this state, that is, the processors are not executing
instructions. Each system sleeping state has requirements about who is responsible for system context
and wake sequences (for more information, see Section 16, Waking and Sleeping”).

The G2 “soft off” state is an OS initiated system shutdown. This state is initiated similar to the sleeping
state transition (SLP_TYPx is set to the S5 value and setting the SLP_EN bit initiates the sequence). Exiting
the G2 soft-off state requires rebooting the system. In this case, an ACPI-only system will re-enter the G0
state directly (hardware returns the SCI_EN bit set), while an ACPI/Legacy system transitions to the
Legacy state (SCI_EN bit is clear).
UEFI Forum, Inc. January 2019 Page 70

ACPI Specification, Version 6.3 ACPI Hardware Specification
Figure 4-2 Global States and Their Transitions

The ACPI architecture defines mechanisms for hardware to generate events and control logic to
implement this behavior model. Events are used to notify OSPM that some action is needed, and control
logic is used by OSPM to cause some state transition. ACPI-defined events are “hardware” or “interrupt”
events. A hardware event is one that causes the hardware to unconditionally perform some operation.
For example, any wake event will sequence the system from a sleeping state (S1, S2, S3, and S4 in the
global G1 state) to the G0 working state (see Figure 16-74).

An interrupt event causes the execution of an event handler (AML code or an ACPI-aware driver), which
allows the software to make a policy decision based on the event. For ACPI fixed-feature events, OSPM or
an ACPI-aware driver acts as the event handler. For generic logic events OSPM will schedule the
execution of an OEM-supplied AML control method associated with the event.

For legacy systems, an event normally generates an OS-transparent interrupt, such as a System
Management Interrupt, or SMI. For ACPI systems the interrupt events need to generate an OS-visible
interrupt that is shareable; edge-style interrupts will not work. Hardware platforms that want to support
both legacy operating systems and ACPI systems support a way of re-mapping the interrupt events
between SMIs and SCIs when switching between ACPI and legacy models. This is illustrated in the
following block diagram.
UEFI Forum, Inc. January 2019 Page 71

ACPI Specification, Version 6.3 ACPI Hardware Specification
Figure 4-3 Example Event Structure for a Legacy/ACPI Compatible Event Model

This example logic illustrates the event model for a sample platform that supports both legacy and ACPI
event models. This example platform supports a number of external events that are power-related
(power button, LID open/close, thermal, ring indicate) or Plug and Play-related (dock, status change). The
logic represents the three different types of events:

OS Transparent Events

These events represent OEM-specific functions that have no OS support and use software that
can be operated in an OS-transparent fashion (that is, SMIs).

Interrupt Events

These events represent features supported by ACPI-compatible operating systems, but are not
supported by legacy operating systems. When a legacy OS is loaded, these events are mapped to
the transparent interrupt (SMI# in this example), and when in ACPI mode they are mapped to an
OS-visible shareable interrupt (SCI#). This logic is represented by routing the event logic through
the decoder that routes the events to the SMI# arbiter when the SCI_EN bit is cleared, or to the
SCI# arbiter when the SCI_EN bit is set.

Hardware events

These events are used to trigger the hardware to initiate some hardware sequence such as
waking, resetting, or putting the system to sleep unconditionally.

In this example, the legacy power management event logic is used to determine device/system activity or
idleness based on device idle timers, device traps, and the global standby timer. Legacy power
management models use the idle timers to determine when a device should be placed in a low-power
state because it is idle—that is, the device has not been accessed for the programmed amount of time.
The device traps are used to indicate when a device in a low-power state is being accessed by OSPM. The

Power Plane
Control

Generic Space

GLBL STBY
Timer

PWRBTN

LID

THRM

DOCK
STS_CHG

RI

SMI Arbiter

Sleep/Wake
State machine

SMI#

SCI#

Legacy Only Event Logic

ACPI/Legacy Event Logic

ACPI Only Event Logic

SMI Events

SCI/SMI Events

Dec
0

1

CPU Clock
Control

Device
Traps

Device Idle
Timers

User
Interface

Thermal
Logic

Hardware
Events

RTC

SCI_EN

ACPI/Legacy Generic Control Features

ACPI/Legacy Fixed Control Features

Wake-up Events

PM Timer

SCI Arbiter
UEFI Forum, Inc. January 2019 Page 72

ACPI Specification, Version 6.3 ACPI Hardware Specification
global standby timer is used to determine when the system should be allowed to go into a sleeping state
because it is idle—that is, the user interface has not been used for the programmed amount of time.

These legacy idle timers, trap monitors, and global standby timer are not used by OSPM in the ACPI
mode. This work is handled by different software structures in an ACPI-compatible OS. For example, the
driver model of an ACPI-compatible OS is responsible for placing its device into a low-power state (D1,
D2, D3hot, or D3) and transitioning it back to the On state (D0) when needed. And OSPM is responsible
for determining when the system is idle by profiling the system (using the PM Timer) and other
knowledge it gains through its operating structure environment (which will vary from OS to OS). When
the system is placed into the ACPI mode, these events no longer generate SMIs, as OSPM handles this
function. These events are disabled through some OEM-proprietary method.

On the other hand, many of the hardware events are shared between the ACPI and legacy models
(docking, the power button, and so on) and this type of interrupt event changes to an SCI event when
enabled for ACPI. The ACPI OS will generate a request to the platform runtime firmware to enter into the
ACPI mode. The firmware sets the SCI_EN bit to indicate that the system has successfully entered into the
ACPI mode, so this is a convenient mechanism to map the desired interrupt (SMI or SCI) for these events
(as shown in Figure 4-3).

The ACPI architecture specifies some dedicated hardware not found in the legacy hardware model: the
power management timer (PM Timer). This is a free running timer that the ACPI OS uses to profile system
activity. The frequency of this timer is explicitly defined in this specification and must be implemented as
described.

Although the ACPI architecture reuses most legacy hardware as is, it does place restrictions on where and
how the programming model is generated. If used, all fixed hardware features are implemented as
described in this specification so that OSPM can directly access the fixed hardware feature registers.

Generic hardware features are manipulated by ACPI control methods residing in the ACPI Namespace.
These interfaces can be very flexible; however, their use is limited by the defined ACPI control methods
(for more information, see Section 9, “ACPI Devices and Device Specific Objects”). Generic hardware
usually controls power planes, buffer isolation, and device reset resources. Additionally, “child” interrupt
status bits can be accessed via generic hardware interfaces; however, they have a “parent” interrupt
status bit in the GP_STS register. ACPI defines eight address spaces that may be accessed by generic
hardware implementations. These include:

• System I/O space
• System memory space
• PCI configuration space
• Embedded controller space
• System Management Bus (SMBus) space
• CMOS
• PCI BAR Target
• IPMI space
• Platform Communication Channel

Generic hardware power management features can be implemented accessing spare I/O ports residing in
any of these address spaces. The ACPI specification defines an optional embedded controller and SMBus
interfaces needed to communicate with these associated address spaces.
UEFI Forum, Inc. January 2019 Page 73

ACPI Specification, Version 6.3 ACPI Hardware Specification
4.6.1 Hardware Reserved Bits

ACPI hardware registers are designed such that reserved bits always return zero, and data writes to them
have no side affects. OSPM implementations must write zeros to reserved bits in enable and status
registers and preserve bits in control registers, and they will treat these bits as ignored.

4.6.2 Hardware Ignored Bits

ACPI hardware registers are designed such that ignored bits are undefined and are ignored by software.
Hardware-ignored bits can return zero or one. When software reads a register with ignored bits, it masks
off ignored bits prior to operating on the result. When software writes to a register with ignored bit
fields, it preserves the ignored bit fields.

4.6.3 Hardware Write-Only Bits

ACPI hardware defines a number of write-only control bits. These bits are activated by software writing a
1 to their bit position. Reads to write-only bit positions generate undefined results. Upon reads to
registers with write-only bits, software masks out all write-only bits.

4.6.4 Cross Device Dependencies

Cross Device Dependency is a condition in which an operation to a device interferes with the operation of
other unrelated devices, or allows other unrelated devices to interfere with its behavior. This condition is
not supportable and can cause platform failures. ACPI provides no support for cross device dependencies
and suggests that devices be designed to not exhibit this behavior. The following two examples describe
cross device dependencies:

4.6.4.1 Example 1: Related Device Interference

This example illustrates a cross device dependency where a device interferes with the proper operation
of other unrelated devices. Device A has a dependency that when it is being configured it blocks all
accesses that would normally be targeted for Device B. Thus, the device driver for Device B cannot access
Device B while Device A is being configured; therefore, it would need to synchronize access with the
driver for Device A. High performance, multithreaded operating systems cannot perform this kind of
synchronization without seriously impacting performance.

To further illustrate the point, assume that Device A is a serial port and Device B is a hard drive controller.
If these devices demonstrate this behavior, then when a software driver configures the serial port,
accesses to the hard drive need to block. This can only be done if the hard disk driver synchronizes access
to the disk controller with the serial driver. Without this synchronization, hard drive data will be lost
when the serial port is being configured.

4.6.4.2 Example 2: Unrelated Device Interference

This example illustrates a cross-device dependency where a device demonstrates a behavior that allows
other unrelated devices to interfere with its proper operation. Device A exhibits a programming behavior
that requires atomic back-to-back write accesses to successfully write to its registers; if any other
platform access is able to break between the back-to-back accesses, then the write to Device A is
unsuccessful. If the Device A driver is unable to generate atomic back-to-back accesses to its device, then
it relies on software to synchronize accesses to its device with every other driver in the system; then a
device cross dependency is created and the platform is prone to Device A failure.
UEFI Forum, Inc. January 2019 Page 74

ACPI Specification, Version 6.3 ACPI Hardware Specification
4.7 ACPI Hardware Features

This section describes the different hardware features defined by the ACPI interface. These features are
categorized as the following:

• Fixed Hardware Features
• Generic Hardware Features

Fixed hardware features reside in a number of the ACPI-defined address spaces at the locations described
by the ACPI programming model. Generic hardware features reside in one of four address spaces (system
I/O, system memory, PCI configuration, embedded controller, or serial device I/O space) and are
described by the ACPI Namespace through the declaration of AML control methods.

Fixed hardware features have exact definitions for their implementation. Although many fixed hardware
features are optional, if implemented they must be implemented as described since OSPM manipulates
the registers of fixed hardware devices and expects the defined behavior. Functional fixed hardware
provides functional equivalents of the fixed hardware feature interfaces as described in Section 4.3,
“Functional Fixed Hardware.”

Generic hardware feature implementation is flexible. This logic is controlled by OEM-supplied AML code
(for more information, see Section 5, “ACPI Software Programming Model”), which can be written to
support a wide variety of hardware. Also, ACPI provides specialized control methods that provide
capabilities for specialized devices. For example, the Notify command can be used to notify OSPM from a
generic hardware event handler (control method) that a docking or thermal event has taken place. A
good understanding of this section and Section 5 of this specification will give designers a good
understanding of how to design hardware to take full advantage of an ACPI-compatible OS.

Notice that the generic features are listed for illustration only, the ACPI specification can support many
types of hardware not listed.

Table 4-5 Feature/Programming Model Summary

Feature Name Description Programming Model

Power Management
Timer

24-bit or 32-bit free running timer. Fixed Hardware Feature Control
Logic

Power Button User pushes button to switch the system
between the working and sleeping/soft-
off states.

Fixed Hardware Event and Control
Logic or Generic Hardware Event and
Logic

Sleep Button User pushes button to switch the system
between the working and sleeping/soft-
off states.

Fixed Hardware Event and Control
Logic or Generic Hardware Event and
Logic

Power Button Override User sequence (press the power button
for 4 seconds) to turn off a hung system.

Real Time Clock Alarm Programmed time to wake the system. Optional Fixed Hardware Eventa

Sleep/Wake Control
Logic

Logic used to transition the system
between the sleeping and working
states.

Fixed Hardware Control and Event
Logic
UEFI Forum, Inc. January 2019 Page 75

ACPI Specification, Version 6.3 ACPI Hardware Specification
Embedded Controller
Interface

ACPI Embedded Controller protocol and
interface, as described in Section 12,
“ACPI Embedded Controller Interface
Specification.”

Generic Hardware Event Logic, must
reside in the general-purpose
register block

Legacy/ACPI Select Status bit that indicates the system is
using the legacy or ACPI power
management model (SCI_EN).

Fixed Hardware Control Logic

Lid switch Button used to indicate whether the
system’s lid is open or closed (mobile
systems only).

Generic Hardware Event Feature

C1 Power State Processor instruction to place the
processor into a low-power state.

Processor ISA

C2 Power Control Logic to place the processor into a C2
power state.

Fixed Hardware Control Logic

C3 Power Control Logic to place the processor into a C3
power state.

Fixed Hardware Control Logic

Thermal Control Logic to generate thermal events at
specified trip points.

Generic Hardware Event and Control
Logic (See description of thermal
logic in Section 3.10, “Thermal
Management.”)

Device Power
Management

Control logic for switching between
different device power states.

Generic Hardware control logic

AC Adapter Logic to detect the insertion and removal
of the AC adapter.

Generic Hardware event logic

Docking/device
insertion and removal

Logic to detect device insertion and
removal events.

Generic Hardware event logic

a. RTC wakeup alarm is required, the fixed hardware feature status bit is optional.

Feature Name Description Programming Model
UEFI Forum, Inc. January 2019 Page 76

ACPI Specification, Version 6.3 ACPI Hardware Specification
4.8 ACPI Register Model

ACPI hardware resides in one of six address spaces:

• System I/O
• System memory
• PCI configuration
• SMBus
• Embedded controller
• Functional Fixed Hardware

Different implementations will result in different address spaces being used for different functions. The
ACPI specification consists of fixed hardware registers and generic hardware registers. Fixed hardware
registers are required to implement ACPI-defined interfaces. The generic hardware registers are needed
for any events generated by value-added hardware.

ACPI defines register blocks. An ACPI-compatible system provides an ACPI table (the FADT, built in
memory at boot-up) that contains a list of pointers to the different fixed hardware register blocks used by
OSPM. The bits within these registers have attributes defined for the given register block. The types of
registers that ACPI defines are:

• Status/Enable Registers (for events)
• Control Registers

If a register block is of the status/enable type, then it will contain a register with status bits, and a
corresponding register with enable bits. The status and enable bits have an exact implementation
definition that needs to be followed (unless otherwise noted), which is illustrated by the following
diagram:

Figure 4-4 Block Diagram of a Status/Enable Cell

Notice that the status bit, which hardware sets by the Event Input being set in this example, can only be
cleared by software writing a 1 to its bit position. Also, the enable bit has no effect on the setting or
resetting of the status bit; it only determines if the SET status bit will generate an “Event Output,” which
generates an SCI when set if its enable bit is set.

ACPI also defines register groupings. A register grouping consists of two register blocks, with two pointers
to two different blocks of registers, where each bit location within a register grouping is fixed and cannot
be changed. The bits within a register grouping, which have fixed bit positions, can be split between the
two register blocks. This allows the bits within a register grouping to reside in either or both register
blocks, facilitating the ability to map bits within several different chips to the same register thus providing
the programming model with a single register grouping bit structure.

OSPM treats a register grouping as a single register; but located in multiple places. To read a register
grouping, OSPM will read the “A” register block, followed by the “B” register block, and then will logically
“OR” the two results together (the SLP_TYP field is an exception to this rule). Reserved bits, or unused

Status Bit

Enable Bit

Event Input Event Output
UEFI Forum, Inc. January 2019 Page 77

ACPI Specification, Version 6.3 ACPI Hardware Specification
bits within a register block always return zero for reads and have no side effects for writes (which is a
requirement).

The SLP_TYPx field can be different for each register grouping. The respective sleeping object _Sx
contains a SLP_TYPa and a SLP_TYPb field. That is, the object returns a package with two integer values of
0-7 in it. OSPM will always write the SLP_TYPa value to the “A” register block followed by the SLP_TYPb
value within the field to the “B” register block. All other bit locations will be written with the same value.
Also, OSPM does not read the SLP_TYPx value but throws it away.

Figure 4-5 Example Fixed Hardware Feature Register Grouping

As an example, the above diagram represents a register grouping consisting of register block A and
register block b. Bits “a” and “d” are implemented in register block B and register block A returns a zero
for these bit positions. Bits “b”, “c” and “e” are implemented in register block A and register block B
returns a zero for these bit positions. All reserved or ignored bits return their defined ACPI values.

When accessing this register grouping, OSPM must read register block a, followed by reading register
block b. OSPM then does a logical OR of the two registers and then operates on the results.

When writing to this register grouping, OSPM will write the desired value to register group A followed by
writing the same value to register group B.

ACPI defines the following fixed hardware register blocks. Each register block gets a separate pointer
from the FADT. These addresses are set by the OEM as static resources, so they are never changed—
OSPM cannot re-map ACPI resources. The following register blocks are defined:

Register Block A

Register Block B

Bit d Bit c Bit b Bit aBit e

Register
Grouping
UEFI Forum, Inc. January 2019 Page 78

ACPI Specification, Version 6.3 ACPI Hardware Specification
Figure 4-6 Register Blocks versus Register Groupings

The PM1 EVT grouping consists of the PM1a_EVT and PM1b_EVT register blocks, which contain the fixed
hardware feature event bits. Each event register block (if implemented) contains two registers: a status
register and an enable register. Each register grouping has a defined bit position that cannot be changed;
however, the bit can be implemented in either register block (A or B). The A and B register blocks for the
events allow chipsets to vary the partitioning of events into two or more chips. For read operations,
OSPM will generate a read to the associated A and B registers, OR the two values together, and then
operate on this result. For write operations, OSPM will write the value to the associated register in both
register blocks. Therefore, there are two rules to follow when implementing event registers:

• Reserved or unimplemented bits always return zero (control or enable).
• Writes to reserved or unimplemented bits have no affect.

The PM1 CNT grouping contains the fixed hardware feature control bits and consists of the
PM1a_CNT_BLK and PM1b_CNT_BLK register blocks. Each register block is associated with a single
control register. Each register grouping has a defined bit position that cannot be changed; however, the
bit can be implemented in either register block (A or B). There are two rules to follow when implementing
CNT registers:

• Reserved or unimplemented bits always return zero (control or enable).
• Writes to reserved or unimplemented bits have no affect.

The PM2_CNT_BLK register block currently contains a single bit for the arbiter disable function. The
general-purpose event register contains the event programming model for generic features. All generic
events, just as fixed events, generate SCIs. Generic event status bits can reside anywhere; however, the
top-level generic event resides in one of the general-purpose register blocks. Any generic feature event
status not in the general-purpose register space is considered a child or sibling status bit, whose parent
status bit is in the general-purpose event register space. Notice that it is possible to have N levels of
general-purpose events prior to hitting the GPE event status.

PM1a_EVT_BLK

PM1b_EVT_BLK

PM2 Control Block

PM Timer Block

Processor Block

Register GroupingsRegister Blocks

PM1a_STS
PM1a_EN

PM1 EVT Grouping

PM1 CNT Grouping
PM1a_CNT_BLK

PM1b_CNT_BLK

PM1b_STS
PM1b_EN

PM1a_CNT

PM1b_CNT

PM2_CNT_BLKPM2_CNT

PM_TMR_BLKPM_TMR

P_BLK
P_CNT

P_LVL2
P_LVL3

Registers

GPE0_BLK

GPE1_BLK

GPE0_STS
GPE0_EN

GPE1_STS
GPE1_EN

General Purpose Event 0
Block

General Purpose Event 1
Block
UEFI Forum, Inc. January 2019 Page 79

ACPI Specification, Version 6.3 ACPI Hardware Specification
General-purpose event registers are described by two register blocks: The GPE0_BLK or the GPE1_BLK.
Each register block is pointed to separately from within the FADT. Each register block is further broken
into two registers: GPEx_STS and GPEx_EN. The status and enable registers in the general-purpose event
registers follow the event model for the fixed hardware event registers.

4.8.1 ACPI Register Summary

The following tables summarize the ACPI registers:

Table 4-6 PM1 Event Registers

Register Size (Bytes) Address (relative to register block)

PM1a_STS PM1_EVT_LEN/2 <PM1a_EVT_BLK >

PM1a_EN PM1_EVT_LEN/2 <PM1a_EVT_BLK >+PM1_EVT_LEN/2

PM1b_STS PM1_EVT_LEN/2 <PM1b_EVT_BLK >

PM1b_EN PM1_EVT_LEN/2 <PM1b_EVT_BLK >+PM1_EVT_LEN/2

Table 4-7 PM1 Control Registers

Register Size (Bytes) Address (relative to register block)

PM1_CNTa PM1_CNT_LEN <PM1a_CNT_BLK >

PM1_CNTb PM1_CNT_LEN <PM1b_CNT_BLK >

Table 4-8 PM2 Control Register

Register Size (Bytes) Address (relative to register block)

PM2_CNT PM2_CNT_LEN <PM2_CNT_BLK >

Table 4-9 PM Timer Register

Register Size (Bytes) Address (relative to register block)

PM_TMR PM_TMR_LEN <PM_TMR_BLK >

Table 4-10 Processor Control Registers

Register Size (Bytes) Address (relative to register block)

P_CNT 4 Either <P_BLK> or specified by the PTC object (See
Section 8.4.5.1, “PTC [Processor Throttling Control].”)

P_LVL2 1 <P_BLK>+4h

P_LVL3 1 <P_BLK>+5h
UEFI Forum, Inc. January 2019 Page 80

ACPI Specification, Version 6.3 ACPI Hardware Specification
Table 4-11 General-Purpose Event Registers

Register Size (Bytes) Address (relative to register block)

GPE0_STS GPE0_LEN/2 <GPE0_BLK>

GPE0_EN GPE0_LEN/2 <GPE0_BLK>+GPE0_LEN/2

GPE1_STS GPE1_LEN/2 <GPE1_BLK>

GPE1_EN GPE1_LEN/2 <GPE1_BLK>+GPE1_LEN/2

4.8.1.1 PM1 Event Registers

The PM1 event register grouping contains two register blocks: the PM1a_EVT_BLK is a required register
block when the following ACPI interface categories are required by a class specific platform design guide:

• Power management timer control/status
• Processor power state control/status
• Global Lock related interfaces
• Power or Sleep button (fixed register interfaces)
• System power state controls (sleeping/wake control)

The PM1b_EVT_BLK is an optional register block. Each register block has a unique 32-bit pointer in the
Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If the
PM1b_EVT_BLK is not supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 event grouping contains two registers that are required to be the same
size: the PM1x_STS and PM1x_EN (where x can be “a” or “b”). The length of the registers is variable and
is described by the PM1_EVT_LEN field in the FADT, which indicates the total length of the register block
in bytes. Hence if a length of “4” is given, this indicates that each register contains two bytes of I/O space.
The PM1 event register block has a minimum size of 4 bytes.

4.8.1.2 PM1 Control Registers

The PM1 control register grouping contains two register blocks: the PM1a_CNT_BLK is a required register
block when the following ACPI interface categories are required by a class specific platform design guide:

• SCI/SMI routing control/status for power management and general-purpose events
• Processor power state control/status
• Global Lock related interfaces
• System power state controls (sleeping/wake control)

The PM1b_CNT_BLK is an optional register block. Each register block has a unique 32-bit pointer in the
Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If the
PM1b_CNT_BLK is not supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 control grouping contains a single register: the PM1x_CNT. The length of
the register is variable and is described by the PM1_CNT_LEN field in the FADT, which indicates the total
length of the register block in bytes. The PM1 control register block must have a minimum size of 2 bytes.

4.8.1.3 PM2 Control Register

The PM2 control register is contained in the PM2_CNT_BLK register block. The FADT contains a length
variable for this register block (PM2_CNT_LEN) that is equal to the size in bytes of the PM2_CNT register
UEFI Forum, Inc. January 2019 Page 81

ACPI Specification, Version 6.3 ACPI Hardware Specification
(the only register in this register block). This register block is optional, if not supported its block pointer
and length contain a value of zero.

4.8.1.4 PM Timer Register

The PM timer register is contained in the PM_TMR_BLK register block. It is an optional register block that
must be implemented when the power management timer control/status ACPI interface category is
required by a class specific platform design guide.

If defined, this register block contains the register that returns the running value of the power
management timer. The FADT also contains a length variable for this register block (PM_TMR_LEN) that is
equal to the size in bytes of the PM_TMR register (the only register in this register block).

4.8.1.5 Processor Control Block (P_BLK)

There is an optional processor control register block for each processor in the system. As this is a
homogeneous feature, all processors must have the same level of support. The ACPI OS will revert to the
lowest common denominator of processor control block support. The processor control block contains
the processor control register (P_CNT-a 32-bit performance control configuration register), and the
P_LVL2 and P_LVL3 CPU sleep state control registers. The 32-bit P_CNT register controls the behavior of
the processor clock logic for that processor, the P_LVL2 register is used to place the CPU into the C2 state,
and the P_LVL3 register is used to place the processor into the C3 state.

4.8.1.6 General-Purpose Event Registers

The general-purpose event registers contain the root level events for all generic features. To facilitate the
flexibility of partitioning the root events, ACPI provides for two different general-purpose event blocks:
GPE0_BLK and GPE1_BLK. These are separate register blocks and are not a register grouping, because
there is no need to maintain an orthogonal bit arrangement. Also, each register block contains its own
length variable in the FADT, where GPE0_LEN and GPE1_LEN represent the length in bytes of each
register block.

Each register block contains two registers of equal length: GPEx_STS and GPEx_EN (where x is 0 or 1). The
length of the GPE0_STS and GPE0_EN registers is equal to half the GPE0_LEN. The length of the GPE1_STS
and GPE1_EN registers is equal to half the GPE1_LEN. If a generic register block is not supported then its
respective block pointer and block length values in the FADT table contain zeros. The GPE0_LEN and
GPE1_LEN do not need to be the same size.

4.8.2 Fixed Hardware Features

This section describes the fixed hardware features defined by ACPI.

4.8.2.1 Power Management Timer

The ACPI specification defines an optional power management timer that provides an accurate time
value that can be used by system software to measure and profile system idleness (along with other
tasks). The power management timer provides an accurate time function while the system is in the
working (G0) state. To allow software to extend the number of bits in the timer, the power management
timer generates an interrupt when the last bit of the timer changes (from 0 to 1 or 1 to 0). ACPI supports
either a 24-bit or 32-bit power management timer. The PM Timer is accessed directly by OSPM, and its
programming model is contained in fixed register space. The programming model can be partitioned in
up to three different register blocks. The event bits are contained in the PM1_EVT register grouping,
UEFI Forum, Inc. January 2019 Page 82

ACPI Specification, Version 6.3 ACPI Hardware Specification
which has two register blocks, and the timer value can be accessed through the PM_TMR_BLK register
block. A block diagram of the power management timer is illustrated in the following figure:

Figure 4-7 Power Management Timer

The power management timer is a 24-bit or 32-bit fixed rate free running count-up timer that runs off a
3.579545 MHz clock. The ACPI OS checks the FADT to determine whether the PM Timer is a 32-bit or 24-
bit timer. The programming model for the PM Timer consists of event logic, and a read port to the
counter value. The event logic consists of an event status and enable bit. The status bit is set any time the
last bit of the timer (bit 23 or bit 31) goes from set to clear or clear to set. If the TMR_EN bit is set, then
the setting of the TMR_STS will generate an ACPI event in the PM1_EVT register grouping (referred to as
PMTMR_PME in the diagram). The event logic is only used to emulate a larger timer.

OSPM uses the read-only TMR_VAL field (in the PM TMR register grouping) to read the current value of
the timer. OSPM never assumes an initial value of the TMR_VAL field; instead, it reads an initial TMR_VAL
upon loading OSPM and assumes that the timer is counting. It is allowable to stop the Timer when the
system transitions out of the working (G0/S0) state. The only timer reset requirement is that the timer
functions while in the working state.

The PM Timer’s programming model is implemented as a fixed hardware feature to increase the accuracy
of reading the timer.

4.8.2.2 Console Buttons

ACPI defines user-initiated events to request OSPM to transition the platform between the G0 working
state and the G1 sleeping, G2 soft off and G3 mechanical off states. ACPI also defines a recommended
mechanism to unconditionally transition the platform from a hung G0 working state to the G2 soft-off
state.

ACPI operating systems use power button events to determine when the user is present. As such, these
ACPI events are associated with buttons in the ACPI specification.

The ACPI specification supports two button models:

• A single-button model that generates an event for both sleeping and entering the soft-off
state. The function of the button can be configured using OSPM UI.

• A dual-button model where the power button generates a soft-off transition request and a
sleep button generates a sleep transition request. The type of button implies the function of
the button.

Control of these button events is either through the fixed hardware programming model or the generic
hardware programming model (control method based). The fixed hardware programming model has the
advantage that OSPM can access the button at any time, including when the system is crashed. In a

PMTMR_PME

TMR_EN
PM1x_EN.0

3.579545 MHz

-- 24/32

TMR_VAL
PM_TMR.0-23/0-31

TMR_STS
PM1x_STS.024/32-bit

Counter
Bits(23/31-0)
UEFI Forum, Inc. January 2019 Page 83

ACPI Specification, Version 6.3 ACPI Hardware Specification
crashed system with a fixed hardware power button, OSPM can make a “best” effort to determine
whether the power button has been pressed to transition to the system to the soft-off state, because it
doesn’t require the AML interpreter to access the event bits.

4.8.2.2.1 Power Button

The power button logic can be used in one of two models: single button or dual button. In the single-
button model, the user button acts as both a power button for transitioning the system between the G0
and G2 states and a sleep button for transitioning the system between the G0 and G1 states. The action
of the user pressing the button is determined by software policy or user settings. In the dual-button
model, there are separate buttons for sleeping and power control. Although the buttons still generate
events that cause software to take an action, the function of the button is now dedicated: the sleep
button generates a sleep request to OSPM and the power button generates a wake request.

Support for a power button is indicated by a combination of the PWR_BUTTON flag and the power button
device object, as shown in the following:

Table 4-12 Power Button Support

Indicated Support PWR_BUTTON Flag Power Button Device Object

Fixed hardware power button Clear Absent

Control method power button Set Present

The power button can also have an additional capability to unconditionally transition the system from a
hung working state to the G2 soft-off state. In the case where OSPM event handler is no longer able to
respond to power button events, the power button override feature provides a back-up mechanism to
unconditionally transition the system to the soft-off state. This feature can be used when the platform
doesn’t have a mechanical off button, which can also provide this function. ACPI defines that holding the
power button active for four seconds or longer will generate a power button override event.

4.8.2.2.1.1 Fixed Power Button

Figure 4-8 Fixed Power Button Logic

The fixed hardware power button has its event programming model in the PM1x_EVT_BLK. This logic
consists of a single enable bit and sticky status bit. When the user presses the power button, the power
button status bit (PWRBTN_STS) is unconditionally set. If the power button enable bit (PWRBTN_EN) is
set and the power button status bit is set (PWRBTN_STS) due to a button press while the system is in the
G0 state, then an SCI is generated. OSPM responds to the event by clearing the PWRBTN_STS bit. The
power button logic provides debounce logic that sets the PWRBTN_STS bit on the button press “edge.”

While the system is in the G1 or G2 global states (S1, S2, S3, S4 or S5 states), any further power button
press after the button press that transitioned the system into the sleeping state unconditionally sets the
UEFI Forum, Inc. January 2019 Page 84

ACPI Specification, Version 6.3 ACPI Hardware Specification
power button status bit and wakes the system, regardless of the value of the power button enable bit.
OSPM responds by clearing the power button status bit and waking the system.

4.8.2.2.1.2 Control Method Power Button

The power button programming model can also use the generic hardware programming model. This
allows the power button to reside in any of the generic hardware address spaces (for example, the
embedded controller) instead of fixed space. If the power button is implemented using generic
hardware, then the OEM needs to define the power button as a device with an _HID object value of
“PNP0C0C,” which then identifies this device as the power button to OSPM. The AML event handler then
generates a Notify command to notify OSPM that a power button event was generated. While the system
is in the working state, a power button press is a user request to transition the system into either the
sleeping (G1) or soft-off state (G2). In these cases, the power button event handler issues the Notify
command with the device specific code of 0x80. This indicates to OSPM to pass control to the power
button driver (PNP0C0C) with the knowledge that a transition out of the G0 state is being requested.
Upon waking from a G1 sleeping state, the AML event handler generates a notify command with the code
of 0x2 to indicate it was responsible for waking the system.

The power button device needs to be declared as a device within the ACPI Namespace for the platform
and only requires an _HID. An example definition follows.

This example ASL code performs the following:

• Creates a device named “PWRB” and associates the Plug and Play identifier (through the _HID
object) of “PNP0C0C.”

• The Plug and Play identifier associates this device object with the power button driver.
• Creates an operational region for the control method power button’s programming model:

System I/O space at 0x200.
• Fields that are not accessed are written as zeros. These status bits clear upon writing a 1 to

their bit position, therefore preserved would fail in this case.
• Creates a field within the operational region for the power button status bit (called PBP). In this

case the power button status bit is a child of the general-purpose event status bit 0. When this
bit is set, it is the responsibility of the ASL-code to clear it (OSPM clears the general-purpose
status bits). The address of the status bit is 0x200.0 (bit 0 at address 0x200).

• Creates an additional status bit called PBW for the power button wake event. This is the next
bit and its physical address would be 0x200.1 (bit 1 at address 0x200).

• Generates an event handler for the power button that is connected to bit 0 of the general-
purpose event status register 0. The event handler does the following:

• Clears the power button status bit in hardware (writes a one to it).
• Notifies OSPM of the event by calling the Notify command passing the power button object

and the device specific event indicator 0x80.

// Define a control method power button
Device(_SB.PWRB){
 Name(_HID, EISAID(“PNP0C0C”))
 Name(_PRW, Package(){0, 0x4})

 OperationRegion(\PHO, SystemIO, 0x200, 0x1)
 Field(\PHO, ByteAcc, NoLock, WriteAsZeros){
 PBP, 1, // sleep/off request
UEFI Forum, Inc. January 2019 Page 85

ACPI Specification, Version 6.3 ACPI Hardware Specification
 PBW, 1 // wakeup request
 }
} // end of power button device object

Scope(_GPE){ // Root level event handlers
 Method(_L00){ // uses bit 0 of GP0_STS register
 If(\PBP){
 Store(One, \PBP) // clear power button status
 Notify(_SB.PWRB, 0x80) // Notify OS of event
 }
 If(\PBW){
 Store(One, \PBW)
 Notify(_SB.PWRB, 0x2)
 }
 } // end of _L00 handler
} // end of _GPE scope

4.8.2.2.1.3 Power Button Override

The ACPI specification also allows that if the user presses the power button for more than four seconds
while the system is in the working state, a hardware event is generated and the system will transition to
the soft-off state. This hardware event is called a power button override. In reaction to the power button
override event, the hardware clears the power button status bit (PWRBTN_STS).

4.8.2.2.2 Sleep Button

When using the two button model, ACPI supports a second button that when pressed will request OSPM
to transition the platform between the G0 working and G1 sleeping states. Support for a sleep button is
indicated by a combination of the SLEEP_BUTTON flag and the sleep button device object:

Table 4-13 Sleep Button Support

Indicated Support SLEEP_BUTTON Flag Sleep Button Device Object

No sleep button Set Absent

Fixed hardware sleep button Clear Absent

Control method sleep button Set Present

4.8.2.2.2.1 Fixed Hardware Sleep Button

Figure 4-9 Fixed Hardware Sleep Button Logic

SLPBTN#

SLPBTN_EN
PM1x_EN.9

SLPBTN_STS
PM1x_STS.9Debounce

Logic
SLPBTN Event

SLPBTN
State machine
UEFI Forum, Inc. January 2019 Page 86

ACPI Specification, Version 6.3 ACPI Hardware Specification
The fixed hardware sleep button has its event programming model in the PM1x_EVT_BLK. This logic
consists of a single enable bit and sticky status bit. When the user presses the sleep button, the sleep
button status bit (SLPBTN_STS) is unconditionally set. Additionally, if the sleep button enable bit
(SLPBTN_EN) is set, and the sleep button status bit is set (SLPBTN_STS, due to a button press) while the
system is in the G0 state, then an SCI is generated. OSPM responds to the event by clearing the
SLPBTN_STS bit. The sleep button logic provides debounce logic that sets the SLPBTN_STS bit on the
button press “edge.”

While the system is sleeping (in either the S0, S1, S2, S3 or S4 states), any further sleep button press
(after the button press that caused the system transition into the sleeping state) sets the sleep button
status bit (SLPBTN_STS) and wakes the system if the SLP_EN bit is set. OSPM responds by clearing the
sleep button status bit and waking the system.

4.8.2.2.2.2 Control Method Sleep Button

The sleep button programming model can also use the generic hardware programming model. This
allows the sleep button to reside in any of the generic hardware address spaces (for example, the
embedded controller) instead of fixed space. If the sleep button is implemented via generic hardware,
then the OEM needs to define the sleep button as a device with an _HID object value of “PNP0C0E”,
which then identifies this device as the sleep button to OSPM. The AML event handler then generates a
Notify command to notify OSPM that a sleep button event was generated. While in the working state, a
sleep button press is a user request to transition the system into the sleeping (G1) state. In these cases
the sleep button event handler issues the Notify command with the device specific code of 0x80. This will
indicate to OSPM to pass control to the sleep button driver (PNP0C0E) with the knowledge that the user
is requesting a transition out of the G0 state. Upon waking-up from a G1 sleeping state, the AML event
handler generates a Notify command with the code of 0x2 to indicate it was responsible for waking the
system.

The sleep button device needs to be declared as a device within the ACPI Namespace for the platform
and only requires an _HID. An example definition is shown below.

The AML code below does the following:

• Creates a device named “SLPB” and associates the Plug and Play identifier (through the _HID
object) of “PNP0C0E.”

• The Plug and Play identifier associates this device object with the sleep button driver.
• Creates an operational region for the control method sleep button’s programming model:

System I/O space at 0x201.
• Fields that are not accessed are written as “1s” (these status bits clear upon writing a “1” to

their bit position, hence preserved would fail in this case).
• Creates a field within the operational region for the sleep button status bit (called PBP). In this

case the sleep button status bit is a child of the general-purpose status bit 0. When this bit is
set it is the responsibility of the AML code to clear it (OSPM clears the general-purpose status
bits). The address of the status bit is 0x201.0 (bit 0 at address 0x201).

• Creates an additional status bit called PBW for the sleep button wake event. This is the next bit
and its physical address would be 0x201.1 (bit 1 at address 0x201).

• Generates an event handler for the sleep button that is connected to bit 0 of the general-
purpose status register 0. The event handler does the following:

• Clears the sleep button status bit in hardware (writes a “1” to it).
UEFI Forum, Inc. January 2019 Page 87

ACPI Specification, Version 6.3 ACPI Hardware Specification
• Notifies OSPM of the event by calling the Notify command passing the sleep button object and
the device specific event indicator 0x80.

// Define a control method sleep button
Device(_SB.SLPB){
 Name(_HID, EISAID(“PNP0C0E”))
 Name(_PRW, Package(){0x01, 0x04})
 OperationRegion(\Boo, SystemIO, 0x201, 0x1)
 Field(\Boo, ByteAcc, NoLock, WriteAsZeros){
 SBP, 1, // sleep request
 SBW, 1 // wakeup request
 } // end of field definition
}
Scope(_GPE){ // Root level event handlers
 Method(_L01){ // uses bit 1 of GP0_STS register
 If(\SBP){
 Store(One, \SBP) // clear sleep button status
 Notify(_SB.SLPB, 0x80) // Notify OS of event
 }
 If(\SBW){
 Store(One, \SBW)
 Notify(_SB.SLPB, 0x2)
 }
 } // end of _L01 handler
} // end of _GPE scope

4.8.2.3 Sleeping/Wake Control

The sleeping/wake logic consists of logic that will sequence the system into the defined low-power
hardware sleeping state (S1-S4) or soft-off state (S5) and will wake the system back to the working state
upon a wake event. Notice that the S4BIOS state is entered in a different manner (for more information,
see Section 16.1.4.2, “The S4BIOS Transition”).

Figure 4-10 Sleeping/Wake Logic

The logic is controlled via two bit fields: Sleep Enable (SLP_EN) and Sleep Type (SLP_TYPx). The type of
sleep or soft-off state desired is programmed into the SLP_TYPx field and upon assertion of the SLP_EN
the hardware will sequence the system into the defined sleeping state. OSPM gets values for the
SLP_TYPx field from the _Sx objects defined in the static definition block. If the object is missing OSPM

SLP_EN
PM1x_CNT.S4.13

WAK_STS
PM1x_STS.S0.15

Sleeping

SLP_TYP:3
PM1x_CNT.S4.[10-12]

Wakeup/
Sleep
Logic

"OR" or all
Wake
Events

PWRBTN_OR
UEFI Forum, Inc. January 2019 Page 88

ACPI Specification, Version 6.3 ACPI Hardware Specification
assumes the hardware does not support that sleeping state. Prior to entering the desired sleeping state,
OSPM will read the designated _Sx object and place this value in the SLP_TYP field.

Additionally ACPI defines a fail-safe Off protocol called the “power button override,” which allows the
user to initiate an Off sequence in the case where the system software is no longer able to recover the
system (the system has hung). ACPI defines that this sequence be initiated by the user pressing the
power button for over 4 seconds, at which point the hardware unconditionally sequences the system to
the Off state. This logic is represented by the PWRBTN_OR signal coming into the sleep logic.

While in any of the sleeping states (G1), an enabled “Wake” event will cause the hardware to sequence
the system back to the working state (G0). The “Wake Status” bit (WAK_STS) is provided for OSPM to
“spin-on” after setting the SLP_EN/SLP_TYP bit fields. When waking from the S1 sleeping state, execution
control is passed backed to OSPM immediately, whereas when waking from the S2-S4 states execution
control is passed to the platform boot firmware (execution begins at the CPU’s reset vector). The
WAK_STS bit provides a mechanism to separate OSPM’s sleeping and waking code during an S1
sequence. When the hardware has sequenced the system into the sleeping state (defined here as the
processor is no longer able to execute instructions), any enabled wake event is allowed to set the
WAK_STS bit and sequence the system back on (to the G0 state). If the system does not support the S1
sleeping state, the WAK_STS bit can always return zero.

-If more than a single sleeping state is supported, then the sleeping/wake logic is required to be able to
dynamically sequence between the different sleeping states. This is accomplished by waking the system;
OSPM programs the new sleep state into the SLP_TYP field, and then sets the SLP_EN bit–placing the
system again in the sleeping state.

4.8.2.4 Real Time Clock Alarm

If implemented, the Real Time Clock (RTC) alarm must generate a hardware wake event when in the
sleeping state. The RTC can be programmed to generate an alarm. An enabled RTC alarm can be used to
generate a wake event when the system is in a sleeping state. ACPI provides for additional hardware to
support OSPM in determining that the RTC was the source of the wake event: the RTC_STS and RTC_EN
bits. Although these bits are optional, if supported they must be implemented as described here.

If the RTC_STS and RTC_EN bits are not supported, OSPM will attempt to identify the RTC as a possible
wake source; however, it might miss certain wake events. If implemented, the RTC wake feature is
required to work in the following sleeping states: S1-S3. S4 wake is optional and supported through the

RTC_S4 flag within the FADT (if set, then the platform supports RTC wake in the S4 state)1.

When the RTC generates a wake event the RTC_STS bit will be set. If the RTC_EN bit is set, an RTC
hardware power management event will be generated (which will wake the system from a sleeping state,
provided the battery low signal is not asserted).

1. Notice that the G2/S5 “soft off” and the G3 “mechanical off” states are not sleeping states. The OS will dis-
able the RTC_EN bit prior to entering the G2/S5 or G3 states regardless.
UEFI Forum, Inc. January 2019 Page 89

ACPI Specification, Version 6.3 ACPI Hardware Specification
Figure 4-11 RTC Alarm

The RTC wake event status and enable bits are an optional fixed hardware feature and a flag within the
FADT (FIX_RTC) indicates if the register bits are to be used by OSPM. If the RTC wake event status and
enable bits are implemented in fixed hardware, OSPM can determine if the RTC was the source of the
wake event without loading the entire OS. This also gives the platform the capability of indicating an RTC
wake source without consuming a GPE bit, as would be required if RTC wake was not implemented using
the fixed hardware RTC feature. If the fixed hardware feature event bits are not supported, then OSPM
will attempt to determine this by reading the RTC’s status field. If the platform implements the RTC fixed
hardware feature, and this hardware consumes resources, the _FIX method can be used to correlate
these resources with the fixed hardware. See Section 6.2.5, “_FIX (Fixed Register Resource Provide”, for
details.

OSPM supports enhancements over the existing RTC device (which only supports a 99 year date and 24-
hour alarm). Optional extensions are provided for the following features:

Day Alarm.

The DAY_ALRM field points to an optional CMOS RAM location that selects the day within the
month to generate an RTC alarm.

Month Alarm.

The MON_ALRM field points to an optional CMOS RAM location that selects the month within
the year to generate an RTC alarm.

Centenary Value.

The CENT field points to an optional CMOS RAM location that represents the centenary value of
the date (thousands and hundreds of years).

The RTC_STS bit may be set through the RTC interrupt (IRQ8 in IA-PC architecture systems). OSPM will
insure that the periodic and update interrupt sources are disabled prior to sleeping. This allows the RTC’s
interrupt pin to serve as the source for the RTC_STS bit generation. Note however that if the RTC
interrupt pin is used for RTC_STS generation, the RTC_STS bit value may not be accurate when waking
from S4. If this value is accurate when waking from S4, the platform should set the S4_RTC_STS_VALID
flag, so that OSPM can utilize the RTC_STS information.

Real Time Clock
(RTC) RTC Wake-up

Event

RTC_EN
PM1x_EN.10

RTC_STS
PM1x_STS.10
UEFI Forum, Inc. January 2019 Page 90

ACPI Specification, Version 6.3 ACPI Hardware Specification
Table 4-14 Alarm Field Decodings within the FADT

Field Value
Address (Location) in RTC CMOS RAM
(Must be Bank 0)

DAY_ALRM Eight bit value that can represent 0x01-0x31
days in BCD or 0x01-0x1F days in binary. Bits 6
and 7 of this field are treated as Ignored by
software. The RTC is initialized such that this
field contains a “don’t care” value when the
platform firmware switches from legacy to
ACPI mode. A don’t care value can be any
unused value (not 0x1-0x31 BCD or 0x01-0x1F
hex) that the RTC reverts back to a 24 hour
alarm.

The DAY_ALRM field in the FADT will
contain a non-zero value that represents
an offset into the RTC’s CMOS RAM area
that contains the day alarm value. A value
of zero in the DAY_ALRM field indicates
that the day alarm feature is not
supported.

MON_ALRM Eight bit value that can represent 01-12
months in BCD or 0x01-0xC months in binary.
The RTC is initialized such that this field
contains a don’t care value when the platform
firmware switches from legacy to ACPI mode.
A “don’t care” value can be any unused value
(not 1-12 BCD or x01-xC hex) that the RTC
reverts back to a 24 hour alarm and/or 31 day
alarm).

The MON_ALRM field in the FADT will
contain a non-zero value that represents
an offset into the RTC’s CMOS RAM area
that contains the month alarm value. A
value of zero in the MON_ALRM field
indicates that the month alarm feature is
not supported. If the month alarm is
supported, the day alarm function must
also be supported.

CENTURY 8-bit BCD or binary value. This value indicates
the thousand year and hundred year
(Centenary) variables of the date in BCD (19
for this century, 20 for the next) or binary
(x13 for this century, x14 for the next).

The CENTURY field in the FADT will
contain a non-zero value that represents
an offset into the RTC’s CMOS RAM area
that contains the Centenary value for the
date. A value of zero in the CENTURY field
indicates that the Centenary value is not
supported by this RTC.

4.8.2.5 Legacy/ACPI Select and the SCI Interrupt

As mentioned previously, power management events are generated to initiate an interrupt or hardware
sequence. ACPI operating systems use the SCI interrupt handler to respond to events, while legacy
systems use some type of transparent interrupt handler to respond to these events (that is, an SMI
interrupt handler). ACPI-compatible hardware can choose to support both legacy and ACPI modes or just
an ACPI mode. Legacy hardware is needed to support these features for non-ACPI-compatible operating
systems. When the ACPI OS loads, it scans the platform firmware tables to determine that the hardware
supports ACPI, and then if the it finds the SCI_EN bit reset (indicating that ACPI is not enabled), issues an
ACPI activate command to the SMI handler through the SMI command port. The platform firmware
acknowledges the switching to the ACPI model of power management by setting the SCI_EN bit (this bit
can also be used to switch over the event mechanism as illustrated below):
UEFI Forum, Inc. January 2019 Page 91

ACPI Specification, Version 6.3 ACPI Hardware Specification
Figure 4-12 Power Management Events to SMI/SCI Control Logic

The interrupt events (those that generate SMIs in legacy mode and SCIs in ACPI mode) are sent through a
decoder controlled by the SCI_EN bit. For legacy mode this bit is reset, which routes the interrupt events
to the SMI interrupt logic. For ACPI mode this bit is set, which routes interrupt events to the SCI interrupt
logic. This bit always returns set for ACPI-compatible hardware that does not support a legacy power
management mode (in other words, the bit is wired to read as “1” and ignore writes).

The SCI interrupt is defined to be a shareable interrupt and is connected to an OS visible interrupt that
uses a shareable protocol. The FADT has an entry that indicates what interrupt the SCI interrupt is
mapped to (see Section 5.2.6, “System Description Table Header”).

If the ACPI platform supports both legacy and ACPI modes, it has a register that generates a hardware
event (for example, SMI for IA-PC processors). OSPM uses this register to make the hardware switch in
and out of ACPI mode. Within the FADT are three values that signify the address (SMI_CMD) of this port
and the data value written to enable the ACPI state (ACPI_ENABLE), and to disable the ACPI state
(ACPI_DISABLE).

To transition an ACPI/Legacy platform from the Legacy mode to the ACPI mode the following would
occur:

• ACPI driver checks that the SCI_EN bit is zero, and that it is in the Legacy mode.
• OSPM does an OUT to the SMI_CMD port with the data in the ACPI_ENABLE field of the FADT.
• OSPM polls the SCI_EN bit until it is sampled as SET.

To transition an ACPI/Legacy platform from the ACPI mode to the Legacy mode the following would
occur:

• ACPI driver checks that the SCI_EN bit is one, and that it is in the ACPI mode.
• OSPM does an OUT to the SMI_CMD port with the data in the ACPI_DISABLE field of the FADT.
• OSPM polls the SCI_EN bit until it is sampled as RESET.

Platforms that only support ACPI always return a 1 for the SCI_EN bit. In this case OSPM skips the Legacy
to ACPI transition stated above.

4.8.2.6 Processor Control

The ACPI specification defines several processor controls including power state control, throttling
control, and performance state control. See Section 8, “Processor Configuration and Control,” for a
complete description of the processor controls.

Dec
0

1

Power
Management
Event Logic

SCI_EN
PM1x_CNT.0

SMI_EVNT

SCI_EVNT
Shareable
Interrupt
UEFI Forum, Inc. January 2019 Page 92

ACPI Specification, Version 6.3 ACPI Hardware Specification
4.8.3 Fixed Hardware Registers

The fixed hardware registers are manipulated directly by OSPM. The following sections describe fixed
hardware features under the programming model. OSPM owns all the fixed hardware resource registers;
these registers cannot be manipulated by AML code. Registers are accessed with any width up to its
register width (byte granular).

4.8.3.1 PM1 Event Grouping

The PM1 Event Grouping has a set of bits that can be distributed between two different register blocks.
This allows these registers to be partitioned between two chips, or all placed in a single chip. Although
the bits can be split between the two register blocks (each register block has a unique pointer within the
FADT), the bit positions are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) always returns zeros, and writes have no side effects.

4.8.3.1.1 PM1 Status Registers

Register Location: <PM1a_EVT_BLK / PM1b_EVT_BLK> System I/O or Memory Space
Default Value: 00h
Attribute: Read/Write
Size: PM1_EVT_LEN / 2

The PM1 status registers contain the fixed hardware feature status bits. The bits can be split between
two registers: PM1a_STS or PM1b_STS. Each register grouping can be at a different 32-bit aligned
address and is pointed to by the PM1a_EVT_BLK or PM1b_EVT_BLK. The values for these pointers to the
register space are found in the FADT. Accesses to the PM1 status registers are done through byte or word
accesses.

For ACPI/legacy systems, when transitioning from the legacy to the G0 working state this register is
cleared by platform firmware prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI
only platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or
soft-off state to the G0 working state this register is cleared prior to entering the G0 working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-15 PM1 Status Registers Fixed Hardware Feature Status Bits

Bit Name Description

0 TMR_STS This is the timer carry status bit. This bit gets set any time the most significant bit
of a 24/32-bit counter changes from clear to set or set to clear. While TMR_EN and
TMR_STS are set, an interrupt event is raised.

1-3 Reserved Reserved

4 BM_STS This is the bus master status bit. This bit is set any time a system bus master
requests the system bus, and can only be cleared by writing a “1” to this bit
position. Notice that this bit reflects bus master activity, not CPU activity (this bit
monitors any bus master that can cause an incoherent cache for a processor in the
C3 state when the bus master performs a memory transaction).
UEFI Forum, Inc. January 2019 Page 93

ACPI Specification, Version 6.3 ACPI Hardware Specification
5 GBL_STS This bit is set when an SCI is generated due to the platform runtime firmware
wanting the attention of the SCI handler. Platform runtime firmware will have a
control bit (somewhere within its address space) that will raise an SCI and set this
bit. This bit is set in response to the platform runtime firmware releasing control of
the Global Lock and having seen the pending bit set.

6-7 Reserved Reserved. These bits always return a value of zero.

8 PWRBTN_STS This optional bit is set when the Power Button is pressed. In the system working
state, while PWRBTN_EN and PWRBTN_STS are both set, an interrupt event is
raised. In the sleep or soft-off state, a wake event is generated when the power
button is pressed (regardless of the PWRBTN_EN bit setting). This bit is only set by
hardware and can only be reset by software writing a “1” to this bit position.

ACPI defines an optional mechanism for unconditional transitioning a system that
has stopped working from the G0 working state into the G2 soft-off state called
the power button override. If the Power Button is held active for more than four
seconds, this bit is cleared by hardware and the system transitions into the G2/S5
Soft Off state (unconditionally).

Support for the power button is indicated by the PWR_BUTTON flag in the FADT
being reset (zero). If the PWR_BUTTON flag is set or a power button device object
is present in the ACPI Namespace, then this bit field is ignored by OSPM.

If the power button was the cause of the wake (from an S1-S4 state), then this bit
is set prior to returning control to OSPM.

9 SLPBTN_STS This optional bit is set when the sleep button is pressed. In the system working
state, while SLPBTN_EN and SLPBTN_STS are both set, an interrupt event is raised.
In the sleep or soft-off states a wake event is generated when the sleeping button
is pressed and the SLPBTN_EN bit is set. This bit is only set by hardware and can
only be reset by software writing a “1” to this bit position.

Support for the sleep button is indicated by the SLP_BUTTON flag in the FADT
being reset (zero). If the SLP_BUTTON flag is set or a sleep button device object is
present in the ACPI Namespace, then this bit field is ignored by OSPM.

If the sleep button was the cause of the wake (from an S1-S4 state), then this bit is
set prior to returning control to OSPM.

10 RTC_STS This optional bit is set when the RTC generates an alarm (asserts the RTC IRQ
signal). Additionally, if the RTC_EN bit is set then the setting of the RTC_STS bit will
generate a power management event (an SCI, SMI, or resume event). This bit is
only set by hardware and can only be reset by software writing a “1” to this bit
position.

If the RTC was the cause of the wake (from an S1-S3 state), then this bit is set prior
to returning control to OSPM. If the RTC_S4 flag within the FADT is set, and the
RTC was the cause of the wake from the S4 state), then this bit is set prior to
returning control to OSPM.

11 Ignore This bit field is ignored by software.

12-13 Reserved Reserved. These bits always return a value of zero.

Bit Name Description
UEFI Forum, Inc. January 2019 Page 94

ACPI Specification, Version 6.3 ACPI Hardware Specification
4.8.3.1.2 PM1Enable Registers

Register Location: <PM1a_EVT_BLK / PM1b_EVT_BLK> + PM1_EVT_LEN / 2 System I/O or
Memory Space
Default Value: 00h
Attribute: Read/Write
Size: PM1_EVT_LEN / 2

The PM1 enable registers contain the fixed hardware feature enable bits. The bits can be split between
two registers: PM1a_EN or PM1b_EN. Each register grouping can be at a different 32-bit aligned address
and is pointed to by the PM1a_EVT_BLK or PM1b_EVT_BLK. The values for these pointers to the register
space are found in the FADT. Accesses to the PM1 Enable registers are done through byte or word
accesses.

For ACPI/legacy systems, when transitioning from the legacy to the G0 working state the enables are
cleared by platform firmware prior to setting the SCI_EN bit (and thus passing control to OSPM). For
ACPI-only platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3)
or soft-off state to the G0 working state this register is cleared prior to entering the G0 working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats the enable bits as write as
zero.

14 PCIEXP_WAKE_STS This bit is optional for chipsets that implement PCI Express.

This bit is set by hardware to indicate that the system woke due to a PCI Express
wakeup event. A PCI Express wakeup event is defined as the PCI Express WAKE#
pin being active , one or more of the PCI Express ports being in the beacon state,
or receipt of a PCI Express PME message at a root port. This bit should only be set
when one of these events causes the system to transition from a non-S0 system
power state to the S0 system power state. This bit is set independent of the state
of the PCIEXP_WAKE_DIS bit.

Software writes a 1 to clear this bit. If the WAKE# pin is still active during the write,
one or more PCI Express ports is in the beacon state or the PME message received
indication has not been cleared in the root port, then the bit will remain active (i.e.
all inputs to this bit are level-sensitive).

Note: This bit does not itself cause a wake event or prevent entry to a sleeping
state. Thus if the bit is 1 and the system is put into a sleeping state, the system will
not automatically wake.

15 WAK_STS This bit is set when the system is in the sleeping state and an enabled wake event
occurs. Upon setting this bit system will transition to the working state. This bit is
set by hardware and can only be cleared by software writing a “1” to this bit
position.

Bit Name Description
UEFI Forum, Inc. January 2019 Page 95

ACPI Specification, Version 6.3 ACPI Hardware Specification
Table 4-16

Bit Name Description

0 TMR_EN This is the timer carry interrupt enable bit. When this bit is set then an SCI
event is generated anytime the TMR_STS bit is set. When this bit is reset
then no interrupt is generated when the TMR_STS bit is set.

4:1 Reserved Reserved. These bits always return a value of zero.

5 GBL_EN The global enable bit. When both the GBL_EN bit and the GBL_STS bit are
set, an SCI is raised.

7:6 Reserved Reserved

8 PWRBTN_EN This optional bit is used to enable the setting of the PWRBTN_STS bit to
generate a power management event (SCI or wake). The PWRBTN_STS bit is
set anytime the power button is asserted. The enable bit does not have to
be set to enable the setting of the PWRBTN_STS bit by the assertion of the
power button (see description of the power button hardware).

Support for the power button is indicated by the PWR_BUTTON flag in the
FADT being reset (zero). If the PWR_BUTTON flag is set or a power button
device object is present in the ACPI Namespace, then this bit field is ignored
by OSPM.

9 SLPBTN_EN This optional bit is used to enable the setting of the SLPBTN_STS bit to
generate a power management event (SCI or wake). The SLPBTN_STS bit is
set anytime the sleep button is asserted. The enable bit does not have to be
set to enable the setting of the SLPBTN_STS bit by the active assertion of the
sleep button (see description of the sleep button hardware).

Support for the sleep button is indicated by the SLP_BUTTON flag in the
FADT being reset (zero). If the SLP_BUTTON flag is set or a sleep button
device object is present in the ACPI Namespace, then this bit field is ignored
by OSPM.

10 RTC_EN This optional bit is used to enable the setting of the RTC_STS bit to generate
a wake event. The RTC_STS bit is set any time the RTC generates an alarm.

13:11 Reserved Reserved. These bits always return a value of zero.

14 PCIEXP_WAKE_DIS This bit is optional for chipsets that implement PCI Express.

This bit disables the inputs to the PCIEXP_WAKE_STS bit in the PM1 Status
register from waking the system. Modification of this bit has no impact on
the value of the PCIEXP_WAKE_STS bit. PCIEXP_WAKE_DIS bit. Software
writes a 1 to clear this bit. If the WAKE# pin is still active during the write,
one or more PCI Express ports is in the beacon state or the PME message
received indication has not been cleared in the root port, then the bit will
remain active (i.e. all inputs to this bit are level-sensitive). Note: This bit
does not itself cause a wake event or prevent entry to a sleeping state. Thus
if the bit is 1 and the system is put into a sleeping state, the system will not
automatically wake.

15 Reserved Reserved. These bits always return a value of zero.

PM1 Enable Registers Fixed Hardware Feature Enable Bits
UEFI Forum, Inc. January 2019 Page 96

ACPI Specification, Version 6.3 ACPI Hardware Specification
4.8.3.2 PM1 Control Grouping

The PM1 Control Grouping has a set of bits that can be distributed between two different registers. This
allows these registers to be partitioned between two chips, or all placed in a single chip. Although the bits
can be split between the two register blocks (each register block has a unique pointer within the FADT),
the bit positions specified here are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) returns zeros, and writes have no side effects.

4.8.3.2.1 PM1 Control Registers

Register Location: <PM1a_CNT_BLK / PM1b_CNT_BLK> System I/O or Memory Space
Default Value: 00h
Attribute: Read/Write
Size: PM1_CNT_LEN

The PM1 control registers contain the fixed hardware feature control bits. These bits can be split
between two registers: PM1a_CNT or PM1b_CNT. Each register grouping can be at a different 32-bit
aligned address and is pointed to by the PM1a_CNT_BLK or PM1b_CNT_BLK. The values for these
pointers to the register space are found in the FADT. Accesses to PM1 control registers are accessed
through byte and word accesses.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-17 PM1 Control Registers Fixed Hardware Feature Control Bits

Bit Name Description

0 SCI_EN Selects the power management event to be either an SCI or SMI interrupt for the
following events. When this bit is set, then power management events will
generate an SCI interrupt. When this bit is reset power management events will
generate an SMI interrupt. It is the responsibility of the hardware to set or reset
this bit. OSPM always preserves this bit position.

1 BM_RLD When set, this bit allows the generation of a bus master request to cause any
processor in the C3 state to transition to the C0 state. When this bit is reset, the
generation of a bus master request does not affect any processor in the C3 state.

2 GBL_RLS This write-only bit is used by the ACPI software to raise an event to the platform
runtime firmware, that is, generates an SMI to pass execution control to the
platform runtime firmware for IA-PC platforms. Platform runtime firmware
software has a corresponding enable and status bit to control its ability to
receive ACPI events (for example, BIOS_EN and BIOS_STS). The GBL_RLS bit is set
by OSPM to indicate a release of the Global Lock and the setting of the pending
bit in the FACS memory structure.

8:3 Reserved Reserved. These bits are reserved by OSPM.

9 Ignore Software ignores this bit field.
UEFI Forum, Inc. January 2019 Page 97

ACPI Specification, Version 6.3 ACPI Hardware Specification
4.8.3.3 Power Management Timer (PM_TMR)

Register Location: <PM_TMR_BLK> System I/O or Memory Space
Default Value: 00h
Attribute: Read-Only
Size: 32 bits

This optional read-only register returns the current value of the power management timer (PM timer) if it
is implemented on the platform. The FADT has a flag called TMR_VAL_EXT that an OEM sets to indicate a
32-bit PM timer or reset to indicate a 24-bit PM timer. When the last bit of the timer toggles the
TMR_STS bit is set. This register is accessed as 32 bits.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-18 PM Timer Bits

Bit Name Description

23:0 TMR_VAL This read-only field returns the running count of the power management timer.
This is a 24-bit counter that runs off a 3.579545-MHz clock and counts while in
the S0 working system state. The starting value of the timer is undefined, thus
allowing the timer to be reset (or not) by any transition to the S0 state from any
other state. The timer is reset (to any initial value), and then continues counting
until the system’s 14.31818 MHz clock is stopped upon entering its Sx state. If
the clock is restarted without a reset, then the counter will continue counting
from where it stopped.

31:24 E_TMR_VAL This read-only field returns the upper eight bits of a 32-bit power management
timer. If the hardware supports a 32-bit timer, then this field will return the
upper eight bits; if the hardware supports a 24-bit timer then this field returns
all zeros.

4.8.3.4 PM2 Control (PM2_CNT)

Register Location: <PM2_CNT_BLK> System I/O, System Memory, or Functional
 Fixed Hardware Space
Default Value: 00h
Attribute: Read/Write
Size: PM2_CNT_LEN

12:10 SLP_TYPx Defines the type of sleeping or soft-off state the system enters when the SLP_EN
bit is set to one. This 3-bit field defines the type of hardware sleep state the
system enters when the SLP_EN bit is set. The _Sx object contains 3-bit binary
values associated with the respective sleeping state (as described by the object).
OSPM takes the two values from the _Sx object and programs each value into
the respective SLP_TYPx field.

13 SLP_EN This is a write-only bit and reads to it always return a zero. Setting this bit causes
the system to sequence into the sleeping state associated with the SLP_TYPx
fields programmed with the values from the _Sx object.

15:14 Reserved Reserved. This field always returns zero.

Bit Name Description
UEFI Forum, Inc. January 2019 Page 98

ACPI Specification, Version 6.3 ACPI Hardware Specification
This register block is naturally aligned and accessed based on its length. For ACPI 1.0 this register is byte
aligned and accessed as a byte.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-19 PM2 Control Register Bits

Bit Name Description

0 ARB_DIS This bit is used to enable and disable the system arbiter. When this bit is CLEAR
the system arbiter is enabled and the arbiter can grant the bus to other bus
masters. When this bit is SET the system arbiter is disabled and the default CPU
has ownership of the system.

OSPM clears this bit when using the C0, C1 and C2 power states.

>0 Reserved Reserved

4.8.3.5 Processor Register Block (P_BLK)

This optional register block is used to control each processor in the system. There is one unique processor
register block per processor in the system. For more information about controlling processors and
control methods that can be used to control processors, see Section 8, “Processor Configuration and
Control.” This register block is DWORD aligned and the context of this register block is not maintained
across S3 or S4 sleeping states, or the S5 soft-off state.

4.8.3.5.1 Processor Control (P_CNT): 32

Register Location: Either <P_BLK>: System I/O Space
 or specified by _PTC Object: System I/O, System Memory, or
 Functional Fixed Hardware Space
Default Value: 00h
Attribute: Read/Write
Size: 32 bits

This register is accessed as a DWORD. The CLK_VAL field is where the duty setting of the throttling
hardware is programmed as described by the DUTY_WIDTH and DUTY_OFFSET values in the FADT.
Software treats all other CLK_VAL bits as ignored (those not used by the duty setting value).

Table 4-20 Processor Control Register Bits

Bit Name Description

3:0 CLK_VAL Possible locations for the clock throttling value.

4 THT_EN This bit enables clock throttling of the clock as set in the CLK_VAL field. THT_EN bit
must be reset LOW when changing the CLK_VAL field (changing the duty setting).

31:5 CLK_VAL Possible locations for the clock throttling value.

4.8.3.5.2 Processor LVL2 Register (P_LVL2): 8

Register Location: Either <P_BLK> + 4: System I/O Space
 or specified by _CST Object: System I/O, System Memory, or
UEFI Forum, Inc. January 2019 Page 99

ACPI Specification, Version 6.3 ACPI Hardware Specification
 Functional Fixed Hardware Space
Default Value: 00h
Attribute: Read-Only
Size: 8 bits

This register is accessed as a byte.

Table 4-21 Processor LVL2 Register Bits

Bit Name Description

7:0 P_LVL2 Reads to this register return all zeros; writes to this register have no effect. Reads
to this register also generate an “enter a C2 power state” to the clock control logic.

4.8.3.5.3 Processor LVL3 Register (P_LVL3): 8

Register Location: Either <P_BLK> + 5: System I/O Space
 or specified by _CST Object: System I/O, System Memory, or
 Functional Fixed Hardware Space
Default Value: 00h
Attribute: Read-Only
Size: 8 bits

This register is accessed as a byte.

Table 4-22 Processor LVL3 Register Bits

Bit Name Description

7:0 P_LVL3 Reads to this register return all zeros; writes to this register have no effect. Reads
to this register also generate an “enter a C3 power state” to the clock control logic.

4.8.3.6 Reset Register

The optional ACPI reset mechanism specifies a standard mechanism that provides a complete system
reset. When implemented, this mechanism must reset the entire system. This includes processors, core
logic, all buses, and all peripherals. From an OSPM perspective, asserting the reset mechanism is the
logical equivalent to power cycling the system. Upon gaining control after a reset, OSPM will perform
actions in like manner to a cold boot.

The reset mechanism is implemented via an 8-bit register described by RESET_REG in the FADT (always
accessed via the natural alignment and size described in RESET_REG). To reset the system, software will
write a value (indicated in RESET_VALUE in FADT) to the reset register. The RESET_REG field in the FADT
indicates the location of the reset register.

The reset register may exist only in I/O space, Memory space, or in PCI Configuration space on a function
in bus 0. Therefore, the Address_Space_ID value in RESET_REG must be set to System I/O space, System
Memory space, or PCI Configuration space (with a bus number of 0). As the register is only 8 bits,
Register_Bit_Width must be 8 and Register_Bit_Offset must be 0.

The system must reset immediately following the write to this register. OSPM assumes that the processor
will not execute beyond the write instruction. OSPM should execute spin loops on the CPUs in the system
following a write to this register.
UEFI Forum, Inc. January 2019 Page 100

ACPI Specification, Version 6.3 ACPI Hardware Specification
4.8.3.7 Sleep Control and Status Registers

The optional ACPI sleep registers (SLEEP_CONTROL_REG and SLEEP_STATUS_REG) specify a standard
mechanism for system sleep state entry on HW-Reduced ACPI systems. When implemented, the Sleep
registers are a replacement for the SLP_TYP, SLP_EN and WAK_STS registers in the PM1_BLK. Use of
these registers is at the discretion of OSPM. OSPM can decide whether to enter sleep states on the
platform based on the LOW_POWER_S0_IDLE_CAPABLE flag. Even when implemented, OSPM may use
other provided options for hibernate and shutdown (e.g. UEFI ResetSystem()).

The HW-reduced Sleep mechanism is implemented via two 8-bit registers described by
SLEEP_CONTROL_REG and SLEEP_STATUS_REG in the FADT (always accessed via the natural alignment
and size described in SLEEP_*_REG). To put the system into a sleep state, software will write the HW-
reduced Sleep Type value (obtained from the _Sx object in the DSDT) and the SLP_EN bit to the sleep
control register. The OSPM then polls the WAK_STS bit of the SLEEP_STATUS_REG waiting for it to be one
(1), indicating that the system has been transitioned back to the Working state.

The Sleep registers may exist only in I/O space, Memory space, or in PCI Configuration space on a
function in bus 0. Therefore, the Address_Space_ID value must be set to System I/O space,
SystemMemory space, or PCI Configuration space (with a bus number of 0). As the registers are only 8
bits, Register_Bit_Width must be 8 and Register_Bit_Offset must be 0.

Table 4-23 Sleep Control Register

Field Name
Bit
Length

Bit
Offset

Description

Reserved 1 0 Reserved. This bit is reserved by OSPM.

Ignore 1 1 Software ignores this bit field.

SLP_TYPx 3 2 Defines the type of sleeping state the system enters when the
SLP_EN bit is set to one. This 3-bit field defines the type of
hardware sleep state the system enters when the SLP_EN bit is set.
The _Sx object contains 3-bit binary values associated with the
respective sleeping state (as described by the object). OSPM takes
the HW-reduced Sleep Type value from the _SX object and
programs it into the SLP_TYPx field.

SLP_EN 1 5 This is a write-only bit and reads to it always return a zero. Setting
this bit causes the system to sequence into the sleeping state
associated with the SLP_TYPx fields programmed with the values
from the _Sx object.

Reserved 2 6 Reserved. This field always returns zero.

Table 4-24 Sleep Status Register

Field Name
Bit
Length

Bit
Offset

Description

Ignore 4 0 Software ignores this bit field.

Reserved 2 4 Reserved. These bits always return a value of zero.

Ignore 1 6 Software ignores this bit field.
UEFI Forum, Inc. January 2019 Page 101

ACPI Specification, Version 6.3 ACPI Hardware Specification
4.8.4 Generic Hardware Registers

ACPI provides a mechanism that allows a unique piece of “value added” hardware to be described to
OSPM in the ACPI Namespace. There are a number of rules to be followed when designing ACPI-
compatible hardware.

Programming bits can reside in any of the defined generic hardware address spaces (system I/O, system
memory, PCI configuration, embedded controller, or SMBus), but the top-level event bits are contained
in the general-purpose event registers. The general-purpose event registers are pointed to by the
GPE0_BLK and GPE1_BLK register blocks, and the generic hardware registers can be in any of the defined
ACPI address spaces. A device’s generic hardware programming model is described through an
associated object in the ACPI Namespace, which specifies the bit’s function, location, address space, and
address location.

The programming model for devices is normally broken into status and control functions. Status bits are
used to generate an event that allows OSPM to call a control method associated with the pending status
bit. The called control method can then control the hardware by manipulating the hardware control bits
or by investigating child status bits and calling their respective control methods. ACPI requires that the
top level “parent” event status and enable bits reside in either the GPE0_STS or GPE1_STS registers, and
“child” event status bits can reside in generic address space.

The example below illustrates some of these concepts. The top diagram shows how the logic is
partitioned into two chips: a chipset and an embedded controller.

• The chipset contains the interrupt logic, performs the power button (which is part of the fixed
register space, and is not discussed here), the lid switch (used in portables to indicate when the
clam shell lid is open or closed), and the RI# function (which can be used to wake a sleeping
system).

• The embedded controller chip is used to perform the AC power detect and dock/undock event
logic. Additionally, the embedded controller supports some system management functions
using an OS-transparent interrupt in the embedded controller (represented by the EXTSMI#
signal).

WAK_STS 1 7 This bit is set when the system is in the sleeping state and an
enabled wake event occurs. Upon setting this bit system will
transition to the working state. This bit is set by hardware and can
only be cleared by software writing a “1” to this bit position.
UEFI Forum, Inc. January 2019 Page 102

ACPI Specification, Version 6.3 ACPI Hardware Specification
Figure 4-13 Example of General-Purpose vs. Generic Hardware Events

At the top level, the generic events in the GPEx_STS register are the:

• Embedded controller interrupt, which contains two query events: one for AC detection and
one for docking (the docking query event has a child interrupt status bit in the docking chip).

• Ring indicate status (used for waking the system).
• Lid status.

The embedded controller event status bit (EC_STS) is used to indicate that one of two query events is
active.

• A query event is generated when the AC# signal is asserted. The embedded controller returns a
query value of 34 (any byte number can be used) upon a query command in response to this
event; OSPM will then schedule for execution the control method associated with query value
34.

Another query event is for the docking chip that generates a docking event. In this case, the embedded
controller will return a query value of 35 upon a query command from system software responding to an
SCI from the embedded controller. OSPM will then schedule the control method associated with the
query value of 35 to be executed, which services the docking event.

GPx_REG
Block

ACPI-Compatible
Chip Set

Momentary

Momentary

PWRBTN#

LID
Switch

Power
Button

LID#

Embedded
Controller

8

EC_CS#

EXTSMI#

EXTPME#

AC#

E
m

be
dd

ed
 C

on
tr

ol
le

r
In

te
rf

ac
e

EC_STS
GP_STS.0

EC_EN
GP_EN.0

Other SCI
sources

SCI#
Shareable

Interrupt

AC_STS
E0.0

DOCK_STS
P0.40.1

DOCK#

RI#

EXTPME#

RI_STS
GP_STS.1

RI_EN
GP_EN.1

RI#

AC#

DOCK#

EXTPME# EXTPME#

LID_STS
GP_STS.2

LID_EN
GP_EN.2

LID

LID_POL
S33.2

EXTSMI#
SMI-only
sourcesEXTSMI#

EXTSMI#
SMI Only
Events

Debounce

Docking
Chip

DOCK#

34

35
UEFI Forum, Inc. January 2019 Page 103

ACPI Specification, Version 6.3 ACPI Hardware Specification
For each of the status bits in the GPEx_STS register, there is a corresponding enable bit in the GPEx_EN
register. Notice that the child status bits do not necessarily need enable bits (see the DOCK_STS bit).

The lid logic contains a control bit to determine if its status bit is set when the LID is open (LID_POL is set
and LID is set) or closed (LID_POL is clear and LID is clear). This control bit resides in generic I/O space (in
this case, bit 2 of system I/O space 33h) and would be manipulated with a control method associated
with the lid object.

As with fixed hardware events, OSPM will clear the status bits in the GPEx register blocks. However, AML
code clears all sibling status bits in the generic hardware.

Generic hardware features are controlled by OEM supplied control methods, encoded in AML. ACPI
provides both an event and control model for development of these features. The ACPI specification also
provides specific control methods for notifying OSPM of certain power management and Plug and Play
events. Section 5, “ACPI Software Programming Model,” provides information on the types of hardware
functionality that support the different types of subsystems. The following is a list of features supported
by ACPI. The list is not intended to be complete or comprehensive.

• Device insertion/ejection (for example, docking, device bay, A/C adapter)

• Batteries2

• Platform thermal subsystem
• Turning on/off power resources
• Mobile lid Interface
• Embedded controller
• System indicators
• OEM-specific wake events
• Plug and Play configuration

4.8.4.1 General-Purpose Event Register Blocks

ACPI supports up to two general-purpose register blocks as described in the FADT (see Section 5, “ACPI
Software Programming Model”) and an arbitrary number of additional GPE blocks described as devices
within the ACPI namespace. Each register block contains two registers: an enable and a status register.
Each register block is 32-bit aligned. Each register in the block is accessed as a byte. It is up to the specific
design to determine if these bits retain their context across sleeping or soft-off states. If they lose their
context across a sleeping or soft-off state, then platform boot firmware resets the respective enable bit
prior to passing control to the OS upon waking.

4.8.4.1.1 General-Purpose Event 0 Register Block

This register block consists of two registers: The GPE0_STS and the GPE0_EN registers. Each register’s
length is defined to be half the length of the GPE0 register block, and is described in the ACPI FADT’s
GPE0_BLK and GPE0_BLK_LEN operators. OSPM owns the general-purpose event resources and these
bits are only manipulated by OSPM; AML code cannot access the general-purpose event registers.

It is envisioned that chipsets will contain GPE event registers that provide GPE input pins for various
events.

2. ACPI operating systems assume the use of the Smart Battery System Implementers Forum defined stan-
dard for batteries, called the “Smart Battery Specification” (SBS). ACPI provides a set of control methods for use by
OEMs that use a proprietary “control method” battery interface.
UEFI Forum, Inc. January 2019 Page 104

ACPI Specification, Version 6.3 ACPI Hardware Specification
The platform designer would then wire the GPEs to the various value-added event hardware and the AML
code would describe to OSPM how to utilize these events. As such, there will be the case where a
platform has GPE events that are not wired to anything (they are present in the chip set), but are not
utilized by the platform and have no associated AML code. In such, cases these event pins are to be tied
inactive such that the corresponding SCI status bit in the GPE register is not set by a floating input pin.

4.8.4.1.1.1 General-Purpose Event 0 Status Register

Register Location:<GPE0_STS> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE0_BLK_LEN/2

The general-purpose event 0 status register contains the general-purpose event status bits in bank zero
of the general-purpose registers. Each available status bit in this register corresponds to the bit with the
same bit position in the GPE0_EN register. Each available status bit in this register is set when the event is
active, and can only be cleared by software writing a “1” to its respective bit position. For the general-
purpose event registers, unimplemented bits are ignored by OSPM.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with its
respective enable bit set. OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.4.1.1.2 General-Purpose Event 0 Enable Register

Register Location: <GPE0_EN> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE0_BLK_LEN/2

The general-purpose event 0 enable register contains the general-purpose event enable bits. Each
available enable bit in this register corresponds to the bit with the same bit position in the GPE0_STS
register. The enable bits work similarly to how the enable bits in the fixed-event registers are defined:
When the enable bit is set, then a set status bit in the corresponding status bit will generate an SCI bit.
OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.4.1.2 General-Purpose Event 1 Register Block

This register block consists of two registers: The GPE1_STS and the GPE1_EN registers. Each register’s
length is defined to be half the length of the GPE1 register block, and is described in the ACPI FADT’s
GPE1_BLK and GPE1_BLK_LEN operators.

4.8.4.1.2.1 General-Purpose Event 1 Status Register

Register Location: <GPE1_STS> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general -purpose event 1 status register contains the general-purpose event status bits. Each
available status bit in this register corresponds to the bit with the same bit position in the GPE1_EN
register. Each available status bit in this register is set when the event is active, and can only be cleared
by software writing a “1” to its respective bit position. For the general-purpose event registers,
unimplemented bits are ignored by the operating system.
UEFI Forum, Inc. January 2019 Page 105

ACPI Specification, Version 6.3 ACPI Hardware Specification
Each status bit can optionally wake the system if asserted when the system is in a sleeping state with its
respective enable bit set.

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.4.1.2.2 General-Purpose Event 1 Enable Register

Register Location: <GPE1_EN> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general-purpose event 1 enable register contains the general-purpose event enable. Each available
enable bit in this register corresponds to the bit with the same bit position in the GPE1_STS register. The
enable bits work similarly to how the enable bits in the fixed-event registers are defined: When the
enable bit is set, a set status bit in the corresponding status bit will generate an SCI bit.

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.4.2 Example Generic Devices

This section points out generic devices with specific ACPI driver support.

4.8.4.2.1 Lid Switch

The Lid switch is an optional feature present in most “clam shell” style mobile computers. It can be used
by the OS as policy input for sleeping the system, or for waking the system from a sleeping state. If used,
then the OEM needs to define the lid switch as a device with an _HID object value of “PNP0C0D”, which
identifies this device as the lid switch to OSPM. The Lid device needs to contain a control method that
returns its status. The Lid event handler AML code reconfigures the lid hardware (if it needs to) to
generate an event in the other direction, clear the status, and then notify OSPM of the event.

Example hardware and ASL code is shown below for such a design.

Figure 4-14 Example Generic Address Space Lid Switch Logic

This logic will set the Lid status bit when the button is pressed or released (depending on the LID_POL
bit).

The ASL code below defines the following:

• An operational region where the lid polarity resides in address space System address space in
registers 0x201.

• A field operator to allow AML code to access this bit: Polarity control bit (LID_POL) is called
LPOL and is accessed at 0x201.0.

• A device named _SB.LID with the following:

— A Plug and Play identifier “PNP0C0D” that associates OSPM with this object.

LID_POL

LID_STS

8 ms
Debounce

Momentary Normally
Open push button
UEFI Forum, Inc. January 2019 Page 106

ACPI Specification, Version 6.3 ACPI Hardware Specification
— Defines an object that specifies a change in the lid’s status bit can wake the system from
the S4 sleep state and from all higher sleep states (S1, S2, or S3).

• The lid switch event handler that does the following:

— Defines the lid status bit (LID_STS) as a child of the general-purpose event 0 register bit 1.

— Defines the event handler for the lid (only event handler on this status bit) that does the
following:

• Flips the polarity of the LPOL bit (to cause the event to be generated on the opposite
condition).

• Generates a notify to the OS that does the following:

• Passes the _SB.LID object.

• Indicates a device specific event (notify value 0x80).
// Define a Lid switch
OperationRegion(\PHO, SystemIO, 0x201, 0x1)
Field(\PHO, ByteAcc, NoLock, Preserve) {
 LPOL, 1 // Lid polarity control bit
}

Device(_SB.LID){
 Name(_HID, EISAID(“PNP0C0D”))
 Method(_LID){Return(LPOL)}
 Name(_PRW, Package(2){
 1, // bit 1 of GPE to enable Lid wakeup
 0x04} // can wakeup from S4 state
)
}
Scope(_GPE){ // Root level event handlers
 Method(_L01){ // uses bit 1 of GP0_STS register
 Not(LPOL, LPOL) // Flip the lid polarity bit
 Notify(LID, 0x80) // Notify OS of event
 }
}

4.8.4.2.2 Embedded Controller

ACPI provides a standard interface that enables AML code to define and access generic logic in
“embedded controller space.” This supports current computer models where much of the value added
hardware is contained within the embedded controller while allowing the AML code to access this
hardware in an abstracted fashion.

• The embedded controller is defined as a device and must contain a set number of control
methods:

• _HID with a value of PNP0C09 to associate this device with the ACPI’s embedded controller’s
driver.

• _CRS to return the resources being consumed by the embedded controller.
• _GPE that returns the general-purpose event bit that this embedded controller is wired to.

Additionally the embedded controller can support up to 255 generic events per embedded controller,
referred to as query events. These query event handles are defined within the embedded controller’s
device as control methods. An example of defining an embedded controller device is shown below:
UEFI Forum, Inc. January 2019 Page 107

ACPI Specification, Version 6.3 ACPI Hardware Specification
Device(EC0) {
 // PnP ID
 Name(_HID, EISAID(“PNP0C09”))
 // Returns the “Current Resources” of EC
 Name(_CRS,
 ResourceTemplate(){
 IO(Decode16, 0x62, 0x62, 0, 1)
 IO(Decode16, 0x66, 0x66, 0, 1)
 })
 // Indicate that the EC SCI is bit 0 of the GP_STS register
 Name(_GPE, 0) // embedded controller is wired to bit 0 of GPE

 OperationRegion(\EC0, EmbeddedControl, 0, 0xFF)
 Field(EC0, ByteAcc, Lock, Preserve) {
 // Field definitions
 }
 // Query methods
 Method(_Q00){...}
 Method(_QFF){...}
}

For more information on the embedded controller, see Section 12, “ACPI Embedded Controller Interface
Specification.”

4.8.4.2.3 Fan

ACPI has a device driver to control fans (active cooling devices) in platforms. A fan is defined as a device
with the Plug and Play ID of “PNP0C0B.” It should then contain a list power resources used to control the
fan.

For more information, see Section 9, “ACPI-Defined Devices and Device Specific Objects.” .
UEFI Forum, Inc. January 2019 Page 108

5 ACPI Software Programming Model

ACPI defines a hardware register interface that an ACPI-compatible OS uses to control core power
management features of a machine, as described in Section 4, “ACPI Hardware Specification.” ACPI also
provides an abstract interface for controlling the power management and configuration of an ACPI
system. Finally, ACPI defines an interface between an ACPI-compatible OS and the platform runtime
firmware.

To give hardware vendors flexibility in choosing their implementation, ACPI uses tables to describe
system information, features, and methods for controlling those features. These tables list devices on the
system board or devices that cannot be detected or power managed using some other hardware
standard, plus their capabilities as described in Section 3, “Overview.” They also list system capabilities
such as the sleeping power states supported, a description of the power planes and clock sources
available in the system, batteries, system indicator lights, and so on. This enables OSPM to control system
devices without needing to know how the system controls are implemented.

Topics covered in this section are:

• The ACPI system description table architecture is defined, and the role of OEM-provided
definition blocks in that architecture is discussed.

• The concept of the ACPI Namespace is discussed.

5.1 Overview of the System Description Table Architecture

The Root System Description Pointer (RSDP) structure is located in the system’s memory address space
and is setup by the platform firmware. This structure contains the address of the Extended System
Description Table (XSDT), which references other description tables that provide data to OSPM, supplying
it with knowledge of the base system’s implementation and configuration (see Figure 5-15).

Figure 5-15 Root System Description Pointer and Table

All system description tables start with identical headers. The primary purpose of the system description
tables is to define for OSPM various industry-standard implementation details. Such definitions enable

Located in system's memory address space

Extended System
Description Table

Header

XSDT

Entry

Entry

...

Entry

...

Root System
Description Pointer

Header

Sig

 contents

Header

Sig

 contents

RSD PTR

Pointer

Pointer
UEFI Forum, Inc. January 2019 Page 109

http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-ff260a9c20e2/pnp_legacy.doc
http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-ff260a9c20e2/pnp_legacy.doc

ACPI Specification, Version 6.3 ACPI Software Programming Model
various portions of these implementations to be flexible in hardware requirements and design, yet still
provide OSPM with the knowledge it needs to control hardware directly.

The Extended System Description Table (XSDT) points to other tables in memory. Always the first table, it
points to the Fixed ACPI Description table (FADT). The data within this table includes various fixed-length
entries that describe the fixed ACPI features of the hardware. The FADT table always refers to the
Differentiated System Description Table (DSDT), which contains information and descriptions for various
system features. The relationship between these tables is shown in Figure 5-16.

Figure 5-16 Description Table Structures

OSPM finds the RSDP structure as described in Section 5.2.5.1 (“Finding the RSDP on IA-PC Systems”) or
Section 5.2.5.2 (“Finding the RSDP on UEFI Enabled Systems”).

When OSPM locates the structure, it looks at the physical address for the Root System Description Table
or the Extended System Description Table. The Root System Description Table starts with the signature
“RSDT”, while the Extended System Description Table starts with the signature “XSDT”. These tables
contain one or more physical pointers to other system description tables that provide various
information about the system. As shown in Figure 5-16, there is always a physical address in the Root
System Description Table for the Fixed ACPI Description table (FADT).

Device I/O
Device Memory

PCI configuration
Embedded Controller space

Firmware ACPI
Control Structure

Wake Vector
Shared Lock

FACS

GPx_BLK

PM2x_BLK

Differentiated System
Description Table

Header

DSDT

Differentiated
Definition

Block

PM1x_BLK

Fixed ACPI
Description Table

Header

FACP

Static info

Located in
port space

OEM-Specific

ACPI
Driver

Software

Hardware

FIRM
DSDT
BLKs

...
UEFI Forum, Inc. January 2019 Page 110

ACPI Specification, Version 6.3 ACPI Software Programming Model
When OSPM follows a physical pointer to another table, it examines each table for a known signature.
Based on the signature, OSPM can then interpret the implementation-specific data within the description
table.

The purpose of the FADT is to define various static system information related to configuration and
power management. The Fixed ACPI Description Table starts with the “FACP” signature. The FADT
describes the implementation and configuration details of the ACPI hardware registers on the platform.

For a specification of the ACPI Hardware Register Blocks (PM1a_EVT_BLK, PM1b_EVT_BLK,
PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, PM_TMR_BLK, GP0_BLK, GP1_BLK, and one or more
P_BLKs), see Section 4.8, “ACPI Register Model.” The PM1a_EVT_BLK, PM1b_EVT_BLK, PM1a_CNT_BLK,
PM1b_CNT_BLK, PM2_CNT_BLK, and PM_TMR_BLK blocks are for controlling low-level ACPI system
functions.

The GPE0_BLK and GPE1_BLK blocks provide the foundation for an interrupt-processing model for
Control Methods. The P_BLK blocks are for controlling processor features.

Besides ACPI Hardware Register implementation information, the FADT also contains a physical pointer
to a data structure known as the Differentiated System Description Table (DSDT), which is encoded in
Definition Block format (See Section 5.2.11, “Definition Blocks”).

A Definition Block contains information about the platform’s hardware implementation details in the
form of data objects arranged in a hierarchical (tree-structured) entity known as the “ACPI namespace”,
which represents the platform’s hardware configuration. All definition blocks loaded by OSPM combine
to form one namespace that represents the platform. Data objects are encoded in a format known as
ACPI Machine Language or AML for short. Data objects encoded in AML are “evaluated” by an OSPM
entity known as the AML interpreter. Their values may be static or dynamic. The AML interpreter’s
dynamic data object evaluation capability includes support for programmatic evaluation, including
accessing address spaces (for example, I/O or memory accesses), calculation, and logical evaluation, to
determine the result. Dynamic namespace objects are known as “control methods”. OSPM “loads” an
entire definition block as a logical unit – adding to or removing the associated objects from the
namespace. The DSDT contains a Definition Block named the Differentiated Definition Block that contains
implementation and configuration information OSPM can use to perform power management, thermal
management, or Plug and Play functionality that goes beyond the information described by the ACPI
hardware registers.

Definition Blocks can either define new system attributes or, in some cases, build on prior definitions. A
Definition Block can be loaded from system memory address space. One use of a Definition Block is to
describe and distribute platform version changes.

Definition blocks enable wide variations of hardware platform implementations to be described to the
ACPI-compatible OS while confining the variations to reasonable boundaries. Definition blocks enable
simple platform implementations to be expressed by using a few well-defined object names. In theory, it
might be possible to define a PCI configuration space-like access method within a Definition Block, by
building it from I/O space, but that is not the goal of the Definition Block specification. Such a space is
usually defined as a “built in” operator.

Some operators perform simple functions and others encompass complex functions. The power of the
Definition Block comes from its ability to allow these operations to be glued together in numerous ways,
to provide functionality to OSPM. The operators present are intended to allow many useful hardware
designs to be ACPI-expressed, not to allow all hardware designs to be expressed.
UEFI Forum, Inc. January 2019 Page 111

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.1.1 Address Space Translation

Some platforms may contain bridges that perform translations as I/O and/or Memory cycles pass through
the bridges. This translation can take the form of the addition or subtraction of an offset. Or it can take
the form of a conversion from I/O cycles into Memory cycles and back again. When translation takes
place, the addresses placed on the processor bus by the processor during a read or write cycle are not the
same addresses that are placed on the I/O bus by the I/O bus bridge. The address the processor places on
the processor bus will be known here as the processor-relative address. And the address that the bridge
places on the I/O bus will be known as the bus-relative address. Unless otherwise noted, all addresses
used within this section are processor-relative addresses.

For example, consider a platform with two root PCI buses. The platform designer has several choices. One
solution would be to split the 16-bit I/O space into two parts, assigning one part to the first root PCI bus
and one part to the second root PCI bus. Another solution would be to make both root PCI buses decode
the entire 16-bit I/O space, mapping the second root PCI bus’s I/O space into memory space. In this
second scenario, when the processor needs to read from an I/O register of a device underneath the
second root PCI bus, it would need to perform a memory read within the range that the root PCI bus
bridge is using to map the I/O space.

Note: Industry standard PCs do not provide address space translations because of historical
compatibility issues.

5.2 ACPI System Description Tables

This section specifies the structure of the system description tables:

• Root System Description Pointer (RSDP)
• System Description Table Header
• Root System Description Table (RSDT)
• Fixed ACPI Description Table (FADT)
• Firmware ACPI Control Structure (FACS)
• Differentiated System Description Table (DSDT)
• Secondary System Description Table (SSDT)
• Multiple APIC Description Table (MADT)
• Smart Battery Table (SBST)
• Extended System Description Table (XSDT)
• Embedded Controller Boot Resources Table (ECDT)
• System Locality Distance Information Table (SLIT)
• System Resource Affinity Table (SRAT)
• Corrected Platform Error Polling Table (CPEP)
• Maximum System Characteristics Table (MSCT)
• ACPI RAS Feature Table (RASF)
• Memory Power StateTable (MPST)
• Platform Memory Topology Table (PMTT)
• Boot Graphics Resource Table (BGRT)
• Firmware Performance Data Table (FPDT)
• Generic Timer Description Table (GTDT)
• NVDIMM Firmware Interface Table (NFIT)
• Heterogeneous Memory Attributes Table (HMAT)
UEFI Forum, Inc. January 2019 Page 112

ACPI Specification, Version 6.3 ACPI Software Programming Model
• Platform Debug Trigger Table (PDTT)
• Processor Properties Topology Table (PPTT)

All numeric values in ACPI-defined tables, blocks, and structures are always encoded in little endian
format. Signature values are stored as fixed-length strings.

5.2.1 Reserved Bits and Fields

For future expansion, all data items marked as reserved in this specification have strict meanings. This
section lists software requirements for reserved fields. Notice that the list contains terms such as ACPI
tables and AML code defined later in this section of the specification.

5.2.1.1 Reserved Bits and Software Components

• OEM implementations of software and AML code return the bit value of 0 for all reserved bits
in ACPI tables or in other software values, such as resource descriptors.

• For all reserved bits in ACPI tables and registers, OSPM implementations must:
• Ignore all reserved bits that are read.
• Preserve reserved bit values of read/write data items (for example, OSPM writes back reserved

bit values it reads).
• Write zeros to reserved bits in write-only data items.

5.2.1.2 Reserved Values and Software Components

• OEM implementations of software and AML code return only defined values and do not return
reserved values.

• OSPM implementations write only defined values and do not write reserved values.

5.2.1.3 Reserved Hardware Bits and Software Components

• Software ignores all reserved bits read from hardware enable or status registers.
• Software writes zero to all reserved bits in hardware enable registers.
• Software ignores all reserved bits read from hardware control and status registers.
• Software preserves the value of all reserved bits in hardware control registers by writing back

read values.

5.2.1.4 Ignored Hardware Bits and Software Components

• Software handles ignored bits in ACPI hardware registers the same way it handles reserved bits
in these same types of registers.

5.2.2 Compatibility

All versions of the ACPI tables must maintain backward compatibility. To accomplish this, modifications
of the tables consist of redefinition of previously reserved fields and values plus appending data to the
1.0 tables. Modifications of the ACPI tables require that the version numbers of the modified tables be
incremented. The length field in the tables includes all additions and the checksum is maintained for the
entire length of the table.

5.2.3 Address Format

Addresses used in the ACPI 1.0 system description tables were expressed as either system memory or I/O
space. This was targeted at the IA-32 environment. Newer architectures require addressing mechanisms
UEFI Forum, Inc. January 2019 Page 113

ACPI Specification, Version 6.3 ACPI Software Programming Model
beyond that defined in ACPI 1.0. To support these architectures ACPI must support 64-bit addressing and
it must allow the placement of control registers in address spaces other than System I/O.

5.2.3.1 Functional Fixed Hardware

ACPI defines the fixed hardware low-level interfaces as a means to convey to the system OEM the
minimum interfaces necessary to achieve a level of capability and quality for motherboard configuration
and system power management. Additionally, the definition of these interfaces, as well as others defined
in this specification, conveys to OS Vendors (OSVs) developing ACPI-compatible operating systems, the
necessary interfaces that operating systems must manipulate to provide robust support for system
configuration and power management.

While the definition of low-level hardware interfaces defined by ACPI 1.0 afforded OSPM
implementations a certain level of stability, controls for existing and emerging diverse CPU architectures
cannot be accommodated by this model as they can require a sequence of hardware manipulations
intermixed with native CPU instructions to provide the ACPI-defined interface function. In this case, an
ACPI-defined fixed hardware interface can be functionally implemented by the CPU manufacturer
through an equivalent combination of both hardware and software and is defined by ACPI as Functional
Fixed Hardware.

In IA-32-based systems, functional fixed hardware can be accommodated in an OS independent manner
by using System Management Mode (SMM) based system firmware. Unfortunately, the nature of SMM-
based code makes this type of OS independent implementation difficult if not impossible to debug. As
such, this implementation approach is not recommended. In some cases, Functional Fixed Hardware
implementations may require coordination with other OS components. As such, an OS independent
implementation may not be viable.

OS-specific implementations of functional fixed hardware can be implemented using technical
information supplied by the CPU manufacturer. The downside of this approach is that functional fixed
hardware support must be developed for each OS. In some cases, the CPU manufacturer may provide a
software component providing this support. In other cases support for the functional fixed hardware may
be developed directly by the OS vendor.

The hardware register definition was expanded, in ACPI 2.0, to allow registers to exist in address spaces
other than the System I/O address space. This is accomplished through the specification of an address
space ID in the register definition (see Section 5.2.3.2, “Generic Address Structure,” for more
information). When specifically directed by the CPU manufacturer, the system firmware may define an
interface as functional fixed hardware by indicating 0x7F (Functional Fixed Hardware), in the address
space ID field for register definitions. It is emphasized that functional fixed hardware definitions may be
declared in the ACPI system firmware only as indicated by the CPU Manufacturer for specific interfaces
as the use of functional fixed hardware requires specific coordination with the OS vendor.

Only certain ACPI-defined interfaces may be implemented using functional fixed hardware and only when
the interfaces are common across machine designs for example, systems sharing a common CPU
architecture that does not support fixed hardware implementation of an ACPI-defined interface. OEMs
are cautioned not to anticipate that functional fixed hardware support will be provided by OSPM
differently on a system-by-system basis. The use of functional fixed hardware carries with it a reliance on
OS specific software that must be considered. OEMs should consult OS vendors to ensure that specific
functional fixed hardware interfaces are supported by specific operating systems.
UEFI Forum, Inc. January 2019 Page 114

ACPI Specification, Version 6.3 ACPI Software Programming Model
Note: FFH is permitted and applicable to both full and HW-reduced ACPI implementations.

5.2.3.2 Generic Address Structure

The Generic Address Structure (GAS) provides the platform with a robust means to describe register
locations. This structure, described below (Table 5-25), is used to express register addresses within tables
defined by ACPI .

Table 5-25 Generic Address Structure (GAS)

Field
Byte
Length

Byte
Offset

Description

Address Space
ID

1 0 The address space where the data structure or register exists.
Defined values are:

0x00 System Memory space

0x01 System I/O space

0x02 PCI Configuration space

0x03 Embedded Controller

0x04 SMBus

0x05 SystemCMOS

0x06 PciBarTarget

0x07 IPMI

0x08 General PurposeIO

0x09 GenericSerialBus

0x0A Platform Communications Channel (PCC)

0x0B to 0x7E Reserved

0x7F Functional Fixed Hardware

0x80 to 0xBF Reserved

0xC0 to 0xFF OEM Defined

Register Bit
Width

1 1 The size in bits of the given register. When addressing a data
structure, this field must be zero.

Register Bit
Offset

1 2 The bit offset of the given register at the given address. When
addressing a data structure, this field must be zero.

Access Size 1 3 Specifies access size. Unless otherwise defined by the Address
Space ID:

0 Undefined (legacy reasons)

1 Byte access

2 Word access

3 Dword access

4 QWord access

Address 8 4 The 64-bit address of the data structure or register in the given
address space (relative to the processor). (See below for specific
formats.)
UEFI Forum, Inc. January 2019 Page 115

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-26 Address Space Format

Address Space Format

0–System Memory The 64-bit physical memory address (relative to the processor) of the register. 32-
bit platforms must have the high DWORD set to 0.

1–System I/O The 64-bit I/O address (relative to the processor) of the register. 32-bit platforms
must have the high DWORD set to 0.

2–PCI Configuration
Space

PCI Configuration space addresses must be confined to devices on

PCI Segment Group 0, bus 0. This restriction exists to accommodate access to fixed
hardware prior to PCI bus enumeration. The format of addresses are defined as
follows:

WORD Location Description

Highest WORD Reserved (must be 0)

… PCI Device number on bus 0

… PCI Function number

Lowest WORD Offset in the configuration space header

For example: Offset 23h of Function 2 on device 7 on bus 0 segment 0 would be
represented as: 0x0000000700020023.

0x7F–Functional
Fixed Hardware

Use of GAS fields other than Address_Space_ID is specified by the CPU
manufacturer. The use of functional fixed hardware carries with it a reliance on OS
specific software that must be considered. OEMs should consult OS vendors to
ensure that specific functional fixed hardware interfaces are supported by specific
operating systems.

 0x0A-PCC

5.2.4 Universally Unique Identifiers (UUIDs)

UUIDs (Universally Unique IDentifiers), also known as GUIDs (Globally Unique IDentifiers) are 128 bit long
values that extremely likely to be different from all other UUIDs generated until 3400 A.D. UUIDs are
used to distinguish between callers of ASL methods, such as _DSM and _OSC.

The format of both the binary and string representations of UUIDs along with an algorithm to generate
them is specified in ISO/IEC 11578:1996 Information technology - Open Systems Interconnection - Remote
Procedure Call (RPC) and can be found as part of the Distributed Computing Environment 1.1: Remote
Procedure Call specification, which can be found in “Links to ACPI-Related Documents” (http://uefi.org/
acpi) under the heading "Universal Uniform Identifiers (UUID)".

5.2.5 Root System Description Pointer (RSDP)

During OS initialization, OSPM must obtain the Root System Description Pointer (RSDP) structure from
the platform. When OSPM locates the Root System Description Pointer (RSDP) structure, it then locates
the Root System Description Table (RSDT) or the Extended Root System Description Table (XSDT) using
the physical system address supplied in the RSDP.
UEFI Forum, Inc. January 2019 Page 116

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.5.1 Finding the RSDP on IA-PC Systems

OSPM finds the Root System Description Pointer (RSDP) structure by searching physical memory ranges
on 16-byte boundaries for a valid Root System Description Pointer structure signature and checksum
match as follows:

• The first 1 KB of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the EBDA can
be found in the two-byte location 40:0Eh on the BIOS data area.

• The BIOS read-only memory space between 0E0000h and 0FFFFFh.

5.2.5.2 Finding the RSDP on UEFI Enabled Systems

In Unified Extensible Firmware Interface (UEFI) enabled systems, a pointer to the RSDP structure exists
within the EFI System Table. The OS loader is provided a pointer to the EFI System Table at invocation.
The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table and convey the
pointer to OSPM, using an OS dependent data structure, as part of the hand off of control from the OS
loader to the OS.

The OS loader locates the pointer to the RSDP structure by examining the EFI Configuration Table within
the EFI System Table. EFI Configuration Table entries consist of Globally Unique Identifier (GUID)/table
pointer pairs. The UEFI specification defines two GUIDs for ACPI; one for ACPI 1.0 and the other for ACPI
2.0 or later specification revisions.

The EFI GUID for a pointer to the ACPI 1.0 specification RSDP structure is:

• eb9d2d30-2d88-11d3-9a16-0090273fc14d.

The EFI GUID for a pointer to the ACPI 2.0 or later specification RSDP structure is:

• 8868e871-e4f1-11d3-bc22-0080c73c8881.

The OS loader for an ACPI-compatible OS will search for an RSDP structure pointer (Table 5-27) using the
current revision GUID first and if it finds one, will use the corresponding RSDP structure pointer. If the
GUID is not found then the OS loader will search for the RSDP structure pointer using the ACPI 1.0 version
GUID.

The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table before
assuming platform control via the EFI ExitBootServices interface. See the UEFI Specification for more
information.
UEFI Forum, Inc. January 2019 Page 117

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.5.3 Root System Description Pointer (RSDP) Structure

The revision number contained within the structure indicates the size of the table structure.

Table 5-27 RSDP Structure

Field
Byte
Length

Byte
Offset

Description

Signature 8 0 “RSD PTR ” (Notice that this signature must contain a trailing blank
character.)

Checksum 1 8 This is the checksum of the fields defined in the ACPI 1.0
specification. This includes only the first 20 bytes of this table,
bytes 0 to 19, including the checksum field. These bytes must sum
to zero.

OEMID 6 9 An OEM-supplied string that identifies the OEM.

Revision 1 15 The revision of this structure. Larger revision numbers are
backward compatible to lower revision numbers. The ACPI version
1.0 revision number of this table is zero. The ACPI version 1.0 RSDP
Structure only includes the first 20 bytes of this table, bytes 0 to
19. It does not include the Length field and beyond. The current
value for this field is 2.

RsdtAddress 4 16 32 bit physical address of the RSDT.

Length* 4 20 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table. This field is not available in the ACPI version 1.0 RSDP
Structure.

XsdtAddress* 8 24 64 bit physical address of the XSDT.

Extended
Checksum*

1 32 This is a checksum of the entire table, including both checksum
fields.

Reserved* 3 33 Reserved field

* These fields are only valid when the Revision value is 2 or above.

5.2.6 System Description Table Header

All system description tables begin with the structure shown in Table 5-28. The Signature field
determines the content of the system description table. System description table signatures defined by
this specification are listed in Table 5-29.
UEFI Forum, Inc. January 2019 Page 118

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-28 DESCRIPTION_HEADER Fields

Field Byte
Length

Byte
Offset

Description

Signature 4 0 The ASCII string representation of the table identifier. Notice that if

OSPM finds a signature in a table that is not listed in Table 5-29,
OSPM ignores the entire table (it is not loaded into ACPI
namespace); OSPM ignores the table even though the values in the
Length and Checksum fields are correct.

Length 4 4 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table.

Revision 1 8 The revision of the structure corresponding to the signature field
for this table. Larger revision numbers are backward compatible to
lower revision numbers with the same signature.

Checksum 1 9 The entire table, including the checksum field, must add to zero to
be considered valid.

OEMID 6 10 An OEM-supplied string that identifies the OEM.

OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify the
particular data table. This field is particularly useful when defining
a definition block to distinguish definition block functions. The
OEM assigns each dissimilar table a new OEM Table ID.

OEM Revision 4 24 An OEM-supplied revision number. Larger numbers are assumed to
be newer revisions.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

For OEMs, good design practices will ensure consistency when assigning OEMID and OEM Table ID fields
in any table. The intent of these fields is to allow for a binary control system that support services can
use. Because many support functions can be automated, it is useful when a tool can programmatically
determine which table release is a compatible and more recent revision of a prior table on the same
OEMID and OEM Table ID.

Table 5-29 and Table 5-30 contain the system description table signatures defined by this specification.
These system description tables may be defined by ACPI and documented within this specification
(Table 5-29) or they may be simply reserved by ACPI and defined by other industry specifications
(Table 5-30). This allows OS and platform specific tables to be defined and pointed to by the RSDT/XSDT
as needed. For tables defined by other industry specifications, the ACPI specification acts as gatekeeper
to avoid collisions in table signatures.

Table signatures will be reserved by the ACPI promoters and posted independently of this specification in
ACPI errata and clarification documents on the ACPI web site. Requests to reserve a 4-byte alphanumeric
table signature should be sent to the email address info@acpi.info and should include the purpose of the
table and reference URL to a document that describes the table format. Tables defined outside of the
ACPI specification may define data value encodings in either little endian or big endian format. For the
UEFI Forum, Inc. January 2019 Page 119

ACPI Specification, Version 6.3 ACPI Software Programming Model
purpose of clarity, external table definition documents should include the endian-ness of their data value
encodings.

Since reference URLs can change over time and may not always be up-to-date in this specification, a
separate document containing the latest known reference URLs can be found at “Links to ACPI-Related
Documents” (http://uefi.org/acpi), which should conspicuously be placed in the same location as this
specification.

Table 5-29 DESCRIPTION_HEADER Signatures for tables defined by ACPI

Signature Description Reference

“APIC” Multiple APIC Description Table Section 5.2.12, “Multiple APIC Description Table”

“BERT” Boot Error Record Table Section 18.3.1, “Boot Error Source”

“BGRT” Boot Graphics Resource Table Section 5.2.22, “Boot Graphics Resource Table”

“CPEP” Corrected Platform Error Polling
Table

Section 5.2.18, “Corrected Platform Error Polling Table”

“DSDT” Differentiated System Description
Table

Section 5.2.11.1, “Differentiated System Description Table”

“ECDT” Embedded Controller Boot Resources
Table

Section 5.2.15 “Embedded Controller Boot Resources
Table”

“EINJ” Error Injection Table Section 18.6.1, “Error Injection Table”

“ERST” Error Record Serialization Table Section 18.5, “Error Serialization”

”FACP” Fixed ACPI Description Table (FADT) Section 5.2.9, “Fixed ACPI Description Table”

“FACS” Firmware ACPI Control Structure Section 5.2.10, “Firmware ACPI Control Structure”

“FPDT” Firmware Performance Data Table Section 5.2.23, “Firmware Performance Data Table”

“GTDT” Generic Timer Description Table Section 5.2.24, “Generic Timer Description Table”

“HEST” Hardware Error Source Table Section 18.3.2, “ACPI Error Source”

“MSCT” Maximum System Characteristics
Table

Section 5.2.19, “Maximum System Characteristics Table”

“MPST” Memory Power StateTable Section 5.2.21, “Memory Power StateTable”

“NFIT” NVDIMM Firmware Interface Table Section 5.2.25, “NVDIMM Firmware Interface Table (NFIT)

“OEMx” OEM Specific Information Tables OEM Specific tables. All table signatures starting with
“OEM” are reserved for OEM use.

“PCCT” Platform Communications Channel
Table

Section 14.1 “Platform Communications Channel Table”

“PMTT” Platform Memory Topology Table Section 5.2.21.12, Memory Topology Table (PMTT)

“PSDT” Persistent System Description Table Section 5.2.11.3, “Persistent System Description Table”

“RASF” ACPI RAS FeatureTable Section 5.2.20.3, “ACPI RAS Feature Table”

“RSDT” Root System Description Table Section 5.2.7, “Root System Description Table”
UEFI Forum, Inc. January 2019 Page 120

ACPI Specification, Version 6.3 ACPI Software Programming Model
“SBST” Smart Battery Specification Table Section 5.2.14, “Smart Battery Table”

“SDEV” Secure DEVices Table Section 5.2.26 “Secure Devices (SDEV) Table”

“SLIT” System Locality Distance Information
Table

Section 5.2.16.6, “System Locality Distance Information
Table”

“SRAT” System Resource Affinity Table Section 5.2.16, “System Resource Affinity Table”

“SSDT” Secondary System Description Table Section 5.2.11.2, “Secondary System Description Table”

“XSDT” Extended System Description Table Section 5.2.8, “Extended System Description Table”

Signature Description Reference
UEFI Forum, Inc. January 2019 Page 121

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-30 DESCRIPTION_HEADER Signatures for tables reserved by ACPI

Signature Description and External Reference

“BOOT” Reserved Signature

“CDIT” Component Distance Information Table

See "Links to ACPI-Related Documents" (http://uefi.org/acpi) under the heading "Component
Distance Information Table"

“CRAT” Component Resource Attribute Table

See "Links to ACPI-Related Documents" (http://uefi.org/acpi) under the heading "Component
Resource Attribute Table"

“CSRT” Core System Resource Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Core System
Resource Table".

“DBG2” Debug Port Table 2

Microsoft Debug Port Table 2 Specification

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Debug Port
Table 2".

“DBGP” Debug Port Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Debug Port
Table".

“DMAR” DMA Remapping Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading “DMA
Remapping Table”.

“DPPT” DMA Protection Policy Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading “DMA Protection
Policy Table”.

“DRTM” Dynamic Root of Trust for Measurement Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading “TCG D-RTM
Architecture Specification”.

“ETDT” Event Timer Description Table (Obsolete)
IA-PC Multimedia Timers Specification. This signature has been superseded by “HPET” and is now
obsolete.

“HPET” IA-PC High Precision Event Timer Table
IA-PC High Precision Event Timer Specification
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "IA-PC High
Precision Event Timer Table".

“IBFT” iSCSI Boot Firmware Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "iSCSI Boot
Firmware Table".
UEFI Forum, Inc. January 2019 Page 122

ACPI Specification, Version 6.3 ACPI Software Programming Model
"IORT" I/O Remapping Table

See "Links to ACPI-Related Documents" (http://uefi.org/acpi) under the heading "I/O Remapping
Table"

“IVRS” I/O Virtualization Reporting Structure
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "I/O
Virtualization Reporting Structure".

"LPIT" Low Power Idle Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Low Power Idle
Table".

“MCFG” PCI Express memory mapped configuration space base address Description Table
PCI Firmware Specification, Revision 3.0
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "PCI Sig".

“MCHI” Management Controller Host Interface Table
DSP0256 Management Component Transport Protocol (MCTP) Host Interface Specification
See“Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Management
Controller Host Interface Table".

“MSDM” Microsoft Data Management Table

See: Microsoft Data Management Table Specification

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Microsoft Data
Management Table".

“SDEI” Software Delegated Exceptions Interface

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Software
Delegated Exceptions Interface.”

“SLIC” Microsoft Software Licensing Table Specification

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Microsoft
Software Licensing Table Specification".

“SPCR” Serial Port Console Redirection Table
Microsoft Serial Port Console Redirection Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Serial Port
Console Redirection Table".

“SPMI” Server Platform Management Interface Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Server Platform
Management Interface Table".

“STAO” _STA Override Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "_STA Override
Table".

“TCPA” Trusted Computing Platform Alliance Capabilities Table
TCPA PC Specific Implementation Specification
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Trusted
Computing Platform Alliance Capabilities Table".

Signature Description and External Reference
UEFI Forum, Inc. January 2019 Page 123

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.7 Root System Description Table (RSDT)

OSPM locates that Root System Description Table by following the pointer in the RSDP structure. The
RSDT, shown in Table 5-31, starts with the signature ‘RSDT’ followed by an array of physical pointers to
other system description tables that provide various information on other standards defined on the
current system. OSPM examines each table for a known signature. Based on the signature, OSPM can
then interpret the implementation-specific data within the table.

Platforms provide the RSDT to enable compatibility with ACPI 1.0 operating systems. The XSDT, described
in the next section, supersedes RSDT functionality.

Table 5-31 Root System Description Table Fields (RSDT)

TPM2 Trusted Platform Module 2 Table

See: Trusted Platform Module 2 Table Specification

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Trusted
Platform Module 2 Table".

“UEFI” UEFI ACPI Data Table
UEFI Specification
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Unified
Extensible Firmware Interface Specifications".

“WAET” Windows ACPI Emulated Devices Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Windows ACPI
Emulated Devices Table".

“WDAT” Watch Dog Action Table
Requirements for Hardware Watchdog Timers Supported by Windows – Design Specification
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Watchdog
Action Table".

“WDRT” Watchdog Resource Table
Watchdog Timer Hardware Requirements for Windows Server 2003
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Watchdog Timer
Resource Table (WDRT)".

“WPBT” Windows Platform Binary Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Windows
Platform Binary Table".

“WSMT” See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading “Windows SMM
Security Mitigation Table (WSMT).”

"XENV" Xen Project Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Xen Project
Table".

Field Byte
Length

Byte
Offset

Description

Header

Signature Description and External Reference
UEFI Forum, Inc. January 2019 Page 124

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.8 Extended System Description Table (XSDT)

The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERs that are larger than 32 bits. Notice that both the XSDT and the RSDT can be
pointed to by the RSDP structure. An ACPI-compatible OS must use the XSDT if present.

Table 5-32 Extended System Description Table Fields (XSDT)

 Signature 4 0 ‘RSDT’ Signature for the Root System Description Table.

 Length 4 4 Length, in bytes, of the entire RSDT. The length implies the
number of Entry fields (n) at the end of the table.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the RSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.

 OEM Revision 4 24 OEM revision of RSDT table for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Entry 4*n 36 An array of 32-bit physical addresses that point to other
DESCRIPTION_HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can further
address the table based upon its Length field.

Field
Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘XSDT’. Signature for the Extended System Description Table.

 Length 4 4 Length, in bytes, of the entire table. The length implies the
number of Entry fields (n) at the end of the table.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the XSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.

 OEM Revision 4 24 OEM revision of XSDT table for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL Compiler.

Field Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 125

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.9 Fixed ACPI Description Table (FADT)

The Fixed ACPI Description Table (FADT) defines various fixed hardware ACPI information vital to an ACPI-
compatible OS, such as the base address for the following hardware registers blocks: PM1a_EVT_BLK,
PM1b_EVT_BLK, PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, PM_TMR_BLK, GPE0_BLK, and
GPE1_BLK.

The FADT also has a pointer to the DSDT that contains the Differentiated Definition Block, which in turn
provides variable information to an ACPI-compatible OS concerning the base system design.

All fields in the FADT that provide hardware addresses provide processor-relative physical addresses.

Note: If the HW_REDUCED_ACPI flag in the table is set, OSPM will ignore fields related to the ACPI HW
register interface: Fields at offsets 46 through 108 and 148 through 232, as well as FADT Flag bits
1, 2, 3,7,8,13, 14, 16, and 17).

Note: In all cases where the FADT contains a 32-bit field and a corresponding 64-bit field the 64-bit field
should always be preferred by the OSPM if the 64-bit field contains a non-zero value which can be
used by the OSPM. In this case, the 32-bit field must be ignored regardless of whether or not it is
zero, and whether or not it is the same value as the 64-bit field. The 32-bit field should only be
used if the corresponding 64-bit field contains a zero value, or if the 64-bit value can not be used
by the OSPM subject to e.g. CPU addressing limitations.

Table 5-33 FADT Format

 Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Entry 8*n 36 An array of 64-bit physical addresses that point to other
DESCRIPTION_HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can further
address the table based upon its Length field.

Field
Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘FACP’. Signature for the Fixed ACPI Description Table. (This
signature predates ACPI 1.0, explaining the mismatch with this
table's name.)

 Length 4 4 Length, in bytes, of the entire FADT.

 FADT Major Version 1 8 6

Major Version of this FADT structure, in "Major.Minor" form,
where 'Minor' is the value in the Minor Version Field (Byte offset
131 in this table)

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 126

ACPI Specification, Version 6.3 ACPI Software Programming Model
 OEM Table ID 8 16 For the FADT, the table ID is the manufacture model ID. This field
must match the OEM Table ID in the RSDT.

 OEM Revision 4 24 OEM revision of FADT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

FIRMWARE_CTRL 4 36 Physical memory address of the FACS, where OSPM and
Firmware exchange control information. See Section 5.2.6,
“Root System Description Table,” for a description of the FACS. If
the X_FIRMWARE_CTRL field contains a non zero value which
can be used by the OSPM, then this field must be ignored by the
OSPM. If the HARDWARE_REDUCED_ACPI flag is set, and both
this field and the X_FIRMWARE_CTRL field are zero, there is no
FACS available.

DSDT 4 40 Physical memory address of the DSDT. If the X_DSDT field
contains a non-zero value which can be used by the OSPM, then
this field must be ignored by the OSPM.

Reserved 1 44 ACPI 1.0 defined this offset as a field named INT_MODEL, which
was eliminated in ACPI 2.0. Platforms should set this field to zero
but field values of one are also allowed to maintain compatibility
with ACPI 1.0.

Preferred_PM_Profile 1 45 This field is set by the OEM to convey the preferred power
management profile to OSPM. OSPM can use this field to set
default power management policy parameters during OS
installation.

Field Values:

0 Unspecified

1 Desktop

2 Mobile

3 Workstation

4 Enterprise Server

5 SOHO Server

6 Appliance PC

7 Performance Server

8) Tablet

>8 Reserved

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 127

ACPI Specification, Version 6.3 ACPI Software Programming Model
SCI_INT 2 46 System vector the SCI interrupt is wired to in 8259 mode. On
systems that do not contain the 8259, this field contains the
Global System interrupt number of the SCI interrupt. OSPM is
required to treat the ACPI SCI interrupt as a sharable, level,
active low interrupt.

SMI_CMD 4 48 System port address of the SMI Command Port. During ACPI OS
initialization, OSPM can determine that the ACPI hardware
registers are owned by SMI (by way of the SCI_EN bit), in which
case the ACPI OS issues the ACPI_ENABLE command to the
SMI_CMD port. The SCI_EN bit effectively tracks the ownership
of the ACPI hardware registers. OSPM issues commands to the
SMI_CMD port synchronously from the boot processor. This field
is reserved and must be zero on system that does not support
System Management mode.

ACPI_ENABLE 1 52 The value to write to SMI_CMD to disable SMI ownership of the
ACPI hardware registers. The last action SMI does to relinquish
ownership is to set the SCI_EN bit. During the OS initialization
process, OSPM will synchronously wait for the transfer of SMI
ownership to complete, so the ACPI system releases SMI
ownership as quickly as possible. This field is reserved and must
be zero on systems that do not support Legacy Mode.

ACPI_DISABLE 1 53 The value to write to SMI_CMD to re-enable SMI ownership of
the ACPI hardware registers. This can only be done when
ownership was originally acquired from SMI by OSPM using
ACPI_ENABLE. An OS can hand ownership back to SMI by
relinquishing use to the ACPI hardware registers, masking off all
SCI interrupts, clearing the SCI_EN bit and then writing
ACPI_DISABLE to the SMI_CMD port from the boot processor.
This field is reserved and must be zero on systems that do not
support Legacy Mode.

S4BIOS_REQ 1 54 The value to write to SMI_CMD to enter the S4BIOS state. The
S4BIOS state provides an alternate way to enter the S4 state
where the firmware saves and restores the memory context. A
value of zero in S4BIOS_F indicates S4BIOS_REQ is not
supported. (See Table 5-37)

PSTATE_CNT 1 55 If non-zero, this field contains the value OSPM writes to the
SMI_CMD register to assume processor performance state
control responsibility.

PM1a_EVT_BLK 4 56 System port address of the PM1a Event Register Block. See
Section 4.8.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This is a required field. If
the X_PM1a_CNT_BLK field contains a non zero value which can
be used by the OSPM, then this field must be ignored by the
OSPM.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 128

ACPI Specification, Version 6.3 ACPI Software Programming Model
PM1b_EVT_BLK 4 60 System port address of the PM1b Event Register Block. See
Section 4.8.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. If the
X_PM1b_EVT_BLK field contains a non zero value which can be
used by the OSPM, then this field must be ignored by the OSPM.

PM1a_CNT_BLK 4 64 System port address of the PM1a Control Register Block. See
Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This is a required field. If
the X_PM1a_CNT_BLK field contains a non zero value which can
be used by the OSPM, then this field must be ignored by the
OSPM.

PM1b_CNT_BLK 4 68 System port address of the PM1b Control Register Block. See
Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. If the
X_PM1b_CNT_BLK field contains a non zero value which can be
used by the OSPM, then this field must be ignored by the OSPM.

PM2_CNT_BLK 4 72 System port address of the PM2 Control Register Block. See
Section 4.8.3.4, “PM2 Control (PM2_CNT),” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. If the
X_PM2_CNT_BLK field contains a non zero value which can be
used by the OSPM, then this field must be ignored by the OSPM.

PM_TMR_BLK 4 76 System port address of the Power Management Timer Control
Register Block. See Section 4.8.3.3, “Power Management Timer
(PM_TMR),” for a hardware description layout of this register
block. This is an optional field; if this register block is not
supported, this field contains zero. If the X_PM2_CNT_BLK field
contains a non-zero value which can be used by the OSPM, then
this field must be ignored by the OSPM.

GPE0_BLK 4 80 System port address of General-Purpose Event 0 Register Block.
See Section 4.8.4.1, “General-Purpose Event Register Blocks,”
for a hardware description of this register block. This is an
optional field; if this register block is not supported, this field
contains zero. If the X_GPE0_BLK field contains a nonzero value
which can be used by the OSPM, then this field must be ignored
by the OSPM.

GPE1_BLK 4 84 System port address of General-Purpose Event 1 Register Block.
See Section 4.8.4.1, “General-Purpose Event Register Blocks,”
for a hardware description of this register block. This is an
optional field; if this register block is not supported, this field
contains zero. If the X_GPE1_BLK field contains a nonzero value
which can be used by the OSPM, then this field must be ignored
by the OSPM.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 129

ACPI Specification, Version 6.3 ACPI Software Programming Model
PM1_EVT_LEN 1 88 Number of bytes decoded by PM1a_EVT_BLK and, if supported,
PM1b_ EVT_BLK. This value is  4.

PM1_CNT_LEN 1 89 Number of bytes decoded by PM1a_CNT_BLK and, if supported,
PM1b_CNT_BLK. This value is  2.

PM2_CNT_LEN 1 90 Number of bytes decoded by PM2_CNT_BLK. Support for the
PM2 register block is optional. If supported, this value is  1. If
not supported, this field contains zero.

PM_TMR_LEN 1 91 Number of bytes decoded by PM_TMR_BLK. If the PM Timer is
supported, this field’s value must be 4. If not supported, this
field contains zero.

GPE0_BLK_LEN 1 92 Number of bytes decoded by GPE0_BLK. The value is a non-
negative multiple of 2.

GPE1_BLK_LEN 1 93 Number of bytes decoded by GPE1_BLK. The value is a non-
negative multiple of 2.

GPE1_BASE 1 94 Offset within the ACPI general-purpose event model where
GPE1 based events start.

CST_CNT 1 95 If non-zero, this field contains the value OSPM writes to the
SMI_CMD register to indicate OS support for the _CST object
and C States Changed notification.

P_LVL2_LAT 2 96 The worst-case hardware latency, in microseconds, to enter and
exit a C2 state. A value > 100 indicates the system does not
support a C2 state.

P_LVL3_LAT 2 98 The worst-case hardware latency, in microseconds, to enter and
exit a C3 state. A value > 1000 indicates the system does not
support a C3 state.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 130

ACPI Specification, Version 6.3 ACPI Software Programming Model
FLUSH_SIZE 2 100 If WBINVD=0, the value of this field is the number of flush strides
that need to be read (using cacheable addresses) to completely
flush dirty lines from any processor’s memory caches. Notice
that the value in FLUSH_STRIDE is typically the smallest cache
line width on any of the processor’s caches (for more
information, see the FLUSH_STRIDE field definition). If the
system does not support a method for flushing the processor’s
caches, then FLUSH_SIZE and WBINVD are set to zero. Notice
that this method of flushing the processor caches has
limitations, and WBINVD=1 is the preferred way to flush the
processors caches. This value is typically at least 2 times the
cache size. The maximum allowed value for FLUSH_SIZE
multiplied by FLUSH_STRIDE is 2 MB for a typical maximum
supported cache size of 1 MB. Larger cache sizes are supported
using WBINVD=1.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems
are required to support the WBINVD function and indicate this
to OSPM by setting the WBINVD field = 1.

FLUSH_STRIDE 2 102 If WBINVD=0, the value of this field is the cache line width, in
bytes, of the processor’s memory caches. This value is typically
the smallest cache line width on any of the processor’s caches.
For more information, see the description of the FLUSH_SIZE
field.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems
are required to support the WBINVD function and indicate this
to OSPM by setting the WBINVD field = 1.

DUTY_OFFSET 1 104 The zero-based index of where the processor’s duty cycle setting
is within the processor’s P_CNT register.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 131

ACPI Specification, Version 6.3 ACPI Software Programming Model
DUTY_WIDTH 1 105 The bit width of the processor’s duty cycle setting value in the
P_CNT register. Each processor’s duty cycle setting allows the
software to select a nominal processor frequency below its
absolute frequency as defined by:

THTL_EN = 1

BF * DC/(2DUTY_WIDTH)

 Where:

BF–Base frequency

DC–Duty cycle setting

When THTL_EN is 0, the processor runs at its absolute BF. A
DUTY_WIDTH value of 0 indicates that processor duty cycle is
not supported and the processor continuously runs at its base
frequency.

DAY_ALRM 1 106 The RTC CMOS RAM index to the day-of-month alarm value. If
this field contains a zero, then the RTC day of the month alarm
feature is not supported. If this field has a non-zero value, then
this field contains an index into RTC RAM space that OSPM can
use to program the day of the month alarm. See Section 4.8.2.4
“Real Time Clock Alarm,” for a description of how the hardware
works.

MON_ALRM 1 107 The RTC CMOS RAM index to the month of year alarm value. If
this field contains a zero, then the RTC month of the year alarm
feature is not supported. If this field has a non-zero value, then
this field contains an index into RTC RAM space that OSPM can
use to program the month of the year alarm. If this feature is
supported, then the DAY_ALRM feature must be supported also.

CENTURY 1 108 The RTC CMOS RAM index to the century of data value (hundred
and thousand year decimals). If this field contains a zero, then
the RTC centenary feature is not supported. If this field has a
non-zero value, then this field contains an index into RTC RAM
space that OSPM can use to program the centenary field.

IAPC_BOOT_ARCH 2 109 IA-PC Boot Architecture Flags. See Table 5-35 for a description of
this field.

Reserved 1 111 Must be 0.

Flags 4 112 Fixed feature flags. See Table 5-34 for a description of this field.

RESET_REG 12 116 The address of the reset register represented in Generic Address
Structure format (See Section 4.8.3.6, “Reset Register,” for a
description of the reset mechanism.)

Note: Only System I/O space, System Memory space and PCI
Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 132

ACPI Specification, Version 6.3 ACPI Software Programming Model
RESET_VALUE 1 128 Indicates the value to write to the RESET_REG port to reset the
system. (See Section 4.8.3.6, “Reset Register,” for a description
of the reset mechanism.)

ARM_BOOT_ARCH 2 129 ARM Boot Architecture Flags. See Table 5-36 for a description of
this field.

FADT Minor Version 1 131 3

Minor Version of this FADT structure, in "Major.Minor" form,
where 'Major' is the value in the Major Version Field (Byte offset
8 in this table).

X_FIRMWARE_CTRL 8 132 Extended physical address of the FACS. If this field contains a
nonzero value which can be used by the OSPM, then the
FIRMWARE_CTRL field must be ignored by the OSPM. If the
HARDWARE_REDUCED_ACPI flag is set, and both this field and
the FIRMWARE_CTRL field are zero, there is no FACS available.

X_DSDT 8 140 Extended physical address of the DSDT. If this field contains a
nonzero value which can be used by the OSPM, then the DSDT
field must be ignored by the OSPM.

X_PM1a_EVT_BLK 12 148 Extended address of the PM1a Event Register Block, represented
in Generic Address Structure format. See Section 4.8.3.1, “PM1
Event Grouping,” for a hardware description layout of this
register block. This is a required field. If this field contains a
nonzero value which can be used by the OSPM, then the
PM1a_EVT_BLK field must be ignored by the OSPM.

X_PM1b_EVT_BLK 12 160 Extended address of the PM1b Event Register Block,
represented in Generic Address Structure format. See
Section 4.8.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. If
this field contains a nonzero value which can be used by the
OSPM, then the PM1b_EVT_BLK field must be ignored by the
OSPM.

X_PM1a_CNT_BLK 12 172 Extended address of the PM1a Control Register Block,
represented in Generic Address Structure format. See
Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This is a required field. If
this field contains a nonzero value which can be used by the
OSPM, then the PM1a_CNT_BLK field must be ignored by the
OSPM.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 133

ACPI Specification, Version 6.3 ACPI Software Programming Model
X_PM1b_CNT_BLK 12 184 Extended address of the PM1b Control Register Block,
represented in Generic Address Structure format. See
Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. If
this field contains a nonzero value which can be used by the
OSPM, then the PM1b_CNT_BLK field must be ignored by the
OSPM.

X_PM2_CNT_BLK 12 196 Extended address of the PM2 Control Register Block,
represented in Generic Address Structure format. See
Section 4.8.3.4 “PM2 Control (PM2_CNT),” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. If
this field contains a nonzero value which can be used by the
OSPM, then the PM2_CNT_BLK field must be ignored by the
OSPM.

X_PM_TMR_BLK 12 208 Extended address of the Power Management Timer Control
Register Block, represented in Generic Address Structure format.
See Section 4.8.3.3, “Power Management Timer (PM_TMR),” for
a hardware description layout of this register block. This field is
optional; if this register block is not supported, this field contains
zero. If this field contains a nonzero value which can be used by
the OSPM, then the PM_TMR_BLK field must be ignored by the
OSPM.

X_GPE0_BLK 12 220 Extended address of the General-Purpose Event 0 Register
Block, represented in Generic Address Structure format. See
Section 4.8.4.1 “General-Purpose Event Register Blocks,” for a
hardware description of this register block. This is an optional
field; if this register block is not supported, this field contains
zero. If this field contains a nonzero value which can be used by
the OSPM, then the GPE0_BLK field must be ignored by the
OSPM.ns a non-zero value then this field must be zero.

X_GPE1_BLK 12 232 Extended address of the General-Purpose Event 1 Register
Block, represented in Generic Address Structure format. See
Section 4.8.4.1 “General-Purpose Event Register Blocks,” for a
hardware description of this register block. This is an optional
field; if this register block is not supported, this field contains
zero. If this field contains a nonzero value which can be used by
the OSPM, then the GPE1_BLK field must be ignored by the
OSPM.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 134

ACPI Specification, Version 6.3 ACPI Software Programming Model
SLEEP_CONTROL_REG 12 244 The address of the Sleep register, represented in Generic
Address Structure format (See Section 4.8.3.7, "Sleep Control
and Status Registers," for a description of the sleep mechanism.)

Note: Only System I/O space, System Memory space and PCI
Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

SLEEP_STATUS_REG 12 256 The address of the Sleep status register, represented in Generic
Address Structure format (See Section 4.8.3.7, "Sleep Control
and Status Registers," for a description of the sleep mechanism.)

Note: Only System I/O space, System Memory space and PCI
Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

Hypervisor Vendor
Identity

8 268 64-bit identifier of hypervisor vendor. All bytes in this field are
considered part of the vendor identity.

These identifiers are defined independently by the vendors
themselves, usually following the name of the hypervisor
product.

Version information should NOT be included in this field - this
shall simply denote the vendor's name or identifier. Version
information can be communicated through a supplemental
vendor-specific hypervisor API.

Firmware implementers would place zero bytes into this field,
denoting that no hypervisor is present in the actual firmware.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 135

ACPI Specification, Version 6.3 ACPI Software Programming Model
Note: [Hypervisor Vendor Identity] A firmware implementer would place zero bytes into this field,
denoting that no hypervisor is present in the actual firmware.

Note: [Hypervisor Vendor Identity] A hypervisor vendor that presents ACPI tables of its own
construction to a guest (for 'virtual' firmware or its 'virtual' platform), would provide its identity in
this field.

Note: [Hypervisor Vendor Identity] If a guest operating system is aware of this field it can consult it and
act on the result, based on whether it recognized the vendor and knows how to use the API that is
defined by the vendor.

Table 5-34 Fixed ACPI Description Table Fixed Feature Flags

FACP - Flag
Bit
Length

Bit
Offset

Description

WBINVD 1 0 Processor properly implements a functional equivalent to the
WBINVD IA-32 instruction.

If set, signifies that the WBINVD instruction correctly flushes the
processor caches, maintains memory coherency, and upon
completion of the instruction, all caches for the current
processor contain no cached data other than what OSPM
references and allows to be cached. If this flag is not set, the
ACPI OS is responsible for disabling all ACPI features that need
this function. This field is maintained for ACPI 1.0 processor
compatibility on existing systems. Processors in new ACPI-
compatible systems are required to support this function and
indicate this to OSPM by setting this field.

WBINVD_FLUSH 1 1 If set, indicates that the hardware flushes all caches on the
WBINVD instruction and maintains memory coherency, but does
not guarantee the caches are invalidated. This provides the
complete semantics of the WBINVD instruction, and provides
enough to support the system sleeping states. If neither of the
WBINVD flags is set, the system will require FLUSH_SIZE and
FLUSH_STRIDE to support sleeping states. If the FLUSH
parameters are also not supported, the machine cannot support
sleeping states S1, S2, or S3.

PROC_C1 1 2 A one indicates that the C1 power state is supported on all
processors.

P_LVL2_UP 1 3 A zero indicates that the C2 power state is configured to only
work on a uniprocessor (UP) system. A one indicates that the C2
power state is configured to work on a UP or multiprocessor
(MP) system.
UEFI Forum, Inc. January 2019 Page 136

ACPI Specification, Version 6.3 ACPI Software Programming Model
PWR_BUTTON 1 4 A zero indicates the power button is handled as a fixed feature
programming model; a one indicates the power button is
handled as a control method device. If the system does not have
a power button, this value would be “1” and no power button
device would be present.

Independent of the value of this field, the presence of a power
button device in the namespace indicates to OSPM that the
power button is handled as a control method device.

SLP_BUTTON 1 5 A zero indicates the sleep button is handled as a fixed feature
programming model; a one indicates the sleep button is handled
as a control method device.

If the system does not have a sleep button, this value would be
“1” and no sleep button device would be present.

Independent of the value of this field, the presence of a sleep
button device in the namespace indicates to OSPM that the
sleep button is handled as a control method device.

FIX_RTC 1 6 A zero indicates the RTC wake status is supported in fixed
register space; a one indicates the RTC wake status is not
supported in fixed register space.

RTC_S4 1 7 Indicates whether the RTC alarm function can wake the system
from the S4 state. The RTC must be able to wake the system
from an S1, S2, or S3 sleep state. The RTC alarm can optionally
support waking the system from the S4 state, as indicated by this
value.

TMR_VAL_EXT 1 8 A zero indicates TMR_VAL is implemented as a 24-bit value. A
one indicates TMR_VAL is implemented as a 32-bit value. The
TMR_STS bit is set when the most significant bit of the TMR_VAL
toggles.

DCK_CAP 1 9 A zero indicates that the system cannot support docking. A one
indicates that the system can support docking. Notice that this
flag does not indicate whether or not a docking station is
currently present; it only indicates that the system is capable of
docking.

RESET_REG_SUP 1 10 If set, indicates the system supports system reset via the FADT
RESET_REG as described in Section 4.8.3.6, “Reset Register.”

SEALED_CASE 1 11 System Type Attribute. If set indicates that the system has no
internal expansion capabilities and the case is sealed.

HEADLESS 1 12 System Type Attribute. If set indicates the system cannot detect
the monitor or keyboard / mouse devices.

CPU_SW_SLP 1 13 If set, indicates to OSPM that a processor native instruction must
be executed after writing the SLP_TYPx register.

FACP - Flag
Bit
Length

Bit
Offset

Description
UEFI Forum, Inc. January 2019 Page 137

ACPI Specification, Version 6.3 ACPI Software Programming Model
PCI_EXP_WAK 1 14 If set, indicates the platform supports the PCIEXP_WAKE_STS bit
in the PM1 Status register and the PCIEXP_WAKE_EN bit in the
PM1 Enable register. This bit must be set on platforms
containing chipsets that implement PCI Express and supports
PM1 PCIEXP_WAK bits.

USE_PLATFORM_CLOCK 1 15 A value of one indicates that OSPM should use a platform
provided timer to drive any monotonically non-decreasing
counters, such as OSPM performance counter services. Which
particular platform timer will be used is OSPM specific, however,
it is recommended that the timer used is based on the following
algorithm: If the HPET is exposed to OSPM, OSPM should use the
HPET. Otherwise, OSPM will use the ACPI power management
timer. A value of one indicates that the platform is known to
have a correctly implemented ACPI power management timer.

A platform may choose to set this flag if a internal processor
clock (or clocks in a multi-processor configuration) cannot
provide consistent monotonically non-decreasing counters.

Note: If a value of zero is present, OSPM may arbitrarily choose
to use an internal processor clock or a platform timer clock for
these operations. That is, a zero does not imply that OSPM will
necessarily use the internal processor clock to generate a
monotonically non-decreasing counter to the system.

S4_RTC_STS_VALID 1 16 A one indicates that the contents of the RTC_STS flag is valid
when waking the system from S4.

See Table 4-15 – PM1 Status Registers Fixed Hardware Feature
Status Bits for more information. Some existing systems do not
reliably set this input today, and this bit allows OSPM to
differentiate correctly functioning platforms from platforms with
this errata.

REMOTE_POWER_ON_CA
PABLE

1 17 A one indicates that the platform is compatible with remote
power- on.

That is, the platform supports OSPM leaving GPE wake events
armed prior to an S5 transition. Some existing platforms do not
reliably transition to S5 with wake events enabled (for example,
the platform may immediately generate a spurious wake event
after completing the S5 transition). This flag allows OSPM to
differentiate correctly functioning platforms from platforms with
this type of errata.

FACP - Flag
Bit
Length

Bit
Offset

Description
UEFI Forum, Inc. January 2019 Page 138

ACPI Specification, Version 6.3 ACPI Software Programming Model
 * The description of HW_REDUCED_ACPI provided here applies to ACPI specifications 5.0 and later.

5.2.9.1 Preferred PM Profile System Types

The following descriptions of preferred power management profile system types are to be used as a
guide for setting the Preferred_PM_Profile field in the FADT. OSPM can use this field to set default power
management policy parameters during OS installation.

Desktop

A single user, full featured, stationary computing device that resides on or near an individual’s
work area. Most often contains one processor. Must be connected to AC power to function. This
device is used to perform work that is considered mainstream corporate or home computing (for
example, word processing, Internet browsing, spreadsheets, and so on).

Mobile

A single-user, full-featured, portable computing device that is capable of running on batteries or
other power storage devices to perform its normal functions. Most often contains one processor.
This device performs the same task set as a desktop. However it may have limitations dues to its
size, thermal requirements, and/or power source life.

FORCE_
APIC_CLUSTER_MODEL

1 18 A one indicates that all local APICs must be configured for the
cluster destination model when delivering interrupts in logical
mode.

If this bit is set, then logical mode interrupt delivery operation
may be undefined until OSPM has moved all local APICs to the
cluster model.

Note that the cluster destination model doesn’t apply to
Itanium™ Processor Family (IPF) local SAPICs. This bit is intended
for xAPIC based machines that require the cluster destination
model even when 8 or fewer local APICs are present in the
machine.

FORCE_APIC_PHYSICAL_D
ESTINATION_MODE

1 19 A one indicates that all local xAPICs must be configured for
physical destination mode. If this bit is set, interrupt delivery
operation in logical destination mode is undefined. On machines
that contain fewer than 8 local xAPICs or that do not use the
xAPIC architecture, this bit is ignored.

HW_REDUCED_ACPI* 1 20 A one indicates that the Hardware-Reduced ACPI (section 4.1) is
implemented, therefore software-only alternatives are used for
supported fixed-features defined in chapter 4.

LOW_POWER_S0_IDLE_C
APABLE

1 21 A one informs OSPM that the platform is able to achieve power
savings in S0 similar to or better than those typically achieved in
S3. In effect, when this bit is set it indicates that the system will
achieve no power benefit by making a sleep transition to S3.

Reserved 10 22

FACP - Flag
Bit
Length

Bit
Offset

Description
UEFI Forum, Inc. January 2019 Page 139

ACPI Specification, Version 6.3 ACPI Software Programming Model
Workstation

 A single-user, full-featured, stationary computing device that resides on or near an individual’s
work area. Often contains more than one processor. Must be connected to AC power to function.
This device is used to perform large quantities of computations in support of such work as CAD/
CAM and other graphics-intensive applications.

Enterprise Server

A multi-user, stationary computing device that frequently resides in a separate, often specially
designed, room. Will almost always contain more than one processor. Must be connected to AC
power to function. This device is used to support large-scale networking, database,
communications, or financial operations within a corporation or government.

SOHO Server

A multi-user, stationary computing device that frequently resides in a separate area or room in a
small or home office. May contain more than one processor. Must be connected to AC power to
function. This device is generally used to support all of the networking, database,
communications, and financial operations of a small office or home office.

Appliance PC

A device specifically designed to operate in a low-noise, high-availability environment such as a
consumer’s living rooms or family room. Most often contains one processor. This category also
includes home Internet gateways, Web pads, set top boxes and other devices that support ACPI.
Must be connected to AC power to function. Normally they are sealed case style and may only
perform a subset of the tasks normally associated with today’s personal computers.

Performance Server

A multi-user stationary computing device that frequently resides in a separate, often specially
designed room. Will often contain more than one processor. Must be connected to AC power to
function. This device is used in an environment where power savings features are willing to be
sacrificed for better performance and quicker responsiveness.

Tablet

A full-featured, highly mobile computing device which resembles writing tablets and which users
interact with primarily through a touch interface. The touch digitizer is the primary user input
device, although a keyboard and/or mouse may be present. Tablet devices typically run on
battery power and are generally only plugged into AC power in order to charge. This device
performs many of the same tasks as Mobile; however battery life expectations of Tablet devices
generally require more aggressive power savings especially for managing display and touch
components.

5.2.9.2 System Type Attributes

This set of flags is used by the OS to assist in determining assumptions about power and device
management. These flags are read at boot time and are used to make decisions about power
management and device settings. For example, a system that has the SEALED_CASE bit set may take a
very aggressive low noise policy toward thermal management. In another example an OS might not load
video, keyboard or mouse drivers on a HEADLESS system.
UEFI Forum, Inc. January 2019 Page 140

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.9.3 IA-PC Boot Architecture Flags

This set of flags is used by an OS to guide the assumptions it can make in initializing hardware on IA-PC
platforms. These flags are used by an OS at boot time (before the OS is capable of providing an operating
environment suitable for parsing the ACPI namespace) to determine the code paths to take during boot.
In IA-PC platforms with reduced legacy hardware, the OS can skip code paths for legacy devices if none
are present. For example, if there are no ISA devices, an OS could skip code that assumes the presence of
these devices and their associated resources. These flags are used independently of the ACPI namespace.
The presence of other devices must be described in the ACPI namespace as specified in Section 6,
“Configuration.” These flags pertain only to IA-PC platforms. On other system architectures, the entire
field should be set to 0.

Table 5-35 Fixed ACPI Description Table Boot IA-PC Boot Architecture

IAPC_BOOT_ARCH
Bit
length

Bit
offset

Description

LEGACY_DEVICES 1 0 If set, indicates that the motherboard supports user-visible
devices on the LPC or ISA bus. User-visible devices are devices
that have end-user accessible connectors (for example, LPT
port), or devices for which the OS must load a device driver so
that an end-user application can use a device. If clear, the OS
may assume there are no such devices and that all devices in
the system can be detected exclusively via industry standard
device enumeration mechanisms (including the ACPI
namespace).

8042 1 1 If set, indicates that the motherboard contains support for a
port 60 and 64 based keyboard controller, usually implemented
as an 8042 or equivalent micro-controller.

VGA Not Present 1 2 If set, indicates to OSPM that it must not blindly probe the VGA
hardware (that responds to MMIO addresses A0000h-BFFFFh
and IO ports 3B0h-3BBh and 3C0h-3DFh) that may cause
machine check on this system. If clear, indicates to OSPM that it
is safe to probe the VGA hardware.

MSI Not Supported 1 3 If set, indicates to OSPM that it must not enable Message
Signaled Interrupts (MSI) on this platform.

PCIe ASPM Controls 1 4 If set, indicates to OSPM that it must not enable OSPM ASPM
control on this platform.

CMOS RTC Not
Present

1 5 If set, indicates that the CMOS RTC is either not implemented,
or does not exist at the legacy addresses. OSPM uses the
Control Method Time and Alarm Namespace device instead.

Reserved 10 6 Must be 0.

Flags

5.2.9.4 ARM Architecture boot flags

These flags are used by an OS at boot time (before the OS is capable of providing an operating
environment suitable for parsing the ACPI namespace) to determine the code paths to take during boot.
For the PSCI flags, specifically, the flags describe if the platform is compliant with the PSCI specification.
UEFI Forum, Inc. January 2019 Page 141

ACPI Specification, Version 6.3 ACPI Software Programming Model
The PSCI specification is found at Links to ACPI-Related Document" (http://uefi.org/acpi) under the
heading PSCI Specification.

The ARM Architecture boot flags are described in Table 5-36:

Table 5-36 Fixed ACPI Description Table ARM Boot Architecture Flags

ARM_BOOT_ARCH
Bit
Length

Bit
Offset

Description

PSCI_COMPLIANT 1 0 1 if PSCI is implemented.

PSCI_USE_HVC 1 1 1 if HVC must be used as the PSCI conduit.instead of SMC.

Reserved 14 2 This value is zero.

5.2.10 Firmware ACPI Control Structure (FACS)

The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the platform boot
firmware reserves for ACPI usage. This structure is optional if and only if the HARDWARE_REDUCED_ACPI
flag in the FADT is set. The FACS is passed to an ACPI-compatible OS using the FADT. For more
information about the FADT FIRMWARE_CTRL field, see Table 5.2.9, “Fixed ACPI Description Table
(FADT).”

The platform boot firmware aligns the FACS on a 64-byte boundary anywhere within the system’s
memory address space. The memory where the FACS structure resides must not be reported as system
AddressRangeMemory in the system address map. For example, the E820 address map reporting
interface would report the region as AddressRangeReserved. For more information about system address
map reporting interfaces, see Section 15, “System Address Map Interfaces.”

Table 5-37 Firmware ACPI Control Structure (FACS)

Field

Byte
Length

Byte
Offset Description

Signature 4 0 ‘FACS’

Length 4 4 Length, in bytes, of the entire Firmware ACPI Control Structure.
This value is 64 bytes or larger.
UEFI Forum, Inc. January 2019 Page 142

ACPI Specification, Version 6.3 ACPI Software Programming Model
Hardware Signature 4 8 The value of the system's "hardware signature" at last boot. This
value is calculated by the platform boot firmware on a best effort
basis to indicate the base hardware configuration of the system
such that different base hardware configurations can have
different hardware signature values. Although memory described
using or EfiPersistentMemory (Section 15) iis not saved/restored
by OS during S4, any change to persistent memory that impacts
any OS visible firmware interfaces must change hardware
signature. Any change to the data in Persistent Memory itself
should not be included in computing the hardware signature.

OSPM uses this information in waking from an S4 state, by
comparing the current hardware signature to the signature values
saved in the non-volatile sleep image. If the values are not the
same, OSPM assumes that the saved non-volatile image is from a
different hardware configuration and cannot be restored.

Firmware Waking
Vector

4 12 This field is superseded by the X_Firmware_Waking_Vector field.

The 32-bit address field where OSPM puts its waking vector.
Before transitioning the system into a global sleeping state, OSPM
fills in this field with the physical memory address of an OS-specific
wake function. During POST, the platform firmware first checks if
the value of the X_Firmware_Waking_Vector field is non-zero and
if so transfers control to OSPM as outlined in the
X_Firmware_Waking_vector field description below. If the
X_Firmware_Waking_Vector field is zero then the platform
firmware checks the value of this field and if it is non-zero,
transfers control to the specified address.

On PCs, the wake function address is in memory below 1 MB and
the control is transferred while in real mode. OSPM’s wake
function restores the processors’ context.

For IA-PC platforms, the following example shows the relationship
between the physical address in the Firmware Waking Vector and
the real mode address the BIOS jumps to. If, for example, the
physical address is 0x12345, then the BIOS must jump to real
mode address 0x1234:0x0005. In general this relationship is

 Real-mode address =

 Physical address>>4 : Physical address and 0x000F

Notice that on IA-PC platforms, A20 must be enabled when the
BIOS jumps to the real mode address derived from the physical
address stored in the Firmware Waking Vector.

Field

Byte
Length

Byte
Offset Description
UEFI Forum, Inc. January 2019 Page 143

ACPI Specification, Version 6.3 ACPI Software Programming Model
Global Lock 4 16 This field contains the Global Lock used to synchronize access to
shared hardware resources between the OSPM environment and
an external controller environment (for example, the SMI
environment). This lock is owned exclusively by either OSPM or
the firmware at any one time. When ownership of the lock is
attempted, it might be busy, in which case the requesting
environment exits and waits for the signal that the lock has been
released. For example, the Global Lock can be used to protect an
embedded controller interface such that only OSPM or the
firmware will access the embedded controller interface at any one
time. See Section 5.2.10.1, “Global Lock,” for more information on
acquiring and releasing the Global Lock.

Flags 4 20 Firmware control structure flags. See Table 5-38 for a description
of this field.

Field

Byte
Length

Byte
Offset Description
UEFI Forum, Inc. January 2019 Page 144

ACPI Specification, Version 6.3 ACPI Software Programming Model
X Firmware Waking
Vector

8 24 64-bit physical address of OSPM’s Waking Vector.

Before transitioning the system into a global sleeping state, OSPM
fills in this field and the OSPM Flags field to describe the waking
vector. OSPM populates this field with the physical memory
address of an OS-specific wake function. During POST, the
platform firmware checks if the value of this field is non-zero and if
so transfers control to OSPM by jumping to this address after
creating the appropriate execution environment, which must be
configured as follows:

For 64-bit Itanium™ Processor Family (IPF) -based platforms:

Interrupts must be disabled

The processor must have psr.i set to 0. See the Intel® ItaniumTM
Architecture Software Developer’s Manual for more information.

Memory address translation must be disabled

The processor must have psr.it, psr.dt, and psr.rt set to 0. See the

Intel® ItaniumTM Architecture Software Developer’s Manual for
more information.

For IA 32 and x64 platforms, platform firmware is required to
support a 32 bit execution environment. Platform firmware can
additionally support a 64 bit execution environment. If platform
firmware supports a 64 bit execution environment, firmware
inspects the OSPM Flags during POST. If the 64BIT_WAKE_F flag is
set, the platform firmware creates a 64 bit execution environment.
Otherwise, the platform firmware creates a 32 bit execution
environment.

For 64 bit execution environment:

Interrupts must be disabled

EFLAGS.IF set to 0

Long mode enabled

Paging mode is enabled and physical memory for waking vector is
identity mapped (virtual address equals physical address)

Waking vector must be contained within one physical page

Selectors are set to be flat and are otherwise not used

For 32 bit execution environment:

Interrupts must be disabled

EFLAGS.IF set to 0

Memory address translation / paging must be disabled

4 GB flat address space for all segment registers

Version 1 32 2–Version of this table

Reserved 3 33 This value is zero.

Field

Byte
Length

Byte
Offset Description
UEFI Forum, Inc. January 2019 Page 145

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-38 Firmware Control Structure Feature Flags

FACS – Flag
Bit
Length

Bit
Offset

Description

S4BIOS_F 1 0 Indicates whether the platform supports S4BIOS_REQ. If
S4BIOS_REQ is not supported, OSPM must be able to save and
restore the memory state in order to use the S4 state.

64BIT_WAKE_SUPPORT
ED_F

1 1 Indicates that the platform firmware supports a 64 bit execution
environment for the waking vector. When set and the OSPM
additionally set 64BIT_WAKE_F, the platform firmware will create
a 64 bit execution environment before transferring control to the
X_Firmware_Waking_Vector.

Reserved 30 2 The value is zero.

Table 5-39 OSPM Enabled Firmware Control Structure Feature Flags

FACS – Flag
Bit
Length

Bit
Offset

Description

64BIT_WAKE_F 1 0 OSPM sets this bit to indicate to platform firmware that the
X_Firmware_Waking_Vector requires a 64 bit execution
environment.

This flag can only be set if platform firmware sets
64BIT_WAKE_SUPPORTED_F in the FACS flags field.

This bit field has no affect on ItaniumTM Processor Family (IPF) -
based platforms, which require a 64 bit execution environment.

Reserved 31 1 The value is zero.

5.2.10.1 Global Lock

The purpose of the ACPI Global Lock is to provide mutual exclusion between the host OS and the platform
runtime firmware. The Global Lock is a 32-bit (DWORD) value in read/write memory located within the
FACS and is accessed and updated by both the OS environment and the SMI environment in a defined
manner to provide an exclusive lock. Note: this is not a pointer to the Global Lock, it is the actual memory
location of the lock. The FACS and Global Lock may be located anywhere in physical memory.

By convention, this lock is used to ensure that while one environment is accessing some hardware, the
other environment is not. By this convention, when ownership of the lock fails because the other
environment owns it, the requesting environment sets a “pending” state within the lock, exits its attempt
to acquire the lock, and waits for the owning environment to signal that the lock has been released

OSPM Flags 4 36 OSPM enabled firmware control structure flags. Platform
firmware must initialize this field to zero. See Table 5-39 for a
description of the OSPM control structure feature flags.

Reserved 24 40 This value is zero.

Field

Byte
Length

Byte
Offset Description
UEFI Forum, Inc. January 2019 Page 146

ACPI Specification, Version 6.3 ACPI Software Programming Model
before attempting to acquire the lock again. When releasing the lock, if the pending bit in the lock is set
after the lock is released, a signal is sent via an interrupt mechanism to the other environment to inform
it that the lock has been released. During interrupt handling for the “lock released” event within the
corresponding environment, if the lock ownership were still desired an attempt to acquire the lock would
be made. If ownership is not acquired, then the environment must again set “pending” and wait for
another “lock release” signal.

The table below shows the encoding of the Global Lock DWORD in memory.

Table 5-40 Global Lock Structure within the FACS

Field Bit Length Bit Offset Description

Pending 1 0 Non-zero indicates that a request for ownership of the Global
Lock is pending.

Owned 1 1 Non-zero indicates that the Global Lock is Owned.

Reserved 30 2 Reserved for future use.

The following code sequence is used by both OSPM and the firmware to acquire ownership of the Global
Lock. If non-zero is returned by the function, the caller has been granted ownership of the Global Lock
and can proceed. If zero is returned by the function, the caller has not been granted ownership of the
Global Lock, the “pending” bit has been set, and the caller must wait until it is signaled by an interrupt
event that the lock is available before attempting to acquire access again.

Note: In the examples that follow, the “GlobalLock” variable is a pointer that has been previously
initialized to point to the 32-bit Global Lock location within the FACS.

AcquireGlobalLock:
 mov ecx, GlobalLock ; ecx = Address of Global Lock in FACS
acq10: mov eax, [ecx] ; Get current value of Global Lock

 mov edx, eax
 and edx, not 1 ; Clear pending bit
 bts edx, 1 ; Check and set owner bit
 adc edx, 0 ; If owned, set pending bit

 lock cmpxchg dword ptr[ecx], edx ; Attempt to set new value
 jnz short acq10 ; If not set, try again

 cmp dl, 3 ; Was it acquired or marked pending?
 sbb eax, eax ; acquired = -1, pending = 0

 ret

The following code sequence is used by OSPM and the firmware to release ownership of the Global Lock.
If non-zero is returned, the caller must raise the appropriate event to the other environment to signal
that the Global Lock is now free. Depending on the environment, this signaling is done by setting the
either the GBL_RLS or BIOS_RLS within their respective hardware register spaces. This signal only occurs
when the other environment attempted to acquire ownership while the lock was owned.
UEFI Forum, Inc. January 2019 Page 147

ACPI Specification, Version 6.3 ACPI Software Programming Model
ReleaseGlobalLock:
 mov ecx, GlobalLock ; ecx = Address of Global Lock in FACS
rel10: mov eax, [ecx] ; Get current value of Global Lock

 mov edx, eax
 and edx, not 03h ; Clear owner and pending field

 lock cmpxchg dword ptr[ecx], edx ; Attempt to set it
 jnz short rel10 ; If not set, try again

 and eax, 1 ; Was pending set?

 ; If one is returned (we were pending) the caller must signal that the
 ; lock has been released using either GBL_RLS or BIOS_RLS as appropriate

 ret

Although using the Global Lock allows various hardware resources to be shared, it is important to notice
that its usage when there is ownership contention could entail a significant amount of system overhead
as well as waits of an indeterminate amount of time to acquire ownership of the Global Lock. For this
reason, implementations should try to design the hardware to keep the required usage of the Global Lock
to a minimum.

The Global Lock is required whenever a logical register in the hardware is shared. For example, if bit 0 is
used by ACPI (OSPM) and bit 1 of the same register is used by SMI, then access to that register needs to
be protected under the Global Lock, ensuring that the register’s contents do not change from underneath
one environment while the other is making changes to it. Similarly if the entire register is shared, as the
case might be for the embedded controller interface, access to the register needs to be protected under
the Global Lock.

5.2.11 Definition Blocks

A Definition Block consists of data in AML format (see Section 5.4 “Definition Block Encoding”) and
contains information about hardware implementation details in the form of AML objects that contain
data, AML code, or other AML objects. The top-level organization of this information after a definition
block is loaded is name-tagged in a hierarchical namespace.

OSPM “loads” or “unloads” an entire definition block as a logical unit. OSPM will load a definition block
either as a result of executing the AML Load() or LoadTable() operator or encountering a table definition
during initialization. During initialization, OSPM loads the Differentiated System Description Table
(DSDT), which contains the Differentiated Definition Block, using the DSDT pointer retrieved from the
FADT. OSPM will load other definition blocks during initialization as a result of encountering Secondary
System Description Table (SSDT) definitions in the RSDT/XSDT. The DSDT and SSDT are described in the
following sections.

As mentioned, the AML Load() and LoadTable() operators make it possible for a Definition Block to load
other Definition Blocks, either statically or dynamically, where they in turn can either define new system
attributes or, in some cases, build on prior definitions. Although this gives the hardware the ability to vary
widely in implementation, it also confines it to reasonable boundaries. In some cases, the Definition Block
UEFI Forum, Inc. January 2019 Page 148

ACPI Specification, Version 6.3 ACPI Software Programming Model
format can describe only specific and well-understood variances. In other cases, it permits
implementations to be expressible only by means of a specified set of “built in” operators. For example,
the Definition Block has built in operators for I/O space.

In theory, it might be possible to define something like PCI configuration space in a Definition Block by
building it from I/O space, but that is not the goal of the definition block. Such a space is usually defined
as a “built in” operator.

Some AML operators perform simple functions, and others encompass complex functions. The power of
the Definition block comes from its ability to allow these operations to be glued together in numerous
ways, to provide functionality to OSPM.

The AML operators defined in this specification are intended to allow many useful hardware designs to
be easily expressed, not to allow all hardware designs to be expressed.

Note: To accommodate addressing beyond 32 bits, the integer type was expanded to 64 bits in ACPI 2.0,
see Section 19.3.5, “ASL Data Types”. Existing ACPI definition block implementations may contain an
inherent assumption of a 32-bit integer width. Therefore, to maintain backwards compatibility, OSPM
uses the Revision field, in the header portion of system description tables containing Definition Blocks, to
determine whether integers declared within the Definition Block are to be evaluated as 32-bit or 64-bit
values. A Revision field value greater than or equal to 2 signifies that integers declared within the
Definition Block are to be evaluated as 64-bit values. The ASL writer specifies the value for the Definition
Block table header’s Revision field via the ASL Definition Block’s ComplianceRevision field. See
Section 19.6.28, “DefinitionBlock (Declare Definition Block)”, for more information. It is the responsibility
of the ASL writer to ensure the Definition Block’s compatibility with the corresponding integer width
when setting the ComplianceRevision field.

5.2.11.1 Differentiated System Description Table (DSDT)

The Differentiated System Description Table (DSDT) is part of the system fixed description. The DSDT is
comprised of a system description table header followed by data in Definition Block format. See
Section 5.2.11, “Definition Blocks,” for a description of Definition Blocks. During initialization, OSPM finds
the pointer to the DSDT in the Fixed ACPI Description Table (using the FADT’s DSDT or X_DSDT fields) and
then loads the DSDT to create the ACPI Namespace.

Table 5-41 Differentiated System Description Table Fields (DSDT)

Field
Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘DSDT’ Signature for the Differentiated System Description
Table.

 Length 4 4 Length, in bytes, of the entire DSDT (including the header).

 Revision 1 8 2. This field also sets the global integer width for the AML
interpreter. Values less than two will cause the interpreter to
use 32-bit integers and math. Values of two and greater will
cause the interpreter to use full 64-bit integers and math.

 Checksum 1 9 Entire table must sum to zero.
UEFI Forum, Inc. January 2019 Page 149

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.11.2 Secondary System Description Table (SSDT)

Secondary System Description Tables (SSDT) are a continuation of the DSDT. The SSDT is comprised of a
system description table header followed by data in Definition Block format. There can be multiple SSDTs
present. After OSPM loads the DSDT to create the ACPI Namespace, each secondary system description
table listed in the RSDT/XSDT with a unique OEM Table ID is loaded.

Note: Additional tables can only add data; they cannot overwrite data from previous tables.

This allows the OEM to provide the base support in one table and add smaller system options in other
tables. For example, the OEM might put dynamic object definitions into a secondary table such that the
firmware can construct the dynamic information at boot without needing to edit the static DSDT. A SSDT
can only rely on the DSDT being loaded prior to it.

Table 5-42 Secondary System Description Table Fields (SSDT)

Field
Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘SSDT’ Signature for the Secondary System Description Table.

 Length 4 4 Length, in bytes, of the entire SSDT (including the header).

 Revision 1 8 2

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 The manufacture model ID.

 OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID for the ASL Compiler.

 Creator Revision 4 32 Revision number of the ASL Compiler.

Definition Block n 36 n bytes of AML code (see Section 5.4 , “Definition Block
Encoding”)

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 The manufacture model ID.

 OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID for the ASL Compiler.

 Creator Revision 4 32 Revision number of the ASL Compiler.

Definition Block n 36 n bytes of AML code (see Section 5.4, “Definition Block
Encoding”)

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 150

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.11.3 Persistent System Description Table (PSDT)

The table signature, “PSDT” refers to the Persistent System Description Table (PSDT) defined in the ACPI
1.0 specification. The PSDT was judged to provide no specific benefit and as such has been deleted from
follow-on versions of the ACPI specification. OSPM will evaluate a table with the “PSDT” signature in like
manner to the evaluation of an SSDT as described in Section 5.2.11.2, “Secondary System Description
Table.”

5.2.12 Multiple APIC Description Table (MADT)

The ACPI interrupt model describes all interrupts for the entire system in a uniform interrupt model
implementation. Supported interrupt models include the PC-AT-compatible dual 8259 interrupt
controller, for Intel processor-based systems, the Intel Advanced Programmable Interrupt Controller
(APIC) and Intel Streamlined Advanced Programmable Interrupt Controller (SAPIC), and, for ARM
processor-based systems, the Generic Interrupt Controller (GIC). The choice of the interrupt model(s) to
support is up to the platform designer. The interrupt model cannot be dynamically changed by the
system firmware; OSPM will choose which model to use and install support for that model at the time of
installation. If a platform supports multiple models, an OS will install support for only one of the models;
it will not mix models. Multi-boot capability is a feature in many modern operating systems. This means
that a system may have multiple operating systems or multiple instances of an OS installed at any one
time. Platform designers must allow for this.

This section describes the format of the Multiple APIC Description Table (MADT), which provides OSPM
with information necessary for operation on systems with APIC, SAPIC or GIC implementations.

ACPI represents all interrupts as "flat" values known as global system interrupts. Therefore to support
APICs, SAPICs or GICs on an ACPI-enabled system, each used interrupt input must be mapped to the
global system interrupt value used by ACPI. See Section 5.2.13. Global System Interrupts,” for a
description of Global System Interrupts.

Additional support is required to handle various multi-processor functions that implementations might
support (for example, identifying each processor's local interrupt controller ID).

All addresses in the MADT are processor-relative physical addresses.

Table 5-43 Multiple APIC Description Table (MADT) Format

Field
Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘APIC’ Signature for the Multiple APIC Description Table.

 Length 4 4 Length, in bytes, of the entire MADT.

 Revision 1 8 5

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the MADT, the table ID is the manufacturer model ID.

 OEM Revision 4 24 OEM revision of MADT for supplied OEM Table ID.
UEFI Forum, Inc. January 2019 Page 151

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-44 Multiple APIC Flags

Multiple APIC
Flags

Bit
Length

Bit
Offset

Description

PCAT_COMPAT 1 0 A one indicates that the system also has a PC-AT-compatible dual-8259
setup. The 8259 vectors must be disabled (that is, masked) when
enabling the ACPI APIC operation.

Reserved 31 1 This value is zero.

Immediately after the Flags value in the MADT is a list of interrupt controller structures that declare the
interrupt features of the machine. The first byte of each structure declares the type of that structure and
the second byte declares the length of that structure.

Table 5-45 Interrupt Controller Structure Types

 Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Local Interrupt
Controller Address

4 36 The 32-bit physical address at which each processor can access its local
interrupt controller.

Flags 4 40 Multiple APIC flags. See Table 5-44 for a description of this field.

Interrupt
Controller
Structure[n]

— 44 A list of interrupt controller structures for this implementation. This list
will contain all of the structures from Table 5-45 needed to support this
platform. These structures are described in the following sections.

Value Description
_MAT for
Processor object
a

_MAT for an I/O

APIC object b
Reference

0 Processor Local APIC yes no Section 5.2.12.2

1 I/O APIC no yes Section 5.2.12.3

2 Interrupt Source Override no yes Section 5.2.12.5

3 Non-maskable Interrupt
(NMI) Source

no yes Section 5.2.12.6

4 Local APIC NMI yes no Section 5.2.12.7

5 Local APIC Address Override no no Section 5.2.12.8

6 I/O SAPIC no yes Section 5.2.12.9

7 Local SAPIC yes no Section 5.2.12.9

8 Platform Interrupt Sources no yes Section 5.2.12.11

9 Processor Local x2APIC yes no Section 5.2.12.12

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 152

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.12.1 MADT Processor Local APIC / SAPIC Structure Entry Order

OSPM implementations may limit the number of supported processors on multi-processor platforms.
OSPM executes on the boot processor to initialize the platform including other processors. To ensure
that the boot processor is supported post initialization, two guidelines should be followed. The first is
that OSPM should initialize processors in the order that they appear in the MADT. The second is that
platform firmware should list the boot processor as the first processor entry in the MADT.

The advent of multi-threaded processors yielded multiple logical processors executing on common
processor hardware. ACPI defines logical processors in an identical manner as physical processors. To
ensure that non multi-threading aware OSPM implementations realize optimal performance on
platforms containing multi-threaded processors, two guidelines should be followed. The first is the same
as above, that is, OSPM should initialize processors in the order that they appear in the MADT. The
second is that platform firmware should list the first logical processor of each of the individual multi-
threaded processors in the MADT before listing any of the second logical processors. This approach
should be used for all successive logical processors.

Failure of OSPM implementations and platform firmware to abide by these guidelines can result in both
unpredictable and non optimal platform operation.

5.2.12.2 Processor Local APIC Structure

When using the APIC interrupt model, each processor in the system is required to have a Processor Local
APIC record in the MADT, and a processor device object in the DSDT. OSPM does not expect the
information provided in this table to be updated if the processor information changes during the lifespan
of an OS boot. While in the sleeping state, processors are not allowed to be added, removed, nor can
their APIC ID or Flags change. When a processor is not present, the Processor Local APIC information is
either not reported or flagged as disabled.

0xA Local x2APIC NMI yes no Section 5.2.12.13

0xB GIC CPU Interface (GICC) yes no Section 5.2.12.14

0xC GIC Distributor (GICD) no no Section 5.2.12.15

0xD GIC MSI Frame no no Section 5.2.12.16

0xE GIC Redistributor (GICR) no no Section 5.2.12.17

0xF GIC Interrupt Translation
Service (ITS)

no no Section 5.2.12.18

0x10-
0x7F

Reserved. OSPM skips
structures of the reserved
type.

no no

0x80-
0xFF

Reserved for OEM use no no

a When _MAT (see Section 6.2.10) appears under a Processor Device object (see Section 8.4), OSPM
processes the Interrupt Controller Structures returned by _MAT with the types labeled "yes" and ignores
other types.

b When _MAT appears under an I/O APIC Device (see Section 9.17), OSPM processes the Interrupt
Controller Structures returned by _MAT with the types labeled "yes" and ignores other types.
UEFI Forum, Inc. January 2019 Page 153

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-46 Processor Local APIC Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 0 Processor Local APIC structure

Length 1 1 8

ACPI Processor
UID

1 2 The OS associates this Local APIC Structure with a processor object in the
namespace when the _UID child object of the processor's device object (or
the ProcessorId listed in the Processor declaration operator) evaluates to a
numeric value that matches the numeric value in this field. Note that the
use of the Processor declaration operator is deprecated. See the
compatibility note in Section 5.2.12.2 and see Section 19.6.108, “Processor
(Declare Processor).”

APIC ID 1 3 The processor’s local APIC ID.

Flags 4 4 Local APIC flags. See Table 5-47 for a description of this field.

Table 5-47 Local APIC Flags

LocalAPIC Flags
Bit
Length

Bit
Offset

Description

Enabled 1 0 If this bit is set the processor is ready for use.

If this bit is clear and the Online Capable bit is set, system hardware
supports enabling this processor during OS runtime.

If this bit is clear and the Online Capable bit is also clear, this processor is
unusable, and OSPM shall ignore the contents of the Processor Local
APIC Structure.

Online Capbable 1 1 The information conveyed by this bit depends on the value of the
Enabled bit.

If the Enabled bit is set, this bit is reserved and must be zero.

Otherwise, if this this bit is set, system hardware supports enabling this
processor during OS runtime.

Reserved 30 2 Must be zero.

5.2.12.3 I/O APIC Structure

In an APIC implementation, there are one or more I/O APICs. Each I/O APIC has a series of interrupt
inputs, referred to as INTIn, where the value of n is from 0 to the number of the last interrupt input on
the I/O APIC. The I/O APIC structure declares which global system interrupts are uniquely associated with
the I/O APIC interrupt inputs. There is one I/O APIC structure for each I/O APIC in the system. For more
information on global system interrupts see Section 5.2.13, “Global System Interrupts.”

Table 5-48 I/O APIC Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 1 I/O APIC structure
UEFI Forum, Inc. January 2019 Page 154

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.12.4 Platforms with APIC and Dual 8259 Support

Systems that support both APIC and dual 8259 interrupt models must map global system interrupts 0-15
to the 8259 IRQs 0-15, except where Interrupt Source Overrides are provided (see Section 5.2.12.5,
“Interrupt Source Override Structure” below). This means that I/O APIC interrupt inputs 0-15 must be
mapped to global system interrupts 0-15 and have identical sources as the 8259 IRQs 0-15 unless
overrides are used. This allows a platform to support OSPM implementations that use the APIC model as
well as OSPM implementations that use the 8259 model (OSPM will only use one model; it will not mix
models).

When OSPM supports the 8259 model, it will assume that all interrupt descriptors reporting global
system interrupts 0-15 correspond to 8259 IRQs. In the 8259 model all global system interrupts greater
than 15 are ignored. If OSPM implements APIC support, it will enable the APIC as described by the APIC
specification and will use all reported global system interrupts that fall within the limits of the interrupt
inputs defined by the I/O APIC structures. For more information on hardware resource configuration see
Section 6, “Configuration.”

5.2.12.5 Interrupt Source Override Structure

Interrupt Source Overrides are necessary to describe variances between the IA-PC standard dual 8259
interrupt definition and the platform’s implementation.

It is assumed that the ISA interrupts will be identity-mapped into the first I/O APIC sources. Most existing
APIC designs, however, will contain at least one exception to this assumption. The Interrupt Source
Override Structure is provided in order to describe these exceptions. It is not necessary to provide an
Interrupt Source Override for every ISA interrupt. Only those that are not identity-mapped onto the APIC
interrupt inputs need be described.

Note: This specification only supports overriding ISA interrupt sources.

For example, if your machine has the ISA Programmable Interrupt Timer (PIT) connected to ISA IRQ 0, but
in APIC mode, it is connected to I/O APIC interrupt input 2, then you would need an Interrupt Source
Override where the source entry is ‘0’ and the Global System Interrupt is ‘2.’

Table 5-49 Interrupt Source Override Structure

Length 1 1 12

I/O APIC ID 1 2 The I/O APIC’s ID.

Reserved 1 3 0

I/O APIC Address 4 4 The 32-bit physical address to access this I/O APIC. Each I/O APIC resides
at a unique address.

Global System
Interrupt Base

4 8 The global system interrupt number where this I/O APIC’s interrupt
inputs start. The number of interrupt inputs is determined by the I/O
APIC’s Max Redir Entry register.

Field
Byte
Length

Byte
Offset

Description

Type 1 0 2 Interrupt Source Override
UEFI Forum, Inc. January 2019 Page 155

ACPI Specification, Version 6.3 ACPI Software Programming Model
The MPS INTI flags listed in Table 5-50 are identical to the flags used in Table 4-10 of the MPS version 1.4
specifications. The Polarity flags are the PO bits and the Trigger Mode flags are the EL bits.

Table 5-50 MPS INTI Flags

Local APIC - Flags
Bit
Length

Bit
Offset

Description

Polarity 2 0 Polarity of the APIC I/O input signals:

00 Conforms to the specifications of the bus

(For example, EISA is active-low for level-triggered interrupts)

01 Active high

10 Reserved

11 Active low

Trigger Mode 2 2 Trigger mode of the APIC I/O Input signals:

00 Conforms to specifications of the bus

(For example, ISA is edge-triggered)

01 Edge-triggered

10 Reserved

11 Level-triggered

Reserved 12 4 Must be zero.

Interrupt Source Overrides are also necessary when an identity mapped interrupt input has a non-
standard polarity.

Note: You must have an interrupt source override entry for the IRQ mapped to the SCI interrupt if this
IRQ is not identity mapped. This entry will override the value in SCI_INT in FADT. For example, if
SCI is connected to IRQ 9 in PIC mode and IRQ 9 is connected to INTIN11 in APIC mode, you should
have 9 in SCI_INT in the FADT and an interrupt source override entry mapping IRQ 9 to INTIN11.

5.2.12.6 Non-Maskable Interrupt (NMI) Source Structure

This structure allows a platform designer to specify which I/O (S)APIC interrupt inputs should be enabled
as non-maskable. Any source that is non-maskable will not be available for use by devices.

Length 1 1 10

Bus 1 2 0 Constant, meaning ISA

Source 1 3 Bus-relative interrupt source (IRQ)

Global System
Interrupt

4 4 The Global System Interrupt that this bus-relative interrupt source will
signal.

Flags 2 8 MPS INTI flags. See Table 5-50 for a description of this field.
UEFI Forum, Inc. January 2019 Page 156

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-51 NMI Source Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 3 NMI Source

Length 1 1 8

Flags 2 2 Same as MPS INTI flags

Global System
Interrupt

4 4 The Global System Interrupt that this NMI will signal.

5.2.12.7 Local APIC NMI Structure

This structure describes the Local APIC interrupt input (LINTn) that NMI is connected to for each of the
processors in the system where such a connection exists. This information is needed by OSPM to enable
the appropriate local APIC entry.

Each Local APIC NMI connection requires a separate Local APIC NMI structure. For example, if the
platform has 4 processors with ID 0-3 and NMI is connected LINT1 for processor 3 and 2, two Local APIC
NMI entries would be needed in the MADT.

Table 5-52 Local APIC NMI Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 4 Local APIC NMI Structure

Length 1 1 6

ACPI Processor
UID

1 2 Value corresponding to the _UID listed in the processor’s
device object, or the Processor ID corresponding to the ID
listed in the processor object. A value of 0xFF signifies that
this applies to all processors in the machine.

Note that the use of the Processor declaration operator is deprecated.
See the compatibility note in Section 5.2.12.12 and see Section 19.6.108,
“Processor (Declare Processor).”

Flags 2 3 MPS INTI flags. See Table 5-50 for a description of this field.

Local APIC LINT# 1 5 Local APIC interrupt input LINTn to which NMI is connected.

5.2.12.8 Local APIC Address Override Structure

This optional structure supports 64-bit systems by providing an override of the physical address of the
local APIC in the MADT’s table header, which is defined as a 32-bit field.

If defined, OSPM must use the address specified in this structure for all local APICs (and local SAPICs),
rather than the address contained in the MADT’s table header. Only one Local APIC Address Override
Structure may be defined.
UEFI Forum, Inc. January 2019 Page 157

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-53 Local APIC Address Override Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 5 Local APIC Address Override Structure

Length 1 1 12

Reserved 2 2 Reserved (must be set to zero)

Local APIC
Address

8 4 Physical address of Local APIC. For Itanium™ Processor Family (IPF)-
based platforms, this field contains the starting address of the Processor

Interrupt Block. See the Intel® ItaniumTM Architecture Software
Developer’s Manual for more information.

5.2.12.9 I/O SAPIC Structure

The I/O SAPIC structure is very similar to the I/O APIC structure. If both I/O APIC and I/O SAPIC structures
exist for a specific APIC ID, the information in the I/O SAPIC structure must be used.

The I/O SAPIC structure uses the I/O APIC ID field as defined in the I/O APIC table. The Global System
Interrupt Base field remains unchanged but has been moved. The I/O APIC Address field has been
deleted. A new address and reserved field have been added.

Table 5-54 I/O SAPIC Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 6 I/O SAPIC Structure

Length 1 1 16

I/O APIC ID 1 2 I/O SAPIC ID

Reserved 1 3 Reserved (must be zero)

Global System
Interrupt Base

4 4 The global system interrupt number where this I/O SAPIC’s interrupt
inputs start. The number of interrupt inputs is determined by the I/O
SAPIC’s Max Redir Entry register.

I/O SAPIC Address 8 8 The 64-bit physical address to access this I/O SAPIC. Each I/O SAPIC
resides at a unique address.

If defined, OSPM must use the information contained in the I/O SAPIC structure instead of the
information from the I/O APIC structure.

If both I/O APIC and an I/O SAPIC structures exist in an MADT, the OEM/platform firmware writer must
prevent “mixing” I/O APIC and I/O SAPIC addresses. This is done by ensuring that there are at least as
many I/O SAPIC structures as I/O APIC structures and that every I/O APIC structure has a corresponding I/
O SAPIC structure (same APIC ID).

5.2.12.10 Local SAPIC Structure

The Processor local SAPIC structure is very similar to the processor local APIC structure. When using the
SAPIC interrupt model, each processor in the system is required to have a Processor Local SAPIC record in
UEFI Forum, Inc. January 2019 Page 158

ACPI Specification, Version 6.3 ACPI Software Programming Model
the MADT, and a processor device object in the DSDT. OSPM does not expect the information provided in
this table to be updated if the processor information changes during the lifespan of an OS boot. While in
the sleeping state, processors are not allowed to be added, removed, nor can their SAPIC ID or Flags
change. When a processor is not present, the Processor Local SAPIC information is either not reported or
flagged as disabled.

Table 5-55 Processor Local SAPIC Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 7 Processor Local SAPIC structure

Length 1 1 Length of the Local SAPIC Structure in bytes.

ACPI Processor ID 1 2 OSPM associates the Local SAPIC Structure with a processor object
declared in the namespace using the Processor statement by matching
the processor object’s ProcessorID value with this field. The use of the
Processor statement is deprecated. See the compatibility note in
Section 5.2.12.12, and Section 19.6.108, “Processor (Declare
Processor).”

Local SAPIC ID 1 3 The processor’s local SAPIC ID

Local SAPIC EID 1 4 The processor’s local SAPIC EID

Reserved 3 5 Reserved (must be set to zero)

Flags 4 8 Local SAPIC flags. See Table 5-47 for a description of this field.

ACPI Processor
UID Value

4 12 OSPM associates the Local SAPIC Structure with a processor object
declared in the namespace using the Device statement, when the _UID
child object of the processor device evaluates to a numeric value, by
matching the numeric value with this field.

ACPI Processor
UID String

>=1 16 OSPM associates the Local SAPIC Structure with a processor object
declared in the namespace using the Device statement, when the _UID
child object of the processor device evaluates to a string, by matching
the string with this field. This value is stored as a null-terminated ASCII
string.

5.2.12.11 Platform Interrupt Source Structure

The Platform Interrupt Source structure is used to communicate which I/O SAPIC interrupt inputs are
connected to the platform interrupt sources.

Platform Management Interrupts (PMIs) are used to invoke platform firmware to handle various events

(similar to SMI in IA-32). The Intel® ItaniumTM architecture permits the I/O SAPIC to send a vector value in
the interrupt message of the PMI type. This value is specified in the I/O SAPIC Vector field of the Platform
Interrupt Sources Structure.

INIT messages cause processors to soft reset.

If a platform can generate an interrupt after correcting platform errors (e.g., single bit error correction),
the interrupt input line used to signal such corrected errors is specified by the Global System Interrupt
field in the following table. Some systems may restrict the retrieval of corrected platform error
UEFI Forum, Inc. January 2019 Page 159

ACPI Specification, Version 6.3 ACPI Software Programming Model
information to a specific processor. In such cases, the firmware indicates the processor that can retrieve
the corrected platform error information through the Processor ID and EID fields in the structure below.
OSPM is required to program the I/O SAPIC redirection table entries with the Processor ID, EID values
specified by the ACPI system firmware. On platforms where the retrieval of corrected platform error
information can be performed on any processor, the firmware indicates this capability by setting the CPEI
Processor Override flag in the Platform Interrupt Source Flags field of the structure below. If the CPEI
Processor Override Flag is set, OSPM uses the processor specified by Processor ID, and EID fields of the
structure below only as a target processor hint and the error retrieval can be performed on any processor
in the system. However, firmware is required to specify valid values in Processor ID, EID fields to ensure
backward compatibility.

If the CPEI Processor Override flag is clear, OSPM may reject a ejection request for the processor that is
targeted for the corrected platform error interrupt. If the CPEI Processor Override flag is set, OSPM can
retarget the corrected platform error interrupt to a different processor when the target processor is
ejected.

Note that the _MAT object can return a buffer containing Platform Interrupt Source Structure entries. It
is allowed for such an entry to refer to a Global System Interrupt that is already specified by a Platform
Interrupt Source Structure provided through the static MADT table, provided the value of platform
interrupt source flags are identical.

Refer to the ItaniumTM Processor Family System Abstraction Layer (SAL) Specification for details on
handling the Corrected Platform Error Interrupt.

Table 5-56 Platform Interrupt Source Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 8 Platform Interrupt Source structure

Length 1 1 16

Flags 2 2 MPS INTI flags. See Table 5-50 for a description of this field.

Interrupt Type 1 4 1 PMI

2 INIT

3 Corrected Platform Error Interrupt

All other values are reserved.

Processor ID 1 5 Processor ID of destination.

Processor EID 1 6 Processor EID of destination.

I/O SAPIC Vector 1 7 Value that OSPM must use to program the vector field of the I/O SAPIC
redirection table entry for entries with the PMI interrupt type.

Global System
Interrupt

4 8 The Global System Interrupt that this platform interrupt will signal.

Platform
Interrupt Source
Flags

4 12 Platform Interrupt Source Flags. See Table 5-57 for a description of this
field
UEFI Forum, Inc. January 2019 Page 160

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-57 Platform Interrupt Source Flags

Platform Interrupt
Source Flags

Bit
Length

Bit
Offset

Description

CPEI Processor
Override

1 0 When set, indicates that retrieval of error information is allowed from
any processor and OSPM is to use the information provided by the
processor ID, EID fields of the Platform Interrupt Source Structure
(Table 5-56) as a target processor hint.

Reserved 31 1 Must be zero.

5.2.12.12 Processor Local x2APIC Structure

The Processor X2APIC structure is very similar to the processor local APIC structure. When using the
X2APIC interrupt model, logical processors are required to have a processor device object in the DSDT
and must convey the processor's APIC information to OSPM using the Processor Local X2APIC structure.

Note: [Compatibility note] On some legacy OSes, Logical processors with APIC ID values less than 255
(whether in XAPIC or X2APIC mode) must use the Processor Local APIC structure to convey their
APIC information to OSPM, and those processors must be declared in the DSDT using the
Processor() keyword. Logical processors with APIC ID values 255 and greater must use the
Processor Local x2APIC structure and be declared using the Device() keyword. See
Section 19.6.108 "Processor (Declare Processor)" for more information.

OSPM does not expect the information provided in this table to be updated if the processor information
changes during the lifespan of an OS boot. While in the sleeping state, logical processors must not be
added or removed, nor can their X2APIC ID or x2APIC Flags change. When a logical processor is not
present, the processor local X2APIC information is either not reported or flagged as disabled.

The format of x2APIC structure is listed in Table 5-58.

Table 5-58 Processor Local x2APIC Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 9 Processor Local x2APIC structure

Length 1 1 16

Reserved 2 2 Reserved - Must be zero

X2APIC ID 4 4 The processor’s local x2APIC ID.

Flags 4 8 Same as Local APIC flags. See Table 5-47 for a description of this field.

ACPI Processor UID 4 12 OSPM associates the X2APIC Structure with a processor object declared
in the namespace using the Device statement, when the _UID child
object of the processor device evaluates to a numeric value, by
matching the numeric value with this field

5.2.12.13 Local x2APIC NMI Structure

The Local APIC NMI and Local x2APIC NMI structures describe the interrupt input (LINTn) that NMI is
connected to for each of the logical processors in the system where such a connection exists. Each NMI
UEFI Forum, Inc. January 2019 Page 161

ACPI Specification, Version 6.3 ACPI Software Programming Model
connection to a processor requires a separate NMI structure. This information is needed by OSPM to
enable the appropriate APIC entry.

NMI connection to a logical processor with local x2APIC ID 255 and greater requires an X2APIC NMI
structure. NMI connection to a logical processor with an x2APIC ID less than 255 requires a Local APIC
NMI structure. For example, if the platform contains 8 logical processors with x2APIC IDs 0-3 and 256-259
and NMI is connected LINT1 for processor 3, 2, 256 and 257 then two Local APIC NMI entries and two
X2APIC NMI entries must be provided in the MADT.

 The Local APIC NMI structure is used to specify global LINTx for all processors if all logical processors
have x2APIC ID less than 255. If the platform contains any logical processors with an x2APIC ID of 255 or
greater then the Local X2APIC NMI structure must be used to specify global LINTx for ALL logical
processors. The format of x2APIC NMI structure is listed in Table 5-59.

Table 5-59 Local x2APIC NMI Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 0AH Local x2APIC NMI Structure

Length 1 1 12

Flags 2 2 Same as MPS INTI flags. See Table 5-50 for a description of this
field.

ACPI Processor
UID

4 4 UID corresponding to the ID listed in the processor Device object.
A value of 0xFFFFFFFF signifies that this applies to all processors in
the machine.

Local x2APIC
LINT#

1 8 Local x2APIC interrupt input LINTn to which NMI is connected.

Reserved 3 9 Reserved - Must be zero.
UEFI Forum, Inc. January 2019 Page 162

ACPI Specification, Version 6.3 ACPI Software Programming Model
0 INTI_0 0
.
.
.
23 INTI_23

24 INTI_0 24
.
.
.
39 INTI_15

40 INTI_0 40
.
51 INTI_11
.
55 INTI_23

24 input
IOAPIC

16 input
IOAPIC

24 input
IOAPIC

Global System Interrupt Vector
(ie ACPI PnP IRQ#)

Interrupt Input Lines
on IOAPIC

‘System Vector Base’
reported in IOAPIC Struc

Figure 5-17 APIC–Global System Interrupts
UEFI Forum, Inc. January 2019 Page 163

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.12.14 GIC CPU Interface (GICC) Structure

In the GIC interrupt model, logical processors are required to have a Processor Device object in the DSDT,
and must convey each processor’s GIC information to the OS using the GICC structure.

The format of the GICC structure is shown in Table 5-60.

Table 5-60 GICC Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 0xB GICC structure

Length 1 1 80

Reserved 2 2 Reserved - Must be zero

CPU Interface
Number

4 4 GIC's CPU Interface Number. In GICv1/v2 implementations, this value
matches the bit index of the associated processor in the GIC
distributor's GICD_ITARGETSR register.

For GICv3/4 implementations this field must be provided by the
platform, if compatibility mode is supported.

If it is not supported by the implementation, then this field must be
zero.

ACPI Processor UID 4 8 The OS associates this GICC Structure with a processor device object in
the namespace when the _UID child object of the processor device
evaluates to a numeric value that matches the numeric value in this
field.

Flags 4 12 See Table 5-61.

Parking Protocol
Version

4 16 Version of the ARM-Processor Parking Protocol implemented. See
http://uefi.org/acpi. The document link is listed under
"Multiprocessor Startup for ARM Platforms"

For systems that support PSCI exclusively and do not support the
parking protocol, this field must be set to 0.

Performance
Interrupt GSIV

4 20 The GSIV used for Performance Monitoring Interrupts

Parked Address 8 24 The 64-bit physical address of the processor’s Parking Protocol
mailbox

Physical Base
Address

8 32 On GICv1/v2 systems and GICv3/4 systems in GICv2 compatibility
mode, this field holds the 64-bit physical address at which the
processor can access this GIC CPU Interface. If provided here, the
"Local Interrupt Controller Address" field in the MADT must be
ignored by the OSPM.

GICV 8 40 Address of the GIC virtual CPU interface registers. If the platform is
not presenting a GICv2 with virtualization extensions this field can be
0.
UEFI Forum, Inc. January 2019 Page 164

ACPI Specification, Version 6.3 ACPI Software Programming Model
GICH 8 48 Address of the GIC virtual interface control block registers. If the
platform is not presenting a GICv2 with virtualization extensions this
field can be 0.

VGIC Maintenance
interrupt

4 56 GSIV for Virtual GIC maintenance interrupt

GICR Base Address 8 60 On systems supporting GICv3 and above, this field holds the 64-bit
physical address of the associated Redistributor. If all of the GIC
Redistributors are in the always-on power domain, GICR structures
should be used to describe the Redistributors instead, and this field
must be set to 0. If a GICR structure is present in the MADT then this
field must be ignored by the OSPM.

MPIDR 8 68 This fields follows the MPIDR formatting of ARM architecture.

If the implements ARMv7 architecure then the format must be:

Bits [63:24] Must be zero

Bits [23:16] Aff2 : Match Aff2 of target processor MPIDR

Bits [15:8] Aff1 : Match Aff1 of target processor MPIDR

Bits [7:0] Aff0 : Match Aff0 of target processor MPIDR

For platforms implementing ARMv8 the format must be:

Bits [63:40] Must be zero

Bits [39:32] Aff3 : Match Aff3 of target processor MPIDR

Bits [31:24] Must be zero

Bits [23:16] Aff2 : Match Aff2 of target processor MPIDR

Bits [15:8] Aff1 : Match Aff1 of target processor MPIDR

Bits [7:0] Aff0 : Match Aff0 of target processor MPIDR

Processor Power
Efficiency Class

1 76 Describes the relative power efficiency of the associated processor.
Lower efficiency class numbers are more efficient than higher ones
(e.g. efficiency class 0 should be treated as more efficient than
efficiency class 1).

However, absolute values of this number have no meaning: 2 isn't
necessarily half as efficient as 1.

Reserved 1 77 Must be zero.

SPE overflow
Interrupt

2 78 Statistical Profiling Extension buffer overflow GSIV. This interrupt is a
level triggered PPI. Zero if SPE is not supported by this processor.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 165

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-61 GICC CPU Interface Flags

GIC Flags
Bit
Length

Bit
Offset

Description

Enabled 1 0 If zero, this processor is unusable, and the operating system
support will not attempt to use it.

Performance
Interrupt Mode

1 1 0 - Level-triggered

1 - Edge-Triggered

VGIC Maintenance
interrupt Mode
Flags

1 2 0 - Level-triggered

1 - Edge-Triggered

Reserved 29 3 Must be zero.

5.2.12.15 GIC Distributor (GICD) Structure

ACPI represents all wired interrupts as “flat” values known as global system interrupts (GSIVs) as
described in Section 5.2.13. On ARM-based systems the Generic Interrupt Controller (GIC) manages
interrupts on the system. Each interrupt is identified in the GIC by an interrupt identifier (INTID). ACPI
GSIVs map one to one to GIC INTIDs for peripheral interrupts, whether shared (SPI) or private (PPI). The
GIC distributor structure describes the GIC distributor to the OS. One, and only one, GIC distributor
structure must be present in the MADT for an ARM based system.

The format of the GICD structure is listed in Table 5-62.

Table 5-62

Field
Byte
Length

Byte
Offset

Description

Type 1 0 0xC GICD structure

Length 1 1 24

Reserved 2 2 Reserved - Must be zero

GIC ID 4 4 This GIC Distributor’s hardware ID

Physical Base
Address

8 8 The 64-bit physical address for this Distributor

System Vector
Base

4 16 Reserved - Must be zero

GIC version 1 20 0x00: No GIC version is specified, fall back to hardware discovery
for GIC version

0x01: GICv1

0x02: GICv2

0x03: GICv3

0x04: GICv4

0x05-0xFF, Reserved for future use.

Reserved 3 21 Must be zero

GICD Structure
UEFI Forum, Inc. January 2019 Page 166

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.12.16 GIC MSI Frame Structure

Each GICv2m MSI frame consists of a 4k page which includes registers to generate message signaled
interrupts to an associated GIC distributor. The frame also includes registers to discover the set of
distributor lines which may be signaled by MSIs from that frame. A system may have multiple MSI frames,
and separate frames may be defined for secure and non-secure access. This structure must only be used
to describe non-secure MSI frames.

The format of the GIC MSI Frame Structure is listed in Table 5-63.

Table 5-63 GIC MSI Frame Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 0xD GIC MSI Frame structure

Length 1 1 24

Reserved 2 2 Reserved - Must be zero

GIC MSI Frame ID 4 4 GIC MSI Frame ID. In a system with multiple GIC MSI frames, this
value must be unique to each one.

Physical Base
Address

8 8 The 64-bit physical address for this MSI Frame

Flags 4 16 GIC MSI Frame Flags. See Table 5-64

SPI Count 2 20 SPI Count used by this frame. Unless the SPI Count Select flag is
set to 1 this value should match the lower 16 bits of the
MSI_TYPER register in the frame.

SPI Base 2 22 SPI Base used by this frame. Unless the SPI Base Select flag is set
to 1 this value should match the upper 16 bits of the MSI_TYPER
register in the frame.

Table 5-64 GIC MSI Frame Flags

GIC MSI Frame
Flags

Bit

Length

Bit

Offset
Description

SPI Count/Base
Select

1 0 0: The SPI Count and Base fields should be ignored, and the actual
values should be queried from the MSI_TYPER register in the
associated GIC MSI frame.

1: The SPI Count and Base values override the values specified in
the MSI_TYPER register in the associated GIC MSI frame.

Reserved 31 1 Must be zero.

5.2.12.17 GIC Redistributor (GICR) Structure

The GICR Structure is described in Table 5-65. This structure enables the discovery of GIC Redistributor
base addresses by providing the Physical Base Address of a page range containing the GIC Redistributors.
More than one GICR Structure may be presented in the MADT. GICR structures should only be used when
UEFI Forum, Inc. January 2019 Page 167

ACPI Specification, Version 6.3 ACPI Software Programming Model
describing GIC implementations which conform to version 3 or higher of the GIC architecture and which
place all Redistributors in the always-on power domain.When a GICR structure is presented, the OSPM
must ignore the GICR Base Address field of the GICC structures (see Table 5-60).

Table 5-65 GICR Structure

Field
Byte

Length

Byte

Offset
Description

Type 1 0 0xE GICR structure

Length 1 1 16

Reserved 2 2 Reserved - Must be zero

Discovery Range
Base Address

8 4 The 64-bit physical address of a page range containing all GIC
Redistributors

Discovery Range
Length

4 12 Length of the GIC Redistributor Discovery page range.

5.2.12.18 GIC Interrupt Translation Service (ITS) Structure

The GIC ITS is optionally supported in GICv3/v4 implementations. The format of the GIC ITS Structure is
listed in Table 5-66:

Table 5-66 GIC ITS Structure

Field
Byte

Length

Byte

Offset
Description

Type 1 0 0xF GIC ITS structure

Length 1 1 20

Reserved 2 2 Reserved - Must be zero

GIC ITS ID 4 4 GIC ITS ID. In a system with multiple GIC ITS units, this value must
be unique to each one.

Physical Base

Address

8 8 The 64-bit physical address for the Interrupt Translation Service

Reserved 4 16 Reserved – Must be zero

5.2.13 Global System Interrupts

Global System Interrupts can be thought of as ACPI Plug and Play IRQ numbers. They are used to
virtualize interrupts in tables and in ASL methods that perform resource allocation of interrupts. Do not
confuse global system interrupts with ISA IRQs although in the case of the IA-PC 8259 interrupts they
correspond in a one-to-one fashion.

There are two interrupt models used in ACPI-enabled systems.

The first model is the APIC model. In the APIC model, the number of interrupt inputs supported by each I/
O APIC can vary. OSPM determines the mapping of the Global System Interrupts by determining how
UEFI Forum, Inc. January 2019 Page 168

ACPI Specification, Version 6.3 ACPI Software Programming Model
many interrupt inputs each I/O APIC supports and by determining the global system interrupt base for
each I/O APIC as specified by the I/O APIC Structure. OSPM determines the number of interrupt inputs by
reading the Max Redirection register from the I/O APIC. The global system interrupts mapped to that I/O
APIC begin at the global system interrupt base and extending through the number of interrupts specified
in the Max Redirection register. This mapping is depicted in Figure 5-17.

There is exactly one I/O APIC structure per I/O APIC in the system.

Figure 5-18 8259–Global System Interrupts

The other interrupt model is the standard AT style mentioned above which uses ISA IRQs attached to a
master slave pair of 8259 PICs. The system vectors correspond to the ISA IRQs. The ISA IRQs and their
mappings to the 8259 pair are part of the AT standard and are well defined. This mapping is depicted in
Figure 5-18.

5.2.14 Smart Battery Table (SBST)

If the platform supports batteries as defined by the Smart Battery Specification 1.0 or 1.1, then an Smart
Battery Table (SBST) is present. This table indicates the energy level trip points that the platform requires
for placing the system into the specified sleeping state and the suggested energy levels for warning the
user to transition the platform into a sleeping state. Notice that while Smart Batteries can report either in
current (mA/mAh) or in energy (mW/mWh), OSPM must set them to operate in energy (mW/mWh)
mode so that the energy levels specified in the SBST can be used. OSPM uses these tables with the
capabilities of the batteries to determine the different trip points. For more precise definitions of these
levels, see Section 3.9.3, “Battery Gas Gauge.”

Table 5-67 Smart Battery Description Table (SBST) Format

Field
Byte
Length

Byte
Offset

Description

Header

IRQ0
.
IRQ3
.
IRQ7
IR8
.
IRQ11
.
IRQ15

8259 ISA IRQsGlobal System Interrupt Vector
 (ie ACPI PnP IRQ#)

Master
8259

Slave
8259

0

8

15

7

UEFI Forum, Inc. January 2019 Page 169

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.15 Embedded Controller Boot Resources Table (ECDT)

This optional table provides the processor-relative, translated resources of an Embedded Controller. The
presence of this table allows OSPM to provide Embedded Controller operation region space access
before the namespace has been evaluated. If this table is not provided, the Embedded Controller region
space will not be available until the Embedded Controller device in the AML namespace has been
discovered and enumerated. The availability of the region space can be detected by providing a _REG
method object underneath the Embedded Controller device.

Table 5-68 Embedded Controller Boot Resources Table Format

 Signature 4 0 ‘SBST’ Signature for the Smart Battery Description Table.

 Length 4 4 Length, in bytes, of the entire SBST

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the SBST, the table ID is the manufacturer model ID.

 OEM Revision 4 24 OEM revision of SBST for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Warning Energy
Level

4 36 OEM suggested energy level in milliWatt-hours (mWh) at which
OSPM warns the user.

Low Energy Level 4 40 OEM suggested platform energy level in mWh at which OSPM
will transition the system to a sleeping state.

Critical Energy
Level

4 44 OEM suggested platform energy level in mWh at which OSPM
performs an emergency shutdown.

Field
Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘ECDT’ Signature for the Embedded Controller Table.

 Length 4 4 Length, in bytes, of the entire Embedded Controller Table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 170

ACPI Specification, Version 6.3 ACPI Software Programming Model
ACPI OSPM implementations supporting Embedded Controller devices must also support the ECDT. ACPI
1.0 OSPM implementation will not recognize or make use of the ECDT. The following example code shows
how to detect whether the Embedded Controller operation regions are available in a manner that is
backward compatible with prior versions of ACPI/OSPM.

Device(EC0) {
 Name(REGC,Ones)
 Method(_REG,2) {
 If(Lequal(Arg0, 3)) {
 Store(Arg1, REGC)
 }
 }
}
Method(ECAV,0) {
 If(Lequal(REGC,Ones)) {

 OEM Table ID 8 16 For the Embedded Controller Table, the table ID is the
manufacturer model ID.

 OEM Revision 4 24 OEM revision of Embedded Controller Table for supplied OEM
Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

EC_CONTROL 12 36 Contains the processor relative address, represented in Generic
Address Structure format, of the Embedded Controller
Command/Status register.
Note: Only System I/O space and System Memory space are
valid for values for Address_Space_ID.

EC_DATA 12 48 Contains the processor-relative address, represented in Generic
Address Structure format, of the Embedded Controller Data
register.
Note: Only System I/O space and System Memory space are
valid for values for Address_Space_ID.

UID 4 60 Unique ID–Same as the value returned by the _UID under the
device in the namespace that represents this embedded
controller.

GPE_BIT 1 64 The bit assignment of the SCI interrupt within the GPEx_STS
register of a GPE block described in the FADT that the embedded
controller triggers.

EC_ID Variable 65 ASCII, null terminated, string that contains a fully qualified
reference to the namespace object that is this embedded
controller device (for example, “_SB.PCI0.ISA.EC”). Quotes are
omitted in the data field.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 171

ACPI Specification, Version 6.3 ACPI Software Programming Model
 If(LgreaterEqual(_REV,2)) {
 Return(One)
 }
 Else {
 Return(Zero)
 }
 }
 Else {
 Return(REGC)
 }
}
To detect the availability of the region, call the ECAV method. For example:

If (_SB.PCI0.EC0.ECAV()) {
 ...regions are available...
}
else {
 ...regions are not available...
}

5.2.16 System Resource Affinity Table (SRAT)

This optional table provides information that allows OSPM to associate the following types of devices
with system locality / proximity domains and clock domains:

• processors,
• memory ranges (including those provided by hot-added memory devices), and
• generic initiators (e.g. heterogeneous processors and accelerators, GPUs, and I/O devices with

integrated compute or DMA engines).

On NUMA platforms, SRAT information enables OSPM to optimally configure the operating system during
a point in OS initialization when evaluation of objects in the ACPI Namespace is not yet possible.

OSPM evaluates the SRAT only during OS initialization. The Local APIC ID / Local SAPIC ID / Local x2APIC ID
or the GICC ACPI Processor UID of all processors started at boot time must be present in the SRAT. If the
Local APIC ID / Local SAPIC ID / Local x2APIC ID or the GICC ACPI Processor UID of a dynamically added
processor is not present in the SRAT, a _PXM object must exist for the processor’s device or one of its
ancestors in the ACPI Namespace.

Note: SRAT is the place where proximity domains are defined, and _PXM provides a mechanism to
associate a device object (and its children) to an SRAT-defined proximity domain.

See Section 6.2.14 (_PXM Proximity) for more information.
UEFI Forum, Inc. January 2019 Page 172

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-69 Static Resource Affinity Table Format

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘SRAT’. Signature for the System Resource Affinity Table.

 Length 4 4 Length, in bytes, of the entire SRAT. The length implies the
number of Entry fields at the end of the table

 Revision 1 8 3

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID.

 OEM Table ID 8 16 For the System Resource Affinity Table, the table ID is the
manufacturer model ID.

 OEM Revision 4 24 OEM revision of System Resource Affinity Table for supplied OEM
Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table.

 Creator Revision 4 32 Revision of utility that created the table.

Reserved 4 36 Reserved to be 1 for backward compatibility

Reserved 8 40 Reserved

Static Resource
Allocation
Structure[n]

--- 48 A list of static resource allocation structures for the platform. See
Section 5.2.16.1,”Processor Local APIC/SAPIC Affinity Structure”,
Section 5.2.16.2 “Memory Affinity Structure”, Section 5.2.16.3
“Processor Local x2APIC Affinity Structure”, and Section 5.2.16.4,
“GICC Affinity Structure.

5.2.16.1 Processor Local APIC/SAPIC Affinity Structure

The Processor Local APIC/SAPIC Affinity structure provides the association between the APIC ID or SAPIC
ID/EID of a processor and the proximity domain to which the processor belongs. Table 5-70 provides the
details of the Processor Local APIC/SAPIC Affinity structure.
UEFI Forum, Inc. January 2019 Page 173

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-70 Processor Local APIC/SAPIC Affinity Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 0 Processor Local APIC/SAPIC Affinity Structure

Length 1 1 16

Proximity Domain
[7:0]

1 2 Bit [7:0] of the proximity domain to which the processor belongs.

APIC ID 1 3 The processor local APIC ID.

Flags 4 4 Flags – Processor Local APIC/SAPIC Affinity Structure. See Table 5-
71 for a description of this field.

Local SAPIC EID 1 8 The processor local SAPIC EID.

Proximity Domain
[31:8]

3 9 Bit [31:8] of the proximity domain to which the processor belongs.

Clock Domain 4 12 The clock domain to which the processor belongs. See
Section 6.2.1, “_CDM (Clock Domain)”.

Table 5-71 Flags – Processor Local APIC/SAPIC Affinity Structure

Field
Bit
Length

Bit
Offset

Description

Enabled 1 0 If clear, the OSPM ignores the contents of the Processor Local
APIC/SAPIC Affinity Structure. This allows system firmware to
populate the SRAT with a static number of structures but only
enable them as necessary.

Reserved 31 1 Must be zero.

5.2.16.2 Memory Affinity Structure

The Memory Affinity structure provides the following topology information statically to the operating
system:

• The association between a range of memory and the proximity domain to which it belongs
• Information about whether the range of memory can be hot-plugged.

Table 5-72 provides the details of the Memory Affinity structure.
UEFI Forum, Inc. January 2019 Page 174

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-72 Memory Affinity Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 1 Memory Affinity Structure

Length 1 1 40

Proximity Domain 4 2 Integer that represents the proximity domain to which the
"range of memory" belongs.

Reserved 2 6 Reserved

Base Address Low 4 8 Low 32 Bits of the Base Address of the memory range

Base Address High 4 12 High 32 Bits of the Base Address of the memory range

Length Low 4 16 Low 32 Bits of the length of the memory range.

Length High 4 20 High 32 Bits of the length of the memory range.

Reserved 4 24 Reserved.

Flags 4 28 Flags – Memory Affinity Structure. Indicates whether the region
of memory is enabled and can be hot plugged. See Table 5-73.

Reserved 8 32 Reserved.

Table 5-73 Flags – Memory Affinity Structure

Field
Bit
Length

Bit
Offset

Description

Enabled 1 0 If clear, the OSPM ignores the contents of the Memory Affinity
Structure. This allows system firmware to populate the SRAT with
a static number of structures but only enable then as necessary.

Hot Pluggable 1 1 The information conveyed by this bit depends on the value of the
Enabled bit.

If the Enabled bit is set and the Hot Pluggable bit is also set. The
system hardware supports hot-add and hot-remove of this
memory region

If the Enabled bit is set and the Hot Pluggable bit is clear, the
system hardware does not support hot-add or hot-remove of this
memory region.

If the Enabled bit is clear, the OSPM will ignore the contents of
the Memory Affinity Structure

NonVolatile 1 2 If set, the memory region represents Non-Volatile memory

Reserved 29 3 Must be zero.
UEFI Forum, Inc. January 2019 Page 175

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.16.3 Processor Local x2APIC Affinity Structure

The Processor Local x2APIC Affinity structure provides the association between the local x2APIC ID of a
processor and the proximity domain to which the processor belongs. Table 5-74 provides the details of
the Processor Local x2APIC Affinity structure.

Table 5-74 Processor Local x2APIC Affinity Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 2 Processor Local x2APIC Affinity Structure

Length 1 1 24

Reserved 2 2 Reserved – Must be zero

Proximity Domain 4 4 The proximity domain to which the logical processor belongs.

X2APIC ID 4 8 The processor local x2APIC ID.

Flags 4 12 Same as Processor Local APIC/SAPIC Affinity Structure flags. See
Table 5-71 for a description of this field.

Clock Domain 4 16 The clock domain to which the logical processor belongs. See
Section 6.2.1, “_CDM (Clock Domain)”.

Reserved 4 20 Reserved.

 On x86-based platforms, the OSPM uses the Hot Pluggable bit to determine whether it should shift into
PAE mode to allow for insertion of hot-plug memory with physical addresses over 4 GB.

5.2.16.4 GICC Affinity Structure

The GICC Affinity Structure provides the association between the ACPI Processor UID of a processor and
the proximity domain to which the processor belongs. Table 5-75 provides the details of the GICC Affinity
structure.

Table 5-75 GICC Affinity Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 3 GICC Affinity Structure.

Length 1 1 18

Proximity Domain 4 2 The proximity domain to which the logical processor belongs.

ACPI Processor
UID

4 6 The ACPI Processor UID of the associated GICC.

Flags 4 10 Flags – GICC Affinity Structure. See Table 5-76 for a description of
this field.

Clock Domain 4 14 The clock domain to which the logical processor belongs. See
Section 6.2.1, “_CDM (Clock Domain)”.
UEFI Forum, Inc. January 2019 Page 176

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-76 Flags – GICC Affinity Structure

Field
Bit
Length

Bit
Offset

Description

Enabled 1 0 If clear, the OSPM ignores the contents of the GICC Affinity Structure.
This allows system firmware to populate the SRAT with a static number
of structures but only enable them as necessary.

Reserved 31 1 Must be zero.

5.2.16.5 GIC Interrupt Translation Service (ITS) Affinity Structure

The GIC ITS Affinity Structure provides the association between a GIC ITS and a proximity domain. This
enables the OSPM to discover the memory that is closest to the ITS, and use that in allocating its
management tables and command queue. The ITS is identified using an ID matching a declaration of a GIC
ITS in the MADT, see Section 5.2.12.18 for details. The following table provides the details of the GIC ITS
Affinity structure.

Table 5-77 Architecture Specific Affinity Structure

Field
Byte
Length

Byte
Offset

Description

5.2.16.6 Generic Initiator Affinity Structure

The Generic Initiator Affinity Structure provides the association between a generic initiator and the
proximity domain to which the initiator belongs. See Table 5-78 for details.

Support of Generic Initiator Affinity Structures by OSPM is optional, and the platform may query whether
the OS supports it via the _OSC method. See Section 6.2.11.2.

Type 1 0 4 GIC ITS Affinity Structure

Length 1 1 12

Proximity domain 4 2 Integer that represents the proximity domain to which the GIC
ITS belongs to.

Reserved 2 6 Reserved must be zero

ITS ID 4 8 ITS ID matching a GIC ITS entry in the MADT
UEFI Forum, Inc. January 2019 Page 177

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-78 Generic Initiator Affinity Structure

Table 5-79 Device Handle - ACPI

Table 5-80 Device Handle - PCI

 PCI segment number.

Field Byte

Length

Byte

Offset

Description

Type 1 0 5 Generic Initiator Structure.

Length 1 1 32

Reserved 1 2 Reserved and must be zero.

Device Handle
Type

1 3 Device Handle Type:

0 – ACPI Device Handle

1 – PCI Device Handle

2-255 - Reserved

Proximity Domain 4 4 The proximity domain to which the generic initiator belongs.

Device Handle 16 8 Device Handle of the Generic Initiator. See Table 5-79 for a description of
the ACPI Device Handle, and Table 5-80 for a description of the PCI
Device Handle.

Flags 4 24 Flags – Generic Initiator Affinity Structure. See Table 5-81 for a
description of this field.

Reserved 4 28 Reserved and must be zero.

Field Byte

Length

Byte

Offset

Description

ACPI _HID 8 0 The _HID value

ACPI _UID 4 8 The _UID value

Reserved 4 12 Must be zero.

Field Byte

Length

Byte

Offset

Description

PCI Segment 2 0
For systems with fewer than 255 PCI buses, 
this number must be 0.

PCI BDF Number 2 2 PCI Bus Number (Bits 7:0 of Byte 2)
PCI Device Number (Bits 7:3 of Byte 3)
PCI Function Number (Bits 2:0 of Byte 3)

Reserved 12 4 Must be zero
UEFI Forum, Inc. January 2019 Page 178

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-81 Flags – Generic Initiator Affinity Structure

Note for Implementors

If a generic device with coherent memory is attached to the system, it is recommended to define affinity
structures for both the device and memory associated with the device. They both may have the same
proximity domain.

5.2.17 System Locality Distance Information Table (SLIT)

This optional table provides a matrix that describes the relative distance (memory latency) between all
System Localities, which are also referred to as Proximity Domains. Systems employing a Non Uniform
Memory Access (NUMA) architecture contain collections of hardware resources including for example,
processors, memory, and I/O buses, that comprise what is known as a “NUMA node”. Processor accesses
to memory or I/O resources within the local NUMA node is generally faster than processor accesses to
memory or I/O resources outside of the local NUMA node.

The value of each Entry[i,j] in the SLIT table, where i represents a row of a matrix and j represents a
column of a matrix, indicates the relative distances from System Locality / Proximity Domain i to every
other System Locality j in the system (including itself).

The i,j row and column values correlate to Proximity Domain values in the System Resource Affinity Table
(SRAT), and to values returned by _PXM objects in the ACPI namespace. See Section 5.2.16, “System
Resource Affinity Table (SRAT)”, and Section 6.2.14, “_PXM (Proximity)” for more information.

The entry value is a one-byte unsigned integer. The relative distance from System Locality i to System
Locality j is the i*N + j entry in the matrix, where N is the number of System Localities. Except for the
relative distance from a System Locality to itself, each relative distance is stored twice in the matrix. This
provides the capability to describe the scenario where the relative distances for the two directions
between System Localities is different.

The diagonal elements of the matrix, the relative distances from a System Locality to itself are normalized
to a value of 10. The relative distances for the non-diagonal elements are scaled to be relative to 10. For
example, if the relative distance from System Locality i to System Locality j is 2.4, a value of 24 is stored in
table entry i*N+ j and in j*N+ i, where N is the number of System Localities.

If one locality is unreachable from another, a value of 255 (0xFF) is stored in that table entry. Distance
values of 0-9 are reserved and have no meaning.

Field Bit

Length

Bit

Offset

Description

Enabled 1 0 If clear, the OSPM ignores the contents of the Generic Initiator
Affinity Structure. This allows system firmware to populate the SRAT

Reserved 31 1 Must be zero.
UEFI Forum, Inc. January 2019 Page 179

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-82 SLIT Format

Field
Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘SLIT’. Signature for the System Locality Distance Information
Table.

 Length 4 4 Length, in bytes, of the entire System Locality Distance
Information Table.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID.

 OEM Table ID 8 16 For the System Locality Information Table, the table ID is the
manufacturer model ID.

 OEM Revision 4 24 OEM revision of System Locality Information Table for
supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For the DSDT, RSDT,
SSDT, and PSDT tables, this is the revision for the ASL
Compiler.

Number of System
Localities

8 36 Indicates the number of System Localities in the system.

Entry[0][0] 1 44 Matrix entry (0,0), contains a value of 10.

…

Entry[0][Number of
System Localities-1]

1 Matrix entry (0, Number of System Localities-1)

Entry[1][0] 1 Matrix entry (1,0)

…… ……

Entry[Number of
System Localities-
1][Number of System
Localities-1]

1 Matrix entry (Number of System Localities-1, Number of
System Localities-1), contains a value of 10

5.2.18 Corrected Platform Error Polling Table (CPEP)

Platforms may contain the ability to detect and correct certain operational errors while maintaining
platform function. These errors may be logged by the platform for the purpose of retrieval. Depending on
the underlying hardware support, the means for retrieving corrected platform error information varies. If
the platform hardware supports interrupt-based signaling of corrected platform errors, the MADT
Platform Interrupt Source Structure describes the Corrected Platform Error Interrupt (CPEI). See
UEFI Forum, Inc. January 2019 Page 180

ACPI Specification, Version 6.3 ACPI Software Programming Model
Section 5.2.12.11,”Platform Interrupt Source Structure”. Alternatively, OSPM may poll processors for
corrected platform error information. Error log information retrieved from a processor may contain
information for all processors within an error reporting group. As such, it may not be necessary for OSPM
to poll all processors in the system to retrieve complete error information. This optional table provides
information that allows OSPM to poll only the processors necessary for a complete report of the
platform’s corrected platform error information.

Table 5-83 Corrected Platform Error Polling Table Format

Field
Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘CPEP’. Signature for the Corrected Platform Error Polling Table.

 Length 4 4 Length, in bytes, of the entire CPET. The length implies the
number of Entry fields at the end of the table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID.

 OEM Table ID 8 16 For the Corrected Platform Error Polling Table, the table ID is the
manufacturer model ID.

 OEM Revision 4 24 OEM revision of Corrected Platform Error Polling Table for
supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table.

 Creator Revision 4 32 Revision of utility that created the table.

Reserved 8 36 Reserved, must be 0.

CPEP Processor
Structure[n]

--- 44 A list of Corrected Platform Error Polling Processor structures for
the platform. See Section 5.2.18.1,” Corrected Platform Error
Polling Processor Structure”.

5.2.18.1 Corrected Platform Error Polling Processor Structure

The Corrected Platform Error Polling Processor structure provides information on the specific processors
OSPM polls for error information. Table 5-84 provides the details of the Corrected Platform Error Polling
Processor structure.
UEFI Forum, Inc. January 2019 Page 181

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-84 Corrected Platform Error Polling Processor Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 0 Corrected Platform Error Polling Processor structure for
APIC/SAPIC based processors

Length 1 1 8

Processor ID 1 2 Processor ID of destination.

Processor EID 1 3 Processor EID of destination.

Polling Interval 4 4 Platform-suggested polling interval (in milliseconds)

5.2.19 Maximum System Characteristics Table (MSCT)

This section describes the format of the Maximum System Characteristic Table (MSCT), which provides
OSPM with information characteristics of a system’s maximum topology capabilities. If the system
maximum topology is not known up front at boot time, then this table is not present. OSPM will use
information provided by the MSCT only when the System Resource Affinity Table (SRAT) exists. The MSCT
must contain all proximity and clock domains defined in the SRAT.

Table 5-85 Maximum System Characteristics Table (MSCT) Format

Field
Byte
Length

Byte Offset Description

Header

 Signature 4 0 ‘MSCT’ Signature for the Maximum System
Characteristics Table.

 Length 4 4 Length, in bytes, of the entire MSCT.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the MSCT, the table ID is the manufacturer model
ID.

 OEM Revision 4 24 OEM revision of MSCT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for the
ASL Compiler.

Offset to Proximity
Domain Information
Structure
[OffsetProxDomInfo]

4 36 Offset in bytes to the Proximity Domain Information
Structure table entry.
UEFI Forum, Inc. January 2019 Page 182

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.19.1 Maximum Proximity Domain Information Structure

The Maximum Proximity Domain Information Structure is used to report system maximum
characteristics. It is likely that these characteristics may be the same for many proximity domains, but
they can vary from one proximity domain to another. This structure optimizes to cover the former case,
while allowing the flexibility for the latter as well. These structures must be organized in ascending order
of the proximity domain enumerations. All proximity domains within the Maximum Number of Proximity
Domains reported in the MSCT must be covered by one of these structures.

Table 5-86 Maximum Proximity Domain Information Structure

Maximum Number of
Proximity Domains

4 40 Indicates the maximum number of Proximity Domains
ever possible in the system. The number reported in
this field is (maximum domains – 1). For example if
there are 0x10000 possible domains in the system, this
field would report 0xFFFF.

Maximum Number of
Clock Domains

4 44 Indicates the maximum number of Clock Domains ever
possible in the system. The number reported in this
field is (maximum domains – 1). See Section 6.2.1,
“_CDM (Clock Domain)”.

Maximum Physical
Address

8 48 Indicates the maximum Physical Address ever possible
in the system. Note: this is the top of the reachable
physical address.

Proximity Domain
Information
Structure[Maximum
Number of Proximity
Domains]

— [OffsetProxD
omInfo]

A list of Proximity Domain Information for this
implementation. The structure format is defined in the
Maximum Proximity Domain Information Structure
section.

Field
Byte
Length

Byte
Offset

Description

Revision 1 0 1

Length 1 1 22

Proximity Domain
Range (low)

4 2 The starting proximity domain for the proximity domain range
that this structure is providing information.

Proximity Domain
Range (high)

4 6 The ending proximity domain for the proximity domain range that
this structure is providing information.

Maximum
Processor Capacity

4 10 The Maximum Processor Capacity of each of the Proximity
Domains specified in the range. A value of 0 means that the
proximity domains do not contain processors. This field must be
>= the number of processor entries for the domain in the SRAT.

Field
Byte
Length

Byte Offset Description
UEFI Forum, Inc. January 2019 Page 183

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.20 ACPI RAS Feature Table (RASF)

The following table describes the structure of ACPI RAS Feature Table.

Table 5-87 RASF Table format

Field
Byte
Length

Byte Offset Description

Header

 Signature 4 0 ‘RASF’ is Signature for RAS Feature Table

 Length 4 4 Length in bytes for entire RASF. The length
implies the number of Entry fields at the end of
the table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 The table ID is the manufacturer model ID

 OEM Revision 4 24 OEM revision of table for supplied OEM Table ID

 Creator ID 4 28 Vendor ID of utility that created the table

 Creator Revision 4 32 Revision of utility that created the table

RASF Specific Entries

RASF Platform
Communication Channel
Identifier

12 36 Identifier of the RASF Platform Communication
Channel. OSPM should use this value to identify
the PCC Sub channel structure in the RASF table

5.2.20.1 RASF PCC Sub Channel Identifier

RASF PCC Sub Channel Identifier is used by the OSPM to identify the PCC Sub channel structure. RASF
table references its PCC Subspace by this identifier as shown in Table 5-87.

5.2.20.2 Using PCC registers

OSPM will write PCC registers by filling in the register value in PCC sub channel space and issuing a PCC
Execute command. See Table 5-89.

To minimize the cost of PCC transactions, OSPM should read or write all registers in the same PCC
subspace via a single read or write command.

5.2.20.3 RASF Communication Channel

RASF Action Entries are defined in the PCC sub channel as below.

Maximum
Memory Capacity

8 14 The Maximum Memory Capacity (size in bytes) of the Proximity
Domains specified in the range. A value of 0 means that the
proximity domains do not contain memory.
UEFI Forum, Inc. January 2019 Page 184

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-88 RASF Platform Communication Channel Shared Memory Region

Field Byte Length
Byte
Offset

Description

Signature 4 0 The PCC Signature of 0x52415346 (corresponds to
ASCII signature of RASF)

Command 2 4 PCC command field; see Table 5-89 and
Section 14.

Status 2 6 PCC status field, see Section 14.

Communication Space

Version 2 8 Byte 0 – Minor Version

Byte 1 – Major Version

RAS Capabilities 16 10 Bit Map describing the platform RAS capabilities
as shown in Section 5.2.20.4.

The Platform populates this field. The OSPM uses
this field to determine the RAS capabilities of the
platform.

Set RAS Capabilities 16 26 Bit Map of the RAS features for which the OSPM is
invoking the command. The Bit Map is described
in Section 5.2.20.4.

OSPM sets the bit corresponding to a RAS
capability to invoke a command on that capability.
The bitmap implementation allows OSPM to
invoke a command on each RAS feature supported
by the platform at the same time.

Number of RASF Parameter
blocks

2 42 The Number of parameter blocks will depend on
how many RAS Capabilities the Platform Supports.
Typically, there will be one Parameter Block per
RAS Feature, using which that feature can be
managed by OSPM.

Set RAS Capabilities Status 4 44 Status

0000b = Success

0001b = Not Valid

0010b = Not Supported

0011b = Busy

0100b = Failed

0101b = Aborted

0110b = Invalid Data
UEFI Forum, Inc. January 2019 Page 185

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-89 PCC Command Codes used by RASF Platform Communication Channel

Command Description

0x00 Reserved

0x01 Execute RASF Command.

0x02-0xFF All other values are reserved.

5.2.20.4 Platform RAS Capabilities

The following table defines the Platform RAS capabilities:

Table 5-90 Platform RAS Capabilities Bitmap

Bit RAS Feature Description

0 Hardware based patrol
scrub supported

Indicates that the platform supports hardware based patrol scrub of
DRAM memory

1 Hardware based patrol
scrub supported and
exposed to software

Indicates that the platform supports hardware based patrol scrub of
DRAM memory and platform exposes this capability to software
using this RASF mechanism

2-127 Reserved Reserved for future use

5.2.20.5 Parameter Block

The following table describes the Parameter Blocks. The structure is used to pass parameters for
controlling the corresponding RAS Feature.

Each RAS Feature is assigned a TYPE number, which is the bit index into the RAS capabilities bitmap
described in Table 5-90.

Parameter Blocks Varies (N
Bytes)

48 Start of the parameter blocks, the structure of
which is shown in Table 5-91.

These parameter blocks are used as
communication mailbox between the OSPM and
the platform, and there is 1 parameter block for
each RAS feature.

NOTE: There can be only on parameter block per
type.

Field Byte Length
Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 186

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-91 Parameter Block Structure for PATROL_SCRUB

Field Byte Length Byte Offset Description

Type 2 0 0x0000 – Patrol scrub

Version 2 2 Byte 0 – Minor Version

Byte 1 – Major Version

Length 2 4 Length, in bytes of the entire parameter
block structure

Patrol Scrub
Command

(INPUT)

2 6 0x01 - GET_PATROL_PARAMETERS

0x02 - START_PATROL_SCRUBBER

0x03 – STOP_PATROL_SCRUBBER

Requested Address
Range

(INPUT)

16 8 OSPM Specifies the BASE (Bytes 7-0) and
SIZE (Bytes 15-8) of the address range to be
patrol scrubbed.

OSPM sets this parameter for the following
commands

GET_PATROL_PARAMETERS

START_PATROL_SCRUBBER

Actual Address
Range

(OUTPUT)

16 24 The platform returns this value in response
to GET_PATROL_PARAMETERS. The
platform calculates the nearest patrol scrub
boundary address from where it can start.
This range should be a superset of the
Requested Address Range.

BASE (Bytes 7-0) and SIZE (Bytes 15-8) of
the address

Flags (OUTPUT) 2 40 The platform returns this value in response
to GET_PATROL_PARAMETERS

Bit [0]: Will be set if patrol scrubber is
already running for address range specified
in “Actual Address Range”

Bits [3:1]: Current Patrol Speeds, if Bit [0] is
set

000b – Slow

100b – Medium

111b – Fast

All other combinations are reserved.

Bits [15:4]: RESERVED
UEFI Forum, Inc. January 2019 Page 187

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.20.5.1 Sequence of Operations:

The following sequence documents the steps for OSPM to identify whether the platform supports
hardware based patrol scrub and invoke commands to request hardware to patrol scrub the specified
address range.

1. Identify whether the platform supports hardware based patrol scrub and exposes the support
to software by reading the RAS capabilities bitmap in RASF table

2. Call GET_PATROL_PARAMETERS, by setting the Requested Address Range.

3. Platform Returns Actual Address Range and Flags.

4. Based on the above two data, if the OPSM decides to start the patrol scrubber or change the
speed of the patrol scrubber, then the OSPM calls START_PATROL_SCRUBBER, by setting the
Requested Address Range and Requested Speed.

5.2.21 Memory Power State Table (MPST)

The following table describes the structure of new ACPI memory power state table (MPST). This table
defines the memory power node topology of the configuration, as described earlier in Section 1. The
configuration includes specifying memory power nodes and their associated information. Each memory
power node is specified using address ranges, supported memory power states. The memory power
states will include both hardware controlled and software controlled memory power states. There can be
multiple entries for a given memory power node to support non contiguous address ranges. MPST table
also defines the communication mechanism between OSPM and platform runtime firmware for
triggering software controlled memory powerstate transitions implemented in platform runtime
firmware.

Requested Speed
(INPUT)

1 42 The OSPM Sets this field as follows, for the
START_PATROL_SCRUBBER command

Bit [0]: Will be set if patrol scrubber is
already running for address range specified
in “Actual Address Range”

Bits [2:0]: Requested Patrol Speeds

000b – Slow

100b – Medium

111b – Fast

All other combinations are reserved.

Bits [7:3]: RESERVED

Field Byte Length Byte Offset Description
UEFI Forum, Inc. January 2019 Page 188

ACPI Specification, Version 6.3 ACPI Software Programming Model
Figure 5-19 below provides structure organization overview of MPST table.

Flag, Mem Power Node Id ,
len etc ..

Address range (low, high
address bits , length low ,

high)

Memory Power State - 0

Memory Power State - M

Header etc..

Memory Power State
Command fields ...

(Memory Power Node
structure) MPN-0

Memory Power State
Characteristics (0)

MPN-Y

Flags

Avg. Power Consumed

 Exit Latency

MPST Top
level Structure

Flag, Mem Power Node Id ,
len etc ..

Address range (low, high
address bits , length low ,

high)

Memory Power State - 0

Memory Power State - M

Memory Power
Node Structure

Memory Power
State Structure

Flags

Avg. Power Consumed

Exit Latency

Memory Power State
Characteristics Structure

Memory Power State
Characteristics (M)

Power State Value
(M0, M1, M2, …)

Power State
Information Index

Power State Value
(m0, M1, M2…)

Power State
Information Index

Figure 5-19 MPST ACPI Table Overview
UEFI Forum, Inc. January 2019 Page 189

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-92 MPST Table Structure

Field
Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘MPST’. Signature for Memory Power State Table

 Length 4 4 Length in bytes for entire MPST. The length implies the
number of Entry fields at the end of the table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the memory power state table, the table ID is the
manufacturer model ID

 OEM Revision 4 24 OEM revision of memory power state Table for supplied
OEM Table ID

 Creator ID 4 28 Vendor ID of utility that created the table

 Creator Revision 4 32 Revision of utility that created the table

Memory PCC

MPST Platform
Communication Channel
Identifier

1 36 Identifier of the MPST Platform Communication
Channel.

Reserved 3 37 Reserved

Memory Power Node

Memory Power Node
Count

2 40 Number of Memory power Node structure entries

Reserved 2 42 Reserved

Memory Power Node
Structure[Memory Power
Node Count]

--- --- This field provides information on the memory power
nodes present in the system. The information includes
memory node id, power states supported & associated
latencies. Further details of this field are specified in
Section 5.2.21.4

Memory Power State
Characteristics

Memory Power State
Characteristics Count

2 --- Number of Memory power State Characteristics
Structure entries

Reserved 2 Reserved

Memory Power State
Characteristics Structure
[m]

--- --- This field provides information of memory power states
supported in the system. The information includes
power consumed, transition latencies, relevant flags.
UEFI Forum, Inc. January 2019 Page 190

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.21.1 MPST PCC Sub Channel

The MPST PCC Sub Channel Identifier value provided by the platform in this field should be programmed
to the Type field of PCC Communications Subspace Structure. The MPST table references its PCC
Subspace in a given platform by this identifier, as shown in Table 5-92.

5.2.21.1.1 Using PCC registers

OSPM will write PCC registers by filling in the register value in PCC sub channel space and issuing a PCC
Execute command. See Table 5-93, below. All other command values are reserved.

Table 5-93 PCC Command Codes used by MPST Platform Communication Channel

Command Description

0x00-0x02 All other values are reserved.

0x03 Execute MPST Command.

0x04-0xFF All other values are reserved.

Table 5-94 MPST Platform Communication Channel Shared Memory Region

Field
Byte
Length

Byte
Offset

Description

Signature 4 0 The PCC signature. The signature of a subspace is computed by
a bitwise-or of the value 0x50434300 with the subspace ID. For
example, subspace 3 has signature 0x50434303.

Command 2 4 PCC command field, seeSection 14 and Table 5-93.

Status 2 6 PCC status field, see Section 14

Communication Space

MEMORY_POWER_
COMMAND_REGIST
ER

4 8 Memory region for OSPM to write the requested memory
power state.

Write:

1 to this field to GET the memory power state

2 to this field to set the memory power state

3 – GET AVERAGE POWER CONSUMED

4 – GET MEMORY ENERGY CONSUMED
UEFI Forum, Inc. January 2019 Page 191

ACPI Specification, Version 6.3 ACPI Software Programming Model
Note: OSPM should use the ratio of computed memory power consumed to expected average power
consumed in determining the memory power management action.

5.2.21.2 Memory Power State

Memory Power State represents the state of a memory power node (which maps to a memory address
range) while the platform is in the G0 working state. Memory power node could be in active state named
MPS0 or in one of the power manage states MPS1-MPSn.

MEMORY_POWER_
STATUS_REGISTER

4 12 Bits [3:0]: Status (specific to
MEMORY_POWER_COMMAND_REGISTER)

• 0000b = Success

• 0001b = Not Valid

• 0010b = Not Supported

• 0011b = Busy

• 0100b = Failed

• 0101b = Aborted

• 0110b = Invalid Data

• Other values reserved

Bit [4]: Background Activity specific to the following
MEMORY_POWER _COMMAND_REGISTER value:

3 - GET AVERAGE POWER CONSUMED

4 - GET MEMORY ENERGY CONSUMED

0b = inactive

1b = background memory activity is in progress

Bits [31:5]: Reserved

POWER STATE ID 4 16 On completion of a GET operation, OSPM reads the current
platform state ID from this field. Prior to a SET operation, OSPM
populates this field with the power state value which needs to
be triggered. Power State values will be based on the platform
capability

MEMORY_POWER_
NODE_ID

4 20 This field identifies Memory power node number for the
command.

MEMORY_ENERGY_
CONSUMED

8 24 This field returns the energy consumed by the memory that
constitutes the MEMORY_POWER_NODE_ID specified in the
previous field. A value of all 1s in this field indicates that
platform does not implement this field.

EXPECTED_AVERAG
E_POWER_CONSU
MED

8 32 This field returns the expected average power consumption for
the memory constituted by MEMORY_POWER_NODE_ID. A
value of all 1s in this field indicates that platform does not
implement this field.
UEFI Forum, Inc. January 2019 Page 192

ACPI Specification, Version 6.3 ACPI Software Programming Model
It should be noted that active memory power state (MPS0) does not preclude memory power
management in that state. It only indicates that any active state memory power management in MPS0 is
transparent to the OSPM and more importantly does not require assist from OSPM in terms of restricting
memory occupancy and activity.

MPS1-MPSn states are characterized by non-zero exit latency for exit from the state to MPS0. These
states could require explicit OSPM-initiated entry and exit, explicit OSPM-initiated entry but autonomous
exit or autonomous entry and exit. In all three cases, these states require explicit OSPM action to isolate
and free the memory address range for the corresponding memory power node.

Transitions to more aggressive memory power states (for example, from MPS1 to MPS2) can be entered
on progressive idling but require transition through MPS0 (i.e. MPS1MPS0MPS2). Power state
transition diagram is shown in Figure 5-20.

It is possible that after OSPM request a memory power state, a brief period of activity returns the
memory power node to MPS0 state . If platform is capable of returning to a memory power state on
subsequent period of idle, the platform must treat the previously requested memory power state as a
persistent hint.

MPS0

MPS2 MPSnMPS1

Enter

Exit
Enter

Exit

Exit

Enter

Figure 5-20 Memory Power State Transitions

The following table enumerates the power state values that a node can transition to.

Table 5-95 Power state Values

Value State Name Description

0 MPS0 This state value maps to active state of memory node (Normal operation).
OSPM can access memory during this state.

1 MPS1 This state value can be mapped to any memory power state depending on
the platform capability. The platform will inform the features of MPS1 state
using the Memory Power State Structure. By convention, it is required that
low value power state will have lower power savings and lower latencies
than the higher valued power states.
UEFI Forum, Inc. January 2019 Page 193

ACPI Specification, Version 6.3 ACPI Software Programming Model
The following provides the list of command status:

Table 5-96 Command Status

Field Bit Length
Bit
Offset

Description

Command
Complete

1 0 If set, the platform has completed processing the last
command.

SCI Doorbell 1 1 If set, then this PCC Sub-Channel has signaled the SCI door bell.
In Response to this SCI, OSPM should probe the Command
Complete and the Platform Notification fields to determine the
cause of SCI.

Error 1 2 If set, an error occurred executing the last command.

Platform
Notification

1 3 Indicates that the SCI doorbell was invoked by the platform.

Reserved 12 4 Reserved.

5.2.21.3 Action Sequence

SetMemoryPowerState: The following sequence needs to be done to set a memory power state

1. Write target POWER NODE ID value to MEMORY_POWER_NODE_ID register of PCC sub
channel.

2. Write desired POWER STATE ID value to POWER STATE ID register of PCC sub channel .

3. Write SET (See Table 5-94) to MEMORY_POWER_STATE register of PCC sub channel.

4. Write PCC EXECUTE (See Table 5-93) to PCC Command register for the PCC sub channel.

5. OSPM rings the door bell by writing to Doorbell register.

6. Platform completes the request and will generate SCI to indicate that the command is
complete.

7. OSPM reads the Status register for the PCC sub channel and confirms that the command was
successfully completed.

GetMemoryPowerState: The following sequence needs to be done to get the current memory power
state

1. Write target POWER NODE ID value to MEMORY_POWER_NODE_ID register of PCC sub
channel.

2. Write GET (See Table 5-94) to MEMORY_POWER_STATE register of PCC sub channel.

3. Write PCC EXECUTE (See Table 5-93) to PCC Command register for the PCC sub channel.

4. OSPM rings the door bell by writing to Doorbell register.

5. Platform completes the request and will generate SCI to indicate that command is complete.

2,3…n MPS2, MPS3,
…

MPSn

Same description as MPS1.
UEFI Forum, Inc. January 2019 Page 194

ACPI Specification, Version 6.3 ACPI Software Programming Model
6. OSPM reads Status register for the PCC sub channel and confirms that the command was
successfully completed.

7. OSPM reads POWER STATE from POWER_STATE_ID register of PCC sub channel.

5.2.21.4 Memory Power Node

Memory Power Node is a representation of a logical memory region that needs to be transitioned in and
out of a memory power state as a unit. This logical memory region is made up of one more system
memory address range(s). A Memory Power Node is uniquely identified by Memory Power Node ID.

Note that memory power node structure defined in Table 5-97 can only represent a single address range.
This address range should be 4K aligned. If a Memory Power Node contains more than one memory
address range (i.e. non-contiguous range), firmware must construct a Memory power Node structure for
each of the memory address ranges but specify the same Memory Power Node ID in all the structures.

Memory Power Nodes are not hierarchical. However, a given memory address range covered by a
Memory power node could be fully covered by another memory power node if that nodes memory
address range is inclusive of the other node’s range. For example, memory power node MPN0 may cover
memory address range 1G-2G and memory power node MPN1 covers 1-4G. Here MPN1 memory address
range also comprehends the range covered by MPN0.

OSPM is expected to identify the memory power node(s) that corresponds to the maximum memory
address range that OSPM is able to power manage at a given time. For example, if MPN0 covers 1G-2G
and MPN1 covers 1-4G and OSPM is able to power manage 1-4G, it should select MPN1. If MPN0 is in a
non-active memory power state, OSPM must move MPN0 to MPS0 (Active state) before placing MPN1 in
desired Memory Power State. Further, MPN1 can support more power states than MPN0. If MPN1 is in
such a state , say MPS3 , that MPN0 does not support, software must not query MPN0. If queried, MPN0
will return "not Valid" until MPN1 returns to MPS0.

Note: [Implementation Note] In general, memory nodes corresponding to larger address space ranges
correspond to higher memory aggregation (e.g. memory covered by a DIMM vs. memory covered
by a memory channel) and hence typically present higher power saving opportunities.

5.2.21.4.1 Memory Power Node Structure

The following structure specifies the fields used for communicating memory power node information.
Each entry in the MPST table will be having corresponding memory power node structure defined.

This structure communicates address range, number of power states implemented, information about
individual power states, number of distinct physical components that comprise this memory power node.

The physical component identifiers can be cross-referenced against the memory topology table entries.

Table 5-97 Memory Power Node Structure definition

Field
Byte
Length

Byte
Offset

Description

 Flag 1 0 The flag describes type of memory node. Refer to
Table 5-98 for details.

Reserved 1 1 For future use
UEFI Forum, Inc. January 2019 Page 195

ACPI Specification, Version 6.3 ACPI Software Programming Model
 Memory Power Node Id 2 2 This field provides memory power node number.
This is a unique identification for Memory Power
State Command and creation of freelists/cache lists
in OSPM memory manager to bias allocation of non
power managed nodes vs. power managed nodes.

 Length 4 4 Length in bytes for Memory Power Node Structure.
The length implies the number of Entry fields at the
end of the table

Base Address Low 4 8 Low 32 bits of Base Address of the memory range.

Base Address High 4 12 High 32 bits of Base Address of the memory range.

Length Low 4 16 Low 32 bits of Length of the memory range. This
field along with “Length High” field is used to derive
the end physical address of this address range.

Length High 4 20 High 32 bits of Length of the memory range.

Number of Power States (n) 4 24 This field indicates number of power states
supported for this memory power node and in turn
determines the number of entries in memory
power state structure.

Number of Physical Components 4 28 This field indicates the number of distinct Physical
Components that constitute this memory power
node. This field is also used to identify the number
of entries of Physical Component Identifier entries
present at end of this table.

Memory Power State Structure
[n]

--- 32 This field provides information of various power
states supported in the system for a given memory
power node

Physical Component Identifier1 2 --- 2 byte identifier of distinct physical component that
makes up this memory power node

. … …

Physical Component Identifier m 2 --- 2 byte identifier of distinct physical component that
makes up this memory power node

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 196

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-98 Flag format

Bit Name Description

0 Enabled If clear, the OSPM ignores this Memory Power Node Structure. This allows
system firmware to populate the MPST with a static number of structures
but enable them as necessary.

1 Power Managed
Flag

1 – Memory node is power managed

0 – Memory node is not power managed. For non power managed node,
OSPM shall not attempt to transition node into low power state. System
behavior is undefined if OSPM attempts this.

NOTE: If the memory range corresponding to the memory node includes
platform firmware reserved memory that cannot be power managed, the
platform should indicate such memory as “not power managed” to
OSPM. This allows OSPM to ignore such ranges from its power
optimization.

2 Hot Pluggable This flag indicates that the memory node supports the hot plug feature.
Refer to Section 5.2.21.10 for interaction with memory hot plug.

3-7 Reserved Reserved for future use

5.2.21.5 Memory Power State Structure

Table 5-99 Memory Power State Structure definition

Field
Byte
Length

Byte
Offset

Description

Power State Value 1 0 This field provides value of power state. The specific value to be
used is system dependent. However convention needs to be
maintained where higher numbers indicates deeper power
states with higher power savings and higher latencies. For
example, a power state value of 2 will have higher power savings
and higher latencies than a power state value of 1.

Power State
Information Index

1 1 This field provides unique index into the memory power state
characteristics entries which will provide details about the
power consumed, power state characteristics and transition
latencies. The indexing mechanism is to avoid duplication (and
hence reduce potential for mismatch errors) of memory power
state characteristics entries across multiple memory nodes.

5.2.21.6 Memory Power State Characteristics structure

The table below describes the power consumed, exit latency and the characteristics of the memory
power state. This table is referenced by a memory power node.
UEFI Forum, Inc. January 2019 Page 197

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-100 Memory Power State Characteristics Structure

Field Byte Length Byte Offset

Power State
Structure ID

1 0 Bit [5:0] = This field describes the format of table Structure

Power State Structure ID Value = 1

Bit [7:6] = Structure Revision

Current revision is 1

Flag 1 1 The flag describes the caveats associated with entering the
specified power state. Refer to Table 5-101 for details.

Reserved 2 2 Reserved

Average Power
Consumed in
MPS0 state (in
milli watts)

4 4 This field provides average power consumed for this memory
power node in MPS0 state. This power is measured in
milliWatts and signifies the total power consumed by this
memory the given power state as measured in DC watts.
Note that this value should be used as guideline only for
estimating power savings and not as actual power
consumed. Also memory power node can map to single or
collection of RANKs/DIMMs. The actual power consumed is
dependent on DIMM type, configuration and memory load.

Relative Power
Saving to MPS0
state

4 8 This is a percentage of power saved in MPSx state relative to
MPS0 state and should be calculated as ((MPS0 power –
MPSx power)/MPS0 Power)*100. When this entry is
describing MPS0 state itself, OSPM should ignore this field.

Exit Latency (in ns)
(MPSx MPS0)

8 12 This field provides latency of exiting out of a power state
(MPSx) to active state (MPS0). The unit of this field is
nanoseconds.

When this entry is describing MPS0 state itself, OSPM should
ignore this field.

Reserved 8 20 Reserved for future use.
UEFI Forum, Inc. January 2019 Page 198

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-101 Flag format of Memory Power State Characteristics Structure

Bit Name Description

0 Memory Content
Preserved

If Bit [0] is set, it indicates memory contents will be preserved in the
specified power state

If Bit [0] is clear, it indicates memory contents will be lost in the
specified power state (e.g. for states like offline)

1 Autonomous Memory
Power State Entry

If Bit [1] is set, this field indicates that given memory power state
entry transition needs to be triggered explicitly by OSPM by calling the
Set Power State command.

If Bit [1] is clear, this field indicates that given memory power state
entry transition is automatically implemented in hardware and does
not require a OSPM trigger. The role of OSPM in this case is to ensure
that the corresponding memory region is idled from a software
standpoint to facilitate entry to the state.

Not meaningful for MPS0 – write it for this table

2 Autonomous Memory
Power State Exit

If Bit [1] is set, this field indicates that given memory power state exit
needs to be explicitly triggered by the OSPM before the memory can
be accessed. System behavior is undefined if OSPM or other software
agents attempt to access memory that is currently in a low power
state.

If Bit [1] is clear, this field indicates that given memory power state is
exited automatically on access to the memory address range
corresponding to the memory power node.

3-7 Reserved Reserved for future use

5.2.21.6.1 Power Consumed

Average Power Consumed in MPS0 state indicates the power in milli Watts for the MPS0 state. Relative
power savings to MPS0 indicates the savings in the MPSx state as a percentage of savings relative to
MPS0 state.

5.2.21.6.2 Exit Latency

Exit Latency provided in the Memory Power Characteristics structure for a specific power state is
inclusive of the entry latency for that state.

Exit latency must always be provided for a memory power state regardless of whether the memory
power state entry and/or exit are autonomous or requires explicit trigger from OSPM.

5.2.21.7 Autonomous Memory Power Management

Not all memory power management states require OSPM to actively transition a memory power node in
and out of the memory power state. Platforms may implement memory power states that are fully
handled in hardware in terms of entry and exit transition. In such fully autonomous states, the decision to
enter the state is made by hardware based on the utilization of the corresponding memory region and
the decision to exit the memory power state is initiated in response to a memory access targeted to the
corresponding memory region.
UEFI Forum, Inc. January 2019 Page 199

ACPI Specification, Version 6.3 ACPI Software Programming Model
The role of OSPM software in handling such autonomous memory power states is to vacate the use of
such memory regions when possible in order to allow hardware to effectively save power. No other
OSPM initiated action is required for supporting these autonomously power managed regions. However,
it is not an error for OSPM explicitly initiates a state transition to an autonomous entry memory power
state through the MPST command interface. The platform may accept the command and enter the state
immediately in which case it must return command completion with SUCCESS (00000b) status. If
platform does not support explicit entry, it must return command completion with NOT SUPPORTED
(00010b) status.

5.2.21.8 Handling BIOS Reserved Memory

Platform firmware may have regions of memory reserved for its own use that are unavailable to OSPM
for allocation. Memory nodes where all (or a portion) of the memory is reserved by platform firmware
may pose a problem for OSPM because it does not know whether the platform firmware reserved
memory is in use.

If the platform firmware reserved memory impacts the ability of the memory power node to enter
memory power state(s), the platform must indicate to OSPM (by clearing the Power Managed Flag – see
Table 5-98 for details) that this memory power node cannot be power managed. This allows OSPM to
ignore such ranges from its memory power optimization.

5.2.21.9 Interaction with NUMA processor and memory affinity tables

The memory power state table describes address range for each of the memory power nodes specified.
OSPM can use the address ranges information provided in MPST table and derive processor affinity of a
given memory power node based on the SRAT entries created by the platform boot firmware. The
association of memory power node to proximity domain can be used by OSPM to implement memory
coalescing taking into account NUMA node topology for memory allocation/release and manipulation of
different page lists in memory management code (implementation specific).

An example of policy which can be implemented in OSPM for memory coalescing is: OSPM can prefer
allocating memory from local memory power nodes before going to remote memory power nodes. The
later sections provide sample NUMA configurations and explain the policy for various memory power
nodes.

5.2.21.10 Interaction with Memory Hot Plug

The hot pluggable memory regions are described using memory device objects (see Section 9.13). The
memory address ranges of these memory device objects are defined using the _CRS method.

Scope (_SB) {
 Device (MEM0) {
 Name (_HID, EISAID (“PNP0C80”))
 Name (_CRS, ResourceTemplate () {
 QwordMemory (
 ResourceConsumer,
 ,
 MinFixed,
 MaxFixed,
 Cacheable,
 ReadWrite,
 0xFFFFFFF,
UEFI Forum, Inc. January 2019 Page 200

ACPI Specification, Version 6.3 ACPI Software Programming Model
 0x10000000,
 0x30000000,
 0, , ,
)
 })
 }
}

The memory power state table (MPST) is a static structure created for all memory objects independent of
hot plug status (online or offline) during initialization. The OSPM will populate the MPST table during the
boot. If hot-pluggable flag is set for a given memory power node in MPST table, OSPM will not use this
node till physical presence of memory is communicated through ACPI notification mechanism.

The association between memory device object (e.g. MEM0) to the appropriate memory power node id
in the MPST table is determined by comparing the address range specified using _CRS method and
address ranges configured in the MPST table entries. This association needs to be identified by OSPM as
part of ACPI memory hot plug implementation. When memory device is hot added, as part of existing
acpi driver for memory hot plug, OSPM will scan device object for _CRS method and get the relevant
address ranges for the given memory object, OSPM will determine the appropriate memory power node
ids based on the address ranges from _CRS and enable it for power management and memory coalescing.

Similarly when memory is hot removed, the corresponding memory power nodes will be disabled.

5.2.21.11 OS Memory Allocation Considerations

OSes (non-virtualized OS or a hypervisor/VMM) may need to allocate non-migratable memory. It is
recommended that the OSes (if possible) allocate this memory from memory ranges corresponding to
memory power nodes that indicate they are not power manageable. This allows OS to optimize the
power manageable memory power nodes for optimal power savings.

OSes can assume that memory ranges that belong to memory power nodes that are power manageable
(as indicated by the flag) are interleaved in a manner that does no impact the ability of that range to
enter power managed states. For example, such memory is not cacheline interleaved.

Reference to memory in this document always refers to host physical memory. For virtualized
environments, this requires hypervisors to be responsible for memory power management. Hypervisors
also have the ability to create opportunities for memory power management by vacating appropriate
host physical memory through remapping guest physical memory.

OSes can assume that the memory ranges included in MPST always refer to memory store – either
volatile or non-volatile and never to MMIO or MMCFG ranges.

5.2.21.12 Memory Topology Table (PMTT)

This table describes the memory topology of the system to OSPM, where the memory topology can be
logical or physical. The topology is provided to the last level physical component (e.g. DIMM).

Table 5-102 Platform Memory Topology Table

Field
Byte
Length

Byte
Offset

Description

Header
UEFI Forum, Inc. January 2019 Page 201

ACPI Specification, Version 6.3 ACPI Software Programming Model
 Signature 4 0 ‘PMTT’. Signature for Platform Memory Topology Table.

 Length 4 4 Length in bytes of the entire PMTT. The length implies the number
of Memory Aggregator structures at the end of the table.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the PMTT, the table ID is the manufacturer model ID

 OEM Revision 4 24 OEM revision of the PMTT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table.

 Creator Revision 4 32 Revision of utility that created the table.

Reserved 4 36 Reserved, must be zero.

Memory Aggregator
Device Structure [n]

--- 40 A list of memory aggregator device structures for the platform. See
Table 5-103.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 202

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-103 Common Memory Aggregator Device Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 The field describes type of the Memory Aggregator Device.

0 – Socket

1 – Memory Controller

2 – DIMM

3 – 0xFF - Reserved

Reserved 1 1 Reserved, must be zero.

Length 2 2 Length in bytes for this Structure. This length implies the length of
the Type Specific Data at the end of the structure.

Flags 2 4 Bit [0] – set to 1 to indicate that this is a top level aggregator device.
This device must be counted in the number of top level aggregator
devices in PMTT table and must be surfaces via PMTT.

Bit [0] – 0 indicates that this is not a top level aggregator device.

Bit [1] - 1 indicates a physical element of the topology.

0 indicates a logical element of topology

Bit [2] and [3] –

• 00 - Indicates that all components aggregated by this device
implement volatile memory

• 01 - Indicates that components aggregated by this device
implement both volatile and non-volatile memory

• 10 - Indicates that all components aggregated by this device
implement non-volatile memory

• 11 - Reserved

Bits [15:4] Reserved, must be zero

Reserved 2 6 Reserved, must be zero.

Type Specific Data __ 8 Type specific data. Interpretation of this data is specific to the type
of the memory aggregator device. See Table 5-104, Table 5-105, and
Table 5-106.
UEFI Forum, Inc. January 2019 Page 203

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-104 Socket Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 0 – Socket

Reserved 1 1 Reserved, must be zero.

Length 2 2 Length in bytes for this Structure. The length implies the number of
memory controller structures at the end of this structure.

Flags 2 4 Bit [0] – 1 indicates that this is a top level aggregator device.

Bit [1] – Set to 1 since socket is a physical element of the topology

Bit [2] and [3] –

• 00 - Indicates that all components aggregated by this device
implement volatile memory

• 01 - Indicates that components aggregated by this device
implement both volatile and non-volatile memory

• 10 - Indicates that all components aggregated by this device
implement non-volatile memory

• 11 - Reserved

Bit [4] – Bit [15] Reserved, must be zero

Reserved 2 6 Reserved, must be zero.

Socket Identifier 2 8 Uniquely identifies the socket in the system.

Reserved 2 10 Reserved, must be zero.

Memory Controller
Structure [n]

--- 12 A list of Memory Controller Structures.This list provides information
on the memory controllers present in the socket. See Table 5-105.

Table 5-105 Memory Controller Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 1 – Memory Controller

Reserved 1 1 Reserved, must be zero.

Length 2 2 Length in bytes for this Structure. The length implies the
number of physical component identifier structures at the end
of this structure.
UEFI Forum, Inc. January 2019 Page 204

ACPI Specification, Version 6.3 ACPI Software Programming Model
Flag 2 4 Bit [0] – 1 indicates that this is a top level aggregator device.

Bit [1] – 1 indicates a physical element of the topology.

0 indicates a logical element of the topology

Bit [2] and [3] –

• 00 - Indicates that all components aggregated by this device
implement volatile memory

• 01 - Indicates that components aggregated by this device
implement both volatile and non-volatile memory

• 10 - Indicates that all components aggregated by this device
implement non-volatile memory

• 11 - Reserved

Bit [4] – Bit [15] Reserved

Reserved 2 6 Reserved, must be zero.

Read Latency (typical) 4 8 In nanoseconds as seen at the controller for a cacheline access.

Write latency (typical) 4 12 In nanoseconds as seen at the controller for a cacheline access.

Read Bandwidth
(typical)

4 16 In MB/s

Write Bandwidth
(typical)

4 20 In MB/s

Optimal access unit 2 24 In bytes

Optimal access
alignment

2 26 In bytes

Reserved 2 28 Reserved , must be zero.

Number of Proximity
Domains (m)

2 30 Number of Proximity Domains that immediately follow. A zero
in this field indicates that proximity domain information is not
provided by the platform and that no 4-byte domains follow

Proximity Domain [m] 4*m 32 Proximity domains for memory address space(s) spawned by
this memory controller. Each proximity domain is a 4-byte
entity as defined in the System Resource Allocation Table
(SRAT).

Physical Component
Identifier Structure [n]

__ - A list of Physical Components structures for this memory
controller. See Table 5-106.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 205

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-106 Physical Components Identifier Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 2– DIMM

Reserved 1 1 Reserved, must be zero.

Length 2 2 Length in bytes for this Structure.

Flag 2 4 Bit [0] – 0 indicates that this is not a top level memory
aggregator. DIMM is typically behind a memory controller or a
socket device or both.

Bit [1] – 1 indicates a physical element of the topology.

Set to 0 to indicate a logical element of the topology

Bit [2] and [3] –

• 00 - Indicates that all components aggregated by this device
implement volatile memory

• 01 - Indicates that components aggregated by this device
implement both volatile and non-volatile memory

• 10 - Indicates that all components aggregated by this device
implement non-volatile memory

• 11 - Reserved

Bit [4] – Bit [15] Reserved

Reserved 2 6 Reserved, must be zero.

Physical Component
Identifier

2 8 Uniquely identifies the physical memory component in the
system.

Reserved 2 10 Reserved, must be zero.

Size of DIMM 4 12 Size in MB of the DIMM device.

SMBIOS Handle 4 16 Refers to Type 17 table handle of corresponding SMBIOS
record. The platform indicates that this field is not valid by
setting a value of 0xFFFFFFFF. If the platform provides a valid
handle, the upper 2 bytes must be 0 (since SMBIOS handles are
2 bytes only).

NOTE: The use of this handle is for management software to be
able to cross-reference the physical DIMM described in
SMBIOS against the topology described in this table. It is not
expected that OSPM will utilize this field.

5.2.22 Boot Graphics Resource Table (BGRT)

The Boot Graphics Resource Table (BGRT) is an optional table that provides a mechanism to indicate that
an image was drawn on the screen during boot, and some information about the image.

The table is written when the image is drawn on the screen. This should be done after it is expected that
any firmware components that may write to the screen are done doing so and it is known that the image
is the only thing on the screen. If the boot path is interrupted (e.g., by a key press), the valid bit within the
status field should be changed to 0 to indicate to the OS that the current image is invalidated.
UEFI Forum, Inc. January 2019 Page 206

ACPI Specification, Version 6.3 ACPI Software Programming Model
This table is only supported on UEFI systems.

Table 5-107 Boot Graphics Resource Table Fields

Field
Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 “BGRT” Signature for the table.

 Length 4 4 Length, in bytes, of the entire table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 The table ID is the manufacturer model ID.

 OEM Revision 4 24 OEM revision for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table.

 Creator Revision 4 32 Revision of utility that created the table.

 Version 2 36 2-bytes (16 bit) version ID. This value must be 1.

 Status 1 38 1-byte status field indicating current status of the image.

Bits [7:3] = Reserved (must be zero)

Bits [2:1] = Orientation Offset. These bits describe the clockwise
degree offset from the image’s default orientation.

 [00] = 0, no offset

 [01] = 90

 [10] = 180

 [11] = 270

Image Type 1 39 1-byte enumerated type field indicating format of the image.

0 = Bitmap

1 – 255 Reserved (for future use)

 Image Address 8 40 8-byte (64 bit) physical address pointing to the firmware’s in-
memory copy of the image bitmap.

 Image Offset X 4 48 A 4-byte (32-bit) unsigned long describing the display X-offset of
the boot image. (X, Y) display offset of the top left corner of the
boot image. The top left corner of the display is at offset (0, 0).

Image Offset Y 4 52 A 4-byte (32-bit) unsigned long describing the display Y-offset of
the boot image. (X, Y) display offset of the top left corner of the
boot image. The top left corner of the display is at offset (0, 0).

The BGRT is a dynamic ACPI table that enables boot firmware to provide OPSM with a pointer to the
location in memory where the boot graphics image is stored.
UEFI Forum, Inc. January 2019 Page 207

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.22.1 Version

The version field identifies which revision of the BGRT table is implemented. The version field should be
set to 1.

5.2.22.2 Status

Table 5-108 Status Description Field

Offset Field Name

Bit 0 Displayed

The status field contains information about the current status of the table. The Valid bit is bit 0 of the
lowest byte. It should be set to 1 while the image resource is displayed on the screen, and set to 0 while
it is not displayed.

All other bits are reserved.

5.2.22.3 Image Type

Table 5-109 Image Type Description Field

Value Definition

0 Image Type is Bitmap

The Image type field contains information about the format of the image being returned. If the value is
0, the Image Type is Bitmap. The format for a Bitmap is defined atthe reference located in “Links to ACPI-
Related Documents” (http://uefi.org/acpi) under the heading "Types of Bitmaps".

All other values not defined in the table are reserved for future use.

5.2.22.4 Image Address

The Image Address contains the location in memory where an in-memory copy of the boot image can be
found. The image should be stored in EfiBootServicesData, allowing the system to reclaim the memory
when the image is no longer needed.

Implementations must present the image in a 24 bit bitmap with pixel format 0xRRGGBB, or a32-bit
bitmap with the pixel format 0xrrRRGGBB, where ‘rr’ is reserved.

5.2.22.5 Image Offset

The Image Offset contains 2 consecutive 4 byte unsigned longs describing the (X, Y) display offset of the
top left corner of the boot image. The top left corner of the display is at offset (0, 0).
UEFI Forum, Inc. January 2019 Page 208

ACPI Specification, Version 6.3 ACPI Software Programming Model
Image

Figure 5-21 Image Offset

5.2.23 Firmware Performance Data Table (FPDT)

This section describes the format of the Firmware Performance Data Table (FPDT), which provides
sufficient information to describe the platform initialization performance records. This information
represents the boot performance data relating to specific tasks within the firmware boot process. The
FPDT includes only those mileposts that are part of every platform boot process:

• End of reset sequence (Timer value noted at beginning of platform boot firmware initialization
- typically at reset vector)

• Handoff to OS Loader

This information represents the firmware boot performance data set that would be used to track
performance of each UEFI phase, and would be useful for tracking impacts resulting from changes due to
hardware/software configuration.

All timer values are express in 1 nanosecond increments. For example, if a record indicates an event
occurred at a timer value of 25678, this means that 25.678 microseconds have elapsed from the last reset
of the timer measurement. All timer values will be required to have an accuracy of +/- 10%.

Table 5-110 Firmware Performance Data Table (FPDT) Format

Field
Byte
Length

Byte Offset Description

Header

 Signature 4 0 ‘FPDT’ Signature for the Firmware Performance Data
Table.

 Length 4 4 The length of the table, in bytes, of the entire FPDT.
UEFI Forum, Inc. January 2019 Page 209

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.23.1 Performance Record Format

A performance record is comprised of a sub-header including a record type and length, and a set of data,
which may include a timer. The format of the record layout is specific to the record type. In this manner,
records are only as large as needed to contain the specific type of data to be conveyed.

Table 5-111 Performance Record Structure

Field
Byte
Length

Byte
Offset

Description

Performance
Record Type

2 0 This value depicts the format and contents of the performance
record.

Record Length 1 2 This value depicts the length of the performance record, in bytes.

Revision 1 3 This value is updated if the format of the record type is extended.
Any changes to a performance record layout must be backwards-
compatible in that all previously defined fields must be
maintained if still applicable, but newly defined fields allow the
length of the performance record to be increased. Previously
defined record fields must not be redefined, but are permitted to
be deprecated.

Data — 4 The content of this field is defined by the Performance Record
Type definition.

5.2.23.2 Performance Record Types

The table below describes the various types of records contained within the FPDT, and their associated
Performance Record Type. Note that unless otherwise specified, multiple performance records are
permitted in the FPDT for a given type, because some events can occur multiple times during the boot
process.

 Revision 1 8 The revision of the structure corresponding to the
signature field for this table.

For the Firmware Performance Data Table conforming to
this revision of the specification, the revision is 1.

 Checksum 1 9 The entire table, including the checksum field, must add
to zero to be considered valid.

 OEMID 6 10 An OEM-supplied string that identifies the OEM.

 OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify
this particular data table.

 OEM Revision 4 24 An OEM-supplied revision number.

 Creator ID 4 28 The Vendor ID of the utility that created this table.

 Creator Revision 4 32 The revision of the utility that created this table.

Performance Records — 36 The set of Performance Records.

Field
Byte
Length

Byte Offset Description
UEFI Forum, Inc. January 2019 Page 210

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-112 Performance Record Types

Record Type Value Type Description

0x0000 Firmware
Basic Boot
Performance
Pointer Record

Record containing a pointer to the Basic Boot Performance Data
Record.

0x0001 S3
Performance
Table Pointer
Record

Record containing a pointer to an S3 Performance Table.

0x0002 – 0x0FFF Reserved Reserved for ACPI specification usage.

0x1000 – 0x1FFF Reserved Reserved for Platform Vendor usage.

0x2000 – 0x2FFF Reserved Reserved for Hardware Vendor usage.

0x3000 – 0x3FFF Reserved Reserved for platform firmware Vendor usage.

0x4000 – 0xFFFF Reserved Reserved for future use

5.2.23.3 Runtime Performance Record Types

The table below describes the various types of runtime records and their associated Runtime
Performance Record types. These Records are not contained within the FPDT; they are referenced by
their respective pointer records in the FPDT.

Table 5-113 Runtime Performance Record Types

Record Type Value Type Description

0x0000 Basic S3
Resume
Performance
Record

Performance record describing minimal firmware
performance metrics for S3 resume operations

0x0001 Basic S3
Suspend
Performance
Record

Performance record describing minimal firmware
performance metrics for S3 suspend operations

0x0002 Firmware
Basic Boot
Performance
Data Record

Performance record showing basic performance metrics for
critical phases of the firmware boot process.

0x0003 – 0x0FFF Reserved Reserved for ACPI specification usage.

0x1000 – 0x1FFF Reserved Reserved for Platform Vendor usage.

0x2000 – 0x2FFF Reserved Reserved for Hardware Vendor usage.

0x3000 – 0x3FFF Reserved Reserved for platform firmware Vendor usage.

0x4000 – 0xFFFF Reserved Reserved for future use
UEFI Forum, Inc. January 2019 Page 211

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.23.4 S3 Performance Table Pointer Record

The S3 Performance Table Pointer Record contains a pointer to the S3 Performance Table. The S3
Performance Table itself exists in a range of memory described as ACPI AddressRangeReserved in the
system memory map. The record pointer is a required entry in the FPDT for any system supporting the S3
state, and the pointer must point to a valid static physical address. Only one of these records will be
produced.

Table 5-114 S3 Performance Table Pointer Record

Field
Byte
Length

Byte
Offset

Description

Performance
Record Type

2 0 1 - S3 Performance Table Record

Record Length 1 2 16 - This value depicts the length of the performance record, in
bytes.

Revision 1 3 1 - Revision of this Performance Record

Reserved 4 4 Reserved

S3PT Pointer 8 8 64-bit processor-relative physical address of the S3 Performance
Table

5.2.23.5 Firmware Basic Boot Performance Pointer Record

The Firmware Basic Boot Performance Pointer Record contains a pointer to the Firmware Basic Boot
Performance Data Record. The Firmware Basic Boot Performance Data Record itself exists in a range of
memory described as ACPI AddressRangeReserved in the system memory map. The record pointer is a
required entry in the FPDT for any system and the pointer must point to a valid static physical address.
Only one of these records will be produced.

Table 5-115 S4 Performance Table Pointer Record

Field
Byte
Length

Byte
Offset

Description

Performance
Record Type

2 0 0 – Firmware Basic Boot Performance Pointer Record

Record Length 1 2 16 - This value depicts the length of the performance record, in
bytes.

Revision 1 3 1 - Revision of this Performance Record

Reserved 4 4 Reserved

FBPT Pointer 8 8 64-bit processor-relative physical address of the Firmware Basic
Boot Performance Table

5.2.23.6 S3 Performance Table

The S3 Performance Table resides outside of the FPDT. It includes a header, defined in Table 5-117, and
one or more Performance Records.
UEFI Forum, Inc. January 2019 Page 212

ACPI Specification, Version 6.3 ACPI Software Programming Model
All event entries must be initialized to zero during the initial boot sequence, and overwritten during the
platform runtime firmware S3 resume sequence. The S3 Performance Table must include the Basic S3
Resume Performance Record. Other entries are optional.

Table 5-116 S3 Performance Table Header

Field
Byte
Length

Byte
Offset

Description

Signature 4 0 ‘S3PT’ is the signature to use.

Length 4 4 Length of the S3 Performance Table. This includes the header and
allocated size of the subsequent records. This size would at
minimum include the size of the header and the Basic S3 Resume
Performance Record.

Table 5-117 Basic S3 Resume Performance Record

Field
Byte
Length

Byte
Offset

Description

Runtime

Performance
Record Type

2 0 0 - The Basic S3 Resume Performance Record Type. Zero to one of
these records will be produced.

Record Length 1 2 24 - The value depicts the length of this performance record, in
bytes.

Revision 1 3 1 - Revision of this Performance Record

Resume Count 4 4 A count of the number of S3 resume cycles since the last full boot
sequence.

FullResume 8 8 Timer recorded at the end of platform runtime firmware S3
resume, just prior to handoff to the OS waking vector. Only the
most recent resume cycle’s time is retained.

AverageResume 8 16 Average timer value of all resume cycles logged since the last full
boot sequence, including the most recent resume. Note that the
entire log of timer values does not need to be retained in order to
calculate this average. AverageResumenew = (AverageResumeold

* (ResumeCount -1) + FullResume) / ResumeCount
UEFI Forum, Inc. January 2019 Page 213

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-118 Basic S3 Suspend Performance Record

Field
Byte
Length

Byte
Offset

Description

Runtime

Performance
Record Type

2 0 1 - The Basic S3 Suspend Performance Record Type. Zero to one of
these records will be produced.

Record Length 1 2 20 - The value depicts the length of this performance record, in
bytes.

Revision 1 3 1 - Revision of this Performance Record

SuspendStart 8 4 Timer value recorded at the OS write to SLP_TYP upon entry to S3.
Only the most recent suspend cycle’s timer value is retained.

SuspendEnd 8 12 Timer value recorded at the final firmware write to SLP_TYP (or
other mechanism) used to trigger hardware entry to S3. Only the
most recent suspend cycle’s timer value is retained.

5.2.23.7 Firmware Basic Boot Performance Table

The Firmware Basic Boot Performance Table resides outside of the FPDT. It includes a header, defined in
Table 5-119, and one or more Performance Records.

All event entries will be overwritten during the platform runtime firmware S4 resume sequence. The
Firmware Basic Boot Performance Table must include the Firmware Basic Boot Performance Table.

Table 5-119 Firmware Basic Boot Performance Table Header

Field
Byte
Length

Byte
Offset

Description

Signature 4 0 ‘FBPT’ is the signature to use.

Length 4 4 Length of the Firmware Basic Boot Performance Table. This
includes the header and allocated size of the subsequent records.
This size would at minimum include the size of the header and the
Firmware Basic Boot Performance Record.

5.2.23.8 Firmware Basic Boot Performance Data Record

A firmware basic boot performance data record which contains timer information associated with final
OS loader activity as well as the data associated with starting and ending boot time information. Only
one of these records will be produced.

Table 5-120 Firmware Basic Boot Performance Data Record Structure

Field
Byte
Length

Byte
Offset

Description

Performance
Record Type

2 0 2 – Firmware Basic Boot Performance Data Record
UEFI Forum, Inc. January 2019 Page 214

ACPI Specification, Version 6.3 ACPI Software Programming Model
Record Length 1 2 48 - This value depicts the length of the performance record, in
bytes.

Revision 1 3 2 - Revision of this Performance Record

Reserved 4 4 Reserved

Reset End 8 8 Timer value logged at the beginning of firmware image execution.
This may not always be zero or near zero.

OS Loader
LoadImage Start

8 16 Timer value logged just prior to loading the OS boot loader into
memory.
For non-UEFI compatible boots, this field must be zero.

OS Loader
StartImage Start

8 24 Timer value logged just prior to launching the currently loaded OS
boot loader image.
For non-UEFI compatible boots, the timer value logged will be just
prior to the INT 19h handler invocation.

ExitBootServices
Entry

8 32 Timer value logged at the point when the OS loader calls the
ExitBootServices function for UEFI compatible firmware.

For non-UEFI compatible boots, this field must be zero.

ExitBootServices
Exit

8 40 Timer value logged at the point just prior to the OS loader gaining
control back from the ExitBootServices function for UEFI
compatible firmware.

For non-UEFI compatible boots, this field must be zero.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 215

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.24 Generic Timer Description Table (GTDT)

This section describes the format of the Generic Timer Description Table (GTDT), which provides OSPM
with information about a system’s Generic Timers configuration. The Generic Timer (GT) is a standard
timer interface implemented on ARM processor-based systems. The GT hardware specification can be
found at Links to ACPI-Related Documents (http://uefi.org/acpi) under the heading ARM Architecture.
The GTDT provides OSPM with information about a system's GT interrupt configurations, for both per-
processor timers, and platform (memory-mapped) timers.

The GT specification defines the following per-processor timers:

• Secure EL1 timer,
• Non-Secure EL1 timer,
• EL2 timer,
• Virtual EL1 timer,
• Virtual EL2 timer,

and defines the following memory-mapped Platform timers:

• GT Block,
• Server Base System Architecture (SBSA) Generic Watchdog.

Table 5-121 GTDT Table Structure

Field
Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘GTDT’. Signature for the Generic Timer Description Table.

 Length 4 4 Length, in bytes, of the entire Generic Timer Description Table.

 Revision 1 8 3

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID.

 OEM Table ID 8 16 The manufacturer model ID.

 OEM Revision 4 24 OEM revision for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table.

 Creator Revision 4 32 Revision of utility that created the table.

CntControlBase
Physical Address

8 36 The 64-bit physical address at which the Counter Control block is
located.This value is optional if the system implements EL3 (Security
Extensions). If not provided, this field must be 0xFFFFFFFFFFFFFFFF.

Reserved 4 44 Must be zero

Secure EL1 Timer GSIV 4 48 GSIV for the secure EL1 timer. This value is optional, as an operating
system executing in the non-secure world (EL2 or EL1), will ignore
the content of these fields.
UEFI Forum, Inc. January 2019 Page 216

ACPI Specification, Version 6.3 ACPI Software Programming Model
Secure EL1 Timer Flags 4 52 Flags for the secure EL1 timer (defined below). This value is optional,
as an operating system executing in the non-secure world (EL2 or
EL1) will ignore the content of this field.

Non-Secure EL1 Timer
GSIV

4 56 GSIV for the non-secure EL1 timer.

Non-Secure EL1 Timer
Flags

4 60 Flags for the non-secure EL1 timer (defined below).

Virtual EL1 Timer GSIV 4 64 GSIV for the virtual EL1 timer.

Virtual EL1 Timer Flags 4 68 Flags for the virtual EL1 timer (defined below)

EL2 Timer GSIV 4 72 GSIV for the EL2 timer.

EL2 Timer Flags 4 76 Flags for the EL2 timer(defined below).

CntReadBase Physical
Address

8 80 The 64-bit physical address at which the Counter Read block is
located. This value is optional if the system implements EL3

(Security Extensions). If not provided, this field must be

0xFFFFFFFFFFFFFFFF.

Platform Timer Count 4 88 Number of entries in the Platform Timer Structure[] array

Platform Timer Offset 4 92 Offset to the Platform Timer Structure[] array from the start of this
table

Virtual EL2 Timer GSIV 4 96 GSIV for the virtual EL2 timer. This field is mandatory for systems
implementing ARMv8.1 VHE. For systems not implementing
ARMv8.1 VHE, this field is 0.

Virtual EL2 Timer Flags 4 100 Flags for the virtual EL2 timer (defined below). This field is
mandatory for systems implementing ARMv8.1 VHE. For systems not
implementing ARMv8.1 VHE, this field is 0.

Platform Timer
Structure[]

--- Platfor
m
Timer
Offset

Array of Platform Timer Type structures describing memory-mapped
Timers available on this platform. These structures are described in
the below sections.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 217

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-122 Flag Definitions: Secure EL1 Timer, Non-Secure EL1 Timer, EL2 Timer, Virtual EL1
Timer and Virtual EL2 Timer

Secure EL1 Timer Flags, Non-Secure EL1 Timer Flags, EL2 Timer Flags, Virtual EL1 Timer Flags, and Virtual
EL2 Timer Flags all have the same definition as follows.

Bit Field
Bit
Offset

Number
of bits

Description

Timer interrupt
Mode

0 1 This bit indicates the mode of the timer interrupt


1: Interrupt is Edge triggered

0: Interrupt is Level triggered

Timer Interrupt
polarity

1 1 This bit indicates the polarity of the timer interrupt


1: Interrupt is Active low

0: Interrupt is Active high

Always-on
Capability

2 1 This bit indicates the always-on capability of the timer
implementation.

1: This timer is guaranteed to assert its interrupt and wake a
processor, regardless of the processor’s power state. All of the
methods by which an ARM Generic Timer may generate an
interrupt must be supported, and must be capable of waking the
processor.

0: This timer may lose context or may not be guaranteed to assert
interrupts when its associated processor enters a low-power
state

Reserved 3 29 Reserved, must be zero.

The GTDT Platform Timer Structure [] field is an array of Platform Timer Type structures, each of which
describes the configuration of an available platform timer. These timers are in addition to the per-
processor timers described above them in the GTDT.

Table 5-123 Platform Timer Type Structures

Value Description

0 GT Block

1 SBSA Generic Watchdog

0x02-0xFF Reserved for future use

The first byte of each structure declares the type of that structure and the second and third bytes declare
the length of that structure.
UEFI Forum, Inc. January 2019 Page 218

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.24.1 GT Block Structure

The GT Block is a standard timer block that is mapped into the system address space. Each GT Block
implements up to 8 GTs (GT0 – GT7).

The format of the GT Block structure is shown in Table 5-124.

Table 5-124 GT Block Structure Format

Field
Byte
Length

Byte
Offset

Description

Type 1 0 0x0 GT Block

Length 2 1 20+n*40, where n is the number of timers implemented in the
GT Block

Reserved 1 3 Must be zero

GT Block

Physical address
(CntCtlBase)

8 4 The 64-bit physical address at which the GT CntCTLBase Block
is located

GT Block Timer
Count

4 12 Number of Timers implemented in this GT Block ('n'). . Must be
less than or equal to 8.

GT Block Timer
Offset

4 16 Offset to the Platform Timer Structure array from the start of
this structure

GT Block Timer
Structure[]

n*40 GT Block
Timer
Offset

Array of GT Block Timer Structures. See Table 5-125.

Table 5-125 GT Block Timer Structure Format

Field
Byte
Length

Byte
Offset

Description

GT Frame Number 1 0 The frame number (0-7) for this timer (‘x’)

Reserved 3 1 Must be zero

GTx Physical
Address (CntBaseX)

8 4 Physical Address at which the CntBase block for GTx is located

GTx Physical
Address
(CntEL0BaseX)

8 12 Physical Address at which the CntEL0Base block for GTx is
located. If this block is not implemented for GTx, must be
0xFFFFFFFFFFFFFFFF.

GTx Physical Timer
GSIV

4 20 GSIV for the GTx physical timer

GTx Physical Timer
Flags

4 24 Flags for the GTx physical timer. See Table 5-126

GTx Virtual Timer
GSIV

4 28 GSIV for the GTx virtual timer If the Virtual Timer is not
implemented for GTx, this field must be 0.
UEFI Forum, Inc. January 2019 Page 219

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-126 Flag Definitions: GT Block Physical Timers and Virtual Timers

Bit Field
Bit

Offset

Number

of bits
Description

Timer interrupt

Mode

0 1 This bit indicates the mode of the timer interrupt.

• 1: Interrupt is Edge triggered.

• 0: Interrupt is Level triggered.

Timer Interrupt
polarity

1 1 This bit indicates the polarity of the timer interrupt

1: Interrupt is Active low

0: Interrupt is Active high

Reserved 2 30 Reserved, must be zero.

Table 5-127 Flag Definitions: Common Flags

Bit Field
Bit

Offset

Number

of bits
Description

Secure Timer 0 1 This bit indicates whether the timer is secure or non-secure

1: Timer is Secure

0: Timer is Non-secure

Always-on
Capability

1 1 This bit indicates the always-on capability of the Physical and
Virtual Timers implementation.

1: This timer is guaranteed to assert its interrupt and wake a
processor, regardless of the processor’s power state. All of the
methods by which an ARM Generic Timer may generate an
interrupt must be supported, and must be capable of waking the
processor.

0: This timer may lose context or may not be guaranteed to assert
interrupts when its associated processor enters a low-power
state.

Reserved 2 30 Reserved, must be zero.

GTx Virtual Timer
Flags

4 32 Flags for the GTx virtual timer, if implemented. See Table 5-126.

GTx Common Flags 4 36 See Table 5-127.
UEFI Forum, Inc. January 2019 Page 220

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.24.2 SBSA Generic Watchdog Structure

The SBSA Generic Watchdog is a Platform GT with built-in support for use as the Watchdog timer on
Server Base System Architecture (SBSA)-compliant platforms.

The format of the SBSA Generic Watchdog structure is shown in Table 5-128.

The link for SBSA is http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0029/index.html.

Table 5-128 SBSA Generic Watchdog Structure Format

Field
Byte
Length

Byte
Offset

Description

Type 1 0 0x1 Watchdog GT

Length 2 1 28

Reserved 1 3 Must be zero

RefreshFrame Physical
Address

8 4 Physical Address at which the RefreshFrame block is
located

WatchdogControlFrame
Physical Address

8 12 Physical Address at which the Watchdog Control Frame
block is located

Watchdog Timer GSIV 4 20 GSIV for the SBSA Generic Watchdog timer

Watchdog Timer Flags 4 2
4

Flags for the SBSA Generic Watchdog timer. See
Table 5-129

Table 5-129 Flag Definitions: SBSA Generic Watchdog Timer

Bit Field
Bit

Offset

Number

of bits
Description

Timer

interrupt

Mode

0 1 This bit indicates the mode of the timer interrupt

1: Interrupt is Edge triggered

0: Interrupt is Level triggered

Timer
Interrupt
polarity

1 1 This bit indicates the polarity of the timer interrupt

1: Interrupt is Active low

0: Interrupt is Active high

Secure
Timer

2 1 This bit indicates whether the timer is secure or non-secure

1: Timer is Secure

0: Timer is Non-secure

Reserved 3 29 Reserved, must be zero.
UEFI Forum, Inc. January 2019 Page 221

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.25 NVDIMM Firmware Interface Table (NFIT)

5.2.25.1 NFIT Overview

This optional table provides information that allows OSPM to enumerate NVDIMMs present in the
platform and associate system physical address ranges created by the NVDIMMs. NVDIMMs are
represented by zero or more NVDIMM devices under a single NVDIMM root device in ACPI namespace.

OSPM evaluates NFIT only during system initialization. Any changes to the NVDIMM state at runtime or
information regarding hot added NVDIMMs are communicated using the _FIT method (See Section 6.5.9)
of the NVDIMM root device.

The NFIT consists of the following structures:

1. System Physical Address (SPA) Range Structure(s) (see Section 5.2.25.2) – Describes the SPA
ranges occupied by NVDIMMs and the types of the SPA ranges.

2. NVDIMM Region Mapping Structure(s) (see Section 5.2.25.3) – Describes mappings of
NVDIMM regions to SPA ranges and NVDIMM region properties.

3. Interleave Structure(s) (see Section 5.2.25.4) – Describes the various interleave options used
by NVDIMM regions.

4. SMBIOS Management Information Structure(s) (see Section 5.2.25.5) – Describes SMBIOS
Table entries for hot added NVDIMMs.

5. NVDIMM Control Region Structure(s) (see Section 5.2.25.6) – Describes NVDIMM function
interfaces, and if applicable, their Block Control Windows.

6. NVDIMM Block Data Window Region Structure(s) (see Section 5.2.25.7) – Describes Block Data
Windows for a NVDIMM function interfaces that have Block Control Windows.

7. Flush Hint Address Structure(s) (see Section 5.2.25.8) – Describes special system physical
addresses that when written help achieve durability for writes to NVDIMM regions.

8. Platform Capabilities Structure (see Section 5.2.25.9) – Describes the Platform Capabilities to
inform OSPM of platform-wide NVDIMM capabilities.

Figure 5-22 illustrates the above structures and how they are associated with each other.
UEFI Forum, Inc. January 2019 Page 222

ACPI Specification, Version 6.3 ACPI Software Programming Model
Figure 5-22 NVDIMM Firmware Interface Table (NFIT) Overview

The following table defines the NFIT.
UEFI Forum, Inc. January 2019 Page 223

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-130 NVDIMM Firmware Interface Table (NFIT)

Field Byte Length Byte Offset Description

Header

 Signature 4 0 ‘NFIT’ is Signature for this table

 Length 4 4 Length in bytes for entire table.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 The table ID is the manufacturer model ID

 OEM Revision 4 24 OEM revision of table for supplied OEM
Table ID

 Creator ID 4 28 Vendor ID of utility that created the table

 Creator Revision 4 32 Revision of utility that created the table

Reserved 4 36

NFIT Structure[n] _ 40 A list of NFIT structures for this
implementation.

Each NFIT Structure must start with a 2 byte Type field followed by a 2 byte length field. This allows OSPM
to ignore unrecognized types. Supported NFIT Structure types are listed in Table 5-131.

Table 5-131 NFIT Structure Types

Value Description

0 System Physical Address (SPA) Range Structure

1 NVDIMM Region Mapping Structure

2 Interleave Structure

3 SMBIOS Management Information Structure

4 NVDIMM Control Region Structure

5 NVDIMM Block Data Window Region Structure

6 Flush Hint Address Structure

7 Platform Capabilities Structure

8-0xFFFF Reserved
UEFI Forum, Inc. January 2019 Page 224

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.25.2 System Physical Address (SPA) Range Structure

This structure describes the system physical address ranges occupied by NVDIMMs, and their
corresponding Region Types.

System physical address ranges described as Virtual CD or Virtual Disk shall be described as
AddressRangeReserved in E820, and EFI Reserved Memory Type in the UEFI GetMemoryMap.

Platform is allowed to implement this structure just to describe system physical address ranges that
describe Virtual CD and Virtual Disk. For Virtual CD Region and Virtual Disk Region (both volatile and
persistent), the following fields - Proximity Domain, SPA Range Structure Index, Flags, and Address Range
Memory Mapping Attribute, are not relevant and shall be set to 0.

The default mapping of the NVDIMM Control Region shall be UC memory attributes with
AddressRangeReserved type in E820 and EfiMemoryMappedIO type in UEFI GetMemoryMap. The default
mapping of the NVDIMM Block Data Window Region shall be WB memory attributes with
AddressRangeReserved type in E820 and EfiMemoryMappedIO type in UEFI GetMemoryMap.

Table 5-132 SPA Range Structure

Field
Byte
Length

Byte
Offset

Description

Type 2 0 0 - SPA Range Structure

Length 2 2 Length in bytes for entire structure.

SPA Range Structure Index 2 4 Used by NVDIMM Region Mapping Structure to uniquely
refer to this structure. Value of 0 is Reserved and shall not
be used as an index.

Flags 2 6 Bit [0] set to 1 indicates that Control region is strictly for
management during hot add/online operation.

Bit [1] set to 1 to indicate that data in Proximity Domain
field is valid.

Bits [15:2] : Reserved

Reserved 4 8 Reserved

Proximity Domain 4 12 Integer that represents the proximity domain to which the
memory belongs. This number must match with
corresponding entry in the SRAT table.

Address Range Type GUID 16 16 GUID that defines the type of the Address Range Type. The
GUID can be any of the values defined in this section, or a
vendor defined GUID.

System Physical Address
Range Base

8 32 Start Address of the System Physical Address Range

System Physical Address
Range Length

8 40 Range Length of the region in bytes
UEFI Forum, Inc. January 2019 Page 225

ACPI Specification, Version 6.3 ACPI Software Programming Model
The following GUIDs are used to describe the NVDIMM Region Types. Additional GUIDs can be generated
to describe additional Address Range Types.

Persistent Memory (PM) Region:

{ 0x66F0D379, 0xB4F3, 0x4074, 0xAC, 0x43, 0x0D, 0x33, 0x18, 0xB7, 0x8C, 0xDB }

NVDIMM Control Region:

{ 0x92F701F6, 0x13B4, 0x405D, 0x91, 0x0B, 0x29, 0x93, 0x67, 0xE8, 0x23, 0x4C }

NVDIMM Block Data Window Region:

{ 0x91AF0530, 0x5D86, 0x470E, 0xA6, 0xB0, 0x0A, 0x2D, 0xB9, 0x40, 0x82, 0x49 }

RAM Disk supporting a Virtual Disk Region – Volatile (a volatile memory region that contains a raw
disk format):

{ 0x77AB535A,0x45FC,0x624B,0x55,0x60,0xF7,0xB2,0x81,0xD1,0xF9,0x6E }

RAM Disk supporting a Virtual CD Region – Volatile (a volatile memory region that contains an ISO
image):

{ 0x3D5ABD30,0x4175,0x87CE,0x6D,0x64,0xD2,0xAD,0xE5,0x23,0xC4,0xBB }

RAM Disk supporting a Virtual Disk Region – Persistent (a persistent memory region that contains a
raw disk format):

{ 0x5CEA02C9,0x4D07,0x69D3,0x26,0x9F,0x44,0x96,0xFB,0xE0,0x96,0xF9 }

RAM Disk supporting a Virtual CD Region – Persistent (a persistent memory region that contains an
ISO image):

{ 0x08018188,0x42CD,0xBB48,0x10,0x0F,0x53,0x87,0xD5,0x3D,0xED,0x3D }

Address Range Memory
Mapping Attribute

8 48 Memory mapping attributes for this address range:

EFI_MEMORY_UC = 0x00000001

EFI_MEMORY_WC = 0x00000002

EFI_MEMORY_WT = 0x00000004

EFI_MEMORY_WB = 0x00000008

EFI_MEMORY_UCE = 0x00000010

EFI_MEMORY_WP = 0x00001000

EFI_MEMORY_RP = 0x00002000

EFI_MEMORY_XP = 0x00004000

EFI_MEMORY_NV = 0x00008000

EFI_MEMORY_MORE_RELIABLE = 0x00010000

EFI_MEMORY_RO = 0x00020000

EFI_MEMORY_SP = 0x00040000

These types can be OR’d together as needed.

Refer to UEFI Specification for memory attributes
description

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 226

ACPI Specification, Version 6.3 ACPI Software Programming Model
Note: The Address Range Type GUID values used in the ACPI NFIT must match the corresponding values
in the Disk Type GUID of the RAM Disk device path that describe the same RAM Disk Type. Refer
to the UEFI specification for details.

5.2.25.3 NVDIMM Region Mapping Structure

The NVDIMM Region Mapping structure describes an NVDIMM region and its mapping, if any, to a SPA
range.

Table 5-133 NVDIMM Region Mapping Structure

Field
Byte
Length

Byte
Offset

Description

Type 2 0 1 - NVDIMM Region Mapping Structure

Length 2 2 Length in bytes for entire structure.

NFIT Device Handle 4 4 The _ADR of the NVDIMM device (see Section 9.20.3)
containing the NVDIMM region

NVDIMM Physical ID 2 8 Handle (i.e., instance number) for the SMBIOS* Memory
Device (Type 17) structure describing the NVDIMM
containing the NVDIMM region

NVDIMM Region ID 2 10 Unique identifier for the NVDIMM region.

This identifier shall be unique across all the NVDIMM regions
in the NVDIMM.

There could be multiple regions within the device
corresponding to different address types. Also, for a given
address type, there could be multiple regions due to
interleave discontinuity.

SPA Range Structure Index 2 12 The SPA range, if any, associated with the NVDIMM region.

0x0000: The NVDIMM region does not map to a SPA range.
The following fields are not valid and should be ignored:

• NVDIMM Region Size;

• Region Offset;

• NVDIMM Physical Address Region Base;

• Interleave Structure Index; and

• Interleave Ways.

Fields other than those (e.g., NFIT Device Handle, NVDIMM
Physical ID, NVDIMM Region ID, and NVDIMM State Flags)
are valid.

0x0001 to 0xFFFF: The index of the SPA Range Structure (see
Section 5.2.25.2) for the NVDIMM region.

NVDIMM Control Region
Structure Index

2 14 The index of the NVDIMM Control Region Structure (see
Section 5.2.25.6) for the NVDIMM region.
UEFI Forum, Inc. January 2019 Page 227

ACPI Specification, Version 6.3 ACPI Software Programming Model
NVDIMM Region Size 8 16 In bytes.

The size of the NVDIMM region.

If SPA Range Structure Index and Interleave Ways are both
non-zero, this field shall match System Physical Address
Range Length divided by Interleave Ways.

NOTE: the size in SPA Range occupied by the NVDIMM for
this region will not be the same as the NVDIMM Region Size
when Interleave Ways is greater than 1.

Region Offset 8 24 In bytes.

The Starting Offset for the NVDIMM region in the Interleave
Set. This offset is with respect to System Physical Address
Range Base in the SPA Range Structure.

NOTE: The starting SPA of the NVDIMM region in the
NVDIMM is provided by System Physical Address Range Base
+ Region Offset

NVDIMM Physical Address
Region Base

8 32 In bytes. The base physical address within the NVDIMM of
the NVDIMM region.

Interleave Structure Index 2 40 The Interleave Structure (see Table 5.2.25.4), if any, for the
NVDIMM region, as defined in Table 5-134.

Interleave Ways 2 42 Number of NVDIMMs in the interleave set, including the
NVDIMM containing the NVDIMM region, as defined in
Table 5-134.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 228

ACPI Specification, Version 6.3 ACPI Software Programming Model
NVDIMM State Flags 2 44 Bit [0] set to 1 indicates that the previous SAVE operation to
the NVDIMM containing the NVDIMM region failed.

Bit [0] set to 0 indicates that the previous SAVE succeeded,
or there was no previous SAVE.

Bit [1] set to 1 indicates that the last RESTORE operation
from the NVDIMM containing the NVDIMM region failed.

Bit [1] set to 0 indicates that the last RESTORE succeeded or
there was no last RESTORE.

Bit [2] set to 1 indicates that the platform flush of data to the
NVDIMM containing the NVDIMM region before the
previous SAVE failed. As a result, the restored data content
may be inconsistent even if Bit [0] and Bit [1] do not indicate
failure.

Bit [2] set to 0 indicates that the platform flush succeeded,
or there was no platform flush.

Bit [3] set to 1 indicates that the NVDIMM containing the
NVDIMM region is not able to accept persistent writes. For
an energy-source backed NVDIMM device, Bit [3] is set if it is
not armed or the previous ERASE operation did not
complete.

Bit [3] set to 0 indicates that the NVDIMM containing the
NVDIMM region is armed.

Bit [4] set to 1 indicates that the NVDIMM containing the
NVDIMM region observed SMART and health events prior to
OSPM handoff.

Bit [5] set to 1 indicates that platform firmware is enabled to
notify OSPM of SMART and health events related to the
NVDIMM containing the NVDIMM region using Notify codes
as specified in Table 5-174.

Bit [6] set to 1 indicates that the platform firmware did not
map the NVDIMM containing the NVDIMM region into an
SPA range. This could be due to various issues such as a
device initialization error, device error, insufficient hardware
resources to map the device, or a disabled device.

Implementation Note: In case of device error, Bit [4] might
be set along with Bit [6].

Bit [7] to Bit [15] are reserved.

Implementation Note: Platform firmware might report
several set bits.

Reserved 2 46

* See DSP0134 System Management BIOS (SMBIOS) Reference Specification, Version 3.0.0 (2015-02-12) by the
Distributed Management Task Force, Inc. (DMTF) at http://www.dmtf.org/standards/smbios.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 229

http://www.dmtf.org/standards/smbios
http://www.dmtf.org/standards/smbios

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-134 Interleave Structure Index and Interleave Ways definition

Interleave
Structure
Index

Interleave Ways Interpretation

Note: Interleave Structure Index=0, Interleave Ways !=1 is to allow a PM range which is interleaved but
the actual interleave is not described but only provides the physical Memory Devices (as described
by SMBIOS Type 17) that contribute to the PM region. Typically, only block region requires the
interleave structure since software has to undo the effect of interleave.

5.2.25.4 Interleave Structure

Memory from DIMMs/NVDIMMs could be interleaved across memory channels, memory controller and
processor sockets. This structure describes the memory interleave for a given address range. Since
interleave is a repeating pattern, this structure only describes the lines involved in the memory interleave
before the pattern start to repeat.

0 0 Interleaving, if any, of the NVDIMM region is not reported

0 1 The NVDIMM region is not interleaved with other NVDIMMs (i.e., it is
one-way interleaved)

0 > 1 The NVDIMM region is part of an interleave set with the number of
NVDIMMs indicated in the Interleave Ways field, including the
NVDIMM containing the NVDIMM region, but the Interleave Structure
is not described.

> 0 > 1 The NVDIMM region is part of an interleave set with:
a) the number of NVDIMMs indicated in the Interleave Ways field,
including the NVDIMM containing the NVDIMM region; and
b) the Interleave Structure (see Section 5.2.25.4) indicated by the
Interleave Structure Index field.

All other combinations Invalid case
UEFI Forum, Inc. January 2019 Page 230

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-135 Interleave Structure

Field
Byte
Length

Byte
Offset

Description

Type 2 0 2 - Interleave Structure

Length 2 2 Length in bytes for entire structure.

Interleave Structure Index 2 4 Index Number uniquely identifies the interleave
description – this allows reuse of interleave
description across multiple NVDIMMs. Index must be
non-zero.

Reserved 2 6

Number of Lines Described
(m)

 4 8 Only need to describe the number of lines needed
before the interleave pattern repeats

Line Size (in bytes) 4 12 e.g. 64, 128, 256, 4096

Line 1 Offset 4 16 Line 1 Offset refers to the offset of the line, in
multiples of Line Size, from the corresponding SPA
Range Base for the NVDIMM region.

Line 1 SPA = SPA Range Base + Region Offset + (Line 1
Offset*Line Size). Line SPA is naturally aligned to the
Line size.

… 4

Line m Offset 4 16+((m-
1)*4)

Line m Offset refers to the offset of the line, in
multiples of Line Size, from the corresponding SPA
Range Base for the NVDIMM region.

Line m SPA = SPA Range Base + Region Offset + (Line
m Offset*Line Size) where m is the last line number
before the pattern repeats.

Line SPA is naturally aligned to the Line size.

5.2.25.5 SMBIOS Management Information Structure

This structure enables platform to communicate the additional SMBIOS entries beyond the entries
provided by SMBIOS Table at boot to the OS (e.g. Type 17 entries corresponding to hot added NVDIMMs).

Table 5-136 SMBIOS Management Information Structure

Field
Byte
Length

Byte Offset Description

Type 2 0 3 - SMBIOS Management Information Structure

Length 2 2 Length in bytes for entire structure.

Reserved 4 4

Data _ 8 SMBIOS Table Entries
UEFI Forum, Inc. January 2019 Page 231

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.25.6 NVDIMM Control Region Structure

The system shall include an NVDIMM Control Region Structure for every Function Interface in the
NVDIMM.

Table 5-137 NVDIMM Control Region Structure Mark

Field
Byte
Length

Byte
Offset

Description

Type 2 0 4 - NVDIMM Control Region Structure

Length 2 2 Length in bytes for entire structure.

The length of this structure is either 32 bytes or 80 bytes. The
length of the structure can be 32 bytes only if the Number of Block
Control Windows field has a value of 0.

NVDIMM Control
Region Structure
Index

2 4 Index Number uniquely identifies the NVDIMM Control Region
Structure.

Vendor ID 2 6 Identifier indicating the vendor of the NVDIMM.

This field shall be set to the value of the NVDIMM SPD Module

Manufacturer ID Code field a with byte 0 set to DDR4 SPD byte 320
and byte 1 set to DDR4 SPD byte 321.

Device ID 2 8 Identifier for the NVDIMM, assigned by the module vendor.

This field shall be set to the value of the NVDIMM SPD Module

Product Identifier field b with byte 0 set to SPD byte 192 and byte
1 set to SPD byte 193.

Revision ID 2 10 Revision of the NVDIMM, assigned by the module vendor.

Byte 1 of this field is reserved.

Byte 0 of this field shall be set to the value of the NVDIMM SPD

Module Revision Code field a (i.e., SPD byte 349).

Subsystem Vendor
ID

2 12 Vendor of the NVDIMM non-volatile memory subsystem

controller c.

This field shall be set to the value of the NVDIMM SPD Non-

Volatile Memory Subsystem Controller Vendor ID field b with byte
0 set to SPD byte 194 and byte 1 set to SPD byte 195.
UEFI Forum, Inc. January 2019 Page 232

ACPI Specification, Version 6.3 ACPI Software Programming Model
Subsystem Device
ID

2 14 Identifier for the NVDIMM non-volatile memory subsystem
controller, assigned by the non-volatile memory subsystem
controller vendor.

This field shall be set to the value of the NVDIMM SPD Non-

Volatile Memory Subsystem Controller Device ID field b with byte
0 set to SPD byte 196 and byte 1 set to SPD byte 197.

Subsystem
Revision ID

2 16 Revision of the NVDIMM non-volatile memory subsystem
controller, assigned by the non-volatile memory subsystem
controller vendor.

Byte 1 of this field is reserved.

Byte 0 of this field shall be set to the value of the NVDIMM SPD

Non-Volatile Memory Subsystem Controller Revision Code field b

(i.e., SPD byte 198).

Valid Fields 1 18 Valid bits for fields defined after the initial NFIT definition in ACPI
6.0 within the initially defined lengths of 32 and 80 bytes.

Bits [7-1]: Reserved

Bit [0]: Manufacturing Location field and Manufacturing Date field

Bit [0] set to one indicates that the Manufacturing Location field
and Manufacturing Date field are valid. Bit [0] set to zero indicates
that the Manufacturing Location field and Manufacturing Date
field are not valid and should be ignored.

Systems compliant with this specification shall set Bit [0] to one.
Systems that were compliant with ACPI 6.0 had Bit [0] set to zero,
meaning they did not have Manufacturing Location and
Manufacturing Date fields.

Manufacturing
Location

1 19 Manufacturing location for the NVDIMM, assigned by the module
vendor.

This field shall be set to the value of the NVDIMM SPD Module

Manufacturing Location field a (SPD byte 322).

Validity of this field is indicated in Valid Fields Bit [0].

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 233

ACPI Specification, Version 6.3 ACPI Software Programming Model
Manufacturing
Date

2 20 Date the NVDIMM was manufactured, assigned by the module
vendor.

This field shall be set to the value of the NVDIMM SPD Module

Manufacturing Date field a with byte 0 set to SPD byte 323 and
byte 1 set to SPD byte 324.

Validity of this field is indicated in Valid Fields Bit [0].

Reserved 2 22

Serial Number 4 24 Serial number of the NVDIMM, assigned by the module vendor.

This field shall be set to the value of the NVDIMM SPD Module

Serial Number field a with byte 0 set to SPD byte 325, byte 1 set to
SPD byte 326, byte 2 set to SPD byte 327, and byte 3 set to SPD
byte 328.

Region Format
Interface Code

2 28 Identifier for the programming interface.

This field shall be set to the value of the NVDIMM SPD Function

Interface descriptor b for the function interface represented by
the NVDIMM Control Region structure, with:

a) byte 0 bits 7:5 set to 000b;

b) byte 0 bits 4:0 set to the Function Interface field (i.e., Function
Interface descriptor bits 4:0);

c) byte 1 bits 7:5 set to 000b; and

d) byte 1 bits 4:0 set to the Function Class field (i.e., Function
Interface descriptor bits 9:5).

EXAMPLE: A Function Interface Descriptor of 0x8021 means:

a) Function Interface Descriptor is implemented;

b) there is no Extended Function Parameter Block;

c) function class is byte-addressable energy backed (0x01); and

d) function interface is byte addressable energy backed function

interface 1 (0x01) d,

and maps to a Region Format Interface Code of 0x0101.

Number of Block
Control Windows

2 30 Number of Block Control Windows must match the corresponding
number of Block Data Windows. Fields that follow this field are
valid only if the number of Block Control Windows is non-zero.

Size of Block
Control Window

8 32 In Bytes

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 234

ACPI Specification, Version 6.3 ACPI Software Programming Model
Note: Logical offset in structure above refers to offset from the start of NVDIMM Control Region. The
logical offset is with respect to the device not with respect to system physical address space.
Software should construct the device address space (accounting for interleave) before applying
the block control start offset.

5.2.25.7 NVDIMM Block Data Window Region Structure

This structure shall be provided only if the number of Block Data Windows is non-zero.

Command Register
Offset in Block
Control Window

8 40 In Bytes.

Logical offset. Refer to Note. The start of the subsequent Block
Control Windows is calculated by adding Size of Block Control
Window.

Size of Command
Register in Block
Control Windows

8 48 In Bytes

Status Register
Offset in Block
Control Window

8 56 In Bytes.

Logical offset. Refer to Note1. The start of the subsequent Block
Control Window is calculated by adding Size of Block Control
Window.

Size of Status
Register in Block
Control Windows

8 64 In Bytes

NVDIMM Control
Region Flag

2 72 Bit [0] – set to 1 to indicate that the Block Data Windows
implementation is buffered. The content of the data window is
only valid when so indicated by Status Register.

Reserved 6 74

 a See JEDEC Standard No. 21-C JEDEC Configurations for Solid State Memories, Annex L: Serial Presence Detect
(SPD) for DDR4 SDRAM modules, DDR4 SPD Document Release 2.

 b See JEDEC Standard No. 21-C JEDEC Configurations for Solid State Memories, Annex L: Serial Presence Detect
(SPD) for DDR4 SDRAM modules, DDR4 SPD Document Release 3 (forthcoming).

 c In an NVDIMM, the module contains a non-volatile memory subsystem controller.

 d See JEDEC Standard No. 2233-22 Byte Addressable Energy Backed Interface, Version 1.0 (forthcoming).

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 235

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-138 NVDIMM Block Data Windows Region Structure

Field
Byte
Length

Byte Offset Description

Type 2 0 5 - NVDIMM Block Data Window Region
Structure

Length 2 2 Length in bytes for entire structure.

NVDIMM Control Region
Structure Index

2 4 Provides association for the corresponding
NVDIMM Control Region. Shall be Non-zero.

Number of Block Data
Windows

2 6 Number of Block Data Windows shall match the
corresponding number of Block Control
Windows.

Block Data Window Start
Offset

8 8 In Bytes.

Logical offset. Refer to Note2. The start of the
subsequent Block Data Window is calculated by
adding Size of Block Data Window.

Size of Block Data Window 8 16 In Bytes

Block Accessible Memory
Capacity

8 24 In Bytes

Beginning address of first
block in Block Accessible
Memory

8 32 In Bytes. The address of the next block is
obtained by adding the value of this field to
Size of Block Data Window.

Note: Logical offset in table above refers to offset from the start of NVDIMM Data Window Region. The
logical offset is with respect to the device not with respect to system physical address space.
Software should construct the device address space (accounting for interleave) before applying
the Block Data Window start offset.

5.2.25.8 Flush Hint Address Structure

Software needs an assurance of durability (i.e. a guarantee that the writes have reached the target
NVDIMM) after writing to a NVDIMM region. The Flush Hint feature is platform specific and if supported,
the platform exposes this durability mechanism to OSPM by providing a Flush Hint Address Structure.

For a given NVDIMM (as indicated by the NFIT Device Handle in the Flush Hint Address Structure),
software can write to any one of these Flush Hint Addresses to cause any preceding writes to the

NVDIMM region to be flushed out of the intervening platform buffers1 to the targeted NVDIMM (to
achieve durability).

1. Note that the platform buffers do not include processor cache(s)! Processors typically include ISA to flush
data out of processor caches.
UEFI Forum, Inc. January 2019 Page 236

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-139 Flush Hint Address Structure

Field
Byte
Length

Byte Offset Description

Type 2 0 6 - Flush Hint Address Structure

Length 2 2 Length in bytes for entire structure.

NFIT Device Handle 4 4 Indicates the NVDIMM supported by the Flush
Hint Addresses in this structure.

Number of Flush Hint
Addresses in this structure
(m)

2 8 Number of Flush Hint Addresses in this
structure.

Reserved 6 10 Reserved

Flush Hint Address 1 8 16 64-bit system physical address that needs to be
written to cause durability flush. Software is
allowed to write up to a cache line of data. The
content of the data is not relevant to the
functioning of the flush hint mechanism.

… 8 24

Flush Hint Address m 8 16+ ((m-
1)*8)

64-bit system physical address that needs to be
written to cause durability flush. Software is
allowed to write up to a cache line of data. The
content of the data is not relevant to the
functioning of the flush hint mechanism.

5.2.25.9 Platform Capabilities Structure

This structure informs OSPM of the NVDIMM platform capabilities.

Table 5-140 Platform Capabilities Structure

Field Byte Length Byte Offset Description

Type 2 0 7 – Platform Capabilities Structure

Length 2 2 Length in bytes for entire structure.

Highest Valid
Capability

1 4

The bit index of the highest valid capability
implemented by the platform. The subsequent bits
shall not be considered to determine the capabilities
supported by the platform.

Reserved 3 5 Reserved (0)
UEFI Forum, Inc. January 2019 Page 237

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.25.10 NVDIMM Representation Format

If software or an NVDIMM manufacturer displays, prints on a label, or otherwise makes available an
identifier for an NVDIMM (e.g., to uniquely identify the NVDIMM), then the following hexadecimal
format should be used:

• If the Manufacturing Location and Manufacturing Date fields are valid:

C language format string: "%02x%02x-%02x-%02x%02x-%02x%02x%02x%02x"

Format values:

1. Vendor ID byte 0 (including the parity bit)

2. Vendor ID byte 1

3. Manufacturing Location byte

4. Manufacturing Date byte 0 (i.e., the year)

5. Manufacturing Date byte 1 (i.e., the week)

6. Serial Number byte 0

7. Serial Number byte 1

8. Serial Number byte 2

9. Serial Number byte 3
• If the Manufacturing Location and Manufacturing Date fields are not valid:

C language format string: "%02x%02x-%02x%02x%02x%02x"

Format values:

Capabilities 4 8

Bit[0] – CPU Cache Flush to NVDIMM Durability on
Power Loss Capable. If set to 1, indicates that platform
ensures the entire CPU store data path is flushed to
persistent memory on system power loss.

Bit[1] – Memory Controller Flush to NVDIMM
Durability on Power Loss Capable. If set to 1, indicates
that platform provides mechanisms to automatically
flush outstanding write data from the memory
controller to persistent memory in the event of platform
power loss. Note: If bit 0 is set to 1 then this bit shall be
set to 1 as well.

Bit[2] – Byte Addressable Persistent Memory
Hardware Mirroring Capable. If set to 1, indicates that
platform supports mirroring multiple byte addressable
persistent memory regions together. If this feature is
supported and enabled, healthy hardware mirrored
interleave sets will have the
EFI_MEMORY_MORE_RELIABLE Address Range
Memory Mapping Attribute set in the System Physical
Address Range structure in the NFIT table.

Bits[31:3] - Reserved

Reserved 4 12 Reserved (1)

Field Byte Length Byte Offset Description
UEFI Forum, Inc. January 2019 Page 238

ACPI Specification, Version 6.3 ACPI Software Programming Model
1. Vendor ID byte 0 (including the parity bit)

2. Vendor ID byte 1

3. Serial Number byte 0

4. Serial Number byte 1

5. Serial Number byte 2

6. Serial Number byte 3

This format matches the order of SPD bytes 320 to 328 from low to high (i.e., showing the lowest or first
byte on the left).

5.2.26 Secure Devices (SDEV) ACPI Table

The Secure DEVices (SDEV) table is a list of secure devices known to the system. The table is applicable to
systems where a secure OS partition and a non-secure OS partition co-exist. A secure device is a device
that is protected by the secure OS, preventing accesses from non-secure OS.

The table provides a hint as to which devices should be protected by the secure OS. The enforcement of
the table is provided by the secure OS and any pre-boot environment preceding it. The table itself does
not provide any security guarantees. It is the responsibility of the system manufacturer to ensure that the
operating system is configured to enable security features that make use of the SDEV table.

There are three options for each device in the system:

1) Device is listed in SDEV. “Allow handoff…” flag is clear.

This provides a hint that the device should be always protected within the secure OS.

For example, the secure OS may require that a device used for user authentication must be protected to
guard against tampering by malicious software.

2) Device is listed in SDEV. “Allow handoff…” flag is set.

This provides a hint that the device should be initially protected by the secure OS, but it is up to the
discretion of the secure OS to allow the device to be handed off to the non-secure OS when requested.
Any OS component that expected the device to be operating in secure mode would not correctly function
after the handoff has been completed.

For example, a device may be used for variety of purposes, including user authentication. If the secure OS
determines that the necessary components for driving the device are missing, it may release control of
the device to the non-secure OS. In this case, the device cannot be used for secure authentication, but
other operations can correctly function.

3) Device not listed in SDEV

For example, the status quo is that no hints are provided. Any OS component that expected the device to
be in secure mode would not correctly function.

The OS vendor provides guidance on which devices can be listed in the SDEV table; in other words, which
devices are compatible with the secure OS, and which devices should have the “allow handoff” flag set.

See table below for the SDEV ACPI definition.
UEFI Forum, Inc. January 2019 Page 239

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-141 SDEV ACPI Table

Field Byte
Length

Byte
Offset

Description

Header

Signature 4 0 ‘SDEV’. Signature for the Table

Length 4 4 Length, in bytes, of the entire Table.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEM ID 6 10 OEM ID

OEM Table ID 8 16 For the SDEV Table, the table ID is the manufacturer model
ID.

OEM Revision 4 24 OEM revision of SDEV Table for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator Revision 4 32 Revision of utility that created the table.

Secure Device
Structures []

- 36 A list of structures containing one or more Secure Device
Structures as defined in next section.

5.2.26.1 Secure Device Structures

Value Description

1 PCIe Endpoint Device based Secure Device.

0 ACPI_NAMESPACE_DEVICE based Secure Device.

All Other Values Reserved for future use. For forward compatibility, software skips structures it
does not comprehend by skipping the appropriate number of bytes indicated by
the Length field.

All new device structures must include the Type, Flags, and Length fields as the
first 3 fields respectively.
UEFI Forum, Inc. January 2019 Page 240

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.26.2 PCIe Endpoint Device Based Device Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 0x01: PCIe Endpoint device.

Flags 1 1 Bit 0: Allow handoff to non-secure OS.

All other bits are reserved and must be zero.

Length 2 2 Length of this Entry in Bytes.

PCI Segment Number 2 4 PCI segment number of the device .

Start Bus Number 2 6 This field describes the bus number (bus number of the first
PCI Bus produced by the PCI Host Bridge) under which the
secure device resides.

PCI Path Offset 2 8 Pointer to the PCI path* entry offset in the Secure PCI Device
Structure data region.

A PCI Path describes the hierarchal path from the Host
Bridge to the device.

For example, a device in an N-deep hierarchy is identified by
N {PCI Device Number, PCI Function Number} pairs, where N
is a positive integer. Even offsets contain the Device
numbers, and odd offsets contain the Function numbers.
The first {Device, Function} pair resides on the bus identified
by the ‘Start Bus Number’ field. Each subsequent pair
resides on the bus directly behind the bus of the device
identified by the previous pair. The identity (Bus, Device and
Function) of the target device is obtained by recursively
walking down these N {Device, Function} pairs.

PCI Path Length 2 10 Length of the PCI path entry.

Vendor specific data
Offset

2 12 Offset of the data specific to the device.

Vendor specific data
Length

2 14 Length of the data specific to the device.

Example:

The following table is an example for implementing a PCIe Endpoint Device Based Device Structure for a
PCIe device (Bus 1, Dev 2, Function 1), that is a child of a PCIe Root Port (Bus 0, Dev 18, Function 0).
UEFI Forum, Inc. January 2019 Page 241

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-142 PCIe Endpoint Device Based Device Structure Example

Field
Byte

Length

Byte

Offset
Value

Type 1 0 0x01: PCIe Endpoint device.

Flags 1 1 0x01

Length 2 2 0x18

PCI Segment Number 2 4 0x0

Start Bus Number 2 6 0x0

PCI Path Offset 2 8 0x10 (16 DEC)

PCI Path Length 2 10 0x4

Vendor specific data

Offset

2 12 0x14 (20 DEC)

Vendor specific data

Length

2 14 0x4

PCI Path

PCI Device 1 16 0x12 (18 DEC)

PCI Function 1 17 0x0

PCI Device 1 18 0x2

PCI Function 1 19 0x1

Vendor specific data 4 20 0xDEADBEEF

5.2.26.3 ACPI_NAMESPACE_DEVICE based Secure Device Structure

Field Byte
Length

Byte Offset Description

Type 1 0 0x00: ACPI integrated devices

Flags 1 1 Bit 0: Allow handoff to non-secure OS.

All other bits are reserved and must be zero.

Length 2 2 Length of this entry in bytes.

Device Identifier Offset 2 4 Offset, in Secure ACPI Device structure of null terminated
ASCII string that contains a fully qualified reference to the
ACPI name-space object that is this device. (For example,
“_SB.I2C0” represents the ACPI object name for an
embedded I2C Device in southbridge; Quotes are omitted in
the data field). Refer to ACPI specification for fully qualified
references for ACPI name-space objects.

Device Identifier Length 2 6 Length of Device Identifier string in bytes, including the
termination byte
UEFI Forum, Inc. January 2019 Page 242

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.27 Heterogeneous Memory Attribute Table (HMAT)

5.2.27.1 HMAT Overview

Heterogeneous Memory Attribute Table (HMAT) describes the memory attributes, such as memory
side cache attributes and bandwidth and latency details, related to Memory Proximity Domains.
The software is expected to use this information as hint for optimization.

OSPM evaluates HMAT only during system initialization. Any changes to the HMAT state at runtime
or information regarding HMAT for hot plug are communicated using the _HMA method (see
Section 6.2.18).
The HMAT consists of the following structures:

1. Memory Proximity Domain Attributes Structure(s) (see Section 5.2.27.3) – Describes attributes
of memory proximity domains.

2. System Locality Latency and Bandwidth Information Structure (s) (see Section 5.2.27.4) –
Describes the memory access latency and bandwidth information from various memory access
initiator proximity domains.

3. Memory Side Cache Information Structure(s) (see Section 5.2.27.5) – Describes memory side
cache information for memory proximity domains if the memory side cache is present and the
physical device (SMBIOS handle) forms the memory side cache.

These structures are illustrated by the following figure.

Vendor specific data
Offset

2 8 Offset, in Secure ACPI Device Structure, of the data specific
to the device supplied by the vendor

Vendor specific data
Length

2 10 Length of the data specific to the device supplied by the
vendor

Field Byte
Length

Byte Offset Description
UEFI Forum, Inc. January 2019 Page 243

ACPI Specification, Version 6.3 ACPI Software Programming Model
Figure 5-23 HMAT Representation

Table 5-143 Heterogeneous Memory Attribute Table Header

Field Byte Length Byte Offset Description

Header

Signature 4 0 ‘HMAT’ is Signature for this table

Length 4 4 Length in bytes for entire table.

Revision 1 8 2

Checksum 1 9 Entire table must sum to zero

OEMID 6 10 OEM ID

OEM Table ID 8 16 The table ID is the manufacturer model ID

OEM Revision 4 24 OEM revision of table for supplied OEM
Table ID

Creator ID 4 28 Vendor ID of utility that created the table

Creator Revision 4 32 Revision of utility that created the table

Reserved 4 36 To make the structures 8 byte aligned

HMAT Table
Structures[n]

_ 40 A list of HMAT table structures for this
implementation.
UEFI Forum, Inc. January 2019 Page 244

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-144 HMAT Structure Types

Value Description

0 Memory Proximity Domain Attributes Structure

1 System Locality Latency and Bandwidth Information Structure

2 Memory Side Cache Information Structure

3-0xFFFF Reserved

5.2.27.2 Memory Side Cache Overview

Memory side cache allows to optimize the performance of memory subsystems. Table 5-24 shows an
example of system physical address (SPA) range with memory side cache in front of actual memory that is
seen by the software. When the software accesses an SPA, if it is present in the near memory (hit) it
would be returned to the software, if it is not present in the near memory (miss) it would access the next
level of memory and so on.

Figure 5-24 Memory Side Cache Example

The term “far memory” is used to denote the last level memory (Level 0 Memory) in the memory
hierarchy as shown in Table 5-24. The Level n Memory acts as memory side cache to Level n-1 Memory
and Level n-1 memory acts as memory side cache for Level n-2 memory and so on. If Non-Volatile
memory is cached by memory side cache, then platform is responsible for persisting the modified
contents of the memory side cache corresponding to the Non-Volatile memory area on power failure,
system crash or other faults.
UEFI Forum, Inc. January 2019 Page 245

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.27.3 Memory Proximity Domain Attributes Structure

This structure describes the system physical address (SPA) range occupied by the memory subsystem and
its associativity with processor proximity domain as well as hint for memory usage.

Table 5-145 Memory Proximity Domain Attributes Structure

Field Byte Length Byte Offset Description

Type 2 0 0 - Memory Proximity Domain Attributes
Structure

Reserved 2 2

Length 4 4 40 - Length in bytes for entire structure.

Flags 2 8 Bit [0]: set to 1 to indicate that data in the
Proximity Domain for the Attached Initiator field is
valid.

Bit [1]: Reserved. Previously defined as Memory
Proximity Domain field is valid. Deprecated since
ACPI 6.3.

Bit [2]: Reserved. Previously defined as
Reservation Hint. Deprecated since ACPI 6.3.

Bits [15:3] : Reserved.

Reserved 2 10

Proximity Domain for
the Attached Initiator

4 12 This field is valid only if the memory controller
responsible for satisfying the access to memory
belonging to the specified memory proximity
domain is directly attached to an initiator that
belongs to a proximity domain. In that case, this
field contains the integer that represents the
proximity domain to which the initiator (Generic
Initiator or Processor) belongs. This number shall
match the corresponding entry in the SRAT table’s
processor affinity structure (e.g., Processor Local
APIC/SAPIC Affinity Structure, Processor Local
x2APIC Affinity Structure, GICC Affinity Structure) if
the initiator is a processor, or the Generic Initiator
Affinity Structure if the initator is a generic
initiator.

Note: this field provides additional information as
to the initiator node that is closest (as in directly
attached) to the memory address ranges within
the specified memory proximity domain, and
therefore should provide the best performance.

Proximity Domain for
the Memory

4 16 Integer that represents the memory proximity
domain to which this memory belongs.

Reserved 4 20
UEFI Forum, Inc. January 2019 Page 246

ACPI Specification, Version 6.3 ACPI Software Programming Model
Note: The Proximity Domain values must first be assigned and described in the SRAT table, the same
values are then used in the SLIT, HMAT, MSCT, and NFIT tables when the associated characteristics need
to be described for the matching Proximity Domains.

5.2.27.4 System Locality Latency and Bandwidth Information Structure

This optional structure provides a matrix that describes the normalized memory read/write latency,
read/write bandwidth between Initiator Proximity Domains (Processor or I/O) and Target Proximity
Domains (Memory).

The Entry Base Unit for latency is in picoseconds. The Entry Base Unit for bandwidth is in megabytes per
second (MB/s). The Initiator to Target Proximity Domain matrix entry can have one of the following
values.

• 0: the corresponding latency or bandwidth information is not provided.
• 1–0xFFFE: the corresponding latency or bandwidth information expressed in multiples of Entry

Base Unit.
• 0xFFFF: the initiator and target domains are unreachable from each other.

The represented latency or bandwidth value is determined as follows:

• Represented latency = (Initiator to Target Proximity Domain matrix entry value * Entry Base
Unit) picoseconds.

• Represented bandwidth = (Initiator to Target Proximity Domain matrix entry value * Entry Base
Unit) MB/s.

The following examples show how to report latency and throughput values:

• If the “Entry Base Unit” is 1 for latency and the matrix entry has the value of 10, the latency is
10 picoseconds.

• If the “Entry Base Unit” is 1000 for latency and the matrix entry has the value of 100, the
latency is 100 nanoseconds.

• If the “Entry Base Unit” is 1 for BW and the matrix entry has the value of 10, the BW is 10 MB/s.
• If the “Entry Base Unit” is 1024 for BW and the matrix entry has the value of 100, the BW is 100

GB/s.

Note: The lowest latency number represents best performance and the highest bandwidth number
represents best performance. The latency and bandwidth numbers represented in this structure
correspond to specification rated latency and bandwidth for the platform. The represented
latency is determined by aggregating the specification rated latencies of the memory device and
the interconnects from initiator to target. The represented bandwidth is determined by the lowest
bandwidth among the specification rated bandwidth of the memory device and the interconnects
from the initiator to target.

Reserved 8 24 Previously defined as the Start Address of the
System Physical Address Range. Deprecated since
ACPI Specification 6.3.

Reserved 8 32 Previously defined as the Range Length of the
region in bytes. Deprecated since ACPI
Specification 6.3.
UEFI Forum, Inc. January 2019 Page 247

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-146 System Locality Latency and Bandwidth Information Structure

Field
Byte
Length

Byte
Offset

Description

Type 2 0 1 – System Locality Latency and Bandwidth Information
Structure

Reserved 2 2

Length 4 4 Length in bytes for entire structure.

Flags 1 8 Bits [3:0] Memory Hierarchy:

• 0 – Memory
If the memory side cache is not present, this structure
represents the memory performance. If memory side cache is
present, this structure represents the memory performance
when no hits occur in any of the memory side caches
associated with the memory

• 1 – 1st level memory side cache

• 2 – 2nd level memory side cache

• 3 – 3rd level memory side cache

Other bits:

• Bits[7:4] Reserved

Data Type 1 9 Type of data represented by this structure instance.

If Memory Hierarchy = 0

• 0 – Access Latency (if read and write latencies are same)

• 1 – Read Latency

• 2 – Write Latency

• 3 – Access Bandwidth (if read and write bandwidth are same)

• 4 – Read Bandwidth

• 5 – Write Bandwidth

If Memory Hierarchy = 1, 2, 3, or 4

• 0 – Access Hit Latency (if read hit and write hit latencies are same)

• 1 – Read Hit Latency

• 2 – Write Hit Latency

• 3 – Access Hit Bandwidth (if read hit and write hit latency are same)

• 4 – Read Hit Bandwidth

• 5 – Write Hit Bandwidth

Other values reserved

Reserved 2 10

Number of Initiator
Proximity Domains (s)

4 12 Indicates total number of Proximity Domains that can initiate memory
access requests to other proximity domains.

This is typically the processor or I/O proximity domains.

Number of Target
Proximity Domains (t)

4 16 Indicates total number of Proximity Domains that can act as target. This
is typically the Memory Proximity Domains.

Reserved 4 20
UEFI Forum, Inc. January 2019 Page 248

ACPI Specification, Version 6.3 ACPI Software Programming Model
Entry Base Unit 8 24 Base unit for Matrix Entry Values (latency or bandwidth).

Base unit for latency in picoseconds.

Base unit for bandwidth in megabytes per second (MB/s).

This field shall be non-zero.

Initiator Proximity Domain
List[0]

4 32

Initiator Proximity Domain
List[1]

4

…

Initiator Proximity Domain
List[s-1]

4

Target Proximity Domain
List[0]

4 32 + 4 x s

Target Proximity Domain
List[1]

4

…

Target Proximity Domain
List[t-1]

4

The following list of entries provides latency/bandwidth values. Total Number Entry shall be equal to Number of Initiator
Proximity Domains * Number of Target Proximity Domains

Entry[0][0] 2 32 + 4 x s
+ 4 x t

Matrix entry (Initiator Proximity Domain List[0], Target Proximity
Domain List[0])

Entry[0][1] 2 Matrix entry (Initiator Proximity Domain List[0], Target Proximity
Domain List[1])

… …

Entry[0][Number of Target
Proximity Domains -1]

2 Matrix entry (Initiator Proximity Domain List[0], Target Proximity
Domain List[t-1])

Entry[1][0] 2 Matrix entry (Initiator Proximity Domain List[1], Target Proximity
Domain List[0])

Entry[1][1] 2 Matrix entry (Initiator Proximity Domain List[1], Target Proximity
Domain List[1])

… …

Entry[1][Number of Target
Proximity Domains -1]

2 Matrix entry (Initiator Proximity Domain List[1], Target Proximity
Domain List[t-1])

… …

Entry[Number of Initiator
Proximity Domains - 1][
Number of Target
Proximity Domains -1]

2 Matrix entry (Initiator Proximity Domain List[s-1], Target Proximity
Domain List[t-1])

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 249

ACPI Specification, Version 6.3 ACPI Software Programming Model
Implementation Note: The Flag field in this table allows read latency, write latency, read bandwidth and
write bandwidth as well as Memory Hierarchy levels. Hence this structure could be repeated up to 4 x
number of Memory Hierarchy levels if memory attributes expressed for each memory level.

If both SLIT table and the HMAT table with the memory latency information are present, the OSPM
should attempt to use the data in the HMAT rather than the data in the SLIT.

5.2.27.5 Memory Side Cache Information Structure

System memory hierarchy could be constructed to have a large size of low performance far memory and
smaller size of high performance near memory. Table 5-147 describes memory side cache information for
a given memory domain. The software could use this information to effectively place the data in memory
to maximize the performance of the system memory that use the memory side cache.

Table 5-147 Memory Side Cache Information Structure

Field Byte Length Byte Offset Description

Type 2 0 2 – Memory Side Cache Information Structure

Reserved 2 2

Length 4 4 Length in bytes for entire structure.

Proximity Domain for
the Memory

4 8 Integer that represents the memory proximity
domain to which the memory side cache information
applies. This number shall match the corresponding
entry in the SRAT table’s Memory Affinity Structure

Reserved 4 12

Memory Side Cache
Size

8 16 Size of memory side cache in bytes for the above
memory proximity domain.
UEFI Forum, Inc. January 2019 Page 250

ACPI Specification, Version 6.3 ACPI Software Programming Model
Implementation Note: A proximity domain should contain only one set of memory attributes. If memory
attributes differ, represent them in different proximity domains. If the Memory Side Cache Information
Structure is present, the System Locality Latency and Bandwidth Information Structure shall contain
latency and bandwidth information for each memory side cache level.

Cache Attributes 4 24 Bits [3:0] – Total Cache Levels for this Memory
Proximity Domain

• 0 – None

• 1 – One level cache

• 2 – Two level cache

• 3 – Three level cache

• Other values reserved

Bits [7:4] : Cache Level described in this structure

• 0 – None

• 1 – One level cache

• 2 – Two level cache

• 3 – Three level cache

• Other values reserved

Bits [11:8] - Cache Associativity

• 0 – None

• 1 – Direct Mapped

• 2 – Complex Cache Indexing (implementation
specific)

• Other values reserved

Bits [15:12] - Write Policy

• 0 – None

• 1 – Write Back (WB)

• 2 – Write Through (WT)

• Other values reserved

Bits [31:16] - Cache Line size in bytes

Number of bytes accessed from next cache level on
cache miss.

Reserved 2 28

Number of SMBIOS
handles (n)

2 30 Number of SMBIOS handles that contributes to the
memory side cache physical devices.

SMBIOS Handles 2xn 32 Refers to corresponding SMBIOS Type-17 Handles
Structure that contains Physical Memory Component
related information

Field Byte Length Byte Offset Description
UEFI Forum, Inc. January 2019 Page 251

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.28 Platform Debug Trigger Table (PDTT)

This section describes the format of the Platform Debug Trigger Table (PDTT) description table, which is
an optional table that describes one or more PCC subspace identifiers that can be used to trigger/notify
the platform specific debug facilities to capture non-architectural system state. This is intended as a
standard mechanism for the OSPM to notify the platform of a fatal crash (e.g. kernel panic or bug check).

This table is intended for platforms that provide debug hardware facilities that can capture system info
beyond the normal OS crash dump. This trigger could be used to capture platform specific state
information (e.g. firmware state, on-chip hardware facilities, auxiliary controllers, etc.). This type of
debug feature could be leveraged on mobile, client, and enterprise platforms.

Certain platforms may have multiple debug subsystems that must be triggered individually. This table
accommodates such systems by allowing multiple triggers to be listed.

After triggering debug facilities, the CPU may continue to operate as expected so that the kernel may
continue with crash processing/handling (e.g. possibly attempting to attach a debugger or proceed with a
full crash dump prior to rebooting the system), depending on the value defined in Trigger order. Please
refer to Section 5.2.28.2 for more details.

After triggering debug facilities, the CPU must continue to operate as expected so that the kernel may
continue with crash processing/handling (e.g. possibly attempting to attach a debugger or proceed with a
full crash dump prior to rebooting the system).

On some platforms, the debug trigger may put some hardware components/peripherals into a frozen
non-operational state, and so the debug trigger is not recommended to be used during normal run-time
operation.

Other platforms may allow the debug trigger for capture system state to debug run-time behavioral
issues (e.g. system performance and power issues), specified by the "Run-time" flag field in 
Table 5-149.

When multiple triggers exist, the triggers within each of the two groups, defined by trigger order, will be
executed in order. OSPM may need to wait for PCC completion before executing next trigger based on
the “Wait for Completion” flag field in Table 5-149.

Note: The mechanism by which this system debug state information is retrieved by the user is platform
and vendor specific. This will most likely will require special tools and privileges in order to access and
parse the platform debug information captured by this trigger.
UEFI Forum, Inc. January 2019 Page 252

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-148 PDTT Structure

Field Byte
Length

Byte Offset Description

Signature 4 0 ‘PDTT’

Length 4 4 Length in bytes of the entire Platform Debug Trigger Table

Revision 1 8 0

Checksum 1 9 Entire table must sum to zero.

OEM ID 6 10 OEM ID

OEM Table ID 8 16 The table ID is the manufacturer model ID.

OEM Revision 4 24 OEM revision for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator Revision 4 32 Revision of utility that created the table.

Trigger Count 1 36 Number of PDTT Platform Communication Channel Identifiers

Reserved 3 37 Must be zero

Trigger Identifier
Array Offset

4 40 Offset to the “PDTT Platform Communication Channel
Identifiers[]” Array

PDTT Platform
Communication
Channel Identifiers []

--- Trigger
Identifier
Array
Offset

Array of PDTT Platform Communication Channel Identifiers to
notify various platform debug facilities. This identifier selects the
PCC subspace index that must be listed in the PCCT. It also
describes per trigger flags.

Each Identifier is 2 bytes. Must provide a minimum of one
identifier

Described in Table 5-149 below.

Table 5-149 PDTT Platform Communication Channel Identifier Structure

Field Bit Length Bit
Offset

Description

PDTT PCC Sub
Channel Identifier

8 0 PCC sub channel ID

Note: this must be an index listed in the PCCT

Run-time 1 8 0: Trigger must only be invoked in fatal crash scenarios. This debug
trigger may put some hardware components/peripherals into a
frozen non-operational state

1: Trigger may be invoked at run-time as well as in fatal crash
scenarios

Wait for Completion 1 9 0: OSPM may initiate next trigger immediately

1: OSPM must wait for PCC complete prior to initiating the next
trigger in the list
UEFI Forum, Inc. January 2019 Page 253

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.28.1 PDTT PCC Sub Channel

The PDTT PCC Sub Channel Identifier value provided by the platform in this field should be programmed
to the Type field of PCC Communications Subspace Structure. The PDTT references its PCC Subspace in a
given platform by this identifier, as shown in Table 5-149.

5.2.28.1.1 Using PCC registers

OSPM will write PCC registers by filling in the register value in PCC sub channel space and issuing a PCC
execute platform debug trigger command. See Table 5-150. All other command values are reserved.

Table 5-150 PCC Commands Codes used by Platform Debug Trigger Table

Command Description

0x00 Execute Platform Debug Trigger (doorbell only – no command/response)

0x01 Execute Platform Debug Trigger (with vendor specific command in
communication space)

0x01-0xFF All other values are reserved.

Table 5-151 PDTT Platform Communication Channel

Field Byte
Length

Byte
Offset

Description

Signature 4 0 The PCC signature. The signature of a subspace is computed
by a bitwise-or of the value 0x50434300 with the subspace
ID. For example, subspace 3 has signature 0x50434303.

Command 2 4 PCC command field, see Section 14 and Table YYY

Status 2 6 PCC status field, see Section 14

Communication

Space

Vendor Specific variable 8 Optional vendor specific command/response area written
by OSPM – must be zero if not supported

5.2.28.2 PDTT PCC Trigger Order

The trigger order defines two categories for triggers

Trigger Order 0: Triggers are invoked by OSPM before executing its crash dump processing functions.

Trigger Order 1: Triggers are invoked by OSPM at the end of crash dump processing functions, typically
after the kernel has processed crash dumps.

Trigger Order 1 10 Used in fatal crash scenarios.

0: OSPM must initiate trigger before kernel crash dump processing

1: OSPM must initiate trigger at the end of crash dump processing.

Reserved 5 11 Must be zero
UEFI Forum, Inc. January 2019 Page 254

ACPI Specification, Version 6.3 ACPI Software Programming Model
Capturing platform specific debug information from certain IPs would require intrusive mechanism which
may limit kernel operations after the operations. Trigger order allows the platform to define such
operations that will be invoked at the end of kernel operations by OSPM.

5.2.28.3 Example: OS Invoking Multiple Debug Triggers

To illustrate how these debug triggers are intended to be used by the OS, consider this example of a
system with 4 independent debug triggers as shown in Table 5-25. These triggers are described to the OS
via the PDTT example in Table 5-152.

Note: This example assumes no vendor specific communication is required, so only PCC command 0x0 is
used.

When the OS encounters a fatal crash, prior to collecting a crash dump and rebooting the system, the OS
may choose to invoke the debug triggers in the order listed in the PDTT. The addresses of the doorbell
register and the PCC general communication space (if needed) are retrieved from the PCCT, depending
on the PCC subspace type (see Table 14-365, Table 14-366, or Table 14-367).

Figure 5-25 Example: Platform with 4 debug triggers

Table 5-152 Example: Platform with 4 debug triggers

Field Value Notes

Signature ‘PDTT’

… … …

Trigger Count 4 Describing the 4 triggers illustrated in Figure XXX above
UEFI Forum, Inc. January 2019 Page 255

ACPI Specification, Version 6.3 ACPI Software Programming Model
Walking through the list of triggers in the PDTT, the OS may execute the following steps:

1. For Trigger 0, retrieves doorbell register address from PCCT per PCC subspace ID 4 and writes
to it with appropriate write/preserve mask. Since OS does not need to wait for completion, OS
does not need to send a PCC command and should ignore the PCC subspace base address

2. For Trigger 1, retrieves doorbell register address and PCC subspace address from PCCT per PCC
subspace ID 1. Since OS must wait for completion, OS must write PCC command (0x0) and write
to the doorbell register per section 14 and poll for the completion bit.

3. For Trigger 2, , retrieves doorbell register address from PCCT per PCC subspace ID 2 and writes
to it with appropriate write/preserve mask. Since OS does not need to wait for completion, OS
does not need to send a PCC command and should ignore the PCC subspace base address

4. For Trigger 3, retrieves doorbell register address and PCC subspace address from PCCT per PCC
subspace ID 3. Since OS must wait for completion, OS must write PCC command (0x0) and write
to the doorbell register per section 14 and poll for the completion bit.

Note: When wait for completion is necessary, the OS must poll bit zero (completion bit) of the status field
of that PCC channel (see Table 14-367 and Table 14-369).

5.2.29 Processor Properties Topology Table (PPTT)

This optional table is used to describe the topological structure of processors controlled by the OSPM,
and their shared resources, such as caches. The table can also describe additional information such as
which nodes in the processor topology constitute a physical package. The structure of PPTT is described
in Table 5-153.

Reserved 0

Trigger
Identifier
Array Offset

44

PDTT PCC
Identifiers [0]

0x0004 [Bits 0:7] - 4 (channel subspace ID 4)

[Bit 8] - 0 (Trigger may only be invoked in fatal crash scenarios)

[Bit 9] - 0 (OSPM may initiate next trigger immediately)

PDTT PCC
Identifiers [1]

0x0201 [Bits 0:7] – 1 (channel ID subspace 1)

[Bit 8] - 0 (Trigger may only be invoked in fatal crash scenarios)

[Bit 9] - 1 (OSPM must wait for PCC complete prior to initiating the next trigger in the
list)

PDTT PCC
Identifiers [2]

0x0002 [Bits 0:7] - 2 (channel ID subspace 2)

[Bit 8] - 0 (Trigger may only be invoked in fatal crash scenarios)

[Bit 9] - 0 (OSPM may initiate next trigger immediately)

PDTT PCC
Identifiers [3]

0x0203 [Bits 0:7] - 3 (channel ID subspace 3)

[Bit 8] - 0 (Trigger may only be invoked in fatal crash scenarios)

[Bit 9] - 1 (OSPM must wait for PCC complete prior to initiating the next trigger in the
list)

Field Value Notes
UEFI Forum, Inc. January 2019 Page 256

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-153 Processor Properties Topology Table

Field
Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘PPTT’ Processor Properties Topology Table

 Length 4 4 Length of entire PPTT table in bytes

 Revision 1 8 2

 Checksum 1 9 The entire table must sum to zero.

 OEMID 6 10 OEM ID.

 OEM Table ID 8 16 OEM revision of table for supplied OEM Table ID

 OEM Revision 4 24 OEM revision of the PPTT for the supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table

 Creator Revision 4 32 Revision of utility that created the table

Body

Processor topology
structure[N]

- 36 List of processor topology structures

Processor topology structures are described in the following sections.

5.2.29.1 Processor hierarchy node structure (Type 0)

The processor hierarchy node structure is described in Table 5-154. This structure can be used to describe
a single processor or a group. To describe topological relationships, each processor hierarchy node
structure can point to a parent processor hierarchy node structure. This allows representing tree like
topology structures. Multiple trees may be described, covering for example multiple packages. For the
root of a tree, the parent pointer should be 0.

If PPTT is present, one instance of this structure must be present for every individual processor presented
through the MADT interrupt controller structures. In addition, an individual entry must be present for
every instance of a group of processors that shares a common resource described in the PPTT. Resources
are described in other PPTT structures such as Type 1 cache structures. Each physical package in the
system must also be represented by a processor node structure.

Each processor node includes a list of resources that are private to that node. Resources are described in
other PPTT structures such as Type 1 cache structures. The processor node’s private resource list includes
a reference to each of the structures that represent private resources to a given processor node. For
example, an SoC level processor node might contain two references, one pointing to a Level 3 cache
resource and another pointing to an ID structure. For compactness, separate instances of an identical
UEFI Forum, Inc. January 2019 Page 257

ACPI Specification, Version 6.3 ACPI Software Programming Model
resource can be represented with a single structure that is listed as a resource of multiple processor
nodes.

For example, is expected that in the common case all processors will have identical L1 caches. For these
platforms a single L1 cache structure could be listed by all processors:

Note: though less space efficient, it is also acceptable to declare a node for each instance of a resource. In
the example above, it would be legal to declare an L1 for each processor.
UEFI Forum, Inc. January 2019 Page 258

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-154 Processor Hierarchy Node Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 0 – processor structure

Length 1 1 Length of the local processor structure in bytes

Reserved 2 2 Must be zero

Flags 4 4 See Table 5-155

Parent 4 8 Reference to parent processor hierarchy node structure. The
reference is encoded as the difference between the start of
the PPTT table and the start of the parent processor
structure entry. A value of zero must be used where a node
has no parent.

ACPI Processor ID 4 12 If the processor structure represents an actual processor,
this field must match the value of ACPI processor ID field in
the processor’s entry in the MADT.

If the processor structure represents a group of associated
processors, the structure might match a processor container
in the name space. In that case this entry will match the
value of the _UID method of the associated processor
container. Where there is a match it must be represented.

The flags field, described in Table 5-155 includes a bit to
describe whether the ACPI processor ID is valid.

Number of private
resources

4 16 Number of resource structure references in Private
Resources (below)

Private resources[N] N*4 20 Each resource is a reference to another PPTT structure. The
structure referred to must not be a processor hierarchy
node. Each resource structure pointed to represents
resources that are private the processor hierarchy node. For
example, for cache resources, the cache type structure
represents caches that are private to the instance of
processor topology represented by this processor hierarchy
node structure.

The references are encoded as the difference between the
start of the PPTT table and the start of the resource
structure entry.

Processor Structure Flags are described in Table 5-155.
UEFI Forum, Inc. January 2019 Page 259

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-155 Processor Structure Flags

Field
Bit
Length

Bit
Offset

Description

Physical package 1 0 Set to 1 if this node of the processor topology represents the
boundary of a physical package, whether socketed or surface
mounted.

Set to 0 if this instance of the processor topology does not
represent the boundary of a physical package.

Each valid processor must belong to exactly one package.
That is, the leaf must itself be a physical package or have an
ancestor marked as a physical package.

ACPI Processor ID valid 1 1 For non-leaf entries in the processor topology, the ACPI
Processor ID entry can relate to a Processor container in the
namespace. The processor container will have a matching ID
value returned through the _UID method. As not every
processor hierarchy node structure in PPTT may have a
matching processor container, this flag indicates whether
the ACPI processor ID points to valid entry. Where a valid
entry is possible the ACPI Processor ID and _UID method are
mandatory.

For leaf entries in PPTT that represent processors listed in
MADT, the ACPI Processor ID must always be provided and
this flag must be set to 1.

Processor is a Thread 1 2 For leaf entries: must be set to 1 if the processing element
representing this processor shares functional units with
sibling nodes.

For non-leaf entries: must be set to 0.

Node is a Leaf 1 3 Must be set to 1 if node is a leaf in the processor hierarchy.
Else must be set to 0.

Identical
Implementation

1 4 A value of 1 indicates that all children processors share an
identical implementation revision.

This field should be ignored on leaf nodes by the OSPM.

Note: this implies an identical processor version and
identical implementation reversion, not just a matching
architecture revision.

Reserved 27 5 Must be zero

Note: Threads sharing a core must be grouped under a unique Processor hierarchy node structure
for each group of threads.

Note: processors may be marked as disabled in the MADT. In this case, the corresponding
processor hierarchy node structures in PPTT should be considered as disabled. Additionally, all
processor hierarchy node structures representing a group of processors with all child processors
disabled should be considered as being disabled. All resources attached to disabled processor
hierarchy node structures in PPTT should also be considered disabled.
UEFI Forum, Inc. January 2019 Page 260

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.29.2 Cache Type Structure - Type 1

The cache type structure is described in Table 5-156. The cache type structure can be used to represent a
set of caches that are private to a particular processor hierarchy node structure, that is, to a particular
node in the processor topology tree. The set of caches is described as a NULL, or zero, terminated linked
list. Only the head of the list needs to be listed as a resource by a processor node (and counted toward
Number of Private Resources), as the cache node itself contains a link to the next level of cache.

Cache type structures are optional, and can be used to complement or replace cache discovery
mechanisms provided by the processor architecture. For example, some processor architectures describe
individual cache properties, but do not provide ways of discovering which processors share a particular
cache. When cache structures are provided, all processor caches must be described in a cache type
structure.

Each cache type structure includes a reference to the cache type structure that represents the next level
cache. The level in this context must relate to the CPU architecture’s definition of cache level. The list
must include all caches that are private to a processor hierarchy node. It is not permissible to skip levels.
That is, a cache node included in a given hierarchy processor node level must not point to a cache
structure referred to by a processor node in a different level of the hierarcy.

For example, if a node represents a CPU that has a private L1 and private L2 cache, the list would contain
both caches (L1->L2->0). If on the other hand the L2 cache was shared, the list would just include the L1
(L1->0), and a parent processor topology node, to all processors that share the L2, would contain the
cache type structure that represents the shared L2.

Processors, or higher level nodes within the hierarchy, with separate instruction and data caches must
describe the instruction and data caches with separate linked lists of cache type structures both listed as
private resources of the relevant processor hierarchy node structure. If the separate instruction are data
caches are unified at a higher level of cache then the linked lists should converge.
UEFI Forum, Inc. January 2019 Page 261

ACPI Specification, Version 6.3 ACPI Software Programming Model
Consider the following example.

Figure 5-26 Cache Type Structure - Type 1 Example

In this example:

• Each processor has private L1 data, L1 intruction and L2 caches. The two processors are
contained in a cluster which provides an L3 cache.

• Each processor’s hierarchy node has two separate cache type structures as private resources
for L1I and L1D

• Both the L1I and L1D cache structures point to the L2 cache structure as their next level of
cache

• L2 cache type structure terminates the linked list of the CPU’s caches. The resulting list denotes
all private caches at the processor level

• Both processor nodes have their parent pointer pointing to node that represents the cluster.
• The cluster node includes the L3 cache as it’s private resource. The L3 node in turn has no next

level of cache.

An entry in the list indicates primarily that a cache exists at this node in the hierarchy. Where possible,
cache properties should be discovered using processor architectural mechanisms, but the cache type
structure may also provide the properties of the cache. A flag is provided to indicate whether properties
provided in the table are valid, in which case the table content should be used in preference to processor
architected discovery. On Arm-based systems, all cache properties must be provided in the table.
UEFI Forum, Inc. January 2019 Page 262

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-156 Cache Type Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 1 – Cache type structure

Length 1 1 24

Reserved 2 2 Must be zero

Flags 4 4 See Table 5-157

Next Level of Cache 4 8 Reference to next level of cache that is private to the
processor topology instance. The reference is encoded as
the difference between the start of the PPTT table and the
start of the cache type structure entry. This value will be
zero if this entry represents the last cache level appropriate
to the the processor hierarchy node structures using this
entry.

Size 4 12 Size of the cache in bytes.

Number of sets 4 16 Number of sets in the cache

Associativity 1 20 Integer number of ways.

Attributes 1 21 Bits 1:0: Allocation type

0x0 - Read allocate

0x1 - Write allocate

0x2 or 0x03 indicate Read and Write allocate

Bits:3:2: Cache type:

0x0 Data

0x1 Instruction

0x2 or 0x3 Indicate a unified cache

Bits 4: Write policy:

0x0 Write back

0x1 Write through

Bits:7:5 Reserved must be zero.

Line size 2 22 Line size in bytes

The cache type structure flags are described in Table 5-157.

Table 5-157 Cache Structure Flags

Field Bit
Length

Bit Off-
set

Description

Size property valid 1 0 Set to 1 if the size properties described is valid. A value of 0
indicates that, where possible, processor architecture
specific discovery mechanisms should be used to ascertain
the value of this property.
UEFI Forum, Inc. January 2019 Page 263

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.2.29.3 ID structure – Type 2

The ID type structure is described in Table 5-158. The ID structure can be used to provide an ID (or vendor
specific part number) for a particular processor hierarchy node structure. The ID structure is optional,
and may be used by software to determine special features and/or errata workarounds for that
processor hierarchy node. This ID structure can also be used to identify all underlying hierarchy nodes
and components, which may include identifying proprietary hardware components that are not explicitly
described in this table.

This ID structure would typically be used to describe an ID of a physical package node, but may be
optionally used at any node level.

Example: In the case where this ID structure is used to uniquely describe a physical package node, it could
represent a single system-on-chip (SoC) on a single die and all nodes and components within that node
(e.g. processors, caches, system buses and DMA engines, interrupt controllers, on-chip peripherals, etc.).
The silicon vendor of this SoC has a known erratum with a particular hardware component in that SoC
that could impact behavior and/or correctness. An operating system vendor may query this ID structure
to first determine the silicon vendor, then later acquire the remaining ID fields to determine part

Number of sets valid 1 1 Set to 1 if the number of sets property described is valid. A
value of 0 indicates that, where possible, processor
architecture specific discovery mechanisms should be used
to ascertain the value of this property.

Associativity valid 1 2 Set to 1 if the associativity property described is valid. A
value of 0 indicates that, where possible, processor
architecture specific discovery mechanisms should be used
to ascertain the value of this property.

Allocation type valid 1 3 Set to 1 if the allocation type attribute described is valid. A
value of 0 indicates that, where possible, processor
architecture specific discovery mechanisms should be used
to ascertain the value of this attribute.

Cache type valid 1 4 Set to 1 if the cache type attribute described is valid. A value
of 0 indicates that, where possible, processor architecture
specific discovery mechanisms should be used to ascertain
the value of this attribute.

Write policy valid 1 5 Set to 1 if the write policy attribute described is valid. A value
of 0 indicates that, where possible, processor architecture
specific discovery mechanisms should be used to ascertain
the value of this attribute.

Line size valid 1 6 Set to 1 if the line size property described is valid. A value of
0 indicates that, where possible, processor architecture
specific discovery mechanisms should be used to ascertain
the value of this property.

Reserved 25 7 Must be zero

Field Bit
Length

Bit Off-
set

Description
UEFI Forum, Inc. January 2019 Page 264

ACPI Specification, Version 6.3 ACPI Software Programming Model
number, matching it against the part with a known erratum. The operating system may then remedy
errata by either disabling relevant features or applying an appropriate software work around.

Table 5-158 ID Type Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 2 – ID structure

Length 1 1 30

Reserved 2 2 Must be zero

VENDOR_ID 4 4 This identifies the node vendor using the vendor ACPI ID as
described in the ACPI ID registry is available at http://
www.uefi.org/acpi_id_list

LEVEL_1_ID 8 8 Vendor specific value to identify first level unique node ID
(e.g. chip family ID)

LEVEL_2_ID 8 16 Vendor specific value to identify second level unique node ID
(e.g. chip ID)

MAJOR_REV 2 24 Vendor specific value to identify major revision of the node

MINOR_REV 2 26 Vendor specific value to identify minor revision of the node

SPIN_REV 2 28 Vendor specific value to identify spin revision of the node

5.3 ACPI Namespace

For all Definition Blocks, the system maintains a single hierarchical namespace that it uses to refer to
objects. All Definition Blocks load into the same namespace. Although this allows one Definition Block to
reference objects and data from another (thus enabling interaction), it also means that OEMs must take

care to avoid any naming collisions2. A name collision in an attempt to load a Definition Block is
considered fatal. The contents of the namespace changes only on a load operation.

The namespace is hierarchical in nature, with each name allowing a collection of names “below” it. The
following naming conventions apply to all names:

• All names are a fixed 32 bits.
• The first byte of a name is inclusive of: ‘A’–‘Z’, ‘_’, (0x41–0x5A, 0x5F).
• The remaining three bytes of a name are inclusive of: ‘A’–‘Z’, ‘0’–‘9’, ‘_’, (0x41–0x5A, 0x30–

0x39, 0x5F).
• By convention, when an ASL compiler pads a name shorter than 4 characters, it is done so with

trailing underscores (‘_’). See the language definition for AML NameSeg in the ACPI Source
Language (ASL) Reference chapter.

• Names beginning with ‘_’ are reserved by this specification. Definition Blocks can only use
names beginning with ‘_’ as defined by this specification.

2. For the most part, since the name space is hierarchical, typically the bulk of a dynamic definition file will
load into a different part of the hierarchy. The root of the name space and certain locations where interaction is
being designed are the areas in which extra care must be taken.
UEFI Forum, Inc. January 2019 Page 265

http://www.uefi.org/acpi_id_list

ACPI Specification, Version 6.3 ACPI Software Programming Model
• A name proceeded with ‘\’ causes the name to refer to the root of the namespace (‘\’ is not
part of the 32-bit fixed-length name).

• A name proceeded with ‘^’ causes the name to refer to the parent of the current namespace
(‘^’ is not part of the 32-bit fixed-length name).

Except for names preceded with a ‘\’, the current namespace determines where in the namespace
hierarchy a name being created goes and where a name being referenced is found. A name is located by
finding the matching name in the current namespace, and then in the parent namespace. If the parent
namespace does not contain the name, the search continues recursively upwards until either the name is
found or the namespace does not have a parent (the root of the namespace). This indicates that the

name is not found3.

An attempt to access names in the parent of the root will result in the name not being found.

There are two types of namespace paths: an absolute namespace path (that is, one that starts with a ‘\’
prefix), and a relative namespace path (that is, one that is relative to the current namespace). The
namespace search rules discussed above, only apply to single NameSeg paths, which is a relative
namespace path. For those relative name paths that contain multiple NameSegs or Parent Prefixes, ‘^’,
the search rules do not apply. If the search rules do not apply to a relative namespace path, the
namespace object is looked up relative to the current namespace. For example:

ABCD //search rules apply
^ABCD //search rules do not apply
XYZ.ABCD //search rules do not apply
\XYZ.ABCD //search rules do not apply

All name references use a 32-bit fixed-length name or use a Name Extension prefix to concatenate
multiple 32-bit fixed-length name components together. This is useful for referring to the name of an
object, such as a control method, that is not in the scope of the current namespace.

Namepaths are used primarily for two purposes:

• To reference an existing object. In this case, all NameSegs within the Namepath must already
exist.

• To create a new object. For example:

Device (XYZ.ABCD) {…}
OperationRegion (\XYZ.ABCD, SystemMemory, 0, 0x200)

Each of these declarations is intended to create a new object with the name ABCD according the following
rules:

• Object XYZ must already exist for the ABCD object to be created
• If XYZ does not exist, that will cause a fatal error

In general, it is only the final Nameseg that will be used as the name of the new object. If any other
Nameseg along the Namepath does not exist, it is a fatal error. In this sense, the Namepath is similar to a
file pathname in a filesystem consisting of some number of existing directories followed by a final
filename.

3. Unless the operation being performed is explicitly prepared for failure in name resolution, this is consid-
ered an error and may cause the system to stop working.
UEFI Forum, Inc. January 2019 Page 266

ACPI Specification, Version 6.3 ACPI Software Programming Model
The figure below shows a sample of the ACPI namespace after a Differentiated Definition Block has been
loaded.

Figure 5-27 Example ACPI NameSpace

Care must be taken when accessing namespace objects using a relative single segment name because of
the namespace search rules. An attempt to access a relative object recurses toward the root until the
object is found or the root is encountered. This can cause unintentional results. For example, using the
namespace described in Figure 5.5, attempting to access a _CRS named object from within the
SB.PCI0.IDE0 will have different results depending on if an absolute or relative path name is used. If an
absolute pathname is specified (_SB_.PCI0.IDE0._CRS) an error will result since the object does not exist.
Access using a single segment name (_CRS) will actually access the _SB_.PCI0._CRS object. Notice that
the access will occur successfully with no errors.

P

R

d

d

Root

_PR

CPU0

\PID0

_STA

_ON

_OFF

_SB

PCI0

_HID

_CRS

IDE0

_ADR

_PR0

_GPE

_L01

_E02

_L03

– Processor Tree

– Processor 0 object

– Power resource for IDE0

– Method to return status of power resource

– Method to turn on power resource

– Method to turn off power resource

– System bus tree

– PCI bus

– Device ID

– Current resources (PCI bus number)

– IDE0 device

– PCI device #, function #

– Power resource requirements for D0

– General purpose events (GP_STS)

– Method to handle level GP_STS.1

– Method to handle edge GP_STS.2

– Method to handle level GP_STS.3

P

R

d

Package

Processor Object
Power Resource
Object

Bus/Device Object

Data Object

Control Method (AML code)

Key
UEFI Forum, Inc. January 2019 Page 267

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.3.1 Predefined Root Namespaces

The following namespaces are defined under the namespace root.

Table 5-159 Namespaces Defined Under the Namespace Root

Name Description

_GPE General events in GPE register block.

_PR ACPI 1.0 Processor Namespace. ACPI 1.0 requires all Processor objects to be defined under
this namespace. ACPI 2.0 and later allow Processor object definitions under the _SB
namespace. Platforms may maintain the _PR namespace for compatibility with ACPI 1.0
operating systems, but it is otherwise deprecated. see the compatibility note in
Section 5.2.12.12. An ACPI-compatible namespace may define Processor objects in either
the _SB or _PR scope but not both.

For more information about defining Processor objects, see Section 8, “Processor
Configuration and Control.”

_SB All Device/Bus Objects are defined under this namespace.

_SI System indicator objects are defined under this namespace. For more information about
defining system indicators, see Section 9.2, _SI System Indicators.”

_TZ ACPI 1.0 Thermal Zone namespace. ACPI 1.0 requires all Thermal Zone objects to be defined
under this namespace. Thermal Zone object definitions may now be defined under the _SB
namespace. ACPI-compatible systems may maintain the _TZ namespace for compatibility
with ACPI 1.0 operating systems. An ACPI-compatible namespace may define Thermal Zone
objects in either the _SB or _TZ scope but not both.

For more information about defining Thermal Zone objects, see Section 11, “Thermal
Management.”

5.3.2 Objects

All objects, except locals, have a global scope. Local data objects have a per-invocation scope and lifetime
and are used to process the current invocation from beginning to end.

The contents of objects vary greatly. Nevertheless, most objects refer to data variables of any supported
data type, a control method, or system software-provided functions.

Objects may contain a revision field. Successive ACPI specifications define object revisions so that they
are backwards compatible with OSPM implementations that support previous specifications / object
revisions. New object fields are added at the end of previous object definitions. OSPM interprets objects
according to the revision number it supports including all earlier revisions. As such, OSPM expects that an
object’s length can be greater than or equal to the length of the known object revision. When evaluating
objects with revision numbers greater than that known by OSPM, OSPM ignores internal object fields
values that are beyond the defined object field range for the known revision.

5.4 Definition Block Encoding

This section specifies the encoding used in a Definition Block to define names (load time only), objects,
and packages.
UEFI Forum, Inc. January 2019 Page 268

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.4.1 AML Encoding

The Definition Block is encoded as a stream from beginning to end. The lead byte in the stream comes
from the AML encoding tables shown in Section 19, “ACPI Source Language (ASL) Reference,” and
signifies how to interpret some number of following bytes, where each following byte can in turn signify
how to interpret some number of following bytes. For a full specification of the AML encoding, see
Section 19, “ACPI Source Language (ASL) Reference.”

Within the stream there are two levels of data being defined. One is the packaging and object
declarations (load time), and the other is an object reference (package contents/run-time).

All encodings are such that the lead byte of an encoding signifies the type of declaration or reference
being made. The type either has an implicit or explicit length in the stream. All explicit length declarations
take the form shown below, where PkgLength is the length of the inclusive length of the data for the
operation.

Figure 5-28 AML Encoding

Encodings of implicit length objects either have fixed length encodings or allow for nested encodings
that, at some point, either result in an explicit or implicit fixed length.

The PkgLength is encoded as a series of 1 to 4 bytes in the stream with the most significant two bits of
byte zero, indicating how many following bytes are in the PkgLength encoding. The next two bits are only
used in one-byte encodings, which allows for one-byte encodings on a length up to 0x3F. Longer
encodings, which do not use these two bits, have a maximum length of the following: two-byte encodings
of 0x0FFF, three-byte encodings of 0x0FFFFF, and four-byte length encodings of 0x0FFFFFFFF.

It is fatal for a package length to not fall on a logical boundary. For example, if a package is contained in
another package, then by definition its length must be contained within the outer package, and similarly
for a datum of implicit length.

5.4.2 Definition Block Loading

At some point, the system software decides to “load” a Definition Block. Loading is accomplished when
the system makes a pass over the data and populates the ACPI namespace and initializes objects
accordingly. The namespace for which population occurs is either from the current namespace location,
as defined by all nested packages or from the root if the name is preceded with ‘\’.

The first object present in a Definition Block must be a named control method. This is the Definition
Block’s initialization control.

Packages are objects that contain an ordered reference to one or more objects. A package can also be
considered a vertex of an array, and any object contained within a package can be another package. This
permits multidimensional arrays of fixed or dynamic depths and vertices.

Unnamed objects are used to populate the contents of named objects. Unnamed objects cannot be
created in the “root.” Unnamed objects can be used as arguments in control methods.

LeadByte PkgLength data... LeadByte ...

PkgLength
UEFI Forum, Inc. January 2019 Page 269

ACPI Specification, Version 6.3 ACPI Software Programming Model
Control method execution may generate errors when creating objects. This can occur if a Method that
creates named objects blocks and is reentered while blocked. This will happen because all named objects
have an absolute path. This is true even if the object name specified is relative. For example, the
following ASL code segments are functionally identical.

(1)

 Method (DEAD,) {
 Scope (_SB_.FOO) {
 Name (BAR,) // Run time definition
 }
 }

(2)

 Scope (_SB_) {
 Name (_SB_. FOO.BAR,) // Load time definition
 }

Notice that in the above example the execution of the DEAD method will always fail because the object
SB.FOO.BAR is created at load time.

The term of "Definition Block level" is used to refer to the AML byte streams that are not contained in any
control method. Such AML byte streams can appear in the "root" scope or in the scopes created/opened
by the "Device, PowerResource, Processor, Scope and ThermalZone" operators. Please refer to
"Section 19.6, ASL Operator Reference"for detailed descriptions.

Not only the named objects, but all term objects (mathematical, logical, and conditional expressions, etc.,
see "Section 20.2.5, Term Object Encoding") are allowed at the Definition Block level. Allowing such
executable AML opcodes at the Definition Block level allows BIOS writers to define dynamic object lists
according to the system settings. For example:

DefinitionBlock ("DSDT.aml", "DSDT", 2, "OEM", "FOOBOOK", 0x1000)
{
 ...
 If (LEqual (CFG1 (), 1))
 {
 ...
 Scope (_SB.PCI0.XHC.RHUB)
 {
 ...
 If (LEqual (CFG2 (), 1))
 {
 …
 Device (HS11)
 {
 …
 If (LEqual (CFG3 (), 1))
 {
 …
 Device (CAM0)
 {
 …
 }
 …
 }
 …
 }
UEFI Forum, Inc. January 2019 Page 270

ACPI Specification, Version 6.3 ACPI Software Programming Model
 …
 }
 ...
 }
 ...
 }
 ...
}

The interpretation of the definition block during the definition block loading is similar to the
interpretation of the control method during the control method execution.

5.5 Control Methods and the ACPI Source Language (ASL)

OEMs and platform firmware vendors write definition blocks using the ACPI Source Language (ASL) and
use a translator to produce the byte stream encoding described in Section 5.4, “Definition Block
Encoding”. For example, the ASL statements that produce the example byte stream shown in that earlier
section are shown in the following ASL example. For a full specification of the ASL statements, see
Section 19, “ACPI Source Language (ASL) Reference.”

// ASL Example
DefinitionBlock (
 "forbook.aml", // Output Filename
 "DSDT", // Signature
 0x02, // DSDT Compliance Revision
 "OEM", // OEMID
 "forbook", // TABLE ID
 0x1000 // OEM Revision
)
{ // start of definition block
 OperationRegion(\GIO, SystemIO, 0x125, 0x1)
 Field(\GIO, ByteAcc, NoLock, Preserve) {
 CT01, 1,
 }

 Scope(_SB) // start of scope
 Device(PCI0) { // start of device
 PowerResource(FET0, 0, 0) { // start of pwr
 Method (_ON) {
 Store (Ones, CT01) // assert power
 Sleep (30) // wait 30ms
 }
 Method (_OFF) {
 Store (Zero, CT01) // assert reset#
 }
 Method (_STA) {
 Return (CT01)
 }
 } // end of power
 } // end of device
 } // end of scope
} // end of definition block
UEFI Forum, Inc. January 2019 Page 271

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.5.1 ASL Statements

ASL is principally a declarative language. ASL statements declare objects. Each object has three parts, two
of which can be null:

 Object := ObjectType FixedList VariableList

FixedList refers to a list of known length that supplies data that all instances of a given ObjectType must
have. It is written as (a, b, c,), where the number of arguments depends on the specific ObjectType, and
some elements can be nested objects, that is (a, b, (q, r, s, t), d). Arguments to a FixedList can have
default values, in which case they can be skipped. Some ObjectTypes can have a null FixedList.

VariableList refers to a list, not of predetermined length, of child objects that help define the parent. It is
written as {x, y, z, aa, bb, cc}, where any argument can be a nested object. ObjectType determines what
terms are legal elements of the VariableList. Some ObjectTypes can have a null variable list.

For a detailed specification of the ASL language, see Section 19, “ACPI Source Language (ASL) Reference.”
For a detailed specification of the ACPI Control Method Machine Language (AML), upon which the output
of the ASL translator is based, see Section 20, “ACPI Machine Language (AML) Specification.”

5.5.2 Control Method Execution

OSPM evaluates control method objects as necessary to either interrogate or adjust the system-level
hardware state. This is called an invocation.

A control method can use other internal, or well defined, control methods to accomplish the task at
hand, which can include defined control methods provided by the operating software. Control Methods
can reference any objects anywhere in the Namespace. Interpretation of a Control Method is not
preemptive, but it can block. When a control method does block, OSPM can initiate or continue the
execution of a different control method. A control method can only assume that access to global objects
is exclusive for any period the control method does not block.

Global objects are those NameSpace objects created at table load time.

5.5.2.1 Arguments

Up to seven arguments can be passed to a control method. Each argument is an object that in turn could
be a “package” style object that refers to other objects. Access to the argument objects is provided via
the ASL ArgTerm (ArgX) language elements. The number of arguments passed to any control method is
fixed and is defined when the control method package is created.

Method arguments can take one of the following forms:

• An ACPI name or namepath that refers to a named object. This includes the LocalX and ArgX
names. In this case, the object associated with the name is passed as the argument.

• An ACPI name or namepath that refers to another control method. In this case, the method is
invoked and the return value of the method is passed as the argument. A fatal error occurs if
no object is returned from the method. If the object is not used after the method invocation it
is automatically deleted.
UEFI Forum, Inc. January 2019 Page 272

ACPI Specification, Version 6.3 ACPI Software Programming Model
• A valid ASL expression. In the case, the expression is evaluated and the object that results from
this evaluation is passed as the argument. If this object is not used after the method invocation
it is automatically deleted.

5.5.2.2 Method Calling Convention

The calling convention for control methods can best be described as call-by-reference-constant. In this
convention, objects passed as arguments are passed by “reference”, meaning that they are not copied to
new objects as they are passed to the called control method (A calling convention that copies objects or
object wrappers during a call is known as call-by-value or call-by-copy).

This call-by-reference-constant convention allows internal objects to be shared across each method
invocation, therefore reducing the number of object copies that must be performed as well as the
number of buffers that must be copied. This calling convention is appropriate to the low-level nature of
the ACPI subsystem within the kernel of the host operating system where non-paged dynamic memory is
typically at a premium. The ASL programmer must be aware of the calling convention and the related side
effects.

However, unlike a pure call-by-reference convention, the ability of the called control method to modify
arguments is extremely limited. This reduces aliasing issues such as when a called method unexpectedly
modifies a object or variable that has been passed as an argument by the caller. In effect, the arguments
that are passed to control methods are passed as constants that cannot be modified except under
specific controlled circumstances.

Generally, the objects passed to a control method via the ArgX terms cannot be directly written or
modified by the called method. In other words, when an ArgX term is used as a target operand in an ASL
statement, the existing ArgX object is not modified. Instead, the new object replaces the existing object
and the ArgX term effectively becomes a LocalX term.

The only exception to the read-only argument rule is if an ArgX term contains an Object Reference
created via the RefOf ASL operator. In this case, the use of the ArgX term as a target operand will cause
any existing object stored at the ACPI name referred to by the RefOf operation to be overwritten.

In some limited cases, a new, writable object may be created that will allow a control method to change
the value of an ArgX object. These cases are limited to Buffer and Package objects where the “value” of
the object is represented indirectly. For Buffers, a writable Index or Field can be created that refers to the
original buffer data and will allow the called method to read or modify the data. For Packages, a writable
Index can be created to allow the called method to modify the contents of individual elements of the
Package.

5.5.2.3 Local Variables and Locally Created Data Objects

Control methods can access up to eight local data objects. Access to the local data objects have
shorthand encodings. On initial control method execution, the local data objects are NULL. Access to local
objects is via the ASL LocalTerm language elements.

Upon control method execution completion, one object can be returned that can be used as the result of
the execution of the method. The “caller” must either use the result or save it to a different object if it
wants to preserve it. See the description of the Return ASL operator for additional details

NameSpace objects created within the scope of a method are dynamic. They exist only for the duration of
the method execution. They are created when specified by the code and are destroyed on exit. A method
UEFI Forum, Inc. January 2019 Page 273

ACPI Specification, Version 6.3 ACPI Software Programming Model
may create dynamic objects outside of the current scope in the NameSpace using the scope operator or
using full path names. These objects will still be destroyed on method exit. Objects created at load time
outside of the scope of the method are static. For example:

Scope (\XYZ) {
 Name (BAR, 5) // Creates \XYZ.BAR
 Method (FOO, 1) {
 Store (BAR, CREG) // same effect as Store (\XYZ.BAR, CREG)
 Name (BAR, 7) // Creates \XYZ.FOO.BAR
 Store (BAR, DREG) // same effect as Store (\XYZ.FOO.BAR, DREG
 Name (\XYZ.FOOB, 3) // Creates \XYZ.FOOB
 } // end method
} // end scope

The object \XYZ.BAR is a static object created when the table that contains the above ASL is loaded. The
object \XYZ.FOO.BAR is a dynamic object that is created when the Name (BAR, 7) statement in the FOO
method is executed. The object \XYZ.FOOB is a dynamic object created by the \XYZ.FOO method when
the Name (\XYZ.FOOB, 3) statement is executed. Notice that the \XYZ.FOOB object is destroyed after the
\XYZ.FOO method exits.

5.5.2.4 Access to Operation Regions

5.5.2.4.1 Operation Regions

Control Methods read and write data to locations in address spaces (for example, System memory and
System I/O) by using the Field operator (see Section 19.6.46 Field (Declare Field Objects)”) to declare a
data element within an entity known as an “Operation Region” and then performing accesses using the
data element name. An Operation Region is a specific region of operation within an address space that is
declared as a subset of the entire address space using a starting address (offset) and a length (see
Section 19.6.98 “OperationRegion (Declare Operation Region)”). Control methods must have exclusive
access to any address accessed via fields declared in Operation Regions. Control methods may not
directly access any other hardware registers, including the ACPI-defined register blocks. Some of the ACPI
registers, in the defined ACPI registers blocks, are maintained on behalf of control method execution. For
example, the GPEx_BLK is not directly accessed by a control method but is used to provide an extensible
interrupt handling model for control method invocation.

Note: Accessing an OpRegion may block, even if the OpRegion is not protected by a mutex. For example,
because of the slow nature of the embedded controller, an embedded controller OpRegion field
access may block.

Table 5-160 defines Operation Region spaces.
UEFI Forum, Inc. January 2019 Page 274

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-160 Operation Region Address Space Identifiers

Value Name (RegionSpace Keyword)

0 SystemMemory

1 SystemIO

2 PCI_Config

3 EmbeddedControl Section 12

4 SMBus Section 13

5 SystemCMOS Section 5.5.2.4.2

6 PciBarTarget Section 5.5.2.4.3

7 IPMI Section 5.5.2.4.4

8 GeneralPurposeIO Section 5.5.2.4.5

9 GenericSerialBus Section 5.5.2.4.6

0x0A PCC Section 5.5.2.4.7

0x0B-0x7F Reserved

0x80 to 0xFF OEM defined

5.5.2.4.2 CMOS Protocols

This section describes how CMOS battery-backed non-volatile memory can be accessed from ASL. Most
computers contain an RTC/CMOS device that can be represented as a linear array of bytes of non-volatile
memory. There is a standard mechanism for accessing the first 64 bytes of non-volatile RAM in devices
that are compatible with the Motorola RTC/CMOS device used in the original IBM PC/AT. Existing RTC/
CMOS devices typically contain more than 64 bytes of non-volatile RAM, and no standard mechanism
exists for access to this additional storage area. To provide access to all of the non-volatile memory in
these devices from AML, PnP IDs exist for each type of extension. These are PNP0B00, PNP0B01, and
PNP0B02. The specific devices that these PnP IDs support are described in Section 9.15, “PC/AT RTC/
CMOS Device”, along with field definition ASL example code. The drivers corresponding to these device
handle operation region accesses to the SystemCMOS operation region for their respective device types.

All bytes of CMOS that are related to the current time, day, date, month, year and century are read-only.

5.5.2.4.3 PCI Device BAR Target Protocols

This section describes how PCI devices’ control registers can be accessed from ASL. PCI devices each have
an address space associated with them called the Configuration Space. At offset 0x10 through offset
0x27, there are as many as six Base Address Registers, (BARs). These BARs contain the base address of a
series of control registers (in I/O or Memory space) for the PCI device. Since a Plug and Play OS may
change the values of these BARs at any time, ASL cannot read and write from these deterministically
using I/O or Memory operation regions. Furthermore, a Plug and Play OS will automatically assign
ownership of the I/O and Memory regions associated with these BARs to a device driver associated with
the PCI device. An ACPI OS (which must also be a Plug and Play operating system) will not allow ASL to
read and write regions that are owned by native device drivers.
UEFI Forum, Inc. January 2019 Page 275

ACPI Specification, Version 6.3 ACPI Software Programming Model
If a platform uses a PCI BAR Target operation region, an ACPI OS will not load a native device driver for
the associated PCI function. For example, if any of the BARs in a PCI function are associated with a PCI
BAR Target operation region, then the OS will assume that the PCI function is to be entirely under the
control of the ACPI system firmware. No driver will be loaded. Thus, a PCI function can be used as a
platform controller for some task (hot-plug PCI, and so on) that the ACPI system firmware performs.

5.5.2.4.3.1 Declaring a PCI BAR Target Operation Region

PCI BARs contain the base address of an I/O or Memory region that a PCI device’s control registers lie
within. Each BAR implements a protocol for determining whether those control registers are within I/O or
Memory space and how much address space the PCI device decodes. (See the PCI Specification for more
details.)

PCI BAR Target operation regions are declared by providing the offset of the BAR within the PCI device’s
PCI configuration space. The BAR determines whether the actual access to the device occurs through an
I/O or Memory cycle, not by the declaration of the operation region. The length of the region is similarly
implied.

In the term OperationRegion(PBAR, PciBarTarget, 0x10, 0x4), the offset is the offset of the BAR
within the configuration space of the device. This would be an example of an operation region that uses
the first BAR in the device.

5.5.2.4.3.2 PCI Header Types and PCI BAR Target Operation Regions

PCI BAR Target operation regions may only be declared in the scope of PCI devices that have a PCI Header
Type of 0. PCI devices with other header types are bridges. The control of PCI bridges is beyond the scope
of ASL.

5.5.2.4.4 Declaring IPMI Operation Regions

This section describes the Intelligent Platform Management Interface (IPMI) address space and the use of
this address space to communicate with the Baseboard Management Controller (BMC) hardware from
AML.

Similar to SMBus, IPMI operation regions are command based, where each offset within an IPMI address
space represent an IPMI command and response pair. Given this uniqueness, IPMI operation regions
include restrictions on their field definitions and require the use of an IPMI-specific data buffer for all
transactions. The IPMI interface presented in this section is intended for use with any hardware
implementation compatible with the IPMI specification, regardless of the system interface type.

Support of the IPMI generic address space by ACPI-compatible operating systems is optional, and is
contingent on the existence of an ACPI IPMI device, i.e. a device with the “IPI0001” plug and play ID. If
present, OSPM should load the necessary driver software based on the system interface type as specified
by the _IFT (IPMI Interface Type) control method under the device, and register handlers for accesses
into the IPMI operation region space.

For more information, refer to the IPMI specification.

Each IPMI operation region definition identifies a single IPMI network function. Operation regions are
defined only for those IPMI network functions that need to be accessed from AML. As with other regions,
IPMI operation regions are only accessible via the Field term (see Section 5.5.2.4.4.1, “Declaring IPMI
Fields”).
UEFI Forum, Inc. January 2019 Page 276

ACPI Specification, Version 6.3 ACPI Software Programming Model
This interface models each IPMI network function as having a 256-byte linear address range. Each byte
offset within this range corresponds to a single command value (for example, byte offset 0xC1 equates to
command value 0xC1), with a maximum of 256 command values. By doing this, IPMI address spaces
appear linear and can be processed in a manner similar to the other address space types.

The syntax for the OperationRegion term (from Section 19.6.98, “OperationRegion (Declare Operation
Region]”) is described below.

OperationRegion (
 RegionName, // NameString
 RegionSpace, // RegionSpaceKeyword
 Offset, // TermArg=>Integer
 Length // TermArg=>Integer
)

Where:

• RegionName specifies a name for this IPMI network function (for example, “POWR”).
• RegionSpace must be set to IPMI (operation region type value 0x07).
• Offset is a word-sized value specifying the network function and initial command value offset

for the target device. The network function address is stored in the high byte and the
command value offset is stored in the low byte. For example, the value 0x3000 would be used
for a device with the network function of 0x06, and an initial command value offset of zero (0).

• Length is set to the 0x100 (256), representing the maximum number of possible command
values, for regions with an initial command value offset of zero (0). The difference of these two
values is used for regions with non-zero offsets. For example, a region with an Offset value of
0x3010 would have a corresponding Length of 0xF0 (0x100 minus 0x10).

For example, a Baseboard Management Controller will support power metering capabilities at the
network function 0x30, and IPMI commands to query the BMC device information at the network
function 0x06.

The following ASL code shows the use of the OperationRegion term to describe these IPMI functions:

Device (IPMI)
{
 Name(_HID, "IPI0001") // IPMI device
 Name(_IFT, 0x1) // KCS system interface type
 OperationRegion(DEVC, IPMI, 0x0600, 0x100) // Device info network function
 OperationRegion(POWR, IPMI, 0x3000, 0x100) // Power network function
 :
}

Notice that these operation regions in this example are defined within the immediate context of the
‘owning’ IPMI device. This ensures the correct operation region handler will be used, based on the value
returned by the _IFT object. Each definition corresponds to a separate network function, and happens to
use an initial command value offset of zero (0).

5.5.2.4.4.1 Declaring IPMI Fields

As with other regions, IPMI operation regions are only accessible via the Field term. Each field element is
assigned a unique command value and represents a virtual command for the targeted network function.
UEFI Forum, Inc. January 2019 Page 277

ACPI Specification, Version 6.3 ACPI Software Programming Model
The syntax for the Field term (from Section 19.6.40, “Event (Declare Event Synchronization Object]”) is
described below.

Field(
 RegionName, // NameString=>OperationRegion
 AccessType, // AccessTypeKeyword - BufferAcc
 LockRule, // LockRuleKeyword
 UpdateRule // UpdateRuleKeyword – ignored
) {FieldUnitList}

Where:

• RegionName specifies the operation region name previously defined for the network function.
• AccessType must be set to BufferAcc. This indicates that access to field elements will be done

using a region-specific data buffer. For this access type, the field handler is not aware of the
data buffer’s contents which may be of any size. When a field of this type is used as the source
argument in an operation it simply evaluates to a buffer. When used as the destination,
however, the buffer is passed bi-directionally to allow data to be returned from write
operations. The modified buffer then becomes the response message of that command. This is
slightly different than the normal case in which the execution result is the same as the value
written to the destination. Note that the source is never changed, since it only represents a
virtual register for a particular IPMI command.

• LockRule indicates if access to this operation region requires acquisition of the Global Lock for
synchronization. This field should be set to Lock on system with firmware that may access the
BMC via IPMI, and NoLock otherwise.

• UpdateRule is not applicable to IPMI operation regions since each virtual register is accessed in
its entirety. This field is ignored for all IPMI field definitions.

IPMI operation regions require that all field elements be declared at command value granularity. This
means that each virtual register cannot be broken down to its individual bits within the field definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. This limitation
is imposed both to simplify the IPMI interface and to maintain consistency with the physical model
defined by the IPMI specification.

Since the system interface used for IPMI communication is determined by the _IFT object under the IPMI
device, there is no need for using of the AccessAs term within the field definition. In fact its usage will be
ignored by the operation handler.

For example, the register at command value 0xC1 for the power meter network function might represent
the command to set a BMC enforced power limit, while the register at command value 0xC2 for the same
network function might represent the current configured power limit. At the same time, the register at
command value 0xC8 might represent the latest power meter measurement.
UEFI Forum, Inc. January 2019 Page 278

ACPI Specification, Version 6.3 ACPI Software Programming Model
The following ASL code shows the use of the OperationRegion, Field, and Offset terms to represent these
virtual registers:

OperationRegion(POWR, IPMI, 0x3000, 0x100) // Power network function
Field(POWR, BufferAcc, NoLock, Preserve)
{
 Offset(0xC1), // Skip to command value 0xC1
 SPWL, 8, // Set power limit [command value 0xC1]
 GPWL, 8, // Get power limit [command value 0xC2]
 Offset(0xC8), // Skip to command value 0xC8
 GPMM, 8 // Get power meter measurement [command
value 0xC8]
}

Notice that command values are equivalent to the field element’s byte offset (for example, SPWL=0xC1,
GPWL=0xC2, GPMM=0xC8).

5.5.2.4.4.2 Declaring and Using IPMI Request and Response Buffer

Since each virtual register in the IPMI operation region represents an individual IPMI command, and the
operation relies on use of bi-directional buffer, a common buffer structure is required to represent the
request and response messages. The use of a data buffer for IPMI transactions allows AML to receive
status and data length values.

The IPMI data buffer is defined as a fixed-length 66-byte buffer that, if represented using a ‘C’-styled
declaration, would be modeled as follows:

typedef struct
{
 BYTEStatus; // Byte 0 of the data buffer
 BYTELength; // Byte 1 of the data buffer
 BYTE[64]Data; // Bytes 2 through 65 of the data buffer
}

Where:

• Status (byte 0) indicates the status code of a given IPMI command. See Section 5.5.2.4.4.3,
“IPMI Status Code,” for more information.

• Length (byte 1) specifies the number of bytes of valid data that exists in the data buffer. Valid
Length values are 0 through 64. Before the operation is carried out, this value represents the
length of the request data buffer. Afterwards, this value represents the length of the result
response data buffer.

• Data (bytes 65-2) represents a 64-byte buffer, and is the location where actual data is stored.
Before the operation is carried out, this represents the actual request message payload.
Afterwards, this represents the response message payload as returned by the IPMI command.

For example, the following ASL shows the use of the IPMI data buffer to carry out a command for a power
function. This code is based on the example ASL presented in Section 5.5.2.4.4.1, “Declaring IPMI Fields,”
which lists the operation region and field definitions for relevant IPMI power metering commands.
UEFI Forum, Inc. January 2019 Page 279

ACPI Specification, Version 6.3 ACPI Software Programming Model
/* Create the IPMI data buffer */

Name(BUFF, Buffer(66){}) // Create IPMI data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, LENG) // LENG = Length (Byte)
CreateByteField(BUFF, 0x02, MODE) // MODE = Mode (Byte)
CreateByteField(BUFF, 0x03, RESV) // RESV = Reserved (Byte)

Store(0x2, LENG) // Request message is 2 bytes long
Store(0x1, MODE) // Set Mode to 1

Store(Store(BUFF, GPMM), BUFF) // Write the request into the GPMM
command,
 // then read the results

CreateByteField(BUFF, 0x02, CMPC) // CMPC = Completion code (Byte)
CreateWordField(BUFF, 0x03, APOW) // APOW = Average power measurement
(Word)

If(LAnd(LEqual(STAT, 0x0), LEqual(CMPC, 0x0))) // Successful?
{
 Return(APOW) // Return the average power measurement
}
Else
{
 Return(Ones) // Return invalid
}

Notice the use of the CreateField primitives to access the data buffer’s sub-elements (Status, Length, and
Data), where Data (bytes 65-2) is ‘typecast’ into different fields (including the result completion code).

The example above demonstrates the use of the Store() operator and the bi-directional data buffer to
invoke the actual IPMI command represented by the virtual register. The inner Store() writes the request
message data buffer to the IPMI operation region handler, and invokes the command. The outer Store()
takes the result of that command and writes it back into the data buffer, this time representing the
response message.

5.5.2.4.4.3 IPMI Status Code

Every IPMI command results in a status code returned as the first byte of the response message,
contained in the bi-directional data buffer. This status code can indicate success, various errors, and
possibly timeout from the IPMI operation handler. This is necessary because it is possible for certain IPMI
commands to take up to 5 seconds to carry out, and since an AML Store() operation is synchronous by
nature, it is essential to make sure the IPMI operation returns in a timely fashion so as not to block the
AML interpreter in the OSPM.
UEFI Forum, Inc. January 2019 Page 280

ACPI Specification, Version 6.3 ACPI Software Programming Model
Note: This status code is different than the IPMI completion code, which is returned as the first byte of
the response message in the data buffer payload. The completion code is described in the
complete IPMI specification.

Table 5-161 IPMI Status Codes

Status Code Name Description

00h IPMI OK Indicates the command has been successfully completed.

07h IPMI Unknown
Failure

Indicates failure because of an unknown IPMI error.

10h IPMI Command
Operation Timeout

Indicates the operation timed out.

5.5.2.4.5 Declaring GeneralPurposeIO Operation Regions

For GeneralPurposeIO Operation Regions, the syntax for the OperationRegion term (from section
Section 19.6.98, “OperationRegion (Declare Operation Region]”) is described below.

OperationRegion (
 RegionName, // NameString
 RegionSpace, // RegionSpaceKeyword
 Offset, // TermArg=>Integer
 Length // TermArg=>Integer
)

Where:

• RegionName specifies a name for this GeneralPurposeIO region (for example, “GPI1”).
• RegionSpace must be set to GeneralPurposeIO (operation region type value 0x08).
• Offset is ignored for the GeneralPurposeIO RegionSpace.
• Length is the maximum number of GPIO IO pins to be included in the Operation Region,

rounded up to the next byte.

GeneralPurposeIO OpRegions must be declared within the scope of the GPIO controller device being
accessed.

5.5.2.4.5.1 Declaring GeneralPurposeIO Fields

As with other regions, GeneralPurposeIO operation regions are only accessible via the Field term. Each
field element represents a subset of the length bits declared in the OpRegion declaration. The pins
within the OpRegion that are accessed via a given field name are defined by a Connection descriptor. The
total number of defined field bits following a connection descriptor must equal the number of pins listed
in the descriptor.
UEFI Forum, Inc. January 2019 Page 281

ACPI Specification, Version 6.3 ACPI Software Programming Model
The syntax for the Field term (from Section 19.6.46) is described below.

Field(
 RegionName, // NameString=>OperationRegion
 AccessType, // AccessTypeKeyword
 LockRule, // LockRuleKeyword
 UpdateRule // UpdateRuleKeyword – ignored
) {FieldUnitList}

Where:

• RegionName specifies the operation region name previously declared.
• AccessType must be set to ByteAcc.
• LockRule indicates if access to this operation region requires acquisition of the Global Lock

for synchronization. Note that, on HW-reduced ACPI platforms, this field must be set to
NoLock.

• UpdateRule is not applicable to GeneralPurposeIO operation regions since Preserve is
always required. This field is ignored for all GeneralPurposeIO field definitions.

The following ASL code shows the use of the OperationRegion, Field, and Offset terms as they apply to
GeneralPurposeIO space.

Device(DEVA) //An Arbitrary Device Scope
 {
 ...//Other required stuff for this device
 Name (GMOD, ResourceTemplate () //An existing GPIO Connection (to be used later)
 {
 //2 Outputs that define the Power mode of the device
 GpioIo (Exclusive, PullDown, , , , "_SB.GPI2") {10, 12}
 })
 } //End DEVA

 Device (GPI2) //The OpRegion declaration, and the _REG method, must be in the
controller’s namespace scope
 {
 ...//Other required stuff for the GPIO controller
 OperationRegion(GPO2, GeneralPurposeIO, 0, 1) // Note: length of 1 means region is
 // less than 1 byte (8 pins) long
(or
 Method(_REG,2) {} // Track availability of GeneralPurposeIO space
 } //End GPI2

 Device (DEVB) //Access some GPIO Pins from this device scope
 //to change the device's power mode
 {
 ...//Other required stuff for this device
 Name(_DEP, Package() {"_SB.GPI2"}) //OpRegion Dependency hint for OSPM
 Field(_SB.GPI2.GPO2, ByteAcc, NoLock, Preserve)
 {
 Connection (GMOD), // Re-Use an existing connection (defined elsewhere)
 MODE, 2, // Power Mode
 Connection (GpioIo(Exclusive, PullUp, , , , "_SB.GPI2") {7}),
UEFI Forum, Inc. January 2019 Page 282

ACPI Specification, Version 6.3 ACPI Software Programming Model
 STAT, 1, // e.g. Status signal from the device
 Connection (GpioIo (Exclusive, PullUp, , , , "_SB.GPI2") {9}),
 RSET, 1 // e.g. Reset signal to the device
 }
 Method(_PS3)
 {
 If (1) // Make sure GeneralPurposeIO OpRegion is available
 {
 Store(0x03, MODE) //Set both MODE bits. Power Mode 3
 }
 }
 } //End DEVB

5.5.2.4.6 Declaring GenericSerialBus Operation Regions

For GenericSerialBus Operation Regions, the syntax for the OperationRegion term (from Section 19.6.98,
“OperationRegion (Declare Operation Region]”) is described below.

OperationRegion (
 RegionName, // NameString
 RegionSpace, // RegionSpaceKeyword
 Offset, // TermArg=>Integer
 Length // TermArg=>Integer
)

Where:

• RegionName specifies a name for this region (for example, TOP1).
• RegionSpace must be set to GenericSerialBus (operation region type value 0x09).
• Offset specifies the initial command value offset for the target device. For example, the value

0x00 refers to a command value offset of zero (0). Raw protocols ignore this value.
• Length is set to the 0x100 (256), representing the maximum number of possible command

values.

Note: The Operation Region must be declared within the scope of the Serial Bus controller device.

The following ASL code shows the use of the OperationRegion, Field, and Offset terms as they apply to
SPB space.

 <…>
Scope(_SB.I2C){
 OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device
at command
 // offset 0x00

Name (SDB0, ResourceTemplate() {
 I2CSerialBusV2(0x4a,,100000,,”_SB.I2C”,,,,,RawDataBuffer(){1,2,3,4,5,6})
})

Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(SDB0) // Use the Resource Descriptor defined above
UEFI Forum, Inc. January 2019 Page 283

ACPI Specification, Version 6.3 ACPI Software Programming Model
 AccessAs(BufferAcc, AttribWord) // Use the GenericSerialBus Read/Write
Word protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8 // Virtual register at command value 1.
}

Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBusV2(0x5a,,100000,,”_SB.I2C”,,,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribBytes (16))
 FLD2, 8 // Virtual register at command value 0.
}

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(34){}) // Create GenericSerialBus data buffer
as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)
}
<…>

The Operation Region in this example is defined within the scope of the target controller device, I2C.

GenericSerialBus regions are only accessible via the Field term (see Section 19.6.46 “Field (Declare Field
Objects)) GenericSerialBus protocols are assigned to field elements using the AccessAs term (see
Section 19.3.4 “ASL Macros”) within the field definition.

Table 5-162

Accessor Type Value Description

AttribQuick 0x02 Read/Write Quick Protocol

AttribSendReceive 0x04 Send/Receive Byte Protocol

AttribByte 0x06 Read/Write Byte Protocol

AttribWord 0x08 Read/Write Word Protocol

AttribBlock 0x0A Read/Write Block Protocol

AttribBytes 0x0B Read/Write N-Bytes Protocol

AttribProcessCall 0x0C Process Call Protocol

AttribBlockProcessCall 0x0D Write Block-Read Block
Process Call Protocol

AttribRawBytes 0x0E Raw Read/Write N-Bytes
Protocol

AttribRawProcessBytes 0x0F Raw Process Call Protocol

Accsessor Type Values
UEFI Forum, Inc. January 2019 Page 284

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.5.2.4.6.1 Declaring GenericSerialBus Fields

As with other regions, GenericSerialBus operation regions are only accessible via the Field term. Each
field element is assigned a unique command value and represents a virtual register on the targeted
GenericSerialBus device.

The syntax for the Field term (see Section 19.6.46 “Field (Declare Field Objects)) is described below.

Field(
 RegionName, // NameString=>OperationRegion
 AccessType, // AccessTypeKeyword
 LockRule, // LockRuleKeyword – ignored for Hardware-reduced ACPI platforms
 UpdateRule // UpdateRuleKeyword – ignored
) {FieldUnitList}

Where:

• RegionName specifies the operation region name previously defined for the device.
• AccessType must be set to BufferAcc. This indicates that access to field elements will be done

using a region-specific data buffer. For this access type, the field handler is not aware of the
data buffer’s contents which may be of any size. When a field of this type is used as the source
argument in an operation it simply evaluates to a buffer. When used as the destination,
however, the buffer is passed bi-directionally to allow data to be returned from write
operations. The modified buffer then becomes the execution result of that operation. This is
slightly different than the normal case in which the execution result is the same as the value
written to the destination. Note that the source is never changed, since it could be a read only
object (see Section 5.5.2.4.6.2, “Declaring an GenericSerialBus Data Buffer” and Section 19.2.5,
“Opcode Terms”).

• LockRule indicates if access to this operation region requires acquisition of the Global Lock for
synchronization. This field should be set to Lock on system with firmware that may access the
GenericSerialBus, and NoLock otherwise. On Hardware-reduced ACPI platforms, there is not a
global lock so this parameter is ignored.

• UpdateRule is not applicable to GenericSerialBus operation regions since each virtual register is
accessed in its entirety. This field is ignored for all GenericSerialBus field definitions.

GenericSerialBus operation regions require that all field elements be declared at command value
granularity. This means that each virtual register cannot be broken down to its individual bits within the
field definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. This limitation
is imposed to simplify the GenericSerialBus interface.

GenericSerialBus protocols are assigned to field elements using the AccessAs term within the field
definition. The syntax for this term (from Section 19.2.3, “ASL Root and SecondaryTerms”) is described
below.

AccessAs(
 AccessType, //AccessTypeKeyword
 AccessAttribute //Nothing | ByteConst | AccessAttribKeyword
)

Where:
UEFI Forum, Inc. January 2019 Page 285

ACPI Specification, Version 6.3 ACPI Software Programming Model
• AccessType must be set to BufferAcc.
• AccessAttribute indicates the GenericSerialBus protocol to assign to command values that

follow this term. SeeSection 5.5.2.4.6.3, “Using the GenericSerialBus Protocols,” for a listing of
the GenericSerialBus protocols.

An AccessAs term must appear in a field definition to set the initial GenericSerialBus protocol for the field
elements that follow. A maximum of one GenericSerialBus protocol may be defined for each field
element. Devices supporting multiple protocols for a single command value can be modeled by specifying
multiple field elements with the same offset (command value), where each field element is preceded by
an AccessAs term specifying an alternate protocol.

For GenericSerialBus operation regions, connection attributes must be defined for each set of field
elements. GenericSerialBus resources are assigned to field elements using the Connection term within
the field definition. The syntax for this term (from Section 19.6.15 “Connection (Declare Field Connection
Attributes)”) is described below.

Connection (ConnectionResourceObj)

Where:

• ConnectionResourceObj points to a Serial Bus Resource Connection Descriptor (see
Section 6.4.3.8.2, “Serial Bus Connection Resource Descriptors” for valid types), or a named
object that specifies a buffer field containing the connection resource information.

Each Field definition references the initial command offset specified in the operation region definition.
The offset is iterated for each subsequent field element defined in that respective Field. If a new
connection is described in the same Field definition, the offset will not be returned to its initial value and
a new Field must be defined to inherit the initial command value offset from the operation region
definition. The following example illustrates this point.

<…>
OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) //Initial offset is 0

Field(TOP1, BufferAcc, NoLock, Preserve)
 {
 Connection(I2CSerialBusV2(0x5a,,100000,, "_SB.I2C",,,,,RawDataBuffer(){1,6}))
 Offset(0x0),
 AccessAs(BufferAcc, AttribBytes (4)),
 TFK1, 8, //TFK1 at command value offset 0
 TFK2, 8 //TFK2 at command value offset 1

 Connection(I2CSerialBusV2(0x5c,,100000,, "_SB.I2C",,,,,RawDataBuffer(){3,1}))
 Offset(0x0),
 AccessAs(BufferAcc, AttribBytes (12)),
 TS1, 8 //TS1 at command value offset 2
 }
UEFI Forum, Inc. January 2019 Page 286

ACPI Specification, Version 6.3 ACPI Software Programming Model
Field(TOP1, BufferAcc, NoLock, Preserve)
 {
 Connection(I2CSerialBusV2(0x5b,,100000,, "_SB.I2C",,,,,RawDataBuffer(){2,9}))
 AccessAs(BufferAcc, AttribByte),
 TM1, 8 //TM1 at command value offset 0
 }

<…>

5.5.2.4.6.2 Declaring and Using a GenericSerialBus Data Buffer

The use of a data buffer for GenericSerialBus transactions allows AML to receive status and data length
values, as well as making it possible to implement the Process Call protocol. The BufferAcc access type is
used to indicate to the field handler that a region-specific data buffer will be used.

For GenericSerialBus operation regions, this data buffer is defined as an arbitrary length buffer that, if
represented using a ‘C’-styled declaration, would be modeled as follows:

typedef struct
{
 BYTEStatus; // Byte 0 of the data buffer
 BYTELength; // Byte 1 of the data buffer
 BYTE[x-1]Data; // Bytes 2-x of the arbitrary length data buffer,
 } // where x is the last index of the overall buffer

Where:

• Status (byte 0) indicates the status code of a given GenericSerialBus transaction.
• Length (byte 1) specifies the number of bytes of valid data that exists in the data buffer. Use of

this field is only defined for the Read/Write Block protocol. For other protocols—where the
data length is implied by the protocol—this field is reserved.

• Data (bytes 2-x) represents an arbitrary length buffer, and is the location where actual data is
stored.

For example, the following ASL shows the use of the GenericSerialBus data buffer for performing
transactions to a Smart Battery device.

/* Create the GenericSerialBus data buffer */
Name(BUFF, Buffer(34){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateWordField(BUFF, 0x02, DATW) // DATW = Data (Word – Bytes 2 & 3)
CreateField(BUFF, 0x10, 256, DBUF) // DBUF = Data (Block – Bytes 2-33)

/* Read the battery temperature */
Store(BTMP, BUFF) // Invoke Read Word transaction
If(LEqual(STAT, 0x00)) // Successful?
{

 // DATW = Battery temperature in 1/10th degrees
 // Kelvin
UEFI Forum, Inc. January 2019 Page 287

ACPI Specification, Version 6.3 ACPI Software Programming Model
}

/* Read the battery manufacturer name */
Store(MFGN, BUFF) // Invoke Read Blocktransaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // LEN = Length of the manufacturer name
 // DBUF = Manufacturer name (as a counted string)
}

Notice the use of the CreateField primitives to access the data buffer’s sub-elements (Status, Length, and
Data), where Data (bytes 2-33) is ‘typecast’ as both word (DATW) and block (DBUF) data.

The example above demonstrates the use of the Store() operator to invoke a Read Block transaction to
obtain the name of the battery manufacturer. Evaluation of the source operand (MFGN) results in a 34-
byte buffer that gets copied by Store() to the destination buffer (BUFF).

Capturing the results of a write operation, for example to check the status code, requires an additional
Store() operator, as shown below.

Store(Store(BUFF, MFGN), BUFF) // Invoke Write Block transaction
If(LEqual(STAT, 0x00)) {…} // Transaction successful?

Note that the outer Store() copies the results of the Write Block transaction back into BUFF. This is the
nature of BufferAcc’s bi-directionality. It should be noted that storing (or parsing) the result of a
GenericSerialBus Write transaction is not required although useful for ascertaining the outcome of a
transaction.

GenericSerialBus Process Call protocols require similar semantics due to the fact that only destination
operands are passed bi-directionally. These transactions require the use of the double-Store() semantics
to properly capture the return results.

5.5.2.4.6.3 Using the GenericSerialBus Protocols

This section provides information and examples on how each of the GenericSerialBus protocols can be
used to access GenericSerialBus devices from AML.

5.5.2.4.6.3.1 Read/Write Quick (AttribQuick)

The GenericSerialBus Read/Write Quick protocol (AttribQuick) is typically used to control simple devices
using a device-specific binary command (for example, ON and OFF). Command values are not used by this
protocol and thus only a single element (at offset 0) can be specified in the field definition. This protocol
transfers no data.

The following ASL code illustrates how a device supporting the Read/Write Quick protocol should be
accessed:
UEFI Forum, Inc. January 2019 Page 288

ACPI Specification, Version 6.3 ACPI Software Programming Model
OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at
command value offset 0
Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBusV2(0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribQuick) // Use the GenericSerialBus Read/Write Quick
protocol
 FLD0, 8 // Virtual register at command value 0.
}

/* Create the GenericSerialBus data buffer */

Name(BUFF, Buffer(2){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)

/* Signal device (e.g. OFF) */
Store(FLD0, BUFF) // Invoke Read Quick transaction
If(LEqual(STAT, 0x00)) {…} // Successful?

/* Signal device (e.g. ON) */
Store(BUFF, FLD0) // Invoke Write Quick transaction

In this example, a single field element (FLD0) at offset 0 is defined to represent the protocol’s read/write
bit. Access to FLD0 will cause a GenericSerialBus transaction to occur to the device. Reading the field
results in a Read Quick, and writing to the field results in a Write Quick. In either case data is not
transferred—access to the register is simply used as a mechanism to invoke the transaction.

5.5.2.4.6.3.2 Send/Receive Byte (AttribSendReceive)

The GenericSerialBus Send/Receive Byte protocol (AttribSendReceive) transfers a single byte of data. Like
Read/Write Quick, command values are not used by this protocol and thus only a single element (at
offset 0) can be specified in the field definition.

The following ASL code illustrates how a device supporting the Send/Receive Byte protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at
command value offset 0
Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBusV2(0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribSendReceive) // Use the GenericSerialBus Send/Receive
 // Byte protocol
 FLD0, 8 // Virtual register at command value 0.
}

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(3){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x02, DATA) // DATA = Data (Byte)
 // Receive a byte of data from the device
UEFI Forum, Inc. January 2019 Page 289

ACPI Specification, Version 6.3 ACPI Software Programming Model
Store(FLD0, BUFF) // Invoke a Receive Byte transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Received byte…
}

// Send the byte ‘0x16’ to the device
Store(0x16, DATA) // Save 0x16 into the data buffer
Store(BUFF, FLD0) // Invoke a Send Byte transaction

In this example, a single field element (FLD0) at offset 0 is defined to represent the protocol’s data byte.
Access to FLD0 will cause a GenericSerialBus transaction to occur to the device. Reading the field results
in a Receive Byte, and writing to the field results in a Send Byte.

5.5.2.4.6.3.3 Read/Write Byte (AttribByte)

The GenericSerialBus Read/Write Byte protocol (AttribByte) also transfers a single byte of data. But
unlike Send/Receive Byte, this protocol uses a command value to reference up to 256 byte-sized virtual
registers.

The following ASL code illustrates how a device supporting the Read/Write Byte protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at
command value offset
Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBusV2(0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribByte) // Use the GenericSerialBus Read/Write Byte
protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(3){})
// Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x02, DATA) // DATA = Data (Byte)

// Read a byte of data from the device using command value 1
Store(FLD1, BUFF) // Invoke a Read Byte transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Byte read from FLD1…
}

// Write the byte ‘0x16’ to the device using command value 2
Store(0x16, DATA) // Save 0x16 into the data buffer
Store(BUFF, FLD2) // Invoke a Write Byte transaction
UEFI Forum, Inc. January 2019 Page 290

ACPI Specification, Version 6.3 ACPI Software Programming Model
In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause a GenericSerialBus
transaction to occur to the device. Reading FLD1 results in a Read Byte with a command value of 1, and
writing to FLD2 results in a Write Byte with command value 2.

5.5.2.4.6.3.4 Read/Write Word (AttribWord)

The GenericSerialBus Read/Write Word protocol (AttribWord) transfers 2 bytes of data. This protocol
also uses a command value to reference up to 256 word-sized virtual device registers.

The following ASL code illustrates how a device supporting the Read/Write Word protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at
command value offset 0
Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBusV2(0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribWord)// Use the GenericSerialBus Read/Write Word
protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(6){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

// Read two bytes of data from the device using command value 1
Store(FLD1, BUFF) // Invoke a Read Word transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Word read from FLD1…
}
// Write the word ‘0x5416’ to the device using command value 2
Store(0x5416, DATA) // Save 0x5416 into the data buffer
Store(BUFF, FLD2) // Invoke a Write Word transaction

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause a GenericSerialBus
transaction to occur to the device. Reading FLD1 results in a Read Word with a command value of 1, and
writing to FLD2 results in a Write Word with command value 2.

Notice that although accessing each field element transmits a word (16 bits) of data, the fields are listed
as 8 bits each. The actual data size is determined by the protocol. Every field element is declared with a
length of 8 bits so that command values and byte offsets are equivalent.

5.5.2.4.6.3.5 Read/Write Block (AttribBlock)

The GenericSerialBus Read/Write Block protocol (AttribBlock) transfers variable-sized data. This protocol
uses a command value to reference up to 256 block-sized virtual registers.
UEFI Forum, Inc. January 2019 Page 291

ACPI Specification, Version 6.3 ACPI Software Programming Model
The following ASL code illustrates how a device supporting the Read/Write Block protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100)
Field(TOP1, BufferAcc, NoLock, Preserve)
 {
 Connection(I2CSerialBusV2(0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer(){1,6}))
 Offset(0x0),
 AccessAs(BufferAcc, AttribBlock),
 TFK1, 8,
 TFK2, 8
}

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(34){}) // Create SerialBus buf as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateBytefield(BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateWordField(BUFF, 0x03, DATW) // DATW = Data (Word - Bytes 2 & 3, or 16 bits)
CreateField(BUFF, 16, 256, DBUF) // DBUF = Data (Bytes 2-33)
CreateField(BUFF, 16, 32, DATD) // DATD = Data (DWord)

// Read block of data from the device using command value 0
Store(TFK1, BUFF)
If(LNotEqual(STAT, 0x00)) {
 Return(0)
}
// Read block of data from the device using command value 1
Store(TFK2, BUFF)
If(LNotEqual(STAT, 0x00)) {
 Return(0)
}

<…>

In this example, two field elements (TFK1, and TFK2) are defined to represent the virtual registers for
command values 0 and 1. Access to any of the field elements will cause a GenericSerialBus transaction to
occur to the device.

Writing blocks of data requires similar semantics, such as in the following example.

Store(16, LEN) // In bits, so 4 bytes
Store(Store(BUFF, TFK1), BUFF) // Invoke Write Block transaction
If(LEqual(STAT, 0x00)) {…} // Transaction successful?

This accessor is not viable for some SPBs because the bus may not support the appropriate functionality.
In cases that variable length buffers are desired but the bus does not support block accessors, refer to the
SerialBytes protocol.
UEFI Forum, Inc. January 2019 Page 292

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.5.2.4.6.3.6 Word	Process	Call	(AttribProcessCall)

The GenericSerialBus Process Call protocol (AttribProcessCall) transfers 2 bytes of data bi-directionally
(performs a Write Word followed by a Read Word as an atomic transaction). This protocol uses a
command value to reference up to 256 word-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at
slave address 0x42
Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBusV2(0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribProcessCall) // Use the GenericSerialBus Process
Call protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(6){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

// Process Call with input value ‘0x5416’ to the device using command value 1
Store(0x5416, DATA) // Save 0x5416 into the data buffer
Store(Store(BUFF, FLD1), BUFF) // Invoke a Process Call transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Word returned from FLD1…
}

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause a GenericSerialBus
transaction to occur to the device. Reading or writing FLD1 results in a Process Call with a command value
of 1. Notice that unlike other protocols, Process Call involves both a write and read operation in a single
atomic transaction. This means that the Data element of the GenericSerialBus data buffer is set with an
input value before the transaction is invoked, and holds the output value following the successful
completion of the transaction.

5.5.2.4.6.3.7 Block Process Call (AttribBlockProcessCall)

The GenericSerialBus Block Write-Read Block Process Call protocol (AttribBlockProcessCall) transfers a
block of data bi-directionally (performs a Write Block followed by a Read Block as an atomic transaction).
This protocol uses a command value to reference up to 256 block-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at
 // slave address 0x42
Field(TOP1, BufferAcc, NoLock, Preserve)
UEFI Forum, Inc. January 2019 Page 293

ACPI Specification, Version 6.3 ACPI Software Programming Model
{
 Connection(I2CSerialBusV2(0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribBlockProcessCall) // Use the Block Process Call
 // protocol
 FLD0, 8, // Virtual register representing
 // a command value of 0
 FLD1, 8 // Virtual register representing
 // a command value of 1
}

// Create the GenericSerialBus data buffer as BUFF
Name(BUFF, Buffer(35)()) // Create GenericSerialBus data buffer as
BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateField(BUFF, 0x10, 256, DATA) // Data (Block)

// Process Call with input value "ACPI" to the device using command value 1

Store("ACPI", DATA) // Fill in outgoing data
Store(8, LEN) // Length of the valid data
Store(Store(BUFF, FLD1), BUFF) // Execute the PC
if (LEqual(STAT, 0x00)) // Test the status
{

// BUFF now contains information returned from PC
// LEN now equals size of data returned

}

5.5.2.4.6.3.8 Read/Write N Bytes (AttribBytes)

The GenericSerialBus Read/Write N Bytes protocol (AttribBytes) transfers variable-sized data. The actual
number of bytes to read or write is specified as part of the AccessAs attribute.

The following ASL code illustrates how a device supporting the Read/Write N Bytes protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100)
Field(TOP1, BufferAcc, NoLock, Preserve)
 {
 Connection(I2CSerialBusV2(0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer(){1,6}))
 Offset(0x0),
 AccessAs(BufferAcc, AttribBytes (4)),
 TFK1, 8, //TFK1 at command value 0
 TFK2, 8, //TFK2 at command value 1

 Connection(I2CSerialBus(0x5b,,100000,,"_SB.I2C",,,,RawDataBuffer(){2,9}))
 // same connection attribute, but different vendor data passed to driver
 AccessAs(BufferAcc, AttribByte)
 TM1, 8 //TM1 at command value 2
 }

// Create the GenericSerialBus data buffer
UEFI Forum, Inc. January 2019 Page 294

ACPI Specification, Version 6.3 ACPI Software Programming Model
Name(BUFF, Buffer(34){}) // Create SerialBus buf as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateBytefield(BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateWordField(BUFF, 0x02, DATW) // DATW = Data (Word - Bytes 2 & 3, or 16 bits)
CreateField(BUFF, 16, 256, DBUF) // DBUF = Data (Bytes 2-34)
CreateField(BUFF, 16, 32, DATD) // DATD = Data (DWord)

// Read block of data from the device using command value 0
Store(TFK1, BUFF)
If(LNotEqual(STAT, 0x00)) {
 Return(0)
}

// Write block of data to the device using command value 1
Store(Store(BUFF,TFK2), BUFF)
If(LNotEqual(STAT, 0x00)) {
 Return(0)
}

In this example, two field elements (TFK1, and TFK2) are defined to represent the virtual registers for
command values 0 and 1. Access to any of the field elements will cause a GenericSerialBus transaction to
occur to the device of the length specified in the AccessAttributes.

5.5.2.4.6.3.9 Raw Read/Write N Bytes (AttribRawBytes)

The GenericSerialBus Raw Read/Write N Bytes protocol (AttribRawBytes) transfers variable-sized data.
The actual number of bytes to read or write is specified as part of the AccessAs attribute. The initial
command value specified in the operation region definition is ignored by Raw accesses.

The following ASL code illustrates how a device supporting the Read/Write N Bytes protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100)
Field(TOP1, BufferAcc, NoLock, Preserve)
 {
 Connection(I2CSerialBusV2(0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribRawBytes (4))
 TFK1, 8
 }

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(34){}) // Create SerialBus buf as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateWordField(BUFF, 0x02, DATW) // DATW = Data (Word - Bytes 2 & 3, or 16 bits)
CreateField(BUFF, 16, 256, DBUF) // DBUF = Data (Bytes 2-34)
CreateField(BUFF, 16, 32, DATD) // DATD = Data (DWord)

Store(0x0B,DATW) //Store appropriate reference data for driver to
interpret

//Read from TFK1
UEFI Forum, Inc. January 2019 Page 295

ACPI Specification, Version 6.3 ACPI Software Programming Model
Store(TFK1, BUFF)
If(LNotEqual(STAT, 0x00)) {
 Return(0)
}

//Write to TFK1
Store(Store(BUFF,TFK1), BUFF)
If(LNotEqual(STAT, 0x00)) {
 Return(0)
}

Access to any field elements will cause a GenericSerialBus transaction to occur to the device of the length
specified in the AccessAttributes.

Raw accesses assume that the writer has knowledge of the bus that the access is made over and the
device that is being accessed. The protocol may only ensure that the buffer is transmitted to the
appropriate driver, but the driver must be able to interpret the buffer to communicate to a register.

5.5.2.4.6.3.10 Raw Block Process Call (AttribRawProcessBytes)

The GenericSerialBus Raw Write-Read Block Process Call protocol (AttribRawProcessBytes) transfers a
block of data bi-directionally (performs a Write Block followed by a Read Block as an atomic transaction).
The initial command value specified in the operation region definition is ignored by Raw accesses.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at
slave address 0x42
Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBusV2(0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribRawProcessBytes) // Use the Raw Bytes Process Call
protocol
 FLD0, 8
}

// Create the GenericSerialBus data buffer as BUFF
Name(BUFF, Buffer(34)()) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateWordField(BUFF,0x02, DATW) // Data (Bytes 2 and 3)
CreateField(BUFF, 0x10, 256, DATA) // Data (Block)

Store(0x0B,DATW) //Store appropriate reference data for driver to
interpret

// Process Call with input value "ACPI" to the device

Store("ACPI", DATA) // Fill in outgoing data
Store(8, LEN) // Length of the valid data
Store(Store(BUFF, FLD0), BUFF) // Execute the PC
if (LEqual(STAT, 0x00)) // Test the status
UEFI Forum, Inc. January 2019 Page 296

ACPI Specification, Version 6.3 ACPI Software Programming Model
{
 // BUFF now contains information returned from PC
 // LEN now equals size of data returned
}

Raw accesses assume that the writer has knowledge of the bus that the access is made over and the
device that is being accessed. The protocol may only ensure that the buffer is transmitted to the
appropriate driver, but the driver must be able to interpret the buffer to communicate to a register.

5.5.2.4.7 Declaring PCC Operation Regions

The Platform Communication Channel (PCC) is described in Chapter 14. The PCC table, described in
Section 14.1, contains information about PCC subspaces implemented in a given platform, where each
subspace is a unique channel.

5.5.2.4.7.1 Overview

The PCC Operation Region works in conjunction with the PCC Table (Section 14.1). The PCC Operation
Region is associated with the region of the shared memory that follows the PCC signature. PCC Operation
Region must not be used for extended subspaces of Type 4 (Slave subspaces). PCC subspaces that are
earmarked for use as PCC Operation Regions must not be used as PCC subspaces for standard ACPI
features such as CPPC, RASF, PDTT and MPST. These standard features must always use the PCC Table
instead.

5.5.2.4.7.2 Declaring a PCC OperationRegion

The syntax for the OperationRegion term (Section 19.6.98) is described below:

OperationRegion (
 RegionName, // NameString
 RegionSpace, // RegionSpaceKeyword
 Offset, // TermArg=>Integer
 Length // TermArg=>Integer
)

The PCC Operation Region term in ACPI namespace will be defined thus:

OperationRegion ([subspace-name], PCC, [subspace-id], Length)

Where:

• RegionName is set to [subspace-name], which is a unique name for this PCC subspace.
• RegionSpace must be set to PCC, operation region type 0x0A
• Offset must be set to [subspace-id], the subspace ID of this channel, as defined in the PCC

table (PCCT).
• Length is the total size of the operation region, and is equal to the total size of the fields that

succeed the PCC signature in the shared memory.

5.5.2.4.7.3 Declaring message fields within a PCC OperationRegion

For all PCC subspace types, the PCC Operation Region pertains to the region of PCC subspace that
succeeds the PCC signature. The layout of the Shared Memory Regions is specific to the PCC subspace.
UEFI Forum, Inc. January 2019 Page 297

ACPI Specification, Version 6.3 ACPI Software Programming Model
The Operation Region handler must therefore obtain the subspace type first before it can comprehend
and access individual fields within the subspace.

Fields within an Operation region are accessed using the Field keyword, and correspond to the fields
that succeed the PCC signature in the subspace shared memory. The syntax for the Field term (from
Section 19.6.46) is as follows:

Field (
 RegionName,
 AccessType,
 LockRule,
 UpdateRule
) {FieldUnitList}

For PCC Operation Regions:

• RegionName specifies the name of the operation region, declared above the field term.
• AccessType must be set to ByteAcc.
• LockRule indicates if access to this operation region requires acquisition of the Global lock for

synchronization. This field must be set to NoLock.
• UpdateRule is not applicable to PCC operation regions, since each command region is accessed

in its entirety.

The FieldUnitList specifies individual fields within the Shared Memory Region of the subspace, which
depends on the type of subspace. The declaration of the fields must match the layout of the subspace.
Accordingly, for the Generic Communications subspaces (Types 0-2), the FieldUnitList may be
declared as follows:

Field(NAME, ByteAcc, NoLock, Preserve)
{
 CMD, 16, // Command field
 STAT, 16, // Status field, to be read on completion of the command
 DATA, [Size] // Communication space of size [Size] bits
}

Likewise, for the Extended Communication subspaces (Type 3), the FieldUnitList may be declared as
follows:

Field(NAME, ByteAcc, NoLock, Preserve)
{
 FLGS, 32, // Command Flags field
 LEN, 32, // Length field
 CMD, 32, // Command field
 DATA, [Size] // Communication space of size [Size] bits
}

5.5.2.4.7.4 An Example of PCC Operation Region Declaration

As an example, if a platform feature uses PCC subspace with subspace ID of 0x02 of subspace Type 3
(Extended PCC communication channel), then the caller may declare the operation region as follows:
UEFI Forum, Inc. January 2019 Page 298

ACPI Specification, Version 6.3 ACPI Software Programming Model
OperationRegion(PFRM, PCC, 0x02, 0x10C)
Field(PFRM, ByteAcc, NoLock, Preserve)
{
 Offset (4), // Flags start at offset 4 from beginning of shared memory
 FLGS, 32, // Command Flags field
 LGTH, 32, // Length field
 COMD, 32, // Command field
 COSP, 0x800 // Communication space of size 256 bytes
}

In this example, PFRM is the name of the subspace dedicated to the platform feature, and the size of the
shared memory region is 0x10C bytes (256 bytes of communication space and 16 bytes of fields excluding
the PCC Signature).

5.5.2.4.7.5 Using a PCC OperationRegion

The PCC Operation Region handler begins transmission of the message on the channel when it detects a
write to the CMD field. The caller must therefore update all other fields relevant to the operation region
first, and then in the final step, write the command itself. As explained in Section 5.5.2.4.7.3, the fields to
be updated are specific to the subspace type.

For the Generic Communication subspace type (Types 0, 1 and 2), the order of Operation Region writes
would be as follows:

1. Write the command payload into the DATA field.

2. Write the command into the CMD field.

For the Extended Communication subspace type (Type 3), the order of Operation Region writes would be
as follows:

1. Write the command payload, length and flags into the CMD , LEN and FLGS fields, respectively,
in any order of preference.

2. Write the command into the CMD field.

In the above steps, the fields are as described inSection 5.5.2.4.7.4. When the platform completes
processing the command, it uses the same subspace Shared Memory Region to return the response data.
The caller can thus read the Operation Region to retrieve the response data.

If channel errors are encountered during transmission of the command or its response, the channel
reports an error status in the Channel Status register. The caller must therefore first check the Channel
Status register before processing the return data. For the Generic PCC Communication Subspaces, the
Channel Status register is located in the Shared Memory Region itself, as described in Section 14.2.2. The
caller must thus check the STAT field in the Operation Region for the purpose. For the Extended PCC
Communication Subspaces, the Channel Status register is located anywhere in system memory or IO, and
pointed to by the Error Status register field within the Type 3 PCC Subspace structure, as described in
Section 14.1.6.

5.5.2.4.7.6 Using the _REG Method for PCC Operation Regions

It is possible for the OS to include PCC operation region handlers that only comprehend and support a
subset of the possible subspaces defined in this specification. The OS can provide supplementary
information in the _REG method in order to indicate which exact subspaces(s) are supported. To
UEFI Forum, Inc. January 2019 Page 299

ACPI Specification, Version 6.3 ACPI Software Programming Model
accomplish this, the Arg0 parameter passed to the _REG method must include both the Address Space ID
(PCC) and a qualifying Address Space sub-type in Byte 1, as follows:

Arg0, Byte 0 = PCC = 0x0A
Arg0, Byte 1 = subspace type as defined in Section 14.1.2.

The OS may now indicate support for handling PCC operation region subspace Type 3 by invoking the
_REG method with Arg0=0x030A and Arg1 = 0x01.

5.5.2.4.7.7 Example Use of a PCC OperationRegion

The following sample ACPI Power Meter (Section 10.4) implementation describes how a PCC Operation
Region can be used to read a platform power sensor that is exposed through a platform services channel.
In this sample system, the platform services channel is implemented as an Extended PCC Communication
Channel (Type 3), and assigned a PCC subspace ID of 0x07 in the PCCT. The sample platform implements
three sensors – two power sensors, associated with CPU cluster 0 and cluster 1 respectively, and a SoC-
level thermal sensor. The power sensors are read using command 0x15 (READ_POWER_SENSOR), while
the thermal sensor is read using command 0x16 (READ_THERMAL_SENSOR), both on the platform
services channel. The READ_POWER_SENSOR command take two input parameters called
SensorInstance and MeasurementFormat, which are appended together to the command as the
payload. SensorInstance specifies which power sensor is being referenced. MeasurementFormat
specifies the measurement unit (watts or milliwatts) in which the power consumption is expressed. The
command payload is thus formatted as follows:

typedef struct
{
 BYTE SensorInstance; // Which instance of the sensor is being read
 BYTE MeasurementFormat; // 0 = mW, 1 = W
} COMMAND_PAYLOAD;

The power sensor for CPU cluster 0 is read by setting SensorInstance to 0x01, while the power sensor for
CPU cluster 1 is read by setting SensorInstance to 0x02.

The response to the command from the platform is of the form:

typedef struct
{
 DWORD Reading; // The sensor value read
 DWORD Status; // Status of the operation – 0: success, non-zero:
error
} SENSOR_RESPONSE;

Here, the field Status pertains to the success or failure of the requested service. Channel errors can
occur independent of the service, during transmission of the request. A generic placeholder register,
CHANNEL_STATUS_REG , and an associated error status field, ERROR_STATUS_BIT, is used as an illustration
of how the channel status register may be read to detect channel errors during transit.
UEFI Forum, Inc. January 2019 Page 300

ACPI Specification, Version 6.3 ACPI Software Programming Model
The ACPI Power Meter object may now be implemented for this example platform as follows:

Device (PMT0) // ACPI Power Meter object for CPU Cluster 0 Power
Sensor

{
 Name (_HID, "ACPI000D") // ACPI Power Meter device

 // The Operation Region declaration based on section 5.5.2.4.7.4
 OperationRegion (PFRM, PCC, 0x07, 0x8C)
 Field(PFRM, ByteAcc, NoLock, Preserve)
 {
 FLGS, 32, // Command Flags field
 LEN, 32, // Length field
 CMD, 32, // Command field
 DATA, 0x400 // Communication space of size 128 bytes
 }

 Method (_REG, 2) // Check if OS Op region handler is available
 {
 // Check if Arg0.Byte0 = 0xA, PCC Operation Region Supported?
 // Check if Arg0.Byte1 = 0x3, subchannel type 3 as defined in Table 14-357

 // Disallow further processing until support for Type 3 becomes available
 }

 Method (_PMM, 0, Serialized)
 {
 // Read a Power sensor

 // Create the command buffer
 Name(BUFF, Buffer(0x80){}) // Create PCC data buffer as BUFF
 Name(PAYL, Buffer(2) {0x02, 0x01}) // Instance = CPU cluster 1

 // Read power in units of Watts

 Store (PAYL, DATA) // Only first two bytes written
 // the rest default to 0

 // Update the length and status fields
 Store (0x06, LEN) // 4B (command) + 2B (payload)
 Store (0x01, FLGS) // Set Notify on Completion

 // All done. Now write to the command field to begin transmission of
 // the message over the PCC subspace. On receipt, the platform will
 // read power sensor of CPU cluster 0 and return the power consumption
 // reading in the Operation Region itself
 //
 Store (0x15, CMD) // READ_POWER_SENSOR command = 0x15

 If(LEqual(LAnd (CHANNEL_STATUS_REG, ERROR_STATUS_BIT), 0x01)
 {
 Return (Ones). // Return invalid, so that the caller
UEFI Forum, Inc. January 2019 Page 301

ACPI Specification, Version 6.3 ACPI Software Programming Model
can take remedial steps
 }

 Store (DATA, BUFF)
 CreateDWordField(BUFF, 0x00, PCL1) // Power consumed by CPU cluster 1
 CreateDWordField(BUFF, 0x01, STAT) // Return status
 If(LEqual(STAT, 0x0)) // Successful?
 {
 Return(PCL1) // Return the power measurement for CPU

cluster 1
 }
 Else
 {
 Return(Ones) // Return invalid
 }
 }
}

5.6 ACPI Event Programming Model

The ACPI event programming model is based on the SCI interrupt and General-Purpose Event (GPE)
register. ACPI provides an extensible method to raise and handle the SCI interrupt, as described in this
section.

Hardware-reduced ACPI platforms (Section 4.1) use GPIO Interrupt Connections to signal ACPI Events,
described in Section 5.6.5, or Interrupt-signaled ACPI Events, described in Section 5.6.9. Note that any
ACPI platform may utilize GPIO-signaled and/or Interrupts-signaled ACPI events (i.e. they are not limited
to Hardware-reduced ACPI platforms).

5.6.1 ACPI Event Programming Model Components

The components of the ACPI event programming model are the following:

• OSPM
• FADT
• PM1a_STS, PM1b_STS and PM1a_EN, PM1b_EN fixed register blocks
• GPE0_BLK and GPE1_BLK register blocks
• GPE register blocks defined in GPE block devices
• SCI interrupt
• ACPI AML code general-purpose event model
• ACPI device-specific model events
• ACPI Embedded Controller event model

The role of each component in the ACPI event programming model is described in the following table.
UEFI Forum, Inc. January 2019 Page 302

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-163 ACPI Event Programming Model Components

Component Description

OSPM Receives all SCI interrupts raised (receives all SCI events). Either handles the
event or masks the event off and later invokes an OEM-provided control method
to handle the event. Events handled directly by OSPM are fixed ACPI events;
interrupts handled by control methods are general-purpose events.

FADT Specifies the base address for the following fixed register blocks on an ACPI-
compatible platform: PM1x_STS and PM1x_EN fixed registers and the GPEx_STS
and GPEx_EN fixed registers.

PM1x_STS and
PM1x_EN fixed
registers

PM1x_STS bits raise fixed ACPI events. While a PM1x_STS bit is set, if the
matching PM1x_EN bit is set, the ACPI SCI event is raised.

GPEx_STS and GPEx_EN
fixed registers

GPEx_STS bits that raise general-purpose events. For every event bit
implemented in GPEx_STS, there must be a comparable bit in GPEx_EN. Up to
256 GPEx_STS bits and matching GPEx_EN bits can be implemented. While a
GPEx_STS bit is set, if the matching GPEx_EN bit is set, then the general-purpose
SCI event is raised.

SCI interrupt A level-sensitive, shareable interrupt mapped to a declared interrupt vector. The
SCI interrupt vector can be shared with other low-priority interrupts that have a
low frequency of occurrence.

ACPI AML code
general-purpose event
model

A model that allows OEM AML code to use GPEx_STS events. This includes using
GPEx_STS events as “wake” sources as well as other general service events
defined by the OEM (“button pressed,” “thermal event,” “device present/not
present changed,” and so on).

ACPI device-specific
model events

Devices in the ACPI namespace that have ACPI-specific device IDs can provide
additional event model functionality. In particular, the ACPI embedded controller
device provides a generic event model.

ACPI Embedded
Controller event model

A model that allows OEM AML code to use the response from the Embedded
Controller Query command to provide general-service event defined by the OEM.

5.6.2 Types of ACPI Events

At the ACPI hardware level, two types of events can be signaled by an SCI interrupt:

• Fixed ACPI events
• General-purpose events

In turn, the general-purpose events can be used to provide further levels of events to the system. And, as
in the case of the embedded controller, a well-defined second-level event dispatching is defined to make
a third type of typical ACPI event. For the flexibility common in today’s designs, two first-level general-
purpose event blocks are defined, and the embedded controller construct allows a large number of
embedded controller second-level event-dispatching tables to be supported. Then if needed, the OEM
can also build additional levels of event dispatching by using AML code on a general-purpose event to
sub-dispatch in an OEM defined manner.
UEFI Forum, Inc. January 2019 Page 303

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.6.3 Fixed Event Handling

When OSPM receives a fixed ACPI event, it directly reads and handles the event registers itself. The
following table lists the fixed ACPI events. For a detailed specification of each event, see Section 4, “ACPI
Hardware Specification.”

Table 5-164 Fixed ACPI Events

Event Comment

Power
management
timer carry bit
set.

For more information, see the description of the TMR_STS and TMR_EN bits of the
PM1x fixed register block in Section 4.8.3.1, “PM1 Event Grouping,” as well as the
TMR_VAL register in the PM_TMR_BLK in Section 4.8.3.3, “Power Management Timer.”

Power button
signal

A power button can be supplied in two ways. One way is to simply use the fixed status
bit, and the other uses the declaration of an ACPI power device and AML code to
determine the event. For more information about the alternate-device based power
button, see Section 4.8.2.2.1.2, Control Method Power Button.”

Notice that during the S0 state, both the power and sleep buttons merely notify OSPM
that they were pressed.

If the system does not have a sleep button, it is recommended that OSPM use the
power button to initiate sleep operations as requested by the user.

Sleep button
signal

A sleep button can be supplied in one of two ways. One way is to simply use the fixed
status button. The other way requires the declaration of an ACPI sleep button device
and AML code to determine the event.

RTC alarm ACPI-defines an RTC wake alarm function with a minimum of one-month granularity.
The ACPI status bit for the device is optional. If the ACPI status bit is not present, the
RTC status can be used to determine when an alarm has occurred. For more
information, see the description of the RTC_STS and RTC_EN bits of the PM1x fixed
register block in Section 4.8.3.1, “PM1 Event Grouping.”

Wake status The wake status bit is used to determine when the sleeping state has been completed.
For more information, see the description of the WAK_STS and WAK_EN bits of the
PM1x fixed register block in Section 4.8.3.1, “PM1 Event Grouping.”

System bus
master request

The bus-master status bit provides feedback from the hardware as to when a bus
master cycle has occurred. This is necessary for supporting the processor C3 power
savings state. For more information, see the description of the BM_STS bit of the PM1x
fixed register block in Section 4.8.3.1, “PM1 Event Grouping.”

Global release
status

This status is raised as a result of the Global Lock protocol, and is handled by OSPM as
part of Global Lock synchronization. For more information, see the description of the
GBL_STS bit of the PM1x fixed register block in Section 4.8.3.1, “PM1 Event Grouping.”
For more information on Global Lock, see Section 5.2.10.1, “Global Lock.”

5.6.4 General-Purpose Event Handling

When OSPM receives a general-purpose event, it either passes control to an ACPI-aware driver, or uses
an OEM-supplied control method to handle the event. An OEM can implement up to 128 general-
purpose event inputs in hardware per GPE block, each as either a level or edge event. It is also possible to
implement a single 256-pin block as long as it’s the only block defined in the system.
UEFI Forum, Inc. January 2019 Page 304

ACPI Specification, Version 6.3 ACPI Software Programming Model
An example of a general-purpose event is specified in Section 4, “ACPI Hardware Specification,” where
EC_STS and EC_EN bits are defined to enable OSPM to communicate with an ACPI-aware embedded
controller device driver. The EC_STS bit is set when either an interface in the embedded controller space
has generated an interrupt or the embedded controller interface needs servicing. Notice that if a
platform uses an embedded controller in the ACPI environment, then the embedded controller’s SCI
output must be directly and exclusively tied to a single GPE input bit.

Hardware can cascade other general-purpose events from a bit in the GPEx_BLK through status and
enable bits in Operational Regions (I/O space, memory space, PCI configuration space, or embedded
controller space). For more information, see the specification of the General-Purpose Event Blocks
(GPEx_BLK) in Section 4.8.4.1, “General-Purpose Event Register Blocks.”

OSPM manages the bits in the GPEx blocks directly, although the source to those events is not directly
known and is connected into the system by control methods. When OSPM receives a general-purpose
event (the event is from either a GPEx_BLK STS bit, a GPIO pin, or an Interrupt), OSPM does the following:

1. Disables the interrupt source

• (GPEx_BLK EN bit).

• GPIO interrupt for GPIO-signaled events

• Interrupt for Interrupt-signaled events

2. If an edge event, clears the status bit.

3. Performs one of the following:

• Dispatches to an ACPI-aware device driver.

• Queues the matching control method for execution.

• Manages a wake event using device _PRW objects.

4. If a level event, waits for the control method handler to complete and clears the status bit.

5. Enables the interrupt source.

For OSPM to manage the bits in the GPEx_BLK blocks directly:

• Enable bits must be read/write.
• Status bits must be latching.
• Status bits must be read/clear, and cleared by writing a “1” to the status bit.

5.6.4.1 _Exx, _Lxx, and _Qxx Methods for GPE Processing

The OEM AML code can perform OEM-specific functions custom to each event the particular platform
might generate by executing a control method that matches the event. For GPE events, OSPM will
execute the control method of the name _GPE._TXX where XX is the hex value format of the event that
needs to be handled and T indicates the event handling type (T must be either ‘E’ for an edge event or ‘L’
for a level event). The event values for status bits in GPE0_BLK start at zero (_T00) and end at the
(GPE0_BLK_LEN / 2) - 1. The event values for status bits in GPE1_BLK start at GPE1_BASE and end at
GPE1_BASE + (GPE1_BLK_LEN / 2) - 1. GPE0_BLK_LEN, GPE1_BASE, and GPE1_BLK_LEN are all defined in
the FADT.

The _Qxx methods are used for the Embedded Controller and SMBus (below.)
UEFI Forum, Inc. January 2019 Page 305

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.6.4.1.1 Queuing the Matching Control Method for Execution

When a general-purpose event is raised, OSPM uses a naming convention to determine which control
method to queue for execution and how the GPE EOI is to be handled. The GPEx_STS bits in the GPEx_BLK
are indexed with a number from 0 through FF. The name of the control method to queue for an event
raised from an enable status bit is always of the form _GPE._Txx where xx is the event value and T
indicates the event EOI protocol to use (either ‘E’ for edge triggered, or ‘L’ for level triggered). The event
values for status bits in GPE0_BLK start at zero (_T00), end at the (GPE0_BLK_LEN / 2) - 1, and correspond
to each status bit index within GPE0_BLK. The event values for status bits in GPE1_BLK are offset by
GPE_BASE and therefore start at GPE1_BASE and end at GPE1_BASE + (GPE1_BLK_LEN / 2) - 1.

For example, suppose an OEM supplies a wake event for a communications port and uses bit 4 of the
GPE0_STS bits to raise the wake event status. In an OEM-provided Definition Block, there must be a
Method declaration that uses the name _GPE._L04 or \GPE._E04 to handle the event. An example of a
control method declaration using such a name is the following:

Method (_GPE._L04) { // GPE 4 level wake handler
 Notify (_SB.PCIO.COM0, 2)
}

The control method performs whatever action is appropriate for the event it handles. For example, if the
event means that a device has appeared in a slot, the control method might acknowledge the event to
some other hardware register and signal a change notify request of the appropriate device object. Or, the
cause of the general-purpose event can result from more then one source, in which case the control
method for that event determines the source and takes the appropriate action.

When a general-purpose event is raised from the GPE bit tied to an embedded controller, the embedded
controller driver uses another naming convention defined by ACPI for the embedded controller driver to
determine which control method to queue for execution. The queries that the embedded controller
driver exchanges with the embedded controller are numbered from 0 through FF, yielding event codes 01
through FF. (A query response of 0 from the embedded controller is reserved for “no outstanding
events.”) The name of the control method to queue is always of the form _Qxx where xx is the number of
the query acknowledged by the embedded controller. An example declaration for a control method that
handles an embedded controller query is the following:

Method(_Q34) { // embedded controller event for thermal
 Notify (_SB.TZ0.THM1, 0x80)
}

When an SMBus alarm is handled by the SMBus driver, the SMBus driver uses a similar naming
convention defined by ACPI for the driver to determine the control method to queue for execution.
When an alarm is received by the SMBus host controller, it generally receives the SMBus address of the
device issuing the alarm and one word of data. On implementations that use SMBALERT# for
notifications, only the device address will be received. The name of the control method to queue is
always of the form _Qxx where xx is the SMBus address of the device that issued the alarm. The SMBus
address is 7 bits long corresponding to hex values 0 through 7F, although some addresses are reserved
and will not be used. The control method will always be queued with one argument that contains the
word of data received with the alarm. An exception is the case of an SMBus using SMBALERT# for
UEFI Forum, Inc. January 2019 Page 306

ACPI Specification, Version 6.3 ACPI Software Programming Model
notifications, in this case the argument will be 0. An example declaration for a control method that
handles a SMBus alarm follows:

Method(_Q18, 1) { // Thermal sensor device at address 001 1000

 // Arg0 contains notification value (if any)
 // Arg0 = 0 if device supports only SMBALERT#

 Notify (_SB.TZ0.THM1, 0x80)
}

5.6.4.1.2 Dispatching to an ACPI-Aware Device Driver

Certain device support, such as an embedded controller, requires a dedicated GPE to service the device.
Such GPEs are dispatched to native OS code to be handled and not to the corresponding GPE-specific
control method.

In the case of the embedded controller, an OS-native, ACPI-aware driver is given the GPE event for its
device. This driver services the embedded controller device and determines when events are to be
reported by the embedded controller by using the Query command. When an embedded controller
event occurs, the ACPI-aware driver dispatches the requests to other ACPI-aware drivers that have
registered to handle the embedded controller queries or queues control methods to handle each event.
If there is no device driver to handle specific queries, OEM AML code can perform OEM-specific functions
that are customized to each event on the particular platform by including specific control methods in the
namespace to handle these events. For an embedded controller event, OSPM will queue the control
method of the name _QXX, where XX is the hex format of the query code. Notice that each embedded
controller device can have query event control methods.

Similarly, for an SMBus driver, if no driver registers for SMBus alarms, the SMBus driver will queue
control methods to handle these. Methods must be placed under the SMBus device with the name _QXX
where XX is the hex format of the SMBus address of the device sending the alarm.

5.6.4.2 GPE Wake Events

An important use of the general-purpose events is to implement device wake events. The components of
the ACPI event programming model interact in the following way:

• When a device asserts its wake signal, the general-purpose status event bit used to track that
device is set.

• While the corresponding general-purpose enable bit is enabled, the SCI interrupt is asserted.
• If the system is sleeping, this will cause the hardware, if possible, to transition the system into

the S0 state.
• Once the system is running, OSPM will dispatch the corresponding GPE handler.
• The handler needs to determine which device object has signaled wake and performs a wake

Notify
• command on the corresponding device object(s) that have asserted wake.
• In turn OSPM will notify OSPM native driver(s) for each device that will wake its device to

service it.
UEFI Forum, Inc. January 2019 Page 307

ACPI Specification, Version 6.3 ACPI Software Programming Model
Events that wake may not be intermixed with non-wake (runtime) events on the same GPE input. The
only exception to this rule is made for the special devices below. Only the following devices are allowed
to utilize a single GPE for both wake and runtime events:

1. Button Devices

• PNP0C0C — Power Button Device

• PNP0C0D — Lid Device

• PNP0C0E — Sleep Button Device

2. PCI Bus Wakeup Event Reporting (PME)

• PNP0A03 — PCI Host Bridge

All wake events that are not exclusively tied to a GPE input (for example, one input is shared for multiple
wake events) must have individual enable and status bits in order to properly handle the semantics used
by the system.

5.6.4.2.1 Managing a Wake Event Using Device _PRW Objects

A device’s _PRW object provides the zero-based bit index into the general-purpose status register block
to indicate which general-purpose status bit from either GPE0_BLK or GPE1_BLK is used as the specific
device’s wake mask. Although the hardware must maintain individual device wake enable bits, the
system can have multiple devices using the same general-purpose event bit by using OEM-specific
hardware to provide second-level status and enable bits. In this case, the OEM AML code is responsible
for the second-level enable and status bits.

OSPM enables or disables the device wake function by enabling or disabling its corresponding GPE and by
executing its _PSW control method (which is used to take care of the second-level enables). When the
GPE is asserted, OSPM still executes the corresponding GPE control method that determines which
device wakes are asserted and notifies the corresponding device objects. The native OS driver is then
notified that its device has asserted wake, for which the driver powers on its device to service it.

If the system is in a sleeping state when the enabled GPE bit is asserted the hardware will transition the
system into the S0 state, if possible.

5.6.4.2.2 Determining the System Wake Source Using _Wxx Control Methods

After a transition to the S0 state, OSPM may evaluate the _SWS object in the _GPE scope to determine
the index of the GPE that was the source of the transition event. When a single GPE is shared among
multiple devices, the platform provides a _Wxx control method, where xx is GPE index as described in
Section 5.6.4.2.2, that allows the source device of the transition to be determined. If implemented, the
_Wxx control method must exist in the _GPE scope or in the scope of a GPE block device.

If _Wxx is implemented, either hardware or firmware must detect and save the source device as
described in Section 7.4.3, “_SWS (System Wake Source)”. During invocation, the _Wxx control method
determines the source device and issues a Notify(<device>,0x2) on the device that caused the system to
transition to the S0 state. If the device uses a bus-specific method of arming for wakeup, then the Notify
must be issued on the parent of the device that has a _PRW method. The _Wxx method must issue a
Notify(<device>,0x2) only to devices that contain a _PRW method within their device scope. OSPM’s
evaluation of the _SWS and _Wxx objects is indeterminate. As such, the platform must not rely on _SWS
or _Wxx evaluation to clear any hardware state, including GPEx_STS bits, or to perform any wakeup-
related actions.
UEFI Forum, Inc. January 2019 Page 308

ACPI Specification, Version 6.3 ACPI Software Programming Model
If the GPE index returned by the _SWS object is only referenced by a single _PRW object in the system, it
is implied that the device containing that _PRW is the wake source. In this case, it is not necessary for the
platform to provide a _Wxx method.

5.6.5 GPIO-signaled ACPI Events

On Hardware-reduced ACPI platforms, ACPI events can be signaled when a GPIO Interrupt is received by
OSPM, and that GPIO Interrupt Connection is listed in a GPIO controller device’s _AEI object. OSPM
claims all such GPIO interrupts, and maps them to the appropriate event method required by the ACPI
event model.

5.6.5.1 Declaring GPIO Controller Devices

A GPIO controller is modeled as a device in the namespace, with _HID or _ADR and _CRS objects, at a
minimum. Optionally, the GPIO controller device scope may include GeneralPurposeIO OpRegion
declarations (Section 5.5.2.4.5) and GPIO interrupt-to-ACPI Event mappings (Section 5.6.5.2). Note that
for GPIO-signaled ACPI events, the corresponding event method (e.g. _Exx, _Lxx, or _EVT) must also
appear in the target GPIO controller’s scope. For GPIO event numbers larger than 255 (0xFF), the _EVT
method is used.

Each pin on a GPIO Controller has a configuration (e.g. level-sensitive interrupt, de-bounced input, high-
drive output, etc.), which is described to OSPM in the GPIO Interrupt or GPIO IO Connection resources
claimed by peripheral devices or used in operation region accesses.

5.6.5.2 _AEI Object for GPIO-signaled Events

The _AEI object designates those GPIO interrupts that shall be handled by OSPM as ACPI events (See
Section 5.6.5). This object appears within the scope of the GPIO controller device whose pins are to be
used as GPIO-signaled events.

Arguments:

None

Return Value:

A resource template Buffer containing only GPIO Interrupt Connection descriptors.

Example:

 Device (_SB.GPI2)
 {
 Name(_HID, “XYZ0003”)
 Name(_UID, 2) //Third instance of this controller on
the platform
 Name(_CRS, ResourceTemplate ()
 {
 //Register Interface
 MEMORY32FIXED(ReadWrite, 0x30000000, 0x200,)
 //Interrupt line (GSIV 21)
 Interrupt(ResourceConsumer, Level, ActiveHigh, Exclusive) {21}
 })
 Name(_AEI, ResourceTemplate ()
UEFI Forum, Inc. January 2019 Page 309

ACPI Specification, Version 6.3 ACPI Software Programming Model
 {
 //Thermal Zone Event
 GpioInt(Edge, ActiveHigh, Exclusive, PullDown, , " _SB.GPI2") {14}
 //Power Button
 GpioInt(Edge, ActiveLow, ExclusiveAndWake, PullUp, , " _SB.GPI2") {36}
 })
 }

5.6.5.3 The Event (_EVT) Method for Handling GPIO-signaled Events

GPIO Interrupt Connection Descriptors assign GPIO pins a controller-relative, 0-based pin number. GPIO
Pin numbers can be as large as 65, 535. GPIO Interrupt Connections that are assigned by the platform to
signal ACPI events are listed in the _AEI object under the GPIO controller. Since the GPIO interrupt
connection descriptor also provides the mode of the interrupt associated with an event, it gives OSPM all
the information it needs to invoke a handler method for the event. No naming convention is required to
encode the mode and pin number of the event. Instead, a handler for a GPIO-signaled event simply needs
to have a well-known name and take the pin number of the event as a parameter. A single instance of the
method handles all ACPI events for a given GPIO controller device.

 For GPIO-signaled events, the Event (_EVT) method is used.

_EVT is defined as follows:

Arguments: (1)

Arg0 - EventNumber. An Integer indicating the event number (Controller-relative zero-based GPIO pin
number) of the current event. Must be in the range 0x0000 - 0xffff.

Return Value:

None

Description
The _EVT method handles a GPIO-signaled event. It must appear within the scope of the GPIO controller
device whose pins are used to signal the event.

OSPM handles GPIO-signaled events as follows:

• The GPIO interrupt is handled by OSPM because it is listed in the _AEI object under a GPIO
controller.

• When the event fires, OSPM handles the interrupt according to its mode and invokes the _EVT
method, passing it the pin number of the event.

• From this point on, handling is exactly like that for GPEs. The _EVT method does a Notify() on
the appropriate device, and OS-specific mechanisms are used to notify the driver of the event.

Note: For event numbers less than 255, _Exx and _Lxx methods may be used instead. In this case, they
take precedence and _EVT will not be invoked.
UEFI Forum, Inc. January 2019 Page 310

ACPI Specification, Version 6.3 ACPI Software Programming Model
Example:

Scope (_SB.GPI2)
{

Method (_EVT,1) { // Handle all ACPI Events signaled by GPIO Controller GPI2

 Switch (Arg0)
 {
 Case (300) {
 …
 Notify (_SB.DEVX, 0x80)
 }
 Case (1801) {
 …
 Notify (_SB.DEVY, 0x80)
 }
 Case (14…) {
 …
 Notify (_SB.DEVZ, 0x80)
 }
 …
 }
} //End of Method
} //End of Scope

5.6.6 Device Object Notifications

During normal operation, the platform needs to notify OSPM of various device-related events. These
notifications are accomplished using the Notify operator, which indicates a target device, thermal zone,
or processor object and a notification value that signifies the purpose of the notification. Notification
values from 0 through 0x7F are common across all device object types. Notification values of 0xC0 and
above are reserved for definition by hardware vendors for hardware specific notifications. Notification
values from 0x80 to 0xBF are device-specific and defined by each such device. For more information on
the Notify operator, see Section 19.6.93, “Notify”.
UEFI Forum, Inc. January 2019 Page 311

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-165 Device Object Notification Values

Value Description

0 Bus Check. This notification is performed on a device object to indicate to OSPM that it needs to
perform a Plug and Play re-enumeration operation on the device tree starting from the point
where it has been notified. OSPM will typically perform a full enumeration automatically at boot
time, but after system initialization it is the responsibility of the ACPI AML code to notify OSPM
whenever a re-enumeration operation is required. The more accurately and closer to the actual
change in the device tree the notification can be done, the more efficient the operating system’s
response will be; however, it can also be an issue when a device change cannot be confirmed.
For example, if the hardware cannot recognize a device change for a particular location during a
system sleeping state, it issues a Bus Check notification on wake to inform OSPM that it needs to
check the configuration for a device change.

1 Device Check. Used to notify OSPM that the device either appeared or disappeared. If the device
has appeared, OSPM will re-enumerate from the parent. If the device has disappeared, OSPM
will invalidate the state of the device. OSPM may optimize out re-enumeration. If _DCK is
present, then Notify(object,1) is assumed to indicate an undock request. If the device is a bridge,
OSPM may re-enumerate the bridge and the child bus.

2 Device Wake. Used to notify OSPM that the device has signaled its wake event, and that OSPM
needs to notify OSPM native device driver for the device. This is only used for devices that
support _PRW.

3 Eject Request. Used to notify OSPM that the device should be ejected, and that OSPM needs to
perform the Plug and Play ejection operation. OSPM will run the _EJx method.

4 Device Check Light. Used to notify OSPM that the device either appeared or disappeared. If the
device has appeared, OSPM will re-enumerate from the device itself, not the parent. If the
device has disappeared, OSPM will invalidate the state of the device.

5 Frequency Mismatch. Used to notify OSPM that a device inserted into a slot cannot be attached
to the bus because the device cannot be operated at the current frequency of the bus. For
example, this would be used if a user tried to hot-plug a 33 MHz PCI device into a slot that was on
a bus running at greater than 33 MHz.

6 Bus Mode Mismatch. Used to notify OSPM that a device has been inserted into a slot or bay that
cannot support the device in its current mode of operation. For example, this would be used if a
user tried to hot-plug a PCI device into a slot that was on a bus running in PCI-X mode.

7 Power Fault. Used to notify OSPM that a device cannot be moved out of the D3 state because of
a power fault.

8 Capabilities Check. This notification is performed on a device object to indicate to OSPM that it
needs to re-evaluate the _OSC control method associated with the device.

9 Device _PLD Check. Used to notify OSPM to reevaluate the _PLD object, as the Device’s
connection point has changed.

0xA Reserved.

0xB System Locality Information Update. Dynamic reconfiguration of the system may cause existing
relative distance information to change. The platform sends the System Locality Information
Update notification to a point on a device tree to indicate to OSPM that it needs to invoke the
_SLI objects associated with the System Localities on the device tree starting from the point
notified.
UEFI Forum, Inc. January 2019 Page 312

ACPI Specification, Version 6.3 ACPI Software Programming Model
Below are the notification values defined for specific ACPI devices. For more information concerning the
object-specific notification, see the section on the corresponding device/object.

Table 5-166 System Bus Notification Values

Hex
value

Description

0x80 Reserved.

0x81 Graceful Shutdown Request. Used to notify OSPM that a graceful shutdown of the operating
system has been requested. Once the operating system has finished its graceful shutdown
procedure it should initiate a transition to the G2 "soft off" state. The Notify operator must
target the System Bus: (_SB). See Section 6.3.5 for a description of shutdown processing.

0x0C Reserved.

0x0D System Resource Affinity Update. Dynamic migration of devices may cause existing system
resource affinity to change. The platform software issues the System Resource Affinity Update
notification to a point on a device tree to indicate to OSPM that it needs to invoke the _PXM
object of the notified device to update the resource affinity.

0x0E Heterogeneous Memory Attributes Update. Dynamic reconfiguration of the system may cause
existing latency, bandwidth or memory side caching attribute to change. The platform software
issues the Heterogeneous Memory Attributes Update notification to a point on a device tree to
indicate to OSPM that it needs to invoke the _HMA objects associated with the Heterogeneous
Memory Attributes on the device tree starting from the point notified.

0x0F Error Disconnect Recover: Used to notify OSPM of asynchronous removal of devices for error
containment purposes. The notification is issued on a bus device that is still present, but one or
more of its child device have been disconnected from the system due to an error condition.
OSPM should invalidate the software state associated with the disconnected child devices
without attempting to access these child devices. Subsequently, OSPM can optionally attempt to
recover the disconnected child devices and ,if possible, bring them back to functional state via
bus specific methods. OSPM communicates the status of these recovery operations to the
Firmware via the _OST method. Section 6.3.5.2 describes the associated _OST status codes.
OSPM support for Error Disconnect Recover notification for a given type of bus is enumerated via
a bus specific mechanism.

0x10-0xFF Reserved.

Value Description
UEFI Forum, Inc. January 2019 Page 313

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-167 Control Method Battery Device Notification Values

Hex value Description

0x80 Battery Status Changed. Used to notify OSPM that the Control Method Battery device
status has changed.

0x81 Battery Information Changed. Used to notify OSPM that the Control Method Battery
device information has changed. This only occurs when a battery is replaced.

0x82 Battery Maintenance Data Status Flags Check. Used to notify OSPM that the Control
Method Battery device battery maintenance data status flags should be checked.

0x83-0xBF Reserved.

Table 5-168 Power Source Object Notification Values

Hex value Description

0x80 Power Source Status Changed. Used to notify OSPM that the power source status has
changed.

0x81 Power Source Information Changed. Used to notify OSPM that the power source
information has changed.

0x82-0xBF Reserved.

Table 5-169 Thermal Zone Object Notification Values

Hex value Description

0x80 Thermal Zone Status Changed. Used to notify OSPM that the thermal zone temperature
has changed.

0x81 Thermal Zone Trip points Changed. Used to notify OSPM that the thermal zone trip points
have changed.

0x82 Device Lists Changed. Used to notify OSPM that the thermal zone device lists (_ALx, _PSL,
_TZD) have changed.

0x83 Thermal / Active Cooling Relationship Table Changed. Used to notify OSPM that values in
the either the thermal relationship table or the active cooling relationship table have
changed.

0x84-0xBF Reserved.

Table 5-170 Control Method Power Button Notification Values

Hex value Description

0x80 S0 Power Button Pressed. Used to notify OSPM that the power button has been pressed
while the system is in the S0 state. Notice that when the button is pressed while the system
is in the S1-S4 state, a Device Wake notification must be issued instead.

0x81-0xBF Reserved.
UEFI Forum, Inc. January 2019 Page 314

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-171 Control Method Sleep Button Notification Values

Hex value Description

0x80 S0 Sleep Button Pressed. Used to notify OSPM that the sleep button has been pressed while the
system is in the S0 state. Notice that when the button is pressed while the system is in the S1-S4
state, a Device Wake notification must be issued instead.

0x81-0xBF Reserved.

Table 5-172

Hex value Description

0x80 Lid Status Changed. Used to notify OSPM that the control method lid device status has changed.

0x81-0xBF Reserved.

Control Method Lid Notification Values

Table 5-173 NVDIMM Root Device Notification Values

Hex Value Description

0x80 NFIT Update Notification. Used to notify OSPM that it needs to re-evaluate the _FIT
method under the NVDIMM root device (see Section 9.20.2).

0x81 Unconsumed Uncorrectable Memory Error Detected. Used to pro-actively notify OSPM
of uncorrectable memory errors detected (for example a memory scrubbing engine that
continuously scans the NVDIMMs memory). This is an optional notification. Only locations
that were mapped in to SPA by the platform will generate a notification.

0x82 ARS Stopped Notification. This is an optional notification, used to notify OSPM when the
platform completes ARS or when ARS has stopped prematurely for any ARS that was
either started by the platform or by OSPM via Start ARS (see Section 9.20.7.5). The OSPM
can evaluate Query ARS Status on receiving this event notification.

0x83-0xBF Reserved

Table 5-174 NVDIMM Device Notification Values

Hex Value Description

0x80 Reserved

0x81 NFIT Health Event Notification. Used to notify OSPM of health event(s) for the NVDIMM
device (see Section 9.20.3). On receiving the NFIT Health Event Notification, the OSPM is
required to determine new health event by re-enumerating the health of the
corresponding NVDIMM device. This could be accomplished by evaluating _NCH method
(see Section 9.20.8.1) or _DSM method under the NVDIMM device.

This is also used to notify OSPM of a change in “Overall Health Status Attributes” field
reported by _NCH method.

0x82-0xBF Reserved
UEFI Forum, Inc. January 2019 Page 315

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-175 Processor Device Notification Values

Hex value Description

0x80 Performance Present Capabilities Changed. Used to notify OSPM that the number of
supported processor performance states has changed. This notification causes OSPM to re-
evaluate the _PPC object. See Section 8 “Processor Configuration and Control,” for more
information.

0x81 C States Changed. Used to notify OSPM that the number or type of supported processor C
States has changed. This notification causes OSPM to re-evaluate the _CST object. See
Section 8, “Processor Configuration and Control,” for more information.

0x82 Throttling Present Capabilities Changed. Used to notify OSPM that the number of
supported processor throttling states has changed. This notification causes OSPM to re-
evaluate the _TPC object. See Section 8, “Processor Configuration and Control,” for more
information.

0x83 Guaranteed Changed. Used to notify OSPM that the value of the CPPC Guaranteed Register
has changed.

0x84 Minimum Excursion. Used to notify OSPM that an excursion to CPPC Minimum has
occurred.

0x85 Highest Performance Changed. Used to notify OSPM that the value of the CPPC Highest
Performance Register has changed.

0x86-0xBF Reserved.

Table 5-176 User Presence Device Notification Values

Hex value Description

0x80 User Presence Changed. Used to notify OSPM that a meaningful change in user presence
has occurred, causing OSPM to re-evaluate the _UPD object.

0x81-0xBF Reserved.

Table 5-177 Ambient Light Sensor Device Notification Values

Hex value Description

0x80 ALS Illuminance Changed. Used to notify OSPM that a meaningful change in ambient light
illuminance has occurred, causing OSPM to re-evaluate the _ALI object.

0x81 ALS Color Temperature Changed. Used to notify OSPM that a meaningful change in
ambient light color temperature or chromaticity has occurred, causing OSPM to re-evaluate
the _ALT and/or _ALC objects.

0x82 ALS Response Changed. Used to notify OSPM that the set of points used to convey the
ambient light response has changed, causing OSPM to re-evaluate the _ALR object.

0x83-0xBF Reserved.
UEFI Forum, Inc. January 2019 Page 316

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-178 Power Meter Object Notification Values

Hex value Description

0x80 Power Meter Capabilities Changed. Used to notify OSPM that the power meter
information has changed.

0x81 Power Meter Trip Points Crossed. Used to notify OSPM that one of the power meter trip
points has been crossed.

0x82 Power Meter Hardware Limit Changed. Used to notify OSPM that the hardware limit has
been changed by the platform.

0x83 Power Meter Hardware Limit Enforced. Used to notify OSPM that the hardware limit has
been enforced by the platform.

0x84 Power Meter Averaging Interval Changed. Used to notify OSPM that the power averaging
interval has changed.

0x85-0xBF Reserved.

Table 5-179 Processor Aggregator Device Notification Values

Hex value Description

0x80 Processor Utilisation Request. Used to notify OSPM that OSPM evaluates the _PUR object
which indicates to OSPM the number of logical processors to be idled.

0x81-0xBF Reserved.

Table 5-180 Error Device Notification Values

Hex value Description

0x80 Notification For Generic Error Sources. Used to notify OSPM to respond to this notification
by checking the error status block of all generic error sources to identify the source
reporting the error.

0x81-0xBF Reserved.

Table 5-181 Fan Device Notification Values

Hex value Description

0x80 Low Fan Speed. Used to notify OSPM of a low (errant) fan speed. Causes OSPM to re-
evaluate the _FSL object.

0x81-0xBF Reserved.
UEFI Forum, Inc. January 2019 Page 317

ACPI Specification, Version 6.3 ACPI Software Programming Model
Table 5-182 Memory Device Notification Values

Hex value Description

0x80 Memory Bandwidth Low Threshold crossed. Used to notify OSPM that bandwidth of
memory described by the memory device has been reduced by the platform to less than
the low memory bandwidth threshold.

0x81 Memory Bandwidth High Threshold crossed. Used to notify OSPM that bandwidth of
memory described by the memory device has been increased by the platform to greater
than or equal to the high memory bandwidth threshold.

0x82-0xBF Reserved.

5.6.7 Device Class-Specific Objects

Most device objects are controlled through generic objects and control methods and they have generic
device IDs. These generic objects, control methods, and device IDs are specified in Section 6, through
Section 11 . Section 5.6.8, “Predefined ACPI Names for Objects, Methods, and Resources,” lists all the
generic objects and control methods defined in this specification.

However, certain integrated devices require support for some device-specific ACPI controls. This section
lists these devices, along with the device-specific ACPI controls that can be provided.

Some of these controls are for ACPI-aware devices and as such have Plug and Play IDs that represent
these devices. The table below lists the Plug and Play IDs defined by the ACPI specification.

Note: Plug and Play IDs that are not defined by the ACPI specification are defined and described in the
“Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Legacy PNP
Guidelines".

Table 5-183 ACPI Device IDs

Plug and Play
ID

Description

PNP0C08 ACPI. Not declared in ACPI as a device. This ID is used by OSPM for the hardware resources
consumed by the ACPI fixed register spaces, and the operation regions used by AML code. It
represents the core ACPI hardware itself.

PNP0A05 Generic Container Device. A device whose settings are totally controlled by its ACPI resource
information, and otherwise needs no device or bus-specific driver support. This was originally
known as Generic ISA Bus Device. This ID should only be used for containers that do not produce
resources for consumption by child devices. Any system resources claimed by a PNP0A05
device’s _CRS object must be consumed by the container itself.

PNP0A06 Generic Container Device. This device behaves exactly the same as the PNP0A05 device. This was
originally known as Extended I/O Bus. This ID should only be used for containers that do not
produce resources for consumption by child devices. Any system resources claimed by a
PNP0A06 device’s _CRS object must be consumed by the container itself.

PNP0C09 Embedded Controller Device. A host embedded controller controlled through an ACPI-aware
driver.
UEFI Forum, Inc. January 2019 Page 318

ACPI Specification, Version 6.3 ACPI Software Programming Model
PNP0C0A Control Method Battery. A device that solely implements the ACPI Control Method Battery
functions. A device that has some other primary function would use its normal device ID. This ID
is used when the devices primary function is that of a battery.

PNP0C0B Fan. A device that causes cooling when “on” (D0 device state).

PNP0C0C Power Button Device. A device controlled through an ACPI-aware driver that provides power
button functionality. This device is only needed if the power button is not supported using the
fixed register space.

PNP0C0D Lid Device. A device controlled through an ACPI-aware driver that provides lid status
functionality. This device is only needed if the lid state is not supported using the fixed register
space.

PNP0C0E Sleep Button Device. A device controlled through an ACPI-aware driver that provides power
button functionality. This device is optional.

PNP0C0F PCI Interrupt Link Device. A device that allocates an interrupt connected to a PCI interrupt pin.
See Section 6., “Device Configuration,” for more details.

PNP0C80 Memory Device. This device is a memory subsystem.

ACPI0001 SMBus 1.0 Host Controller. An SMBus host controller (SMB-HC) compatible with the embedded
controller-based SMB-HC interface (as specified in Section 12.9 “SMBus Host Controller Interface
via Embedded Controller”) and implementing the SMBus 1.0 Specification.

ACPI0002 Smart Battery Subsystem. The Smart battery Subsystem specified in Section 10, “Power Source
Devices.”

ACPI0003 Power Source Device. The Power Source device specified in Section 10, “Power Source Devices.”
This can represent either an AC Adapter (on mobile platforms) or a fixed Power Supply.

ACPI0004 Module Device. This device is a container object that acts as a bus node in a namespace. A
Module Device without any of the _CRS, _PRS and _SRS methods behaves the same way as the
Generic Container Devices (PNP0A05 or PNP0A06). If the Module Device contains a _CRS
method, only these resources described in the _CRS are available for consumption by its child
devices. Also, the Module Device can support _PRS and _SRS methods if _CRS is supported.

ACPI0005 SMBus 2.0 Host Controller. An SMBus host controller (SMB-HC compatible with the embedded
controller-based SMB-HC interface (as specified in Section 12.9, “SMBus Host Controller Interface
via Embedded Controller”) and implementing the SMBus 2.0 Specification.

ACPI0006 GPE Block Device. This device allows a system designer to describe GPE blocks beyond the two
that are described in the FADT.

ACPI0007 Processor Device. This device provides an alternative to declaring processors using the Processor
ASL statement. See Section 8.4, “Declaring Processors”, for more details.

ACPI0008 Ambient Light Sensor Device. This device is an ambient light sensor. See Section 9.3, “Ambient
Light Sensor Device”.

Plug and Play
ID

Description
UEFI Forum, Inc. January 2019 Page 319

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.6.8 Predefined ACPI Names for Objects, Methods, and Resources

The following table summarizes the predefined names for the ACPI namespace objects, control methods,
and resource descriptor fields defined in this specification. Provided for each name is a short description
and a reference to the section number and page number of the actual definition of the name. ACPI
names that are predefined by other specifications are also listed along with their corresponding
specification reference.

Note: All names that begin with an underscore are reserved for ACPI use only

Table 5-184 Predefined ACPI Names

ACPI0009 I/OxAPIC Device. This device is an I/O unit that complies with both the APIC and SAPIC interrupt
models.

ACPI000A I/O APIC Device. This device is an I/O unit that complies with the APIC interrupt model.

ACPI000B I/O SAPIC Device. This device is an I/O unit that complies with the SAPIC interrupt model.

ACPI000C Processor Aggregator Device. This device provides a control point for all processors in the
platform. See Section 8.5, “Processor Aggregator Device”.

ACPI000D Power Meter Device. This device is a power meter. See Section 10.4. “Power Meters”.

ACPI000E Time and Alarm Device. This device is a control method-based real-time clock and wake alarm.
See Section 9.18. “Time and Alarm Device”.

ACPI000F User Presence Detection Device. This device senses user presence (proximity). See Section 9.16,
"User Presence Detection Device")

ACPI0010 Processor container device. Used to declare hierarchical processor topologies (See Section 8.5
“Processor Hierarchy”, and Section 8.4.3.1, “Processor Container Device”.)

ACPI0011 Generic Buttons Device. This device reports button events corresponding to Human Interface
Device (HID) control descriptors. (See Section 9.19, "Generic Button Device")

ACPI0012 NVDIMM Root Device. This device contains the NVDIMM devices. See Section 9.20 “NVDIMM
Devices” and Section 5.2.25 for “NVDIMM Firmware Interface Table”

ACPI0013 Generic Event Device. This device maps Interrupt-signaled events. See Section 5.6.9.

ACPI0014 Wireless Power Calibration Device. This device uses user presence and notification.

Name Description Heading

_ACx Active Cooling – returns the active cooling policy threshold values. Section 11.4.1

_ADR Address – (1) returns the address of a device on its parent bus. 
(2) returns a unique ID for the display output device.
(3) resource descriptor field.

Section 6.1.1
Section A.5.1
Section 19.2.8

_AEI Designates those GPIO interrupts that shall be handled by OSPM as ACPI
events

Section 5.6.5.2

_ALC Ambient Light Chromaticity – returns the ambient light color chromaticity. Section 9.3.4

Plug and Play
ID

Description
UEFI Forum, Inc. January 2019 Page 320

ACPI Specification, Version 6.3 ACPI Software Programming Model
_ALI Ambient Light Illuminance – returns the ambient light brightness. Section 9.3.2

_ALN Alignment – base alignment, resource descriptor field. Section 19.2.8

_ALP Ambient Light Polling – returns the ambient light sensor polling frequency. Section 9.3.6

_ALR Ambient Light Response – returns the ambient light brightness to display
brightness mappings.

Section 9.3.5

_ALT Ambient Light Temperature – returns the ambient light color temperature. Section 9.3.3

_ALx Active List – returns a list of active cooling device objects. Section 11.4.2

_ART Active cooling Relationship Table – returns thermal relationship information
between platform devices and fan devices.

Section 11.4.3

_ASI Address Space Id – resource descriptor field. Section 19.2.8

_ASZ Access Size – resource descriptor field. Section 19.2.8

_ATT Type-Specific Attribute – resource descriptor field. Section 19.2.8

_BAS Base Address – range base address, resource descriptor field. Section 19.2.8

_BBN Bios Bus Number – returns the PCI bus number returned by the platform
firmware.

Section 6.5.5

_BCL Brightness Control Levels – returns a list of supported brightness control
levels.

Section A.5.2

_BCM Brightness Control Method – sets the brightness level of the display device. Section A.5.3

_BCT Battery Charge Time – returns time remaining to complete charging battery. Section 10.2.2.10

_BDN Bios Dock Name – returns the Dock ID returned by the platform firmware. Section 6.5.3

_BIF Battery Information – returns a Control Method Battery information block. Section 10.2.2.1

_BIX Battery Information Extended – returns a Control Method Battery extended
information block.

Section 10.2.2.2

_BLT Battery Level Threshold – set battery level threshold preferences. Section 19.6.114

_BM Bus Master – resource descriptor field. Section 19.2.8

_BMA Battery Measurement Averaging Interval – Sets battery measurement
averaging interval.

Section 10.2.2.4

_BMC Battery Maintenance Control – Sets battery maintenance and control
features.

Section 10.2.2.12

_BMD Battery Maintenance Data – returns battery maintenance, control, and state
data.

Section 10.2.2.11

_BMS Battery Measurement Sampling Time – Sets the battery measurement
sampling time.

Section 10.2.2.5

_BQC Brightness Query Current – returns the current display brightness level. Section A.5.4

_BST Battery Status – returns a Control Method Battery status block. Section 10.2.2.6

Name Description Heading
UEFI Forum, Inc. January 2019 Page 321

ACPI Specification, Version 6.3 ACPI Software Programming Model
_BTH Battery Throttle Limit - specifies the thermal throttle limit of battery for the
firmware when engaging charging.

Section 10.2.2.7

_BTM Battery Time – returns the battery runtime. Section 10.2.2.9

_BTP Battery Trip Point – sets a Control Method Battery trip point. Section 10.2.2.8

_CBA Configuration Base Address – sets the CBA for a PCI Express host bridge. See
the PCI Firmware Specification, Revision 3.0 at “Links to ACPI-Related

Documents” (http://uefi.org/acpi) under the heading "PCI Sig".

_CCA Cache Coherency Attribute -- specifies whether a device and its descendants
support hardware managed cache coherency.

Section 6.2.17

_CDM Clock Domain – returns a logical processor’s clock domain identifier. Section 6.2.1

_CID Compatible ID – returns a device’s Plug and Play Compatible ID list. Section 6.1.2

_CLS Class Code – supplies OSPM with the PCI-defined class, subclass and
programming interface for a device. Optional.

Section 6.1.3

_CPC Continuous Performance Control – declares an interface that allows OSPM to
transition the processor into a performance state based on a continuous
range of allowable values.

Section 8.4.7.1

_CRS Current Resource Settings – returns the current resource settings for a device. Section 6.2.2

_CRT Critical Temperature – returns the shutdown critical temperature. Section 11.4.4

_CSD C State Dependencies – returns a list of C-state dependencies. Section 8.4.2.2

_CST C States – returns a list of supported C-states. Section 8.4.2.1

_CWS Clear Wake Status – Clears the wake status of a Time and Alarm Control
Method Device.

Section 9.18.6

_DBT Debounce Timeout -Debounce timeout setting for a GPIO input connection,
resource descriptor field

Section 19.6.55

_DCK Dock – sets docking isolation. Presence indicates device is a docking station. Section 6.5.2

_DCS Display Current Status – returns status of the display output device. Section A.5.6

_DDC Display Data Current – returns the EDID for the display output device. Section A.5.5

_DDN Dos Device Name – returns a device logical name. Section 6.1.4

_DEC Decode – device decoding type, resource descriptor field. Section 19.2.8

_DEP Operation Region Dependencies -- evaluates to a package and designates
device objects that OSPM should assign a higher priority in start ordering due
to future operation region accesses.

Section 6.5.8

_DGS Display Graphics State – returns the current state of the output device. Section A.5.7

_DIS Disable – disables a device. Section 6.2.3

_DLM Device Lock Mutex- Designates a mutex as a Device Lock Section 5.7.5

_DMA Direct Memory Access – returns a device’s current resources for DMA
transactions.

Section 6.2.4

Name Description Heading
UEFI Forum, Inc. January 2019 Page 322

http://www.pcisig.com/home/
http://www.pcisig.com/home/

ACPI Specification, Version 6.3 ACPI Software Programming Model
_DOD Display Output Devices – enumerate all devices attached to the display
adapter.

Section A.3.2

_DOS Disable Output Switching – sets the display output switching mode. Section A.3.1

_DPL Device Selection Polarity - The polarity of the Device Selection signal on a
SPISerialBus connection, resource descriptor field

Section 19.6

_DRS Drive Strength – Drive strength setting for a GPIO output connection, resource
descriptor field

Section 19.6.56

_DSD Device Specific Data– returns device-specific information. Section 6.2.5

_DSM Device Specific Method – executes device-specific functions. Section 9.1.1

_DSS Device Set State – sets the display device state. Section A.5.8

_DSW Device Sleep Wake – sets the sleep and wake transition states for a device. Section 7.3.1

_DTI Device Temperature Indication – conveys native device temperature to the
platform.

Section 11.4.6

_Exx Edge GPE – method executed as a result of a general-purpose event. Section 5.6.4.1

_EC Embedded Controller – returns EC offset and query information. Section 12.12

_EDL Eject Device List – returns a list of devices that are dependent on a device
(docking).

Section 6.3.1

_EJD Ejection Dependent Device – returns the name of dependent (parent) device
(docking).

Section 6.3.2

_EJx Eject – begin or cancel a device ejection request (docking). Section 6.3.3

_END Endian-ness – Endian orientation of a UART SerialBus connection, resource
descriptor field

Section 19.6

_EVT Event Method - Event method for GPIO-signaled events numbered larger than
255.

Section 5.6.5.3

_FDE Floppy Disk Enumerate – returns floppy disk configuration information. Section 9.10.1

_FDI Floppy Drive Information – returns a floppy drive information block. Section 9.10.2

_FDM Floppy Drive Mode – sets a floppy drive speed. Section 9.10.3

_FIF Fan Information – returns fan device information. Section 11.3.1.1

_FIT Firmware Interface Table - returns a list of NFIT Structures. Section 6.5.9

_FIX Fixed Register Resource Provider – returns a list of devices that implement
FADT register blocks.

Section 6.2.5

_FLC Flow Control – Flow Control mechanism for a UART SerialBus connection,
resource descriptor field

Section 19.6

_FPS Fan Performance States – returns a list of supported fan performance states. Section 11.3.1.2

_FSL Fan Set Level – Control method that sets the fan device’s speed level
(performance state).

Section 11.3.1.3

Name Description Heading
UEFI Forum, Inc. January 2019 Page 323

ACPI Specification, Version 6.3 ACPI Software Programming Model
_FST Fan Status – returns current status information for a fan device. Section 11.3.1.4

_GAI Get Averaging Interval – returns the power meter averaging interval. Section 10.4.5

_GCP Get Capabilities – Returns the capabilities of a Time and Alarm Control
Method Device

Section 9.18.2

_GHL Get Hardware Limit – returns the hardware limit enforced by the power
meter.

Section 10.4.7

_GL Global Lock – OS-defined Global Lock mutex object. Section 5.7.1

_GLK Global Lock – returns a device’s Global Lock requirement for device access. Section 6.5.7

_GPD Get Post Data – returns the value of the VGA device that will be posted at
boot.

Section A.3.4

_GPE General Purpose Events – (1) predefined Scope (_GPE.)
(2) Returns the SCI interrupt associated with the Embedded Controller.

Section 5.3.1

Section 12.11

_GRA Granularity – address space granularity, resource descriptor field. Section 19.2.8

_GRT Get Real Time – Returns the current time from a Time and Alarm Control
Method Device.

Section 9.18.3

_GSB Global System Interrupt Base – returns the GSB for a I/O APIC device. Section 6.2.7

_GTF Get Task File – returns a list of ATA commands to restore a drive to default
state.

Section 9.9.1.1

_GTM Get Timing Mode – returns a list of IDE controller timing information. Section 9.9.2.1.1

_GWS Get Wake Status – Gets the wake status of a Time and Alarm Control Method
Device.

Section 9.18.5

_HE High-Edge – interrupt triggering, resource descriptor field. Section 19.2.8

_HID Hardware ID – returns a device’s Plug and Play Hardware ID. Section 6.1.5

_HMA Heterogeneous Memory Attributes - returns a list of HMAT structures. Section 6.2.18

_HOT Hot Temperature – returns the critical temperature for sleep (entry to S4). Section 11.4.7

_HPP Hot Plug Parameters – returns a list of hot-plug information for a PCI device. Section 6.2.8

_HPX Hot Plug Parameter Extensions – returns a list of hot-plug information for a
PCI device. Supersedes _HPP.

Section 6.2.9

_HRV Hardware Revision– supplies OSPM with the device’s hardware revision.
Optional

Section 6.1.6

_IFT IPMI Interface Type. See the Intelligent Platform Management Interface

Specification at “Links to ACPI-Related Documents” (http://uefi.org/acpi)
under the heading "Server Platform Management Interface Table".

Section 19.6

_INI Initialize – performs device specific initialization. Section 6.5.1

_INT Interrupts – interrupt mask bits, resource descriptor field. Section 19.2.8

Name Description Heading
UEFI Forum, Inc. January 2019 Page 324

ACPI Specification, Version 6.3 ACPI Software Programming Model
_IOR IO Restriction – IO restriction setting for a GPIO IO connection, resource
descriptor field

Section 19.6.56

_IRC Inrush Current – presence indicates that a device has a significant inrush
current draw.

Section 7.3.15

_Lxx Level GPE – Control method executed as a result of a general-purpose event. Section 5.6.4.1

_LCK Lock – locks or unlocks a device (docking). Section 6.3.4

_LEN Length – range length, resource descriptor field. Section 19.2.8

_LID Lid – returns the open/closed status of the lid on a mobile system. Section 9.5.1

_LIN Lines in Use - Handshake lines in use in a UART SerialBus connection, resource
descriptor field

Section 19.6

_LL Low Level – interrupt polarity, resource descriptor field. Section 19.2.8

_LPI Low Power Idle States – returns the list of low power idle states supported by
a processor or processor container.

Section 8.4.4.3

_LSI Label Storage Information – Returns information about the Label Storage Area
associated with the NVDIMM object, including its size.

Section 6.5.10.1

_LSR Label Storage Read – Returns label data from the Label Storage Area of the
NVDIMM object.

Section 6.5.10.2

_LSW Label Storage Write – Writes label data in to the Label Storage Area of the
NVDIMM object.

Section 6.5.10.3

_MAF Maximum Address Fixed – resource descriptor field. Section 19.2.8

_MAT Multiple Apic Table Entry – returns a list of Interrupt Controller Structures. Section 6.2.10

_MAX Maximum Base Address – resource descriptor field. Section 19.2.8

_MBM Memory Bandwidth Monitoring Data – returns bandwidth monitoring data for
a memory device.

Section 9.13.2.1

_MEM Memory Attributes – resource descriptor field. Section 19.2.8

_MIF Minimum Address Fixed – resource descriptor field. Section 19.2.8

_MIN Minimum Base Address – resource descriptor field. Section 19.2.8

_MLS Multiple Language String – returns a device description in multiple languages. Section 6.1.7

_MOD Mode –Resource descriptor field Section 19.6,
Section 19.6.55

_MSG Message – sets the system message waiting status indicator. Section 9.2.2

_MSM Memory Set Monitoring – sets bandwidth monitoring parameters for a
memory device.

Section 9.13.2.2

_MTL Minimum Throttle Limit – returns the minimum throttle limit of a specific
thermal

Section 11.4.8

_MTP Memory Type – resource descriptor field. Section 19.2.8

Name Description Heading
UEFI Forum, Inc. January 2019 Page 325

ACPI Specification, Version 6.3 ACPI Software Programming Model
_NTT Notification Temperature Threshold – returns a threshold for device
temperature change that requires platform notification.

Section 11.4.9

_OFF Off – sets a power resource to the off state. Section 7.2.2

_ON On – sets a power resource to the on state. Section 7.2.3

_OS Operating System – returns a string that identifies the operating system. Section 5.7.3

_OSC Operating System Capabilities – inform AML of host features and capabilities. Section 6.2.11

_OSI Operating System Interfaces – returns supported interfaces, behaviors, and
features.

Section 5.7.2

_OST Ospm Status Indication – inform AML of event processing status. Section 6.3.5

_PAI Power Averaging Interval – sets the averaging interval for a power meter. Section 10.4.4

_PAR Parity – Parity for a UART SerialBus connection, resource descriptor field Section 19.6

_PCL Power Consumer List – returns a list of devices powered by a power source. Section 10.3.2

_PCT Performance Control – returns processor performance control and status
registers.

Section 8.4.6.1

_PDC Processor Driver Capabilities – inform AML of processor driver capabilities. Section 8.4.1

_PDL P-state Depth Limit – returns the lowest available performance P-state. Section 8.4.6.6

_PHA Clock Phase – Clock phase for a SPISerialBus connection, resource descriptor
field

Section 19.6

_PIC PIC – inform AML of the interrupt model in use. Section 5.8.1

_PIF Power Source Information – returns a Power Source information block. Section 10.3.3

_PIN Pin List – List of GPIO pins described, resource descriptor field. Section 19.6.55

_PLD Physical Location of Device – returns a device’s physical location information. Section 6.1.8

_PMC Power Meter Capabilities – returns a list of Power Meter capabilities info. Section 10.4.1

_PMD Power Metered Devices – returns a list of devices that are measured by the
power meter device.

Section 10.4.8

_PMM Power Meter Measurement – returns the current value of the Power Meter. Section 10.4.3

_POL Polarity – Resource descriptor field Section 19.6

Section 19.6.55

_PPC Performance Present Capabilites – returns a list of the performance states
currently supported by the platform.

Section 8.4.6.3

_PPE Polling for Platform Error – returns the polling interval to retrieve Corrected
Platform Error information.

Section 8.4.8

_PPI Pin Configuration – Pin configuration for a GPIO connection, resource
descriptor field

Section 19.6.55

Name Description Heading
UEFI Forum, Inc. January 2019 Page 326

ACPI Specification, Version 6.3 ACPI Software Programming Model
_PR Processor – predefined scope for processor objects. Section 5.3.1

_PR0 Power Resources for D0 – returns a list of dependent power resources to
enter state D0 (fully on).

Section 7.3.8

_PR1 Power Resources for D1 – returns a list of dependent power resources to
enter state D1.

Section 7.3.9

_PR2 Power Resources for D2 – returns a list of dependent power resources to
enter state D2.

Section 7.3.10

_PR3 Power Resources for D3hot – returns a list of dependent power resources to
enter state D3hot.

Section 7.3.11

_PRE Power Resources for Enumeration - Returns a list of dependent power
resources to enumerate devices on a bus.

Section 7.3.12

_PRL Power Source Redundancy List – returns a list of power source devices in the
same redundancy grouping.

Section 10.3.4

_PRR Power Resource for Reset – executes a reset on the associated device or
devices.

Section 7.3.26

_PRS Possible Resource Settings – returns a list of a device’s possible resource
settings.

Section 6.2.12

_PRT Pci Routing Table – returns a list of PCI interrupt mappings. Section 6.2.13

_PRW Power Resources for Wake – returns a list of dependent power resources for
waking.

Section 7.3.12

_PS0 Power State 0 – sets a device’s power state to D0 (device fully on). Section 7.3.2

_PS1 Power State 1 – sets a device’s power state to D1. Section 7.3.3

_PS2 Power State 2 – sets a device’s power state to D2. Section 7.3.4

_PS3 Power State 3 – sets a device’s power state to D3 (device off). Section 7.3.5

_PSC Power State Current – returns a device’s current power state. Section 7.3.6

_PSD Power State Dependencies – returns processor P-State dependencies. Section 8.4.6.5

_PSE Power State for Enumeration Section 7.3.14

_PSL Passive List – returns a list of passive cooling device objects. Section 11.4.10

_PSR Power Source – returns the power source device currently in use. Section 10.3.1

_PSS Performance Supported States – returns a list of supported processor
performance states.

Section 8.4.6.2

_PSV Passive – returns the passive trip point temperature. Section 11.4.11

_PSW Power State Wake – sets a device’s wake function. Section 7.3.14

_PTC Processor Throttling Control – returns throttling control and status registers. Section 8.4.5.1

_PTP Power Trip Points – sets trip points for the Power Meter device. Section 10.4.2

_PTS Prepare To Sleep – inform the platform of an impending sleep transition. Section 7.4.1

Name Description Heading
UEFI Forum, Inc. January 2019 Page 327

ACPI Specification, Version 6.3 ACPI Software Programming Model
_PUR Processor Utilization Request – returns the number of processors that the
platform would like to idle.

Section 8.5.1.1

_PXM Proximity – returns a device’s proximity domain identifier. Section 6.2.14

_Qxx Query – Embedded Controller query and SMBus Alarm control method. Section 5.6.4.1

_RBO Register Bit Offset – resource descriptor field. Section 19.2.8

_RBW Register Bit Width – resource descriptor field. Section 19.2.8

_RDI Resource Dependencies for Idle - returns the list of power resource
dependencies for system level low power idle states.

Section 8.5

_REG Region – inform AML code of an operation region availability change. Section 6.5.4

_REV Revision – returns the revision of the ACPI specification that is implemented. Section 5.7.4

_RMV Remove – returns a device’s removal ability status (docking). Section 6.3.6

_RNG Range – memory range type, resource descriptor field. Section 19.2.8

_ROM Read-Only Memory – returns a copy of the ROM data for a display device. Section A.3.3

_RST Device Reset – executes a reset on the associated device or devices. Section 7.3.25

_RT Resource Type – resource descriptor field. Section 19.2.8

_RTV Relative Temperature Values – returns temperature value information. Section 11.4.12

_RW Read-Write Status – resource descriptor field. Section 19.2.8

_RXL Receive Buffer Size - Size of the receive buffer in a UART Serialbus connection,
resource descriptor field.

Section 19.6

_S0 S0 System State – returns values to enter the system into the S0 state. Section 7.4.2

_S1 S1 System State – returns values to enter the system into the S1 state. Section 7.4.2

_S2 S2 System State – returns values to enter the system into the S2 state. Section 7.4.2

_S3 S3 System State – returns values to enter the system into the S3 state. Section 7.4.2

_S4 S4 System State – returns values to enter the system into the S4 state. Section 7.4.2

_S5 S5 System State – returns values to enter the system into the S5 state. Section 7.4.2

_S1D S1 Device State – returns the highest D-state supported by a device when in
the S1 state.

Section 7.3.16

_S2D S2 Device State – returns the highest D-state supported by a device when in
the S2 state.

Section 7.3.17

_S3D S3 Device State – returns the highest D-state supported by a device when in
the S3 state.

Section 7.3.18

_S4D S4 Device State – returns the highest D-state supported by a device when in
the S4 state.

Section 7.3.19

_S0W S0 Device Wake State – returns the lowest D-state that the device can wake
itself from S0.

Section 7.3.20

Name Description Heading
UEFI Forum, Inc. January 2019 Page 328

ACPI Specification, Version 6.3 ACPI Software Programming Model
_S1W S1 Device Wake State – returns the lowest D-state for this device that can
wake the system from S1.

Section 7.3.21

_S2W S2 Device Wake State – returns the lowest D-state for this device that can
wake the system from S2.

Section 7.3.22

_S3W S3 Device Wake State – returns the lowest D-state for this device that can
wake the system from S3.

Section 7.3.23

_S4W S4 Device Wake State – returns the lowest D-state for this device that can
wake the system from S4.

Section 7.3.24

_SB System Bus – scope for device and bus objects. Section 5.3.1

_SBS Smart Battery Subsystem – returns the subsystem configuration. Section 10.1.3

_SCP Set Cooling Policy – sets the cooling policy (active or passive). Section 11.4.13

_SDD Set Device Data – sets data for a SATA device. Section 9.9.3.3.1

_SEG Segment – returns a device’s PCI Segment Group number. Section 6.5.6

_SHL Set Hardware Limit – sets the hardware limit enforced by the Power Meter. Section 10.4.6

_SHR Sharable – interrupt share status, resource descriptor field. Section 19.2.8

_SI System Indicators – predefined scope. Section 5.3.1

_SIZ Size – DMA transfer size, resource descriptor field. Section 19.2.8

_SLI System Locality Information – returns a list of NUMA system localities. Section 6.2.15

_SLV Slave Mode – Slave mode setting for a SerialBus connection, resource
descriptor field.

Section 19.6

_SPD Set Post Device – sets which video device will be posted at boot. Section A.3.5

_SPE Connection Speed – Connection speed for a SerialBus connection, resource
descriptor field

Section 19.6

_SRS Set Resource Settings – sets a device’s resource allocation. Section 6.2.16

_SRT Set Real Time – Sets the current time to a Time and Alarm Control Method
Device.

Section 9.18.4

_SRV IPMI Spec Revision. See the Intelligent Platform Management Interface

Specification at “Links to ACPI-Related Documents” (http://uefi.org/acpi)
under the heading "Server Platform Management Interface Table".

_SST System Status – sets the system status indicator. Section 9.2.1

_STA Status – (1) returns the current status of a device.
(2) Returns the current on or off state of a Power Resource.

Section 6.3.7

Section 7.2.4

_STB Stop Bits - Number of stop bits used in a UART SerialBus connection, resource
descriptor field

Section 19.6

_STM Set Timing Mode – sets an IDE controller transfer timings. Section 9.9.2.1.2

Name Description Heading
UEFI Forum, Inc. January 2019 Page 329

ACPI Specification, Version 6.3 ACPI Software Programming Model
_STP Set Expired Timer Wake Policy – sets expired timer policies of the wake alarm
device.

Section 9.18.7

_STR String – returns a device’s description string. Section 6.1.10

_STV Set Timer Value – set timer values of the wake alarm device. Section 9.18.8

_SUB Supplies OSPM with the device's Subsystem ID. Optional. Section 6.1.9

_SUN Slot User Number – returns the slot unique ID number. Section 6.1.11

_SWS System Wake Source – returns the source event that caused the system to
wake.

Section 7.4.3

_T_x Temporary – reserved for use by ASL compilers. Section 19.3.1.1

_TC1 Thermal Constant 1 – returns TC1 for the passive cooling formula. Section 11.4.15

_TC2 Thermal Constant 2 – returns TC2 for the passive cooling formula. Section 11.4.16

_TDL T-State Depth Limit – returns the _TSS entry number of the lowest power
throttling state.

Section 8.4.5.5

_TFP Thermal Fast Sampling Period - returns the thermal sampling period for
passive cooling.

Section 11.4.17

_TIP Expired Timer Wake Policy – returns timer policies of the wake alarm device. Section 9.18.9

_TIV Timer Values – returns remaining time of the wake alarm device. Section 9.18.10

_TMP Temperature – returns a thermal zone’s current temperature. Section 11.4.18

_TPC Throttling Present Capabilities – returns the current number of supported
throttling states.

Section 8.4.5.3

_TPT Trip Point Temperature – inform AML that a devices’ embedded temperature
sensor has crossed a temperature trip point.

Section 11.4.19

_TRA Translation – address translation offset, resource descriptor field. Section 19.2.8

_TRS Translation Sparse – sparse/dense flag, resource descriptor field. Section 19.2.8

_TRT Thermal Relationship Table – returns thermal relationships between platform
devices.

Section 11.4.20

_TSD Throttling State Dependencies – returns a list of T-state dependencies. Section 8.4.5.4

_TSF Type-Specific Flags – resource descriptor field. Section 19.2.8

_TSN Thermal Sensor Device - returns a reference to the thermal sensor reporting a
zone temperature

Section 11.4.21

_TSP Thermal Sampling Period – returns the thermal sampling period for passive
cooling.

Section 11.4.22

_TSS Throttling Supported States – returns supported throttling state information. Section 8.4.5.2

_TST Temperature Sensor Threshold – returns the minimum separation for a
device’s temperature trip points.

Section 11.4.23

_TTP Translation Type – translation/static flag, resource descriptor field. Section 19.2.8

Name Description Heading
UEFI Forum, Inc. January 2019 Page 330

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.6.9 Interrupt-signaled ACPI events

ACPI 6.1introduces support for generating ACPI events when an interrupt is received by the OSPM, and
that interrupt is listed in the Generic Event Device (GED) _CRS object. OSPM claims all such interrupts,
and maps them to the appropriate event method required by the ACPI event model.

5.6.9.1 Declaring Generic Event Device

The Generic Event Device (GED) is modelled as a device in the namespace with a _HID defined to be
ACPI0013. The GED must also provide one _CRS and _EVT object for claiming interrupts and mapping
them to ACPI events, as described in the following sections. The platform declare its support for the GED,
and query whether an OS supports it, via the _OSC method, see Section 6.2.11.2.

5.6.9.2 _CRS Object for Interrupt-signaled Events

The _CRS object designates those interrupts that shall be handled by OSPM as ACPI events. This object
appears within the scope of the GED whose interrupts sources are to be used as Interrupt-signaled
events.

_TTS Transition To State – inform AML of an S-state transition. Section 7.4.4

_TXL Transmit Buffer Size – Size of the transmit buffer in a UART Serialbus
connection, resource descriptor field

Section 19.6

_TYP Type – DMA channel type (speed), resource descriptor field. Section 19.2.8

_TZ Thermal Zone – predefined scope: ACPI 1.0. Section 5.3.1

_TZD Thermal Zone Devices – returns a list of device names associated with a
Thermal Zone.

Section 11.4.24

_TZM Thermal Zone Member – returns a reference to the thermal zone of which a
device is a member.

Section 11.4.25

_TZP Thermal Zone Polling – returns a Thermal zone’s polling frequency. Section 11.4.26

_UID Unique ID – return a device’s unique persistent ID. Section 6.1.12

_UPC USB Port Capabilities – returns a list of USB port capabilities. Section 9.14

_UPD User Presence Detect – returns user detection information. Section 9.16.1

_UPP User Presence Polling – returns the recommended user presence polling
interval.

Section 9.16.2

_VEN Vendor-defined Data – Vendor-defined data for a GPIO or SerialBus
connection, resource descriptor field

Section 19.6.55

_VPO Video Post Options – returns the implemented video post options. Section A.3.6

_WAK Wake – inform AML that the system has just awakened. Section 7.4.5

_WPC Wireless Power Calibration - returns the notifier to wireless power controller Section 10.5.1

_WPP Wireless Power Polling - returns the recommended polling frequency Section 10.5.3

_Wxx Wake Event – method executed as a result of a wake event. Section 5.6.4.2.2

Name Description Heading
UEFI Forum, Inc. January 2019 Page 331

ACPI Specification, Version 6.3 ACPI Software Programming Model
Arguments:
None

Return Value:
A resource template Buffer containing only Interrupt Resource descriptors.

Note: For event numbers less than 255, _Exx and _Lxx methods may be used instead. In this case, they
take precedence and _EVT will not be invoked.

Example:
Device (_SB.GED1)
{
 Name(HID,”ACPI0013”)
 Name(_CRS, ResourceTemplate ()
 {
 Interrupt(ResourceConsumer, Level, ActiveHigh, Exclusive) {41}
 Interrupt(ResourceConsumer, Level, ActiveHigh, Shared) {42}
 Interrupt(ResourceConsumer, Level, ActiveHigh, ExclusiveAndWake) {43}
 })
 …
} //End of Scope

5.6.9.3 The Event (_EVT) Method for Handling Interrupt-signaled Events

Interrupts that are assigned by the platform to signal ACPI events are listed in the _CRS object under the
GED device. Since the interrupt descriptor also provides the mode of the interrupt associated with an
event, it gives OSPM all the information it needs to invoke a handler method for the event. A single
instance of the method handles all ACPI events for a given GED.

Note: Please refer to Section 5.6.4 for the OSPM requirements of handling an event (steps 1 – 5).

For Interrupt-signaled events, the Event (_EVT) method is used.

_EVT is defined as follows:

Arguments: (1)

Arg0 - EventNumber. An Integer indicating the event number (GSIV number) of the current event.
Must be in the range 0x00000000 - 0xffffffff.

Return Value:
None

Description
The _EVT method handles an Interrupt-signaled event. It must appear within the scope of the GED whose
interrupts are used to signal the event.

OSPM handles Interrupt-signaled events as follows:

• The interrupt is handled by OSPM because it is listed in the _CRS object under a GED.
UEFI Forum, Inc. January 2019 Page 332

ACPI Specification, Version 6.3 ACPI Software Programming Model
• When the event fires, OSPM handles the interrupt according to its mode and invokes the _EVT
method, passing it the interrupt number of the event. In the case of level interrupts, the ASL
within the _EVT method must be responsible for clearing the interrupt at the device.

• From this point on, handling is exactly like that for GPEs. The _EVT method may optionally call
Notify() on the appropriate device, and OS-specific mechanisms are used to notify the driver of
the event.

Example:
Device (_SB.GED1)
{
 Name(HID,”ACPI0013”)
 Name(_CRS, ResourceTemplate ()
 {
 Interrupt(ResourceConsumer, Level, ActiveHigh, Exclusive) {41}
 Interrupt(ResourceConsumer, Edge, ActiveHigh, Shared) {42}
 Interrupt(ResourceConsumer, Level, ActiveHigh, ExclusiveAndWake) {43}
 }
 Method (_EVT,1) { // Handle all ACPI Events signaled by the Generic Event
Device(GED1)
 Switch (Arg0) // Arg0 = GSIV of the interrupt
 {
 Case (41) { // interrupt 41
 Store(One, ISTS) // clear interrupt status register at
device X
 // which is mapped via an operation region
 Notify (_SB.DEVX, 0x0) // insertion request
 }
 Case (42) { // interrupt 42
 Notify (_SB.DEVX, 0x3) // ejection request
 }
 Case (43) { // interrupt 43
 Store(One, ISTS) // clear interrupt status register at
device X
 // which is mapped via an operation region
 Notify (_SB.DEVX, 0x2) // wake event
 }
 }
 } //End of Method
} //End of GED1 Scope
Device (_SB.DEVX)
{
 …
 Name(_PRW,Package()
 {
 Package(2){ // EventInfo
 _SB.GED1, // device reference
 0x2 // event (zero-based CRS index) = 2 (maps to interrupt 43)
 },
 0x03, // Can wake up from S3 state
 PWRA // PWRA must be ON for DEVX to wake system
UEFI Forum, Inc. January 2019 Page 333

ACPI Specification, Version 6.3 ACPI Software Programming Model
 })
 …
} //End of DEVX Scope

5.6.9.4 GED Wake Events

An important use of the interrupt-signaled events is to implement device wake events. Interrupt-based
Wake Events are described in Section 4.1.1.2. Note that the interrupt associated with that wake event
must be wake-capable per the Extended Interrupt resource descriptor listed under the _CRS object.

Consider the ASL example in the previous section, note that the interrupts that map to the wake event
for DEVX are wake-capable. The components of the Interrupt-signaled ACPI event programming model
interact in the following way:

• When a device asserts its wake signal and the interrupt has been enabled by the GED driver,
the interrupt is asserted.

• If the system is sleeping, this will cause the hardware, if possible, to transition the system into
the S0 state.

• Once the system is running, OSPM will dispatch the GED interrupt service routine.
• The GED needs to determine which interrupt has been asserted and may perform a Notify

command on the corresponding device object(s) that have asserted wake.
• In turn OSPM will notify OSPM native driver(s) for each device that will wake its device to

service it.

Wake events must be exclusively tied to a GED interrupt (for example, one interrupt cannot be shared by
multiple wake events) in order to properly handle the semantics used by the system

Note that any ACPI platform may utilize GPIO-signaled and/or Interrupts-signaled ACPI events (i.e. they
are not limited to Hardware-reduced ACPI platforms).

5.6.10 Managing a Wake Event Using Device _PRW Objects

A device’s _PRW object provides the zero-based bit index into the general-purpose status register block
to indicate which general-purpose status bit from either GPE0_BLK or GPE1_BLK is used as the specific
device’s wake mask. Although the hardware must maintain individual device wake enable bits, the
system can have multiple devices using the same general-purpose event bit by using OEM-specific
hardware to provide second-level status and enable bits. In this case, the OEM AML code is responsible
for the second-level enable and status bits.

A device’s _PRW object provides the zero-based index into the _AEI object of a GPIO controller device or
zero-based index into the _CRS object of a Generic Event Device (GED).

OSPM enables or disables the device wake function by enabling or disabling its corresponding event and
by executing its _PSW control method (which is used to take care of the second-level enables). When the
event is asserted, OSPM still executes the corresponding event control method that determines which
device wakes are asserted and notifies the corresponding device objects. The native OS driver is then
notified that its device has asserted wake, for which the driver powers on its device to service it.

If the system is in a sleeping state when the enabled event is asserted the hardware will transition the
system into the S0 state, if possible.
UEFI Forum, Inc. January 2019 Page 334

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.7 Predefined Objects

The AML interpreter of an ACPI compatible operating system supports the evaluation of a number of
predefined objects. The objects are considered “built in” to the AML interpreter on the target operating
system.

A list of predefined object names are shown in the following table.

Table 5-185 Predefined Object Names

Name Description

_GL Global Lock mutex

_OS Name of the operating system

_OSI Operating System Interface support

_REV Revision of the ACPI specification that is implemented

5.7.1 _GL (Global Lock Mutex)

This predefined object is a Mutex object that behaves like a Mutex as defined in Section 19.6.87, “Mutex
(Declare Synchronization/Mutex Object),” with the added behavior that acquiring this Mutex also
acquires the shared environment Global Lock defined in Section 5.2.10.1, “Global Lock.” This allows
Control Methods to explicitly synchronize with the Global Lock if necessary.

5.7.2 _OSI (Operating System Interfaces)

This method is used by the system firmware to query OSPM about interfaces and features that are
supported by the host operating system. The usage and implementation model for this method is as
follows:

• The _OSI method is implemented within the operating system.
• OSI is called by the firmware AML code, usually during initialization (such as via _INI method).

Thus, _OSI is actually an “up-call” from the firmware AML to the OS – exactly the opposite of
other control methods.

• An _OSI invocation by the firmware is a request to the operating system: "Do you support this
interface/feature?"

• The host responds to this _OSI request with a simple yes or no (Ones/Zero, TRUE/FALSE,
Supported/NotSupported).

The _OSI method requires one argument and returns an integer. The argument is a string that contains
an optional ACPI-defined OsVendorString followed by a required FeatureGroupString. The feature group
string can be either ACPI-defined or OS vendor defined.

_OSI cannot and should not be used by the firmware in an attempt to identify the host operating system;
rather, this method is intended to be used to identify specific features and interfaces that are supported
by the OS. The example below illustrates this:

 _OSI (“Windows 2009”)
UEFI Forum, Inc. January 2019 Page 335

ACPI Specification, Version 6.3 ACPI Software Programming Model
In the _OSI invocation above, “Windows” is the OsVendorString, and “2009” is the vendor-defined
FeatureGroupString. A return value of TRUE (Ones) from this call does NOT indicate that the executing
operating system is Windows. It simply indicates that the actual OS conforms to “Windows 2009”
features and interfaces, and is thus compatible with Windows 2009. ACPI implementations other than
Windows often reply TRUE to all Windows _OSI requests.

The OsVendorString should always be accompanied by a FeatureGroupString. However, the
OsVendorString itself is optional and can be omitted if the feature group string applies to all operating
systems. The ACPI-defined feature group strings may be used in this standalone manner. For example:

_OSI ("3.0 Thermal Model")

Arguments: (1)

Arg0 – A String containing the optional OS vendor prefix (as defined in Table 5-186) and/or the required
Feature Group string (as ACPI-defined in Table 5-187 , or a vendor-defined custom feature/interface
string). The optional OS vendor string is not needed in the case of the ACPI-defined feature group strings.

Return Value:

An Integer containing a Boolean that indicates whether the requested feature is supported:

0x0 (Zero) – The interface, behavior, or feature is not supported

Ones (-1) – The interface, behavior, or feature is supported. Note: The value of Ones is 0xFFFFFFFF in 32-
bit mode (DSDT revision 1) or 0xFFFFFFFFFFFFFFFF in 64-bit mode (DSDT revision 2 and greater).

Table 5-186 Predefined Operating System Vendor String Prefixes

Operating System Vendor String Prefix Description

“FreeBSD” <FeatureGroupString> Free BSD OS features/interfaces

“HP-UX” <FeatureGroupString> HP Unix Operating Environment OS features/interfaces

“Linux” <FeatureGroupString> GNU/Linux Operating system OS features/interfaces

“OpenVMS”
<FeatureGroupString>

HP OpenVMS Operating Environment OS features/
interfaces

“Windows” <FeatureGroupString> Microsoft Windows OS features/interfaces

Table 5-187 Standard ACPI-Defined Feature Group Strings

Feature Group String Description

“Module Device” OSPM supports the declaration of module device (ACPI0004) in the
namespace and will enumerate objects under the module device scope.

“Processor Device” OSPM supports the declaration of processors in the namespace using the
ACPI0007 processor device HID.

“3.0 Thermal Model” OSPM supports the extensions to the ACPI thermal model in Revision 3.0.

“Extended Address Space
Descriptor”

OSPM supports the Extended Address Space Descriptor
UEFI Forum, Inc. January 2019 Page 336

ACPI Specification, Version 6.3 ACPI Software Programming Model
OSPM may indicate support for multiple OS interface / behavior strings if the operating system supports
the behaviors. For example, a newer version of an operating system may indicate support for strings from
all or some of the prior versions of that operating system.

_OSI provides the platform with the ability to support new operating system versions and their
associated features when they become available. OSPM can choose to expose new functionality based on
the _OSI argument string. That is, OSPM can use the strings passed into _OSI to ensure compatibility
between older platforms and newer operating systems by maintaining known compatible behavior for a
platform. As such, it is recommended that _OSI be evaluated by the _SB.INI control method so that
platform compatible behavior or features are available early in operating system initialization.

Since feature group functionality may be dependent on OSPM implementation, it may be required that
OS vendor-defined strings be checked before feature group strings.

Platform developers should consult OS vendor specific information for OS vendor defined strings
representing a set of OS interfaces and behaviors. ACPI defined strings representing an operating system
and an ACPI feature group are listed in the following tables.

_OSI Examples
Use of standard ACPI-defined feature group strings:

Scope (_SB)
{
 Name (PAD1, 0)
 Name (MDEV, 0)
 Method (_INI)
 {
 If (CondRefOf (_OSI) // Ensure _OSI exists in the OS
 {
 If (_OSI (“Processor Aggregator Device”)
 {
 Store (1, PAD1)
 }
 If (_OSI (“Module Device”)
 {
 // Expose PCI Root Bridge under Module Device –
 // OS support Module Device
 Store (0, MDEV1)
 Loadtable (“OEM1”, “OEMID”, “Table1”)
 }
 Else
 {
 // Expose PCI Root Bridge under _SB –
 // OS does not support Module Device

“3.0 _SCP Extensions” OSPM evaluates _SCP with the additional acoustic limit and power limit
arguments defined in ACPI 3.0.

“Processor Aggregator
Device”

OSPM supports the declaration of the processor aggregator device in the
namespace using the ACPI000C processor aggregator device HID.

Feature Group String Description
UEFI Forum, Inc. January 2019 Page 337

ACPI Specification, Version 6.3 ACPI Software Programming Model
 Store (1, MDEV1)
 Loadtable (“OEM2”, “OEMID”, “Table2”)
 }
 }
 }
}

Use of OS vendor-defined feature group strings:

//
// In this example, “Windows” is the OsVendorString, and the year strings
// (2009, 2012, and 2105) are the vendor-defined FeatureGroupStrings
//
Scope (_SB)
{
 Name (OSYS, 0x7D0) // Type of OS indicating supported features
 Method (_INI)
 {
 If (CondRefOf (_OSI) // Ensure _OSI exists in the OS
 {
 If (_OSI (“Windows 2009”)
 {
 Store (0x7D1, OSYS)
 }
 If (_OSI (“Windows 2012”)
 {
 Store (0x7D1, OSYS)
 }
 If (_OSI (“Windows 2015”)
 {
 Store (0x7D1, OSYS)
 }
 }
 }
}

5.7.3 _OS (OS Name Object)

This predefined object evaluates to a string that identifies the operating system. In robust OSPM
implementations, _OS evaluates differently for each OS release. This may allow AML code to
accommodate differences in OSPM implementations. This value does not change with different revisions
of the AML interpreter.

Arguments:

None

Return Value:

A String containing the operating system name.
UEFI Forum, Inc. January 2019 Page 338

ACPI Specification, Version 6.3 ACPI Software Programming Model
5.7.4 _REV (Revision Data Object)

This predefined object evaluates to an Integer (DWORD) representing the revision of the ACPI
Specification implemented by the specified _OS.

Arguments:

None

Return Value:

An Integer representing the revision of the currently executing ACPI implementation.

1. Only ACPI 1 is supported, only 32-bit integers.

2. ACPI 2 or greater is supported. Both 32-bit and 64-bit integers are supported.

Actual integer width depends on the revision of the DSDT (revision < 2 means 32-bit. >= 2
means 64-bit).

 Other values - Reserved

5.7.5 _DLM (DeviceLock Mutex)

This object appears in a device scope when AML access to the device must be synchronized with the OS
environment. It is used in conjunction with a standard Mutex object. With _DLM, the standard Mutex
provides synchronization within the AML environment as usual, but also synchronizes with the OS
environment.

_DLM evaluates to a package of packages, each containing a reference to a Mutex and an optional
resource template protected by the Mutex, If only the Mutex name is specified, then the sharing rules
(i.e. which resources are protected by the lock) are defined by a predefined contract between the AML
and the OS device driver. If the resource template is specified, then only those resources within the
resource template are protected.

Arguments:

None

Return Value:

A variable-length Package containing sub-packages of Mutex References and resource templates. The
resource template in each subpackage is optional.

Return Value Information

Package {
 DeviceLockInfo [0] // Package
 . . .
 DeviceLockInfo [n] // Package
}

Each variable-length DeviceLockInfo sub-Package contains either one element or 2 elements, as
described below:

Package {
 DeviceLockMutex // Reference to a Mutex object
 Resources // Buffer or Reference (Resource Template)
UEFI Forum, Inc. January 2019 Page 339

ACPI Specification, Version 6.3 ACPI Software Programming Model
}

Table 5-188 DeviceLockInfo Package Values

Element Object Type Description

DeviceLockMutex Reference A reference to the mutex that is to be shared between the AML
code and the host operating system.

Resources Buffer (or
reference to a
Buffer)

Optional. Contains a Resource Template that describes the
resources that are to be protected by the Device Lock Mutex.

Example:

Device (DEV1)
{
 Mutex (MTX1, 0)
 Name (RES1, ResourceTemplate ()
 {
 I2cSerialBusV2 (0x0400, DeviceInitiated, 0x00001000,
 AddressingMode10Bit, "_SB.DEV1",
 0, ResourceConsumer, I2C1)
 })

 Name (_DLM, Package (1)
 {
 Package (2)
 {
 MTX1,
 RES1
 }
 })
}

Device (DEV2)
{
 Mutex (MTX2, 0)
 Mutex (MTX3, 0)
 Name (_DLM, Package (2)
 {
 Package (2)
 {
 \DEV2.MTX2,
 ResourceTemplate ()
 {
 I2cSerialBusV2 (0x0400, DeviceInitiated, 0x00001000,
 AddressingMode10Bit, "_SB.DEV2",
 0, ResourceConsumer, I2C2)
 }
 },
 Package (1) // Optional resource not needed
 {
UEFI Forum, Inc. January 2019 Page 340

ACPI Specification, Version 6.3 ACPI Software Programming Model
 \DEV2.MTX3
 }
 })
}

5.8 System Configuration Objects

5.8.1 _PIC Method

The _PIC optional method is used to report to the platform runtime firmware the current interrupt
model used by the OS. This control method returns nothing. The argument passed into the method
signifies the interrupt model OSPM has chosen, PIC mode, APIC mode, or SAPIC mode. Notice that calling
this method is optional for OSPM. If the platform CPU architecture supports PIC mode and the method is
never called, the platform runtime firmware must assume PIC mode. It is important that the platform
runtime firmware save the value passed in by OSPM for later use during wake operations.

Arguments: (1)

Arg0 – An Integer containing a code for the current interrupt model:

0 – PIC mode

1 – APIC mode

2 – SAPIC mode

Other values –Reserved

Return Value:
None
UEFI Forum, Inc. January 2019 Page 341

6 Device Configuration

This section specifies the objects OSPM uses to configure devices. There are three types of configuration
objects:

Device identification objects associate platform devices with Plug and Play IDs.
• Device configuration objects declare and configure hardware resources and characteristics for

devices enumerated via ACPI.
• Device insertion and removal objects provide mechanisms for handling dynamic insertion and

removal of devices.

This section also defines the ACPI device–resource descriptor formats. Device–resource descriptors are
used as parameters by some of the device configuration objects.

6.1 Device Identification Objects

Device identification objects associate each platform device with a Plug and Play device ID for each
device. All the device identification objects are listed in the table below:

Table 6-189 Device Identification Objects

Object Description

_ADR Object that evaluates to a device’s address on its parent bus.

_CID Object that evaluates to a device’s Plug and Play-compatible ID list.

_CLS Object that evaluates to a package of coded device-class information.

_DDN Object that associates a logical software name (for example, COM1) with a device.

_HID Object that evaluates to a device’s Plug and Play hardware ID.

_HRV Object that evaluates to an integer hardware revision number.

_MLS Object that provides a human readable description of a device in multiple languages.

_PLD Object that provides physical location description information.

_PRD

{deprecated}

Object that evaluates to a package of device property subpackages.

_SUB Object that evaluates to a device's Plug and Play subsystem ID.

_SUN Object that evaluates to the slot-unique ID number for a slot.

_STR Object that contains a Unicode identifier for a device. Can also be used for thermal zones.

_UID Object that specifies a device’s unique persistent ID, or a control method that generates it.

For any device that is on a non-enumerable type of bus (for example, an ISA bus), OSPM enumerates the
devices' identifier(s) and the ACPI system firmware must supply an _HID object (plus one or more
optional objects such as _CID, _CLS, _HRV, _SUB) for each device to enable OSPM to do that. For devices
on an enumerable type of bus, such as a PCI bus, the ACPI system must identify which device on the
enumerable bus is identified by a particular address; the ACPI system firmware must supply an _ADR
UEFI Forum, Inc. January 2019 Page 342

ACPI Specification, Version 6.3 Device Configuration
object for each device to enable this. A device object must contain either an _HID object or an _ADR
object, but should not contain both.

If any of these objects are implemented as control methods, these methods may depend on operation
regions. Since the control methods may be evaluated before an operation region provider becomes
available, the control method must be structured to execute in the absence of the operation region
provider. (_REG methods notify the platform runtime firmware of the presence of operation region
providers.) When a control method cannot determine the current state of the hardware due to a lack of
operation region provider, it is recommended that the control method should return the condition that
was true at the time that control passed from the platform boot firmware to the OS. (The control method
should return a default, boot value).

6.1.1 _ADR (Address)

This object is used to supply OSPM with the address of a device on its parent bus. An _ADR object must
be used when specifying the address of any device on a bus that has a standard enumeration algorithm
(see Section 3.7, “Configuration and Plug and Play”, for the situations when these devices do appear in
the ACPI namespace).

Arguments:

None

Return Value:

An Integer containing the address of the device

An _ADR object can be used to provide capabilities to the specified address even if a device is not
present. This allows the system to provide capabilities to a slot on the parent bus.

OSPM infers the parent bus and segment from the location of the _ADR object’s device package in the
ACPI namespace. For more information about the positioning of device packages in the ACPI namespace,
see Section 19.6.30, “Device (Declare Bus/Device Package)”

_ADR object information must be static and can be defined for the following bus types listed in Table 6-
190.

Table 6-190 ADR Object Address Encodings

BUS Address Encoding

EISA EISA slot number 0–F

Floppy Bus Drive select values used for programming the floppy controller to access the specified INT13
unit number. The _ADR Objects should be sorted based on drive select encoding from 0-3.

I3C Bits [63:52] - Reserved

Bits [51:48] - Master Instance

Bits [47:0] - I3C Device Provisional ID, following encoding defined in the MIPI Specification
for I3C (Version 1.0, section 5.1.4.1).

If an I3C device supports a static address instead of a Provisional ID, then bits [47:7] are
Reserved (zero), and bits [6:0] are the 7-bit static address.

IDE Controller 0–Primary Channel, 1–Secondary Channel
UEFI Forum, Inc. January 2019 Page 343

ACPI Specification, Version 6.3 Device Configuration
6.1.2 _CID (Compatible ID)

This optional object is used to supply OSPM with a device’s Plug and Play-Compatible Device ID. Use _CID
objects when a device has no other defined hardware standard method to report its compatible IDs.

Arguments:

None

Return Value:

An Integer or String containing a single CID or a Package containing a list of CIDs

A _CID object evaluates to either:

• A single Compatible Device ID
• A package of Compatible Device IDs for the device — in the order of preference, highest

preference first.

Each Compatible Device ID must be either:

• A valid HID value (a 32-bit compressed EISA type ID or a string such as “ACPI0004”).

IDE Channel 0–Master drive, 1–Slave drive

Intel® High
Definition Audio High word – SDI (Serial Data In) ID of the codec that contains the function group.

Low word – Node ID of the function group.

PCI High word–Device #, Low word–Function #. (for example, device 3, function 2 is
0x00030002). To refer to all the functions on a device #, use a function number of FFFF).

PCMCIA Socket #; 0–First Socket

PC CARD Socket #; 0–First Socket

Serial ATA SATA Port: High word—Root port #, Low word—port number off of a SATA port multiplier, or
0xFFFF if no port multiplier attached. (For example, root port 2 would be 0x0002FFFF. If
instead a port multiplier had been attached to root port 2, the ports connected to the
multiplier would be encoded 0x00020000, 0x00020001, etc.) The value 0xFFFFFFFF is
reserved.

SMBus Lowest Slave Address

USB Root HUB Only one child of the host controller. It must have an _ADR of 0. No other children or values
of _ADR are allowed.

USB Ports Port number (1-n)

SDIO Bus High word - Slot number (0-First Slot)

Low word - Function number (see SD specification for definitions.)

NVDIMM NFIT Device handle as defined by Section 5.2.25.3 (Memory Device to System Physical
Address Range Mapping Structure)

BUS Address Encoding
UEFI Forum, Inc. January 2019 Page 344

ACPI Specification, Version 6.3 Device Configuration
• A string that uses a bus-specific nomenclature. For example, _CID can be used to specify the
PCI ID. The format of a PCI ID string is one of the following:

“PCI\CC_ccss”
“PCI\CC_ccsspp”
“PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss&REV_rr”
“PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss”
“PCI\VEN_vvvv&DEV_dddd&REV_rr”
“PCI\VEN_vvvv&DEV_dddd”

Where:

cc – hexadecimal representation of the Class Code byte

ss – hexadecimal representation of the Subclass Code byte

pp – hexadecimal representation of the Programming Interface
byte

vvvv – hexadecimal representation of the Vendor ID

dddd – hexadecimal representation of the Device ID

ssssssss – hexadecimal representation of the Subsystem ID

rr – hexadecimal representation of the Revision byte

A compatible ID retrieved from a _CID object is only meaningful if it is a non-NULL value.

Example ASL:

 Device (XYZ) {
 Name (_HID, EISAID ("PNP0303")) // PC Keyboard Controller
 Name (_CID, EISAID ("PNP030B"))
 }

6.1.3 _CLS (Class Code)

This object is used to supply OSPM with the PCI-defined base-class, sub-class and programming interface
for a device. This object is optional. However, it may be useful for loading generic drivers on hardware
that is compatible with PCI -defined device classes, but that is not implemented on the PCI bus (and is
therefore enumerated by ACPI.)

Arguments:

None

Return Value:

A Package containing the PCI -defined class information as a list of Integers:

Package(3) {<Base-Class code>, <Sub-class code>, <Programming Interface code>}

A list of available class codes and programming interface codes is provided by the PCI SIG. See "PCI Code
and ID Assignment Specification", available from "Links to ACPI-Related Documents" (http://uefi.org/
acpi) under the heading "PCI Code and ID Assignment Specification
UEFI Forum, Inc. January 2019 Page 345

ACPI Specification, Version 6.3 Device Configuration
Example ASL:

 Device(SATA) //AHCI- compatible SATA controller
 {
 Name(_HID, "…")
 Name(_CLS, Package (3)
 {
 0x01, // Base Class (01h == Mass Storage)
 0x06, // Sub-Class (06h == SATA)
 0x01, // Programming Interface (01h == AHCI)
 })
 Name(_CRS, ResourceTemplate()
 {
 … // AHCI-defined system resources
 })
 }

6.1.4 _DDN (DOS Device Name)

This object is used to associate a logical name (for example, COM1) with a device. This name can be used
by applications to connect to the device.

Arguments:

None

Return Value:

A String containing the DOS device name

6.1.5 _HID (Hardware ID)

This object is used to supply OSPM with the device’s PNP ID or ACPI ID.1

 When describing a platform, use of any _HID objects is optional. However, a _HID object must be used to
describe any device that will be enumerated by OSPM. OSPM only enumerates a device when no bus
enumerator can detect the device ID. For example, devices on an ISA bus are enumerated by OSPM. Use
the _ADR object to describe devices enumerated by bus enumerators other than OSPM.

Arguments:

None

Return Value:

An Integer or String containing the HID

A _HID object evaluates to either a numeric 32-bit compressed EISA type ID or a string. If a string,
the format must be an alphanumeric PNP or ACPI ID with no asterisk or other leading
characters.

A valid PNP ID must be of the form "AAA####" where A is an uppercase letter and # is a hex digit.
A valid ACPI ID must be of the form "NNNN####" where N is an uppercase letter or a digit

1. PNP ID and ACPI ID Registry is at http://www.uefi.org/PNP_ACPI_Registry.
UEFI Forum, Inc. January 2019 Page 346

ACPI Specification, Version 6.3 Device Configuration
('0'-'9') and # is a hex digit. This specification reserves the string "ACPI" for use only with
devices defined herein. It further reserves all strings representing 4 HEX digits for exclusive
use with PCI-assigned Vendor IDs.

Example ASL:
 Name (_HID, EISAID ("PNP0C0C")) // Control-Method Power Button
 Name (_HID, EISAID ("INT0800")) // Firmware Hub
 Name (_HID, "ACPI0003") // AC adapter device
 Name (_HID, "MSFT0003") // Vendor-defined device
 Name (_HID, "80860003") // PCI-assigned device identifier

6.1.6 _HRV (Hardware Revision)

This object is used to supply OSPM with the device’s hardware revision. The use of _HRV is optional.

Arguments:

None

Return Value:

An Integer (DWORD) containing the hardware revision number

Example ASL:
 Name (_HRV, 0x0003)// Revision number 3 of this hardware device

6.1.7 _MLS (Multiple Language String)

The _MLS object provides OSPM a human readable description of a device in multiple languages. This
information may be provided to the end user when the OSPM is unable to get any other information
about this device. Although this functionality is also provided by the _STR object, _MLS expands that
functionality and provides vendors with the capability to provide multiple strings in multiple languages.
The _MLS object evaluates to a package of packages. Each sub-package consists of a Language identifier
and corresponding unicode string for a given locale. Specifying a language identifier allows OSPM to
easily determine if support for displaying the Unicode string is available. OSPM can use this information
to determine whether or not to display the device string, or which string is appropriate for a user’s
preferred locale.

It is assumed that OSPM will always support the primary English locale to accommodate English
embedded in a non-English string, such as a brand name.

If OSPM doesn’t support the specific sub-language ID it may choose to use the primary language ID for
displaying device text.

Arguments:

None

Return Value:

A variable-length Package containing a list of language descriptor Packages as described below.

Return Value Information
Package {
UEFI Forum, Inc. January 2019 Page 347

ACPI Specification, Version 6.3 Device Configuration
 LanguageDescriptor[0] // Package

 LanguageDescriptor[n] // Package
}

Each Language Descriptor sub-Package contains the elements described below:

Package {
 LanguageId // String
 UnicodeDescription // Buffer
}

LanguageId is a string identifying the language. This string follows the format specified in the Internet
RFC 3066 document (Tags for the Identification of Languages). In addition to supporting the existing
strings in RFC 3066, Table 6-191 lists aliases that are also supported.

Table 6-191 Additional Language ID Alias Strings

RFC String Supported Alias String

zh-Hans zh-chs

zh-Hant zh-cht

UnicodeDescription is a Buffer containing a Unicode (UTF-16) string. This string contains the language-
specific description of the device corresponding to the LanguageID. The Unicode() ASL macro can be used
to create this Buffer.

Example:
Device (XYZ) {
 Name (_ADR, 0x00020001)
 Name (_MLS, Package(){(2){“en”, Unicode("ACME super DVD controller")}})
}

6.1.8 _PLD (Physical Location of Device)

This optional object is a method that conveys to OSPM a general description of the physical location of a
device’s external connection point. The _PLD may be child object for any ACPI Namespace object the
system wants to describe. This information can be used by system software to describe to the user which
specific connector or device input mechanism may be used for a given task or may need user intervention
for correct operation. The _PLD should only be evaluated when its parent device is present as indicated
by the device’s presence mechanism (i.e. _STA or other)

An externally exposed device connection point can reside on any surface of a system’s housing. The
respective surfaces of a system’s housing are identified by the “Panel” field (described below). The _PLD
method returns data to describe the location of where the device’s connection point resides and a Shape
(described below) that may be rendered at that position. One physical device may have several
connection points. A _PLD describes the offset and rotation of a single device connection point from an
“origin” that resides in the lower left hand corner of its Panel.

All Panel references (Top, Bottom, Right, Left, etc.) are interpreted as though the user is facing the front
of the system. For handheld mobile devices, the front panel is the one holding the display screen, and its
UEFI Forum, Inc. January 2019 Page 348

ACPI Specification, Version 6.3 Device Configuration
origin is in the lower-left corner when the display is viewed in the Portrait orientation. For example, the
Right Panel is the right side of the system as viewed from the front.

All “origin” references for a Panel are interpreted as its lower left corner when the user is facing the
respective Panel. The Top Panel shall be viewed with the system is viewed resting on its Front Panel, and
the Bottom Panel shall be viewed with the system resting on its Back Panel. All other Panels shall be
viewed with the system resting on its Bottom Panel. Refer to Figure 6-29 for more information.

Figure 6-29 System Panel and Panel Origin Positions

Front
Panel

Origin

Left
Panel
Origin

Top
Panel
Origin

Bottom
Panel
Origin

Back
Panel

Origin

Right
Panel
Origin

Top

Bottom

 The data bits also assume that if the system is capable of opening up like a laptop that the device may
exist on the base of the laptop system or on the lid. In the case of the latter, the “Lid” bit (described
below) should be set indicating the device connection point is on the lid. If the device is on the lid, the
description describes the device’s connection point location when the system is opened with the lid up. If
the device connection point is not on the lid, then the description describes the device’s connection point
location when the system with the lid closed.

Figure 6-30 Laptop Panel and Panel Origin Positions

Front
Panel

Lid

Lid
Front Panel

Origin

(base)
Front Panel

 Origin

(base)
Top Panel

 Origin

To render a view of a system Panel, all _PLDs that define the same Panel and Lid values are collected. The
_PLDs are then sorted by the value of their Order field and the view of the panel is rendered by drawing
the shapes of each connection point (in their correct Shape, Color, Horizontal Offset, Vertical Offset,
Width, Height, and Orientation) starting with all Order = 0 _PLDs first. Refer to Figure 6-32 for an
example.

The location of a device connection point may change as a result of the system connecting or
disconnecting to a docking station or a port replicator. As such, Notify event of type 0x09 will cause OSPM
to re-evaluate the _PLD object residing under the particular device notified. If a platform is unable to
UEFI Forum, Inc. January 2019 Page 349

ACPI Specification, Version 6.3 Device Configuration
detect the change of connecting or disconnecting to a docking station or port replicator, a _PLD object
should not be used to describe the device connection points that will change location after such an event.

Arguments:

None

Return Value:

A variable-length Package containing a list of Buffers

This method returns a package containing a single or multiple buffer entries. At least one buffer entry
must be returned using the bit definitions below.

Buffer 0 Return Value

Name Definition DWORD Bit Offset

(DWORD)

Bit

Offset

(Buffer)

Length

(bits)

Revision The current Revision is 0x2 0 0 0 7

Ignore Color If this bit is set, the Color field is ignored, as
the color is unknown.

0 7 7 1

Color 24-bit RGB value for the color of the device
connection point.

Bits [15:8]=red value

Bits [23:16]=green value

Bits [31:24]=blue value

0 8 8 24

Width Width of the widest point of the device
connection point, in millimeters

1 0 32 16

Height Height of the tallest point of the device
connection point, in millimeters

1 16 48 16

User Visible Set if the device connection point can be
seen by the user without disassembly.

2 0 64 1

Dock Set if the device connection point resides in
a docking station or port replicator.

2 65 1

Lid Set if this device connection point resides on
the lid of laptop system.

2 66 1
UEFI Forum, Inc. January 2019 Page 350

ACPI Specification, Version 6.3 Device Configuration
Panel Describes which panel surface of the
system’s housing the device connection
point resides on.

0 – Top

1 – Bottom

2 – Left

3 – Right

4 – Front

5 – Back

6 – Unknown (Vertical Position and
Horizontal Position will be ignored)

2 67 3

Vertical
Position on
the panel
where the
device
connection
point resides.

0 – Upper

1 – Center

2 – Lower

2 70 2

Horizontal
Position on
the panel
where the
device
connection
point resides.

2 72 2

Name Definition DWORD Bit Offset

(DWORD)

Bit

Offset

(Buffer)

Length

(bits)
UEFI Forum, Inc. January 2019 Page 351

ACPI Specification, Version 6.3 Device Configuration
Shape Describes the shape of the device
connection point. The Width and Height
fields may be used to distort a shape, e.g. A
Round shape will look like an Oval shape if
the Width and Height are not equal. And a
Vertical Rectangle or Horizontal Rectangle
may look like a square if Width and Height
are equal. Refer to Figure 6-31.

0 – Round

1 – Oval

2 – Square

3 – Vertical Rectangle

4 – Horizontal Rectangle

5 – Vertical Trapezoid

6 – Horizontal Trapezoid

7 – Unknown – Shape rendered as a
Rectangle with dotted lines

8 – Chamfered

15:9 – Reserved

2 74 4

Group
Orientation

if Set, indicates vertical grouping, otherwise
horizontal is assumed.

2 78 1

Group Token Unique numerical value identifying a group. 2 79 1

Group
Position

Identifies this device connection point’s

position in the group (i.e. 1st, 2nd)

2 87 8

Bay Set if describing a device in a bay or if device
connection point is a bay.

2 95 1

Ejectable Set if the device is ejectable. Indicates
ejectability in the absence of _EJx objects.

2 96 1

 OSPM
Ejection
required

OSPM Ejection required: Set if OSPM needs
to be involved with ejection process. User-
operated physical hardware ejection is not
possible.

2 97 1

Cabinet
Number

For single cabinet system, this field is always
0.

2 98 8

Card Cage
Number

For single card cage system, this field is
always 0.

2 106 8

Name Definition DWORD Bit Offset

(DWORD)

Bit

Offset

(Buffer)

Length

(bits)
UEFI Forum, Inc. January 2019 Page 352

ACPI Specification, Version 6.3 Device Configuration
reference if Set, this _PLD defines a “reference” shape
that is used to help orient the user with
respect to the other shapes when rendering
_PLDs.

2 114 1

Rotation Rotates the Shape clockwise in 45 degree
steps around its origin where:

0 – 0°

1 – 45°

2 – 90°

3 – 135°

4 – 180°

5 – 225°

6 – 270°

7 – 315°

2 115 4

Order Identifies the drawing order of the
connection point described by a _PLD. Order
= 0 connection points are drawn before
Order = 1 connection points. Order = 1
before Order = 2, and so on. Order = 31
connection points are drawn last. Order
should always start at 0 and be
consecutively assigned.

2 119 5

Reserved Reserved, must contain a value of 0. 2 124 4

Vertical Offset Offset of Shape Origin from Panel Origin (in
mm). A value of 0xFFFFFFFF indicates that
this field is not supplied.

2 128 16

Horizontal
Offset

Offset of Shape Origin from Panel Origin (in
mm). A value of 0xFFFFFFFF indicates that
this field is not supplied.

2 144 16

Name Definition DWORD Bit Offset

(DWORD)

Bit

Offset

(Buffer)

Length

(bits)
UEFI Forum, Inc. January 2019 Page 353

ACPI Specification, Version 6.3 Device Configuration
H
ei

gh
t

Width
Origin: Lower, Left

Shape = Round/Oval

The Origin of a shape is always in
the in lower left corner.

H
ei

gh
t

Width
Origin: Lower, Left

Shape = Square/
Vertical Rectangle/

Horizontal Rectangle/
Unknown

Width

Origin: Lower, Left

Shape = Trapezoid

Height

Origin: Lower, Left

Shape = Chamfered

Height

Width

Rotation = 0 for all
displayed reference

shapes

Note: All additional buffer entries returned may contain OEM-specific data, but must begin in a {GUID,
data} pair. These additional data may provide complimentary physical location information
specific to certain systems or class of machines.

Figure 6-31 Default Shape Definitions

Buffers 1 – N Return Value (Optional):
Buffer 1 Bit [127:0] – GUID 1

Buffer 2 Bit [127:0] – Data 1

Buffer 3 Bit [127:0] – GUID 2

Buffer 4 Bit [127:0] – Data 2

……

Figure 6-32 provides an example of a rendering of the external device connection points that may be
conveyed to the user by _PLD information. Note that three _PLDs (System Back Panel, Power Supply, and
Motherboard (MB) Connector Area) that are associated with the System Bus tree (_SB) object. Their
Reference flag is set indicating that are used to provide the user with visual queues for identifying the
relative locations of the other device connection points.

The connection points (C1 through C16) are defined by _PLD objects found in the System bus tree.

The following connection points all have their Panel and Lid fields set to Back and 0, respectively. And the
Reference flag of the System Back Panel, Power Supply, and MB Connector Area connection points are
set to 1. in this example are used to render Figure 6-32:
UEFI Forum, Inc. January 2019 Page 354

ACPI Specification, Version 6.3 Device Configuration
Table 6-192 PLD Back Panel Example Settings

N
am

e

Ig
n

o
re

 C
o

lo
r

R G B W
id

th

H
eig

h
t

V
O

ff

H
O

ff

S
h

ap
e

N
o

tatio
n

G
o

u
p

 P
o

sitio
n

R
o

ta-tio
n

Back
Panel

Yes 0 0 0 2032 4318 0 0 V Rect 1 0

MB
Conn
area

Yes 0 0 0 445 1556 1588 127 V Rect 2 0

Power
Supply

Yes 0 0 0 1524 889 3302 127 H Rect 2 0

USB
Port 1

No 0 0 0 125 52 2223 159 H Rect C1 3 90

USB
Port 2

No 0 0 0 125 52 2223 254 H Rect C2 3 90

USB
Port 3

No 0 0 0 125 52 2223 350 H Rect C3 3 90

USB
Port 4

No 0 0 0 125 52 2223 445 H Rect C4 3 90

USB
Port 5

No 0 0 0 125 52 2007 159 H Rect C5 3 90

USB
Port 6

No 0 0 0 125 52 2007 254 H Rect C6 3 90

Etherne
t

No 0 0 0 157 171 2007 350 V Rect C7 3 90

Audio 1 No FF FF FF 127 127 1945 151 Round C8 3 90

Audio 2 No 151 247 127 127 127 1945 286 Round C9 3 90

Audio 3 No 0 0 0 127 127 1945 427 Round C10 3 90

SPDIF No 0 0 0 112 126 1756 176 V Trap C11 3 90

Audio 4 No 0 FF 0 127 127 1765 288 Round C12 3 90

Audio 5 No 0 0 FF 127 127 1765 429 Round C13 3 90

SATA No 0 0 0 239 88 3091 159 H Rect C14 3 90

1394 No 0 0 0 112 159 2890 254 H Trap C15 3 0

Coax No 0 0 0 159 159 2842 143 Round C16 3 90

PCI 1 No 0 0 0 1016 127 127 127 H Rect 1 3 0
UEFI Forum, Inc. January 2019 Page 355

ACPI Specification, Version 6.3 Device Configuration
Note that the origin is in the lower left hand corner of the Back Panel, where positive Horizontal and
Vertical Offset values are to the right and up, respectively.

Figure 6-32 PLD Back Panel Rendering

1

2

3

4

5

6

7

C4C3C2C1

C7C6C5

C
14

C11

C16

C8 C9 C10

C12 C13

Motherboard
connector area

Power Supply

PCI Backpanels

C15

System
Backpanel

Origin
Horizontal Offset0

Vertical
Offset

0

PCI 2 No 0 0 0 1016 127 334 127 H Rect 2 3 0

PCI 3 No 0 0 0 1016 127 540 127 H Rect 3 3 0

PCI 4 No 0 0 0 1016 127 747 127 H Rect 4 3 0

PCI 5 No 0 0 0 1016 127 953 127 H Rect 5 3 0

PCI 6 No 0 0 0 1016 127 1159 127 H Rect 6 3 0

PCI 7 No 0 0 0 1016 127 1366 127 H Rect 7 3 0

N
a

m
e

Ig
n

o
re C

o
lo

r

R G B W
id

th

H
e

ig
h

t

V
O

ff

H
O

ff

S
h

ap
e

N
o

tatio
n

G
o

u
p

 P
o

s
itio

n

R
o

ta-tio
n

UEFI Forum, Inc. January 2019 Page 356

ACPI Specification, Version 6.3 Device Configuration
6.1.9 _SUB (Subsystem ID)

This object is used to supply OSPM with the device's Subsystem ID. The use of _SUB is optional.

Arguments:

None

Return Value:

A String containing the SUB

A _SUB object evaluates to a string and the format must be a valid PNP or ACPI ID with no asterisk or
other leading characters.

See the definition of _HID (Section 6.1.5) for the definition of PNP and ACPI ID strings.

Example ASL:
 Name (_SUB, "MSFT3000")// Vendor-defined subsystem

6.1.10 _STR (String)

The _STR object evaluates to a Unicode string that describes the device or thermal zone. It may be used
by an OS to provide information to an end user. This information is particularly valuable when no other
information is available.

Arguments:

None

Return Value:

A Buffer containing a Unicode string that describes the device

Example ASL:
 Device (XYZ) {
 Name (_ADR, 0x00020001)
 Name (_STR, Unicode ("ACME super DVD controller"))
 }

Then, when all else fails, an OS can use the info included in the _STR object to describe the hardware to
the user.

6.1.11 _SUN (Slot User Number)

_SUN is an object that evaluates to the slot-unique ID number for a slot. _SUN is used by OSPM UI to
identify slots for the user. For example, this can be used for battery slots, PCI slots, PCMCIA slots, or
swappable bay slots to inform the user of what devices are in each slot. _SUN evaluates to an integer that
is the number to be used in the user interface.

Arguments:

None

Return Value:

An Integer containing the slot’s unique ID
UEFI Forum, Inc. January 2019 Page 357

ACPI Specification, Version 6.3 Device Configuration
The _SUN value is required to be unique among the slots of the same type. It is also recommended that
this number match the slot number printed on the physical slot whenever possible.

6.1.12 _UID (Unique ID)

This object provides OSPM with a logical device ID that does not change across reboots. This object is
optional, but is required when the device has no other way to report a persistent unique device ID. The
_UID must be unique across all devices with either a common _HID or _CID. This is because a device
needs to be uniquely identified to the OSPM, which may match on either a _HID or a _CID to identify the
device. The uniqueness match must be true regardless of whether the OSPM uses the _HID or the _CID.
OSPM typically uses the unique device ID to ensure that the device-specific information, such as network
protocol binding information, is remembered for the device even if its relative location changes. For most
integrated devices, this object contains a unique identifier.

A _UID object evaluates to either a numeric value or a string.

Arguments:

None

Return Value:

An Integer or String containing the Unique ID

6.2 Device Configuration Objects

This section describes objects that provide OSPM with device specific information and allow OSPM to
configure device operation and resource utilization.

OSPM uses device configuration objects to configure hardware resources for devices enumerated via
ACPI. Device configuration objects provide information about current and possible resource
requirements, the relationship between shared resources, and methods for configuring hardware
resources.

Note: these objects must only be provided for devices that cannot be configured by any other hardware
standard such as PCI, PCMCIA, and so on.

When OSPM enumerates a device, it calls _PRS to determine the resource requirements of the device. It
may also call _CRS to find the current resource settings for the device. Using this information, the Plug
and Play system determines what resources the device should consume and sets those resources by
calling the device’s _SRS control method.

In ACPI, devices can consume resources (for example, legacy keyboards), provide resources (for example,
a proprietary PCI bridge), or do both. Unless otherwise specified, resources for a device are assumed to
be taken from the nearest matching resource above the device in the device hierarchy.

Some resources, however, may be shared amongst several devices. To describe this, devices that share a
resource (resource consumers) must use the extended resource descriptors (0x7-0xA) described in
Section 6.4.3, “Large Resource Data Type.” These descriptors point to a single device object (resource
producer) that claims the shared resource in its _PRS. This allows OSPM to clearly understand the
resource dependencies in the system and move all related devices together if it needs to change
resources. Furthermore, it allows OSPM to allocate resources only to resource producers when devices
that consume that resource appear.
UEFI Forum, Inc. January 2019 Page 358

ACPI Specification, Version 6.3 Device Configuration
The device configuration objects are listed in Table 6-193

Table 6-193 Device Configuration Objects

Object Description

_CCA Cache Coherency Attribute -- specifies whether a device and its descendants support hardware
managed cache coherency.

_CDM Object that specifies a clock domain for a processor.

_CRS Object that specifies a device’s current resource settings, or a control method that generates such an
object.

_DIS Control method that disables a device.

_DMA Object that specifies a device’s current resources for DMA transactions.

_DSD Object that evaluates to device specific information

_FIX Object used to provide correlation between the fixed-hardware register blocks defined in the FADT
and the devices that implement these fixed-hardware registers.

_GSB Object that provides the Global System Interrupt Base for a hot-plugged I/O APIC device.

_HMA Object that provides updated HMAT structures.

_HPP Object that specifies the cache-line size, latency timer, SERR enable, and PERR enable values to be
used when configuring a PCI device inserted into a hot-plug slot or initial configuration of a PCI
device at system boot.

_HPX Object that provides device parameters when configuring a PCI device inserted into a hot-plug slot
or initial configuration of a PCI device at system boot. Supersedes _HPP.

_MAT Object that evaluates to a buffer of Interrupt Controller Structures.

_OSC An object OSPM evaluates to convey specific software support / capabilities to the platform allowing
the platform to configure itself appropriately.

_PRS An object that specifies a device’s possible resource settings, or a control method that generates
such an object.

_PRT Object that specifies the PCI interrupt routing table.

_PXM Object that specifies a proximity domain for a device.

_SLI Object that provides updated distance information for a system locality.

_SRS Control method that sets a device’s settings.

6.2.1 _CDM (Clock Domain)

This optional object conveys the processor clock domain to which a processor belongs. A processor clock
domain is a unique identifier representing the hardware clock source providing the input clock for a given
set of processors. This clock source drives software accessible internal counters, such as the Time Stamp
Counter, in each processor. Processor counters in the same clock domain are driven by the same
hardware clock source. In multi-processor platforms that utilize multiple clock domains, such counters
may exhibit drift when compared against processor counters on different clock domains.
UEFI Forum, Inc. January 2019 Page 359

ACPI Specification, Version 6.3 Device Configuration
The _CDM object evaluates to an integer that identifies the device as belonging to a specific clock
domain. OSPM assumes that two devices in the same clock domain are connected to the same hardware
clock.

Arguments:

None

Return Value:

An Integer (DWORD) containing a clock domain identifier.

In the case the platform does not convey any clock domain information to OSPM via the SRAT or the
_CDM object, OSPM assumes all logical processors to be on a common clock domain. If the platform
defines _CDM object under a logical processor then it must define _CDM objects under all logical
processors whose clock domain information is not provided via the SRAT.

6.2.2 _CRS (Current Resource Settings)

This required object evaluates to a byte stream that describes the system resources currently allocated to
a device. Additionally, a bus device must supply the resources that it decodes and can assign to its
children devices. If a device is disabled, then _CRS returns a valid resource template for the device, but
the actual resource assignments in the return byte stream are ignored. If the device is disabled when
_CRS is called, it must remain disabled.

The format of the data contained in a _CRS object follows the formats defined in Section 6.4 “Resource

Data Types for ACPI,” a compatible extension of the formats specified in the PNPBIOS specification.2 The
resource data is provided as a series of data structures, with each of the resource data structures having
a unique tag or identifier. The resource descriptor data structures specify the standard PC system
resources, such as memory address ranges, I/O ports, interrupts, and DMA channels.

Arguments:

None

Return Value:

A Buffer containing a resource descriptor byte stream

6.2.3 _DIS (Disable)

This control method disables a device. When the device is disabled, it must not be decoding any
hardware resources. Prior to running this control method, OSPM will have already put the device in the
D3 state.

When a device is disabled via the _DIS, the _STA control method for this device must return with the
Disabled bit set.

Arguments:

None

2. Plug and Play BIOS Specification Version 1.0A, May 5, 1994, Compaq Computer Corp., Intel Corp., Phoenix
Technologies Ltd.
UEFI Forum, Inc. January 2019 Page 360

ACPI Specification, Version 6.3 Device Configuration
Return Value:

None

6.2.4 _DMA (Direct Memory Access)

This optional object returns a byte stream in the same format as a _CRS object. _DMA is only defined
under devices that represent buses. It specifies the ranges the bus controller (bridge) decodes on the
child-side of its interface. (This is analogous to the _CRS object, which describes the resources that the
bus controller decodes on the parent-side of its interface.) Any ranges described in the resources of a
_DMA object can be used by child devices for DMA or bus master transactions.

The _DMA object is only valid if a _CRS object is also defined. OSPM must re-evaluate the _DMA object
after an _SRS object has been executed because the _DMA ranges resources may change depending on
how the bridge has been configured.

If the _DMA object is not present for a bus device, the OS assumes that any address placed on a bus by a
child device will be decoded either by a device on the bus or by the bus itself, (in other words, all address
ranges can be used for DMA).

For example, if a platform implements a PCI bus that cannot access all of physical memory, it has a _DMA
object under that PCI bus that describes the ranges of physical memory that can be accessed by devices
on that bus.

A _DMA object is not meant to describe any “map register” hardware that is set up for each DMA
transaction. It is meant only to describe the DMA properties of a bus that cannot be changed without
reevaluating the _SRS method.

Arguments:

None

Return Value:

A Buffer containing a resource descriptor byte stream

_DMA Example ASL:

 Device(BUS0)
 {

 //
 // The _DMA method returns a resource template describing the
 // addresses that are decoded on the child side of this
 // bridge. The contained resource descriptors thus indicate
 // the address ranges that bus masters living below this
 // bridge can use to send accesses through the bridge toward a
 // destination elsewhere in the system (e.g. main memory).
 //
 // In our case, any bus master addresses need to fall between
 // 0 and 0x80000000 and will have 0x200000000 added as they
 // cross the bridge. Furthermore, any child-side accesses
 // falling into the range claimed in our _CRS will be
 // interpreted as a peer-to-peer traffic and will not be
 // forwarded upstream by the bridge.
UEFI Forum, Inc. January 2019 Page 361

ACPI Specification, Version 6.3 Device Configuration
 //
 // Our upstream address decoder will only claim one range from
 // 0x20000000 to 0x5fffffff in the _CRS. Therefore _DMA
 // should return two QWORDMemory descriptors, one describing
 // the range below and one describing the range above this
 // "peer-to-peer" address range.
 //

 Method(_DMA, ResourceTemplate()
 {
 QWORDMemory(
 ResourceConsumer,
 PosDecode, // _DEC
 MinFixed, // _MIF
 MaxFixed, // _MAF
 Prefetchable, // _MEM
 ReadWrite, // _RW
 0, // _GRA
 0, // _MIN
 0x1fffffff, // _MAX
 0x200000000, // _TRA
 0x20000000, // _LEN
 ,
 ,
 ,
)
 QWORDMemory(
 ResourceConsumer,
 PosDecode, // _DEC
 MinFixed, // _MIF
 MaxFixed, // _MAF
 Prefetchable, // _MEM
 ReadWrite, // _RW
 0, // _GRA
 0x60000000, // _MIN
 0x7fffffff, // _MAX
 0x200000000, // _TRA
 0x20000000, // _LEN
 ,
 ,
 ,
)
 })
 }

6.2.5 _DSD (Device Specific Data)

This optional object is used to provide device drivers (via OSPM) with additional device properties and
information. _DSD returns a variable-length package containing a list of Device Data Descriptor structures
each consisting of a UUID (see Section 5.2.4) and a package (Data Structure). The UUID is all that is
needed to define the Data Structure. The UUID itself may place a restriction based on _HID or the
UEFI Forum, Inc. January 2019 Page 362

ACPI Specification, Version 6.3 Device Configuration
optional _CID, _CLS, _HRV, _SUB objects, or _HID and one of those optional objects. However, it also may
not place such a restriction.

New UUIDs may be created by OEMs and IHVs or other interface or device governing bodies (e.g. the PCI
SIG or the UEFI Forum), as long as the UUID is different from other published UUIDs.

The list of well-known UUIDs allocated for _DSD and the definition of data formats associated with them
is available in an auxiliary document hosted on the UEFI Forum: http://www.uefi.org/acpi.

Arguments:

None

Return Value:

A variable-length Package containing a list of Device Data Descriptor structures as described below.

Return Value Information
Package ()
{
 Device Data Descriptor 0
 ...
 Device Data Descriptor n
}

Each Device Data Descriptor structure consists of two elements, as follows:

UUID // Buffer (16 bytes)
Data Structure // Package (depending on UUID)

UUID uniquely determines the format of Data Structure.

Data Structure is a set of device specific data items the format of which is uniquely determined by the
UUID and the meaning of which is uniquely determined by the UUID possibly in combination with a PNP
or ACPI device ID.

Multiple Device Data Descriptor structures with the same UUID are not permitted.

_DSD must return the same data each time it is evaluated. Firmware should not expect it to be evaluated
every time (in case it is implemented as a method).
UEFI Forum, Inc. January 2019 Page 363

http://www.uefi.org/acpi

ACPI Specification, Version 6.3 Device Configuration
Examples:

Note: The UUID used in the following examples is assumed to define the data format for Data Structure
as a list of packages of length 2 (Properties) whose first element (Key) must be a String and the
second element is a Value associated with that key. The set of valid Keys and the format and
interpretation of the Values associated with them is then dependent on the PNP or ACPI device ID
of the device.

Device (MDEV) {
 Name (_HID, “PNP####”)

 Name (_DSD, Package () {
 ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 Package () {
 Package (2) {...},// Property 1
 ...
 Package (2) {...}// Property n
 }
 })
}

//
// PWM controller with two pins that can be driven and a device using
// those pins with the periods of 5000000 and 4500000 nanoseconds,
// respectively.
//
Device (_SB.PCI0.PWM) {
 Name (_HID, “PNP####”)

 Name (_DSD, Package () {
 ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 Package () {
 Package (2) {"#pwm-cells", 2}
 }
 })
}

Device (_SB.PCI0.BL) {
 Name (_HID, “ACPI####”)

 Name (_DSD, Package () {
 ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 Package () {
 Package (2) {
 "pwms",
 Package () {
 _SB.PCI0.PWM, 0, 5000000,
 _SB.PCI0.PWM, 1, 4500000

 }
UEFI Forum, Inc. January 2019 Page 364

http://git-amr-4.devtools.intel.com/gerrit/gitweb?p=mwesterb-linux.git;a=blob;f=Documentation/acpi/properties.txt;h=1a0aa514a0c096e4f0ec64aa799845f9e4d71f17;hb=a34670c12e90be4daca053d3c2dc9222ae236919#l227
http://git-amr-4.devtools.intel.com/gerrit/gitweb?p=mwesterb-linux.git;a=blob;f=Documentation/acpi/properties.txt;h=1a0aa514a0c096e4f0ec64aa799845f9e4d71f17;hb=a34670c12e90be4daca053d3c2dc9222ae236919#l228
http://git-amr-4.devtools.intel.com/gerrit/gitweb?p=mwesterb-linux.git;a=blob;f=Documentation/acpi/properties.txt;h=1a0aa514a0c096e4f0ec64aa799845f9e4d71f17;hb=a34670c12e90be4daca053d3c2dc9222ae236919#l233
http://git-amr-4.devtools.intel.com/gerrit/gitweb?p=mwesterb-linux.git;a=blob;f=Documentation/acpi/properties.txt;h=1a0aa514a0c096e4f0ec64aa799845f9e4d71f17;hb=a34670c12e90be4daca053d3c2dc9222ae236919#l234
http://git-amr-4.devtools.intel.com/gerrit/gitweb?p=mwesterb-linux.git;a=blob;f=Documentation/acpi/properties.txt;h=1a0aa514a0c096e4f0ec64aa799845f9e4d71f17;hb=a34670c12e90be4daca053d3c2dc9222ae236919#l239

ACPI Specification, Version 6.3 Device Configuration
 }
 }

 })
}

//
// SPI controller using a fixed frequency clock represented by the CLKO
// device object.
//
Device (_SB_.PCI0) {
 Device (CLK0) {
 Name (_HID, “PNP####”)

 Name (_DSD, Package () {
 ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 Package () {
 Package (2) {"#clock-cells", 0},
 Package (2) {"clock-frequency", 120000000}
 }
 })
 }

 Device (SPI0) {
 Name (_HID, “PNP####”)

 Name (_DSD, Package () {
 ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 Package () {
 Package (2) {"clocks", Package () {1, ^CLK0}}
 }
 })

 ...
 }
}

6.2.6 _FIX (Fixed Register Resource Provider)

This optional object is used to provide a correlation between the fixed-hardware register blocks defined
in the FADT and the devices in the ACPI namespace that implement these fixed-hardware registers. This
object evaluates to a package of Plug and Play-compatible IDs (32-bit compressed EISA type IDs) that
correlate to the fixed-hardware register blocks defined in the FADT. The device under which _FIX appears
plays a role in the implementation of the fixed-hardware (for example, implements the hardware or
decodes the hardware’s address). _FIX conveys to OSPM whether a given device can be disabled,
powered off, or should be treated specially by conveying its role in the implementation of the ACPI fixed-
hardware register interfaces. This object takes no arguments.

The _CRS object describes a device’s resources. That _CRS object may contain a superset of the resources
in the FADT, as the device may actually decode resources beyond what the FADT requires. Furthermore,
UEFI Forum, Inc. January 2019 Page 365

http://git-amr-4.devtools.intel.com/gerrit/gitweb?p=mwesterb-linux.git;a=blob;f=Documentation/acpi/properties.txt;h=1a0aa514a0c096e4f0ec64aa799845f9e4d71f17;hb=a34670c12e90be4daca053d3c2dc9222ae236919#l239
http://git-amr-4.devtools.intel.com/gerrit/gitweb?p=mwesterb-linux.git;a=blob;f=Documentation/acpi/properties.txt;h=1a0aa514a0c096e4f0ec64aa799845f9e4d71f17;hb=a34670c12e90be4daca053d3c2dc9222ae236919#l241

ACPI Specification, Version 6.3 Device Configuration
in a machine that performs translation of resources within I/O bridges, the processor-relative resources
in the FADT may not be the same as the bus-relative resources in the _CRS.

Arguments:

None

Return Value:

A variable-length Package containing a list of Integers, each containing a PNP ID

Each of fields in the FADT has its own corresponding Plug and Play ID, as shown below:

PNP0C20 - SMI_CMD
PNP0C21 - PM1a_EVT_BLK / X_ PM1a_EVT_BLK
PNP0C22 - PM1b_EVT_BLK / X_PM1b_EVT_BLK
PNP0C23 - PM1a_CNT_BLK / X_PM1a_CNT_BLK
PNP0C24 - PM1b_CNT_BLK / X_ PM1b_CNT_BLK
PNP0C25 - PM2_CNT_BLK / X_ PM2_CNT_BLK
PNP0C26 - PM_TMR_BLK / X_ PM_TMR_BLK
PNP0C27 - GPE0_BLK / X_GPE0_BLK
PNP0C28 - GPE1_BLK / X_ GPE1_BLK
PNP0B00 – FIXED_RTC
PNP0B01 – FIXED_RTC
PNP0B02 – FIXED_RTC

Example ASL for _FIX usage:

Scope(_SB) {
 Device(PCI0) { // Root PCI Bus
 Name(_HID, EISAID("PNP0A03")) // Need _HID for root device
 Method (_CRS,0){ // Need current resources for root device
 // Return current resources for root bridge 0
 }
 Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
 // Package with PCI IRQ routing table information
 })
 Name(_FIX, Package(1) {
 EISAID("PNP0C25")} // PM2 control ID
)

 Device (PX40) { // ISA
 Name(_ADR,0x00070000)
 Name(_FIX, Package(1) {
 EISAID("PNP0C20")} // SMI command port
)
 Device (NS17) { // NS17 (Nat. Semi 317, an ACPI part)
 Name(_HID, EISAID("PNP0C02"))
 Name(_FIX, Package(3) {
 EISAID("PNP0C22"), // PM1b event ID
 EISAID("PNP0C24"), // PM1b control ID
 EISAID("PNP0C28")} // GPE1 ID
 }
UEFI Forum, Inc. January 2019 Page 366

ACPI Specification, Version 6.3 Device Configuration
 } // end PX40

 Device (PX43) { // PM Control
 Name(_ADR,0x00070003)
 Name(_FIX, Package(4) {
 EISAID("PNP0C21"), // PM1a event ID
 EISAID("PNP0C23"), // PM1a control ID
 EISAID("PNP0C26"), // PM Timer ID
 EISAID("PNP0C27")} // GPE0 ID
)
 } // end PX43
 } // end PCI0
} // end scope SB

6.2.7 _GSB (Global System Interrupt Base)

_GSB is an optional object that evaluates to an integer that corresponds to the Global System Interrupt
Base for the corresponding I/O APIC device. The I/O APIC device may either be bus enumerated (e.g. as a
PCI device) or enumerated in the namespace as described in Section 9.17,”I/O APIC Device”. Any I/O APIC
device that either supports hot-plug or is not described in the MADT must contain a _GSB object.

If the I/O APIC device also contains a _MAT object, OSPM evaluates the _GSB object first before
evaluating the _MAT object. By providing the Global System Interrupt Base of the I/O APIC, this object
enables OSPM to process only the _MAT entries that correspond to the I/O APIC device. See
Section 6.2.10, “_MAT (Multiple APIC Table Entry)”. Since _MAT is allowed to potentially return all the
MADT entries for the entire platform, _GSB is needed in the I/O APIC device scope to enable OSPM to
identify the entries that correspond to that device.

If an I/O APIC device is activated by a device-specific driver, the physical address used to access the I/O
APIC will be exposed by the driver and cannot be determined from the _MAT object. In this case, OSPM
cannot use the _MAT object to determine the Global System Interrupt Base corresponding to the I/O
APIC device and hence requires the _GSB object.

The Global System Interrupt Base is a 64-bit value representing the corresponding I/OAPIC device as
defined in Section 5.2.13, “Global System Interrupts”.

Arguments:

None

Return Value:

An Integer containing the interrupt base

Example ASL for _GSB usage for a non-PCI based I/O APIC Device:

Scope(_SB) {
 …
 Device(APIC) { // I/O APIC Device
 Name(_HID, “ACPI0009”) // ACPI ID for I/O APIC
 Name(_CRS, ResourceTemplate()
 { …}) // only one resource pointing to I/O APIC register base
 Method(_GSB){
UEFI Forum, Inc. January 2019 Page 367

ACPI Specification, Version 6.3 Device Configuration
 Return (0x10) // Global System Interrupt Base for I/O APIC starts at 16
 }
 } // end APIC
} // end scope SB

Example ASL for _GSB usage for a PCI-based I/O APIC Device:

Scope(_SB) {
 Device(PCI0) // Host bridge
 Name(_HID, EISAID("PNP0A03")) // Need _HID for root device
 Device(PCI1) { // I/O APIC PCI Device
 Name(_ADR,0x00070000)
 Method(_GSB){
 Return (0x18) // Global System Interrupt Base for I/O APIC starts at 24
 }

 } // end PCI1
 } // end PCI0
} // end scope SB

6.2.8 _HPP (Hot Plug Parameters)

This optional object evaluates to a package containing the cache-line size, latency timer, SERR enable,
and PERR enable values to be used when configuring a PCI device inserted into a hot-plug slot or for
performing configuration of a PCI devices not configured by the platform boot firmware at system boot.
The object is placed under a PCI bus where this behavior is desired, such as a bus with hot-plug slots.
_HPP provided settings apply to all child buses, until another _HPP object is encountered.

Arguments:

None

Return Value:

A Package containing the Integer hot-plug parameters

Example:

 Method (_HPP, 0) {
 Return (Package(4){
 0x08, // CacheLineSize in DWORDS
 0x40, // LatencyTimer in PCI clocks
 0x01, // Enable SERR (Boolean)
 0x00 // Enable PERR (Boolean)
 })
 }

Table 6-194 HPP Package Contents

Field Object Type Definition

Cache-line size Integer Cache-line size reported in number of DWORDs.
UEFI Forum, Inc. January 2019 Page 368

ACPI Specification, Version 6.3 Device Configuration
6.2.8.1 Example: Using _HPP

Scope(_SB) {
 Device(PCI0) { // Root PCI Bus
 Name(_HID, EISAID("PNP0A03")) // _HID for root device
 Method (_CRS,0){ // Need current resources for root dev
 // Return current resources for root bridge 0
 }
 Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
 // Package with PCI IRQ routing table information
 })

 Device (P2P1) { // First PCI-to-PCI bridge (No Hot Plug slots)
 Name(_ADR,0x000C0000) // Device#Ch, Func#0 on bus PCI0
 Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
 // Package with PCI IRQ routing table information
 })
 } // end P2P1

 Device (P2P2) { // Second PCI-to-PCI bridge (Bus contains Hot plug slots)
 Name(_ADR,0x000E0000) // Device#Eh, Func#0 on bus PCI0
 Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
 // Package with PCI IRQ routing table information
 })
 Name(_HPP, Package(){0x08,0x40, 0x01, 0x00})

 // Device definitions for Slot 1- HOT PLUG SLOT
 Device (S1F0) { // Slot 1, Func#0 on bus P2P2
 Name(_ADR,0x00020000)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S1F1) { // Slot 1, Func#1 on bus P2P2
 Name(_ADR,0x00020001)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S1F2) { // Slot 1, Func#2 on bus P2P2
 Name(_ADR,0x000200 02)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S1F3) { // Slot 1, Func#3 on bus P2P2
 Name(_ADR,0x00020003)
 Method(_EJ0, 1) { // Remove all power to device}

Latency timer Integer Latency timer value reported in number of PCI clock cycles.

Enable SERR Integer When set to 1, indicates that action must be performed to enable SERR
in the command register.

Enable PERR Integer When set to 1, indicates that action must be performed to enable PERR
in the command register.
UEFI Forum, Inc. January 2019 Page 369

ACPI Specification, Version 6.3 Device Configuration
 }
 Device (S1F4) { // Slot 1, Func#4 on bus P2P2
 Name(_ADR,0x00020004)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S1F5) { // Slot 1, Func#5 on bus P2P2
 Name(_ADR,0x00020005)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S1F6) { // Slot 1, Func#6 on bus P2P2
 Name(_ADR,0x00020006)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S1F7) { // Slot 1, Func#7 on bus P2P2
 Name(_ADR,0x00020007)
 Method(_EJ0, 1) { // Remove all power to device}
 }

 // Device definitions for Slot 2- HOT PLUG SLOT
 Device (S2F0) { // Slot 2, Func#0 on bus P2P2
 Name(_ADR,0x00030000)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S2F1) { // Slot 2, Func#1 on bus P2P2
 Name(_ADR,0x00030001)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S2F2) { // Slot 2, Func#2 on bus P2P2
 Name(_ADR,0x00030002)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S2F3) { // Slot 2, Func#3 on bus P2P2
 Name(_ADR,0x00030003)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S2F4) { // Slot 2, Func#4 on bus P2P2
 Name(_ADR,0x00030004)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S2F5) { // Slot 2, Func#5 on bus P2P2
 Name(_ADR,0x00030005)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S2F6) { // Slot 2, Func#6 on bus P2P2
 Name(_ADR,0x00030006)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S2F7) { // Slot 2, Func#7 on bus P2P2
 Name(_ADR,0x00030007)
 Method(_EJ0, 1) { // Remove all power to device}
 }
UEFI Forum, Inc. January 2019 Page 370

ACPI Specification, Version 6.3 Device Configuration
 } // end P2P2
 } // end PCI0
} // end Scope (_SB)

OSPM will configure a PCI device on a card hot-plugged into slot 1 or slot 2, with a cache line size of 32
(Notice this field is in DWORDs), latency timer of 64, enable SERR, but leave PERR alone.

6.2.9 _HPX (Hot Plug Parameter Extensions)

This optional object provides platform-specific information to the OSPM PCI driver component
responsible for configuring PCI, PCI-X, or PCI Express Functions. The information conveyed applies to the
entire hierarchy downward from the scope containing the _HPX object. If another _HPX object is
encountered downstream, the settings conveyed by the lower-level object apply to that scope
downward.

OSPM uses the information returned by _HPX to determine how to configure PCI Functions that are hot-
plugged into the system, to configure Functions not configured by the platform firmware during initial
system boot, and to configure Functions any time they lose configuration space settings (e.g. OSPM
issues a Secondary Bus Reset/Function Level Reset or Downstream Port Containment is triggered). The
_HPX object is placed within the scope of a PCI-compatible bus where this behavior is desired, such as a
bus with hot-plug slots. It returns a single package that contains one or more sub-packages, each
containing a single Setting Record. Each such Setting Record contains a Setting Type (INTEGER), a
Revision number (INTEGER) and type/revision specific contents.

The format of data returned by the _HPX object is extensible. The Setting Type and Revision number
determine the format of the Setting Record. OSPM ignores Setting Records of types that it does not
understand. A Setting Record with higher Revision number supersedes that with lower revision number,
however, the _HPX method can return both together, OSPM shall use the one with highest revision
number that it understands. Type 3 records may have multiple records with the same revision or
different revision (refer to the Revision field in Table 6-198. Out of all the Type 3 records, the OSPM shall
determine the highest revision number that it understands and use all Type 3 records with that revision.

_HPX may return multiple types or Record Settings (each setting in a single sub-package.) OSPM is
responsible for detecting the type of Function and for applying the appropriate settings. OSPM is also
responsible for detecting the device / port type of the PCI Express Function and applying the appropriate
settings provided. For example, the Secondary Uncorrectable Error Severity and Secondary
Uncorrectable Error Mask settings of Type 2 record are only applicable to PCI Express to PCI-X/PCI Bridge
whose device / port type is 1000b. Similarly, AER settings are only applicable to hot plug PCI Express
devices that support the optional AER capability.

Arguments:

None

Return Value:

A variable-length Package containing a list of Packages, each containing a single PCI, PCI-X, PCI Express,
or PCI Express Descriptor Record Setting as described below

The _HPX object supersedes the _HPP object. If the _HPP and _HPX objects exist within a device’s scope,
OSPM will only evaluate the _HPX object.
UEFI Forum, Inc. January 2019 Page 371

ACPI Specification, Version 6.3 Device Configuration
Note: OSPM may override the settings provided by the _HPX object’s Type2 record (PCI Express Settings)
or Type3 record (PCI Express Descriptor Settings) when OSPM has assumed native control of the
corresponding feature. For example, if OSPM has assumed ownership of AER (via _OSC), OSPM
may override AER related settings returned by _HPX.

Note: Since error status registers do not drive error signaling, OSPM is not required to clear error status
registers as part of _HPX handling.

Note: There are other mechanisms besides _HPX that provide platform-specific information to the
OSPM PCI driver component responsible for configuring PCI, PCI-X, or PCI Express Functions (e.g.,
_DSM Definitions for Latency Tolerance Reporting as defined in the PCI Firmware Specification).
System firmware should only provide platform-specific information via one of these mechanisms
for any given register or feature (i.e., if Latency Tolerance Reporting information is provided via
_DSM Definitions for Latency Tolerance Reporting then no information related to Latency
Tolerance Reporting should be provided by _HPX and vice versa). Failure to do so will result in
undefined behavior from the OSPM.

6.2.9.1 PCI Setting Record (Type 0)

The PCI setting record contains the setting type 0, the current revision 1 and the type/revision specific
content: cache-line size, latency timer, SERR enable, and PERR enable values.

Table 6-195 PCI Setting Record Content

Field Object Type Definition

Header:

Type Integer 0x00: Type 0 (PCI) setting record.

Revision Integer 0x01: Revision 1, defining the set of fields below.

Cache-line size Integer Cache-line size reported in number of DWORDs.

Latency timer Integer Latency timer value reported in number of PCI clock cycles.

Enable SERR Integer When set to 1, indicates that action must be performed to enable
SERR in the command register.

Enable PERR Integer When set to 1, indicates that action must be performed to enable
PERR in the command register.

If the hot plug device includes bridge(s) in the hierarchy, the above settings apply to the primary side
(command register) of the hot plugged bridge(s). The settings for the secondary side of the bridge(s)
(Bridge Control Register) are assumed to be provided by the bridge driver.

The Type 0 record is applicable to hot plugged PCI, PCI-X and PCI Express devices. OSPM will ignore
settings provided in the Type0 record that are not applicable (for example, Cache-line size and Latency
Timer are not applicable to PCI Express).

6.2.9.2 PCI-X Setting Record (Type 1)

The PCI-X setting record contains the setting type 1, the current revision 1 and the type/revision specific
content: the maximum memory read byte count setting, the average maximum outstanding split
transactions setting and the total maximum outstanding split transactions to be used when configuring
PCI-X command registers for PCI-X buses and/or devices.
UEFI Forum, Inc. January 2019 Page 372

ACPI Specification, Version 6.3 Device Configuration
Table 6-196 PCI-X Setting Record Content

Field Object Type Definition

Header:

Type Integer 0x01: Type 1 (PCI-X) setting record.

Revision Integer 0x01: Revision 1, defining the set of fields below.

Maximum
memory read byte
count

Integer Maximum memory read byte count reported:

Value 0: Maximum byte count 512

Value 1: Maximum byte count 1024

Value 2: Maximum byte count 2048

Value 3: Maximum byte count 4096

Average
maximum
outstanding split
transactions

Integer The following values are defined:

Value 0: Maximum outstanding split transaction 1

Value 1: Maximum outstanding split transaction 2

Value 2: Maximum outstanding split transaction 3

Value 3: Maximum outstanding split transaction 4

Value 4: Maximum outstanding split transaction 8

Value 5: Maximum outstanding split transaction 12

Value 6: Maximum outstanding split transaction 16

Value 7: Maximum outstanding split transaction 32

Total maximum
outstanding split
transactions

Integer See the definition for the average maximum outstanding split
transactions.

For simplicity, OSPM could use the Average Maximum Outstanding Split Transactions value as the
Maximum Outstanding Split Transactions register value in the PCI-X command register for each PCI-X
device. Another alternative is to use a more sophisticated policy and the Total Maximum Outstanding
Split Transactions Value to gain even more performance. In this case, the OS would examined each PCI-X
device that is directly attached to the host bridge, determine the number of outstanding split
transactions supported by each device, and configure each device accordingly. The goal is to ensure that
the aggregate number of concurrent outstanding split transactions does not exceed the Total Maximum
Outstanding Split Transactions Value: an integer denoting the number of concurrent outstanding split
transactions the host bridge can support (the minimum value is 1).

This object does not address providing additional information that would be used to configure registers
in bridge devices, whether architecturally-defined or specification-defined registers or device specific
registers. It is expected that a driver for a bridge would be the proper implementation mechanism to
address both of those issues. However, such a bridge driver should have access to the data returned by
the _HPX object for use in optimizing its decisions on how to configure the bridge. Configuration of a
bridge is dependent on both system specific information such as that provided by the _HPX object, as
well as bridge specific information.
UEFI Forum, Inc. January 2019 Page 373

ACPI Specification, Version 6.3 Device Configuration
6.2.9.3 PCI Express Setting Record (Type 2)

The PCI Express setting record contains the setting type 2, the current revision 1 and the type/revision
specific content (the control registers as listed in the table below) to be used when configuring registers
in the Advanced Error Reporting Extended Capability Structure or PCI Express Capability Structure for the
PCI Express devices.

The Type 2 Setting Record allows a PCI Express-aware OS that supports native hot plug to configure the
specified registers of the hot plugged PCI Express device. A PCI Express-aware OS that has assumed
ownership of native hot plug (via _OSC) but does not support or does not have ownership of the AER
register set must use the data values returned by the _HPX object‘s Type 2 record to program the AER
registers of a hot-added PCI Express device. However, since the Type 2 record also includes register bits
that have functions other than AER, OSPM must ignore values contained within this setting record that
are not applicable.

To support PCIe RsvdP semantics for reserved bits, two values for each register are provided: an “AND
mask” and an “OR mask”. Each bit understood by firmware to be RsvdP shall be set to 1 in the “AND
mask” and 0 in the “OR mask”. Each bit that firmware intends to be configured as 0 shall be set to 0 in
both the “AND mask” and the “OR mask”. Each bit that firmware intends to be configured a 1 shall be set
to 1 in both the “AND mask” and the “OR mask”.

When configuring a given register, OSPM uses the following algorithm:

1. Read the register’s current value, which contains the register’s default value.

2. Perform a bit-wise AND operation with the “AND mask” from the table below.

3. Perform a bit-wise OR operation with the “OR mask” from the table below.

4. Override the computed settings for any bits if deemed necessary. For example, if OSPM is aware
of an architected meaning for a bit that firmware considers to be RsvdP, OSPM may choose to
override the computed setting for that bit. Note that firmware sets the “AND value” to 1 and the
“OR value” to 0 for each bit that it considers to be RsvdP.

5. Write the end result value back to the register.

Note that the size of each field in the following table matches the size of the corresponding PCI Express
register.

Table 6-197 PCI Express Setting Record Content

Field Object Type Definition

Header:

Type Integer 0x02: Type 2 (PCI Express) setting record.

Revision Integer 0x01: Revision 1, defining the set of fields below.

Uncorrectable Error Mask Register
AND Mask

Integer Bits [31:0] contain the “AND mask” to be used in the
OSPM algorithm described above.

Uncorrectable Error Mask Register
OR Mask

Integer Bits [31:0] contain the “OR mask” to be used in the
OSPM algorithm described above.

Uncorrectable Error Severity
Register AND Mask

Integer Bits [31:0] contain the “AND mask” to be used in the
OSPM algorithm described above.
UEFI Forum, Inc. January 2019 Page 374

ACPI Specification, Version 6.3 Device Configuration
6.2.9.4 PCI Express Descriptor Setting Record (Type 3)

The PCI Express Descriptor setting record contains the setting type 3, the current revision 1 and the type/
revision specific content (the control registers as listed in the tables below) to be used when configuring
registers in PCI Express Functions. There may be multiple PCI Express Descriptor setting records in a
single _HPX object with the same or different revision. Each PCI Express Descriptor setting record shall
contain at least one, and may contain more than one, PCI Express Register Descriptors as defined in
Table 6-199.

The Type 3 Setting Record allows a PCI Express-aware OS to configure the indicated registers of the PCI
Express Function. A PCI Express-aware OS that does not support or does not have ownership of a register
in this record must use the data values returned by the _HPX object‘s Type 3 record to program that
register of a PCI Express Function that has lost its configuration space settings (e.g. a hot-added device, a
device not configured by the platform firmware during initial system boot, a Device/Function that was
reset via Secondary Bus Reset/Function Level Reset, Downstream Port Containment was triggered, etc.).

Uncorrectable Error Severity
Register OR Mask

Integer Bits [31:0] contain the “OR mask” to be used in the
OSPM algorithm described above.

Correctable Error Mask Register AND
Mask

Integer Bits [31:0] contain the “AND mask” to be used in the
OSPM algorithm described above.

Correctable Error Mask Register OR
Mask

Integer Bits [31:0] contain the “OR mask” to be used in the
OSPM algorithm described above.

Advanced Error Capabilities and
Control Register AND Mask

Integer Bits [31:0] contain the “AND mask” to be used in the
OSPM algorithm described above.

Advanced Error Capabilities and
Control Register OR Mask

Integer Bits [31:0] contain the “OR mask” to be used in the
OSPM algorithm described above.

Device Control Register AND Mask Integer Bits [15 :0] contain the “AND mask” to be used in
the OSPM algorithm described above.

Device Control Register OR Mask Integer Bits [15:0] contain the “OR mask” to be used in the
OSPM algorithm described above.

Link Control Register AND Mask Integer Bits [15 :0] contain the “AND mask” to be used in
the OSPM algorithm described above.

Link Control Register OR Mask Integer Bits [15 :0] contain the “OR mask” to be used in the
OSPM algorithm described above.

Secondary Uncorrectable Error
Severity Register AND Mask

Integer Bits [31 :0] contain the “AND mask” to be used in
the OSPM algorithm described above

Secondary Uncorrectable Error
Severity Register OR Mask

Integer Bits [31 :0] contain the “OR mask” to be used in the
OSPM algorithm described above

Secondary Uncorrectable Error Mask
Register AND Mask

Integer Bits [31 :0] contain the “AND mask” to be used in
the OSPM algorithm described above

Secondary Uncorrectable Error Mask
Register OR Mask

Integer Bits [31 :0] contain the “OR mask” to be used in the
OSPM algorithm described above

Field Object Type Definition
UEFI Forum, Inc. January 2019 Page 375

ACPI Specification, Version 6.3 Device Configuration
To support PCIe RsvdP semantics for reserved bits, two values for each register indicated by Write
Register Offset are provided: a Write AND Mask and a Write OR Mask. Each bit understood by firmware
to be RsvdP shall be set to 1 in the Write AND Mask and 0 in the Write OR Mask. Each bit that firmware
intends to be configured as 0 shall be set to 0 in both the Write AND Mask and the Write OR Mask. Each
bit that firmware intends to be configured a 1 shall be set to 1 in both the Write AND Mask and the Write
OR Mask.

OSPM evaluates each PCI Express Register Descriptor in order starting with the first PCI Express Register
Descriptor and continuing through the Nth PCI Express Register Descriptor as shown in Table 6-198 for
each PCI Express Function that has lost its configuration space settings (e.g. a hot-added device, a device
not configured by the platform firmware during initial system boot, a Device/Function that was reset via
Secondary Bus Reset/Function Level Reset, Downstream Port Containment was triggered, etc.) in the
scope of the _HPX method using the following algorithm:

1. Verify the PCI Express Register Descriptor applies to the PCI Express Function.

a Read the PCI Express Function’s Device Type/Port from its PCI Express Capabilities Register.

b. Read the bit corresponding to the PCI Express Function’s Device Port/Type in the Device/Port
Type from Table 6-199 below.

• If set to 0b, then the PCI Express Register Descriptor does not apply to the PCI Express
Function and OSPM moves to the next Function in the scope of the _HPX method or the
next PCI Express Register Descriptor if there are no more Functions.

• If set to 1b, then continue to the next step.

c. Determine if the PCI Express Function is a non-SR-IOV Function, an SR-IOV Physical Function,
or an SR-IOV Virtual Function.

d. Read the bit corresponding to the PCI Express Function’s type in the Function Type from
Table 6-199 below.

• If set to 0b, then the PCI Express Register Descriptor does not apply to the PCI Express
Function and OSPM moves to the next Function in the scope of the _HPX method or to
the next PCI Express Register Descriptor if there are no more Functions.

• If set to 1b, then the PCI Express Register Descriptor applies to the PCI Express Function
and OSPM continues to the next step.

2. Read the Configuration Space Location from Table 6-199 below.

a If Configuration Space Location is 0, then the Match Register Offset and Write Register Offset
field’s byte offset is relative to offset 0 of the Function’s configuration space.

b. If Configuration Space Location is 1, then the Match Register Offset and Write Register Offset
field’s byte offset is relative to the starting offset of the Capability Structure indicated by PCIe
Capability ID.

If the Capability ID is 01h (PCI Power Management Capability Structure) or 10h (PCI Express
Capability Structure) then OSPM shall check the Capability Version of the Function’s
Capability Structure against the PCIe Capability ID field. In the event that there are more
than one PCI Express Register Descriptors for a given PCIe Capability ID with different PCIe
Capability Versions, OSPM shall use the PCI Express Register Descriptors with the highest
PCIe Capability Version supported by the Function.

There may be more than one instance of a Capability Structure that matches the indicated
UEFI Forum, Inc. January 2019 Page 376

ACPI Specification, Version 6.3 Device Configuration
PCIe Capability ID. Continue to step 3 for each such instance. If no Capability Structures
indicated by PCIe Capability ID are found, then start back at step 1 above for the next
Function in the scope of the _HPX method or the next PCI Express Register Descriptor if there
are no more Functions.

c. If Configuration Space Location is 2, then the Match Register Offset and Write Register Offset
field’s byte offset is relative to the starting offset of the Extended Capability Structure
indicated by PCIe Capability ID and PCIe Capability Version. 

In the event that there are more than one PCI Express Register Descriptors for a given PCIe
Capability ID with different PCIe Capability Versions, OSPM shall use the PCI Express Register
Descriptors with the highest PCIe Capability Version supported by the Function.

There may be more than one instance of an Extended Capability Structure that matches the
indicated PCIe Capability ID and PCIe Capability Version. Continue to step 3 for each such
instance. If no Extended Capability Structures indicated by PCIe Capability ID and PCIe
Capability Version are found, then start back at step 1 above for the next Function in the
scope of the _HPX method or the next PCI Express Register Descriptor if there are no more
Functions.

d. If Configuration Space Location is 3, then the Match Register Offset and Write Register Offset
field’s byte offset is relative to the starting offset of the Extended Capability Structure
indicated by PCIe Capability ID, PCIe Capability Version, PCIe Vendor ID, VSEC ID, and VSEC
Rev.

In the event that there are more than one PCI Express Register Descriptors for a given PCIe
Capability ID with different PCIe Capability Versions, OSPM shall use the PCI Express Register
Descriptors with the highest PCIe Capability Version supported by the Function.

Once the PCI Express Register Descriptors that match the PCIe Capability ID with the highest
PCIe Capability Version supported by the Function are found, the OSPM shall use PCI Express
Register Descriptors among those with the highest VSEC Rev supported by the Function.

There may be more than one instance of an Extended Capability Structure that matches the
indicated PCIe Capability ID, PCIe Capability Version, PCIe Vendor ID, VSEC ID, and VSEC Rev.
Continue to step 3 for each such instance. If no Extended Capability Structures indicated by
PCIe Capability ID, PCIe Capability Version, PCIe Vendor ID, VSEC ID, and VSEC Rev are found,
then start back at step 1 above for the next Function in the scope of the _HPX method or the
next PCI Express Register Descriptor if there are no more Functions.

e. If Configuration Space Location is 4, then the Match Register Offset and Write Register Offset
field’s byte offset is relative to the starting offset of the Extended Capability Structure
indicated by PCIe Capability ID, PCIe Capability Version, PCIe Vendor ID, DVSEC ID, and DVSEC
Rev.

In the event that there are more than one PCI Express Register Descriptors for a given PCIe
Capability ID with different PCIe Capability Versions, OSPM shall use the PCI Express Register
Descriptors with the highest PCIe Capability Version supported by the Function.


UEFI Forum, Inc. January 2019 Page 377

ACPI Specification, Version 6.3 Device Configuration
Once the PCI Express Register Descriptors that match the PCIe Capability ID with the highest
PCIe Capability Version supported by the Function are found, the OSPM shall use PCI Express
Register Descriptors among those with the highest DVSEC Rev supported by the Function.

There may be more than one instance of an Extended Capability Structure that matches the
indicated PCIe Capability ID, PCIe Capability Version, PCIe Vendor ID, DVSEC ID, and DVSEC
Rev. Continue to step 3 for each such instance. If no Extended Capability Structures
indicated by PCIe Capability ID, PCIe Capability Version, PCIe Vendor ID, DVSEC ID, and DVSEC
Rev are found, then start back at step 1 above for the next Function in the scope of the _HPX
method or the next PCI Express Register Descriptor if there are no more Functions.

3. Check the Match Register to see if the Write Register should be updated.

a Read the current value from the register indicated by the Match Register Offset.

b. Perform a bit-wise AND operation on the result of step 3a with the Match AND Mask.

c. Compare the result of step 3b with the Match Value. If they are equal then continue to step
4, else start back at step 1 above for the next Function

d. in the scope of the _HPX method or the next PCI Express Register Descriptor if there are no
more Functions.

4. Update the Write Register.

a Read the current value from the register indicated by the Write Register Offset.

b. Perform a bit-wise AND operation on the result of step 4a with the Write AND Mask.

c. Perform a bit-wise OR operation on the result of step 4b with the Write OR Mask.

d. Override the computed settings from step 4c for any bits if deemed necessary. For example,
if OSPM is aware of an architected meaning for a bit that firmware considers to be RsvdP,
OSPM may choose to override the computed setting for that bit. Note that firmware sets the
Write AND Mask to 1 and the Write OR Mask to 0 for each bit that it considers to be RsvdP.

e. Write the result of step 4d back to the register indicated by the Write Register Offset.

Table 6-198 PCI Express Descriptor Setting Record Content

Field Object Type Definition

Header:

Type Integer 0x03: Type 3 (PCI Express Descriptor) setting
record.

Revision Integer 0x01: Revision 1, defining the set of fields below.

PCI Express Register Descriptor Count Integer Number of Register Descriptors in this setting
record.

First PCI Express Register Descriptor PCI Express
Register
Descriptor

The first PCI Express Register Descriptor as defined

in Table 6-199.

Second PCI Express Register Descriptor PCI Express
Register
Descriptor

The second PCI Express Register Descriptor as

defined in Table 6-199.

… … …
UEFI Forum, Inc. January 2019 Page 378

ACPI Specification, Version 6.3 Device Configuration
Table 6-199 PCI Express Register Descriptor

Nth PCI Express Register Descriptor PCI Express
Register
Descriptor

The Nth PCI Express Register Descriptor as defined

in Table 6-199 where N is equal to the PCI Express
Register Descriptor Count.

Field Object Type Definition

Device/Port Type Integer This field is a bitmask of Device/Port Types to which
the PCI Express Register Descriptor applies. A bit is
set to 1 to indicate the PCI Express Register
Descriptor applies to the corresponding Device/Port
Type and is set to 0 to indicate it does not apply to
the corresponding Device/Port Type.

At least one bit shall be set. More than one bit may
be set.

Bit [0]: PCI Express Endpoint

Bit [1]: Legacy PCI Express Endpoint

Bit [2]: RCiEP

Bit [3]: Root Complex Event Collector

Bit [4]: Root Port of PCI Express Root Complex

Bit [5]: Upstream Port of PCI Express Switch

Bit [6]: Downstream Port of PCI Express Switch

Bit [7]: PCI Express to PCI/PCI-X Bridge

Bit [8]: PCI/PCI-X to PCI Express Bridge

All other bits are reserved.

Function Type Integer This field is a bitmask of Function Types to which the
PCI Express Register Descriptor applies. A bit is set to
1 to indicate the PCI Express Register Descriptor
applies to the corresponding Function Type and is set
to 0 to indicate it does not apply to the
corresponding Function Type.

At least one bit shall be set. More than one bit may
be set.

Bit [0]: Non-SR-IOV Function

Bit [1]: SR-IOV Physical Function

Bit [2]: SR-IOV Virtual Function
All other bits are reserved.

Field Object Type Definition
UEFI Forum, Inc. January 2019 Page 379

ACPI Specification, Version 6.3 Device Configuration
Configuration Space Location Integer A value of 0 indicates the Match Register Offset and
Write Register Offset fields are relative to offset 0 of
the Function’s configuration space.

A value of 1 indicates the Match Register Offset and
Write Register Offset fields are located in a Capability
Structure within the first 256 bytes of PCIe
configuration space and are relative to offset 0 of the
Capability Structure.

A value of 2 indicates the Match Register Offset and
Write Register Offset fields are located in an
Extended Capability Structure beyond the first 256
bytes of PCI configuration space and are relative to
offset 0 of the Extended Capability Structure.

A value of 3 indicates the Match Register Offset and
Write Register fields are located in a PCI Express
Vendor-Specific Extended Capability and are relative
to offset 0 of the Vendor-Specific Extended
Capability.

A value of 4 indicates the Match Register Offset and
Write Register Offset fields are located in a PCI
Express Designated Vendor-Specific Extended
Capability and are relative to offset 0 of the
Designated Vendor-Specific Extended Capability.

All other values are reserved.

PCIe Capability ID Integer PCIe Capability ID indicates the capability ID of the
Capability Structure (if Configuration Space Location
is 1) or Extended Capability Structure (if
Configuration Space Location is 2) to which the PCI
Express Register Descriptor applies. This field only
applies if Configuration Space Location is 1
(Capability Structure), 2 (Extended Capability
Structure), 3 (Vendor-Specific Extended Capability),
or 4 (Designated Vendor-Specific Extended
Capability).

Field Object Type Definition
UEFI Forum, Inc. January 2019 Page 380

ACPI Specification, Version 6.3 Device Configuration
PCIe Capability Version Integer This field contains information about the Capability
Version/Extended Capability Version and applies in
the following conditions:

Configuration Space Location is 1 (Capability
Structure) and Capability ID is 01h (PCI Power
Management Capability Structure); or

Configuration Space Location is 1 (Capability
Structure) and Capability ID is 10h (PCI Express
Capability Structure); or Configuration Space
Location is 2 (Extended Capability Structure); or

Configuration Space Location is 3 (Vendor-Specific
Extended Capability); or Configuration Space
Location is 4 (Designated Vendor-Specific Extended
Capability).

Bit [4] indicates the applicability of the Capability
Version/Extended Capability Version in bits [3:0].
Defined values are:

0b

The PCI Express Register Descriptor applies to
Capability Structures/Extended Capability Structures
with Capability Versions that are equal to the version
in bits [3:0].

1b

The PCI Express Register Descriptor applies to
Capability Structures/Extended Capability Structures
with Capability Versions that are greater than or
equal to the version in bits [3:0].

Bits [3:0] indicate the Capability Version of the
Capability Structures/Extended Capability Structure.
Note that the version of the Capability Structure/
Extended Capability Structure is always 4 bits except
for the PCI Power Management Capability Structure
whose Version field is only 3 bits. For the PCI Power
Management Capability structure, this field shall
contain the Version in bits [2:0] and bit [3] shall be
0b.

All other bits are reserved.

Field Object Type Definition
UEFI Forum, Inc. January 2019 Page 381

ACPI Specification, Version 6.3 Device Configuration
PCIe Vendor ID Integer If Configuration Space Location is 3 (Vendor-Specific
Extended Capability Structure), this field indicates
the vendor in the Vendor ID register at offset 0 of the
Function’s configuration space to which the PCI
Express Register Descriptor applies.

If Configuration Space Location is 4 (Designated
Vendor-Specific Extended Capability Structure), this
field indicates the vendor in the DVSEC Vendor ID
register at offset 4 in the Designated Vendor-Specific
Extended Capability Structure to which the PCI
Express Register Descriptor applies.

This field only applies if Configuration Space Location
is 3 (Vendor-Specific Extended Capability Structure)
or 4 (Designated Vendor-Specific Extended Capability
Structure).

VSEC/DVSEC ID Integer If Configuration Space Location is 3 (Vendor-Specific
Extended Capability Structure), this field indicates
the vendor-defined ID number (VSEC ID) of the
Vendor-Specific Extended Capability Structure to
which the PCI Express Register Descriptor applies.

If Configuration Space Location is 4 (Designated
Vendor-Specific Extended Capability Structure), this
field indicates the DVSEC ID of the Designated
Vendor-Specific Extended Capability Structure to
which the PCI Express Register Descriptor applies.

This field only applies if Configuration Space Location
is 3 (Vendor-Specific Extended Capability Structure)
or 4 (Designated Vendor-Specific Extended Capability
Structure).

Field Object Type Definition
UEFI Forum, Inc. January 2019 Page 382

ACPI Specification, Version 6.3 Device Configuration
VSEC/DVSEC Rev Integer This field contains information about the VSEC/
DVSEC Rev and only applies if Configuration Space
Location is 3 (Vendor-Specific Extended Capability
Structure) or 4 (Designated Vendor-Specific Extended
Capability Structure).

Bit [4] indicates the applicability of the VSEC/DVSEC
Rev in bits [3:0]. Defined values are:

0b

The PCI Express Register Descriptor applies to Vendor
Specific Extended Capabilities/Designated Vendor-
Specific Capabilities with VSEC/DVSEC Revs that are
equal to the revision in bits [3:0].

1b

The PCI Express Register Descriptor applies to Vendor
Specific Extended Capabilities/Designated Vendor-
Specific Capabilities with VSEC/DVSEC Revs that are
greater than or equal to the revision in bits [3:0].

Bits [3:0] - If Configuration Space Location is 3
(Vendor-Specific Extended Capability Structure), this
field indicates the VSEC Rev of the Vendor-Specific
Extended Capability Structure. If Configuration Space
Location is 4 (Designated Vendor-Specific Extended
Capability Structure), this field indicates the DVSEC
Revision of the Designated Vendor-Specific Extended
Capability Structure.

All other bits are reserved.

Match Register Offset Integer Byte offset of the PCIe configuration space register
that is checked before the write. This offset shall be
dword aligned (i.e. bits [1:0] are 00b).

Match AND Mask Integer Bits 0 to 31 contain the AND mask to be used by the
operating system engine during the check.

Match Value Integer Bits 0 to 31 contain the value to be compared by
Operating system engine before the write.

Write Register Offset Integer Byte offset of the PCIe configuration space register to
be modified. This offset shall be dword aligned (i.e.
bits [1:0] are 00b).

Write AND Mask Integer Bits 0 to 31 contain the AND mask to be used by the
operating system engine to modify the value to be
written to the register indicated by Write Register
Offset.

Write OR Mask Integer Bits 0 to 31 contain the OR mask to be used by the
operating system engine to modify the value to be
written to the register indicated by Write Register
Offset.

Field Object Type Definition
UEFI Forum, Inc. January 2019 Page 383

ACPI Specification, Version 6.3 Device Configuration
6.2.9.5 _HPX Example

Method (_HPX, 0) {
 Return (Package(2){
 Package(6){ // PCI Setting Record
 0x00, // Type 0
 0x01, // Revision 1
 0x08, // CacheLineSize in DWORDS
 0x40, // LatencyTimer in PCI clocks
 0x01, // Enable SERR (Boolean)
 0x00 // Enable PERR (Boolean)
 },
 Package(5){ // PCI-X Setting Record
 0x01, // Type 1
 0x01, // Revision 1
 0x03, // Maximum Memory Read Byte Count
 0x04, // Average Maximum Outstanding Split Transactions
 0x07 // Total Maximum Outstanding Split Transactions
 }

Package(17){ // PCI Express Descriptor setting Record (Type 3)
 0x03, // Type 3
 0x01, // Revision 1
 0x01, // Number of Register Descriptors
 0x01FF, // Device/Port Type – All types in PCIe 4.0
 0x03, // Function Type – All but VFs
 0x01, // Configuration Space Location – Capability Structure
 0x10, // PCIe Capability ID – PCI Express Cap Struct
 0x12, // PCIe Capability Version – Applies to rev 2 and higher
 0x0000, // PCIe Vendor ID – N/A
 0x00, // VSEC/DVSEC ID – N/A
 0x00, // VSEC/DVSEC Rev – N/A
 0x24, // Match Register Offset – Device Cap 2
 0x00000002, // Match AND Mask – Check Range B
 0x00000002 // Match Value – CTO Range B supported?
 0x28, // Write Register Offset – Device Ctrl 2
 0xFFFFFFF0, // Write AND Mask – Clear CTO Range
 0x00000006 // Write OR Mask – Set CTO range 65 ms to 210 ms
 }
 Package(17){ // PCI Express Descriptor setting Record (Type 3)
 0x03, // Type 3
 0x01, // Revision 1
 0x01, // Number of Register Descriptors
 0x01FF, // Device/Port Type – All types in PCIe 4.0
 0x03, // Function Type – All but VFs
 0x01, // Configuration Space Location – Capability Structure
 0x10, // PCIe Capability ID – PCI Express Cap Struct
 0x12, // PCIe Capability Version – Applies to rev 2 and higher
 0x0000, // PCIe Vendor ID – N/A
 0x00, // VSEC/DVSEC ID – N/A
 0x00, // VSEC/DVSEC Rev – N/A
 0x24, // Match Register Offset – Device Cap 2
UEFI Forum, Inc. January 2019 Page 384

ACPI Specification, Version 6.3 Device Configuration
 0x00000006, // Match AND Mask – Check Range B/C
 0x00000004 // Match Value – CTO Range B not supported but C is?
 0x28, // Write Register Offset – Device Ctrl 2
 0xFFFFFFF0, // Write AND Mask – Clear CTO Range
 0x00000009 // Write OR Mask – Set CTO range 260 to 900 ms
 }
 Package(17){ // PCI Express Descriptor setting Record (Type 3)
 0x03, // Type 3
 0x01, // Revision 1
 0x01, // Number of Register Descriptors
 0x01FF, // Device/Port Type – All types in PCIe 4.0
 0x03, // Function Type – All but VFs
 0x01, // Configuration Space Location – Capability Structure
 0x10, // PCIe Capability ID – PCI Express Cap Struct
 0x12, // PCIe Capability Version – Applies to rev 2 and higher
 0x0000, // PCIe Vendor ID – N/A
 0x00, // VSEC/DVSEC ID – N/A
 0x00, // VSEC/DVSEC Rev – N/A
 0x24, // Match Register Offset – Device Cap 2
 0x00000016, // Match AND Mask – Check Range B/C and CTO Disable
 0x00000010 // Match Value – CTO Disable support but no range B/C?
 0x28, // Write Register Offset – Device Ctrl 2
 0xFFFFFFFF, // Write AND Mask – Don’t mask anything
 0x00000010 // Write OR Mask – Set CTO Disable
 }
 })
}

6.2.10 _MAT (Multiple APIC Table Entry)

This optional object evaluates to a buffer returning data in the format of a series of Multiple APIC
Description Table (MADT) APIC Structure entries. This object can appear under an I/O APIC or processor
object definition as processors may contain Local APICs. Specific types of MADT entries are meaningful to
(in other words, is processed by) OSPM when returned via the evaluation of this object as described in
Table 5-45. Other entry types returned by the evaluation of _MAT are ignored by OSPM.

When _MAT appears under a Processor object, OSPM uses the ACPI processor ID in the entries returned
from the object’s evaluation to identify the entries corresponding to either the ACPI processor ID of the
Processor object or the value returned by the _UID object under a Processor device.

Arguments:

None

Return Value:

A Buffer containing a list of Interrupt Controller Structures.
UEFI Forum, Inc. January 2019 Page 385

ACPI Specification, Version 6.3 Device Configuration
Example ASL for _MAT usage:

Scope(_SB) {
 Device(PCI0) { // Root PCI Bus
 Name(_HID, EISAID("PNP0A03")) // Need _HID for root device
 Device (P64A) { // P64A ACPI
 Name (_ADR,0)
 OperationRegion (OPRM, SystemMemory,
 Offset in system memory of Interrupt Controller Structures,
 Length in bytes)
 Field (OPRM, ByteAcc, NoLock, Preserve) {
 MATD, Length in bits
 }
 Method(_MAT, 0){
 Return (MATD)
 }
 ...
 } // end P64A
 ...
 } // end PCI0
 ...
} // end scope SB

6.2.11 _OSC (Operating System Capabilities)

This optional object is a control method that is used by OSPM to communicate to the platform the
feature support or capabilities provided by a device’s driver. This object is a child object of a device and
may also exist in the _SB scope, where it can be used to convey platform wide OSPM capabilities. When
supported, _OSC is invoked by OSPM immediately after placing the device in the D0 power state. Device
specific objects are evaluated after _OSC invocation. This allows the values returned from other objects
to be predicated on the OSPM feature support / capability information conveyed by _OSC. OSPM may
evaluate _OSC multiple times to indicate changes in OSPM capability to the device but this may be
precluded by specific device requirements. As such, _OSC usage descriptions in Section 9, “ACPI-Defined
Devices and Device Specific Objects”, or other governing specifications describe superseding device
specific _OSC capabilities and / or preclusions.

_OSC enables the platform to configure its ACPI namespace representation and object evaluations to
match the capabilities of OSPM. This enables legacy operating system support for platforms with new
features that make use of new namespace objects that if exposed would not be evaluated when running
a legacy OS. _OSC provides the capability to transition the platform to native operating system support of
new features and capabilities when available through dynamic namespace reconfiguration. _OSC also
allows devices with Compatible IDs to provide superset functionality when controlled by their native (For
example, _HID matched) driver as appropriate objects can be exposed accordingly as a result of OSPM’s
evaluation of _OSC.

Arguments: (4)

Arg0 – A Buffer containing a UUID

Arg1 – An Integer containing a Revision ID of the buffer format

Arg2 – An Integer containing a count of entries in Arg3
UEFI Forum, Inc. January 2019 Page 386

ACPI Specification, Version 6.3 Device Configuration
Arg3 – A Buffer containing a list of DWORD capabilities

Return Value:

A Buffer containing a list of capabilities

Argument Information
Arg0: UUID – used by the platform in conjunction with Revision ID to ascertain the format of the
Capabilities buffer.

Arg1: Revision ID – The revision of the Capabilities Buffer format. The revision level is specific to the
UUID.

Arg2: Count – Number of DWORDs in the Capabilities Buffer in Arg3

Arg3: Capabilities Buffer – Buffer containing the number of DWORDs indicated by Count. The first
DWORD of this buffer contains standard bit definitions as described below. Subsequent DWORDs contain
UUID-specific bits that convey to the platform the capabilities and features supported by OSPM.
Successive revisions of the Capabilities Buffer must be backwards compatible with earlier revisions. Bit
ordering cannot be changed.

Capabilities Buffers are device-specific and as such are described under specific device definitions. See
Section 9, “ACPI Devices and Device Specific Objects” for any _OSC definitions for ACPI devices. The
format of the Capabilities Buffer and behavior rules may also be specified by OEMs and IHVs for custom
devices and other interface or device governing bodies for example, the PCI SIG.

The first DWORD in the capabilities buffer is used to return errors defined by _OSC. This DWORD must
always be present and may not be redefined/reused by unique interfaces utilizing _OSC.

• Bit [0]- Query Support Flag. If set, the _OSC invocation is a query by OSPM to determine or
negotiate with the platform the combination of capabilities for which OSPM may take control.
In this case, OSPM sets bits in the subsequent DWORDs to specify the capabilities for which
OSPM intends to take control. If clear, OSPM is attempting to take control of the capabilities
corresponding to the bits set in subsequent DWORDs. OSPM may only take control of
capabilities as indicated by the platform by the result of the query.

• Bit [1] – Always clear (0).
• Bit [2] – Always clear (0).
• Bit [3] – Always clear (0).
• All others – reserved.

Return Value Information
Capabilities Buffer (Buffer) – The platform acknowledges the Capabilities Buffer by returning a buffer of
DWORDs of the same length. Set bits indicate acknowledgment that OSPM may take control of the
capability and cleared bits indicate that the platform either does not support the capability or that OSPM
may not assume control.

The first DWORD in the capabilities buffer is used to return errors defined by _OSC. This DWORD must
always be present and may not be redefined/reused by unique interfaces utilizing _OSC.

• Bit [0] – Reserved (not used)
UEFI Forum, Inc. January 2019 Page 387

ACPI Specification, Version 6.3 Device Configuration
• Bit [1] – _OSC failure. Platform Firmware was unable to process the request or query.
Capabilities bits may have been masked.

• Bit [2] – Unrecognized UUID. This bit is set to indicate that the platform firmware does not
recognize the UUID passed in via Arg0. Capabilities bits are preserved.

• Bit [3] – Unrecognized Revision. This bit is set to indicate that the platform firmware does not
recognize the Revision ID passed in via Arg1. Capabilities bits beyond those comprehended by
the firmware will be masked.

• Bit [4] – Capabilities Masked. This bit is set to indicate that capabilities bits set by driver
software have been cleared by platform firmware.

• All others – reserved.

Note: OSPM must not use the results of _OSC evaluation to choose a compatible device driver. OSPM
must use _HID, _CID, or native enumerable bus device identification mechanisms to select an
appropriate driver for a device.

The platform may issue a Notify(device, 0x08) to inform OSPM to re-evaluate _OSC when the availability
of feature control changes. Platforms must not rely, however, on OSPM to evaluate _OSC after issuing a
Notify for proper operation as OSPM cannot guarantee the presence of a target entity to receive and
process the Notify for the device. For example, a device driver for the device may not be loaded at the
time the Notify is signaled. Further, the issuance and processing rules for notification of changes in the
Capabilities Buffer is device specific. As such, the allowable behavior is governed by device specifications
either in Section 9, “ ACPI-Specific Device Objects”, for ACPI-define devices, or other OEM, IHV, or device
governing body’s’ device specifications.

It is permitted for _OSC to return all bits in the Capabilities Buffer cleared. An example of this is when
significant time is required to disable platform-based feature support. The platform may then later issue
a Notify to tell OSPM to re-evaluate _OSC to take over native control. This behavior is also device specific
but may also rely on specific OS capability.

 In general, platforms should support both OSPM taking and relinquishing control of specific feature
support via multiple invocations of _OSC but the required behavior may vary on a per device basis.

Since platform context is lost when the platform enters the S4 sleeping state, OSPM must re-evaluate
_OSC upon wake from S4 to restore the previous platform state. This requirement will vary depending on
the device specific _OSC functionality.

6.2.11.1 Rules for Evaluating _OSC

This section defines when and how the OS must evaluate _OSC, as well as restrictions on firmware
implementation.

6.2.11.1.1 Query Flag

If the Query Support Flag (Capabilities DWORD 1, bit 0) is set by the OS when evaluating _OSC, no
hardware settings are permitted to be changed by firmware in the context of the _OSC call. It is strongly
recommended that the OS evaluate _OSC with the Query Support Flag set until _OSC returns the
Capabilities Masked bit clear, to negotiate the set of features to be granted to the OS for native support;
a platform may require a specific combination of features to be supported natively by an OS before
granting native control of a given feature.
UEFI Forum, Inc. January 2019 Page 388

ACPI Specification, Version 6.3 Device Configuration
6.2.11.1.2 Evaluation Conditions

The OS must evaluate _OSC under the following conditions:

During initialization of any driver that provides native support for features described in the section
above. These features may be supported by one or many drivers, but should only be evaluated by the
main bus driver for that hierarchy. Secondary drivers must coordinate with the bus driver to install
support for these features. Drivers may not relinquish control of features previously obtained (i.e., bits
set in Capabilities DWORD3 after the negotiation process must be set on all subsequent negotiation
attempts.)

When a Notify(<device>, 8) is delivered to the PCI Host Bridge device.

Upon resume from S4. Platform firmware will handle context restoration when resuming from S1-S3.

6.2.11.1.3 Sequence of _OSC calls

The following rules govern sequences of calls to _OSC that are issued to the same host bridge and occur
within the same boot.

• The OS is permitted to evaluate _OSC an arbitrary number of times.
• If the OS declares support of a feature in the Status Field in one call to _OSC, then it must

preserve the set state of that bit (declaring support for that feature) in all subsequent calls.
• If the OS is granted control of a feature in the Control Field in one call to _OSC, then it must

preserve the set state of that bit (requesting that feature) in all subsequent calls.
• Firmware may not reject control of any feature it has previously granted control to.
• There is no mechanism for the OS to relinquish control of a feature previously requested and

granted.

6.2.11.2 Platform-Wide OSPM Capabilities

OSPM evaluates _SB._OSC to convey platform-wide OSPM capabilities to the platform. Argument
definitions are as follows:

Arguments: (4)

Arg0 – UUID (Buffer): 0811B06E-4A27-44F9-8D60-3CBBC22E7B48

Arg1 – Revision ID (Integer): 1

Arg2 – Count of Entries in Arg3 (Integer): 2

Arg3 – DWORD capabilities (Buffer): First DWORD: as described in Section 6.2.11, Second DWORD: See
Table 6-200
UEFI Forum, Inc. January 2019 Page 389

ACPI Specification, Version 6.3 Device Configuration
Table 6-200 Platform-Wide _OSC Capabilities DWORD 2

Bits Field Name Definition

0 Processor Aggregator
Device Support

This bit is set if OSPM supports the Processor Aggregator device as
described in Section 8.5, “Processor Aggregator Device.”

1 _PPC _OST Processing
Support

This bit is set if OSPM will evaluate the _OST object defined under a
processor as a result of _PPC change notification (Notify 0x80).

2 _PR3 Support This bit is set if OSPM supports reading _PR3and using power resources to
switch power. Note this handshake translates to an operating model that
the platform and OSPM supports both the power model containing both
D3hot and D3.

3 Insertion / Ejection _OST
Processing Support

This bit is set if OSPM will evaluate the _OST object defined under a device
when processing insertion and ejection source event codes.

4 APEI Support This bit is set if OSPM supports the ACPI Platform Error Interfaces. See
Section 18, “ACPI Platform Error Interfaces.”

5 CPPC Support This bit is set if OSPM supports controlling processor performance via the
interfaces described in the _CPC object.

6 CPPC 2 Support This bit is set if OSPM supports revision 2 of the _CPC object.

7 Platform Coordinated Low
Power Idle Support

This bit is set if OSPM supports platform coordinated low power idle
states (see note below)*.

8 OS Initiated Low Power Idle
Support

This bit is set if OSPM supports OS initiated low power idle states. *(see
note, below).

9 Fast Thermal Sampling
support

This bit is set if OSPM supports _TFP.

10 Greater Than 16 p-state
support

This bit is set if OSPM supports greater than 16 p-states. If clear, no more
than 16 p-states are supported.

11 Generic Event Device
support

This bit is set if OSPM supports parsing of the generic event device.

12 Diverse CPPC Highest
Optimization Support

This bit is set if OSPM can process processor device notifications for
changes in CPPC Highest Performance. It also indicates support for
optimizing for performance domains with diverse Highest Performance
capabilities.

Potential OS optimizations for diverse CPPC highest performance include
but are not limited to placement of work on specific logical processors
yielding a performance or power benefit.

Note: These optimizations are independent of the platform’s existing
ability to expose diverse Highest Performance to OSPM as well as OSPM
support for the MADT GICC’s Processor Power Efficiency Class.

13 Interrupt ResourceSource
support

This bit is set if OSPM supports the usage of the ResourceSource in the
extended interrupt descriptor. As part of the handshake provided through
_OSC, the platform will indicate to the OS whether or not it supports
usage of ResourceSource. If not set, the OS may choose to ignore the
ResourceSource parameter in the extended interrupt descriptor.
UEFI Forum, Inc. January 2019 Page 390

ACPI Specification, Version 6.3 Device Configuration
Note: * As part of the handshake provided through _OSC the OS will pass in flags to indicate whether it
supports Platform Coordinated Low Power Idle or OS Initiated Low Power Idle or both (see “Idle
State Coordination”, Section 8.4.4.2), through flags 7 and 8. The platform will indicate which of
the modes it supports in its response by clearing flags that are not supported. If both are
supported, the default is platform coordinated and OSPM can switch the platform to OS Initiated
via a processor architecture specific mechanism. By setting either flag 7 or 8 or both, the OSPM is
asserting it supports any objects associated with Low Power Idle states (see LPI in Section 8.4.4.3,
RDI in Section 8.5, and passive power resources in Section 7.2.5), and supports processor
containers (see Section 8.4.3.1).

Return Value Information
Capabilities Buffer (Buffer) – The platform acknowledges the Capabilities Buffer by returning a buffer of
DWORDs of the same length. Set bits indicate acknowledgment and cleared bits indicate that the
platform does not support the capability.

6.2.11.3 {deprecated} OSC Implementation Example for PCI Host Bridge Devices

The following section is an excerpt from the PCI Firmware Specification Revision 3.0 and is reproduced
with the permission of the PCI SIG.

Note: The PCI SIG owns the definition of _OSC behavior and parameter bit definitions for PCI devices. In
the event of a discrepancy between the following example and the PCI Firmware Specification,
the latter has precedence.

The _OSC interface defined in this section applies only to “Host Bridge” ACPI devices that originate PCI,
PCI-X or PCI Express hierarchies. These ACPI devices must have a _HID of (or _CID including) either
EISAID(“PNP0A03”) or EISAID(“PNP0A08”). For a host bridge device that originates a PCI Express
hierarchy, the _OSC interface defined in this section is required. For a host bridge device that originates a
PCI/PCI-X bus hierarchy, inclusion of an _OSC object is optional.

• The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is identified by the following UUID:

33DB4D5B-1FF7-401C-9657-7441C03DD766

A revision ID of 1 encompasses fields defined in this section of this revision of this specification,
comprised of 3 DWORDs, including the first DWORD described by the generic ACPI definition of _OSC.

14 Flexible Address Space for
CPPC Registers

This bit is set if OSPM supports any CPPC register being located in PCC,
SystemMemory, SystemIO, or Functional Fixed Hardware address spaces.
If not set, per-register restrictions described in ACPI Specification 6.1
apply.

15 GHES_ASSIST Support This bit is set if OSPM supports the GHES_ASSIS Flag in HEST Error
Structures. See Section 18, “ACPI Platform Error Interfaces”

16 Multi PCC channel support
for CPPC

The OSPM sets this bit when it supports multiple PCC channels for the
CPPC protocol.

17 Generic Initiator Support This bit is set if OSPM supports the Generic Initiator Affinity Structure in
SRAT.

31:18 Reserved (must be 0)

Bits Field Name Definition
UEFI Forum, Inc. January 2019 Page 391

ACPI Specification, Version 6.3 Device Configuration
The first DWORD in the _OSC Capabilities Buffer contain bits are generic to _OSC and include status and
error information.

The second DWORD in the _OSC capabilities buffer is the Support Field. Bits defined in the Support Field
provide information regarding OS supported features. Contents in the Support Field are passed one-way;
the OS will disregard any changes to this field when returned. See Table 6-196 for descriptions of
capabilities bits in this field passed as a parameter into the _OSC control method.

The third DWORD in the _OSC Capabilities Buffer is the Control Field. Bits defined in the Control Field are
used to submit request by the OS for control/handling of the associated feature, typically (but not
excluded to) those features that utilize native interrupts or events handled by an OS-level driver. See
Table 6-200 for descriptions of capabilities bits in this field passed as a parameter into the _OSC control
method. If any bits in the Control Field are returned cleared (masked to zero) by the _OSC control
method, the respective feature is designated unsupported by the platform and must not be enabled by
the OS. Some of these features may be controlled by platform firmware prior to OS boot or during
runtime for a legacy OS, while others may be disabled/inoperative until native OS support is available.
See the following table for descriptions of capabilities bits in this returned field.

If the _OSC control method is absent from the scope of a host bridge device, then the OS must not enable
or attempt to use any features defined in this section for the hierarchy originated by the host bridge.
Doing so could contend with platform firmware operations, or produce undesired results. It is
recommended that a machine with multiple host bridge devices should report the same capabilities for
all host bridges, and also negotiate control of the features described in the Control Field in the same way
for all host bridges.

Table: Interpretation of _OSC Support Field

Support Field bit
offset

Interpretation

0 Extended PCI Config operation regions supported

The OS sets this bit to 1 if it supports ASL accesses through PCI Config operation regions to
extended configuration space (offsets greater than 0xFF). Otherwise, the OS sets this bit to 0.

1 Active State Power Management supported

The OS sets this bit to 1 if it natively supports configuration of Active State Power Management
registers in PCI Express devices. Otherwise, the OS sets this bit to 0.

2 Clock Power Management Capability supported

The OS sets this bit to 1 if it supports the Clock Power Management Capability, and will enable
this feature during a native hot plug insertion event if supported by the newly added device.
Otherwise, the OS sets this bit to 0.

Note: The Clock Power Management Capability is defined in an errata to the PCI Express Base
Specification, 1.0.

3 PCI Segment Groups supported

The OS sets this bit to 1 if it supports PCI Segment Groups as defined by the _SEG object, and
access to the configuration space of devices in PCI Segment Groups as described by this
specification. Otherwise, the OS sets this bit to 0.
UEFI Forum, Inc. January 2019 Page 392

ACPI Specification, Version 6.3 Device Configuration
Table: Interpretation of _OSC Control Field, Passed in via Arg3

Control Field
bit offset

Interpretation

0 PCI Express Native Hot Plug control

The OS sets this bit to 1 to request control over PCI Express native hot plug. If the OS successfully
receives control of this feature, it must track and update the status of hot plug slots and handle
hot plug events as described in the PCI Express Base Specification.

1 SHPC Native Hot Plug control

The OS sets this bit to 1 to request control over PCI/PCI-X Standard Hot-Plug Controller (SHPC)
hot plug. If the OS successfully receives control of this feature, it must track and update the
status of hot plug slots and handle hot plug events as described in the SHPC Specification.

2 PCI Express Native Power Management Events control

The OS sets this bit to 1 to request control over PCI Express native power management event
interrupts (PMEs). If the OS successfully receives control of this feature, it must handle power
management events as described in the PCI Express Base Specification.

3 PCI Express Advanced Error Reporting (AER) control

The OS sets this bit to 1 to request control over PCI Express AER. If the OS successfully receives
control of this feature, it must handle error reporting through the AER Capability as described in
the PCI Express Base Specification.

4 PCI Express Capability Structure control

The OS sets this bit to 1 to request control over the PCI Express Capability Structures (standard
and extended) defined in the PCI Express Base Specification version 1.1. These capability
structures are the PCI Express Capability, the virtual channel extended capability, the power
budgeting extended capability, the advanced error reporting extended capability, and the serial
number extended capability. If the OS successfully receives control of this feature, it is
responsible for configuring the registers in all PCI Express Capabilities in a manner that complies
with the PCI Express Base Specification. Additionally, the OS is responsible for saving and
restoring all PCI Express Capability register settings across power transitions when register
context may have been lost.

5-31 Reserved

4 MSI supported

The OS sets this bit to 1 if it supports configuration of devices to generate message-signaled
interrupts, either through the MSI Capability or the MSI-X Capability. Otherwise, the OS sets
this bit to 0.

5-31 Reserved

Support Field bit
offset

Interpretation
UEFI Forum, Inc. January 2019 Page 393

ACPI Specification, Version 6.3 Device Configuration
Table: Interpretation of _OSC Control Field, Returned Value

Control Field
bit offset

Interpretation

0 PCI Express Native Hot Plug control

The firmware sets this bit to 1 to grant control over PCI Express native hot plug interrupts. If
firmware allows the OS control of this feature, then in the context of the _OSC method it must
ensure that all hot plug events are routed to device interrupts as described in the PCI Express
Base Specification. Additionally, after control is transferred to the OS, firmware must not
update the state of hot plug slots, including the state of the indicators and power controller. If
control of this feature was requested and denied or was not requested, firmware returns this
bit set to 0.

1 SHPC Native Hot Plug control

The firmware sets this bit to 1 to grant control over control over PCI/PCI-X Standard Hot-Plug
Controller (SHPC)hot plug. If firmware allows the OS control of this feature, then in the context
of the _OSC method it must ensure that all hot plug events are routed to device interrupts as
described in the SHPC Specification. Additionally, after control is transferred to the OS,
firmware must not update the state of hot plug slots, including the state of the indicators and
power controller. If control of this feature was requested and denied or was not requested,
firmware returns this bit set to 0.

2 PCI Express Native Power Management Events control

The firmware sets this bit to 1 to grant control over control over PCI Express native power
management event interrupts (PMEs). If firmware allows the OS control of this feature, then in
the context of the _OSC method it must ensure that all PMEs are routed to root port interrupts
as described in the PCI Express Base Specification. Additionally, after control is transferred to
the OS, firmware must not update the PME Status field in the Root Status register or the PME
Interrupt Enable field in the Root Control register. If control of this feature was requested and
denied or was not requested, firmware returns this bit set to 0.

3 PCI Express Advanced Error Reporting control

The firmware sets this bit to 1 to grant control over PCI Express Advanced Error Reporting. If
firmware allows the OS control of this feature, then in the context of the _OSC method it must
ensure that error messages are routed to device interrupts as described in the PCI Express Base
Specification. Additionally, after control is transferred to the OS, firmware must not modify the
Advanced Error Reporting Capability. If control of this feature was requested and denied or was
not requested, firmware returns this bit set to 0.

4 PCI Express Capability Structure control

The firmware sets this bit to 1 to grant control over the PCI Express Capability. If the firmware
does not grant control of this feature, firmware must handle configuration of the PCI Express
Capability Structure.

If firmware grants the OS control of this feature, any firmware configuration of the PCI Express
Capability may be overwritten by an OS configuration, depending on OS policy.

5-31 Reserved
UEFI Forum, Inc. January 2019 Page 394

ACPI Specification, Version 6.3 Device Configuration
6.2.11.4 {deprecated} ASL Example

A sample _OSC implementation for a mobile system incorporating a PCI Express hierarchy is shown
below:

Device(PCI0) // Root PCI bus
{
 Name(_HID,EISAID("PNP0A08")) // PCI Express Root Bridge
 Name(_CID,EISAID("PNP0A03")) // Compatible PCI Root Bridge
 Name(SUPP,0) // PCI _OSC Support Field value
 Name(CTRL,0) // PCI _OSC Control Field value

 Method(_OSC,4)
 { // Check for proper UUID
 If(LEqual(Arg0,ToUUID("33DB4D5B-1FF7-401C-9657-7441C03DD766")))
 {
 // Create DWord-adressable fields from the Capabilities Buffer
 CreateDWordField(Arg3,0,CDW1)
 CreateDWordField(Arg3,4,CDW2)
 CreateDWordField(Arg3,8,CDW3)

 // Save Capabilities DWord2 & 3
 Store(CDW2,SUPP)
 Store(CDW3,CTRL)

 // Only allow native hot plug control if OS supports:
 // * ASPM
 // * Clock PM
 // * MSI/MSI-X
 If(LNotEqual(And(SUPP, 0x16), 0x16))
 {
 And(CTRL,0x1E,CTRL) // Mask bit 0 (and undefined bits)
 }

 // Always allow native PME, AER (no dependencies)

 // Never allow SHPC (no SHPC controller in this system)
 And(CTRL,0x1D,CTRL)

 If(LNot(And(CDW1,1))) // Query flag clear?
 { // Disable GPEs for features granted native control.
 If(And(CTRL,0x01)) // Hot plug control granted?
 {
 Store(0,HPCE) // clear the hot plug SCI enable bit
 Store(1,HPCS) // clear the hot plug SCI status bit
 }
 If(And(CTRL,0x04)) // PME control granted?
 {
 Store(0,PMCE) // clear the PME SCI enable bit
 Store(1,PMCS) // clear the PME SCI status bit
 }
 If(And(CTRL,0x10)) // OS restoring PCIe cap structure?
UEFI Forum, Inc. January 2019 Page 395

ACPI Specification, Version 6.3 Device Configuration
 { // Set status to not restore PCIe cap structure
 // upon resume from S3
 Store(1,S3CR)
 }
 }

 If(LNotEqual(Arg1,One))
 { // Unknown revision
 Or(CDW1,0x08,CDW1)
 }

 If(LNotEqual(CDW3,CTRL))
 { // Capabilities bits were masked
 Or(CDW1,0x10,CDW1)
 }
 // Update DWORD3 in the buffer
 Store(CTRL,CDW3)
 Return(Arg3)
 } Else {
 Or(CDW1,4,CDW1) // Unrecognized UUID
 Return(Arg3)
 }
 } // End _OSC

} // End PCI0

6.2.12 _PRS (Possible Resource Settings)

This optional object evaluates to a byte stream that describes the possible resource settings for the
device. When describing a platform, specify a _PRS for all the configurable devices. Static (non-
configurable) devices do not specify a _PRS object. The information in this package is used by OSPM to
select a conflict-free resource allocation without user intervention. This method must not reference any
operation regions that have not been declared available by a _REG method.

The format of the data in a _PRS object follows the same format as the _CRS object (for more
information, see the _CRS object definition in Section 6.2.2, “_CRS (Current Resource Settings)”).

If the device is disabled when _PRS is called, it must remain disabled.

Arguments:

None
UEFI Forum, Inc. January 2019 Page 396

ACPI Specification, Version 6.3 Device Configuration
Return Value:

A Buffer containing a Resource Descriptor byte stream

6.2.13 _PRT (PCI Routing Table)

PCI interrupts are inherently non-hierarchical. PCI interrupt pins are wired to interrupt inputs of the
interrupt controllers. The _PRT object provides a mapping from PCI interrupt pins to the interrupt inputs
of the interrupt controllers. The _PRT object is required under all PCI root bridges. _PRT evaluates to a
package that contains a list of packages, each of which describes the mapping of a PCI interrupt pin.

Arguments:

None

Return Value:

A Package containing variable-length list of PCI interrupt mapping packages, as described below

Note: The PCI function number in the Address field of the _PRT packages must be 0xFFFF, indicating
“any” function number or “all functions”.

The _PRT mapping packages have the fields listed in Table 6-201.

Table 6-201 Mapping Fields

Field Type Description

Address DWORD The address of the device (uses the same format as _ADR).

Pin Byte The PCI pin number of the device (0–INTA, 1–INTB, 2–INTC, 3–INTD).

Source NamePath

Or

Byte

Name of the device that allocates the interrupt to which the above pin is
connected. The name can be a fully qualified path, a relative path, or a simple
name segment that utilizes the namespace search rules. Note: This field is a
NamePath and not a String literal, meaning that it should not be surrounded by
quotes. If this field is the integer constant Zero (or a Byte value of 0), then the
interrupt is allocated from the global interrupt pool.

Source
Index

DWORD Index that indicates which resource descriptor in the resource template of the
device pointed to in the Source field this interrupt is allocated from. If the Source
field is the Byte value zero, then this field is the global system interrupt number to
which the pin is connected.

There are two ways that _PRT can be used. Typically, the interrupt input that a given PCI interrupt is on is
configurable. For example, a given PCI interrupt might be configured for either IRQ 10 or 11 on an 8259
interrupt controller. In this model, each interrupt is represented in the ACPI namespace as a PCI Interrupt
Link Device.

These objects have _PRS, _CRS, _SRS, and _DIS control methods to allocate the interrupt. Then, OSPM
handles the interrupts not as interrupt inputs on the interrupt controller, but as PCI interrupt pins. The
driver looks up the device’s pins in the _PRT to determine which device objects allocate the interrupts. To
move the PCI interrupt to a different interrupt input on the interrupt controller, OSPM uses _PRS, _CRS,
_SRS, and _DIS control methods for the PCI Interrupt Link Device.
UEFI Forum, Inc. January 2019 Page 397

ACPI Specification, Version 6.3 Device Configuration
In the second model, the PCI interrupts are hardwired to specific interrupt inputs on the interrupt
controller and are not configurable. In this case, the Source field in _PRT does not reference a device, but
instead contains the value zero, and the Source Index field contains the global system interrupt to which
the PCI interrupt is hardwired.

6.2.13.1 Example: Using _PRT to Describe PCI IRQ Routing

The following example describes two PCI slots and a PCI video chip. Notice that the interrupts on the two
PCI slots are wired differently (barber-poled).

Scope(_SB) {
 Device(LNKA){
 Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
 Name(_UID, 1)
 Name(_PRS, ResourceTemplate(){
 Interrupt(ResourceProducer,…) {10,11} // IRQs 10,11
 })
 Method(_DIS) {…}
 Method(_CRS) {…}
 Method(_SRS, 1) {…}
 }
 Device(LNKB){
 Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
 Name(_UID, 2)
 Name(_PRS, ResourceTemplate(){
 Interrupt(ResourceProducer,…) {11,12} // IRQs 11,12
 })
 Method(_DIS) {…}
 Method(_CRS) {…}
 Method(_SRS, 1) {…}
 }
 Device(LNKC){
 Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
 Name(_UID, 3)
 Name(_PRS, ResourceTemplate(){
 Interrupt(ResourceProducer,…) {12,14} // IRQs 12,14
 })
 Method(_DIS) {…}
 Method(_CRS) {…}
 Method(_SRS, 1) {…}
 }
 Device(LNKD){
 Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
 Name(_UID, 4)
 Name(_PRS, ResourceTemplate(){
 Interrupt(ResourceProducer,…) {10,15} // IRQs 10,15
 })
 Method(_DIS) {…}
 Method(_CRS) {…}
 Method(_SRS, 1) {…}
UEFI Forum, Inc. January 2019 Page 398

ACPI Specification, Version 6.3 Device Configuration
 }
 Device(PCI0){
 …
 Name(_PRT, Package{ // A fully qualified pathname can be used,
 // or a simple name segment utilizing the search rules.
 Package{0x0004FFFF, 0, _SB_.LNKA, 0}, // Slot 1, INTA
 Package{0x0004FFFF, 1, _SB_.LNKB, 0}, // Slot 1, INTB
 Package{0x0004FFFF, 2, _SB_.LNKC, 0}, // Slot 1, INTC
 Package{0x0004FFFF, 3, _SB_.LNKD, 0}, // Slot 1, INTD
 Package{0x0005FFFF, 0, LNKB, 0}, // Slot 2, INTA
 Package{0x0005FFFF, 1, LNKC, 0}, // Slot 2, INTB
 Package{0x0005FFFF, 2, LNKD, 0}, // Slot 2, INTC
 Package{0x0005FFFF, 3, LNKA, 0}, // Slot 2, INTD
 Package{0x0006FFFF, 0, LNKC, 0} // Video, INTA
 })
 }
}

6.2.14 _PXM (Proximity)

This optional object is used to describe proximity domain associations within a machine. _PXM evaluates
to an integer that identifies a device as belonging to a Proximity Domain defined in the System Resource
Affinity Table (SRAT). OSPM assumes that two devices in the same proximity domain are tightly coupled.
OSPM could choose to optimize its behavior based on this. For example, in a system with four processors
and six memory devices, there might be two separate proximity domains (0 and 1), each with two
processors and three memory devices. In this case, the OS may decide to run some software threads on
the processors in proximity domain 0 and others on the processors in proximity domain 1. Furthermore,
for performance reasons, it could choose to allocate memory for those threads from the memory devices
inside the proximity domain common to the processor and the memory device rather than from a
memory device outside of the processor’s proximity domain.

Children of a device belong to the same proximity domain as their parent unless they contain an
overriding _PXM. Proximity domains do not imply any ejection relationships.

OSPM shall make no assumptions about the proximity or nearness of different proximity domains. The
difference between two integers representing separate proximity domains does not imply distance
between the proximity domains (in other words, proximity domain 1 is not assumed to be closer to
proximity domain 0 than proximity domain 6).

If the Local APIC ID / Local SAPIC ID / Local x2APIC ID or the GICC ACPI Processor UID of a dynamically
added processor is not present in the System Resource Affinity Table (SRAT), a _PXM object must exist for
the processor’s device or one of its ancestors in the ACPI Namespace. See Section 5.2.16, “System
Resource Affinity Table (SRAT)” and Section 6.2.14, “_PXM (Proximity)” for more information.

Arguments:

None

Return Value:

An Integer (DWORD) containing a proximity domain identifier.
UEFI Forum, Inc. January 2019 Page 399

ACPI Specification, Version 6.3 Device Configuration
6.2.15 _SLI (System Locality Information)

The System Locality Information Table (SLIT) table defined in Section 5.2.16.6, “System Locality Distance
Information Table (SLIT)” provides relative distance information between all System Localities for use
during OS initialization.

The value of each Entry[i,j] in the SLIT table, where i represents a row of a matrix and j represents a
column of a matrix, indicates the relative distances from System Locality / Proximity Domain i to every
other System Locality j in the system (including itself).

The i,j row and column values correlate to the value returned by the _PXM object in the ACPI namespace.
See Section 6.2.14, “_PXM (Proximity)” for more information.

Dynamic runtime reconfiguration of the system may cause the distance between System Localities to
change.

_SLI is an optional object that enables the platform to provide the OS with updated relative System
Locality distance information at runtime. _SLI provide OSPM with an update of the relative distance from
System Locality i to all other System Localities in the system.

Arguments:

None

Return Value:
A Buffer containing a system locality information table

If System Locality i ≥ N, where N is the number of System Localities, the _SLI method returns a buffer that
contains these relative distances:

[(i, 0), (i, 1), …, (i, i-1), (i, i), (0, i), (1, i), …(i-1, i), (i, i)]

If System Locality i < N, the _SLI method returns a buffer that contains these relative distances:

[(i, 0), (i, 1), …, (i, i), …,(i, N-1), (0, i), (1, i),…(i, i), …, (N-1, i)]

Node 0 Node 1 Node 2 Node n

Interconnect

Note: (i, i) is always a value of 10.

Figure 6-33 System Locality information Table

Figure 6-33 diagrams a 4-node system where the nodes are numbered 0 through 3 (Node n = Node 3) and
the granularity is at the node level for the NUMA distance information. In this example we assign System
UEFI Forum, Inc. January 2019 Page 400

ACPI Specification, Version 6.3 Device Configuration
Localities / Proximity Domain numbers equal to the node numbers (0-3). The NUMA relative distances
between proximity domains as implemented in this system are described in the matrix represented in
Table 6-202. Proximity Domains are represented by the numbers in the top row and left column.
Distances are represented by the values in cells internal in the table from the domains.

Table 6-202 Example Relative Distances Between Proximity Domains

Proximity Domain 0 1 2 3

0 10 15 20 18

1 15 10 16 24

2 20 16 10 12

3 18 24 12 10

An example of these distances between proximity domains encoded in a System Locality Information
Table for consumption by OSPM at boot time is described in Table 6-203.

Table 6-203 Example System Locality Information Table

Field
Byte
Length

Byte Offset Description

Header

 Signature 4 0 ‘SLIT’.

 Length 4 4 60

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID.

 OEM Table ID 8 16 For the System Locality Information Table, the table ID is
the manufacturer model ID.

 OEM Revision 4 24 OEM revision of System Locality Information Table for
supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the revision for the
ASL Compiler.

Number of System
Localities

8 36 4

Entry[0][0] 1 44 10

Entry[0][1] 1 45 15

Entry[0][2] 1 46 20
UEFI Forum, Inc. January 2019 Page 401

ACPI Specification, Version 6.3 Device Configuration
If a new node, “Node 4”, is added, then Table 6-204 represents the updated system’s NUMA relative
distances of proximity domains.

Table 6-204 Example Relative Distances Between Proximity Domains - 5 Node

Proximity Domain 0 1 2 3 4

0 10 15 20 18 17

1 15 10 16 24 21

2 20 16 10 12 14

3 18 24 12 10 23

4 17 21 14 23 10

The new node’s _SLI object would evaluate to a buffer containing [17,21,14,23,10,17,21,14,23,10].

Note: Some systems support interleave memory across the nodes. The SLIT representation of these
systems is implementation specific.

6.2.16 _SRS (Set Resource Settings)

This optional control method takes one byte stream argument that specifies a new resource allocation
for a device. The resource descriptors in the byte stream argument must be specified exactly as listed in
the _CRS byte stream – meaning that the identical resource descriptors must appear in the identical
order, resulting in a buffer of exactly the same length. Optimizations such as changing an IRQ descriptor
to an IRQNoFlags descriptor (or vice-versa) must not be performed. Similarly, changing
StartDependentFn to StartDependentFnNoPri is not allowed. A _CRS object can be used as a template to

Entry[0][3] 1 47 18

Entry[1][0] 1 48 15

Entry[1][1] 1 49 10

Entry[1][2] 1 50 16

Entry[1][3] 1 51 24

Entry[2][0] 1 52 20

Entry[2][1] 1 53 16

Entry[2][2] 1 54 10

Entry[2][3] 1 55 12

Entry[3][0] 1 56 18

Entry[3][1] 1 57 24

Entry[3][2] 1 58 12

Entry[3][3] 1 59 10

Field
Byte
Length

Byte Offset Description
UEFI Forum, Inc. January 2019 Page 402

ACPI Specification, Version 6.3 Device Configuration
ensure that the descriptors are in the correct format. For more information, see the _CRS object
definition.

The settings must take effect before the _SRS control method returns.

This method must not reference any operation regions that have not been declared available by a _REG
method.

If the device is disabled, _SRS enables the device at the specified resources. _SRS is not used to disable a
device; use the _DIS control method instead.

Arguments: (1)

Arg0 – A Buffer containing a Resource Descriptor byte stream

Return Value:

None

6.2.17 _CCA (Cache Coherency Attribute)

The _CCA object returns whether or not a bus-master device supports hardware managed cache
coherency. Expected values are 0 to indicate it is not supported, and 1 to indicate that it is supported. All
other values are reserved.

On platforms for which existing default cache-coherency behavior of the OS is not adequate, _CCA
enables the OS to adapt to the differences. If used, _CCA must be included under all bus-master-capable
devices defined as children of _SB, to ensure that the operating system knows when it can rely on
hardware managed cache coherency. The value of _CCA is inherited by all descendants of these devices,
so it need not be repeated for their children devices and will be ignored by OSPM if it is provided there.
This includes slave devices on a shared DMA controller; thus these DMA controllers must also be defined
in the namespace under the System Bus and include a _CCA object.

If a device indicates it does not have hardware cache coherency support, then OSPM must use a software
cache flushing algorithm to ensure stale or invalid data is not accessed from the caches.

__CCA objects are only relevant for devices that can access CPU-visible memory, such as devices that are
DMA capable. On ARM based systems, the _CCA object must be supplied all such devices. On Intel
platforms, if the _CCA object is not supplied, the OSPM will assume the devices are hardware cache
coherent.

Arguments:

None

Return Value:

An Integer indicating the device's support for hardware cache coherency

 0 - The device does not have hardware managed cache coherency

 1 - The device has hardware managed cache coherency

 Other Values - Reserved

Note: There are restrictions related to when this object is evaluated which have implications for
implementing this object as a control method. The _CCA method must only access Operation Regions
UEFI Forum, Inc. January 2019 Page 403

ACPI Specification, Version 6.3 Device Configuration
that have been indicated to be available as defined by the _REG method. The _REG method is described
in Section 6.5.4, "_REG (Region)."

6.2.17.1 _CCA Example ASL:

Scope (_SB) {
 …
 Device (XHCI) {
 …
 Name (_CCA, ZERO) // Cache-incoherent bus-master, child of _SB
 …
 }
 …
 Device (PCI0) { // Root PCI Bus
 …
 Name (_CCA, ONE) // Cache-coherent bus-master, child of _SB
 …
 Device (PRT0) {
 … // Bus-master-capable, not a child of _SB
 … // Will inherit coherency from PCI0, no _CCA required
 Device (NIC0) {
 … // Bus-master-capable, not a child of _SB
 … // Will inherit coherency from PRT0, no _CCA required
 }
 }
 }
 …
 Device (SDHC) {
 …
 Name (_CCA, ONE) // Cache-coherent bus-master-capable, child of _SB
 …
 }
 …
 Device (GPIO) {
 … // Not bus-master-capable
 … // _CCA not valid
 }
 …
 Device (DMAC) {
 … // DMA controller; _CCA must be specified
 Name (_CCA, ONE) // Cache coherent bus-master, child of _SB
 …
 }
 …
 Device (SPI1) {
 …
 Name (_CRS, ResourceTemplate()
 {
 FixedDMA(…)// Sharing the DMA, thus inherits coherency from it
 …
 …
UEFI Forum, Inc. January 2019 Page 404

ACPI Specification, Version 6.3 Device Configuration
 })
 … // _CCA not valid
 }
}

6.2.18 _HMA(Heterogeneous Memory Attributes)

The Heterogeneous Memory Attributes Table (HMAT) defined in Section 5.2.27 provides Heterogeneous
Memory Attributes. Dynamic runtime reconfiguration of the system may cause proximities domains or
memory attributes to change. If the “Reservation Hint” is set, new HMAT update shall not reset the
“Reservation Hint” unless the memory range is removed.

_HMA is an optional object that enables the platform to provide the OS with updated Heterogeneous
Memory Attributes information at runtime. _HMA provides OSPM with the latest HMAT in entirety
overriding existing HMAT.

Arguments:
None

Return Value:
A Buffer containing entire HMAT.

Example ASL for _HMA usage:

Scope (_SB) {
 Device (Dev1) {
 …
 }
 Device (Dev2) {
 …
 }
 Method (_HMA, 0) {
 Return (HMAD)
 }
} // end of _SB scope

6.3 Device Insertion, Removal, and Status Objects

The objects defined in this section provide mechanisms for handling dynamic insertion and removal of
devices and for determining device and notification processing status.

Device insertion and removal objects are also used for docking and undocking mobile platforms to and
from a peripheral expansion dock. These objects give information about whether or not devices are
present, which devices are physically in the same device (independent of which bus the devices live on),
and methods for controlling ejection or interlock mechanisms.

The system is more stable when removable devices have a software-controlled, VCR-style ejection
mechanism instead of a “surprise-style” ejection mechanism. In this system, the eject button for a device
does not immediately remove the device, but simply signals the operating system. OSPM then shuts
down the device, closes open files, unloads the driver, and sends a command to the hardware to eject
the device.
UEFI Forum, Inc. January 2019 Page 405

ACPI Specification, Version 6.3 Device Configuration
1. If the device is physically inserted while the system is in the working state (in other words, hot
insertion), the hardware generates a general-purpose event.

2. The control method servicing the event uses the Notify(device,0) command to inform OSPM of
the bus that the new device is on or the device object for the new device. If the Notify command
points to the device object for the new device, the control method must have changed the
device’s status returned by _STA to indicate that the device is now present. The performance of
this process can be optimized by having the object of the Notify as close as possible, in the
namespace hierarchy, to where the new device resides. The Notify command can also be used
from the _WAK control method (for more information about _WAK, see Section 7.4.5 “_WAK
(System Wake)”) to indicate device changes that may have occurred while the system was
sleeping. For more information about the Notify command, see Section 5.6.3 “Device Object
Notification.”

3. OSPM uses the identification and configuration objects to identify, configure, and load a device
driver for the new device and any devices found below the device in the hierarchy.

4. If the device has a _LCK control method, OSPM may later run this control method to lock the
device.

The new device referred to in step 2 need not be a single device, but could be a whole tree of devices. For
example, it could point to the PCI-PCI bridge docking connector. OSPM will then load and configure all
devices it found below that bridge. The control method can also point to several different devices in the
hierarchy if the new devices do not all live under the same bus. (in other words, more than one bus goes
through the connector).

For removing devices, ACPI supports both hot removal (system is in the S0 state), and warm removal
(system is in a sleep state: S1-S4). This is done using the _EJx control methods. Devices that can be
ejected include an _EJx control method for each sleeping state the device supports (a maximum of 2 _EJx
objects can be listed). For example, hot removal devices would supply an _EJ0; warm removal devices
would use one of _EJ1-EJ4. These control methods are used to signal the hardware when an eject is to
occur.

The sequence of events for dynamically removing a device goes as follows:

1. The eject button is pressed and generates a general-purpose event. (If the system was in a
sleeping state, it should wake the system).

2. The control method for the event uses the Notify(device, 3) command to inform OSPM which
specific device the user has requested to eject. Notify does not need to be called for every device
that may be ejected, but for the top-level device. Any child devices in the hierarchy or any
ejection-dependent devices on this device (as described by _EJD, below) are automatically
removed.

3. The OS shuts down and unloads devices that will be removed.

4. If the device has a _LCK control method, OSPM runs this control method to unlock the device.

5. The OS looks to see what _EJx control methods are present for the device. If the removal event
will cause the system to switch to battery power (in other words, an undock) and the battery is
low, dead, or not present, OSPM uses the lowest supported sleep state _EJx listed; otherwise it
uses the highest state _EJx. Having made this decision, OSPM runs the appropriate _EJx control
method to prepare the hardware for eject.

6. Warm removal requires that the system be put in a sleep state. If the removal will be a warm
removal, OSPM puts the system in the appropriate Sx state. If the removal will be a hot removal,
OSPM skips to step 8, below.
UEFI Forum, Inc. January 2019 Page 406

ACPI Specification, Version 6.3 Device Configuration
7. For warm removal, the system is put in a sleep state. Hardware then uses any motors, and so on,
to eject the device. Immediately after ejection, the hardware transitions the system to S0. If the
system was sleeping when the eject notification came in, the OS returns the system to a sleeping
state consistent with the user’s wake settings.

8. OSPM calls _STA to determine if the eject successfully occurred. (In this case, control methods do
not need to use the Notify(device,3) command to tell OSPM of the change in _STA) If there were
any mechanical failures, _STA returns 3: device present and not functioning, and OSPM informs
the user of the problem.

Note: This mechanism is the same for removing a single device and for removing several devices, as in
an undock.

ACPI does not disallow surprise-style removal of devices; however, this type of removal is not
recommended because system and data integrity cannot be guaranteed when a surprise-style removal
occurs. Because the OS is not informed, its device drivers cannot save data buffers and it cannot stop
accesses to the device before the device is removed. To handle surprise-style removal, a general-purpose
event must be raised. Its associated control method must use the Notify command to indicate which bus
the device was removed from.

The device insertion and removal objects are listed in Table 6-205.

Table 6-205 Device Insertion, Removal, and Status Objects

Object Description

_EDL Object that evaluates to a package of namespace references of device objects that depend on
the device containing _EDL.

_EJD Object that evaluates to the name of a device object on which a device depends. Whenever the
named device is ejected, the dependent device must receive an ejection notification.

_EJx Control method that ejects a device.

_LCK Control method that locks or unlocks a device.

_OST Control method invoked by OSPM to convey processing status to the platform.

_RMV Object that indicates that the given device is removable.

_STA Control method that returns a device’s status.

6.3.1 _EDL (Eject Device List)

This object evaluates to a package of namespace references containing the names of device objects that
depend on the device under which the _EDL object is declared. This is primarily used to support docking
stations. Before the device under which the _EDL object is declared may be ejected, OSPM prepares the
devices listed in the _EDL object for physical removal.

Arguments:

None

Return Value:

A variable-length Package containing a list of namespace references
UEFI Forum, Inc. January 2019 Page 407

ACPI Specification, Version 6.3 Device Configuration
Before OSPM ejects a device via the device’s _EJx methods, all dependent devices listed in the package
returned by _EDL are prepared for removal. Notice that _EJx methods under the dependent devices are
not executed.

When describing a platform that includes a docking station, an _EDL object is declared under the docking
station device. For example, if a mobile system can attach to two different types of docking stations, _EDL
is declared under both docking station devices and evaluates to the packaged list of devices that must be
ejected when the system is ejected from the docking station.

An ACPI-compliant OS evaluates the _EDL method just prior to ejecting the device.

6.3.2 _EJD (Ejection Dependent Device)

This object is used to specify the name of a device on which the device, under which this object is
declared, is dependent. This object is primarily used to support docking stations. Before the device
indicated by _EJD is ejected, OSPM will prepare the dependent device (in other words, the device under
which this object is declared) for removal.

Arguments:

None

Return Value:

A String containing the device name

_EJD is evaluated once when the ACPI table loads. The EJx methods of the device indicated by _EJD will
be used to eject all the dependent devices. A device’s dependents will be ejected when the device itself is
ejected.

Note: OSPM will not execute a dependent device’s _EJx methods when the device indicated by _EJD is
ejected.

When describing a platform that includes a docking station, usually more than one _EJD object will be
needed. For example, if a dock attaches both a PCI device and an ACPI-configured device to a mobile
system, then both the PCI device description package and the ACPI-configured device description
package must include an _EJD object that evaluates to the name of the docking station (the name
specified in an _ADR or _HID object in the docking station’s description package). Thus, when the docking
connector signals an eject request, OSPM first attempts to disable and unload the drivers for both the PCI
and ACPI configured devices.

Note: An ACPI 1.0 OS evaluates the _EJD methods only once during the table load process. This greatly
restricts a table designer’s freedom to describe dynamic dependencies such as those created in
scenarios with multiple docking stations. This restriction is illustrated in the example below; the
_EJD information supplied via and ACPI 1.0-compatible namespace omits the IDE2 device from
DOCK2’s list of ejection dependencies. Starting in ACPI 2.0, OSPM is presented with a more in-
depth view of the ejection dependencies in a system by use of the _EDL methods.

Example
An example use of _EJD and _EDL is as follows:

Scope(_SB.PCI0) {
UEFI Forum, Inc. January 2019 Page 408

ACPI Specification, Version 6.3 Device Configuration
 Device(DOCK1) { // Pass through dock – DOCK1
 Name(_ADR, …)
 Method(_EJ0, 0) {…}
 Method(_DCK, 1) {…}
 Name(_BDN, …)
 Method(_STA, 0) {0xF}
 Name(_EDL, Package() { // DOCK1 has two dependent devices – IDE2 and CB2
 _SB.PCI0.IDE2,
 _SB.PCI0.CB2})
 }
 Device(DOCK2) { // Pass through dock – DOCK2
 Name(_ADR, …)
 Method(_EJ0, 0) {…}
 Method(_DCK, 1) {…}
 Name(_BDN, …)
 Method(_STA, 0) {0x0}
 Name(_EDL, Package() { // DOCK2 has one dependent device – IDE2
 _SB.PCI0.IDE2})
 }

 Device(IDE1) { // IDE Drive1 not dependent on the dock
 Name(_ADR, …)
 }

 Device(IDE2) { // IDE Drive2
 Name(_ADR, …)
 Name(_EJD,”_SB.PCI0.DOCK1”) // Dependent on DOCK1
 }

 Device(CB2) { // CardBus Controller
 Name(_ADR, …)
 Name(_EJD,”_SB.PCI0.DOCK1”) // Dependent on DOCK1
 }
} // end _SB.PCIO

6.3.3 _EJx (Eject)

These control methods are optional and are supplied for devices that support a software-controlled VCR-
style ejection mechanism or that require an action be performed such as isolation of power/data lines
before the device can be removed from the system. To support warm (system is in a sleep state) and hot
(system is in S0) removal, an _EJx control method is listed for each sleep state from which the device
supports removal, where x is the sleeping state supported. For example, _EJ0 indicates the device
supports hot removal; _EJ1–EJ4 indicate the device supports warm removal.

Arguments: (1)

Arg0 – An Integer containing a device ejection control

0 – Cancel a mark for ejection request (EJ0 will never be called with this value)

1 – Hot eject or mark for ejection
UEFI Forum, Inc. January 2019 Page 409

ACPI Specification, Version 6.3 Device Configuration
Return Value:

None

For hot removal, the device must be immediately ejected when OSPM calls the _EJ0 control method. The
_EJ0 control method does not return until ejection is complete. After calling _EJ0, OSPM verifies the
device no longer exists to determine if the eject succeeded. For _HID devices, OSPM evaluates the _STA
method. For _ADR devices, OSPM checks with the bus driver for that device.

For warm removal, the _EJ1–_EJ4 control methods do not cause the device to be immediately ejected.
Instead, they set proprietary registers to prepare the hardware to eject when the system goes into the
given sleep state. The hardware ejects the device only after OSPM has put the system in a sleep state by
writing to the SLP_EN register. After the system resumes, OSPM calls _STA to determine if the eject
succeeded.

A device object may have multiple _EJx control methods. First, it lists an EJx control method for the
preferred sleeping state to eject the device. Optionally, the device may list an EJ4 control method to be
used when the system has no power (for example, no battery) after the eject. For example, a hot-docking
notebook might list _EJ0 and _EJ4.

6.3.4 _LCK (Lock)

This control method is optional and is required only for a device that supports a software-controlled
locking mechanism. When the OS invokes this control method, the associated device is to be locked or
unlocked based upon the value of the argument that is passed. On a lock request, the control method
must not complete until the device is completely locked.

Arguments: (1)

Arg0 – An Integer containing a device lock control

0 – Unlock the device

1 – Lock the device

Return Value:

None

When describing a platform, devices use either a _LCK control method or an _EJx control method for a
device.

6.3.5 _OST (OSPM Status Indication)

This object is an optional control method that is invoked by OSPM to indicate processing status to the
platform. During device ejection, device hot add, Error Disconnect Recover, or other event processing,
OSPM may need to perform specific handshaking with the platform. OSPM may also need to indicate to
the platform its inability to complete a requested operation; for example, when a user presses an
ejection button for a device that is currently in use or is otherwise currently incapable of being ejected. In
this case, the processing of the ACPI Eject Request notification by OSPM fails. OSPM may indicate this
failure to the platform through the invocation of the _OST control method. As a result of the status
notification indicating ejection failure, the platform may take certain action including reissuing the
notification or perhaps turning on an appropriate indicator light to signal the failure to the user.

Arguments: (3)
UEFI Forum, Inc. January 2019 Page 410

ACPI Specification, Version 6.3 Device Configuration
Arg0 – An Integer containing the source event

Arg1 – An Integer containing the status code

Arg2 – A Buffer containing status information

Return Value:

None

Argument Information:
Arg0 – source_event: DWordConst

If the value of source_event is <= 0xFF, this argument is the ACPI notification value whose processing
generated the status indication. This is the value that was passed into the Notify operator.

If the value of source_event is 0x100 or greater then the OSPM status indication is a result of an OSPM
action as indicated in Table 6-206. For example, a value of 0x103 will be passed into _OST for this
argument upon the failure of a user interface invoked device ejection.

If OSPM is unable to identify the originating notification value, OSPM invokes _OST with a value that
contains all bits set (ones) for this parameter.

Arg1 – Status Code: DWordConst. OSPM indicates a notification value specific status. See Table 6-207,
Table 6-208, and Table 6-210 for status code descriptions.

Arg2 – A buffer containing detailed OSPM-specific information about the status indication. This argument
may be null.

Table 6-206 OST Source Event Codes

Source Event Code Description

0-0xFF Reserved for Notification Values

0x100 Operation System Shutdown Processing

0x101-0x102 Reserved

0x103 Ejection Processing

0x104-0x1FF Reserved

0x200 Insertion Processing

0x201-0xFFFFFFFF Reserved
UEFI Forum, Inc. January 2019 Page 411

ACPI Specification, Version 6.3 Device Configuration
Table 6-207 General Processing Status Codes

Status Code Description

0 Success

1 Non-specific failure

2 Unrecognized Notify Code

3-0x7F Reserved

0x80-0xFFFFFFFF Notification value specific status codes

Table 6-208 Operating System Shutdown Processing (Source Events : 0x100) Status Codes

Status Code Description

0x80 OS Shutdown Request denied

0x81 OS Shutdown in progress

0x82 OS Shutdown completed

0x83 OS Graceful Shutdown not supported

0x84-0xFFFFFFFF Reserved

6.3.5.1 Processing Sequence for Graceful Shutdown Request:

Following receipt of the Graceful Shutdown Request (see Table 5-166, value 0x81) the OS will be
responsible for responding with one of the following status codes:

• 0x80 (OS Shutdown Request denied) –This value will be sent if the OS is not capable of
performing a graceful shutdown.

• 0x81 (OS Shutdown in progress) – The OS has initiated the graceful shutdown procedure.
• 0x83 (OS Graceful Shutdown not supported) – The OS does not support the Graceful Shutdown

Request.

If the OS does initiate a graceful shutdown it should continue to generate the “OS Shutdown in progress”
message (_OST source event 0x100 status code 0x81) every 10 seconds. This functions as a heartbeat so
that the service which requested the graceful shutdown knows that the request is currently being
processed. The platform should assume that the OS shutdown is not proceeding if it does not receive the
“OS Shutdown in progress” message for 60 seconds.

When the graceful shutdown procedure has completed the OSPM will send the “OS Shutdown
completed” message and then transition the platform to the G2 “soft-off” power state.
UEFI Forum, Inc. January 2019 Page 412

ACPI Specification, Version 6.3 Device Configuration
Table 6-209 Ejection Request / Ejection Processing (Source Events: 0x03 and 0x103) Status
Codes

Status Code Description

0x80 Device ejection not supported by OSPM

0x81 Device in use by application

0x82 Device Busy

0x83 Ejection dependency is busy or not supported for ejection by OSPM

0x84 Ejection is in progress (pending)

0x85-0xFFFFFFFF Reserved

Table 6-210 Insertion Processing (Source Event: 0x200) Status Codes

Status Code Description

0x80 Device insertion in progress (pending)

0x81 Device driver load failure

0x82 Device insertion not supported by OSPM

0x83-0x8F Reserved

0x90-0x9F Insertion failure – Resources Unavailable as described by the following bit
encodings:

Bit [3] Bus or Segment Numbers

Bit [2] Interrupts

Bit [1] I/O

Bit [0] Memory

0xA0-0xFFFFFFFF Reserved

It is possible for the platform to issue multiple notifications to OSPM and for OSPM to process the
notifications asynchronously. As such, OSPM may invoke _OST for notifications independent of the order
the notification are conveyed by the platform or by software to OSPM.

The figure below provides and example event flow of device ejection on a platform employing the _OST
object.
UEFI Forum, Inc. January 2019 Page 413

ACPI Specification, Version 6.3 Device Configuration
User interacts with
OSPM to request
device ejection

OSPM evaluates
_OST(0x103,84,””)

OSPM Processes
Ejection Request

OS Ejection
Successful ?

Evaluate _EJx

OSPM evaluates
_OST(0x103,81,””)

or
_OST(0x03,81,””)

Application connections to device closed .

Yes

No

Platform turns off
Ejection Progress
Light and turns on
Ejection Failure

Light

Platform blinks
Ejection Progress

Light

Platform ejection
occurs

Yes

OSPM places
system into sleep

state
x = 0 in _EJx? No Platform wakeup

occurs

Platform turns off
Ejection Progress

Light

Done

Done

User Presses
Hardware Eject

Button

OSPM evaluation of GPE
Status method generates

Notify(device,3(eject))

Platform generates GPE/SCI

Figure 6-34 Device Ejection Flow Example Using _OST
UEFI Forum, Inc. January 2019 Page 414

ACPI Specification, Version 6.3 Device Configuration
Note: To maintain compatibility with OSPM implementations of previous revisions of the ACPI
specification, the platform must not rely on OSPM’s evaluation of the _OST object for proper
platform operation.

Example ASL for _OST usage:

External (_SB.PCI4, DeviceObj)

Scope(_SB.PCI4) {
 OperationRegion(LED1, SystemIO, 0x10C0, 0x20)
 Field(LED1, AnyAcc, NoLock, Preserve)
 { // LED controls
 S0LE, 1, // Slot 0 Ejection Progress LED
 S0LF, 1, // Slot 0 Ejection Failure LED
 S1LE, 1, // Slot 1 Ejection Progress LED
 S1LF, 1, // Slot 1 Ejection Failure LED
 S2LE, 1, // Slot 2 Ejection Progress LED
 S2LF, 1, // Slot 2 Ejection Failure LED
 S3LE, 1, // Slot 3 Ejection Progress LED
 S3LF, 1 // Slot 3 Ejection Failure LED
 }

 Device(SLT3) { // hot plug device
 Name(_ADR, 0x000C0003)
 Method(_OST, 3, Serialized) { // OS calls _OST with notify code 3 or 0x103
 // and status codes 0x80-0x83
 // to indicate a hot remove request failure.
 // Status code 0x84 indicates an ejection
 // request pending.

 If(LEqual(Arg0,Ones)) // Unspecified event
 {
 // Perform generic event processing here
 }

 Switch(And(Arg0,0xFF)) // Mask to retain low byte
 {
 Case(0x03) // Ejection request
 {
 Switch(Arg1)
 {
 Case(Package(){0x80, 0x81, 0x82, 0x83})
 { // Ejection Failure for some reason
 Store(Zero, ^^S3LE) // Turn off Ejection Progress LED
 Store(One, ^^S3LF) // Turn on Ejection Failure LED
 }
 Case(0x84) // Eject request pending
 {
 Store(One, ^^S3LE) // Turn on Ejection Request LED
 Store(Zero, ^^S3LF) // Turn off Ejection Failure LED
 }
UEFI Forum, Inc. January 2019 Page 415

ACPI Specification, Version 6.3 Device Configuration
 }
 }
 }
 } // end _OST

 Method(_EJ0, 1) // Successful ejection sequence
 {
 Store(Zero, ^^S3LE) // Turn off Ejection Progress LED
 }
 } // end SLT3
} // end scope _SB.PCI4

Scope (_GPE)
{
 Method(_E13)
 {
 Store(One, _SB.PCI4.S3LE) // Turn on ejection request LED
 Notify(_SB.PCI4.SLT3, 3) // Ejection request driven from GPE13
 }
}

6.3.5.2 Processing Sequence for Error Disconnect Recover

If the OS attempts recovery operation following the receipt of the Error Disconnect Recover Request (see
Table 5-161, value 0x0F) the OS will be responsible for invoking _OST with one of the following status
codes in the lower word of Arg1:

• 0x80 (Success) –This value will be sent if the OS successfully recovers all the child devices
affected by Error Disconnect Recover, reconfigures then and brings them back to functional
state. All child devices are accessible at the time _OST is evaluated.

• 0x81 (Not recovered) – The OS did not successfully recover one or more child devices that were
affected by Error Disconnect Recover. Access to the child devices affected by Error Disconnect
Recover may be unreliable.

The upper word of Arg1 can be used to communicate bus-specific status information.

6.3.6 _RMV (Remove)

The optional _RMV object indicates to OSPM whether the device can be removed while the system is in
the working state and does not require any ACPI system firmware actions to be performed for the device
to be safely removed from the system (in other words, any device that only supports surprise-style
removal). Any such removable device that does not have _LCK or _EJx control methods must have an
_RMV object. This allows OSPM to indicate to the user that the device can be removed and to provide a
way for shutting down the device before removing it. OSPM will transition the device into D3 before
telling the user it is safe to remove the device.

This method is reevaluated after a device-check notification.

Arguments:

None
UEFI Forum, Inc. January 2019 Page 416

ACPI Specification, Version 6.3 Device Configuration
Return Value:

An Integer containing the device removal status

0 – The device cannot be removed

1 – The device can be removed

Note: Operating Systems implementing ACPI 1.0 interpret the presence of this object to mean that the
device is removable.

6.3.7 _STA (Status)

This object returns the current status of a device, which can be one of the following: enabled, disabled, or
removed.

OSPM evaluates the _STA object before it evaluates a device _INI method. The return values of the
Present and Functioning bits determines whether _INI should be evaluated and whether children of the
device should be enumerated and initialized. See Section 6.5.1, “_INI (Init)”.

If a device object describes a device that is not on an enumerable bus and the device object does not
have an _STA object, then OSPM assumes that the device is present, enabled, shown in the UI, and
functioning.

This method must not reference any operation regions that have not been declared available by a _REG
method.

Arguments:

None

Return Value:

An Integer containing a device status bitmap:

Bit [0] – Set if the device is present.

Bit [1] – Set if the device is enabled and decoding its resources.

Bit [2] – Set if the device should be shown in the UI.

Bit [3] – Set if the device is functioning properly (cleared if device failed its diagnostics).

Bit [4] – Set if the battery is present.

Bits [31:5] – Reserved (must be cleared).

Return Value Information
If bit [0] is cleared, then bit 1 must also be cleared (in other words, a device that is not present cannot be
enabled).

A device can only decode its hardware resources if both bits 0 and 1 are set. If the device is not present
(bit [0] cleared) or not enabled (bit [1] cleared), then the device must not decode its resources.

If a device is present in the machine, but should not be displayed in OSPM user interface, bit 2 is cleared.
For example, a notebook could have joystick hardware (thus it is present and decoding its resources), but
the connector for plugging in the joystick requires a port replicator. If the port replicator is not plugged in,
the joystick should not appear in the UI, so bit [2] is cleared.
UEFI Forum, Inc. January 2019 Page 417

ACPI Specification, Version 6.3 Device Configuration
_STA may return bit 0 clear (not present) with bit [3] set (device is functional). This case is used to
indicate a valid device for which no device driver should be loaded (for example, a bridge device.)
Children of this device may be present and valid. OSPM should continue enumeration below a device
whose _STA returns this bit combination.

Bit [4] of _STA applies only to the Control Method Battery Device (PNP0C0A). For all other devices, OSPM
must ignore this bit.

If a device object (including the processor object) does not have an _STA object, then OSPM assumes that
all of the above bits are set (i.e., the device is present, enabled, shown in the UI, and functioning).

6.4 Resource Data Types for ACPI

The _CRS, _PRS, and _SRS control methods use packages of resource descriptors to describe the resource
requirements of devices.

6.4.1 ASL Macros for Resource Descriptors

ASL includes some macros for creating resource descriptors. The ASL syntax for these macros is defined in
Section 19.6, “ASL Operator Reference”, along with the other ASL operators.

6.4.2 Small Resource Data Type

A small resource data type may be 2 to 8 bytes in size and adheres to the following format:

Table 6-211 Small Resource Data Type Tag Bit Definitions

Offset Field

Byte 0 Tag Bit [7] Tag Bits [6:3] Tag Bits [2:0]

Type–0 (Small item) Small item name Length–n bytes

Bytes 1 to n Data bytes (Length 0 – 7)

The following small information items are currently defined for Plug and Play devices:

Table 6-212 Small Resource Items

Small Item Name Value

Reserved 0x00-0x03

IRQ Format Descriptor 0x04

DMA Format Descriptor 0x05

Start Dependent Functions Descriptor 0x06

End Dependent Functions Descriptor 0x07

I/O Port Descriptor 0x08

Fixed Location I/O Port Descriptor 0x09

Fixed DMA Descriptor 0x0A

Reserved 0x0B–0x0D
UEFI Forum, Inc. January 2019 Page 418

ACPI Specification, Version 6.3 Device Configuration
6.4.2.1 IRQ Descriptor

Type 0, Small Item Name 0x4, Length = 2 or 3

The IRQ data structure indicates that the device uses an interrupt level and supplies a mask with bits set
indicating the levels implemented in this device. For standard PC-AT implementation there are 15
possible interrupts so a two-byte field is used. This structure is repeated for each separate interrupt
required.

Table 6-213 IRQ Descriptor Definition

Offset Field Name

Byte 0 Value = 0x22 or 0x23 (0010001nB) – Type = 0, Small item name = 0x4, Length = 2 or 3

Byte 1 IRQ mask bits[7:0], _INT

Bit [0] represents IRQ0, bit[1] is IRQ1, and so on.

Byte 2 IRQ mask bits[15:8], _INT

Bit [0] represents IRQ8, bit[1] is IRQ9, and so on.

Byte 3 IRQ Information. Each bit, when set, indicates this device is capable of driving a certain type of interrupt.
(Optional—if not included then assume edge sensitive, high true interrupts.) These bits can be used
both for reporting and setting IRQ resources.

Note: This descriptor is meant for describing interrupts that are connected to PIC-compatible interrupt
controllers, which can only be programmed for Active-High-Edge-Triggered or Active-Low-Level-
Triggered interrupts. Any other combination is invalid. The Extended Interrupt Descriptor can be used to
describe other combinations.

Bit [7:6] Reserved (must be 0)

Bit [5] Wake Capability, _WKC

 0x0 = Not Wake Capable: This interrupt is not capable of waking the system.

 0x1 = Wake Capable: This interrupt is capable of waking the system from a

 low-power idle state or a system sleep state.

Bit [4] Interrupt Sharing, _SHR

 0x0 = Exclusive: This interrupt is not shared with other devices.

 0x1 = Shared: This interrupt is shared with other devices.

Bit [3] Interrupt Polarity, _LL

 0 Active-High – This interrupt is sampled when the signal is high, or true

 1 Active-Low – This interrupt is sampled when the signal is low, or false.

Bit [2:1] Ignored

Bit [0] Interrupt Mode, _HE

 0 Level-Triggered – Interrupt is triggered in response to signal in a low state.

 1 Edge-Triggered – Interrupt is triggered in response to a change in signal state from

 low to high.

Vendor Defined Descriptor 0x0E

End Tag Descriptor 0x0F
UEFI Forum, Inc. January 2019 Page 419

ACPI Specification, Version 6.3 Device Configuration
Note: Low true, level sensitive interrupts may be electrically shared, but the process of how this might
work is beyond the scope of this specification.

Note: If byte 3 is not included, High true, edge sensitive, non-shareable is assumed.

See Section 19.6.65, “IRQ (Interrupt Resource Descriptor Macro),” and Section 19.6.66, “IRQNoFlags
(Interrupt Resource Descriptor Macro),” for a description of the ASL macros that create an IRQ
descriptor.

6.4.2.2 DMA Descriptor

Type 0, Small Item Name 0x5, Length = 2

The DMA data structure indicates that the device uses a DMA channel and supplies a mask with bits set
indicating the channels actually implemented in this device. This structure is repeated for each separate
channel required.

Table 6-214 DMA Descriptor Definition

Offset Field Name

Byte 0 Value = 0x2A (00101010B) – Type = 0, Small item name = 0x5, Length = 2

Byte 1 DMA channel mask bits [7:0] (channels 0 – 7), _DMA

Bit [0] is channel 0, etc.

Byte 2 Bit [7] Reserved (must be 0)

Bits [6:5] DMA channel speed supported, _TYP
 00 Indicates compatibility mode
 01 Indicates Type A DMA as described in the EISA
 10 Indicates Type B DMA
 11 Indicates Type F

Bits [4:3] Ignored

Bit [2] Logical device bus master status, _BM
 0 Logical device is not a bus master
 1 Logical device is a bus master

Bits [1:0] DMA transfer type preference, _SIZ
 00 8-bit only 
 01 8- and 16-bit
 10 16-bit only
 11 Reserved

See Section 19.6.32, “DMA (DMA Resource Descriptor Macro),” for a description of the ASL macro that
creates a DMA descriptor.

6.4.2.3 Start Dependent Functions Descriptor

Type 0, Small Item Name 0x6, Length = 0 or 1

Each logical device requires a set of resources. This set of resources may have interdependencies that
need to be expressed to allow arbitration software to make resource allocation decisions about the
logical device. Dependent functions are used to express these interdependencies. The data structure
UEFI Forum, Inc. January 2019 Page 420

ACPI Specification, Version 6.3 Device Configuration
definitions for dependent functions are shown here. For a detailed description of the use of dependent
functions refer to the next section.

Table 6-215 Start Dependent Functions Descriptor Definition

Offset Field Name

Byte 0 Value = 0x30 or 0x31 (0011000nB) – Type = 0, small item name = 0x6, Length = 0 or 1

Start Dependent Function fields may be of length 0 or 1 bytes. The extra byte is optionally used to denote
the compatibility or performance/robustness priority for the resource group following the Start DF tag.
The compatibility priority is a ranking of configurations for compatibility with legacy operating systems.
This is the same as the priority used in the PNPBIOS interface. For example, for compatibility reasons, the
preferred configuration for COM1 is IRQ4, I/O 3F8-3FF. The performance/robustness performance is a
ranking of configurations for performance and robustness reasons. For example, a device may have a
high-performance, bus mastering configuration that may not be supported by legacy operating systems.
The bus-mastering configuration would have the highest performance/robustness priority while its
polled I/O mode might have the highest compatibility priority.

If the Priority byte is not included, this indicates the dependent function priority is ‘acceptable’. This byte
is defined as:

Table 6-216 Start Dependent Function Priority Byte Definition

Bits Definition

1:0 Compatibility priority. Acceptable values are:

 0 Good configuration: Highest Priority and preferred configuration

 1 Acceptable configuration: Lower Priority but acceptable configuration

 2 Sub-optimal configuration: Functional configuration but not optimal

 3 Reserved

3:2 Performance/robustness. Acceptable values are:

 0 Good configuration: Highest Priority and preferred configuration

 1 Acceptable configuration: Lower Priority but acceptable configuration

 2 Sub-optimal configuration: Functional configuration but not optimal

 3 Reserved

7:4 Reserved (must be 0)

Notice that if multiple Dependent Functions have the same priority, they are further prioritized by the
order in which they appear in the resource data structure. The Dependent Function that appears earliest
(nearest the beginning) in the structure has the highest priority, and so on.

See Section 19.6.128, “StartDependentFn (Start Dependent Function Resource Descriptor Macro),” for a
description of the ASL macro that creates a Start Dependent Function descriptor.
UEFI Forum, Inc. January 2019 Page 421

ACPI Specification, Version 6.3 Device Configuration
6.4.2.4 End Dependent Functions Descriptor

Type 0, Small Item Name 0x7, Length = 0

Only one End Dependent Function item is allowed per logical device. This enforces the fact that
Dependent Functions cannot be nested.

Table 6-217 End Dependent Functions Descriptor Definition

Offset Field Name

Byte 0 Value = 0x38 (00111000B) – Type = 0, Small item name = 0x7, Length =0

See Section 19.6.39, “EndDependentFn (End Dependent Function Resource Descriptor Macro,” for a
description of the ASL macro that creates an End Dependent Functions descriptor.

6.4.2.5 I/O Port Descriptor

Type 0, Small Item Name 0x8, Length = 7

There are two types of descriptors for I/O ranges. The first descriptor is a full function descriptor for
programmable devices. The second descriptor is a minimal descriptor for old ISA cards with fixed I/O
requirements that use a 10-bit ISA address decode. The first type descriptor can also be used to describe
fixed I/O requirements for ISA cards that require a 16-bit address decode. This is accomplished by setting
the range minimum base address and range maximum base address to the same fixed I/O value.

Table 6-218 I/O Port Descriptor Definition

Offset Field Name Definition

Byte 0 I/O Port Descriptor Value = 0x47 (01000111B) –
Type = 0, Small item name = 0x8, Length = 7

Byte 1 Information Bits [7:1] Reserved and must be 0

Bit [0] (_DEC)

 1 The logical device decodes 16-bit addresses

 0 The logical device only decodes address bits[9:0]

Byte 2 Range minimum base
address, _MIN bits[7:0]

Address bits [7:0] of the minimum base I/O address that the card
may be configured for.

Byte 3 Range minimum base
address, _MIN bits[15:8]

Address bits [15:8] of the minimum base I/O address that the card
may be configured for.

Byte 4 Range maximum base
address, _MAX bits[7:0]

Address bits [7:0] of the maximum base I/O address that the card
may be configured for.

Byte 5 Range maximum base
address, _MAX bits[15:8]

Address bits [15:8] of the maximum base I/O address that the card
may be configured for.

Byte 6 Base alignment, _ALN Alignment for minimum base address, increment in 1-byte blocks.

Byte 7 Range length, _LEN The number of contiguous I/O ports requested.

See Section 19.6.64, “IO (IO Resource Descriptor Macro,” for a description of the ASL macro that creates
an I/O Port descriptor.
UEFI Forum, Inc. January 2019 Page 422

ACPI Specification, Version 6.3 Device Configuration
6.4.2.6 Fixed Location I/O Port Descriptor

Type 0, Small Item Name 0x9, Length = 3

This descriptor is used to describe 10-bit I/O locations.

Table 6-219 Fixed-Location I/O Port Descriptor Definition

Offset Field Name Definition

Byte 0 Fixed Location I/O Port
Descriptor

Value = 0x4B (01001011B) – 
Type = 0, Small item name = 0x9, Length = 3

Byte 1 Range base address,
_BAS bits[7:0]

Address bits [7:0] of the base I/O address that the card may be
configured for. This descriptor assumes a 10-bit ISA address decode.

Byte 2 Range base address,
_BAS bits[9:8]

Address bits [9:8] of the base I/O address that the card may be
configured for. This descriptor assumes a 10-bit ISA address decode.

Byte 3 Range length, _LEN The number of contiguous I/O ports requested.

See Section 19.6.50, “FixedIO (Fixed I/O Resource Descriptor Macro,” for a description of the ASL macro
that creates a Fixed I/O Port descriptor.

6.4.2.7 Fixed DMA Descriptor

Type 0, Small Item Name 0xA, Length = 5

The Fixed DMA descriptor provides a means for platforms to statically assign DMA request lines and
channels to devices connected to a shared DMA controller. This descriptor differs from the DMA
descriptor in that it supports many more DMA request lines and DMA controller channels, as well as a
flexible mapping between the two. The width of the bus used for transfers to the device is also provided.
This structure is repeated for each separate request line/channel pair required, and can only be used in
the _CRS object. (Dynamic arbitration of Fixed DMA resource is not supported.)

Table 6-220 Fixed DMA Resource Descriptor

Offset Field Name

Byte 0 Value = 0x55 (01010101B) – Type = 0, Small item name = 0xA, Length = 0x5

Byte 1 DMA Request Line bits [7:0] _DMA[7:0]. A platform-relative number uniquely identifying the
request line assigned. Request line-to-Controller mapping is done in a controller-specific OS
driver.

Byte 2 DMA Request Line bits [15:8] _DMA[15:8]

Byte 3 DMA Channel bits[7:0] _TYP[7:0]. A controller-relative number uniquely identifying the
controller’s logical channel assigned. Channel numbers can be shared by multiple request
lines.

Byte 4 DMA Channel bits[15:8] _TYP[15:8]
UEFI Forum, Inc. January 2019 Page 423

ACPI Specification, Version 6.3 Device Configuration
6.4.2.8 Vendor-Defined Descriptor

Type 0, Small Item Name 0xE, Length = 1 to 7

The vendor defined resource data type is for vendor use.

Table 6-221 Vendor-Defined Resource Descriptor Definition

Offset Field Name

Byte 0 Value = 0x71 – 0x77 (01110nnnB) – Type = 0, small item name = 0xE, Length = 1–7

Byte 1 to 7 Vendor defined

See VendorShort (page 1051) for a description of the ASL macro that creates a short vendor-defined
resource descriptor.

6.4.2.9 End Tag

Type 0, Small Item Name 0xF, Length = 1

The End tag identifies an end of resource data.

Note: If the checksum field is zero, the resource data is treated as if the checksum operation succeeded.
Configuration proceeds normally.

Table 6-222 End Tag Definition

Offset Field Name

Byte 0 Value = 0x79 (01111001B) – Type = 0, Small item name = 0xF, Length = 1

Byte 1 Checksum covering all resource data after the serial identifier. This checksum is generated
such that adding it to the sum of all the data bytes will produce a zero sum.

The End Tag is automatically generated by the ASL compiler at the end of the ResourceTemplate
statement.

6.4.3 Large Resource Data Type

To allow for larger amounts of data to be included in the configuration data structure the large format is
shown below. This includes a 16-bit length field allowing up to 64 KB of data.

Byte 5 DMA Transfer Width. _SIZ. Bus width that the device connected to this request line supports.

 0x00 8-bit

 0x01 16-bit

 0x02 32-bit

 0x03 64-bit

 0x04 128-bit

 0x05 256-bit

 0x06-0xFF Reserved

Offset Field Name
UEFI Forum, Inc. January 2019 Page 424

ACPI Specification, Version 6.3 Device Configuration
Table 6-223 Large Resource Data Type Tag Bit Definitions

Offset Field Name

Byte 0 Value = 1xxxxxxxB – Type = 1 (Large item), Large item name = xxxxxxxB

Byte 1 Length of data items bits[7:0]

Byte 2 Length of data items bits[15:8]

Bytes 3 to
(Length + 2)

Actual data items

The following large information items are currently defined:

Table 6-224 Large Resource Items

Large Item Name Value

Reserved 0x00

24-Bit Memory Range Descriptor 0x01

Generic Register Descriptor 0x02

Reserved 0x03

Vendor-Defined Descriptor 0x04

32-Bit Memory Range Descriptor 0x05

32-Bit Fixed Memory Range Descriptor 0x06

Address Space Resource Descriptors 0x07

Word Address Space Descriptor 0x08

Extended Interrupt Descriptor 0x09

QWord Address Space Descriptor 0x0A

Extended Address Space Descriptor 0x0B

GPIO Connection Descriptor 0x0C

Pin Function Descriptor 0x0D

GenericSerialBus Connection Descriptors 0x0E

Pin Configuration Descriptor 0x0F

Pin Group Descriptor 0x10

Pin Group Function Descriptor 0x11

Pin Group Configuration Descriptor 0x12

Reserved 0x13 – 0x7F
UEFI Forum, Inc. January 2019 Page 425

ACPI Specification, Version 6.3 Device Configuration
6.4.3.1 24-Bit Memory Range Descriptor

Type 1, Large Item Value 0x1

The 24-bit memory range descriptor describes a device’s memory range resources within a 24-bit address
space

Table 6-225 24-bit Memory Range Descriptor Definition.

Offset
Field Name, ASL Field
Name

Definition

Byte 0 24-bit Memory Range
Descriptor

Value = 0x81 (10000001B) – Type = 1, Large item name = 0x01

Byte 1 Length, bits[7:0] Value = 0x09 (9)

Byte 2 Length, bits[15:8] Value = 0x00

Byte 3 Information This field provides extra information about this memory.

Bit [7:1] Ignored

Bit [0] Write status, _RW
 1 writeable (read/write)
 0 non-writeable (read-only)

Byte 4 Range minimum base
address, _MIN, bits[7:0]

Address bits [15:8] of the minimum base memory address for
which the card may be configured.

Byte 5 Range minimum base
address, _MIN, bits[15:8]

Address bits [23:16] of the minimum base memory address for
which the card may be configured

Byte 6 Range maximum base
address, _MAX, bits[7:0]

Address bits [15:8] of the maximum base memory address for
which the card may be configured.

Byte 7 Range maximum base
address, _MAX, bits[15:8]

Address bits [23:16] of the maximum base memory address for
which the card may be configured

Byte 8 Base alignment, _ALN,
bits[7:0]

This field contains the lower eight bits of the base alignment. The
base alignment provides the increment for the minimum base
address. (0x0000 = 64 KB)

Byte 9 Base alignment, _ALN,
bits[15:8]

This field contains the upper eight bits of the base alignment. The
base alignment provides the increment for the minimum base
address. (0x0000 = 64 KB)

Byte 10 Range length, _LEN,
bits[7:0]

This field contains the lower eight bits of the memory range
length. The range length provides the length of the memory range
in 256 byte blocks.

Byte 11 Range length, _LEN,
bits[15:8]

This field contains the upper eight bits of the memory range
length. The range length field provides the length of the memory
range in 256 byte blocks.
UEFI Forum, Inc. January 2019 Page 426

ACPI Specification, Version 6.3 Device Configuration
Note: Address bits [7:0] of memory base addresses are assumed to be 0.

Note: A Memory range descriptor can be used to describe a fixed memory address by setting the range
minimum base address and the range maximum base address to the same value.

Note: 24-bit Memory Range descriptors are used for legacy devices.

Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See Section 19.6.80, “Memory24 (Memory Resource Descriptor Macro),” for a description of the ASL
macro that creates a 24-bit Memory descriptor.

6.4.3.2 Vendor-Defined Descriptor

Type 1, Large Item Value 0x4

The vendor defined resource data type is for vendor use.

Table 6-226 Large Vendor-Defined Resource Descriptor Definition

Offset Field Name Definition

Byte 0 Vendor Defined Descriptor Value = 0x84 (10000100B) – Type = 1, Large item name =
0x04

Byte 1 Length, bits [7:0] Lower eight bits of data length (UUID and vendor data)

Byte 2 Length, bits [15:8] Upper eight bits of data length (UUID and vendor data)

Byte 3 UUID specific descriptor sub type UUID specific descriptor sub type value

Byte 4-19 UUID UUID Value

Byte 20-
(Length+20)

Vendor Defined Data Vendor defined data bytes

This specification (ACPI) defines the UUID specific descriptor subtype field and the UUID field to address
potential collision of the use of this descriptor. It is strongly recommended that all newly defined vendor
descriptors use these fields prior to Vendor Defined Data.

See VendorLong (page 1051) for a description of the ASL macro that creates a long vendor-defined
resource descriptor.

6.4.3.3 32-Bit Memory Range Descriptor

Type 1, Large Item Value 0x5

This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Table 6-227 32-Bit Memory Range Descriptor Definition

Offset Field Name Definition

Byte 0 32-bit Memory Range Descriptor Value = 0x85 (10000101B) – Type = 1, Large item name = 0x05

Byte 1 Length, bits [7:0] Value = 0x11 (17)

Byte 2 Length, bits [15:8] Value = 0x00
UEFI Forum, Inc. January 2019 Page 427

ACPI Specification, Version 6.3 Device Configuration
Byte 3 Information This field provides extra information about this memory.

Bit [7:1] Ignored

Bit [0] Write status, _RW
 1 writeable (read/write)
 0 non-writeable (read-only)

Byte 4 Range minimum base address,
_MIN, bits [7:0]

Address bits [7:0] of the minimum base memory address for
which the card may be configured.

Byte 5 Range minimum base address,
_MIN, bits [15:8]

Address bits [15:8] of the minimum base memory address for
which the card may be configured.

Byte 6 Range minimum base address,
_MIN, bits [23:16]

Address bits [23:16] of the minimum base memory address for
which the card may be configured.

Byte 7 Range minimum base address,
_MIN, bits [31:24]

Address bits [31:24] of the minimum base memory address for
which the card may be configured.

Byte 8 Range maximum base address,
_MAX, bits [7:0]

Address bits [7:0] of the maximum base memory address for
which the card may be configured.

Byte 9 Range maximum base address,
_MAX, bits [15:8]

Address bits [15:8] of the maximum base memory address for
which the card may be configured.

Byte 10 Range maximum base address,
_MAX, bits [23:16]

Address bits [23:16] of the maximum base memory address for
which the card may be configured.

Byte 11 Range maximum base address,
_MAX, bits [31:24]

Address bits [31:24] of the maximum base memory address for
which the card may be configured.

Byte 12 Base alignment, _ALN bits [7:0] This field contains bits [7:0] of the base alignment. The base
alignment provides the increment for the minimum base
address.

Byte 13 Base alignment, _ALN bits [15:8] This field contains bits [15:8] of the base alignment. The base
alignment provides the increment for the minimum base
address.

Byte 14 Base alignment, _ALN bits [23:16] This field contains bits [23:16] of the base alignment. The base
alignment provides the increment for the minimum base
address.

Byte 15 Base alignment, _ALN bits [31:24] This field contains bits [31:24] of the base alignment. The base
alignment provides the increment for the minimum base
address.

Byte 16 Range length, _LEN bits [7:0] This field contains bits [7:0] of the memory range length. The
range length provides the length of the memory range in 1-byte
blocks.

Byte 17 Range length, _LEN bits [15:8] This field contains bits [15:8] of the memory range length. The
range length provides the length of the memory range in 1-byte
blocks.

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 428

ACPI Specification, Version 6.3 Device Configuration
Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See Section 19.6.81, “Memory32 (Memory Resource Descriptor Macro),” for a description of the ASL
macro that creates a 32-bit Memory descriptor.

6.4.3.4 32-Bit Fixed Memory Range Descriptor

Type 1, Large Item Value 0x6

This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Byte 18 Range length, _LEN bits [23:16] This field contains Bits [23:16] of the memory range length. The
range length provides the length of the memory range in 1-byte
blocks.

Byte 19 Range length, _LEN bits [31:24] This field contains Bits [31:24] of the memory range length. The
range length provides the length of the memory range in 1-byte
blocks.

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 429

ACPI Specification, Version 6.3 Device Configuration
Table 6-228 32-bit Fixed-Location Memory Range Descriptor Definition

Offset Field Name Definition

Byte 0 32-bit Fixed Memory
Range Descriptor

Value = 0x86 (10000110B) – Type = 1, Large item name = 0x06

Byte 1 Length, bits [7:0] Value = 0x09 (9)

Byte 2 Length, bits [15:8] Value = 0x00

Byte 3 Information This field provides extra information about this memory.

Bit [7:1] Ignored

Bit [0] Write status, _RW
 1 writeable (read/write)
 0 non-writeable (read-only))

Byte 4 Range base address, _BAS
bits [7:0]

Address bits [7:0] of the base memory address for which the card may be
configured.

Byte 5 Range base address, _BAS
bits [15:8]

Address bits [15:8] of the base memory address for which the card may be
configured.

Byte 6 Range base address, _BAS
bits [23:16]

Address bits [23:16] of the base memory address for which the card may
be configured.

Byte 7 Range base address, _BAS
bits [31:24]

Address bits [31:24] of the base memory address for which the card may
be configured.

Byte 8 Range length, _LEN bits
[7:0]

This field contains bits [7:0] of the memory range length. The range length
provides the length of the memory range in 1-byte blocks.

Byte 9 Range length, _LEN
bits[15:8]

This field contains bits [15:8] of the memory range length. The range
length provides the length of the memory range in 1-byte blocks.

Byte 10 Range length, _LEN bits
[23:16]

This field contains bits [23:16] of the memory range length. The range
length provides the length of the memory range in 1-byte blocks.

Byte 11 Range length, _LEN bits
[31:24]

This field contains bits [31:24] of the memory range length. The range
length provides the length of the memory range in 1-byte blocks.

Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See Section 19.6.82, “Memory32Fixed (Memory Resource Descriptor),” for a description of the ASL
macro that creates a 32-bit Fixed Memory descriptor.

6.4.3.5 Address Space Resource Descriptors

The QWORD, DWORD, WORD, and Extended Address Space Descriptors are general-purpose structures
for describing a variety of types of resources. These resources also include support for advanced server
architectures (such as multiple root buses), and resource types found on some RISC processors. These
descriptors can describe various kinds of resources. The following table defines the valid combination of
each field and how they should be interpreted.
UEFI Forum, Inc. January 2019 Page 430

ACPI Specification, Version 6.3 Device Configuration
Table 6-229 Valid combination of Address Space Descriptors fields

_LEN _MIF _MAF Definition

0 0 0 Variable size, variable location resource descriptor for _PRS.

If _MIF is set, _MIN must be a multiple of (_GRA+1). If _MAF is set, _MAX must be
(a multiple of (_GRA+1))-1.

OS can pick the resource range that satisfies following conditions:

If _MIF is not set, start address is a multiple of (_GRA+1) and greater or equal to
_MIN. Otherwise, start address is _MIN.

If _MAF is not set, end address is (a multiple of (_GRA+1))-1 and less or equal to
_MAX. Otherwise, end address is _MAX.

0 0 1

0 1 0

0 1 1 (Invalid combination)

> 0 0 0 Fixed size, variable location resource descriptor for _PRS.

_LEN must be a multiple of (_GRA+1).

OS can pick the resource range that satisfies following conditions:

Start address is a multiple of (_GRA+1) and greater or equal to _MIN.

End address is (start address+_LEN-1) and less or equal to _MAX.

> 0 0 1 (Invalid combination)

> 0 1 0 (Invalid combination)

> 0 1 1 Fixed size, fixed location resource descriptor.

_GRA must be 0 and _LEN must be (_MAX - _MIN +1).

6.4.3.5.1 QWord Address Space Descriptor

Type 1, Large Item Value 0xA

The QWORD address space descriptor is used to report resource usage in a 64-bit address space (like
memory and I/O).

Table 6-230 QWORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 QWORD Address Space
Descriptor

Value = 0x8A (10001010B) – Type = 1, Large item name = 0x0A

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x2B (43)

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined
values are:

 0 Memory range
 1 I/O range
 2 Bus number range
 3–191 Reserved

 192-255 Hardware Vendor Defined
UEFI Forum, Inc. January 2019 Page 431

ACPI Specification, Version 6.3 Device Configuration
Byte 4 General Flags Flags that are common to all resource types:

Bits [7:4] Reserved (must be 0)

Bit [3] Max Address Fixed, _MAF:

 1 The specified maximum address is fixed

 0 The specified maximum address is not fixed

 and can be changed

Bit [2] Min Address Fixed,_MIF:

 1 The specified minimum address is fixed

 0 The specified minimum address is not fixed

 and can be changed

Bit [1] Decode Type, _DEC:

 1 This bridge subtractively decodes this address

 (top level bridges only)

 0 This bridge positively decodes this address

Bit [0] Ignored

Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the flags
in this field depends on the value of the Resource Type field (see
above).

Byte 6 Address space granularity,
_GRA bits[7:0]

A set bit in this mask means that this bit is decoded. All bits less
significant than the most significant set bit must be set. That is, the
value of the full Address Space Granularity field (all 64 bits) must be a

number (2n-1).

Byte 7 Address space granularity,
_GRA bits[15:8]

Byte 8 Address space granularity,
_GRA bits[23:16]

Byte 9 Address space granularity,
_GRA bits[31:24]

Byte 10 Address space granularity,
_GRA bits[39:32]

Byte 11 Address space granularity,
_GRA bits[47:40]

Byte 12 Address space granularity,
_GRA bits[55:48]

Byte 13 Address space granularity,
_GRA bits[63:56]

Byte 14 Address range minimum,
_MIN bits[7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 432

ACPI Specification, Version 6.3 Device Configuration
Byte 15 Address range minimum,
_MIN bits[15:8]

Byte 16 Address range minimum,
_MIN bits[23:16]

Byte 17 Address range minimum,
_MIN bits[31:24]

Byte 18 Address range minimum,
_MIN bits[39:32]

Byte 19 Address range minimum,
_MIN bits[47:40]

Byte 20 Address range minimum,
_MIN bits[55:48]

Byte 21 Address range minimum,
_MIN bits[63:56]

Byte 22 Address range maximum,
_MAX bits[7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 23 Address range maximum,
_MAX bits[15:8]

Byte 24 Address range maximum,
_MAX bits[23:16]

Byte 25 Address range maximum,
_MAX bits[31:24]

Byte 26 Address range maximum,
_MAX bits[39:32]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 27 Address range maximum,
_MAX bits[47:40]

Byte 28 Address range maximum,
_MAX bits[55:48]

Byte 29 Address range maximum,
_MAX bits[63:56]

Byte 30 Address Translation offset,
_TRA bits[7:0]

For bridges that translate addresses across the bridge, this is the
offset that must be added to the address on the secondary side to
obtain the address on the primary side. Non-bridge devices must list 0
for all Address Translation offset bits.

Byte 31 Address Translation offset,
_TRA bits[15:8]

Byte 32 Address Translation offset,
_TRA bits[23:16]

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 433

ACPI Specification, Version 6.3 Device Configuration
See QWordIO (page 1025), QWordMemory (page 1027) and ASL_QWordAddressSpace for a description
of the ASL macros that creates a QWORD Address Space descriptor.

6.4.3.5.2 DWord Address Space Descriptor

Type 1, Large Item Value 0x7

The DWORD address space descriptor is used to report resource usage in a 32-bit address space (like
memory and I/O).

Byte 33 Address Translation offset,
_TRA bits[31:24]

Byte 34 Address Translation offset,
_TRA bits[39:32]

Byte 35 Address Translation offset,
_TRA bits[47:40]

Byte 36 Address Translation offset,
_TRA bits[55:48]

Byte 37 Address Translation offset,
_TRA bits[63:56]

Byte 38 Address length, _LEN
bits[7:0]

Byte 39 Address length, _LEN,
bits[15:8]

Byte 40 Address length, _LEN
bits[23:16]

Byte 41 Address length, _LEN
bits[31:24]

Byte 42 Address length, _LEN
bits[39:32]

Byte 43 Address length, _LEN
bits[47:40]

Byte 44 Address length, _LEN
bits[55:48]

Byte 45 Address length, _LEN
bits[63:56]

Byte 46 Resource Source Index Reserved. If the platform specifies “Interrupt ResourceSource
support” in bit 13 of Platform-Wide _OSC Capabilities DWORD 2
(Table 6-200), then this field must be zero.

String Resource Source (Optional) If present, the device that uses this descriptor consumes its
resources from the resources produced by the named device object. If
not present, the device consumes its resources out of a global pool.

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 434

ACPI Specification, Version 6.3 Device Configuration
Table 6-231 DWORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 DWORD Address Space
Descriptor

Value = 0x87 (10000111B) – Type = 1, Large item name = 0x07

Byte 1 Length, bits [7:0] Variable: Value = 23 (minimum)

Byte 2 Length, bits [15:8] Variable: Value = 0 (minimum)

Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined
values are:

 0 Memory range
 1 I/O range
 2 Bus number range
 3–191 Reserved

 192-255 Hardware Vendor Defined

Byte 4 General Flags Flags that are common to all resource types:

Bits [7:4] Reserved (must be 0)

Bit [3] Max Address Fixed, _MAF:

 1 The specified maximum address is fixed

 0 The specified maximum address is not fixed

 and can be changed

Bit [2] Min Address Fixed,_MIF:

 1 The specified minimum address is fixed

 0 The specified minimum address is not fixed

 and can be changed

Bit [1] Decode Type, _DEC:

 1 This bridge subtractively decodes this address

 (top level bridges only)

 0 This bridge positively decodes this address

Bit [0] Ignored

Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the flags in
this field depends on the value of the Resource Type field (see above).

Byte 6 Address space granularity,
_GRA bits[7:0]

A set bit in this mask means that this bit is decoded. All bits less
significant than the most significant set bit must be set. (in other words,
the value of the full Address Space Granularity field (all 32 bits) must be

a number (2n-1).

Byte 7 Address space granularity,
_GRA bits[15:8]

Byte 8 Address space granularity,
_GRA bits [23:16]

Byte 9 Address space granularity,
_GRA bits [31:24]
UEFI Forum, Inc. January 2019 Page 435

ACPI Specification, Version 6.3 Device Configuration
Byte 10 Address range minimum,
_MIN bits [7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 11 Address range minimum,
_MIN bits [15:8]

Byte 12 Address range minimum,
_MIN bits [23:16]

Byte 13 Address range minimum,
_MIN bits [31:24]

Byte 14 Address range maximum,
_MAX bits [7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 15 Address range maximum,
_MAX bits [15:8]

Byte 16 Address range maximum,
_MAX bits [23:16]

Byte 17 Address range maximum,
_MAX bits [31:24]

Byte 18 Address Translation offset,
_TRA bits [7:0]

For bridges that translate addresses across the bridge, this is the offset
that must be added to the address on the secondary side to obtain the
address on the primary side. Non-bridge devices must list 0 for all
Address Translation offset bits.

Byte 19 Address Translation offset,
_TRA bits [15:8]

Byte 20 Address Translation offset,
_TRA bits [23:16]

Byte 21 Address Translation offset,
_TRA bits [31:24]

Byte 22 Address Length, _LEN, bits
[7:0]

Byte 23 Address Length, _LEN, bits
[15:8]

Byte 24 Address Length, _LEN, bits
[23:16]

Byte 25 Address Length, _LEN, bits
[31:24]

Byte 26 Resource Source Index (Optional) Only present if Resource Source (below) is present. This field
gives an index to the specific resource descriptor that this device
consumes from in the current resource template for the device object
pointed to in Resource Source.

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 436

ACPI Specification, Version 6.3 Device Configuration
See DWordIO (page 959), DWordMemory (page 961) and ASL_DWordAddressSpace for a description of
the ASL macro that creates a DWORD Address Space descriptor

6.4.3.5.3 Word Address Space Descriptor

Type 1, Large Item Value 0x8

The WORD address space descriptor is used to report resource usage in a 16-bit address space (like
memory and I/O).

Note: This descriptor is exactly the same as the DWORD descriptor specified in Table 6-217; the only
difference is that the address fields are 16 bits wide rather than 32 bits wide.

Table 6-232 WORD Address Space Descriptor Definition

String Resource Source (Optional) If present, the device that uses this descriptor consumes its
resources from the resources produced by the named device object. If
not present, the device consumes its resources out of a global pool.

If not present, the device consumes this resource from its hierarchical
parent.

Offset Field Name Definition

Byte 0 WORD Address Space
Descriptor

Value = 0x88 (10001000B) – Type = 1, Large item name = 0x08

Byte 1 Length, bits [7:0] Variable length, minimum value = 0x0D (13)

Byte 2 Length, bits [15:8] Variable length, minimum value = 0x00

Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined
values are:

 0 Memory range
 1 I/O range
 2 Bus number range
 3–191 Reserved

 192-255 Hardware Vendor Defined

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 437

ACPI Specification, Version 6.3 Device Configuration
Byte 4 General Flags

Flags that are common to all resource types:

Bits [7:4] Reserved (must be 0)

Bit [3] Max Address Fixed, _MAF:

 1 The specified maximum address is fixed

 0 The specified maximum address is not fixed

 and can be changed

Bit [2] Min Address Fixed,_MIF:

 1 The specified minimum address is fixed

 0 The specified minimum address is not fixed

 and can be changed

Bit [1] Decode Type, _DEC:

 1 This bridge subtractively decodes this address

 (top level bridges only)

 0 This bridge positively decodes this address

Bit [0] Ignored

Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the
flags in this field depends on the value of the Resource Type field
(see above).

Byte 6 Address space granularity,
_GRA bits[7:0]

A set bit in this mask means that this bit is decoded. All bits less
significant than the most significant set bit must be set. (In other
words, the value of the full Address Space Granularity field (all 16

bits) must be a number (2n-1).

Byte 7 Address space granularity,
_GRA bits[15:8]

Byte 8 Address range minimum,
_MIN, bits [7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 9 Address range minimum,
_MIN, bits [15:8]

Byte 10 Address range maximum,
_MAX, bits [7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 11 Address range maximum,
_MAX, bits [15:8]

Byte 12 Address Translation offset,
_TRA, bits [7:0]

For bridges that translate addresses across the bridge, this is the
offset that must be added to the address on the secondary side to
obtain the address on the primary side. Non-bridge devices must list
0 for all Address Translation offset bits.

Byte 13 Address Translation offset,
_TRA, bits [15:8]

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 438

ACPI Specification, Version 6.3 Device Configuration

alues
See WordIO (page 1053), WordBusNumber (page 1052) and ASL_WordAddressSpace for a description of
the ASL macros that create a Word address descriptor.

6.4.3.5.4 Extended Address Space Descriptor

Type 1, Large Item Value 0xB

The Extended Address Space descriptor is used to report resource usage in the address space (like
memory and I/O).

Table 6-233 Extended Address Space Descriptor Definition

Byte 14 Address Length, _LEN, bits
[7:0]

Byte 15 Address Length, _LEN, bits
[15:8]

Byte 16 Resource Source Index (Optional) Only present if Resource Source (below) is present. This
field gives an index to the specific resource descriptor that this
device consumes from in the current resource template for the
device object pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this descriptor consumes
its resources from the resources produced by the named device
object. If not present, the device consumes its resources out of a
global pool. If not present, the device consumes this resource from
its hierarchical parent.

Offset Field Name Definition

Byte 0 Extended Address Space
Descriptor

Value = 0x8B (10001011B) – Type = 1, Large item name = 0x0B

Byte 1 Length, bits[7:0] Value = 0x35 (53)

Byte 2 Length, bits[15:8] Value = 0x00

Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined v
are:

 0 Memory range
 1 I/O range
 2 Bus number range
 3–191 Reserved

 192-255 Hardware Vendor Defined

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 439

ACPI Specification, Version 6.3 Device Configuration

s in this
r the
. For
s Space

 ACPI

ificant
 full

.

Byte 4 General Flags Flags that are common to all resource types:

Bits [7:4] Reserved (must be 0)

Bit [3] Max Address Fixed, _MAF:

 1 The specified maximum address is fixed

 0 The specified maximum address is not fixed

 and can be changed

Bit [2] Min Address Fixed,_MIF:

 1 The specified minimum address is fixed

 0 The specified minimum address is not fixed

 and can be changed

Bit [1] Decode Type, _DEC:

 1 This bridge subtractively decodes this address

 (top level bridges only)

 0 This bridge positively decodes this address

Bit [0] Consumer/Producer:

 1–This device consumes this resource

 0–This device produces and consumes this resource

Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the flag
field depends on the value of the Resource Type field (see above). Fo
Memory Resource Type, the definition is defined in Section 6.4.3.5.5
other Resource Types, refer to the existing definitions for the Addres
Descriptors.

Byte 6 Revision ID Indicates the revision of the Extended Address Space descriptor. For
3.0, this value is 1.

Byte 7 Reserved 0

Byte 8 Address space granularity, _GRA
bits[7:0]

A set bit in this mask means that this bit is decoded. All bits less sign
than the most significant set bit must be set. That is, the value of the

Address Space Granularity field (all 64 bits) must be a number (2n-1)

Byte 9 Address space granularity, _GRA
bits[15:8]

Byte 10 Address space granularity, _GRA
bits[23:16]

Byte 11 Address space granularity, _GRA
bits[31:24]

Byte 12 Address space granularity, _GRA
bits[39:32]

Byte 13 Address space granularity, _GRA
bits[47:40]

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 440

ACPI Specification, Version 6.3 Device Configuration

set that
ddress
Byte 14 Address space granularity, _GRA
bits[55:48]

Byte 15 Address space granularity, _GRA
bits[63:56]

Byte 16 Address range minimum, _MIN
bits[7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 17 Address range minimum, _MIN
bits[15:8]

Byte 18 Address range minimum, _MIN
bits[23:16]

Byte 19 Address range minimum, _MIN
bits[31:24]

Byte 20 Address range minimum, _MIN
bits[39:32]

Byte 21 Address range minimum, _MIN
bits[47:40]

Byte 22 Address range minimum, _MIN
bits[55:48]

Byte 23 Address range minimum, _MIN
bits[63:56]

Byte 24 Address range maximum, _MAX
bits[7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 25 Address range maximum, _MAX
bits[15:8]

Byte 26 Address range maximum, _MAX
bits[23:16]

Byte 27 Address range maximum, _MAX
bits[31:24]

Byte 28 Address range maximum, _MAX
bits[39:32]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 29 Address range maximum, _MAX
bits[47:40]

Byte 30 Address range maximum, _MAX
bits[55:48]

Byte 31 Address range maximum, _MAX
bits[63:56]

Byte 32 Address Translation offset, _TRA
bits[7:0]

For bridges that translate addresses across the bridge, this is the off
must be added to the address on the secondary side to obtain the a
on the primary side. Non-bridge devices must list 0 for all Address
Translation offset bits.

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 441

ACPI Specification, Version 6.3 Device Configuration

e
ld (see

o 0.
Byte 33 Address Translation offset, _TRA
bits[15:8]

Byte 34 Address Translation offset, _TRA
bits[23:16]

Byte 35 Address Translation offset, _TRA
bits[31:24]

Byte 36 Address Translation offset, _TRA
bits[39:32]

Byte 37 Address Translation offset, _TRA
bits[47:40]

Byte 38 Address Translation offset, _TRA
bits[55:48]

Byte 39 Address Translation offset, _TRA
bits[63:56]

Byte 40 Address length, _LEN bits[7:0]

Byte 41 Address length, _LEN, bits[15:8]

Byte 42 Address length, _LEN bits[23:16]

Byte 43 Address length, _LEN bits[31:24]

Byte 44 Address length, _LEN bits[39:32]

Byte 45 Address length, _LEN bits[47:40]

Byte 46 Address length, _LEN bits[55:48]

Byte 47 Address length, _LEN bits[63:56]

Byte 48 Type Specific Attribute, _ATT
bits[7:0]

Attributes that are specific to each resource type. The meaning of th
attributes in this field depends on the value of the Resource Type fie
above). For the Memory Resource Type, the definition is defined
Section 6.4.3.5.4.1. For other Resource Types, this field is reserved t

Byte 49 Type Specific Attribute, _ATT
bits[15:8]

Byte 50 Type Specific Attribute, _ATT
bits[23:16]

Byte 51 Type Specific Attribute, _ATT
bits[31:24]

Byte 52 Type Specific Attribute, _ATT
bits[39:32]

Byte 53 Type Specific Attribute, _ATT
bits[47:40]

Byte 54 Type Specific Attribute, _ATT
bits[55:48]

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 442

ACPI Specification, Version 6.3 Device Configuration
See Section 19.6.43, “ExtendedSpace (Extended Address Space Resource Descriptor Macro),” for a
description of the ASL macro that creates an Extended Address Space descriptor.

6.4.3.5.4.1 Type Specific Attributes

The meaning of the Type Specific Attributes field of the Extended Address Space Descriptor depends on
the value of the Resource Type field in the descriptor. When Resource Type = 0 (memory resource), the
Type Specific Attributes field values are defined per Memory Attribute Definitions in the UEFI
Specification under section titled GetMemoryMap().

6.4.3.5.5 Resource Type Specific Flags

The meaning of the flags in the Type Specific Flags field of the Address Space Descriptors depends on the
value of the Resource Type field in the descriptor. The flags for each resource type are defined in the
following tables:

Table 6-234 Memory Resource Flag (Resource Type = 0) Definitions

Byte 55 Type Specific Attribute, _ATT
bits[63:56]

Bits Meaning

Bits [7:6] Reserved (must be 0)

Bit [5] Memory to I/O Translation, _TTP

 1 TypeTranslation: This resource, which is memory on the secondary side of the bridge, is

 I/O on the primary side of the bridge.

 0 TypeStatic: This resource, which is memory on the secondary side of the bridge, is also

 memory on the primary side of the bridge.

Bits [4:3] Memory attributes, _MTP.

These bits are only defined if this memory resource describes system RAM. For a definition of the
labels described here, see Section 15, “System Address Map Interfaces.”

 0 AddressRangeMemory
 1 AddressRangeReserved
 2 AddressRangeACPI
 3 AddressRangeNVS

Bits [2:1] Memory attributes, _MEM

 0 The memory is non-cacheable.
 1 The memory is cacheable.
 2 The memory is cacheable and supports write combining.
 3 The memory is cacheable and prefetchable.

(Notice: OSPM ignores this field in the Extended address space descriptor. Instead it uses the Type
Specific Attributes field to determine memory attributes)

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 443

ACPI Specification, Version 6.3 Device Configuration
Table 6-235 I/O Resource Flag (Resource Type = 1) Definitions

Bits Meaning

Bits [7:6] Reserved (must be 0)

Bit [5] Sparse Translation, _TRS. This bit is only meaningful if Bit [4] is set.

 1 SparseTranslation: The primary-side memory address of any specific I/O port within the
secondary-side range can be found using the following function.

address = (((port & 0xFFFc) << 10) || (port & 0xFFF)) + _TRA

In the address used to access the I/O port, bits[11:2] must be identical to bits[21:12], this gives four
bytes of I/O ports on each 4 KB page.

 0 DenseTranslation: The primary-side memory address of any specific I/O port within the
secondary-side range can be found using the following function.

address = port + _TRA

Bit [4] I/O to Memory Translation, _TTP

 1 TypeTranslation: This resource, which is I/O on the secondary side of the bridge, is memory on the
primary side of the bridge.

 0 TypeStatic: This resource, which is I/O on the secondary side of the bridge, is also I/O on the
primary side of the bridge.

Bit [3:2] Reserved (must be 0)

Bit [1:0] _RNG

 3 Memory window covers the entire range

 2 ISARangesOnly. This flag is for bridges on systems with multiple bridges. Setting this bit means the
memory window specified in this descriptor is limited to the ISA I/O addresses that fall within the
specified window. The ISA I/O ranges are: n000-n0FF, n400-n4FF, n800-n8FF, nC00-nCFF. This bit can
only be set for bridges entirely configured throughACPI namespace.

 1 NonISARangesOnly. This flag is for bridges on systems with multiple bridges. Setting this bit means
the memory window specified in this descriptor is limited to the non-ISA I/O addresses that fall
within the specified window. The non-ISA I/O ranges are: n100-n3FF, n500-n7FF, n900-nBFF, nD00-
nFFF. This bit can only be set for bridges entirely configured through ACPI namespace.

 0 Reserved

Table 6-236 Bus Number Range Resource Flag (Resource Type = 2) Definitions

Bits Meaning

Bit [7:0] Reserved (must be 0)

Bit [0] Write status, _RW
 1 This memory range is read-write.
 0 This memory range is read-only.

Bits Meaning
UEFI Forum, Inc. January 2019 Page 444

ACPI Specification, Version 6.3 Device Configuration
6.4.3.6 Extended Interrupt Descriptor

Type 1, Large Item Value 0x9

The Extended Interrupt Descriptor is necessary to describe interrupt settings and possibilities for systems
that support interrupts above 15.

To specify multiple interrupt numbers, this descriptor allows vendors to list an array of possible interrupt
numbers, any one of which can be used.

Table 6-237 Extended Interrupt Descriptor Definition

Offset Field Name Definition

Byte 0 Extended Interrupt
Descriptor

Value = 0x89 (10001001B) – Type = 1, Large item name = 0x09

Byte 1 Length, bits [7:0] Variable length, minimum value = 0x06

Byte 2 Length, bits [15:8] Variable length, minimum value = 0x00

Byte 3 Interrupt Vector
Flags

Interrupt Vector Information.

Bit [7:5] Reserved (must be 0)

Bit [4] Wake Capability, _WKC

 0x0 = Not Wake Capable: This interrupt is not capable of waking the
system.

 0x1 = Wake Capable: This interrupt is capable of waking the

 system from a low-power idle state or a system sleep state.

Bit [3] Interrupt Sharing, _SHR

 0x0 = Exclusive: This interrupt is not shared with other devices.

 0x1 = Shared: This interrupt is shared with other devices.

Bit [2] Interrupt Polarity, _LL

 0 Active-High: This interrupt is sampled when the signal is high,

 or true.

 1 Active-Low: This interrupt is sampled when the signal is low, or

 false.

Bit [1] Interrupt Mode, _HE

 0 Level-Triggered: Interrupt is triggered in response to the signal

 being in either a high or low state.

 1 Edge-Triggered: This interrupt is triggered in response to a

 change in signal state, either high to low or low to high.

Bit [0] Consumer/Producer:

 1 This device consumes this resource

 0 This device produces this resource

Byte 4 Interrupt table
length

Indicates the number of interrupt numbers that follow. When this descriptor is
returned from _CRS, or when OSPM passes this descriptor to _SRS, this field
must be set to 1.
UEFI Forum, Inc. January 2019 Page 445

ACPI Specification, Version 6.3 Device Configuration
Note: Low true, level sensitive interrupts may be electrically shared, the process of how this might work
is beyond the scope of this specification.

If the OS is running using the 8259 interrupt model, only interrupt number values of 0-15 will be used,
and interrupt numbers greater than 15 will be ignored.

See Interrupt (page 987) for a description of the ASL macro that creates an Extended Interrupt descriptor.

6.4.3.7 Generic Register Descriptor

Type 1, Large Item Value 0x2

The generic register descriptor describes the location of a fixed width register within any of the ACPI-
defined address spaces. See Table 6-238 for details.

Byte
4n+5

Interrupt Number,
_INT bits [7:0]

Interrupt number

Byte
4n+6

Interrupt Number,
_INT bits [15:8]

Byte
4n+7

Interrupt Number,
_INT bits [23:16]

Byte
4n+8

Interrupt Number,
_INT bits [31:24]

… … Additional interrupt numbers

Byte x Resource Source
Index

Reserved. If the platform specifies “Interrupt ResourceSource support” in bit
13 of Platform-Wide _OSC Capabilities DWORD 2 (Table 6-200), then this field
must be zero.

String Resource Source (Optional) If present, the device that uses this descriptor consumes its
resources from the resources produces by the named device object. If not
present, the device consumes its resources out of a global pool.

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 446

ACPI Specification, Version 6.3 Device Configuration
Table 6-238 Generic Register Descriptor Definition

Offset Field Name, ASL Field Name Definition

Byte 0 Generic Register Descriptor Value = 0x82 (10000010B) 
Type = 1, Large item name = 0x02

Byte 1 Length, bits[7:0] Value = 0x0C (12)

Byte 2 Length, bits[15:8] Value = 0x00

Byte 3 Address Space ID,

_ASI

The address space where the data structure or register
exists. Defined values are:

 0x00 System Memory

 0x01 System I/O

 0x02 PCI Configuration Space

 0x03 Embedded Controller

 0x04 SMBus

 0x05 SystemCMOS

 0x06 PciBarTarget

 0x07 IPMI

 0x08 GeneralPurposeIO

 0x09 GenericSerialBus

 0x0A PCC

 0x7F Functional Fixed Hardware

Byte 4 Register Bit Width,

_RBW

Indicates the register width in bits.

Byte 5 Register Bit Offset,

_RBO

Indicates the offset to the start of the register in bits
from the Register Address.

Byte 6 Access Size, _ASZ Specifies access size.

 0 - Undefined (legacy reasons)

 1 - Byte access

 2 - Word access

 3 - Dword access

 4 - QWord access

Byte 7 Register Address, _ADR bits[7:0] Register Address

Byte 8 Register Address, _ADR bits[15:8]

Byte 9 Register Address, _ADR bits[23:16]

Byte 10 Register Address, _ADR bits[31:24]

Byte 11 Register Address, _ADR bits[39:32]

Byte 12 Register Address, _ADR bits[47:40]

Byte 13 Register Address, _ADR bits[55:48]

Byte 14 Register Address, _ADR bits[63:56]
UEFI Forum, Inc. January 2019 Page 447

ACPI Specification, Version 6.3 Device Configuration
See Section 19.6.115 for a description of the Generic Register Resource Descriptor Macro.

6.4.3.8 Connection Descriptors

General-purpose I/O (GPIO) and Simple Peripheral Bus (SPB) controllers are hardware resources provided
in silicon solutions to enable flexible configuration of a broad range of system designs. These controllers
can provide input, output, interrupt and serial communication connections to arbitrary devices in a
system. The function to which one of these connections is put depends on the specific device involved
and the needs of the platform design. In order to support mobile platform architectures, ACPI abstracts
these connections as resources.

6.4.3.8.1 GPIO Connection Descriptor

Type 1, Large Item Name 0xC

The GPIO Connection Descriptor describes connections between GPIO controllers and peripheral devices.
Two types of GPIO connections can be described: IO connections and Interrupt connections,
distinguished by the GPIO Connection Type value in the descriptor. GPIO controllers and the devices that
connect to them may be located anywhere in the namespace, but the connection must be described in
the peripheral device's resource objects (PRS, _CRS, etc.).

Table 6-239 GPIO Connection Descriptor Definition

Offset Field Name Definition

Byte 0 GPIO Connection
Descriptor

Value = 0x8C, (10001100B) – Type = 1, Large item name = 0x0C

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x16 + L (22 + length of the
Resource Source Name string)

Byte 2 Length,
bits[15:8]

Variable length, minimum value = 0x00

Byte 3 Revision ID Indicates the revision for the GPIO interrupt descriptor. This
value must be 1.

Byte 4 GPIO Connection
Type

Indicates the type of the descriptor:
 0x00 = Interrupt Connection
 0x01 = IO Connection
 0x02 - 0xFF Reserved

Byte 5 General Flags,
bits [7:0]

Flags.
Bit [7:1] Reserved (must be 0)
Bit [0] Consumer/Producer:
 0x0 = This device produces and consumes this resource
 0x1 = This device consumes this resource

Byte 6 General Flags,
bits [15:8]

Bit [15:8] Reserved (must be 0).
UEFI Forum, Inc. January 2019 Page 448

ACPI Specification, Version 6.3 Device Configuration
Byte 7 Interrupt and IO
Flags, bits [7:0]

For Interrupt Connections:
Bit [7:5] Reserved (must be 0)
Bit [4] Wake Capability, _WKC
 0x0 = Not Wake Capable: This interrupt is not
 capable of waking the system.
 0x1 = Wake Capable: This interrupt is capable of
 waking the system from a low-power idle state
 or a system sleep state.
Bit [3] Interrupt Sharing, _SHR
 0x0 = Exclusive: This interrupt is not shared with
 other devices.
 0x1 = Shared: This interrupt is shared with other
 devices.
Bit [2:1] Interrupt Polarity, _POL
 0x0 = Active-High: This interrupt is sampled when the signal
 is high, or true.
 0x1 = Active-Low: This interrupt is sampled when the signal
 is low, or false.
 0x2 = Active-Both: This interrupt is sampled on both rising
 and falling edges. Interrupt mode must be set to
 Edge-triggered.
 0x3 – Reserved (do not use)
Bit [0] Interrupt Mode, _MOD
 0x0 = Level-Triggered: Interrupt is triggered in response to
 the signal being in either a high or low state.
 0x1 = Edge-Triggered: This interrupt is triggered in response
 to a change in signal state, either high to low or
 low to high.

For IO Connections:
Bit [7:4] Reserved (must be 0)
Bit [3] IO Sharing, _SHR
 0x0 = Exclusive: This IO connection is used exclusively by
 one device.
 0x1 = Shared: This IO connection is shared by two or more
 devices.
Bit [2] Reserved (must be 0)
Bit [1:0] IO Restriction _IOR
 0x0 = This pin or pins can be used for either Input or Output.
 0x1 = This pin or pins can only be used for Input, and the
 pin configuration must be preserved while not in use.
 0x2 = This pin or pins can only be used for Output, and the
 pin configuration must be preserved while not in use.
 0x3 = This pin or pins can be used for either input or output,
 but the configuration must be preserved until
 explicitly changed.

Byte 8 Interrupt and IO
Flags, bits [15:8]

Bit [15:8] Reserved (must be 0)

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 449

ACPI Specification, Version 6.3 Device Configuration
Byte 9 Pin
Configuration

_PPI
 0x00 = Default Configuration (no configuration is applied)
 0x01 = Pull-up
 0x02 = Pull-down
 0x03 = No Pull
 0x04 – 0x7F ; Reserved (do not use)
 0x80 – 0xFF ; Vendor-defined values

Byte 10 Output Drive
Strength, bits
[7:0]

The output-drive capability, in hundredths of milliamperes, to be
applied when configuring the pin for output (high byte).
_DRS[7:0]

Byte 11 Output Drive
Strength, bits
[15:8]

The output-drive capability, in hundredths of milliamperes, to be
applied when configuring the pin for output (high byte).
_DRS[15:8]

Byte 12 Debounce
timeout, bits
[7:0]

The debounce timeout, in hundredths of milliseconds, to be
applied when configuring the pin for interrupt (low byte).
_DBT[7:0]

Byte 13 Debounce
timeout, bits
[15:8]

The debounce timeout, in hundredths of milliseconds, to be
applied when configuring the pin for interrupt (high byte). _DBT
[15:8]

Byte 14 Pin Table
Offset[7:0]

Offset to the start of the pin table (low byte). The offset is
relative to the start of this descriptor.
NOTE: The number of pins in the table can be calculated from
PinCount = (Resource Source Name Offset – Pin Table Offset) / 2

Byte 15 Pin Table
Offset[15:8]

Offset to the start of the pin table (high byte). The offset is
relative to the start of this descriptor.

Byte 16 Resource Source
Index

Reserved for future use. This field must be 0.

Byte 17 Resource Source
Name
Offset[7:0]

Offset to the start of the resource source name (low byte). The
offset is relative to the start of this descriptor.
NOTE: The length of the ResourceSource name string can be
calculated from Length L = Vendor Data Offset – Resource Source
Name Offset. The length includes the string’s terminating NULL
character (if present)

Byte 18 Resource Source
Name
Offset[15:8]

Offset to the start of the resource source name (high byte). The
offset is relative to the start of this descriptor.

Byte 19 Vendor Data
Offset[7:0]

(low byte) Offset to the start of the Vendor-defined Data (the last
byte of the ResourceSource + 1). This value must always be valid
to allow for length calculations. In the case where there is no
Vendor Data, this offset still must refer to the last byte of the
ResourceSource + 1.
The offset is relative to the start of this descriptor.

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 450

ACPI Specification, Version 6.3 Device Configuration
6.4.3.8.2 GenericSerialBus Connection Descriptors

Type 1, Large Item Value 0x0E

All Serial Bus Resource descriptors utilize the following format. For specific bus types, the type-specific
fields are used.

Table 6-240 GenericSerialBus Connection Descriptors

Byte 20 Vendor Data
Offset[15:8]

(high byte) Offset to the start of the Vendor-defined Data .(the
last byte of the ResourceSource + 1). This value must always be
valid to allow for length calculations. In the case where there is
no Vendor Data, this offset still must refer to the last byte of the
ResourceSource + 1.
The offset is relative to the start of this descriptor.

Byte 21 Vendor Data
Length [7:0]

Length of Vendor-defined Data (low-byte).

Byte 22 Vendor Data
Length [15:8]

Length of Vendor-defined Data (high-byte).

Byte PinTableOffset[15:0]
+ 2n (n is the index into the
pin table)

Pin Number, bits
[7:0]

GPIO controller-relative pin number (low byte). _PIN[7:0]. Pin
numbers are zero-based.
Pin number 0xFFFF = No Pin. OSPM will ignore this pin number.

Byte PinTableOffset[15:0]
+ 2n + 1 (n is the index into
the pin table)

Pin Number, bits
[15:8]

GPIO controller-relative pin number (high byte). _PIN[15:8]. Pin
numbers are zero-based.
Pin number 0xFFFF = No Pin. OSPM will ignore this pin number.

Byte
ResourceSourceNameOffse
t[15:0]

Resource Source
(length = L)

Name of the GPIO controller device to which this descriptor
applies. The name can be a fully-qualified name, a relative name
or a name segment that utilizes the namespace search rules.

Byte
VendorDataOffset[15:0]

Vendor-defined
Data

(Optional)
Data specific to the GPIO controller device supplied by a vendor.
This data is provided to the device driver for this GPIO Controller.
_VEN.

Offset Field Name Definition

Byte 0 Serial Bus Type Value = 0x8E (10001110B) – Type = 1, Large item name =
0x0E

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x09 + L(9 +
ResourceSource string length)”

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

Byte 3 Revision ID Indicates the revision of the Serial Bus Connection
Descriptor. This value is 2.

Byte 4 Resource Source Index Reserved (must be 0)

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 451

ACPI Specification, Version 6.3 Device Configuration
Byte 5 Serial Bus Type Serial Bus Type 

Indicates which type of serial bus connection this descriptor
describes. Defined values are:

 0

 1

 Reserved

 I2C

 2 SPI

 3 UART

 4-191 Reserved

 192-255 Hardware Vendor Defined

Byte 6 General Flags [7:0] Flags that are common to all serial bus connection types.

Bits [7:3]

Reserved. Must be 0.

Bit [2]

Connection Sharing, _SHR

 0x0: Exclusive: This Serial Bus connection is used
exclusively by one device.

 0x1: Shared: This Serial Bus connection is shared by

 two or more devices.

Bit [1]

Consumer/Producer:

 0x1: This device consumes this resource

 0x0: This device produces and consumes this

 resource

Bit [0]

Slave Mode.

 0x0: The communication over this connection is

 initiated by the controller.

 0x1: The communication over this connection is

 initiated by the device.

Byte 7 Type Specific Flags, bits[7:0] Flags specific to the indicated Serial Bus Type (see above).

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 452

ACPI Specification, Version 6.3 Device Configuration
6.4.3.8.2.1 I2C Serial Bus Connection Resource Descriptor

Table 6-241 I2C Serial Bus Connection Descriptor

Byte 8 Type Specific Flags, bits[15:8] Flags specific to the indicated Serial Bus Type (see above).

Byte 9 Type Specific Revision ID Revision ID for the data describing the serial bus connection
specified by Serial Bus Type (see above).

Byte 10 Type Data Length, bits[7:0] Variable length, minimum size depends on the indicated
Serial Bus Type (see above).

Byte 11 Type Data Length, bits [15:8] Variable length, minimum size depends on the indicated
Serial Bus Type (see above).

Byte 12 Type Specific Data (Optional) Data specific to the serial bus connection type
indicated in Serial Bus Type (see above).

… … Additional data specific to the serial bus connection type.

String Resource Source Name of the serial bus controller device to which this
connection descriptor applies. The name can be a fully
qualified path, a relative path, or a simple name segment
that utilizes the namespace search rules.

Offset Field Name Definition

Byte 0 I2C Bus Connection Descriptor Value = 0x8E (10001110B) – Type = 1, Large item name =
0x0E

Byte 1 Length, bits [7:0] Variable length, minimum value = 0xF + L (15 +
ResourceSource string length)

Byte 2 Length, bits [15:8] Variable, length minimum value = 0x00

Byte 3 Revision ID Indicates the revision for the I2C Resource Descriptor. This
value is 2.

Byte 4 Resource Source Index Master Instance. If the controller device specified in the
Resource Source field in this structure supports more than
one Master, this field describes the instance of the Master
to which the I2C Slave is connected. The first Master
Instance is 0.

Byte 5 Serial Bus Type Serial Bus Type value must be 1 for I2C

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 453

ACPI Specification, Version 6.3 Device Configuration
Byte 6 General Flags [7:0] Flags that are common to all serial bus connection types.

Bits [7:2]

Reserved. Must be 0.

Bit [1]

Consumer/Producer:

 0x1: This device consumes this resource

 0x0: This device produces and consumes this

 resource

Bit [0]

Slave Mode. _SLV

 0x0: The communication over this connection is

 initiated by the controller.

 0x1: The communication over this connection is

 initiated by the device.

Byte 7 Type Specific Flags, bits[7:0] Bits[7:1]

Reserved. Must be 0.

Bit [0]

10-bit addressing mode. _MOD

 0x1: The connection uses 10-bit addressing

 0x0: The connection uses 7-bit addressing.

Note: If this device is connected to an I3C Host Controller,
_MOD must be 0.

Byte 8 Type Specific Flags, bits[15:8] Legacy Virtual Register. _LVR

This field is used to provide LVR data as specified in the MIPI
I3C Specification for an I2C device connected to an I3C Host
Controller.

For I2C devices on an I2C bus, this field is Reserved and
unused.

Byte 9 Type Specific Revision ID Indicates the revision of the I2C-specific Serial Bus
Connection Descriptor Data. This value is 1.

Byte 10 Type Data Length, bits[7:0] Variable length, minimum value = 0x6 (6).

Byte 11 Type Data Length, bits [15:8] Variable length, minimum size = 0x0 (0)

Byte 12 Connection Speed, bits [7:0] Connection speed bits [7:0] of the maximum speed in hertz
supported by this connection. _SPE[7:0]

Byte 13 Connection Speed, bits [15:8] Connection speed bits [15:8] of the maximum speed in hertz
supported by this connection. _SPE[15:8]

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 454

ACPI Specification, Version 6.3 Device Configuration
6.4.3.8.2.2 SPI Serial Bus Connection Resource Descriptor

Table 6-242 SPI Serial Bus Connection Descriptor

Byte 14 Connection Speed, bits [23:16] Connection speed bits [23:16] of the maximum speed in
hertz supported by this connection. _SPE[23:16]

Byte 15 Connection Speed, bits [31:24] Connection speed bits [31:24] of the maximum speed in
hertz supported by this connection. _SPE[31:24]

Byte 16 Slave Address, bits [7:0] Lower eight bits of the I2C bus address for this connection.
_ADR[7:0]

Bit [7]

In 7-bit addressing mode this is reserved and must be 0. In
10-bit addressing mode this is bit 7 of the address.

Bits [6:0]

The lowest 7 bits of the address. In 7-bit addressing mode
this represents the complete address.

Byte 17 Slave Address, bits[15:8] Upper eight bits of the I2C bus address for this connection.
The upper eight bits are to support 10-bit addressing and
should be set to 0 if 7-bit addressing is being used.
_ADR[15:8]

Bits [15:10]

Reserved. Must be 0.

Bits [9:8]

In 7-bit addressing mode these are reserved and must be 0.
In 10-bit addressing mode these are the highest two bits of
the address.

Byte 18 Vendor-defined Data (Optional) Data specific to the controller device supplied by
a vendor. The number of bytes in this field is Type Data
Length – 6.

… … (Optional) Additional vendor supplied data.

String Resource Source (Length = L) Name of the serial bus controller device to which this
connection descriptor applies. The name can be a fully
qualified path, a relative path, or a simple name segment
that utilizes the namespace search rules

Offset Field Name Definition

Byte 0 SPI Bus Connection
Descriptor

Value = 0x8E (10001110B) – Type = 1, Large item name = 0x0E

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x12 + L (18 + Resource Source
string length)

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 455

ACPI Specification, Version 6.3 Device Configuration
Byte 3 Revision ID Indicates the revision of the Serial Bus Connection Descriptor.
This value is 1.

Byte 4 Resource Source Index Reserved (must be 0)

Byte 5 Serial Bus Type Serial Bus Type value must be 2 for SPI

Byte 6 General Flags[7:0] Flags that are common to all serial bus connection types.

Bits [7:2]

Reserved. Must be 0.

Bit [1]

Consumer/Producer:

 0x1: This device consumes this resource

 0x0: This device produces and consumes this resource

Bit [0]

Slave Mode. _SLV

 0x0: The communication over this connection is initiated by

 the controller.

 0x1: The communication over this connection is initiated by

 the device.

Byte 7 Type Specific Flags, bits[7:0] Bits [7:2]

Reserved (must be 0)

Bit [1]: Device Polarity. _DPL

 1 – The device selection line is active high

 0 – The device selection line is active low

Bit [0]: Wire Mode. _MOD

 1 – The connection is over 3 wires

 0 – The connection is over 4 wires

Byte 8 Type Specific Flags,
bits[15:8]

Reserved. Must be 0.

Byte 9 Type Specific Revision ID Indicates the revision of the SPI-specific Serial Bus Connection
Descriptor Data. This value must be 1.

Byte 10 Type Data Length, bits[7:0] Variable length, minimum value = 0x9 (9).

Byte 11 Type Data Length, bits [15:8] Variable length, minimum size = 0x0 (0)

Byte 12 Connection Speed, bits [7:0] Connection speed bits [7:0] of the maximum speed in hertz
supported by this connection. _SPE[7:0]

Byte 13 Connection Speed, bits
[15:8]

Connection speed bits [15:8] of the maximum speed in hertz
supported by this connection. _SPE[15:8]

Byte 14 Connection Speed, bits
[23:16]

Connection speed bits [23:16] of the maximum speed in hertz
supported by this connection. _SPE[23:16]

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 456

ACPI Specification, Version 6.3 Device Configuration
6.4.3.8.2.3 UART Serial Bus Connection Resource Descriptor

Table 6-243 UART Serial Bus Connection Descriptor

Byte 15 Connection Speed, bits
[31:24]

Connection speed bits [31:24] of the maximum speed in hertz
supported by this connection. _SPE[31:24]

Byte 16 Data Bit Length The size in bits of the smallest transfer unit. _LEN

Byte 17 Phase The phase (CPHA) of the clock pulse on which to capture data
(the other being used to transmit). _PHA

 0 – First phase

 1 – Second phase

Byte 18 Polarity The polarity of the clock (CPOL). This value indicates if the clock is
low or high during the first phase (see Phase above). _POL

 0 –Start Low

 1 –Start High

Byte 19 Device Selection, bits [7:0] Lower eight bits of the device selection value. This value is
specific to the device and may refer to a chip-select line, GPIO
line or other line selection mechanism. _ADR[7:0]

Byte 20 Device Selection, bits [15:8] Upper eight bits of the device selection value. This value is
specific to the device and may refer to a chip-select line, GPIO
line or other line selection mechanism. _ADR[15:8]

Byte 21 Vendor Defined Data (Optional) Data specific to the controller device supplied by a
vendor. The number of bytes in this field is Type Data Length – 9.

… … (Optional) Additional vendor supplied data.

String Resource Source (Length = L) Name of the serial bus controller device to which this connection
descriptor applies. The name can be a fully qualified path, a
relative path, or a simple name segment that utilizes the
namespace search rules.

Offset Field Name Definition

Byte 0 Serial Bus Connection
Descriptor

Value = 0x8E (10001110B) – Type = 1, Large item name = 0x0E

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x13 + L (17 + Resource Source
string length)

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

Byte 3 Revision ID Indicates the revision of the Serial Bus Connection Descriptor.
This value is 1.

Byte 4 Resource Source Index Reserved (must be 0)

Byte 5 Serial Bus Type Serial Bus Type value must be 3 for UART

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 457

ACPI Specification, Version 6.3 Device Configuration
Byte 6 General Flags [7:0] Flags that are common to all serial bus connection types.

Bits [17:2]

Reserved. Must be 0.

Bit [1]

Consumer/Producer:

 0x1: This device consumes this resource

 0x0: This device produces and consumes this

 resource

Bit [0]

Slave Mode. _SLV

 0x0: The communication over this connection is initiated by

 the controller.

 0x1: The communication over this connection is initiated by

 the device.

Byte 7 Type Specific Flags, bits[7:0] Bit [7] – Endian-ness. _END

Little Endian = 0

Big Endian = 1

Bit [6:4] – Data bits. Number of bits per byte. _LEN

 000B – 5 bits

 001B – 6 bits

 010B – 7 bits

 011B – 8 bits

 100B – 9 bits

Bits [3:2] – Stop Bits. Number of stop bits per character. _STB

 00B (0) – none

 01B (1) – 1

 10B (2) – 1.5

 11B (3) – 2

Bits [1:0] – Flow control. Indicates type of flow control for the
connection. _FLC

 00B (0) – None

 01B (1) – Hardware flow control

 10B (2) – XON/XOFF

Byte 8 Type Specific Flags,
bits[15:8]

Reserved. Must be 0.

Byte 9 Type Specific Revision ID Indicates the revision of the UART-specific Serial Bus Connection
Descriptor Data. This value must be 1.

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 458

ACPI Specification, Version 6.3 Device Configuration
Byte 10 Type Data Length, bits[7:0] Variable length, minimum value = 0x0A (10).

Byte 11 Type Data Length, bits [15:8] Variable length, minimum size = 0x0 (0)

Byte 12 Default Baud rate, bits[7:0] Default baud rate of connection, in bits-per-second. _SPE[7:0]

Bits [7:0]

Byte 13 Default Baud rate, bits[15:8] Default baud rate of connection, in bits-per-second. _SPE[15:8]

Bits [15:8]

Byte 14 Default Baud rate,
bits[23:16]

Default baud rate of connection, in bits-per-second. _SPE[23:16]

Bits [23:16]

Byte 15 Default Baud rate,
bits[31:24]

Default baud rate of connection, in bits-per-second. _SPE[31:24]

Bits [31:24].

Byte 16 Rx FIFO, bits[7:0] Maximum receive buffer, in bytes, supported by this connection.
_RXL[7:0]

Bits [7:0]

Byte 17 Rx FIFO, bits[15:8] Maximum receive buffer, in bytes, supported by this connection.
_RXL[15:8]

Bits [15:8]

Byte 18 Tx FIFO, bits[7:0] Maximum receive buffer, in bytes, supported by this connection.
_TXL[7;0]

Bits [7:0]

Byte 19 Tx FIFO, bits[15:8] Maximum receive buffer, in bytes, supported by this connection.
_TXL[15:8]

Bits [15:8]

Byte 20 Parity Parity. _PAR
 None = 0x00
 Even = 0x01
 Odd = 0x02
 Mark = 0x03
 Space = 0x04

Byte 21 Serial Lines Enabled Serial lines enabled (Enabled = 1, Disabled = 0). _LIN

Bit [7] – Request to Send (RTS)

Bit [6] – Clear to Send (CTS)

Bit [5] – Data Terminal Ready (DTR)

Bit [4] – Data Set Ready (DSR)

Bit [3] – Ring Indicator (RI)

Bit [2] – Data Carrier Detect (DTD)

Bit [1] – Reserved. Must be 0.

Bit [0] – Reserved. Must be 0

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 459

ACPI Specification, Version 6.3 Device Configuration
6.4.3.9 Pin Function Descriptor

Table 6-244 Pin Function Description Definition

Byte 22 Vendor Defined Data (Optional) Data specific to the controller device supplied by a
vendor. The number of bytes in this field is Type Data Length –
10.

… … (Optional) Additional vendor supplied data.

String Resource Source (Length = L) Name of the serial bus controller device to which this connection
descriptor applies. The name can be a fully qualified path, a
relative path, or a simple name segment that utilizes the
namespace search rules.

Byte Offset Field Name Description

Byte 0 Resource Identifier Value = 0x8D, (10001101B) – Type = 1, Large
item name = 0x0D

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x0F + L (15 +
length of the

Resource Source Name string)

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

Byte 3 Revision ID Indicates the revision for the Pin Function
Descriptor. This value is 1

Byte 4 Flags [7:0] Bit [7:1] - Reserved. Must be 0.

Bit [0] - IO Sharing, _SHR

 0x0 = Exclusive: This function is used exclusively
by one device.

 0x1 = Shared: This function is shared by two or
more devices.

Byte 5 Flags [15:8] Reserved. Must be 0.

Byte 6 Pin pull configuration Can be one of PullDefault, PullUp, PullDown,
PullNone or a vendor-supplied value in the range
128-255.

Byte 7 Function number (low
byte)

The function number in which the pin is
configured. This number is provider-specific.

Byte 8 Function number
(high byte)

The function number in which the pin is
configured. This number is provider-specific.

Byte 9 Pin table offset (low
byte)

Offset to the start of the pin table (low byte). The
offset is relative to the start of this descriptor.

Offset Field Name Definition
UEFI Forum, Inc. January 2019 Page 460

ACPI Specification, Version 6.3 Device Configuration
Byte 10 Pin table offset (high
byte)

Offset to the start of the pin table (high byte).
The offset is relative to the start of this
descriptor.

Byte 11 Resource source index Reserved for future use. This field must be 0.

Byte 12 Resource source
name index (low byte)

Offset to the start of the resource source name
(low byte). The offset is relative to the start of
this descriptor.

Byte 13 Resource source
name index (high
byte)

Offset to the start of the resource source name
(high byte). The offset is relative to the start of
this descriptor.

Byte 14 Vendor data offset
(low byte)

(low byte) Offset to the start of the Vendor-
defined Data (the last byte of the
ResourceSource + 1). This value must always be
valid to allow for length calculations. In the case
where there is no Vendor Data, this offset still
must refer to the last byte of the ResourceSource
+ 1. The offset is relative to the start of this
descriptor.

Byte 15 Vendor data offset
(high byte)

(high byte) Offset to the start of the Vendor-
defined Data (the last byte of the
ResourceSource + 1). This value must always be
valid to allow for length calculations. In the case
where there is no Vendor Data, this offset still
must refer to the last byte of the ResourceSource
+ 1. The offset is relative to the start of this
descriptor.

Byte 16 Vendor data length
(low byte)

Length of Vendor-defined Data (low-byte).

Byte 17 Vendor data length
(high byte)

Length of Vendor-defined Data (high-byte).

Byte PinTableOffset[15:0] + 2n (n is
the index into the pin table)Byte
PinTableOffset[15:0] + 2n + 1 (n is the
index into the pin table)

Pin Number,

bits [15:8]

Provider-relative pin number (high byte).
_PIN[15:8]. Pin numbers are zero-based.

Byte PinTableOffset[15:0] + 2n + 1 (n
is the index into the pin table)

Byte
ResourceSourceNameOffset[15:0]

Resource Source
(length = L)

Name of the function config provider to which
this descriptor applies. The name can be a fully-
qualified name, a relative name or a name
segment that utilizes the namespace search

Byte VendorDataOffset[15:0] Vendor-defined Data (Optional)

Data specific to the GPIO controller device
supplied by a vendor. This data is provided to the
device driver for this GPIO Controller. _VEN.

Byte Offset Field Name Description
UEFI Forum, Inc. January 2019 Page 461

ACPI Specification, Version 6.3 Device Configuration
6.4.3.10 Pin Configuration Descriptor

Table 6-245 Pin Configuration Descriptor Definition

Byte Offset Field Name Description

Byte 0 Resource Identifier Value = 0x8F, (10001111B) – Type = 1, Large item
name = 0x0F

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x13 + L (19 +
length of the

Resource Source Name string)

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

Byte 3 Revision ID Indicates the revision for the Function
Configuration Descriptor. This value is 1

Byte 4 Flags [7:0] Bit [7:2] - Reserved. Must be 0.

Bit [1] - Consumer/Producer

 0x1: This device consumes this resource

 0x0: This device produces and consumes this
resource

Bit [0] - IO Sharing, _SHR

 0x0 = Exclusive: This function is used exclusively
by one device.

 0x1 = Shared: This function is shared by two or
more devices.

Byte 5 Flags [15:8] Reserved. Must be 0.

Byte6 Pin Configuration
Type, _TYP

The pin configuration type (see Table 19-434).

Byte 7 Pin Configuration
Value, _VAL, bits [7:0]

The pin configuration value associated with the
pin configuration type (see Table 19-434).

Byte 8 Pin Configuration
Value, _VAL, bits
[15:8]

The pin configuration value associated with the
pin configuration type (see Table 19-434).

Byte 9 Pin Configuration
Value, _VAL, bits
[23:16]

The pin configuration value associated with the
pin configuration type (see Table 19-434).

Byte 10 Pin Configuration
Value, _VAL, bits
[31:24]

The pin configuration value associated with the
pin configuration type (see Table 19-434).

Byte 11 Pin Table

Offset[7:0]

Offset to the start of the pin table (low byte). The
offset is relative to the start of this descriptor.

Byte 12 Pin Table

Offset[15:8]

Offset to the start of the pin table (high byte).
The offset is relative to the start of this
descriptor.
UEFI Forum, Inc. January 2019 Page 462

ACPI Specification, Version 6.3 Device Configuration
Byte 13 Resource

Source Index

Reserved for future use. This field must be 0.

Byte 14 Resource

Source Name

Offset[7:0]

Offset to the start of the resource source name
(low byte). The offset is relative to the start of
this descriptor.

Byte 15 Resource

Source Name

Offset[15:8]

Offset to the start of the resource source name
(high byte). The offset is relative to the start of
this descriptor.

Byte 16 Vendor Data

Offset[7:0]

(low byte) Offset to the start of the Vendor-
defined Data (the last byte of the
ResourceSource + 1). This value must always be
valid to allow for length calculations. In the case
where there is no Vendor Data, this offset still
must refer to the last byte of the ResourceSource
+ 1. The offset is relative to the start of this
descriptor.

Byte 17 Vendor Data

Offset[15:8]

(high byte) Offset to the start of the Vendor-
defined Data (the last byte of the
ResourceSource + 1). This value must always be
valid to allow for length calculations. In the case
where there is no Vendor Data, this offset still
must refer to the last byte of the ResourceSource
+ 1. The offset is relative to the start of this
descriptor.

Byte 18 Vendor Data

Length [7:0]

Length of Vendor-defined Data (low-byte).

Byte 19 Vendor Data

Length [15:8]

Length of Vendor-defined Data (high-byte).

Byte PinTableOffset[15:0] + 2n (n is
the index into the pin table)

Pin Number, _PIN,

bits [7:0]

Provider-relative pin number (low byte). Pin
numbers are zero-based.

Byte PinTableOffset[15:0] + 2n + 1 (n
is the index into the pin table)

Pin Number, _PIN,

bits [15:8]

Provider-relative pin number (high byte). Pin
numbers are zero-based.

Byte
ResourceSourceNameOffset[15:0]

Resource Source
(length = L)

Name of the pin controller to which this
descriptor applies. The name can be a fully-
qualified name, a relative name or a name
segment that utilizes the namespace search

Byte VendorDataOffset[15:0] Vendor-defined Data,
_VEN

(Optional)

Data specific to the pin controller device
supplied by a vendor. This data is provided to the
device driver for this pin controller.

Byte Offset Field Name Description
UEFI Forum, Inc. January 2019 Page 463

ACPI Specification, Version 6.3 Device Configuration
6.4.3.11 Pin Group Descriptor

Table 6-246 Pin Group Descriptor Definition

Byte Offset Field Name Description

Byte 0 Resource Identifier Value = 0x90, (10010000B) – Type = 1, Large item
name = 0x10

Byte 1 Length [7:0] Variable length, minimum value = 0x0B + L (11 +
length of the Resource Label)

Byte 2 Length [15:8] Value = 0x00

Byte 3 Revision ID Indicates the revision for the Pin Group
Descriptor. This value is 1.

Byte 4 Flags [7:0] [7:1] Reserved. Must be 0.

Bit [0] - Consumer/Producer

 0x1: This device consumes this resource

 0x0: This device produces and consumes this
resource

Byte 5 Flags [15:8] Reserved. Must be 0.

Byte 6 Pin table offset [7:0] Offset to the start of the pin table (low byte). The
offset is relative to the start of this descriptor.

Byte 7 Pin table offset [15:8] Offset to the start of the pin table (high byte).
The offset is relative to the start of this
descriptor.

Byte 8 Resource label offset
[7:0]

Offset to the start of the resource label (low
byte). The offset is relative to the start of this
descriptor.

The length of the resource label string can be
calculated from length L = Vendor data offset –
Resource label offset. The length includes the
string’s terminating

‘\0’ character.

Byte 9 Resource label offset
[15:8]

Offset to the start of the resource label (high
byte). The offset is relative to the start of this
descriptor.

Byte 10 Vendor data offset
[7:0]

(low byte) Offset to the start of the Vendor-
defined Data (the last byte of the Resource label
offset (high byte) + 1). This value must always be
valid to allow for length calculations. In the case
where there is no Vendor Data, this offset still
must refer to the last byte of the Resource label
offset (high byte) + 1. The offset is relative to the
start of this descriptor.
UEFI Forum, Inc. January 2019 Page 464

ACPI Specification, Version 6.3 Device Configuration
6.4.3.12 Pin Group Function Descriptor

Table 6-247 Pin Group Function Descriptor Definition

Byte11 Vendor data offset
[15:8]

(high byte) Offset to the start of the Vendor-
defined Data (the last byte of the Pin table offset
(high byte) + 1). This value must always be valid
to allow for length calculations. In the case
where there is no Vendor Data, this offset still
must refer to the last byte of the Pin table offset
(high byte) + 1. The offset is relative to the start
of this descriptor.

Byte 12 Vendor data length
[7:0]

Length of Vendor-defined Data (low-byte).

Byte 13 Vendor data length
[15:8]

Length of Vendor-defined Data (high-byte).

Byte PinTableOffset[15:0] + 2n (n is
the index into the pin table)

Pin Number, _PIN
[7:0]

Provider-relative pin number (low byte). Pin
numbers are zero-based.

Byte PinTableOffset[15:0] + 2n + 1 (n
is the index into the pin table)

Pin Number, _PIN
[15:8]

Provider-relative pin number (high byte). Pin
numbers are zero-based.

Byte ResourceLabelOffset[15:0] Resource Label
(length = L)

Label for the resource (string). Can be any non-
empty string and is used by resource consumers
to refer to this resource by name. Always
terminated by ‘\0’.

Byte VendorDataOffset[15:0] Vendor-defined Data,
_VEN

(Optional)

Data specific to the GPIO controller device
supplied by a vendor. This data is provided to the
device driver for this GPIO Controller.

Byte Offset Field Name Description

Byte 0 Resource Identifier Value = 0x91, (10010001B) – Type = 1, Large
item name = 0x11

Byte 1 Length [7:0] Variable length, minimum value = 0x0E + L1 +
L2 (14 + length of the

Resource Source Name string + length of the
Resource Source Label string)

Byte 2 Length [15:8] Variable length, minimum value = 0x00

Byte 3 Revision ID Indicates the revision for the Pin Function
Descriptor. This value is 1

Byte Offset Field Name Description
UEFI Forum, Inc. January 2019 Page 465

ACPI Specification, Version 6.3 Device Configuration
Byte 4 Flags [7:0] Bit [7:2] - Reserved. Must be 0.

Bit [1] - Consumer/Producer

 0x1: This device consumes this resource

 0x0: This device produces and consumes this
resource

Bit [0] - IO Sharing, _SHR

 0x0 = Exclusive: This function is used
exclusively by one device.

 0x1 = Shared: This function is shared by two
or more devices.

Byte 5 Flags [15:8] Reserved. Must be 0.

Byte 6 Function number,
_FUN [7:0]

The function number in which the pin is
configured. This number is provider-specific.

Byte 7 Function number,
_FUN [15:8]

The function number in which the pin is
configured. This number is provider-specific.

Byte 8 Resource source
index

Reserved for future use. This field must be 0.

Byte 9 Resource source
name index [7:0]

Offset to the start of the resource source
name (low byte). The offset is relative to the
start of this descriptor.

Byte 10 Resource source
name index [15:8]

Offset to the start of the resource source
name (high byte). The offset is relative to the
start of this descriptor.

Byte 11 Resource source
label offset [7:0]

Offset to the start of the Resource source
label (low byte). The offset is relative to the
start of this descriptor.

The length of the resource source label string
can be calculated from length L2 = Vendor
data offset – Resource source label offset. The
length includes the string’s terminating ‘\0’
character.

Byte 12 Resource source
label offset [15:8]

Offset to the start of the resource source label
(high byte). The offset is relative to the start
of this descriptor.

Byte Offset Field Name Description
UEFI Forum, Inc. January 2019 Page 466

ACPI Specification, Version 6.3 Device Configuration
6.4.3.13 Pin Group Configuration Descriptor

Table 6-248 Pin Group Configuration Descriptor Description

Byte 13 Vendor data offset
[7:0]

(low byte) Offset to the start of the Vendor-
defined Data (the last byte of the
ResourceSource + 1). This value must always
be valid to allow for length calculations. In the
case where there is no Vendor Data, this
offset still must refer to the last byte of the
ResourceSource + 1. The offset is relative to
the start of this descriptor.

Byte 14 Vendor data offset
[15:8]

(high byte) Offset to the start of the Vendor-
defined Data (the last byte of the
ResourceSource + 1). This value must always
be valid to allow for length calculations. In the
case where there is no Vendor Data, this
offset still must refer to the last byte of the
ResourceSource + 1. The offset is relative to
the start of this descriptor.

Byte 15 Vendor data length
[7:0]

Length of Vendor-defined Data (low-byte).

Byte 16 Vendor data length
[15:8]

Length of Vendor-defined Data (high-byte).

Byte
ResourceSourceNameOffset[15:0]

Resource Source
(length = L1)

Name of the function config provider to which
this descriptor applies. The name can be a
fully-qualified name, a relative name or a
name segment that utilizes the namespace
search

Byte
ResourceSourceLabelOffset[15:0]

Resource Source
Label (length = L2)

This name refers to the PinGroup resource in
the current resource template buffer of the
GPIO controller. The PinGroup resource is
matched by comparing its ResourceLabel
string to this field. Always terminated by ‘\0’.

Byte VendorDataOffset[15:0] Vendor-defined
Data, _VEN

(Optional)

Data specific to the GPIO controller device
supplied by a vendor. This data is provided to
the device driver for this GPIO Controller.

Byte Offset Field Name Description

Byte 0 Resource Identifier Value = 0x92, (10010001B) – Type = 1, Large
item name = 0x12

Byte Offset Field Name Description
UEFI Forum, Inc. January 2019 Page 467

ACPI Specification, Version 6.3 Device Configuration
Byte 1 Length, bits[7:0] Variable length, minimum value = 0x11 + L1 +
L2 (17 + length of the

Resource Source Name string + length of the
Resource Source Label string)

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

Byte 3 Revision ID Indicates the revision for the Function
Configuration Descriptor. This value is 1

Byte 4 Flags [7:0] Bit [7:2] - Reserved. Must be 0.

Bit [1] - Consumer/Producer

 0x1: This device consumes this resource

 0x0: This device produces and consumes this
resource

Bit [0] - IO Sharing, _SHR

 0x0 = Exclusive: This function is used
exclusively by one device.

 0x1 = Shared: This function is shared by two
or more devices.

Byte 5 Flags [15:8] Reserved. Must be 0.

Byte6 Pin Configuration
Type, _TYP

The pin configuration type (see Table 19-435).

Byte 7 Pin Configuration
Value, _VAL, bits
[7:0]

The pin configuration value associated with
the pin configuration type (see Table 19-435).

Byte 8 Pin Configuration
Value, _VAL, bits
[15:8]

The pin configuration value associated with
the pin configuration type (see Table 19-435).

Byte 9 Pin Configuration
Value, _VAL, bits
[23:16]

The pin configuration value associated with
the pin configuration type (see Table 19-435).

Byte 10 Pin Configuration
Value, _VAL, bits
[31:24]

The pin configuration value associated with
the pin configuration type (see Table 19-435).

Byte 11 Resource

Source Index

Reserved for future use. This field must be 0.

Byte 12 Resource

Source Name

Offset[7:0]

Offset to the start of the resource source
name (low byte). The offset is relative to the
start of this descriptor.

Byte Offset Field Name Description
UEFI Forum, Inc. January 2019 Page 468

ACPI Specification, Version 6.3 Device Configuration
Byte 13 Resource

Source Name

Offset[15:8]

Offset to the start of the resource source
name (high byte). The offset is relative to the
start of this descriptor.

Byte 14 Resource source
label offset (low
byte)

Offset to the start of the resource source label
(low byte). The offset is relative to the start of
this descriptor.

The length of the resource source label string
can be calculated from length L2 = Vendor
data offset – Resource source label offset. The
length includes the string’s terminating ‘\0’
character.

Byte 15 Resource source
label offset (high
byte)

Offset to the start of the resource source label
(high byte). The offset is relative to the start
of this descriptor.

Byte 16 Vendor Data

Offset[7:0]

(low byte) Offset to the start of the Vendor-
defined Data (the last byte of the
ResourceSource + 1). This value must always
be valid to allow for length calculations. In the
case where there is no Vendor Data, this
offset still must refer to the last byte of the
ResourceSource + 1. The offset is relative to
the start of this descriptor.

Byte 17 Vendor Data

Offset[15:8]

(high byte) Offset to the start of the Vendor-
defined Data (the last byte of the
ResourceSource + 1). This value must always
be valid to allow for length calculations. In the
case where there is no Vendor Data, this
offset still must refer to the last byte of the
ResourceSource + 1. The offset is relative to
the start of this descriptor.

Byte 18 Vendor Data

Length [7:0]

Length of Vendor-defined Data (low-byte).

Byte 19 Vendor Data

Length [15:8]

Length of Vendor-defined Data (high-byte).

Byte
ResourceSourceNameOffset[15:0]

Resource Source
(length = L1)

Name of the pin controller to which this
descriptor applies. The name can be a fully-
qualified name, a relative name or a name
segment that utilizes the namespace search

Byte
ResourceSourceLabelOffset[15:0]

Resource Source
Label (length = L2)

This name refers to the PinGroup resource in
current resource template buffer of the GPIO
controller. The PinGroup resource is matched
by comparing its ResourceLabel string to this
field. Always terminated by ‘\0’.

Byte Offset Field Name Description
UEFI Forum, Inc. January 2019 Page 469

ACPI Specification, Version 6.3 Device Configuration
6.5 Other Objects and Control Methods

Table 6-249 Other Objects and Methods

Object Description

_BBN PCI bus number set up by the platform boot firmware.

_BDN Correlates a docking station between ACPI and legacy interfaces.

_DCK Indicates that the device is a docking station.

_DEP Indicates device objects that OSPM should assign a higher priority in start ordering due to
future operation region accesses.

_FIT Object that evaluates to a buffer of NFIT Structures.

_GLK Indicates the Global Lock must be acquired when accessing a device.

_INI Device initialization method that is run shortly after ACPI has been enabled.

_LSI Label Storage Information – Returns information about the Label Storage Area associated
with the NVDIMM object, including its size.

_LSR Label Storage Read – Returns label data from the Label Storage Area of the NVDIMM
object.

_LSW Label Storage Write – Writes label data in to the Label Storage Area of the NVDIMM object.

_REG Notifies AML code of a change in the availability of an operation region.

_SEG Indicates a bus segment location.

6.5.1 _INI (Init)

_INI is a device initialization object that performs device specific initialization. This control method is
located under a device object and is run only when OSPM loads a description table. There are restrictions
related to when this method is called and governing writing code for this method. The _INI method must
only access Operation Regions that have been indicated to available as defined by the _REG method. The
_REG method is described in Section 6.5.4, “_REG (Region).” This control method is run before _ADR,
_CID, _HID, _SUN, and _UID are run.

Arguments:

None

Return Value:

None

Byte VendorDataOffset[15:0] Vendor-defined
Data, _VEN

(Optional)

Data specific to the pin controller device
supplied by a vendor. This data is provided to
the device driver for this pin controller.

Byte Offset Field Name Description
UEFI Forum, Inc. January 2019 Page 470

ACPI Specification, Version 6.3 Device Configuration
Before evaluating the _INI object, OSPM evaluates the _STA object for the device. If the _STA object does
not exist for the device, the device is assumed to be both present and functional. If the _STA method
indicates that the device is present, OSPM will evaluate the _INI for the device (if the _INI method exists)
and will examine each of the children of the device for _INI methods. If the _STA method indicates that
the device is not present and is not functional, OSPM will not run the _INI and will not examine the
children of the device for _INI methods. If the _STA object evaluation indicates that the device is not
present but is functional, OSPM will not evaluate the _INI object, but will examine each of the children of
the device for _INI objects (see the description of _STA for the explanation of this special case.) If the
device becomes present after the table has already been loaded, OSPM will not evaluate the _INI
method, nor examine the children for _INI methods.

The OSPM performed _INI object actions based upon the _STA Present and Functional bits are
summarized in the table below.

Table 6-250 OSPM _INI Object Actions

_STA Present Bit _STA Functional Bit Actions

0 0 Do not run _INI, do not examine device children

0 1 Do not run _INI, examine device children

1 0 Run _INI, examine device children

1 1 Run _INI, examine device children

The _INI control method is generally used to switch devices out of a legacy operating mode. For example,
platform boot firmware often configures CardBus controllers in a legacy mode to support legacy
operating systems. Before enumerating the device with an ACPI operating system, the CardBus
controllers must be initialized to CardBus mode. For such systems, the vendor can include an _INI control
method under the CardBus controller to switch the device into CardBus mode.

In addition to device initialization, OSPM unconditionally evaluates an _INI object under the _SB
namespace, if present, at the beginning of namespace initialization.

6.5.2 _DCK (Dock)

This control method is located in the device object that represents the docking station (that is, the device
object with all the _EJx control methods for the docking station). The presence of _DCK indicates to the
OS that the device is really a docking station.

_DCK also controls the isolation logic on the docking connector. This allows an OS to prepare for docking
before the bus is activated and devices appear on the bus.

Arguments: (1)

Arg0 – An Integer containing a docking action code

 0 – Undock (isolate from connector)

 1 – Dock (remove isolation from connector)

Return Value:

An Integer containing the docking status code

1 – Successful
UEFI Forum, Inc. January 2019 Page 471

ACPI Specification, Version 6.3 Device Configuration
0 – Failed

Note: When _DCK is called with 0, OSPM will ignore the return value. The _STA object that follows the
_EJx control method will notify whether or not the portable has been ejected.

6.5.3 _BDN (BIOS Dock Name)

_BDN is used to correlate a docking station reported via ACPI and the same docking station reported via
legacy interfaces. It is primarily used for upgrading over non-ACPI environments.

Arguments:

None

Return Value:

An Integer that contains the EISA Dock ID

_BDN must appear under a device object that represents the dock, that is, the device object with _Ejx
methods. This object must return a DWORD that is the EISA-packed DockID returned by the Plug and Play
BIOS Function 5 (Get Docking Station Identifier) for a dock.

Note: If the machine does not support PNPBIOS, this object is not required.

6.5.4 _REG (Region)

The OS runs _REG control methods to inform AML code of a change in the availability of an operation
region. When an operation region handler is unavailable, AML cannot access data fields in that region.
(Operation region writes will be ignored and reads will return indeterminate data.)

Arguments: (2)

Arg0 – An Integer containing the Operation Region address space ID and optional supplementary
qualifier (See Section 5.5.2.4 and Table 5-160.)

Arg1 – An Integer containing the handler connection code

 0 – disconnect the handler

 1 – connect the handler

Return Value:

None

Except for the cases shown below, control methods must assume all operation regions are inaccessible
until the _REG(RegionSpace, 1) method is executed, where RegionSpace is the address space ID, or the
address space ID with an additional qualifier, depending on the operation region. For more information
on which operation regions have address space qualifiers, see Section 5.5.2.4. Once _REG has been
executed for a particular operation region, indicating that the operation region handler is ready, a control
method can access fields in the operation region. Conversely, control methods must not access fields in
operation regions when _REG method execution has not indicated that the operation region handler is
ready.

For example, until the Embedded Controller driver is ready, the control methods cannot access the
Embedded Controller. Once OSPM has run _REG(EmbeddedControl, 1), the control methods can then
access operation regions in Embedded Controller address space. Furthermore, if OSPM executes
UEFI Forum, Inc. January 2019 Page 472

ACPI Specification, Version 6.3 Device Configuration
_REG(EmbeddedControl, 0), control methods must stop accessing operation regions in the Embedded
Controller address space.

The exceptions for the above rule are:

1. OSPM must guarantee that the following operation regions are always accessible:

• PCI_Config operation regions on a PCI root bus containing a _BBN object.

• SystemIO operation regions.

• SystemMemory operation regions when accessing memory returned by the System
Address Map reporting interfaces.

Note: Since the region types above are permanently available, no _REG methods are required, nor will
OSPM evaluate any _REG methods that appear in the same scope as the operation region declaration(s)
of these types.

2. OSPM must make Embedded Controller operation regions, accessed via the Embedded
Controllers described in ECDT, available before executing any control method. These operation
regions may become inaccessible after OSPM runs _REG(EmbeddedControl, 0).

Place _REG in the same scope as operation region declarations. The OS will run the _REG in a given scope
when the operation regions declared in that scope are available for use.

Example:

Scope(_SB.PCI0) {
 OperationRegion(OPR1, PCI_Config, ...)
 Method(_REG, 2) {...} // OSPM executes this when PCIO operation region handler
 // status changes
 Device(PCI1) {
 Method(2) {...}
 Device(ETH0) {
 OperationRegion(OPR2, PCI_Config, ...)
 Method(_REG,2) {...}
 }
 }

 Device(EC0) {
 Name(_HID, EISAID("PNP0C09"))
 OperationRegion(OPR4, EmbeddedControl, ...)
 Method(_REG, 2) {...} // OSPM executes this when EC operation region
 // handler status changes

 }
 }
}

When the PCI0 operation region handler is ready, OSPM will run the _REG method declared in PCI0 scope
to indicate that PCI Config space operation region access is available within the PCI0 scope (in other
words, OPR1 access is allowed). Finally, when the Embedded Controller operation region handler is
ready, OSPM will run the _REG method in the EC0 scope to indicate that EC space operation region access
UEFI Forum, Inc. January 2019 Page 473

ACPI Specification, Version 6.3 Device Configuration
is available within the EC0 scope (in other words, OPR4 access is allowed). It should be noted that PCI
Config Space Operation Regions are ready as soon the host controller or bridge controller has been
programmed with a bus number. PCI1’s _REG method would not be run until the PCI-PCI bridge has been
properly configured. At the same time, the OS will also run ETH0’s _REG method since its PCI Config
Space would be also available. The OS will again run ETH0’s _REG method when the ETH0 device is
started. Also, when the host controller or bridge controller is turned off or disabled, PCI Config Space
Operation Regions for child devices are no longer available. As such, ETH0’s _REG method will be run
when it is turned off and will again be run when PCI1 is turned off.

Note: The OS only runs _REG methods that appear in the same scope as operation region declarations
that use the operation region type that has just been made available. For example, _REG in the EC
device would not be run when the PCI bus driver is loaded since the operation regions declared
under EC do not use any of the operation region types made available by the PCI driver (namely,
config space, I/O, and memory).

6.5.5 _BBN (Base Bus Number)

For multi-root PCI platforms, the _BBN object evaluates to the PCI bus number that the platform boot
firmware assigns. This is needed to access a PCI_Config operation region for the specific bus. The _BBN
object is located under a PCI host bridge and must be unique for every host bridge within a segment since
it is the PCI bus number.

Arguments:

None

Return Value:

An Integer that contains the PCI bus number. The lower 8 bits of _BBN returned integer is the PCI Base
Bus number. Other bits are reserved.

6.5.6 _SEG (Segment)

The optional _SEG object is located under a PCI host bridge and evaluates to an integer that describes the
PCI Segment Group (see PCI Firmware Specification v3.0). If _SEG does not exist, OSPM assumes that all
PCI bus segments are in PCI Segment Group 0.

Arguments:

None

Return Value:

PCI Segment Group is purely a software concept managed by system firmware and used by OSPM. It is a
logical collection of PCI buses (or bus segments). There is no tie to any physical entities. It is a way to
logically group the PCI bus segments and PCI Express Hierarchies. _SEG is a level higher than _BBN.

PCI Segment Group supports more than 256 buses in a system by allowing the reuse of the PCI bus
numbers. Within each PCI Segment Group, the bus numbers for the PCI buses must be unique. PCI buses
in different PCI Segment Group are permitted to have the same bus number.

A PCI Segment Group contains one or more PCI host bridges.

The lower 16 bits of _SEG returned integer is the PCI Segment Group number. Other bits are reserved.
UEFI Forum, Inc. January 2019 Page 474

ACPI Specification, Version 6.3 Device Configuration
6.5.6.1 Example

Device(ND0) { // this is a node 0
 Name(_HID, “ACPI0004”)

 // Returns the "Current Resources"
 Name(_CRS,
 ResourceTemplate() {
 …
 }
)
 Device(PCI0) {
 Name(_HID, EISAID(“PNP0A03”))
 Name(_ADR, 0x00000000)
 Name(_SEG, 0) // The buses below the host bridge belong to PCI segment 0
 …
 Name(_BBN, 0)
 …
 }
 Device(PCI1) {
 …
 Name(_SEG, 0) // The buses below the host bridge belong to PCI segment 0
 …
 Name(_BBN, 16)
 …
 }
 …
 }
 Device(ND1) { // this is a node 1
 Name(_HID, “ACPI0004”)

 // Returns the "Current Resources"
 Name(_CRS,
 ResourceTemplate() {
 …
 }
)
 Device(PCI0) {
 Name(_HID, EISAID(“PNP0A03”))
 Name(_ADR, 0x00000000)
 Name(_SEG, 1) // The buses below the host bridge belong to PCI segment 1
 …
 Name(_BBN, 0)
 …
 }
 Device(PCI1) {
 …
 Name(_SEG, 1) // The buses below the host bridge belong to PCI segment 1
 …
 Name(_BBN, 16)
 …
UEFI Forum, Inc. January 2019 Page 475

ACPI Specification, Version 6.3 Device Configuration
 }
}

6.5.7 _GLK (Global Lock)

This optional named object is located within the scope of a device object. This object returns a value that
indicates to any entity that accesses this device (in other words, OSPM or any device driver) whether the
Global Lock must be acquired when accessing the device. OS-based device accesses must be performed
while in acquisition of the Global Lock when potentially contentious accesses to device resources are
performed by non-OS code, such as System Management Mode (SMM)-based code in Intel architecture-
based systems.

Note: Default behavior: if _GLK is not present within the scope of a given device, then the Global Lock is
not required for that device.

Arguments:

None

Return Value:

An Integer that contains the Global Lock requirement code

0 – The Global Lock is not required for this device

1 – The Global lock is required for this device

An example of device resource contention is a device driver for an SMBus-based device contending with
SMM-based code for access to the Embedded Controller, SMB-HC, and SMBus target device. In this case,
the device driver must acquire and release the Global Lock when accessing the device to avoid resource
contention with SMM-based code that accesses any of the listed resources.

6.5.8 _DEP (Operation Region Dependencies)

_DEP evaluates to a package and designates device objects that OSPM should assign a higher priority in
start ordering due to future operation region accesses.

To increase the likelihood that an SPB operation region handler is available when needed, OSPM needs to
know in advance which methods will access it -- _DEP provides OSPM with this information. While the
_DEP keyword may be used to determine start ordering, only the _REG method (Section 6.5.4) callbacks
can be relied upon to determine whether a region is accessible at a given point in time.

Arguments:

None.

Return Value:

A variable-length Package containing object references.
UEFI Forum, Inc. January 2019 Page 476

ACPI Specification, Version 6.3 Device Configuration
6.5.8.1 Example

Device(_SB.TC3) {
 …
 OperationRegion(OPRG,
 GenericSerialBus,
 0x00,
 0x100)
 …
}

Device(_SB.TP1) {
 …
 Name (_DEP, Package() {_SB.TC3})
 …
}

6.5.9 _FIT (Firmware Interface Table)

This method evaluates to a buffer returning data in the format of a series of NFIT Structures (See
Section 5.2.25). This method may appear under the NVDIMM root device (see Section 9.20.2). The _FIT
method, when present, is always evaluated by OSPM.

_FIT returns all the entries in the NFIT.

The NFIT Update Notification notification value for the NVDIMM root device (see Table 5-173) notifies
OSPM that it needs to re-evaluate the _FIT method.

Note: NFIT is an ACPI table enumerated at OS boot. In case of hot plug of NVDIMMs, the corresponding
NFIT structures will not be present in NFIT. _FIT method is also used to provide these structures
dynamically during hot plug.

Arguments:

None

Return Value:

A Buffer containing a list of NFIT Structures

Example ASL for _FIT usage:

Scope (_SB) {
 Device (NVDR) {
 Name(_HID, “ACPI0012”)
 OperationRegion (OPRN, SystemMemory,
 Offset in system memory of NFIT Structures,
 Length in bytes)
 Field (OPRN, ByteAcc, NoLock, Preserve) {
 FITD, Length in bits
 }
 Method (_FIT, 0) {
 Return (FITD)
 }
 …
UEFI Forum, Inc. January 2019 Page 477

ACPI Specification, Version 6.3 Device Configuration
 } // end NVDR
 …
} // end scope _SB

6.5.10 NVDIMM Label Methods

The following table outlines the NVDIMM Label methods that are attached to the NVDIMM object.

Table 6-251 NVDIMM Label Methods

Object Description
_LSI Label Storage Information – Returns information about the Label Storage Area

associated with the NVDIMM object, including its size.
_LSR Label Storage Read – Returns label data from the Label Storage Area of the

NVDIMM object.
_LSW Label Storage Write – Writes label data in to the Label Storage Area of the

NVDIMM object.

6.5.10.1 _LSI (Label Storage Information)

This optional object returns information about the Label Storage Area for the requested device.

Arguments:

None.

Return Value:

A Package containing the Label Storage Area information as described below

Return Value Information:

_LSI returns a package in the format below

Package {
Status // Integer (DWORD)
SizeOfLabelStorageArea// Integer (DWORD)
MaxTransferLength // Integer (DWORD)

}

Table 6-252 _LSI Return Package Values

Field Format Description

Status Integer
(DWORD)

Indicates the status of the _LSI request.
0x00000000 – Success – Returned package is
valid
0x00000001 – Failure – The rest of the returned
package is not valid

SizeOfLabelStorageArea Integer
(DWORD)

Size of the Label Storage Area in bytes
UEFI Forum, Inc. January 2019 Page 478

ACPI Specification, Version 6.3 Device Configuration
6.5.10.2 _LSR (Label Storage Read)

This optional object returns label data from the Label Storage Area starting at the specified offset.

Arguments:

Arg0 – Offset (Integer(DWORD) the byte offset in the Label Storage Area to start reading from
Arg1 – TransferLength (Integer(DWORD) the number of bytes to transfer from the Label Storage Area. A
TransferLength of 0 reads no data.

Return Value:

A Package containing label data from the Label Storage Area as described below

Return Value Information:

_LSR returns a package in the format below

Package {
Status // Integer (DWORD)
LabelData// Buffer

}

MaxTransferLength Integer
(DWORD)

Maximum amount of data in bytes supported by
a single call to the _LSR and _LSW methods. This
is the minimum of the platform supported
transfer size and the transfer size supported by
the NVDIMM.

0x00000000 - the NVDIMM does not support
label storage.

A non-zero value – the NVDIMM supports label
storage.
UEFI Forum, Inc. January 2019 Page 479

ACPI Specification, Version 6.3 Device Configuration
Table 6-253 _LSR Return Package Values

Field Format Description
Status Integer

(DWORD)
Indicates the status of the _LSR request.
0x00000000 – Success
0x00000001 – Failure
0x00000002 – Invalid Input Parameters
 -Offset > SizeOfLabelStorageArea reported with _LSI
 -Offset + TransferLength > SizeOfLabelStorageArea reported with _LSI
 -TransferLength > MaxTransferLength reported with _LSI
0x00000003 – Label Storage Area is locked and cannot be accessed
0x00000004 – HW failure prevented data from being read
Note: Any other non-zero values reflect a failure

LabelData Buffer Contains the returned label storage data. The size of the output is equal
to TransferLength if Status is Success; otherwise, the contents of the
output buffer shall be 0. The format of the Label Storage Area data is
defined in UEFI.

6.5.10.3 _LSW (Label Storage Write)

This optional object writes label data to the Label Storage Area starting at the specified offset.

Arguments:

• Arg0 – Offset (Integer(DWORD) the byte offset in the Label Storage Area to which the Label
Data is to be written to the target NVDIMM

• Arg1 – TransferLength (Integer(DWORD) the number of bytes to transfer to the Label Storage
Area. A TransferLength of 0 writes no data.

• Arg2 – LabelData (Buffer) the label data to write in to the Label Storage Area. The size of the
LabelData is as indicated by TransferLength field above. The format of the Label Storage Area
data is defined in UEFI.

Return Value:

An Integer (DWORD) containing the status of the _LSW as follows:

0x00000000 – Success
0x00000001 – Failure
0x00000002 – Invalid Input Parameters
 Offset > SizeOfLabelStorageArea reported with _LSI
 Offset + TransferLength > SizeOfLabelStorageArea reported with _LSI
 TransferLength > MaxTransferLength reported with _LSI
0x00000003 – Label Storage Area is locked and cannot be accessed
0x00000004 – HW failure prevented data from being written

Note: Any other non-zero values reflect a failure.
UEFI Forum, Inc. January 2019 Page 480

7 Power and Performance Management

This section specifies the objects that support the device power management and system power
management models described in Section 3. OSPM uses these objects to manage the platform by
achieving a desirable balance between performance and energy conservation goals.

The system state indicator objects are also specified in this section.

7.1 Power Resource Objects and the Power Management Models

A Power Resource object refers to a software-controllable power plane, clock plane, or other resource
upon which an ACPI power-managed device might rely. The unique way that these power resources are
distributed to the devices across a given system sets the constraints within which OSPM must optimize
the use of power, by individual devices as well as by the system as a whole. ACPI defines objects that
reference power resources (or device states that, in turn, reference power resources) to enable OSPM to
discover the constraints and capabilities of a given system. As power is managed during system
operation, power savings are obtained by turning power resources off and on at the appropriate times.
The following table describes how objects from this section provide the information and control required
by OSPM to implement and coordinate the power management models.

Table 7-254 Power Resource Object Provisions for Information and Control

Power
management
function to be
performed

System entity
performing it

Platform
information
required

Object providing
information

Comments

Choose a
supported device
state to save
power while
device is idle

Device Power
Policy Owner

List of states (D0
through D3hot,
and D3cold)
supported by the
device

_PRx,

PSx

D3cold support is indicated by
explicitly providing _PR3. D3hot is
assumed to be supported in all
cases.

Choose a
supported device
state to enable a
targeted system
sleep or Low-
power Idle state

Device Power
Policy Owner

List of states (D0
through D3hot,
and D3cold)
supported by the
device in the
targeted system
sleep state

_PRx,

Power Resource
Declaration,

_SxD

_PRx maps device states to Power
Resources, Power Resource
definition maps Power Resources
to system states.

_SxD provides the system state-
to-device state mapping explicitly
in case power resources do not
produce the information.*(See
Note, below.)
UEFI Forum, Inc. January 2019 Page 481

ACPI Specification, Version 6.3 Power and Performance Management
Note: *Support for Low-power Idle states requires the use of power resources to describe the device
state and wake dependencies. See _RDI, Section 8.5, and _LPI, Section 8.4.4.3I.

7.2 Declaring a Power Resource Object

An ASL PowerResource statement is used to declare a PowerResource object. A Power Resource object
refers to a software-controllable power plane, clock plane, or other resource upon which an integrated

Choose a device
state that supports
Wake

Device Power
Policy Owner

List of supported
states, filtered by
ability to cause a
wake event

_PRW,

_SxW

Addition of the requirement for
additional power resources listed
in _PRW cause wake-incapable
states to be removed from the list
of supported states (above)

SxW defines the mapping of wake
capable device states to system
states

Arm a device for
wake

OSPM Control
mechanisms for
enabling wake at
the platform
level

_PRW,

Wake-capable
device interrupt,

_DSW

_PRW specifies the GPE bit to
enable for wake. On HW-reduced
platforms, the wake-capable
attribute of a device interrupt
indicates which interrupt to
enable for wake

_DSW is optional, depending on
the needs of the platform wake
hardware

Enter a selected
device state

OSPM Control
mechanisms for
power resources

_ON, _OFF,

_PSx

_ON and _OFF control the power
resources

PSx controls other platform
hardware relevant to state
changes but not exposed to OSPM
as power resources.*(See Note,
below.)

Choose a targeted
system sleep state

System Power
Policy Owner

List of supported
system Sleep
states (S1-S4)

_Sx S0 and S5 are assumed to be
supported in all cases

Enter a selected
system state

OSPM Control
mechanisms for
system states

_PTS, _TTS and
_WAK

If _S5 exists, ACPI uses the
SLP_TYP/SLP_EN bit fields in the
PM1 Control Register (or the
SLEEP_CONTROL/SLEEP_STATUS
registers specified in the FADT)

If _S5 is not specified, alternative
methods are used to turn-off the
system.

Power
management
function to be
performed

System entity
performing it

Platform
information
required

Object providing
information

Comments
UEFI Forum, Inc. January 2019 Page 482

ACPI Specification, Version 6.3 Power and Performance Management
ACPI power-managed device might rely. Power resource objects can appear wherever is convenient in
the namespace.

The syntax of a PowerResource statement is:

PowerResource (resourcename, systemlevel, resourceorder) {TermList}

where the systemlevel parameter is a number and the resourceorder parameter is a numeric constant (a
WORD). For a formal definition of the PowerResource statement syntax, see Section 19, “ACPI Source
Language Reference.”

Systemlevel is the deepest system sleep level OSPM must maintain to keep this power resource on (0
equates to S0, 1 equates to S1, and so on).

Each power-managed ACPI device lists the resources it requires for its supported power states. OSPM
multiplexes this information from all devices and then enables and disables the required Power
Resources accordingly. The resourceorder field in the Power Resource object is a value per Power
Resource that provides the system with the order in which Power Resources must be enabled or
disabled. Each unique resourceorder value represents a level, and any number of power resources may
have the same level. Power Resource levels are enabled from low values to high values and are disabled
from high values to low values. The operating software enables or disables all Power Resources in any
one resourceorder level at a time before moving on to the next ordered level. Putting Power Resources in
different order levels provides power sequencing and serialization where required. Note that no ordering
is guaranteed within each level (i.e. between Power Resources with the same resourceorder value).

A Power Resource can have named objects under its Namespace location. For a description of the ACPI-
defined named objects for a Power Resource, see Section 7.3, “Device Power Management Objects.”

The power management object list is encoded as TermList, so that rather than describing a static power
management object list, it is possible to describe a dynamic power management object list according to
the system settings. See "Section 5.4.2, Definition Block Loading."

The following block of ASL sample code shows a use of PowerResource.

PowerResource(PIDE, 0, 0) {
 Method(_STA) {
 Return (Xor (GIO.IDEI, One, Zero)) // inverse of isolation
 }
 Method(_ON) {
 Store (One, GIO.IDEP) // assert power
 Sleep (10) // wait 10ms
 Store (One, GIO.IDER) // de-assert reset#
 Stall (10) // wait 10us
 Store (Zero, GIO.IDEI) // de-assert isolation
 }
 Method(_OFF) {
 Store (One, GIO.IDEI) // assert isolation
 Store (Zero, GIO.IDER) // assert reset#
 Store (Zero, GIO.IDEP) // de-assert power
 }
}

UEFI Forum, Inc. January 2019 Page 483

ACPI Specification, Version 6.3 Power and Performance Management
7.2.1 Defined Methods for a Power Resource

Table 7-255 below lists the control methods that may be defined under a power resource. _ON, _OFF and
_STA are required to allow basic control of each power resource. _RST is required in cases where reset of
devices is managed through a shared power resource. As OSPM changes the state of device objects in the
system, the power resources that are needed will also change, causing OSPM to turn power resources on
and off. To determine the initial power resource settings the _STA method can be used. _RST is required
in cases where reset of devices is controlled through a shared Power Resource. See Section 7.3.25.

Table 7-255 Power Resource Methods

Object Description

_OFF Set the resource off.

_ON Set the resource on.

_RST Object that executes a platform level reset of all devices that list this resource in their _PRR
object. (See Section 7.3.25 for a description of this object.)

_STA Object that evaluates to the current on or off state of the Power Resource. 0–OFF, 1–ON

7.2.2 _OFF

This power resource control method puts the power resource into the OFF state. The control method
must not complete until the power resource is off, including any required sequencing delays between, or
after, operations on the power resource. OSPM is required to turn on or off only one resource at a time.
The AML code can use Stall or Sleep within the method to cause the proper sequencing delays. OSPM is
not required to run the _STA method to confirm that the resource has been successfully turned off, and
may run the _OFF method repeatedly, even if the resource is already off.

Arguments:

None

Return Value:

None

7.2.3 _ON

This power resource control method puts the power resource into the ON state. The control method
must not complete until the power resource is on, including any required sequencing delays between, or
after, operations on the power resource. OSPM is required to turn on or off only one resource at a time.
The AML code can use Stall or Sleep within the method to cause the proper sequencing delays. OSPM is
not required to run the _STA method to confirm that the resource has been successfully turned on, and
may run the _ON method repeatedly, even if the resource is already on.

Arguments:

None

Return Value:

None
UEFI Forum, Inc. January 2019 Page 484

ACPI Specification, Version 6.3 Power and Performance Management
7.2.4 _STA (Status)

Returns the current ON or OFF status for the power resource.

Arguments:

None

Return Value:

An Integer containing the current power status of the device

0 – The power resource is currently off

1 – The power resource is currently on

7.2.5 Passive Power Resources

In some platforms, certain power resources may be shared between devices and processors, requiring
both to be in specific idle states before they can be turned off. Direct OSPM control of such resources is
not possible while the OS is running because the processors depend on the resources being enabled
whilst they are running. It is only when processors go idle that it may be possible to turn off these shared
resources. For a given resource of this type this is only possible if, in addition to the processors being idle,
any other devices that depend on the resource are in a state that allows powering it down. In these cases,
the platform can manage the power resource as part of entry/exit from a Low Power Idle (LPI) state and
OSPM can guide the decision on whether or not to turn off the resources with its LPI state request. In
those cases the power resource _ON/_OFF/_STA methods are completely redundant.

Passive power resources, which are just like traditional power resources except they do not include _ON,
_OFF, or _STA, are introduced to support this case. Omission of these methods reduces overhead by
avoiding redundant evaluations and saves the platform from having to supply (working) methods which it
does not need. Since OSPM cannot manage passive power resources directly via _ON/_OFF, passive
power resources must be listed as a dependency of at least one LPI state where the platform will
manipulate them. The dependencies between LPI states and power resources are described in the _RDI
object. See RDI Section 8.4.4.4 for additional details.

7.3 Device Power Management Objects

For a device that is power-managed using ACPI, a Definition Block contains one or more of the objects
found in the table below. Power management of a device is done using Power Resource control.

Power Resources are resources that could be shared amongst multiple devices. The operating software
will automatically handle control of these devices by determining which particular Power Resources need
to be in the ON state at any given time. This determination is made by considering the state of all devices
connected to a Power Resource. At all times, OSPM ensures that any Power Resources no longer
referenced by any device in the system is in the OFF state.

For systems that do not control device power states through power resource management (i.e. _PSx
controls power transitions), but whose devices support multiple D-states, more information is required
by the OS to determine the S-state to D-state mapping for the device. The ACPI firmware can give this
information to OSPM by way of the _SxD methods. These methods tell OSPM for S-state “x”, the
shallowest D-state supported by the device is “y.” OSPM is allowed to pick a deeper D-state for a given S-
state, but OSPM is not allowed to go shallower than the given D-state.
UEFI Forum, Inc. January 2019 Page 485

ACPI Specification, Version 6.3 Power and Performance Management
Additional rules that apply to device power management objects are:

• A device cannot be in a deeper D-state than its parent device.
• If there exists an ACPI Object to set a device to D0 (either through _PSx or _PRx objects), then

the corresponding object to set the device into a deeper Dx must also be declared, and vice
versa.

• If any ACPI Object that controls power (_PSx or _PRx, where x =0, 1, 2, or 3) exists, then
methods to set the device into D0 and D3 device states (at least) must be present.

• If a mixture of _PSx and _PRx methods is declared for the device, then the device states
supported through _PSx methods must be identical to the device states supported through
_PRx methods.

When controlling power to devices which must wake the system during a system sleeping state:

• The device must declare its ability to wake the system by declaring either the _PRW or _PSW
object.

• After OSPM has called _PTS, it must call the device’s _PSW to enable wake.
• OSPM must transition a device into a D-state which is deeper than or equal to that specified by

the device’s _SxD object (if present) to enable entry into Sx, but shallower than or equal to that
specified by the device’s _SxW object so that it can still wake the system.

• OSPM may transition the system to the specified sleep state.

Table 7-256 Device Power Management Child Objects

Object Description

_DSW Control method that enables or disables the device’s wake function for device-only wake.

_PS0 Control method that puts the device in the D0 device state (device fully on).

_PS1 Control method that puts the device in the D1 device state.

_PS2 Control method that puts the device in the D2 device state.

_PS3 Control method that puts the device in the D3 device state (device off).

_PSC Object that evaluates to the device’s current power state.

_PR0 Object that evaluates to the device’s power requirements in the D0 device state (device fully
on).

_PR1 Object that evaluates to the device’s power requirements in the D1 device state. The only
devices that supply this level are those that can achieve the defined D1 device state according
to the related device class.

_PR2 Object that evaluates to the device’s power requirements in the D2 device state. The only
devices that supply this level are those that can achieve the defined D2 device state according
to the related device class.

_PR3 Object that evaluates to the device’s power requirements in the D3hot device state.

_PRW Object that evaluates to the device’s power requirements in order to wake the system from a
system sleeping state.

_PSW Control method that enables or disables the device’s wake function.

_IRC Object that signifies the device has a significant inrush current draw.
UEFI Forum, Inc. January 2019 Page 486

ACPI Specification, Version 6.3 Power and Performance Management
7.3.1 _DSW (Device Sleep Wake)

In addition to _PRW, this control method can be used to enable or disable the device’s ability to wake a
sleeping system. This control method can only access Operation Regions that are either always available
while in a system working state or that are available when the Power Resources referenced by the _PRW
object are all ON. For example, do not put a power plane control for a bus controller within configuration
space located behind the bus. The method should enable the device only for the last system state/device
state combination passed in by OSPM. OSPM will only pass in combinations allowed by the _SxD and
_SxW objects.

The arguments provided to _DSW indicate the eventual Device State the device will be transitioned to
and the eventual system state that the system will be transitioned to. The target system state is allowed
to be the system working state (S0). The _DSW method will be run before the device is placed in the
designated state and also before the system is placed in the designated system state.

Compatibility Note: The _PSW method was deprecated in ACPI 3.0. The _DSW method should be used
instead. OSPM will only use the _PSW method if OSPM does not support _DSW or if the _DSW method is
not present.

Arguments: (3)

Arg0 – An Integer that contains the device wake capability control

0 – Disable the device’s wake capabilities

1 – Enable the device’s wake capabilities

Arg1 – An Integer that contains the target system state (0-4)

Arg2 – An Integer that contains the target device state

0 – The device will remain in state D0

1 – The device will be placed in either state D0 or D1

2 – The device will be placed in either state D0, D1, or D2

_S1D Shallowest D-state supported by the device in the S1 state

_S2D Shallowest D-state supported by the device in the S2 state

_S3D Shallowest D-state supported by the device in the S3 state

_S4D Shallowest D-state supported by the device in the S4 state

_S0W Deepest D-state supported by the device in the S0 state which can wake the device

_S1W Deepest D-state supported by the device in the S1 state which can wake the system.

_S2W Deepest D-state supported by the device in the S2 state which can wake the system.

_S3W Deepest D-state supported by the device in the S3 state which can wake the system.

_S4W Deepest D-state supported by the device in the S4 state which can wake the system.

_RST Control method that executes a function level reset of the device.

_PRR Object that evaluates to the device's platform level reset requirements.

Object Description
UEFI Forum, Inc. January 2019 Page 487

ACPI Specification, Version 6.3 Power and Performance Management
3 – The device will be placed in either state D0, D1, D2, or D3

Return Value:

None

7.3.2 _PS0 (Power State 0)

This Control Method is used to put the specific device into its D0 state. This Control Method can only
access Operation Regions that are either always available while in a system working state or that are
available when the Power Resources references by the _PR0 object are all ON.

Arguments:

None

Return Value:

None

7.3.3 _PS1 (Power State 1)

This control method is used to put the specific device into its D1 state. This control method can only
access Operation Regions that are either always available while in the system working state (S0) or that
are available when the Power Resources referenced by the _PR0 object are all ON.

Arguments:

None

Return Value:

None

7.3.4 _PS2 (Power State 2)

This control method is used to put the specific device into its D2 state. This control method can only
access Operation Regions that are either always available while in the system working state (S0) or that
are available when the Power Resources referenced by the _PR0 and _PR1 objects are all ON.

Arguments:

None

Return Value:

None

7.3.5 _PS3 (Power State 3)

This control method is used to put the specific device into its D3 state. This control method can only
access Operation Regions that are either always available while in the system working state (S0) or that
are available when the Power Resources referenced by the _PR0, _PR1 and PR2 objects are all ON.

Arguments:

None
UEFI Forum, Inc. January 2019 Page 488

ACPI Specification, Version 6.3 Power and Performance Management
Return Value:

None

7.3.6 _PSC (Power State Current)

This control method evaluates to the current device state. This control method is not required if the
device state can be inferred by the Power Resource settings. This would be the case when the device
does not require a _PS0, _PS1, _PS2, or _PS3 control method.

Arguments:

None

Return Value:

An Integer that contains a code for the current device state

The device state codes are shown in Table 7-257.

Table 7-257 PSC Device State Codes

Return Value Device State

0 D0

1 D1

2 D2

3 D3

7.3.7 _PSE (Power State for Enumeration)

This control method is used to put a device into a powered mode appropriate for enumeration by its
parent bus. This control method can only access Operation Regions that are either always available while
in a system working state or that are available when the Power Resources referenced by the _PRE object
are all ON.

Arguments: (1)

Arg1 – An Integer indicating whether Enumeration power has been turned ON or will be turned OFF.

 0 – OFF

 1 – ON

Return Value:

None

7.3.8 _PR0 (Power Resources for D0)

This object evaluates to a list of power resources that are dependent on this device. For OSPM to put the
device in the D0 device state, the following must occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.

2. All Power Resources no longer referenced by any device in the system must be in the OFF state.
UEFI Forum, Inc. January 2019 Page 489

ACPI Specification, Version 6.3 Power and Performance Management
3. If present, the _PS0 control method is executed to set the device into the D0 device state.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to power resources

This object returns a package as defined below:

Table 7-258 Power Resource Requirements Package

Element Object Description

1 object reference Reference to required Power Resource #0

N object reference Reference to required Power Resource #N

_PR0 must return the same data each time it is evaluated. All power resources referenced must exist in
the namespace.

7.3.9 _PR1 (Power Resources for D1)

This object evaluates to a list of power resources upon which this device is dependent when it is in the D1
state. For OSPM to transition the device from the D0 state into the D1 state, the following must occur, in
order:

1. If present, the _PS1 control method is executed to set the device into the D1 device state.

2. All Power Resources referenced by elements 1 through N must be in the ON state.

3. All Power Resources no longer referenced by any device in the system must be in the OFF state.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to power resources

This object evaluates to a package as defined in Table 7-258.

_PR1 must return the same data each time it is evaluated. All power resources referenced must exist in
the namespace.

7.3.10 _PR2 (Power Resources for D2)

This object evaluates to a list of power resources upon which this device is dependent when it is in the D2
state. For OSPM to transition the device into the D2 state, the following must occur, in order:

1. If present, the _PS2 control method is executed to set the device into the D2 device state.

2. All Power Resources referenced by elements 1 through N must be in the ON state.

3. All Power Resources no longer referenced by any device in the system must be in the OFF state.

Arguments:

None
UEFI Forum, Inc. January 2019 Page 490

ACPI Specification, Version 6.3 Power and Performance Management
Return Value:

A variable-length Package containing a list of References to power resources

_PR2 must return the same data each time it is evaluated. All power resources referenced must exist in
the namespace.

7.3.11 _PR3 (Power Resources for D3hot)

This object evaluates to a list of power resources upon which this device is dependent when it is in the
D3hot state. For OSPM to transition the device into the D3hot state, the following must occur, in order:

1. If present, the _PS3 control method is executed to set the device into the D3hot device state.

2. All Power Resources referenced by elements 1 through N must be in the ON state.

3. All Power Resources no longer referenced by any device in the system must be in the OFF state.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to power resources

_PR3 must return the same data each time it is evaluated. All power resources referenced must exist in
the namespace.

Interaction between _PR3 and entry to D3/D3hot (only applicable if platform and OSPM have performed
the necessary handshake via _OSC):

• Platform/drivers must assume that the device will have power completely removed when the
device is place into “D3” via _PS3

• It is up to OSPM to determine whether to use D3 or D3hot. If there is a _PR3 for the device, it is
up to OSPM to decide whether to keep those power resources on or off after executing _PS3.
The decision may be based on other factors (e.g., being armed for wake).

7.3.12 _PRE (Power Resources for Enumeration)

This object appears under a device and evaluates to a list of power resources that are required for
enumeration of the device by its parent bus. For the bus driver to enumerate any devices while they are
in the D3Cold device state, OSPM must ensure that the following occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.

2. If present, the _PSE control method is executed to perform any actions on the device to make it
accessible for enumeration.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to power resources.

_PRE must return the same data each time it is evaluated. All power resources referenced must exist in
the namespace.
UEFI Forum, Inc. January 2019 Page 491

ACPI Specification, Version 6.3 Power and Performance Management
7.3.13 _PRW (Power Resources for Wake)

This object evaluates to a list of power resources upon which this device depends for wake. It also
contains additional information needed for wake, including wake events and sleep or soft-off state
information. _PRW is only required for devices that have the ability to wake the system from a system
sleeping state.

Four types of general purpose events are supported:

• GPEs that are defined by a GPE block described within the FADT.
• GPEs that are defined by a GPE Block Device.
• GPIO-signaled events that are defined by _AEI object of the GPIO controller device
• Interrupt-signaled events that are defined by _CRS object of the Generic Event Device (GED)

The four types of events are differentiated by the type of the EventInfo object in the returned package.
For FADT-based GPEs, EventInfo is an Integer containing a bit index. For Block Device-based GPEs,
EventInfo is a Package containing a Reference to the parent block device and an Integer containing a bit
index. For GPIO-signaled events, EventInfo is a Package containing a Reference to the GPIO controller
device and an Integer containing the index of the event in the _AEI object (starting from zero). For
Interrupt-signaled events, EventInfo is a Package containing a Reference to the GED and an Integer
containing the index of the event in the _CRS object (starting from zero).

For HW-Reduced ACPI platforms that do not support wake on GPIO-signaled or Interrupt-signaled events,
the EventInfo structure is an Integer with value of zero, and is ignored by OSPM. Therefore, _PRW is only
required on such platforms if power resources for wakeup must be managed by OSPM (e.g. the _PRW
provides a list of Power Resources). Instead, for a device to wake the system, its interrupt must be wake-
capable and enabled by the driver. See Section 3.11.1.1"Interrupt-based Wake Events".

Arguments:

None

Return Value:

A variable-length Package containing wake information and a list of References to power resources

Return Value Information

Package {
 EventInfo // Integer or Package
 DeepestSleepState // Integer
 PowerResource [0] // Reference
 . . .
 PowerResource [n] // Reference
}

If EventInfo is a Package, it contains event block device information as described below:

Package {
 DeviceName // Reference
 Index // Integer
}

UEFI Forum, Inc. January 2019 Page 492

ACPI Specification, Version 6.3 Power and Performance Management
EventInfo may be either an Integer or a Package, depending on the event type:

• If it is an Integer, then it contains the bit index of the wake event within the FADT-based GPE
enable register.

• If it is a Package, then the package contains event info for an event within either a GPE block
device, GPIO controller device, or a GED. It contains a Reference to the device and an Integer.
If EventInfo references a GPE block device, the integer contains the bit index of the wake GPE
within the Block Device-based GPE enable register. If the EventInfo references a GPIO
controller device, the integer contains the zero-based index of the event within the _AEI
object. If the EventInfo references a GED, the integer contains the zero-based index of the
event within the _CRS object.

DeepestSleepState is an Integer that contains the deepest power system sleeping state that can be
entered while still providing wake functionality.

PowerResource 0-n are References to required power resource objects.

Additional Information

For OSPM to have the defined wake capability properly enabled for the device, the following must occur:

1. All Power Resources referenced by elements 2 through N are put into the ON state.

a. If present, the _DSW control method is executed to set the device-specific registers to
enable the wake functionality of the device.

b The D-state being entered must be deeper than or equal to that specified in the _SxD state
but shallower than or equal to that specified in the _SxW state.

Then, if the system enters a sleeping state OSPM must ensure:

1. Interrupts are disabled.

2. The sleeping state being entered must be less than or equal to the power state declared in
element 1 of the _PRW object.

3. The proper general-purpose register bits are enabled.

The system sleeping state specified must be a state that the system supports (in other words, a
corresponding _Sx object must exist in the namespace).

_PRW must return the same data each time it is evaluated. All power resources referenced must exist in
the namespace.

7.3.14 _PSW (Power State Wake)

In addition to the _PRW control method, this control method can be used to enable or disable the
device’s ability to wake a sleeping system. This control method can only access Operation Regions that
are either always available while in a system working state or that are available when the Power
Resources references by the _PRW object are all ON. For example, do not put a power plane control for a
bus controller within configuration space located behind the bus.
UEFI Forum, Inc. January 2019 Page 493

ACPI Specification, Version 6.3 Power and Performance Management
Note: Regarding compatability--The _PSW method was deprecated in ACPI 3.0. OSPM must use _DSW if
it is present. Otherwise, it may use _PSW.

Arguments: (1)

Arg0 – An Integer containing a wake capability control

0 – Disable the device’s wake capabilities

1 – Enable the device’s wake capabilities

Return Value:

None

7.3.15 _IRC (In Rush Current)

Indicates that this device can cause a significant in-rush current when transitioning to state D0.

Arguments:

None

Return Value:

None

The presence of this object signifies that transitioning the device to its D0 state causes a system-
significant in-rush current load. In general, such operations need to be serialized such that multiple
operations are not attempted concurrently. Within ACPI, this type of serialization can be accomplished
with the ResourceOrder parameter of the device’s Power Resources; however, this does not serialize
ACPI-controlled devices with non-ACPI controlled devices. _IRC is used to signify this fact outside of
OSPM to OSPM such that OSPM can serialize all devices in the system that have in-rush current
serialization requirements.

OSPM can only transition one device containing an _IRC object within its device scope to the D0 state at a
time.

It is important to note that OSPM does not evaluate the _IRC object. It has no defined input arguments
nor does it return any value. OSPM derives meaning simply from the existence of the _IRC object.

7.3.16 _S1D (S1 Device State)

This object evaluates to an integer that conveys to OSPM the shallowest D-state supported by this device
in the S1 system sleeping state. _S1D must return the same integer each time it is evaluated. This value
overrides an S-state to D-state mapping OSPM may ascertain from the device’s power resource
declarations. See Table 7-257 for valid return values.

Arguments:

None

Return Value:

An Integer containing the shallowest D-state supported in state S1

If the device can wake the system from the S1 system sleeping state (see _PRW) then the device must
support wake in the D-state returned by this object. However, OSPM cannot assume wake from the S1
UEFI Forum, Inc. January 2019 Page 494

ACPI Specification, Version 6.3 Power and Performance Management
system sleeping state is supported in any deeper D-state unless specified by a corresponding _S1W
object. The table below provides a mapping from Desired Actions to Resultant D-state entered based on
the values returned from the _S1D, _PRW, and _S1W objects if they exist . (D/C means Don’t Care –
evaluation is irrelevant, and N/A means Non Applicable – object does not exist).

Table 7-259 S1 Action / Result Table

Desired Action _S1D _PRW _S1W Resultant D-state

Enter S1 D/C D/C D/C OSPM decides

Enter S1, No Wake 2 D/C D/C Enter D2 or D3

Enter S1, Wake 2 1 N/A Enter D2

Enter S1, Wake 2 1 3 Enter D2 or D3

Enter S1, Wake N/A 1 2 Enter D0,D1 or D2

7.3.17 _S2D (S2 Device State)

This object evaluates to an integer that conveys to OSPM the shallowest D-state supported by this device
in the S2 system sleeping state. _S2D must return the same integer each time it is evaluated. This value
overrides an S-state to D-state mapping OSPM may ascertain from the device’s power resource
declarations. See Table 7-257 for valid return values.

Arguments:

None

Return Value:

An Integer containing the shallowest D-state supported in state S2

If the device can wake the system from the S2 system sleeping state (see _PRW) then the device must
support wake in the D-state returned by this object. However, OSPM cannot assume wake from the S2
system sleeping state is supported in any deeper D-state unless specified by a corresponding _S2W
object. The table below provides a mapping from Desired Actions to Resultant D-state entered based on
the values returned from the _S2D, _PRW, and _S2W objects if they exist . (D/C means Don’t Care –
evaluation is irrelevant, and N/A means Non Applicable – object does not exist).

Table 7-260 S2 Action / Result Table

Desired Action _S2D _PRW _S2W Resultant D-state

Enter S2 D/C D/C D/C OSPM decides

Enter S2, No Wake 2 D/C D/C Enter D2 or D3

Enter S2, Wake 2 2 N/A Enter D2

Enter S2, Wake 2 2 3 Enter D2 or D3

Enter S2, Wake N/A 2 2 Enter D0,D1 or D2
UEFI Forum, Inc. January 2019 Page 495

ACPI Specification, Version 6.3 Power and Performance Management
7.3.18 _S3D (S3 Device State)

This object evaluates to an integer that conveys to OSPM the shallowest D-state supported by this device
in the S3 system sleeping state. _S3D must return the same integer each time it is evaluated. This value
overrides an S-state to D-state mapping OSPM may ascertain from the device’s power resource
declarations. See Table 7-257 for valid return values.

Arguments:

None

Return Value:

An Integer containing the shallowest D-state supported in state S3

If the device can wake the system from the S3 system sleeping state (see _PRW) then the device must
support wake in the D-state returned by this object. However, OSPM cannot assume wake from the S3
system sleeping state is supported in any deeper D-state unless specified by a corresponding _S3W
object. The table below provides a mapping from Desired Actions to Resultant D-state entered based on
the values returned from the _S3D, _PRW, and _S3W objects if they exist . (D/C means Don’t Care –
evaluation is irrelevant, and N/A means Non Applicable – object does not exist).

Table 7-261 S3 Action / Result Table

Desired Action _S3D _PRW _S3W Resultant D-state

Enter S3 N/A D/C N/A OSPM decides

Enter S3, No Wake 2 D/C D/C Enter D2 or D3

Enter S3, Wake 2 3 N/A Enter D2

Enter S3, Wake 2 3 3 Enter D2 or D3

Enter S3, Wake N/A 3 2 Enter D0, D1 or D2

7.3.19 _S4D (S4 Device State)

This object evaluates to an integer that conveys to OSPM the shallowest D-state supported by this device
in the S4 system sleeping state. _S4D must return the same integer each time it is evaluated. This value
overrides an S-state to D-state mapping OSPM may ascertain from the device’s power resource
declarations. See Table 7-3 for valid return values.

Arguments:

None

Return Value:

An Integer containing the shallowest D-state supported in state S4

If the device can wake the system from the S4 system sleeping state (see _PRW) then the device must
support wake in the D-state returned by this object. However, OSPM cannot assume wake from the S4
system sleeping state is supported in any deeper D-state unless specified by a corresponding _S4W
object. The table below provides a mapping from Desired Actions to Resultant D-state entered based on
the values returned from the _S4D, _PRW, and _S4W objects if they exist . (D/C means Don’t Care –
evaluation is irrelevant, and N/A means Non Applicable – object does not exist).
UEFI Forum, Inc. January 2019 Page 496

ACPI Specification, Version 6.3 Power and Performance Management
Table 7-262 S4 Action / Result Table

Desired Action _S4D _PRW _S4W Resultant D-state

Enter S4 N/A D/C N/A OSPM decides

Enter S4, No Wake 2 D/C D/C Enter D2 or D3

Enter S4, Wake 2 4 N/A Enter D2

Enter S4, Wake 2 4 3 Enter D2 or D3

Enter S4, Wake N/A 4 2 Enter D0, D1 or D2

7.3.20 _S0W (S0 Device Wake State)

This object evaluates to an integer that conveys to OSPM the deepest D-state supported by this device in
the S0 system sleeping state where the device can wake itself.

Arguments:

None

Return Value:

An Integer containing the deepest D-state that supports wake in state S0. If OSPM has not indicated that
it supports _PR3 through the OSPM Platform-Wide Capabilities (see Section 6.2.11.2), then the value "3"
corresponds to D3. If it has indicated _PR3 support, the value "3" represents D3hot and the value "4"
represents D3cold.

_S0W must return the same integer each time it is evaluated. This value allows OSPM to choose the
deepest power D-state and still achieve wake functionality. If object evaluates to zero, then the device
cannot wake itself from any deeper D state.

7.3.21 _S1W (S1 Device Wake State)

This object evaluates to an integer that conveys to OSPM the deepest D-state supported by this device in
the S1 system sleeping state that can wake the system.

Arguments:

None

Return Value:

An Integer containing the deepest D-state that supports wake in state S1. If OSPM has not indicated that
it supports _PR3 through the OSPM Platform-Wide Capabilities (see Section 6.2.11.2), then the value "3"
corresponds to D3. If it has indicated _PR3 support, the value "3" represents D3hot and the value "4"
represents D3cold.

_S1W must return the same integer each time it is evaluated. This value allows OSPM to choose a deeper
S-state to D-state mapping than specified by _S1D. This value must always be greater than or equal to
_S1D, if _S1D is present.

7.3.22 _S2W (S2 Device Wake State)

This object evaluates to an integer that conveys to OSPM the deepest D-state supported by this device in
the S2 system sleeping state that can wake the system.
UEFI Forum, Inc. January 2019 Page 497

ACPI Specification, Version 6.3 Power and Performance Management
Arguments:

None

Return Value:

An Integer containing the deepest D-state that supports wake in state S2. If OSPM has not indicated that
it supports _PR3 through the OSPM Platform-Wide Capabilities (see Section 6.2.11.2), then the value "3"
corresponds to D3. If it has indicated _PR3 support, the value "3" represents D3hot and the value "4"
represents D3cold.

_S2W must return the same integer each time it is evaluated. This value allows OSPM to choose a deeper
S-state to D-state mapping than specified by _S2D. This value must always be greater than or equal to
_S2D, if _S2D is present.

7.3.23 _S3W (S3 Device Wake State)

This object evaluates to an integer that conveys to OSPM the deepest D-state supported by this device in
the S3 system sleeping state that can wake the system.

Arguments:

None

Return Value:

An Integer containing the deepest D-state that supports wake in state S3. If OSPM has not indicated that
it supports _PR3 through the OSPM Platform-Wide Capabilities (see Section 6.2.11.2), then the value "3"
corresponds to D3. If it has indicated _PR3 support, the value "3" represents D3hot and the value "4"
represents D3cold.

_S3W must return the same integer each time it is evaluated. This value allows OSPM to choose a deeper
S-state to D-state mapping than specified by _S3D. This value must always be greater than or equal to
_S3D, if _S3D is present.

7.3.24 _S4W (S4 Device Wake State)

This object evaluates to an integer that conveys to OSPM the deepest D-state supported by this device in
the S4 system sleeping state that can wake the system.

Arguments:

None

Return Value:

An Integer containing the deepest D-state that supports wake in state S4. If OSPM has not indicated that
it supports _PR3 through the OSPM Platform-Wide Capabilities (see Section 6.2.11.2), then the value "3"
corresponds to D3. If it has indicated _PR3 support, the value "3" represents D3hot and the value "4"
represents D3cold.

_S4W must return the same integer each time it is evaluated. This value allows OSPM to choose a deeper
S-state to D-state mapping than specified by _S4D. This value must always be greater than or equal to
_S4D, if _S4D is present.
UEFI Forum, Inc. January 2019 Page 498

ACPI Specification, Version 6.3 Power and Performance Management
7.3.25 _RST (Device Reset)

This object executes a reset on the associated device or devices. If included in a device context, the reset
must not affect any other ACPI-described devices; if included in a power resource for reset (_PRR,
Section 7.3.26) the reset must affect all ACPI-described devices that reference it.

When this object is described in a device context, it executes a function level reset that only affects the
device it is associated with; neither parent nor children should be affected by the execution of this reset.
Executing this must only result in this device resetting without the device appearing as if it has been
removed from the bus altogether, to prevent OSPM re-enumeration of devices on hot-pluggable buses
(e.g. USB).

If a device reset is supported by the platform, but cannot meet the function level and bus requirement,
the device should instead implement a _PRR (Section 7.3.26).

Devices can define both a _RST and a _PRR if supported by the hardware.

Arguments:

None

Return Value:

None

7.3.26 _PRR (Power Resource for Reset)

This object evaluates to a single reference to a power resource. The power resource that this references
must implement a _RST method (Section 7.3.25).

Arguments:

None

Return Value:

A single element Package containing a Reference to the power reset resource.

7.4 OEM-Supplied System-Level Control Methods

An OEM-supplied Definition Block provides some number of controls appropriate for system-level
management. These are used by OSPM to integrate to the OEM-provided features. The following table
lists the defined OEM system controls that can be provided.

Table 7-263 BIOS-Supplied Control Methods for System-Level Functions

Object Description

_PTS Control method used to notify the platform of impending sleep transition.

_S0 Package that defines system _S0 state mode.

_S1 Package that defines system _S1 state mode.

_S2 Package that defines system _S2 state mode.

_S3 Package that defines system _S3 state mode.
UEFI Forum, Inc. January 2019 Page 499

ACPI Specification, Version 6.3 Power and Performance Management
Note: Compatibility issue: The _BFS (Back From Sleep) and _GTS (Going To Sleep) methods were
deprecated in ACPI 5.0A.

7.4.1 _PTS (Prepare To Sleep)

The _PTS control method is executed by the OS during the sleep transition process for S1, S2, S3, S4, and
for orderly S5 shutdown. The sleeping state value (For example, 1, 2, 3, 4 or 5 for the S5 soft-off state) is
passed to the _PTS control method. This method is called after OSPM has notified native device drivers of
the sleep state transition and before the OSPM has had a chance to fully prepare the system for a sleep
state transition. Thus, this control method can be executed a relatively long time before actually entering
the desired sleeping state. If OSPM aborts the sleep state transition, OSPM should run the _WAK method
to indicate this condition to the platform.

Arguments (1):

Arg0 – An Integer containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:

None

The _PTS control method cannot modify the current configuration or power state of any device in the
system. For example, _PTS would simply store the sleep type in the embedded controller in sequencing
the system into a sleep state when the SLP_EN bit is set.

The platform must not make any assumptions about the state of the machine when _PTS is called. For
example, operation region accesses that require devices to be configured and enabled may not succeed,
as these devices may be in a non-decoding state due to plug and play or power management operations.

7.4.2 _Sx (System States)

All system states supported by the system must provide a package containing the DWORD value of the
following format in the static Definition Block. The system states, known as S0–S5, are referenced in the
namespace as _S0–_S5 and for clarity the short Sx names are used unless specifically referring to the
named _Sx object. For each Sx state, there is a defined system behavior.

Arguments:

None

Return Value:

A Package containing an Integer containing register values for sleeping

_S4 Package that defines system _S4 state mode.

_S5 Package that defines system _S5 state mode.

_TTS Control method used to prepare to sleep and run once awakened

_WAK Control method run once awakened.
UEFI Forum, Inc. January 2019 Page 500

ACPI Specification, Version 6.3 Power and Performance Management
Table 7-264 System State Package

Byte
Length

Byte
Offset


Description

1 0 Value for PM1a_CNT.SLP_TYP register to enter this system state. On HW-reduced
platforms, this is the HW-reduced Sleep Type value for
SLEEP_CONTROL_REG.SLP_TYP.

1 1 Value for PM1b_CNT.SLP_TYP register to enter this system state. To enter any
given state, OSPM must write the PM1a_CNT.SLP_TYP register before the
PM1b_CNT.SLP_TYP register. On HW-reduced platforms, this value is ignored.

2 2 Reserved

States S1–S4 represent some system sleeping state. The S0 state is the system working state. Transition
into the S0 state from some other system state (such as sleeping) is automatic, and, by virtue that
instructions are being executed, OSPM assumes the system to be in the S0 state. Transition into any
system sleeping state is only accomplished by the operating software directing the hardware to enter the
appropriate state, and the operating software can only do this within the requirements defined in the
Power Resource and Bus/Device Package objects.

All run-time system state transitions (for example, to and from the S0 state), except S4 and S5, are done
similarly such that the code sequence to do this is the following:

/*
 * Intel Architecture SetSleepingState example
 */

 ULONG
 SetSystemSleeping (
 IN ULONG NewState
)
 {
 PROCESSOR_CONTEXT Context;
 ULONG PowerSeqeunce;
 BOOLEAN FlushCaches;
 USHORT SlpTyp;

// Required environment: Executing on the system boot
// processor. All other processors stopped. Interrupts
// disabled. All Power Resources (and devices) are in
// corresponding device state to support NewState.

 // Get h/w attributes for this system state
 FlushCaches = SleepType[NewState].FlushCache;
 SlpTyp = SleepType[NewState].SlpTyp & SLP_TYP_MASK;

 _asm {
 lea eax, OsResumeContext
 push eax ; Build real mode handler the resume
 push offset sp50 ; context, with eip = sp50
 call SaveProcessorState
UEFI Forum, Inc. January 2019 Page 501

ACPI Specification, Version 6.3 Power and Performance Management
 mov eax, ResumeVector ; set firmware’s resume vector
 mov [eax], offset OsRealModeResumeCode

 mov edx, PM1a_STS ; Make sure wake status is clear
 mov ax, WAK_STS ; (cleared by asserting the bit
 out dx, ax ; in the status register)

 mov edx, PM1b_STS ;
 out dx, ax ;

 and eax, not SLP_TYP_MASK
 or eax, SlpTyp ; set SLP_TYP
 or ax, SLP_EN ; set SLP_EN

 cmp FlushCaches, 0
 jz short sp10 ; If needed, ensure no dirty data in

 call FlushProcessorCaches ; the caches while sleeping

sp10: mov edx, PM1a_SLP_TYP ; get address for PM1a_SLP_TYP
 out dx, ax ; start h/w sequencing
 mov edx, PM1b_SLP_TYP ; get address for PM1b_SLP_TYP
 out dx, ax ; start h/w sequencing

 mov edx, PM1a_STS ; get address for PM1x_STS
 mov ecx, PM1b_STS

sp20: in ax, dx ; wait for WAK status
 xchg edx, ecx
 test ax, WAK_STS
 jz short sp20

sp50:
}
 // Done..
 *ResumeVector = NULL;
 return 0;
 }

On HW-reduced ACPI platforms all run-time system state transitions (for example, to and from the S0
state) are done similarly, but include the following instead of PM1*_BLK register bit manipulation:

After ensuring that any desired wake-capable interrupts are enabled, OSPM writes the HW-
reduced Sleep Type value to the Sleep Control Register and spins waiting for the WAK_STS bit
of the Sleep Status Register to be set, indicating a platform transition to the Working state.

7.4.2.1 System _S0 State (Working)

While the system is in the S0 state, it is in the system working state. The behavior of this state is defined
as:
UEFI Forum, Inc. January 2019 Page 502

ACPI Specification, Version 6.3 Power and Performance Management
• The processors are either running, or in a C-state, or in an LPI state. The processor-complex
context is maintained and instructions are executed as defined by any of these processor
states.

• Dynamic RAM context is maintained and is read/write by the processors.
• Devices states are individually managed by the operating software and can be in any device

state (D0, D1, D2, D3hot, or D3).
• Power Resources are in a state compatible with the current device states.

Transition into the S0 state from some system sleeping state is automatic, and by virtue that instructions
are being executed OSPM, assumes the system to be in the S0 state.

7.4.2.2 System _S1 State (Sleeping with Processor Context Maintained)

While the system is in the S1 sleeping state, its behavior is the following:

• The processors are not executing instructions. The processor-complex context is maintained.
• Dynamic RAM context is maintained.
• Power Resources are in a state compatible with the system S1 state. All Power Resources that

supply a System-Level reference of S0 are in the OFF state.
• Devices states are compatible with the current Power Resource states. Only devices that solely

reference Power Resources that are in the ON state for a given device state can be in that

device state. In all other cases, the device is in the D3 (off) state1.
• Devices that are enabled to wake the system and that can do so from their current device state

can initiate a hardware event that transitions the system state to S0. This transition causes the
processor to continue execution where it left off.

To transition into the S1 state, the OSPM must flush all processor caches.

7.4.2.3 System _S2 State

The S2 sleeping state is logically deeper than the S1 state and is assumed to conserve more power. The
behavior of this state is defined as:

• The processors are not executing instructions. The processor-complex context is not
maintained.

• Dynamic RAM context is maintained.
• Power Resources are in a state compatible with the system S2 state. All Power Resources that

supply a System-Level reference of S0 or S1 are in the OFF state.
• Devices states are compatible with the current Power Resource states. Only devices that solely

reference Power Resources that are in the ON state for a given device state can be in that
device state. In all other cases, the device is in the D3 (off) state.

• Devices that are enabled to wake the system and that can do so from their current device state
can initiate a hardware event that transitions the system state to S0. This transition causes the
processor to begin execution at its boot location. The platform runtime firmware performs
initialization of core functions as needed to exit an S2 state and passes control to the firmware
resume vector. See Section 16.3.2 for more details on platform firmware initialization.

1. Or it is at least assumed to be in the D3 state by its device driver. For example, if the device doesn’t explic-
itly describe how it can stay in some non-off state while the system is in a sleeping state, the operating software
must assume that the device can lose its power and state.
UEFI Forum, Inc. January 2019 Page 503

ACPI Specification, Version 6.3 Power and Performance Management
Because the processor context can be lost while in the S2 state, the transition to the S2 state requires
that the operating software flush all dirty cache to dynamic RAM (DRAM).

7.4.2.4 System _S3 State

The S3 state is logically deeper than the S2 state and is assumed to conserve more power. The behavior
of this state is defined as follows:

• The processors are not executing instructions. The processor-complex context is not
maintained.

• Dynamic RAM context is maintained.
• Power Resources are in a state compatible with the system S3 state. All Power Resources that

supply a System-Level reference of S0, S1, or S2 are in the OFF state.
• Devices states are compatible with the current Power Resource states. Only devices that solely

reference Power Resources that are in the ON state for a given device state can be in that
device state. In all other cases, the device is in the D3 (off) state.

• Devices that are enabled to wake the system and that can do so from their current device state
can initiate a hardware event that transitions the system state to S0. This transition causes the
processor to begin execution at its boot location. The platform runtime firmware performs
initialization of core functions as necessary to exit an S3 state and passes control to the
firmware resume vector. See Section 16.3.2 for more details on platform firmware
initialization.

From the software viewpoint, this state is functionally the same as the S2 state. The operational
difference can be that some Power Resources that could be left ON to be in the S2 state might not be
available to the S3 state. As such, additional devices may need to be in a deeper state for S3 than S2.
Similarly, some device wake events can function in S2 but not S3.

Because the processor context can be lost while in the S3 state, the transition to the S3 state requires
that the operating software flush all dirty cache to DRAM.

7.4.2.5 System _S4 State

While the system is in this state, it is in the system S4 sleeping state. The state is logically deeper than the
S3 state and is assumed to conserve more power. The behavior of this state is defined as follows:

• The processors are not executing instructions. The processor-complex context is not
maintained.

• DRAM context is not maintained.
• Power Resources are in a state compatible with the system S4 state. All Power Resources that

supply a System-Level reference of S0, S1, S2, or S3 are in the OFF state.
• Devices states are compatible with the current Power Resource states. In other words, all

devices are in the D3 state when the system state is S4.
• Devices that are enabled to wake the system and that can do so from their device state in S4

can initiate a hardware event that transitions the system state to S0. This transition causes the
processor to begin execution at its boot location.

After OSPM has executed the _PTS control method and has put the entire system state into main
memory, there are two ways that OSPM may handle the next phase of the S4 state transition; saving and
restoring main memory. The first way is to use the operating system's drivers to access the disks and file
system structures to save a copy of memory to disk and then initiate the hardware S4 sequence by
UEFI Forum, Inc. January 2019 Page 504

ACPI Specification, Version 6.3 Power and Performance Management
setting the SLP_EN register bit. When the system wakes, the firmware performs a normal boot process
and transfers control to the OS via the firmware_waking_vector loader. The OS then restores the
system's memory and resumes execution.

The alternate method for entering the S4 state is to utilize the platform runtime firmware via the S4BIOS
transition. The platform runtime firmware uses firmware to save a copy of memory to disk and then
initiates the hardware S4 sequence. When the system wakes, the firmware restores memory from disk
and wakes OSPM by transferring control to the FACS waking vector.

The S4BIOS transition is optional, but any system that supports this mechanism must support entering
the S4 state via the direct OS mechanism. Thus the preferred mechanism for S4 support is the direct OS
mechanism as it provides broader platform support. The alternate S4BIOS transition provides a way to
achieve S4 support on operating systems that do not have support for the direct method.

7.4.2.6 System _S5 State (Soft Off)

 The S5 state is similar to the S4 state except that OSPM does not save any context. The system is in the
soft off state and requires a complete boot when awakened (platform boot firmware and OS). Software
uses a different state value to distinguish between this state and the S4 state to allow for initial boot
operations within the platform boot firmware to distinguish whether or not the boot is going to wake
from a saved memory image. OSPM does not disable wake events before setting the SLP_EN bit when
entering the S5 system state. This provides support for remote management initiatives by enabling
Remote Start capability. An ACPI-compliant OS must provide an end user accessible mechanism for
disabling all wake devices, with the exception of the system power button, from a single point in the user
interface.

7.4.3 _SWS (System Wake Source)

This object provides a means for OSPM to definitively determine the source of an event that caused the
system to enter the S0 state. General-purpose event and fixed-feature hardware registers containing
wake event sources information are insufficient for this purpose as the source event information may not
be available after transitions to the S0 state from all other system states (S1-S5).

To determine the source event that caused the system to transition to the S0 state, OSPM will evaluate
the _SWS object, when it exists, under the _GPE scope (for all fixed-feature general-purpose events
from the GPE Blocks), under the _SB scope (for fixed-feature hardware events), and within the scope of
a GPE Block device (for GPE events from this device). _SWS objects may exist in any or all of these
locations as necessary for the platform to determine the source event that caused the system to
transition to the S0 state.

Arguments:

None

Return Value:

An Integer containing the Source Event as described below

The value of the Source Event is dependent on the location of the _SWS object:

1. If _SWS is evaluated under the _GPE scope, Source Event is the index of the GPE that caused
the system to transition to S0.
UEFI Forum, Inc. January 2019 Page 505

ACPI Specification, Version 6.3 Power and Performance Management
2. If _SWS is evaluated within the scope of a GPE block device, Source Event is the index of the
GPE that caused the system to transition to S0. In this case, the index is relative to the GPE
block device and is not unique system-wide.

3. If _SWS is evaluated under the _SB scope, Source Event is the the index in the PM1 status
register that caused the system to transition to S0.

In all cases above, if the cause of the S0 transition cannot be determined, _SWS returns Ones (-1).

To enable OSPM to determine the source of the S0 state transition via the _SWS object,the hardware or
firmware should detect and save the event that caused the transition so that it can be returned during
_SWS object evaluation. The single wake source for the system may be latched in hardware during the
transition so that no false wake events can be returned by _SWS. An implementation that does not use
hardware to latch a single wake source for the system and instead uses firmware to save the wake source
must do so as quickly as possible after the wakeup event occurs, so that _SWS does not return values that
correspond to events that occurred after the sleep-to-wake transition. Such an implementation must also
take care to ensure that events that occur subsequent to the wakeup source being saved do not
overwrite the original wakeup source.

The source event data returned by _SWS must be determined for each transition into the S0 state. The
value returned by _SWS must also be persistent during the system’s residency in the S0 state as OSPM
may evaluate _SWS multiple times. In this case, the platform must return the same source event
information for each invocation.

After evaluating an _SWS object within the _GPE scope or within the scope of a GPE block device, OSPM
will invoke the _Wxx control method corresponding to the GPE index returned by _SWS if it exists. This
allows the platform to further determine source event if the GPE is shared among multiple devices. See
Section 5.6.4.2.2 for details.

7.4.4 _TTS (Transition To State)

The _TTS control method is executed by the OSPM at the beginning of the sleep transition process for S1,
S2, S3, S4, and orderly S5 shutdown. OSPM will invoke _TTS before it has notified any native mode device
drivers of the sleep state transition. The sleeping state value (For example, 1, 2, 3, 4 or 5 for the S5 soft-
off state) is passed to the _TTS control method.

The _TTS control method is also executed by the OSPM at the end of any sleep transition process when
the system transitions to S0 from S1, S2, S3, or S4. OSPM will invoke _TTS after it has notified any native
mode device drivers of the end of the sleep state transition. The working state value (0) is passed to the
_TTS control method.

Arguments: (1)

Arg0 – An Integer containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:

None

If OSPM aborts the sleep transition process, OSPM will still run _TTS for an S0 transition to indicate the
OSPM has returned to the S0 state. The platform must assume that if OSPM invokes the _TTS control
method for an S1, S2, S3, or S4 transition, that OSPM will invoke _TTS control method for an S0 transition
before returning to the S0 state.
UEFI Forum, Inc. January 2019 Page 506

ACPI Specification, Version 6.3 Power and Performance Management
The platform must not make any assumptions about the state of the machine when _TTS is called. For
example, operation region accesses that require devices to be configured and enabled may not succeed,
as these devices may be in a non-decoding state due to plug and play or power management operations.

7.4.5 _WAK (System Wake)

After the system wakes from a sleeping state, it will invoke the _WAK method and pass the sleeping
state value that has ended. This operation occurs asynchronously with other driver notifications in the
system and is not the first action to be taken when the system wakes. The AML code for this control
method issues device, thermal, and other notifications to ensure that OSPM checks the state of devices,
thermal zones, and so on, that could not be maintained during the system sleeping state. For example, if
the system cannot determine whether a device was inserted or removed from a bus while in the S2 state,
the _WAK method would issue a devicecheck type of notification for that bus when issued with the
sleeping state value of 2 (for more information about types of notifications, see Section 5.6.6, “Device
Object Notifications”). Notice that a device check notification from the _SB node will cause OSPM to re-

enumerate the entire tree2.

Hardware is not obligated to track the state needed to supply the resulting status; however, this method
must return status concerning the last sleep operation initiated by OSPM. The return values can be used
to provide additional information to OSPM or user.

Arguments: (1)

Arg0 – An Integer containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:

A Package containing two Integers containing status and the power supply S-state

Return Value Information

_WAK returns a package with the following format:

Element 0 – An Integer containing a bitfield that represents conditions that occurred during sleep.

0x00000000 – Wake was signaled and was successful

0x00000001 – Wake was signaled but failed due to lack of power

0x00000002 – Wake was signaled but failed due to thermal condition

Other values – Reserved

Element 1 – An Integer containing the power supply S-state.

If non-zero, this is the effective S-state the power supply that was actually entered. This value is
used to detect when the targeted S-state was not entered because of too much current being
drawn from the power supply. For example, this might occur when some active device’s current
consumption pushes the system’s power requirements over the low power supply mark, thus
preventing the deeper system sleeping state from being entered as desired.

2. Only buses that support hardware-defined enumeration methods are done automatically at run-
time. This would include ACPI-enumerated devices.
UEFI Forum, Inc. January 2019 Page 507

ACPI Specification, Version 6.3 Power and Performance Management
7.5 OSPM usage of _PTS, _TTS, and _WAK

OSPM will invoke _PTS, _TTS,and _WAK in the following order:

1. OSPM decides (through a policy scheme) to place the system into a sleeping state

2. _TTS(Sx) is run, where Sx is the desired sleep state to enter

3. OSPM notifies all native device drivers of the sleep state transition

4. _PTS is run

5. OSPM readies system for the sleep state transition

6. OSPM writes the sleep vector and the system enters the specified Sx sleep state

7. System Wakes up

8. OSPM readies system for the return from the sleep state transition

9. _WAK is run

10. OSPM notifies all native device drivers of the return from the sleep state transition

11. _TTS(0) is run to indicate the return to the S0 state

Figure 7-35 Working / Sleeping State object evaluation flow
UEFI Forum, Inc. January 2019 Page 508

ACPI Specification, Version 6.3 Processor Configuration and Control
8 Processor Configuration and Control

This section describes the configuration and control of the processor’s power and performance states.
The major controls over the processors are:

• Processor power states: C0, C1, C2, C3, … Cn
• Processor clock throttling
• Processor performance states: P0, P1, … Pn

These controls are used in combination by OSPM to achieve the desired balance of the following
sometimes conflicting goals:

• Performance
• Power consumption and battery life
• Thermal requirements
• Noise-level requirements

Because the goals interact with each other, the operating software needs to implement a policy as to

when and where tradeoffs between the goals are to be made1. For example, the operating software
would determine when the audible noise of the fan is undesirable and would trade off that requirement
for lower thermal requirements, which can lead to lower processing performance. Each processor
configuration and control interface is discussed in the following sections along with how controls
interacts with the various goals.

8.1 Processor Power States

ACPI defines the power state of system processors while in the G0 working state2 as being either active
(executing) or sleeping (not executing). Processor power states include are designated C0, C1, C2, C3,
…Cn. The C0 power state is an active power state where the CPU executes instructions. The C1 through
Cn power states are processor sleeping states where the processor consumes less power and dissipates
less heat than leaving the processor in the C0 state. While in a sleeping state, the processor does not
execute any instructions. Each processor sleeping state has a latency associated with entering and exiting
that corresponds to the power savings. In general, the longer the entry/exit latency, the greater the
power savings when in the state. To conserve power, OSPM places the processor into one of its
supported sleeping states when idle. While in the C0 state, ACPI allows the performance of the processor
to be altered through a defined “throttling” process and through transitions into multiple performance

1. A thermal warning leaves room for operating system tradeoffs to occur (to start the fan or to reduce per-
formance), but a critical thermal alert does not occur.

2. Notice that these CPU states map into the G0 working state. The state of the CPU is undefined in the G3
sleeping state, the Cx states only apply to the G0 state.
UEFI Forum, Inc. January 2019 Page 509

ACPI Specification, Version 6.3 Processor Configuration and Control
states (P-states). A diagram of processor power states is provided

below.

Interrupt
Interrupt

HLT

P_LVL2

THT_EN=1
and

DTY=value

THT_EN=0

Performance
State Px Throttling

C1 C2 C3

P_LVL3,
ARB_DIS=1

Interrupt or
BM Access

G0
Working

C0

Figure 8-36 Processor Power States

ACPI defines logic on a per-CPU basis that OSPM uses to transition between the different processor
power states. This logic is optional, and is described through the FADT table and processor objects
(contained in the hierarchical namespace). The fields and flags within the FADT table describe the
symmetrical features of the hardware, and the processor object contains the location for the particular
CPU’s clock logic (described by the P_BLK register block and _CST objects).

The P_LVL2 and P_LVL3 registers provide optional support for placing the system processors into the C2
or C3 states. The P_LVL2 register is used to sequence the selected processor into the C2 state, and the
P_LVL3 register is used to sequence the selected processor into the C3 state. Additional support for the
C3 state is provided through the bus master status and arbiter disable bits (BM_STS in the PM1_STS
register and ARB_DIS in the PM2_CNT register). System software reads the P_LVL2 or P_LVL3 registers to
enter the C2 or C3 power state. The Hardware must put the processor into the proper clock state
precisely on the read operation to the appropriate P_LVLx register. The platform may alternatively define
interfaces allowing OSPM to enter C-states using the _CST object, which is defined in Section 8.4.2.1,
“_CST (C States)”.

Processor power state support is symmetric when presented via the FADT and P_BLK interfaces; OSPM
assumes all processors in a system support the same power states. If processors have non-symmetric
power state support, then the platform runtime firmware will choose and use the lowest common power
UEFI Forum, Inc. January 2019 Page 510

ACPI Specification, Version 6.3 Processor Configuration and Control
states supported by all the processors in the system through the FADT table. For example, if the CPU0
processor supports all power states up to and including the C3 state, but the CPU1 processor only
supports the C1 power state, then OSPM will only place idle processors into the C1 power state (CPU0
will never be put into the C2 or C3 power states). Notice that the C1 power state must be supported. The
C2 and C3 power states are optional (see the PROC_C1 flag in the FADT table description in Section 5.2.6,
“System Description Table Header”).

The following sections describe processor power states in detail.

8.1.1 Processor Power State C0

While the processor is in the C0 power state, it executes instructions. While in the C0 power state, OSPM
can generate a policy to run the processor at less than maximum performance. The clock throttling
mechanism provides OSPM with the functionality to perform this task in addition to thermal control. The
mechanism allows OSPM to program a value into a register that reduces the processor’s performance to
a percentage of maximum performance.

duty width

duty value
clock on time

clock off time

P_CNT

duty offset duty width

duty value

Figure 8-37 Throttling Example

The FADT contains the duty offset and duty width values. The duty offset value determines the offset
within the P_CNT register of the duty value. The duty width value determines the number of bits used by
the duty value (which determines the granularity of the throttling logic). The performance of the
processor by the clock logic can be expressed with the following equation:

% *P erfo rm a n ce
d u tyse ttin g

d u tyw id th
2

1 0 0 %

Figure 8-38 Equation 1 Duty Cycle Equation

Nominal performance is defined as “close as possible, but not below the indicated performance level.”
OSPM will use the duty offset and duty width to determine how to access the duty setting field. OSPM
UEFI Forum, Inc. January 2019 Page 511

ACPI Specification, Version 6.3 Processor Configuration and Control
will then program the duty setting based on the thermal condition and desired power of the processor
object. OSPM calculates the nominal performance of the processor using the equation expressed in
Equation 1. Notice that a dutysetting of zero is reserved.For example, the clock logic could use the stop
grant cycle to emulate a divided processor clock frequency on an IA processor (through the use of the
STPCLK# signal). This signal internally stops the processor’s clock when asserted LOW. To implement logic
that provides eight levels of clock control, the STPCLK# pin could be asserted as follows (to emulate the
different frequency settings):

0 - Reserved Value

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
dutysetting

Duty Width (3-bits)

S
T

P
C

L
K

S

ig
n

al

CPU Clock Running
CPU Clock Stopped

Figure 8-39 Example Control for the STPCLK#

To start the throttling logic OSPM sets the desired duty setting and then sets the THT_EN bit HIGH. To
change the duty setting, OSPM will first reset the THT_EN bit LOW, then write another value to the duty
setting field while preserving the other unused fields of this register, and then set the THT_EN bit HIGH
again.

The example logic model is shown below:

-- duty width

THTL_DTY
P_CNT.x

P_LVL3
Read

P_LVL2
Read

THT_EN
P_CNT.4

Clock Logic
System
Arbiter

ARB_DIS
PM2_CNT

BM_STS
PM1x_STS.4

BM_RLD
PM1x_CNT.1

Figure 8-40 ACPI Clock Logic (One per Processor)

Implementation of the ACPI processor power state controls minimally requires the support a single CPU
sleeping state (C1). All of the CPU power states occur in the G0/S0 system state; they have no meaning
when the system transitions into the sleeping state(S1-S4). ACPI defines the attributes (semantics) of the
different CPU states (defines four of them). It is up to the platform implementation to map an
appropriate low-power CPU state to the defined ACPI CPU state.
UEFI Forum, Inc. January 2019 Page 512

ACPI Specification, Version 6.3 Processor Configuration and Control
ACPI clock control is supported through the optional processor register block (P_BLK). ACPI requires that
there be a unique processor register block for each CPU in the system. Additionally, ACPI requires that
the clock logic for multiprocessor systems be symmetrical when using the P_BLK and FADT interfaces; if
the P0 processor supports the C1, C2, and C3 states, but P1 only supports the C1 state, then OSPM will
limit all processors to enter the C1 state when idle.

The following sections define the different ACPI CPU sleeping states.

8.1.2 Processor Power State C1

All processors must support this power state. This state is supported through a native instruction of the
processor (HLT for IA 32-bit processors), and assumes no hardware support is needed from the chipset.
The hardware latency of this state must be low enough that OSPM does not consider the latency aspect
of the state when deciding whether to use it. Aside from putting the processor in a power state, this state
has no other software-visible effects. In the C1 power state, the processor is able to maintain the context
of the system caches.

The hardware can exit this state for any reason, but must always exit this state when an interrupt is to be
presented to the processor.

8.1.3 Processor Power State C2

This processor power state is optionally supported by the system. If present, the state offers improved
power savings over the C1 state and is entered by using the P_LVL2 command register for the local
processor or an alternative mechanism as indicated by the _CST object. The worst-case hardware latency
for this state is declared in the FADT and OSPM can use this information to determine when the C1 state
should be used instead of the C2 state. Aside from putting the processor in a power state, this state has
no other software-visible effects. OSPM assumes the C2 power state has lower power and higher exit
latency than the C1 power state.

The C2 power state is an optional ACPI clock state that needs chipset hardware support. This clock logic
consists of an interface that can be manipulated to cause the processor complex to precisely transition
into a C2 power state. In a C2 power state, the processor is assumed capable of keeping its caches
coherent; for example, bus master and multiprocessor activity can take place without corrupting cache
context.

The C2 state puts the processor into a low-power state optimized around multiprocessor and bus master
systems. OSPM will cause an idle processor complex to enter a C2 state if there are bus masters or
Multiple processor activity (which will prevent OSPM from placing the processor complex into the C3
state). The processor complex is able to snoop bus master or multiprocessor CPU accesses to memory
while in the C2 state.

The hardware can exit this state for any reason, but must always exit this state whenever an interrupt is
to be presented to the processor.

8.1.4 Processor Power State C3

This processor power state is optionally supported by the system. If present, the state offers improved
power savings over the C1 and C2 state and is entered by using the P_LVL3 command register for the
local processor or an alternative mechanism as indicated by the _CST object. The worst-case hardware
latency for this state is declared in the FADT, and OSPM can use this information to determine when the
C1 or C2 state should be used instead of the C3 state. While in the C3 state, the processor’s caches
UEFI Forum, Inc. January 2019 Page 513

ACPI Specification, Version 6.3 Processor Configuration and Control
maintain state but the processor is not required to snoop bus master or multiprocessor CPU accesses to
memory.

The hardware can exit this state for any reason, but must always exit this state when an interrupt is to be
presented to the processor or when BM_RLD is set and a bus master is attempting to gain access to
memory.

OSPM is responsible for ensuring that the caches maintain coherency. In a uniprocessor environment,
this can be done by using the PM2_CNT.ARB_DIS bus master arbitration disable register to ensure bus
master cycles do not occur while in the C3 state. In a multiprocessor environment, the processors’ caches
can be flushed and invalidated such that no dynamic information remains in the caches before entering
the C3 state.

There are two mechanisms for supporting the C3 power state:

• Having OSPM flush and invalidate the caches prior to entering the C3 state.
• Providing hardware mechanisms to prevent masters from writing to memory (uniprocessor-

only support).

In the first case, OSPM will flush the system caches prior to entering the C3 state. As there is normally
much latency associated with flushing processor caches, OSPM is likely to only support this in
multiprocessor platforms for idle processors. Flushing of the cache is accomplished through one of the
defined ACPI mechanisms (described below in Section 8.2, “Flushing Caches”).

In uniprocessor-only platforms that provide the needed hardware functionality (defined in this section),
OSPM will attempt to place the platform into a mode that will prevent system bus masters from writing
into memory while the processor is in the C3 state. This is accomplished by disabling bus masters prior to
entering a C3 power state. Upon a bus master requesting an access, the CPU will awaken from the C3
state and re-enable bus master accesses.

OSPM uses the BM_STS bit to determine the power state to enter when considering a transition to or
from the C2/C3 power state. The BM_STS is an optional bit that indicates when bus masters are active.
OSPM uses this bit to determine the policy between the C2 and C3 power states: a lot of bus master
activity demotes the CPU power state to the C2 (or C1 if C2 is not supported), no bus master activity
promotes the CPU power state to the C3 power state. OSPM keeps a running history of the BM_STS bit to
determine CPU power state policy.

The last hardware feature used in the C3 power state is the BM_RLD bit. This bit determines if the Cx
power state is exited as a result of bus master requests. If set, then the Cx power state is exited upon a
request from a bus master. If reset, the power state is not exited upon bus master requests. In the C3
state, bus master requests need to transition the CPU back to the C0 state (as the system is capable of
maintaining cache coherency), but such a transition is not needed for the C2 state. OSPM can optionally
set this bit when using a C3 power state, and clear it when using a C1 or C2 power state.

8.1.5 Additional Processor Power States

ACPI introduced optional processor power states beyond C3 starting in ACPI 2.0. These power states, C4…
Cn, are conveyed to OSPM through the _CST object defined in Section 8.4.2.1, “_CST (C-States).” These
additional power states are characterized by equivalent operational semantics to the C1 through C3
power states, as defined in the previous sections, but with different entry/exit latencies and power
savings. See Section 8.4.2.1, “_CST (C-States),” for more information.
UEFI Forum, Inc. January 2019 Page 514

ACPI Specification, Version 6.3 Processor Configuration and Control
8.2 Flushing Caches

To support the C3 power state without using the ARB_DIS feature, the hardware must provide
functionality to flush and invalidate the processors’ caches (for an IA processor, this would be the
WBINVD instruction). To support the S1, S2 or S3 sleeping states, the hardware must provide
functionality to flush the platform caches. Flushing of caches is supported by one of the following
mechanisms:

• Processor instruction to write back and invalidate system caches (WBINVD instruction for IA
processors).

• Processor instruction to write back but not invalidate system caches (WBINVD instruction for IA
processors and some chipsets with partial support; that is, they don’t invalidate the caches).

The ACPI specification expects all platforms to support the local CPU instruction for flushing system
caches (with support in both the CPU and chipset), and provides some limited “best effort” support for
systems that don’t currently meet this capability. The method used by the platform is indicated through
the appropriate FADT fields and flags indicated in this section.

ACPI specifies parameters in the FADT that describe the system’s cache capabilities. If the platform
properly supports the processor’s write back and invalidate instruction (WBINVD for IA processors), then
this support is indicated to OSPM by setting the WBINVD flag in the FADT.

If the platform supports neither of the first two flushing options, then OSPM can attempt to manually
flush the cache if it meets the following criteria:

• A cache-enabled sequential read of contiguous physical memory of not more than 2 MB will
flush the platform caches.

• There are two additional FADT fields needed to support manual flushing of the caches:
• FLUSH_SIZE, typically twice the size of the largest cache in the system.
• FLUSH_STRIDE, typically the smallest cache line size in the system.

8.3 Power, Performance, and Throttling State Dependencies

Cost and complexity trade-off considerations have driven into the platform control dependencies
between logical processors when entering power, performance, and throttling states. These
dependencies exist in various forms in multi-processor, multi-threaded processor, and multi-core
processor-based platforms. These dependencies may also be hierarchical. For example, a multi-processor
system consisting of processors containing multiple cores containing multiple threads may have various
dependencies as a result of the hardware implementation.

Unless OSPM is aware of the dependency between the logical processors, it might lead to scenarios
where one logical processor is implicitly transitioned to a power, performance, or throttling state when it
is unwarranted, leading to incorrect / non-optimal system behavior. Given knowledge of the
dependencies, OSPM can coordinate the transitions between logical processors, choosing to initiate the
transition when doing so does not lead to incorrect or non-optimal system behavior. This OSPM
coordination is referred to as Software (SW) Coordination. Alternately, it might be possible for the
underlying hardware to coordinate the state transition requests on multiple logical processors, causing
the processors to transition to the target state when the transition is guaranteed to not lead to incorrect
or non-optimal system behavior. This scenario is referred to as Hardware (HW) coordination. When
hardware coordinates transitions, OSPM continues to initiate state transitions as it would if there were
UEFI Forum, Inc. January 2019 Page 515

ACPI Specification, Version 6.3 Processor Configuration and Control
no dependencies. However, in this case it is required that hardware provide OSPM with a means to
determine actual state residency so that correct / optimal control policy can be realized.

Platforms containing logical processors with cross-processor dependencies in the power, performance,
or throttling state control areas use ACPI defined interfaces to group logical processors into what is
referred to as a dependency domain. The Coordination Type characteristic for a domain specifies
whether OSPM or underlying hardware is responsible for the coordination. When OSPM coordinates, the
platform may require that OSPM transition ALL (0xFC) or ANY ONE (0xFD) of the processors belonging to
the domain into a particular target state. OSPM may choose at its discretion to perform coordination
even though the underlying hardware supports hardware coordination. In this case, OSPM must
transition all logical processors in the dependency domain to the particular target state.

There are no dependencies implied between a processor’s C-states, P-states or T-states. Hence, for
example it is possible to use the same dependency domain number for specifying dependencies between
P-states among one set of processors and C-states among another set of processors without any
dependencies being implied between the P-State transitions on a processor in the first set and C-state
transitions on a processor in the second set.

8.4 Declaring Processors

Each processor in the system must be declared in the ACPI namespace in the _SB scope. Declaration of
processors in the _PR scope was only required for platforms desiring compatibility with ACPI 1.0-based
OSPM implementations. It is deprecated for all other uses. Processors are declared via the ASL Device
statement. Declarations via the ASL Processor statement are deprecated. A Device definition for a
processor is declared using the ACPI0007 hardware identifier (HID). Processor configuration information
is provided exclusively by objects in the processor device's object list.

When the platform uses the APIC interrupt model, UID object values under a processor device are used
to associate processor devices with entries in the MADT.

Processor-specific objects may be declared within the processor device's scope. These objects serve
multiple purposes including processor performance state control. Other ACPI-defined device-related
objects are also allowed under the processor device's scope (for example, the unique identifier object
_UID mentioned above).

With device-like characteristics attributed to processors, it is implied that a processor device driver will
be loaded by OSPM to, at a minimum, process device notifications. OSPM will enumerate processors in
the system using the ACPI Namespace, processor-specific native identification instructions, and the _HID
method.

For more information on the declaration of the processor device object, see Section 19.6.30, "Device
(Declare Device Package)." Processor-specific child objects are described in the following sections.

ACPI 6.0 introduces the notion of processor containers. Processor containers are declared using the
Processor Container Device. A processor container can be used to describe a collection of associated
processors that share common resources, such as shared caches, and which have power states that affect
the processors in the collection. For more information see Section 8.4.3.1 "Processor Container Device”.

8.4.1 _PDC (Processor Driver Capabilities)

This optional object is a method that is used by OSPM to communicate to the platform the level of
processor power management support provided by OSPM. This object is a child object of the processor.
UEFI Forum, Inc. January 2019 Page 516

ACPI Specification, Version 6.3 Processor Configuration and Control
OSPM evaluates _PDC prior to evaluating any other processor power management objects returning
configuration information.

The _PDC object provides OSPM a mechanism to convey to the platform the capabilities supported by
OSPM for processor power management. This allows the platform to modify the ACPI namespace objects
returning configuration information for processor power management based on the level of support
provided by OSPM. Using this method provides a mechanism for OEMs to provide support for new
technologies on legacy OSes, while also allowing OSPM to leverage new technologies on platforms
capable of supporting them. This method is evaluated once during processor device initialization, and will
not be re-evaluated during resume from a sleep state transition. The platform must preserve state
information across S1-S3 sleep state transitions.

Arguments: (1)

Arg0 – A variable-length Buffer containing a list of capabilities as described below

Return Value:

None

The buffer argument contains a list of DWORDs in the following format:

RevisionId – Revision of the buffer format

Count – The number of capability values in the capabilities array

Capabilities[Count] – Capabilities array

Each DWORD entry in the capabilities array is a bitfield that defines capabilities and features supported
by OSPM for processor configuration and power management as specified by the CPU manufacturer.

The use of _PDC is deprecated in ACPI 3.0 in favor of _OSC. For backwards compatibility, _PDC may be
implemented using _OSC as follows:

Method(_PDC,1)
{
 CreateDWordField (Arg0, 0, REVS)
 CreateDWordField (Arg0, 4, SIZE)

 //
 // Local0 = Number of bytes for Arg0
 //
 Store (SizeOf (Arg0), Local0)

 //
 // Local1 = Number of Capabilities bytes in Arg0
 //
 Store (Subtract (Local0, 8), Local1)

 //
 // TEMP = Temporary field holding Capability DWORDs
 //
 CreateField (Arg0, 64, Multiply (Local1, 8), TEMP)
UEFI Forum, Inc. January 2019 Page 517

ACPI Specification, Version 6.3 Processor Configuration and Control
 //
 // Create the Status (STS0) buffer with the first DWORD = 0
 // This is required to return errors defined by _OSC.
 //
 Name (STS0, Buffer () {0x00, 0x00, 0x00, 0x00})

 //
 // Concatenate the _PDC capabilities bytes to the STS0 Buffer
 // and store them in a local variable for calling OSC
 //
 Concatenate (STS0, TEMP, Local2)

 //
 // Note: The UUID passed into _OSC is CPU vendor specific. Consult CPU
 // vendor documentation for UUID and Capabilities Buffer bit definitions
 //
 _OSC (ToUUID("4077A616-290C-47BE-9EBD-D87058713953"), REVS, SIZE, Local2)
}

Section 6.2.11, “_OSC (Operating System Capabilities)”, describes the _OSC object, which can be used to
convey processor related OSPM capabilities to the platform. Consult CPU vendor specific documentation
for the UUID and Capabilities Buffer bit definitions used by _OSC for a specific processor.

8.4.2 Processor Power State Control

ACPI defines multiple processor power state (C state) control interfaces. These are:

1. The Processor Register Block’s (P_BLK’s) P_LVL2 and P_LVL3 registers coupled with FADT
P_LVLx_LAT values and

2. The _CST object in the processor’s object list.

3. The _LPI objects for processors and processor containers.

P_BLK based C state controls are described in Section 4, “ACPI Hardware Specification” and Section 8.1,
“Processor Power States”. _CST based C state controls expand the functionality of the P_BLK based
controls allowing the number and type of C states to be dynamic and accommodate CPU architecture
specific C state entry and exit mechanisms as indicated by registers defined using the Functional Fixed
Hardware address space.

_CST is an optional object that provides:

• The Processor Register Block's (P_BLK's) P_LVL2 and P_LVL3 registers coupled with FADT
P_LVLx_LAT values.

• The _CST object in the processor's object list.

ACPI 6.0 introduces _LPI, the low power idle state object. _LPI provides more detailed power state
information and can describe idle states at multiple levels of hierarchy in conjunction with Processor
Containers. See Section 8.4.4.3 for details.
UEFI Forum, Inc. January 2019 Page 518

ACPI Specification, Version 6.3 Processor Configuration and Control
8.4.2.1 _CST (C States)

_CST is an optional object that provides an alternative method to declare the supported processor power
states (C States). Values provided by the _CST object override P_LVLx values in P_BLK and P_LVLx_LAT
values in the FADT. The _CST object allows the number of processor power states to be expanded beyond
C1, C2, and C3 to an arbitrary number of power states. The entry semantics for these expanded states, (in
other words), the considerations for entering these states, are conveyed to OSPM by the C-state Type
field and correspond to the entry semantics for C1, C2, and C3 as described in Section 8.1.2 through
Section 8.1.4. _CST defines ascending C-states characterized by lower power and higher entry/exit
latency.

Arguments:

None

Return Value:

A variable-length Package containing a list of C-state information Packages as described below

Return Value Information
_CST returns a variable-length Package that contains the following elements:

Count An Integer that contains the number of CState sub-packages that follow

CStates[] A list of Count CState sub-packages

Package {
 Count // Integer
 CStates[0] // Package
 ….
 CStates[Count-1] // Package
}

Each fixed-length Cstate sub-Package contains the elements described below:

Package {
 Register // Buffer (Resource Descriptor)
 Type // Integer (BYTE)
 Latency // Integer (WORD)
 Power // Integer (DWORD)
}

UEFI Forum, Inc. January 2019 Page 519

ACPI Specification, Version 6.3 Processor Configuration and Control
Table 8-265 Cstate Package Values

Element Object Type Description

Register Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the register that OSPM must read to place the processor in the
corresponding C state.

Type Integer
(BYTE)

The C State type (1=C1, 2=C2, 3=C3). This field conveys the semantics to be
used by OSPM when entering/exiting the C state. Zero is not a valid value.

Latency Integer
(WORD)

The worst-case latency to enter and exit the C State (in microseconds). There
are no latency restrictions.

Power Integer
(DWORD)

The average power consumption of the processor when in the corresponding
C State (in milliwatts).

The platform must expose a _CST object for either all or none of its processors. If the _CST object exists,
OSPM uses the C state information specified in the _CST object in lieu of P_LVL2 and P_LVL3 registers
defined in P_BLK and the P_LVLx_LAT values defined in the FADT. Also notice that if the _CST object exists
and the _PTC object does not exist, OSPM will use the Processor Control Register defined in P_BLK and
the C_State_Register registers in the _CST object.

The platform may change the number or type of C States available for OSPM use dynamically by issuing a
Notify event on the processor object with a notification value of 0x81. This will cause OSPM to re-
evaluate any _CST object residing under the processor object notified. For example, the platform might
notify OSPM that the number of supported C States has changed as a result of an asynchronous AC
insertion / removal event.

The platform must specify unique C_State_Register addresses for all entries within a given _CST object.

_CST eliminates the ACPI 1.0 restriction that all processors must have C State parity. With _CST, each
processor can have its own characteristics independent of other processors. For example, processor 0
can support C1, C2 and C3, while processor 1 supports only C1.

The fields in the processor structure remain for backward compatibility.

Example
Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBlk system IO address
6) // PBlkLen
{
Name(_CST, Package()
{
4, // There are four C-states defined here with three semantics
 // The third and fourth C-states defined have the same C3 entry
semantics
Package(){ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, 1, 20, 1000},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x161)}, 2, 40, 750},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x162)}, 3, 60, 500},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x163)}, 3, 100, 250}
})
UEFI Forum, Inc. January 2019 Page 520

ACPI Specification, Version 6.3 Processor Configuration and Control
}

Notice in the example above that OSPM should anticipate the possibility of a _CST object providing more
than one entry with the same C_State_Type value. In this case OSPM must decide which
C_State_Register it will use to enter that C state.

Example
This is an example usage of the _CST object using the typical values as defined in ACPI 1.0.

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBLK system IO address
6) // PBLK Len
{
Name(_CST, Package()
{
2, // There are two C-states defined here – C2 and C3
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x124)}, 2, 2, 750},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x125)}, 3, 65, 500}
})
}

The platform will issue a Notify(_SB.CPU0, 0x81) to inform OSPM to re-evaluate this object when the
number of available processor power states changes.

8.4.2.2 _CSD (C-State Dependency)

 This optional object provides C-state control cross logical processor dependency information to OSPM.
The _CSD object evaluates to a packaged list of information that correlates with the C-state information
returned by the _CST object. Each packaged list entry identifies the C-state for which the dependency is
being specified (as an index into the _CST object list), a dependency domain number for that C-state, the
coordination type for that C-state and the number of logical processors belonging to the domain for the
particular C-state. It is possible that a particular C-state may belong to multiple domains. That is, it is
possible to have multiple entries in the _CSD list with the same CStateIndex value.

Arguments:

None

Return Value:

A variable-length Package containing a list of C-state dependency Packages as described below.

Return Value Information

Package {
 CStateDependency[0] // Package
 ….
 CStateDependency[n] // Package
}

UEFI Forum, Inc. January 2019 Page 521

ACPI Specification, Version 6.3 Processor Configuration and Control
Each CstateDependency sub-Package contains the elements described below:

Package {
 NumEntries // Integer
 Revision // Integer (BYTE)
 Domain // Integer (DWORD)
 CoordType // Integer (DWORD)
 NumProcessors // Integer (DWORD)
 Index // Integer (DWORD)
}

Table 8-266 CStateDependency Package Values

Element Object Type Description

NumEntries Integer The number of entries in the CStateDependency package including this field.
Current value is 6.

Revision Integer
(BYTE)

The revision number of the CStateDependency package format. Current value is
0.

Domain Integer
(DWORD)

The dependency domain number to which this C state entry belongs.

CoordType Integer
(DWORD)

The type of coordination that exists (hardware) or is required (software) as a
result of the underlying hardware dependency. Could be either 0xFC (SW_ALL),
0xFD (SW_ANY) or 0xFE (HW_ALL) indicating whether OSPM is responsible for
coordinating the C-state transitions among processors with dependencies (and
needs to initiate the transition on all or any processor in the domain) or whether
the hardware will perform this coordination.

Num
Processors

Integer
(DWORD)

The number of processors belonging to the domain for the particular C-state.
OSPM will not start performing power state transitions to a particular C-state
until this number of processors belonging to the same domain for the particular
C-state have been detected and started.

Index Integer
(DWORD)

Indicates the index of the C-State entry in the _CST object for which the
dependency applies.

Given that the number or type of available C States may change dynamically, ACPI supports Notify events
on the processor object, with Notify events of type 0x81 causing OSPM to re-evaluate any _CST objects
residing under the particular processor object notified. On receipt of Notify events of type 0x81, OSPM
should re-evaluate any present _CSD objects also.

Example
This is an example usage of the _CSD structure in a Processor structure in the namespace. The example
represents a two processor configuration. The C1-type state can be independently entered on each
processor. For the C2-type state, there exists dependence between the two processors, such that one
processor transitioning to the C2-type state, causes the other processor to transition to the C2-type state.
A similar dependence exists for the C3-type state. OSPM will be required to coordinate the C2 and C3
UEFI Forum, Inc. January 2019 Page 522

ACPI Specification, Version 6.3 Processor Configuration and Control
transitions between the two processors. Also OSPM can initiate a transition on either processor to cause
both to transition to the common target C-state.

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBlk system IO address
6) // PBlkLen
{
Name (_CST, Package()
{
 3, // There are three C-states defined here with three semantics
 Package(){ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, 1, 20, 1000},
 Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x161)}, 2, 40, 750},
 Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x162)}, 3, 60, 500}
})
Name(_CSD, Package()
{
 Package(){6, 0, 0, 0xFD, 2, 1} , // 6 entries,Revision 0,Domain 0,OSPM Coordinate
 // Initiate on Any Proc,2 Procs, Index 1 (C2-type)
 Package(){6, 0, 0, 0xFD, 2, 2} // 6 entries,Revision 0 Domain 0,OSPM Coordinate
 // Initiate on Any Proc,2 Procs, Index 2 (C3-type)
})
}
Processor (
_SB.CPU1, // Processor Name
2, // ACPI Processor number
, // PBlk system IO address
) // PBlkLen
{
Name(_CST, Package()
{
 3, // There are three C-states defined here with three semantics
 Package(){ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, 1, 20, 1000},
 Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x161)}, 2, 40, 750},
 Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x162)}, 3, 60, 500}
})
Name(_CSD, Package()
{
 Package(){6, 0, 0, 0xFD, 2, 1}, // 6 entries,Revision 0,Domain 0,OSPM
Coordinate
 // Initiate on any Proc,2 Procs, Index 1 (C2-type)
 Package(){6, 0, 0, 0xFD, 2, 2} // 6 entries,Revision 0,Domain 0,OSPM Coordinate
 // Initiate on any Proc,2 Procs,Index 2 (C3-type)
})
}

When the platform issues a Notify(_SB.CPU0, 0x81) to inform OSPM to re-evaluate _CST when the
number of available processor power states changes, OSPM should also evaluate _CSD.
UEFI Forum, Inc. January 2019 Page 523

ACPI Specification, Version 6.3 Processor Configuration and Control
8.4.3 Processor Hierarchy

It is very typical for computing platforms to have a multitude of processors that share common resources,
such as caches, and which have common power states that affect groups of processors. These are
arranged in a hierarchical manner. For example, a system may contain a set of NUMA nodes, each with a
number of sockets, which may contain multiple groups of processors, each of which may contain
individual processor cores, each of which may contain multiple hardware threads. Different architectures
use different terminology to denominate logically associated processors, but terms such as package,
cluster, module, and socket are typical examples. ACPI uses the term processor container to describe a
group of associated processors. Processors are said to belong to a container if they are associated in
some way, such as a shared cache or a low power mode which affects them all.

Higher Level

Lower Level

Cluster
0

Cluster
1

System

Core0 Core1 Core2 Core3

Parent for cluster 0 and
cluster 1

Leaves

Root

Cluster 0's children

Figure 8-41 Processor Hierarchy

Figure 8-41 depicts an example system, which comprises a system level processor container, which in
turn contains two cluster processor containers, each of which contains two processors. The overall
collection is called the processor hierarchy and standard tree terminology is used to refer to different
parts of it. For example, an individual processor or container is called a node, the nodes which reside
within a processor container are called children of that parent, etc. This example is symmetric but that is
not a requirement. For example, a system may contain a different number of processors in different
containers or an asymmetric hierarchy where one side of the topology tree is deeper than another. Also
note that while this example includes a single top level processor container encompassing all processors,
this is not a requirement. It is legal for a system to be described using a collection of trees.
UEFI Forum, Inc. January 2019 Page 524

ACPI Specification, Version 6.3 Processor Configuration and Control
The processor hierarchy can be used to describe a number of different characteristics of system topology.
The main example is shared power states, see the Low Power Idle states in Section 8.4.4 for details.

8.4.3.1 Processor Container Device

This optional device is a container object that acts much like a bus node in a namespace. It may contain
child objects that are either processor devices or other processor containers. This allows representing
hierarchical processor topologies. Each processor container or processor in the hierarchy is herein
referred to as a node. The processor container device is declared using the hardware identifier (_HID)
ACPI0010.

To aid support of operating systems which do not parse processor containers, a container can carry a
Compatible ID (_CID) of PNP0A05, which represents a generic container device (see Section 5.6.7)

A processor container declaration must supply a _UID method returning an ID that is unique in the
processor container hierarchy. A processor container must contain either other processor containers or
other processor devices declared within its scope. In addition, a processor container may also contain the
following methods in its scope:

Table 8-267 Processor Container Device Objects

Object Description

_LPI Declares local power states for the hierarchy node represented by the processor container

_RDI Declares power resource dependencies that affect system level power states

_STA Determines the status of a processor container. See Section 5.6.7

_LPI may be present under a processor device, and is described in Section 8.4.4.3 _RDI can only be
present under a singular top level processor container object, and is described below.

ACPI allows the definition of more than one root level processor container. In other words, it is possible
to define multiple top level containers. For example, in a NUMA system if there are no idle states or
other objects that need to be encapsulated at the system level, multiple NUMA-node level processor
containers may be defined at the top level of the hierarchy.

Processor Container Device objects are only valid for implementations conforming to ACPI 6.0 or higher.
A platform can ascertain whether an operating system supports parsing of processor container objects
via the _OSC method (see Section 6.2.11.2).

8.4.4 Lower Power Idle States

ACPI 6.0 introduces Lower Power Idle states (LPI). This extends the specification to allow expression of
idle states that, like C-states, are selected by the OSPM when a processor goes idle, but which may affect
more than one processor, and may affect other system components. LPI extensions in the specification
leverage the processor container device, and in this way can express which parts of the system are
affected by a given LPI state.

LPI states are defined via the following objects:

• _LPI objects define the states themselves, and may be declared inside a processor or a
processor container device

• _RDI allows expressing constraints on LPI usage borne out of device usage
UEFI Forum, Inc. January 2019 Page 525

ACPI Specification, Version 6.3 Processor Configuration and Control
8.4.4.1 Hierarchical Idle States

Processor containers (Section 8.4.3.1) can be used in conjunction with _LPI (Section 8.4.4.3) to describe
idle states in a hierarchical manner. Within the processor hierarchy, each node has low power states that
are specific to that node. ACPI refers to states that are specific to a node in the hierarchy as Local Power
States. For example in the system depicted in Figure 8-42, the local power states of CPU0 are clock gate,
retention and power down.

When the OS running on a given processor detects there is no more work to schedule on that processor,
it needs to select an idle state. The state may affect more than just that processor. A processor going idle
could be the last one in the system, or in a processor container, and therefore may select a power state
what affects multiple processors. In order to select such a state, the OS needs to choose a local power
state for each affected level in the processor hierarchy.

Cluster
0

Cluster1

System

Core0 Core1 Core2 Core3

Cluster0's local states

Shallower states

Deeper states

Level ID: 3
_LPI:
 1: Power Down

Core0's local states

LevelID: 2
_LPI:
 1: Clock Gate
 2: Retention
 3: Power Down

LevelID: 2
_LPI:
 1: Clock Gate
 2: Retention
 3: Power Down

LevelID: 1
_LPI:
 1: Clock Gate
 2: Retention
 3: Power Down

LevelID: 1
_LPI:
 1: Clock Gate
 2: Retention
 3: Power Down

LevelID: 1
_LPI:
 1: Clock Gate
 2: Retention
 3: Power Down

LevelID: 1
_LPI:
 1: Clock Gate
 2: Retention
 3: Power Down

Cluster 0's children

Figure 8-42 Power states for processor hierarchy

Consider a situation where Core 0 is the last active core depicted in the example system, Figure 8-42. It
may put the system into the lowest possible idle state. To do so, the OS chooses local state 3 (Power
Down) for Core0, local state 3 (Power Down) for Cluster0, and local state 1 (Power Down) for the system.
However, most HW architectures only support a single power state request from the OS to the platform.
That is, it is not possible to make a separate local power state request per hierarchy node to the platform.
Therefore, the OS must combine the per level local power states into a single Composite power state. The
platform then acts on the Composite power state request.

A platform can only support a limited set of Composite power states, and not every combination of Local
Power states across levels is valid. The valid power states in our example system are depicted in the
following table:
UEFI Forum, Inc. January 2019 Page 526

ACPI Specification, Version 6.3 Processor Configuration and Control
Table 8-268 Valid Local State Combinations in Figure 2 example system

System Level Processor
Container

Cluster level Processor
Container

Processor

Running Running Clock Gated

Running Running Retention

Running Running Power Down

Running Clock Gated Clock Gated

Running Clock Gated Retention

Running Clock Gated Power Down

Running Retention Retention

Running Retention Power Down

Running Power Down Power Down

Power Down Power Down Power Down

8.4.4.2 Idle State Coordination

With hierarchical idle states, multiple processors affect the idle state for any non-leaf hierarchy node.
Taking our example system in Figure 8-42, for cluster 0 to enter a low power state, both Core 0 and Core
1 must be idle. In addition, the power state selection done for Core 0 and Core 1 as they go idle has
bearing on the state that can be used for Cluster 0. This requires coordination of idle state requests
between the two processors. ACPI supports two different coordination schemes (detailed in subsections
following):

• Platform coordinated
• OS initiated.

The OS and the platform can handshake on support for OS Initiated Idle or Platform Coordinated Idle
using the _OSC method as described in Section 6.2.11.2. Note that an Architecture specific command
may be required to enter OS Initiated mode, in which case please refer to architecture specific
documentation. (For PSCI documentation see http://uefi.org/acpi under the heading “PCSI
Specification”; for ARM FFH documentation, see http://uefi.org/acpi under the heading “ARM FFH
Specification”.)

8.4.4.2.1 Platform Coordinated

With the Platform Coordinated scheme, the platform is responsible for coordination of idle states across
processors. OSPM makes a request for all levels of hierarchy from each processor meaning that each
processor makes a vote by requesting a local power state for itself, its parent, its parent’s parent, etc. (In
some cases, the vote for a particular hierarchy level may be implicit – see the autopromotion discussion
below for more details). When choosing idle states at higher levels, the OSPM on a processor may opt to
keep a higher level node in a running state – this is still a vote for that node which the platform must
respect. The vote expressed by the OSPM sets out the constraints on the local power state that the
platform may choose for processor, and any parent nodes affected by the vote. In particular the vote
expresses that the platform must not enter:

1. A deeper (lower power) local state than the requested one.
UEFI Forum, Inc. January 2019 Page 527

ACPI Specification, Version 6.3 Processor Configuration and Control
2. A local power state with a higher wake up latency than the requested one.

3. A local power state with power resource dependencies that the requested state does not have.

The platform looks across the votes for each hierarchy node from all underlying cores and chooses the
deepest local state which satisfies all of the constraints associated with all of the votes. Normally, this just
means taking the shallowest state that one of the cores voted for, since shallower states have lower
wakeup latencies, lower minimum residencies, and fewer power resource dependencies. However, this
may not always be the true, as state depth and latencies do not always increase together. For the sake of
efficiency, the platform should generally not enter a power state with a higher minimum residency than
the requested one. However, this is not a strict functional requirement. The platform may resolve to a
state with higher minimum residency if it believes that is the most efficient choice based on the specific
states and circumstances.

Using the above example in Figure 8-42, a simple flow would look like this:

• Core0 goes idle – OS requests Core0 Power Down, Cluster0 Retention
• Platform receives Core0 requests – place Core0 in the Power Down state
• Core1 goes idle – OS requests Core1 Power Down, Cluster0 Power Down
• Platform receives Core1 request – puts Core1 in the Power Down state, and takes shallowest

vote for Cluster0, thus placing it into the Retention state

If the OSPM wanted to request power states beyond the cluster level, then Core0 and Core1 would both
vote for an idle state at System level too, and the platform would resolve the final state selection across
their votes and votes from any other processors under the System hierarchy via the method described
above.

As mentioned above, certain platforms support a mechanism called autopromotion where the votes for
higher level states may be implicit rather than explicit. In this scheme, the platform provides OSPM with
commands to request idle states at a lower level of the processor hierarchy which automatically imply a
specific idle state request at the respective higher level of the hierarchy. There is no command to
explicitly request entry into the higher level state, only the implicit request based on the lower level
state.

For example, if the platform illustrated in Figure 8-42 uses autopromotion for the Cluster0 Clock Gated
state, neither Core0 nor Core1 can explicitly request it. However, a core level Clock Gate request from
either Core0 or Core1 would imply a Cluster0 Clock Gate request. Therefore, if both cores request core
clock gating (or deeper), Cluster0 will be clock gated automatically by the platform. Additional details on
how autopromotion is supported by ACPI can be found in Section 8.4.4.3.4.

8.4.4.2.2 OS Initiated

In the OS Initiated coordination scheme, OSPM only requests an idle state for a particular hierarchy node
when the last underlying processor goes to sleep. Obviously a processor always selects an idle state for
itself, but idle states for higher level hierarchy nodes like clusters are only selected when the last
processor in the cluster goes idle. The platform only considers the most recent request for a particular
node when deciding on its idle state.

The main motivations for OS Initiated coordination are:

1. Avoid overhead of OSPM evaluating selection for higher level idle states which will not be used
since other processors are still awake
UEFI Forum, Inc. January 2019 Page 528

ACPI Specification, Version 6.3 Processor Configuration and Control
2. Allow OSPM to make higher level idle state selections based on the latest information by taking
only the most recent request for a particular node and ignoring requests from processors
which went to sleep in the past (and may have been based on information which is now stale)

Using the above example in a simple flow would look like this:

Step
OS View of power
states

Platform view of power
states

0: Cores 0 and 1 are both awake and running code Core0: Running

Core1: Running

Cluster0: Running

Core0: Running

Core1: Running

Cluster0: Running

1 OS on Core0 requests Core0 PowerDown Core0: PowerDown

Core1: Running

Cluster0: Running

Core0: Running

Core1: Running

Cluster0: Running

2 Platform observes request and places Core0 into
power down

Core0: PowerDown

Core1: Running

Cluster0: Running

Core0: PowerDown

Core1: Running

Cluster0: Running

3 OS on Core1 requests Core1 PowerDown and
Cluster0 PowerDown

Core0: PowerDown

Core1: PowerDown

Cluster0: PowerDown

Core0: PowerDown

Core1: Running

Cluster0: Running

4 Platform observes requests for Core1 and
Cluster0 and processes them

Core0: PowerDown

Core1: PowerDown

Cluster0: PowerDown

Core0: PowerDown

Core1: PowerDown

Cluster0: PowerDown

Note that Core1 is making a cluster decision which affects both Core0 and Core1 so OSPM should
consider expected sleep duration, wake up latency requirements, device dependencies, etc. for both
cores and not just Core1 when requesting the cluster state.

The platform is still responsible for ensuring functional correctness. For example, if Core0 wakes back up,
the cluster state requested by Core1 in the above example should be exited or the entry into the state
should be aborted. OSPM has no responsibility to guarantee that the last core down is also the first core
up, or that a core does not wake up just as another is requesting a higher level sleep state.

8.4.4.2.2.1 OS Initiated Request Semantics

With OS Initiated coordination, the ordering of requests from different cores is critically important since
the platform acts upon the latest one. If the platform does not process requests in the order the OS
intended then it may put the platform into the wrong state. Consider this scenario in our example system
in Figure 8-42:

Step OS View of power states
Platform view of
power states

0: Core0 in PowerDown, and Core1 is running Core0: PowerDown

Core1: Running

Cluster0: Running

Core0: PowerDown

Core1: Running

Cluster0: Running
UEFI Forum, Inc. January 2019 Page 529

ACPI Specification, Version 6.3 Processor Configuration and Control
Note: Bold text here indicates mismatched states.

The key issue here is the race condition between the requests from the two cores; there is no guarantee
that they reach the platform in the same order the OS made them. It is not expected to be common, but
Core0’s request could “pass” Core1’s for a variety of potential reasons – lower frequency, different cache
behavior, handling of some non-OS visible event, etc. This sequence of events results in the platform
incorrectly acting on the stale Cluster0 request from Core1 rather than the latest request from Core0. The
net result is that Cluster0 is left in the wrong state until the next wakeup.

To address such race conditions and ensure that the platform and OS have a consistent view of the
request ordering, OS Initiated idle state request semantics are enhanced to include a hierarchical
dependency check. When the platform receives a request, it is responsible for checking whether the
requesting core is really the last core down in the requested domain and rejecting the request if not.
Note that even if OSPM and the platform are behaving correctly, they may not always agree on the state
of the system due to various races. For example, the platform may see a core waking up before OSPM,
and therefore see that core as running, whilst the OSPM still sees it as sleeping. The platform can start
treating a particular core as being in a low power state, for the sake of the dependency check, once it has
seen the core’s request (so that it can be correctly ordered versus other OS requests). The platform must
start treating a core as running before returning control to the OS after it wakes up from an idle state.

1 Core1 goes idle – the OSPM requests Core1
PowerDown and Cluster0 Retention

Core0: PowerDown

Core1: PowerDown

Cluster0: Retention

Core0: PowerDown

Core1: Running

Cluster0: Running

2 Core0 receives an interrupt and wakes up into
platform

Core0: PowerDown

Core1: PowerDown

Cluster0: Retention

Core0: Running

Core1: Running

Cluster0: Running

3 Core0 moves into OSPM and starts processing
interrupt

Core0: Running

Core1: PowerDown

Cluster0: Running

Core0: Running

Core1: Running

Cluster0: Running

4 Core0 goes idle and OSPM request Core0
Power Down, Cluster0 Power Down

Core0: PowerDown

Core1: PowerDown

Cluster0: PowerDown

Core0: Running

Core1: Running

Cluster0: Running

5 Core0’s idle request “passes” Core1’s request.
Platform puts Core0 to Power Down but
ignores cluster request since Core1 is still
running

Core0: PowerDown

Core1: PowerDown

Cluster0: PowerDown

Core0: PowerDown

Core1: Running

Cluster0: Running

6 Core1’s request is observed by the platform.
Platform puts Core1 to Power Down and
Cluster0 to retention.

Core0: PowerDown

Core1: PowerDown

Cluster0: PowerDown!! (See
Note)

Core0: PowerDown

Core1: PowerDown

Cluster0:
Retention!! (See
Note)

Step OS View of power states
Platform view of
power states
UEFI Forum, Inc. January 2019 Page 530

ACPI Specification, Version 6.3 Processor Configuration and Control
With this dependency check, the above example would change as follows:

Step
OS View of power
states

Platform view of
power states

0-4: Same as above Core0: PowerDown

Core1: PowerDown

Cluster0:
PowerDown

Core0: Running

Core1: Running

Cluster0: Running

5 Core0’s idle request “passes” Core1’s request.
Platform rejects Core0’s request since it includes
Cluster0 but Core1 is still awake.

Core0: PowerDown

Core1: PowerDown

Cluster0:
PowerDown

Core0: Running

Core1: Running

Cluster0: Running

6 Core1’s request is observed by the platform.
Platform rejects Core1’s request since it includes
Cluster0 but Core0 is still awake.

Core0: PowerDown

Core1: PowerDown

Cluster0:
PowerDown

Core0: Running

Core1: Running

Cluster0: Running

7 OS resumes on Core0 Core0: Running

Core1: PowerDown

Cluster0: Running

Core0: Running

Core1: Running

Cluster0: Running

8 OS resumes on Core1 Core0: Running

Core1: Running

Cluster0: Running

Core0: Running

Core1: Running

Cluster0: Running

Once control is returned to the OS, it can handle as it sees fit – likely just re-evaluating the idle state on
both cores. When requests are received out of order, some overhead is introduced by rejecting the
command and forcing the OS to re-evaluate, but this is expected to be rare. Requests sent by the OS
should be seen by the platform in the same order the vast majority of the time, and in this case, the idle
command will proceed as normal.

It is possible that the OS may choose to keep a particular hierarchy node running even if all CPUs
underneath it are asleep. This gives rise to another potential corner case – see below.

Step
OS View of power
states

Platform view of
power states

0: Core0 in PowerDown, and Core1 is running Core0: PowerDown

Core1: Running

Cluster0: Running

Core0: PowerDown

Core1: Running

Cluster0: Running

1 Core1 goes idle – the OSPM OS requests Core1
PowerDown and Cluster0 Retention

Core0: PowerDown

Core1: PowerDown

Cluster0: Retention

Core0: PowerDown

Core1: Running

Cluster0: Running

2 Core0 receives an interrupt and wakes up into
platform

Core0: PowerDown

Core1: PowerDown

Cluster0: Retention

Core0: Running

Core1: Running

Cluster0: Running
UEFI Forum, Inc. January 2019 Page 531

ACPI Specification, Version 6.3 Processor Configuration and Control
Note: Bold text here indicates mismatched states.

The fundamental issue is that the platform cannot infer what hierarchy level a request is for, based on
what levels are being placed into a low power mode. To mitigate this, each idle state command must
include a hierarchy parameter specifying the highest level hierarchy node for which the OS is making a
request in addition to the normal idle state identifier. Even if the OS does not want some higher level
hierarchy node to enter an idle state, it should indicate if the core is the last core down for that node. This
allows the platform to understand the OS’s view of the state of the hierarchy and ensure ordering of
requests even if the OS requests a particular node to stay running.

This enhancement is illustrated in this example:

3 Core0 moves into OSPM and starts processing
interrupt

Core0: Running

Core1: PowerDown

Cluster0: Running

Core0: Running

Core1: Running

Cluster0: Running

4 Core0 goes idle and OSPM request Core0 Power
Down and requests Cluster0 to stay running

Core0: PowerDown

Core1: PowerDown

Cluster0: Running

Core0: Running

Core1: Running

Cluster0: Running

5 Core0’s idle request “passes” Core1’s request.
Platform puts Core0 to PowerDown.

Even though the OS made a request for the cluster to
run, Platform does not know to reject Core0’s
request since it doesn’t include a Cluster idle state

Core0: PowerDown

Core1: PowerDown

Cluster0: Running

Core0: PowerDown

Core1: Running

Cluster0: Running

6 Core1’s request is observed by the platform. Platform
puts Core1 to Power Down and Cluster0 to retention.

Core0: PowerDown

Core1: PowerDown

Cluster0: Running!!
(See Note, below)

Core0: PowerDown

Core1: PowerDown

Cluster0:
Retention!!(See
Note, below)

Step
OS View of power
states

Platform view of
power states

0: Core0 in PowerDown, and Core1 is running Core0: PowerDown

Core1: Running

Cluster0: Running

Core0: PowerDown

Core1: Running

Cluster0: Running

1 Core1 goes idle – the OSPM OS requests Core1
PowerDown and Cluster0 Retention and identifies
itself as last down in Cluster0

Core0: PowerDown

Core1: PowerDown

Cluster0: Retention

Core0: PowerDown

Core1: Running

Cluster0: Running

2 Core0 receives an interrupt and wakes up into
platform

Core0: PowerDown

Core1: PowerDown

Cluster0: Retention

Core0: Running

Core1: Running

Cluster0: Running

Step
OS View of power
states

Platform view of
power states
UEFI Forum, Inc. January 2019 Page 532

ACPI Specification, Version 6.3 Processor Configuration and Control
As before, once control is returned to the OS, it can handle as it sees fit – likely just re-requesting the idle
state on both cores.

8.4.4.3 _LPI (Low Power Idle States)

_LPI is an optional object that provides a method to describe Low Power Idle states that defines the local
power states for each node in a hierarchical processor topology. The OSPM uses the _LPI object to select
a local power state for each level of processor hierarchy in the system. These local state selections are
then used to produce a composite power state request that is presented to the platform by the OSPM.

This object may be used inside a Processor Container or a processor declaration. _LPI takes the following
format:

Arguments:

None

3 Core0 moves into OSPM and starts processing
interrupt

Core0: Running

Core1: PowerDown

Cluster0: Running

Core0: Running

Core1: Running

Cluster0: Running

4 Core0 goes idle and OSPM request Core0 Power
Down and requests Cluster0 to stay running and
identifies itself as last down in Cluster0

Core0: PowerDown

Core1: PowerDown

Cluster0: Running

Core0: Running

Core1: Running

Cluster0: Running

5 Core0’s idle request “passes” Core1’s request.
Platform rejects Core0’s request since it is a request
for Cluster0 but Core1 is still awake.

Core0: PowerDown

Core1: PowerDown

Cluster0:
PowerDown

Core0: Running

Core1: Running

Cluster0: Running

6 Core1’s request is observed by the platform. Platform
rejects Core1’s request since it is a request for
Cluster0 but Core0 is still awake.

Core0: PowerDown

Core1: PowerDown

Cluster0:
PowerDown

Core0: Running

Core1: Running

Cluster0: Running

7 OS resumes on Core0 Core0: Running

Core1: PowerDown

Cluster0: Running

Core0: Running

Core1: Running

Cluster0: Running

8 OS resumes on Core1 Core0: Running

Core1: Running

Cluster0: Running

Core0: Running

Core1: Running

Cluster0: Running

Step
OS View of power
states

Platform view of
power states
UEFI Forum, Inc. January 2019 Page 533

ACPI Specification, Version 6.3 Processor Configuration and Control
Return Value:

A variable-length Package containing the local power states for the parent Processor or Processor
Container device as described in the table following below. _LPI evaluation returns the below format:

Package {
 Revision, // Integer (WORD)
 LevelID, // Integer (QWORD)
 Count, // Integer (WORD)
 LPI[1], // Package
 …
 LPI[N] // Package
 }

Element Object Type Description

Revision Integer
(WORD)

The revision number of the _LPI object. Current revision is 0.

LevelID Integer
(QWORD)

A platform defined number that identifies the level of hierarchy of the
processor node to which the LPI states apply. This is used in composition of
IDs for OS Initiated states described in Section 8.4.4.3.4. In a platform that
only supports platform coordinated mode, this field must be 0.

Count Integer
(WORD)

The count of following LPI packages.

LPI[1] Package A Package containing the definition of LPI state 1.

LPI[N] Package A Package containing the definition of LPI state N.

Each LPI sub-Package contains the elements described below:

Package() {
 Min Residency, // Integer (DWORD)
 Worst case wakeup latency, // Integer (DWORD)
 Flags, // Integer (DWORD)
 Arch. Context Lost Flags, // Integer (DWORD)
 Residency Counter Frequency, // Integer (DWORD)
 Enabled Parent State, // Integer (DWORD)
 Entry Method, // Buffer (ResourceDescriptor) or
 // Integer (QWORD)
 Residency Counter Register // Buffer (ResourceDescriptor)
 Usage Counter Register // Buffer (ResourceDescriptor)
 State Name // String (ASCIIZ)

 }

Table 8-269 Extended LPI fields

Element Object Type Description

 Min Residency Integer (DWORD) Minimum Residency – time in microseconds after which a state
becomes more energy efficient than any shallower state. See
Section 8.4.4.3.3.
UEFI Forum, Inc. January 2019 Page 534

ACPI Specification, Version 6.3 Processor Configuration and Control
Worst case
wakeup latency

Integer (DWORD) Worst case time in microseconds from a wake interrupt being
asserted to the return to a running state of the owning
hierarchy node (processor or processor container). See
Section 8.4.4.3.3.

Flags Integer

(DWORD)

Valid flags are described in Table 8-270

Arch. Context Lost
Flags

Integer

(DWORD)

Architecture specific context loss flags. These flags may be
used by a processor architecture to indicate processor context
that may be lost by the power state and must be handled by
OSPM. See Section 8.4.4.3.5 “Architecture Specific Context
Loss Flags” for more detail.

Residency
Counter
Frequency

Integer

(DWORD)

Residency counter frequency in cycles-per-second (Hz). Value 0
indicates that counter runs at an architectural-specific
frequency.

Valid only if a Residency Counter Register is defined.

Enabled Parent
State

Integer

(DWORD)

Every shallower power state in the parent is also enabled. 0
implies that no local idle states may be entered at the parent
node.

Entry Method Buffer or Integer
(QWORD)

This may contain a resource descriptor or an integer

A Resource Descriptor with a single Register() descriptor may
be used to describe the register that must be read in order to
enter the power state.

Alternatively, an integer may be provided in which case the
integer would be used in composing the final Register Value
that must be used to enter this state. This composition process
is described below in Section 8.4.4.3.4 “Entry Method and
Composition”

Residency
Counter Register

Buffer Optional residency counter register which provides the
amount of time the owning hierarchy node has been in this
local power state. The time is provided in a frequency denoted
by the Residency counter frequency field (see above). The
register is optional. If the platform does not support it, then
the following NULL register descriptor should be used:

ResourceTemplate() {Register {(SystemMemory, 0, 0, 0, 0)}}

Usage Counter
Register

Buffer Optional register that provides the number of times the
owning hierarchy node has been in this local power state. If the
platform does not support this register, then the following
NULL register descriptor should be used:

ResourceTemplate() {Register {(SystemMemory, 0, 0, 0, 0)}}

State Name String (ASCIIZ) String containing a human-readable identifier of this LPI state.
This element is optional and an empty string (a null character)
should be used if this is not supported.

Element Object Type Description
UEFI Forum, Inc. January 2019 Page 535

ACPI Specification, Version 6.3 Processor Configuration and Control
Table 8-270 Flags for LPI states

Element Bits Description

Enabled 0 1 if the power state is enabled for use

0 if the power state is disabled

It is not required that all processors or processor containers include _LPI objects. However, if a processor
container includes an _LPI object, then all children processors or processor containers must have _LPI
objects.

The following sections describe the more complex properties of LPI in more detail, as well as rules
governing wakeup for LPI states.

8.4.4.3.1 Disabling a State

When a local state is disabled by clearing the Enabled bit in the Flags field, any deeper states for that
node are not renumbered. This allows other properties which rely on indexing into the state list for that
node (Enabled Parent State for example) to not change.

Disabled states should not be requested by the OS and values returned by Residency/Usage Counter
Registers are undefined.

8.4.4.3.2 Enabled Parent State

As mentioned above, LPI represent local states, which must be combined into a composite state.
However not every combination is possible. Consider the example system described in Figure 8-42. In this
system it would not be possible to simultaneously select clock gating as local state for Core0 and power
down as local state for Cluster0. As Core0 is physically in Cluster0, power gating the cluster would imply
power gating the core. The correct combinations of local states for this example system are described in
Table 8-268. LPI states support enumeration of the correct combinations through the Enabled Parent
State (EPS) property.

LPI States are 1-indexed. Much like C and S states, LPI0 is considered to be a running state. For a given LPI,
the EPS is a 1 based index into the processor containers’ _LPI states. The index points at the deepest local
power state of the parent processor that the given LPI state enables. Every shallower power state in the
parent is also enabled. Taking the system described in Figure 8-42, the states and EPS value for the states
is described in Table 8-271.
UEFI Forum, Inc. January 2019 Page 536

ACPI Specification, Version 6.3 Processor Configuration and Control
Table 8-271 Enabled Parent State values for example system

System Level Processor
Container LPI States

Enabled Parent State

0 Running N/A

1 Power Down 0

Cluster Level Processor Container LPI States

0 Running N/A

1 Clock Gating 0 – System must be running if cluster is clock gated

2 Retention 0 – System must be running if cluster is in retention

3 Power Down 1 – System may be in power down if cluster is in power down

Core Level Processor Container LPI States

0 Running N/A

1 Clock Gating 1 – Cluster may be clock gated or running of core is clock
gated

2 Retention 2 – Cluster may running, or clock gated, or in retention if core
is in retention

3 Power Down 3 – All states at cluster level are supported if the core is
powered down

8.4.4.3.3 Power, Minimum Residency, and Worst Case Wakeup Latency

Power is not included in _LPI since relative power of different states (along with minimum residency to
comprehend transition energy), and not absolute power, drive OSPM idle state decisions. To correctly
convey relative power, local states in _LPI must be declared in power consumption order. That is, the
local states for a particular hierarchy node must be listed from highest power (shallowest) to lowest
power (deepest).

The worst case wakeup latency (WCWL) for a particular local state is the longest time from when a wake
interrupt is asserted, to when the hierarchy node can return to execution. Generally, the WCWL will be
the idle state’s exit latency plus some portion of its entry latency. How much of the entry flow is included
depends on where (and if) the platform supports checking for pending wake events and aborting the idle
state entry. For any given power state there will be a “point of no return” after which the entry into the
power state cannot be reversed. This is illustrated in Figure 8-43 below. The WCWL must include the time
period from the point of no return to the time at which a wake up interrupt can be handled.
UEFI Forum, Inc. January 2019 Page 537

ACPI Specification, Version 6.3 Processor Configuration and Control
Figure 8-43 Worst case wake latency

Note that other worst case paths could end up determining the WCWL, but what is described above is
expected to be the most common. For example, there could be another period between the OS making
the idle request and the point of no return where the platform does not check for wake up events, and
which is longer than the time taken to enter and exit the power state. In that case that period would
become the worst case wakeup latency.

Figure 8-44 Energy of states A,B and C versus sleep duration

Minimum residency (MR) is the time after which a state becomes more energy efficient than any
shallower state. This parameter answers the fundamental question: how long does the hierarchy node
UEFI Forum, Inc. January 2019 Page 538

ACPI Specification, Version 6.3 Processor Configuration and Control
need to stay in the idle state to overcome the energy cost of transitioning in/out, and make choosing that
state a net win relative to shallower alternatives? Note that this also includes comparing against not
entering an idle state and keeping the node running. This is illustrated in Figure 8-44 which shows the
energy associated with three different state choices as a function of the sleep duration. Note that State
A’s MR relative to keeping the node running is not pictured.

Generally minimum residency and worst case wakeup latency will be larger for deeper states, however
this may not always be the case. Taking a different example to the above, consider two system level
states, StateY and StateZ, with similar entry overhead but where StateZ saves more power than StateY.
An abstract state list might look like:

StateX: MR = 100 us
StateY: MR = 1000 us
StateZ: MR = 800 us, power resource A must be OFF

From an energy perspective, StateZ is always preferred, but in this example, StateZ is only available when
certain device dependencies are met. This makes StateY attractive when the dependencies cannot be
met. Despite being the deeper (lower power) state, StateZ has a lower MR than StateY since the entry
overheads are similar and StateZ’s lower power more quickly amortizes the transition cost. Although the
crossover, which sets MR, should generally be versus the next shallowest state, MR is defined relative to
any shallower (higher power) state to deal with cases like this. In this case, StateZ’s MR is set by the
crossover with StateX since StateZ (if allowed based on device dependencies) is always preferred to
StateY. To achieve the lowest energy, OSPM must select the deepest (lowest power) state for which all
entry constraints are satisfied and should not assume that deeper states are not viable just because a
shallower state’s WCWL/MR threshold was not met.

Since WCWL may be used by OSPM to restrict idle state selection and guarantee response times to
critical interrupts, it should be set conservatively (erring on the high side) so that OSPM is not surprised
with worse than specified interrupt response time. On the other hand, MR helps OSPM make efficient
decisions. If MR is inaccurate in a certain scenario and OSPM chooses a state which is deeper or shallower
than optimal for a particular idle period, there may be some wasted energy but the system will not be
functionally broken. This is not to say that MR doesn’t matter –energy efficiency is important – just that
the platform may choose to optimize MR based on the typical case rather than the worst case.

8.4.4.3.3.1 Minimum Residency and Worst Case Wakeup Latency Combination Across Hierarchy
Levels

The WCWL in _LPI is for a particular local state. When evaluating composite state choices versus system
latency tolerance as part of idle state selection, OSPM will add wakeup latencies across hierarchy levels.
For example, if a system has core powerdown with WCWL = 50 us and cluster powerdown with WCWL =
20 us then the core powerdown + cluster powerdown composite state latency is calculated as 70 us.

MRs defined in _LPI apply to a particular hierarchy node. The implicit assumption is that each hierarchy
node represents an independent power manageable domain and can be considered separately. For
example, assume that a cluster retention state is legal if the underlying cores are in core powerdown or
core retention. The MR for cluster retention is based on the energy cost of taking shared logic outside of
the cores in and out of retention versus the steady state power savings achieved in that shared logic
while in that state. The key is that the specific state chosen at the core level does not fundamentally
affect the cluster level decision since it is tied to properties of shared logic outside the core. The energy
UEFI Forum, Inc. January 2019 Page 539

ACPI Specification, Version 6.3 Processor Configuration and Control
cost of entering/exiting the cluster state and the power savings it provides are independent of whether
the core is in retention or powerdown. Based on this, MRs are considered independent per level in ACPI.
That is, when comparing MR for different states to expected sleep duration for a particular node, OSPM
uses the MRs defined in that node’s _LPI as is with no adjustment based on states at lower levels of
hierarchy (though of course the state must be legal based on the lower level state’s Enabled Parent State
property).

8.4.4.3.3.2 Known Limitations with Minimum Residency and Worst Case Wakeup Latency

Note that the WCWL and MR parameters are not perfect. For example, they do not scale with frequency,
voltage, temperature, and various other factors which may affect them. Nor are the rules for how they
combine across levels perfect. For example, cluster level MRs may move slightly based on core state
choice since the entry latency of the core state will delay entry into the cluster state, derating the
expected sleep duration. The cluster level MR can be adjusted to comprehend this, but if multiple core
level states with different entry latencies enable the same cluster state, then its MR cannot perfectly
comprehend them all. With that said, this set of parameters and combination scheme is believed to strike
a good balance between simplicity/usability and accuracy.

8.4.4.3.4 Entry Method and Composition

The OSPM combines Local LPI states to create an overall composite power state. Each LPI state provides
an entry method field. These fields, for the selected local power states, are combined to create the entry
method register that must be read in order to enter a given composite power state.

To derive the appropriate register address from the local states’ entry methods, the following approach is
used:

1. Local states for Processors always declare a register based entry method. This provides a base
register.

2. Higher levels may use an integer or a register. If an Integer is used, then its value must be
added to the base register obtained in step 1. If a register is used, then this becomes the new
base register, overriding any previous value. Note that in this case, the selected LPI must imply
specific local LPI selections for all lower level nodes.

3. In OS Initiated mode it is also necessary for the OSPM to tell the platform on which hierarchy
level the calling processor is the last to go idle. This is done by adding the Level ID property of
the hierarchy node’s LPI to the base register.

The basic composition algorithm for entry state is shown in the pseudo-code below for a platform
coordinated system:

Reg = SelectedLocalState(CurrentProcessor).EntryMethod
WCWL = SelectedLocalState(CurrentProcessor).WCWL
MR = SelectedLocalState(CurrentProcessor).MR

for level = Parent(CurrentProcessor) to system
LocalState = SelectedLocalState(level)
If LocalState == Run

break
EM = LocalState.EntryMethod
WCWL = WCWL+ LocalState.WCWL
MR = LocalState.MR
If IsInteger(EM)
UEFI Forum, Inc. January 2019 Page 540

ACPI Specification, Version 6.3 Processor Configuration and Control
Reg.Addr = Reg.Addr+ZeroExtend(EM)
Else

// Entry method here overrides any previous method
Reg = EM

CompositeState.EntryMethod = Reg
CompositeState.WCWL=WCWL
CompositeState.MR=MR

In OS Initiated mode it is also necessary for the OSPM to tell the platform on which hierarchy level the
calling processor is the last to go idle and request a power state. To do this, the algorithm above is
modified as follows:

Reg = SelectedLocalState(CurrentProcessor).EntryMethod
WCWL = SelectedLocalState(CurrentProcessor).WCWL
MR = SelectedLocalState(CurrentProcessor).MR

RegDecided = False
// Retrieve Level Index from Processor’s _LPI object
LastLevel = GetLevelIDOfLevel(CurrentProcessor)

for level = Parent(CurrentProcessor) to system
LocalState = SelectedLocalState(level)

If LocalState == Run
break

EM = LocalState.EntryMethod
WCWL = WCWL+ LocalState.WCWL

 EM = LocalState.EntryMethod
 If IsInteger(EM)

Reg.Addr = Reg.Addr+ZeroExtend(EM)
 Else

// Entry method is register
Reg = EM

If IsProcessorLastInLevel(CurrentProcessor,level)
// If calling processor is last one to go idle in

 // current level, retrieve Level Index from
 // the container’s _LPI object

LastLevel = GetLevelIDOfLevel(level)

Reg.Addr = Reg.Addr+LastLevel
CompositeState.EntryMethod = Reg
CompositeState.WCWL=WCWL
CompositeState.MR=MR

In a platform coordinated system, it is possible for an LPI belonging to a hierarchy node above the
processor level to use an integer value of zero as its entry method. Since entry method composition is
done by addition, this results in the entry command for that state being the same as for a composite state
UEFI Forum, Inc. January 2019 Page 541

ACPI Specification, Version 6.3 Processor Configuration and Control
which only includes its children. An entry value of 0 essentially identifies a state as “autopromotable.”
This means that the OS does not explicitly request entry into this state, but that the platform can
automatically enter it when all children have entered states which allow the parent state based on their
EPS properties. OSPM should follow normal composition procedure for other parameters (worst case
wakeup latency, minimum residency, etc.) when including composite states involving autopromotable
local states.

This is described in the following example:

Device (SYSM) { // System level states
 Name (_HID, "ACPI0010")
 Name (_UID, 0)
 Name (_LPI,
 Package() {
 0, // Version
 0, // Level ID
 1, // Count

 Package () { // Power gating state for system
 900, // Min residency (uS)
 400, // Wake latency (uS)
 0, // Enabled Parent State
 ... // (skipped fields). . .
 ResourceTemplate () {
 // Register Entry method
 Register(FFH,0x20,0x00,0x00000000DECEA5ED,0x3)
 },
 ... // (skipped fields). . .
 }
)

 Device (CLU0) { // Package0 state
 Name (_HID, "ACPI0010")
 Name (_UID, 1)
 Name (_LPI,
 Package() {
 0, // Version
 0, // Level ID
 2, // Count
 Package () { // Retention state for Cluster
 40, // Min residency (uS)
 20, // Wake latency (uS)
 ... // (skipped fields). . .
 0, // System must be running
 0, // Integer Entry method
 ... // (skipped fields). . .
 },
 Package () { // Power Gating state for Cluster
 100, // Min residency (uS)
 80, // Wake latency (uS)
 ... // (skipped fields). . .
UEFI Forum, Inc. January 2019 Page 542

ACPI Specification, Version 6.3 Processor Configuration and Control
 1, // System may power down
 0x1020000, // Integer Entry method
 ... // (skipped fields). . .
 }
 }
)

 Name(PLPI,
 Package() {
 0, // Version
 0, // Level ID
 2, // Count
 Package () { // Retention state for CPU
 40, // Min residency (uS)
 20, // Wake latency (uS)
 ... // (skipped fields). . .
 1, // Parent node can be
 // in retention or running
 ResourceTemplate () {
 // Register Entry method
 Register(FFH,
 0x20,0x00,
 0x000000000000DEAF,0x3),
 }
 ... // (skipped fields). . .
 },
 Package () { // Power Gating state for CPU
 100, // Min residency (uS)
 80, // Wake latency (uS)
 ... // (skipped fields). . .
 2, // Parent node can be in any state
 ResourceTemplate () {
 // Register Entry method
 Register(FFH,
 0x20,0x00,
 0x0000000000000DEAD,0x3),
 }
 ... // (skipped fields). . .
 }
 }
)

 Device (CPU0) { // Core0
 Name (_HID, "ACPI0007")
 Method (_LPI, 0, NotSerialized)
 {
 return(PLPI)
 }
 }

 Device (CPU1) { // Core1
UEFI Forum, Inc. January 2019 Page 543

ACPI Specification, Version 6.3 Processor Configuration and Control
 Name (_HID, "ACPI0007")
 Method (_LPI, 0, NotSerialized)
 {
 return(PLPI)
 }
 }

 } // end of NOD0

 Device (CLU1) { // Package1 state
 Name (_HID, "ACPI0010")
 Name (_UID, 2)

 }

} // End of SYM

In the example above, the OSPM on CPU0 and CPU1 would be able to select the following composite
states:

Table 8-272 Entry method example

Core LPI Cluster LPI System LPI Composite State Entry Method

Retention

Register: 0xDEAF

Run Run Core Retention

Register: 0xDEAF

Power Down

Register 0xDEAD

Run Run Core Power Down

Register: 0xDEAD

Retention

Register: 0xDEAF

Retention

Integer: 0x0

Run Core Retain|Cluster Retention

Register 0xDEAF+0x0 = 0xDEAF

Power Down

Register: 0xDEAD

Retention

Integer: 0x0

Run Core Power Down|Cluster Retention

Register 0xDEAD+0x1020000 = 0xDEAD

Power Down

Register: 0xDEAD

Power Down

Integer:
0x1020000

Run Core Power Down|Cluster Power Down

Register 0xDEAD+0x1020000 = 0x102DEAD

Power Down

Register: 0xDEAD

Power Down

Integer:
0x1020000

Power Down

Register :
0xDECEA5ED

System Power Down

Register 0xDECEA5ED

As can be seen in the example, the cluster level retention state defines the integer value of 0 as its entry
method. By virtue of composition, this means that the entry methods for the composite states Core
Power Down and Core Power Down|Cluster Retention are the same (FFH register 0xDEAD). Similarly the
composite states for Core Retention and Core Retention|Cluster Retention are the same (FFH register
UEFI Forum, Inc. January 2019 Page 544

ACPI Specification, Version 6.3 Processor Configuration and Control
0xDEAF). Consequently, if both CPU0 and CPU1 are in either Power Down or Power Retention, then the
platform may enter cluster CLU0 into Retention.

The example also shows how a register based entry method at a high level overrides entry method
definitions of lower levels. As pointed above this is only possible if the selected LPI implies specific LPIs at
all lower levels. In this example the System Power Down LPI, entered through FFH register 0xDECEA5ED,
implies Power Down LPIs at core and cluster level since based on EPS, no other core/cluster local states
could enable System Power Down.

8.4.4.3.5 Architecture Specific Context Loss Flags

For Intel based systems the value of this flags register is 0.

For ARM based systems please refer to links to ACPI-Related Documents (http://uefi.org/acpi) under the
heading "ARM FFH Specification”.

8.4.4.3.6 Residency and Entry Counter Registers

LPI state descriptions may optionally provide Residency and Usage Count registers to allow the OSPM to
gather statistics about the platform usage of a given local state. Both registers provide running counts of
their respective statistics. To measure a statistic over some time window, OSPM should sample at the
beginning and end and calculate the delta. Whether the counters restart from 0 on various flavors of
reset/S-state exit is implementation defined so OSPM should resynchronize its baseline on any reset or Sx
exit.

The registers are optional, and if the feature is not present the platform must use a NULL register of the
following form:

ResourceTemplate() {Register {(SystemMemory, 0, 0, 0, 0)}}

The Usage Count register counts how many times the local state has been used. Whether it counts
entries or exits is implementation defined.

The Residency register counts how long the hierarchy node has been in the given LPI state, at a rate given
by LPI’s Residency Counter Frequency field. A frequency of 0 indicates that the counter runs at an
architecture-specific frequency. Whether the Residency counter runs continuously while in a local state
or updates only on exit is implementation defined. If OSPM wants to guarantee that the reading for a
particular state is current, it should read from that processor itself (or one of the underlying child
processors in the case of a higher level idle state).

8.4.4.3.7 Wake from LPI States

With _LPI, the platform can describe deep S0-idle states which may turn off fundamental resources like
bus clocks, interrupt controllers, etc. so special care must be taken to ensure that the platform can be
woken from these states. This section describes handling for device initiated wakes. There are other
wake sources such as timers, which are described elsewhere.

For device wakes, the requirement is that OSPM must not enter any LPI state that would prevent a device
enabled for wake from waking the system. This means not entering any LPI state for which any Power
Resource listed in _RDI (see the _RDI section Section 8.4.4.4) is required to be ON. Note that on a
platform coordinated system, the OSPM may choose to enter an _LPI state even if there are resources
listed in its companion RDI that are still on. However, if the OSPM has already enabled a device for wake,
UEFI Forum, Inc. January 2019 Page 545

ACPI Specification, Version 6.3 Processor Configuration and Control
and ensured the power resources needed for wake are on, the platform will demote the LPI state to one
where said resources remain on.

 The wake device uses the standard _PRx and _PRW methods to describe power resources it requires to
be ON based on its D-state and wake enabled status. This further implies that any device enabled for
wake which depends on a resource which may be turned off as part of an LPI state must describe that
dependency via _PRx/_PRW => _RDI => _LPI.

This is illustrated in the following example:

PowerResource(PWRA,0,0) {…}
PowerResource(PWRB,0,0) {…}
PowerResource(PWRC,0,0) {…}
PowerResource(PWRD,0,0) {…}
PowerResource(PWRE,0,1) {…}

Device (FOO) {
 Name(_S0W, 4) //Device in D3Cold can wake system from S0-idle
 Name(_PR0,Package(){PWRA, PWRB, PWRC})
 Name(_PR2,Package(){PWRA, PWRB})
 Name(_PR3,Package(){PWRA})
 Name(_PRE,Package(){PWRD})
 Name(_PRW,Package(){0, 0, PWRD} // PWRD must be ON for FOO to wake system
}

Device (BAR) {
 Name(_S0W, 3) // Device in D3Hot can wake system from S0-idle
 Name(_PR0,Package(){PWRA, PWRB})
 Name(_PR3,Package(){PWRC})
 Name(_PRW,Package(){PWRC}) // PWRC must be ON for BAR to wake system

}

Device (BAH) {
 Name(_S0W, 0) // This device can only wake the system from
 // S0-idle if it is in D0
 Name(_PR0,Package(){PWRA, PWRB, PWRC})
}

Device (SYM) {
 Name(_RDI,
 Package() {
 0, // Version
 Package(){} // Local State 1 is Shallow;
 // Devices FOO, BAR and BAH can wake
 // the system if enabled for wake
 Package(){PWRA, PWRB} // RDI for Local State 2. State is deeper
 // Device BAH cannot wake the system if this
 // state is used, as it needs PWRA and PWRB
 // to be able to wake the system
 Package(){PWRA, PWRB, PWRC} // RDI for Local State 3.
UEFI Forum, Inc. January 2019 Page 546

ACPI Specification, Version 6.3 Processor Configuration and Control
 // Devices BAH and BAR cannot wake
 // the system, BAH needs PWRA, PWRB
 // and PWRC, and BAR needs PWRC
 // for all devices
 Package(){PWRA, PWRB, PWRC, PWRD} // None of the devices listed
 // above could wake the system
 })
 …

The example above declares a set of power resources (PWRA/B/C/D). Additionally, it has four system
level local states that have the following dependencies:

• LPI 1: Has no power resources dependencies
• LPI 2: Requires PWRA and PWRB to be off
• LPI 3: Requires PWRA, PWRB and PWRC to be off
• LPI 4: Requires all of the power resources in the example to be off

Device BAH can only wake the system if it is in the D0 state. To be in D0 it requires PWRA, PWRB and
PWRC to be on. Therefore device BAH could only wake the system from LPI 1. If this device is enabled for
wake, then the platform must not enter LPI 2 or deeper.

Device BAR can wake the system in whilst it is in any device state other than D3Cold. However, to do so,
it requires PWRC to be on. Therefore it can only wake the system from LPI 1 or LPI 2. If this device is
enabled for wake, then the platform must not enter LPI 3 or deeper.

Device FOO can wake the system whilst it is in any device state. However to do so, it requires PWRD to be
on. Therefore it can only wake the system from LPI 1 or LPI 2 or LPI 3. If this device is enabled for wake,
then the platform must not enter LPI 4.

8.4.4.3.8 Default Idle State

The shallowest idle state for each leaf node in the hierarchy is the “default” idle state for that processor
and is assumed to always be enterable. The worst case wakeup latency and minimum residency for this
state must be low enough that OSPM need not consider them when deciding whether to use it. Aside
from putting the processor in a power state, this state has no other software-visible effects. For example,
it does not lose any context that OSPM must save/restore or have any device dependencies.

8.4.4.4 _RDI (Resource Dependencies for Idle)

Some platforms may have power resources that are shared between devices and processors. Abstractly,
these resources are managed in two stages. First, the OS does normal power resource reference counting
to detect when all device dependencies have been satisfied and the resource may be power managed
from the device perspective. Then, when the processors also go idle, the OS requests entry into specific
LPI states and the platform physically power manages the resources as part of the transition. The
dependency between the power resources and the LPI state is described in _RDI.

_RDI objects may only be present at the root processor container that describes the processor hierarchy
of the system. _RDI is not supported in a system that has more than one root node. _RDI is valid only in a
singular top level container which encompasses all processors in the system.

The OSPM will ignore _RDI objects that are present at any node other than the root node. This
simplification avoids complicated races between processors in one part of the hierarchy choosing idle
states with resource dependencies while another processor is changing device states/power resources.
UEFI Forum, Inc. January 2019 Page 547

ACPI Specification, Version 6.3 Processor Configuration and Control
Arguments:

None

Return Value:

A variable-length Package containing the resource dependencies with the following format:

Return Value Information

 Package {
 Revision, // Integer (WORD)
 RDI[1], // Package
 …
 RDI[N] // Package
}

Element Object Type Description

Revision Integer
(WORD)

The revision number of the _RDI object. Current revision is 0.

RDI[1] Package A variable length Package containing the power resource dependencies of
system level power state 1.

RDI[N] Package A variable length Package containing the power resource dependencies of
system level power state N.

Each RDI[x] sub-Package contains a variable number of References to power resources:

 Package {
 Resource[0], // Object Reference to a Power Resource Object
 …
 Resource[M] // Object Reference to a Power Resource Object
}

The Package contains as many RDI packages as there are system level power states in the root processor
container node’s _LPI object. The indexing of LPI power states in this _LPI object matches the indexing of
the RDI packages in the _RDI object. Thus the nth LPI state at the system level has resource dependencies
listed in the nth RDI. Each RDI package returns a list of the power resource objects (passive or standard
power resources) that must be in an OFF state to allow the platform to enter the LPI state. If a system
level LPI does not have any resource dependencies, the corresponding RDI should be an empty Package.

Both traditional and passive power resources can be listed as dependencies in _RDI. For traditional power
resources, OSPM should ensure that the resource is OFF before requesting a dependent LPI state. For
passive power resources, there are no _ON/_OFF/_STA methods so the only requirement is to check that
the reference count is 0 before requesting a dependent LPI state.
UEFI Forum, Inc. January 2019 Page 548

ACPI Specification, Version 6.3 Processor Configuration and Control
OSPM requirements for ordering between device/power resource transitions and power resource
dependent LPI states differ based on the coordination scheme.

In a platform coordinated system the platform must guarantee correctness and demote the requested
power state to one that will satisfy the resource and processor dependencies. OSPM may use the
dependency info in _RDI as it sees fit, and may select a dependent LPI state even if resources remain ON.

In an OS initiated system, OSPM must guarantee that all power resources are off (or reference counts are
0, for passive power resources) before requesting a dependent LPI state.

8.4.4.4.1 Example

The following ASL describes a system that uses _RDI to describe the dependencies between three power
resources and system level power states:

PowerResource(PWRA,0,0) { // power rail local to DEVA
 Method(_ON) {…} // active power resource (_OFF turns rail off)
 Method(_OFF) {…}
 Method(_STA) {…}
}

PowerResource(PWRB,0,0) { // power rail shared between DEVB and the processor
 Method(_ON) {…} // active power resource (_OFF drives platform vote)
 Method(_OFF) {…}
 Method(_STA) {…}
}

PowerResource(PWRC,0,0) {} // clock rail shared between DEVC and the processor
 // passive power resource

Device (DEVA) {
 Name(_PR0,Package(){PWRA})
}

Device (DEVB) {
 Name(_PR0,Package(){PWRB})
}

Device (DEVC) {
 Name(_PR0,Package(){PWRC})
}

Device (SYM) {
 Name(_RDI,
 Package() {
 0, // Revision
 Package(){} // Local State 1 has no power resource
 // dependencies
 Package(){PWRA} // Local State 2 cannot be entered if DEVA
 // is in D0 due to PWRA
 Package(){PWRA, PWRB, PWRC} // Local State 3 cannot be entered if
UEFI Forum, Inc. January 2019 Page 549

ACPI Specification, Version 6.3 Processor Configuration and Control
 // DEVA is in D0 (due to PWRA), DEVB is in
 // D0 (due to PWRB) or DEVC is in D0
 // (due to PWRC)
 })
 …

OSPM will turn the traditional power resource (PWRA) ON or OFF by waiting for the reference count to
reach 0 (meaning DEVA has left D0) and running the _OFF method. Similarly, PWRB is turned ON or OFF
based on the state of DEVB. Note that because the CPUs require the shared power rail to be ON while
they are running, PWRB’s _ON and _OFF drive a vote rather than the physical HW controls for the power
rail. In this case, _STA reflects the status of the vote rather than the physical state of PWRB.

OSPM guarantees ordering between PWRA/PWRB’s _ON and _OFF transitions and DEVA/DEVB’s D-state
transitions. That is, PWRA can only be turned OFF after DEVA has left D0, and must be turned ON before
transitioning DEVA to D0. However, the OS requirements for ordering between power resource
transitions and power resource dependent LPI states differ based on the coordination scheme.

In a platform coordinated system, OSPM may or may not track the power state of PWRA before selecting
local state 2 or 3. The platform must independently guarantee that PWRA is OFF before entering local
state 2 or 3, and must demote to a shallower state if OSPM selects local state 2 or 3 when PWRA is still
on. Note that because OSPM is required to correctly sequence power resource transitions with device
power transitions, the platform does not need to check the state of DEVA; it can rely on the state of
PWRA to infer that DEVA is in an appropriate D-state.

Similarly, OSPM may or may not track the state of PWRB and PWRC before selecting local state 3, and the
platform must independently guarantee that PWRB is off before entering either state. Because PWRC is a
passive power resource, the platform does not know when the reference count on the power resource
reaches 0 and instead must track DEVC’s state itself. Unless the platform has other mechanisms to track
the state of DEVC, PWRC should be defined as a traditional power resource so that the platform can use
its _ON and _OFF methods to guarantee correctness of operation.

In an OS initiated system, OSPM is required to guarantee that PWRA is OFF before selecting either local
state 2 or 3. OSPM may meet this guarantee by waiting until it believes a processor is the last man down
in the system, before checking the state of PWRA, and only selecting local state 2 or 3 in this case. If the
processor was the last man down, then the request to enter local state 2 or 3 is legal and the platform
can honor it. If another processor woke up in the meantime and turned PWRA on, then this becomes a
race between processors which is addressed in the OS Initiated Request Semantics section
(Section 8.4.4.2.2.1). Similarly, OSPM must guarantee PWRB is off and PWRC’s reference count is 0
before selecting local state 3.

In an OS initiated system, because OSPM guarantees that power resources are in their correct states
before selecting system power states, the platform should use passive power resources unless there is
additional runtime power savings to turning a power resource OFF. On a platform that only supports OS
Initiated transitions, PWRB should be defined as a passive power resource because it is shared with
processors and can only be turned off when the system power state is entered.

8.4.4.5 Compatibility

In order to support older operating systems which do not support the new idle management
infrastructure, the _OSC method can be used to detect whether the OSPM supports parsing processor
containers and objects associated with LPIs and (_LPI, _RDI). This is described in Section 6.2.11.1.
UEFI Forum, Inc. January 2019 Page 550

ACPI Specification, Version 6.3 Processor Configuration and Control
A platform may choose to expose both _CST and _LPI for backward compatibility with operating systems
which do not support _LPI. In this case, if OSPM supports _LPI, then it should be used in preference to
_CST. At run time only one idle state methodology should be used across the entire processor hierarchy -
_LPI or _CST, but not a mixture of both.

8.4.5 Processor Throttling Controls

ACPI defines two processor throttling (T state) control interfaces. These are:

• The Processor Register Block’s (P_BLK’s) P_CNT register.
• The combined _PTC, _TSS, and _TPC objects in the processor’s object list.

P_BLK based throttling state controls are described in Section 4, “ACPI Hardware Specification” and
Section 8.1.1, “Processor Power State C0”. Combined _PTC, _TSS, and _TPC based throttling state
controls expand the functionality of the P_BLK based control allowing the number of T states to be
dynamic and accommodate CPU architecture specific T state control mechanisms as indicated by
registers defined using the Functional Fixed Hardware address space. While platform definition of the
_PTC, _TSS, and _TPC objects is optional, all three objects must exist under a processor for OSPM to
successfully perform processor throttling via these controls.

8.4.5.1 _PTC (Processor Throttling Control)

_PTC is an optional object that defines a processor throttling control interface alternative to the I/O
address spaced-based P_BLK throttling control register (P_CNT) described in Section 4, “ACPI Hardware
Specification”. The processor throttling control register mechanism remains as defined in Section 8.1.1,
“Processor Power State C0.”

OSPM performs processor throttling control by writing the Control field value for the target throttling
state (T-state), retrieved from the Throttling Supported States object (_TSS), to the Throttling Control
Register (THROTTLE_CTRL) defined by the _PTC object. OSPM may select any processor throttling state
indicated as available by the value returned by the _TPC control method.

Success or failure of the processor throttling state transition is determined by reading the Throttling
Status Register (THROTTLE_STATUS) to determine the processor’s current throttling state. If the
transition was successful, the value read from THROTTLE_STATUS will match the “Status” field in the _TSS
entry that corresponds to the targeted processor throttling state.

Arguments:

None

Return Value:

A Package as described below

Return Value Information
Package
{
 ControlRegister // Buffer (Resource Descriptor)
 StatusRegister // Buffer (Resource Descriptor)
}

UEFI Forum, Inc. January 2019 Page 551

ACPI Specification, Version 6.3 Processor Configuration and Control
Table 8-273 PTC Package Values

Element Object Type Description

Control
Register

Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the throttling control register.

Status
Register

Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the throttling status register.

The platform must expose a _PTC object for either all or none of its processors. Notice that if the _PTC
object exists, the specified register is used instead of the P_CNT register specified in the Processor term.
Also notice that if the _PTC object exists and the _CST object does not exist, OSPM will use the processor
control register from the _PTC object and the P_LVLx registers from the P_BLK.

Example
This is an example usage of the _PTC object in a Processor object list:

Processor (
 _SB.CPU0, // Processor Name
 1, // ACPI Processor number
 0x120, // PBlk system IO address
 6) // PBlkLen
 { // Object List

 Name(_PTC, Package () // Processor Throttling Control object
 {
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, // Throttling_CTRL
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)} // Throttling_STATUS
 }) // End of _PTC object
 } // End of Object List

Example
This is an example usage of the _PTC object using the values defined in ACPI 1.0. This is an illustrative
example to demonstrate the mechanism with well-known values.

 Processor (
 _SB.CPU0, // Processor Name
 1, // ACPI Processor number
 0x120, // PBLK system IO address
 6) // PBLK Len
 { // Object List

 Name(_PTC, Package () // Processor Throttling Control object –
 // 32 bit wide IO space-based register at the <P_BLK>
address
 {
 ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)}, // Throttling_CTRL
 ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)} // Throttling_STATUS
 }) // End of _PTC object
 } // End of Object List
UEFI Forum, Inc. January 2019 Page 552

ACPI Specification, Version 6.3 Processor Configuration and Control
8.4.5.2 _TSS (Throttling Supported States)

This optional object indicates to OSPM the number of supported processor throttling states that a
platform supports. This object evaluates to a packaged list of information about available throttling
states including percentage of maximum internal CPU core frequency, maximum power dissipation,
control register values needed to transition between throttling states, and status register values that
allow OSPM to verify throttling state transition status after any OS-initiated transition change request.
The list is sorted in descending order by power dissipation. As a result, the zeroth entry describes the
highest performance throttling state (no throttling applied) and the ‘nth’ entry describes the lowest
performance throttling state (maximum throttling applied).

When providing the _TSS, the platform must supply a _TSS entry whose Percent field value is 100. This
provides a means for OSPM to disable throttling and achieve maximum performance.

Arguments:

None

Return Value:

A variable-length Package containing a list of Tstate sub-packages as described below

Return Value Information

Package {
 TState [0] // Package – Throttling state 0
 ….
 TState [n] // Package – Throttling state n
}

Each Tstate sub-Package contains the elements described below:

Package {
 Percent // Integer (DWORD)
 Power // Integer (DWORD)
 Latency // Integer (DWORD)
 Control // Integer (DWORD)
 Status // Integer (DWORD)
}

Table 8-274 TState Package Values

Element Object Type Description

Percent Integer
(DWORD)

Indicates the percent of the core CPU operating frequency that will be
available when this throttling state is invoked. The range for this field is 1-100.
This percentage applies independent of the processor’s performance state (P-
state). That is, this throttling state will invoke the percentage of maximum
frequency indicated by this field as applied to the CoreFrequency field of the
_PSS entry corresponding to the P-state for which the processor is currently
resident.
UEFI Forum, Inc. January 2019 Page 553

ACPI Specification, Version 6.3 Processor Configuration and Control
8.4.5.3 _TPC (Throttling Present Capabilities)

This optional object is a method that dynamically indicates to OSPM the number of throttling states
currently supported by the platform. This method returns a number that indicates the _TSS entry number
of the highest power throttling state that OSPM can use at a given time. OSPM may choose the
corresponding state entry in the _TSS as indicated by the value returned by the _TPC method or any
lower power (higher numbered) state entry in the _TSS.

Arguments:

None

Return Value:

An Integer containing the number of states supported:

0 – states 0 ... nth state available (all states available)

1 – state 1 ... nth state available

2 – state 2 ... nth state available

…

n – state n available only

In order to support dynamic changes of _TPC object, Notify events on the processor object of type 0x82
will cause OSPM to reevaluate any _TPC object in the processor’s object list. This allows AML code to
notify OSPM when the number of supported throttling states may have changed as a result of an
asynchronous event. OSPM ignores _TPC Notify events on platforms that support P-states unless the
platform has limited OSPM’s use of P-states to the lowest power P-state. OSPM may choose to disregard
any platform conveyed T-state limits when the platform enables OSPM usage of other than the lowest
power P-state.

Power Integer
(DWORD)

Indicates the throttling state’s maximum power dissipation (in milliWatts).
OSPM ignores this field on platforms the support P-states, which provide
power dissipation information via the _PSS object.

Latency Integer
(DWORD)

Indicates the worst-case latency in microseconds that the CPU is unavailable
during a transition from any throttling state to this throttling state.

Control Integer
(DWORD)

Indicates the value to be written to the Processor Control Register
(THROTTLE_CTRL) in order to initiate a transition to this throttling state.

Status Integer
(DWORD)

Indicates the value that OSPM will compare to a value read from the Throttle
Status Register (THROTTLE_STATUS) to ensure that the transition to the
throttling state was successful. OSPM may always place the CPU in the lowest
power throttling state, but additional states are only available when indicated
by the _TPC control method. A value of zero indicates the transition to the
Throttling state is asynchronous, and as such no status value comparison is
required.

Element Object Type Description
UEFI Forum, Inc. January 2019 Page 554

ACPI Specification, Version 6.3 Processor Configuration and Control
8.4.5.4 _TSD (T-State Dependency)

This optional object provides T-state control cross logical processor dependency information to OSPM.
The _TSD object evaluates to a packaged list containing a single entry that expresses the T-state control
dependency among a set of logical processors.

Arguments:

None

Return Value:

A Package containing a single entry consisting of a T-state dependency Package as described below.

Return Value Information

Package {
 TStateDependency[0] // Package
}

The TStateDependency sub-Package contains the elements described below:

Package {
 NumEntries // Integer
 Revision // Integer (BYTE)
 Domain // Integer (DWORD)
 CoordType // Integer (DWORD)
 NumProcessors // Integer (DWORD)
}

Table 8-275 TStateDependency Package Values

Element Object Type Description

NumEntries Integer The number of entries in the TStateDependency package including this field.
Current value is 5.

Revision Integer
(BYTE)

The revision number of the TStateDependency package format. Current
value is 0.

Domain Integer
(DWORD)

The dependency domain number to which this T state entry belongs.

CoordType Integer
(DWORD)

The type of coordination that exists (hardware) or is required (software) as a
result of the underlying hardware dependency. Could be either 0xFC
(SW_ALL), 0xFD (SW_ANY) or 0xFE (HW_ALL) indicating whether OSPM is
responsible for coordinating the T-state transitions among processors with
dependencies (and needs to initiate the transition on all or any processor in
the domain) or whether the hardware will perform this coordination.

Num
Processors

Integer
(DWORD)

The number of processors belonging to the domain for this logical
processor’s T-states. OSPM will not start performing power state transitions
to a particular T-state until this number of processors belonging to the same
domain have been detected and started.
UEFI Forum, Inc. January 2019 Page 555

ACPI Specification, Version 6.3 Processor Configuration and Control
Example
This is an example usage of the _TSD structure in a Processor structure in the namespace. The example
represents a two processor configuration with three T-states per processor. For all T-states, there exists
dependence between the two processors, such that one processor transitioning to a particular T-state,
causes the other processor to transition to the same T-state. OSPM will be required to coordinate the T-
state transitions between the two processors and can initiate a transition on either processor to cause
both to transition to the common target T-state.

 Processor (
 _SB.CPU0, // Processor Name
 1, // ACPI Processor number
 0x120, // PBlk system IO address
 6) // PBlkLen
 { //Object List

 Name(_PTC, Package () // Processor Throttling Control object –
 // 32 bit wide IO space-based register at the <P_BLK>
address
 {
 ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)}, // Throttling_CTRL
 ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)} // Throttling_STATUS
 }) // End of _PTC object

 Name (_TSS, Package()
 {
 Package() {
 0x64, // Frequency Percentage (100%, Throttling OFF
state)
 0x0, // Power
 0x0, // Transition Latency
 0x7, // Control THT_EN:0 THTL_DTY:111
 0x0, // Status
 }

 Package() {
 0x58, // Frequency Percentage (87.5%)
 0x0, // Power
 0x0, // Transition Latency
 0xF, // Control THT_EN:1 THTL_DTY:111
 0x0, // Status
 }

 Package() {
 0x4B, // Frequency Percentage (75%)
 0x0, // Power
 0x0, // Transition Latency
 0xE, // Control THT_EN:1 THTL_DTY:110
 0x0, // Status
 }
 })
UEFI Forum, Inc. January 2019 Page 556

ACPI Specification, Version 6.3 Processor Configuration and Control
 Name (_TSD, Package()
 {
 Package(){5, 0, 0, 0xFD, 2} // 5 entries, Revision 0, Domain 0,
 // OSPM Coordinate, 2 Procs
 }) // End of _TSD object

 Method (_TPC, 0) // Throttling Present Capabilities method
 {
 If (_SB.AC)
 {
 Return(0) // All Throttle States are available for use.
 }
 Else
 {
 Return(2) // Throttle States 0 an 1 won’t be used.
 }
 } // End of _TPC method
 } // End of processor object list

 Processor (
 _SB.CPU1, // Processor Name
 2, // ACPI Processor number
 , // PBlk system IO address
) // PBlkLen
 { //Object List

 Name(_PTC, Package () // Processor Throttling Control object –
 // 32 bit wide IO space-based register at the
 // <P_BLK> address
 {
 ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)}, // Throttling_CTRL
 ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)} // Throttling_STATUS
 }) // End of _PTC object

 Name (_TSS, Package()
 {
 Package() {
 0x64, // Frequency Percentage (100%, Throttling OFF
state)
 0x0, // Power
 0x0, // Transition Latency
 0x7, // Control THT_EN:0 THTL_DTY:111
 0x0, // Status
 }

 Package() {
 0x58, // Frequency Percentage (87.5%)
 0x0, // Power
 0x0, // Transition Latency
 0xF, // Control THT_EN:1 THTL_DTY:111
UEFI Forum, Inc. January 2019 Page 557

ACPI Specification, Version 6.3 Processor Configuration and Control
 0x0, // Status
 }`

 Package() {
 0x4B, // Frequency Percentage (75%)
 0x0, // Power
 0x0, // Transition Latency
 0xE, // Control THT_EN:1 THTL_DTY:110
 0x0, // Status
 }
 })

 Name (_TSD, Package()
 {
 Package(){5, 0, 0, 0xFD, 2} // 5 entries, Revision 0, Domain 0,
 // OSPM Coordinate, 2 Procs
 }) // End of _TSD object

 Method (_TPC, 0) // Throttling Present Capabilities method
 {
 If (_SB.AC)
 {
 Return(0) // All Throttle States are available for use.
 }
 Else
 {
 Return(2) // Throttle States 0 an 1 won’t be used.
 }
 } // End of _TPC method
 } // End of processor object list

8.4.5.5 _TDL (T-state Depth Limit)

This optional object evaluates to the _TSS entry number of the lowest power throttling state that OSPM
may use. _TDL enables the platform to limit the amount of performance reduction that OSPM may invoke
using processor throttling controls in an attempt to alleviate an adverse thermal condition. OSPM may
choose the corresponding state entry in the _TSS as indicated by the value returned by the _TDL object or
a higher performance (lower numbered) state entry in the _TSS down to and including the _TSS entry
number returned by the _TPC object or the first entry in the table (if _TPC is not implemented). The value
returned by the _TDL object must be greater than or equal to the value returned by the _TPC object or
the corresponding value to the last entry in the _TSS if _TPC is not implemented. In the event of a conflict
between the values returned by the evaluation of the _TDL and _TPC objects, OSPM gives precedence to
the _TPC object, limiting power consumption.

Arguments:

None

Return Value:

An Integer containing the Throttling Depth Limit _TSS entry number:

0 – throttling disabled.
UEFI Forum, Inc. January 2019 Page 558

ACPI Specification, Version 6.3 Processor Configuration and Control
1 – state 1 is the lowest power T-state available.

2 – state 2 is the lowest power T-state available.

…

n – state n is the lowest power T-state available.

In order for the platform to dynamically indicate the limit of performance reduction that is available for
OSPM use, Notify events on the processor object of type 0x82 will cause OSPM to reevaluate any _TDL
object in the processor’s object list. This allows AML code to notify OSPM when the number of supported
throttling states may have changed as a result of an asynchronous event. OSPM ignores _TDL Notify
events on platforms that support P-states unless the platform has limited OSPM’s use of P-states to the
lowest power P-state. OSPM may choose to disregard any platform conveyed T-state depth limits when
the platform enables OSPM usage of other than the lowest power P-state.

8.4.6 Processor Performance Control

Processor performance control is implemented through three optional objects whose presence indicates
to OSPM that the platform and CPU are capable of supporting multiple performance states. The platform
must supply all three objects if processor performance control is implemented. The platform must
expose processor performance control objects for either all or none of its processors. The processor
performance control objects define the supported processor performance states, allow the processor to
be placed in a specific performance state, and report the number of performance states currently
available on the system.

In a multiprocessing environment, all CPUs must support the same number of performance states and
each processor performance state must have identical performance and power-consumption
parameters. Performance objects must be present under each processor object in the system for OSPM
to utilize this feature.

Processor performance control objects include the ‘_PCT’ package, ‘_PSS’ package, and the ‘_PPC’
method as detailed below.

8.4.6.1 _PCT (Performance Control)

This optional object declares an interface that allows OSPM to transition the processor into a
performance state. OSPM performs processor performance transitions by writing the performance
state–specific control value to a Performance Control Register (PERF_CTRL).

OSPM may select a processor performance state as indicated by the performance state value returned by
the _PPC method, or any lower power (higher numbered) state. The control value to write is contained in
the corresponding _PSS entry’s “Control” field.

Success or failure of the processor performance transition is determined by reading a Performance Status
Register (PERF_STATUS) to determine the processor’s current performance state. If the transition was
successful, the value read from PERF_STATUS will match the “Status” field in the _PSS entry that
corresponds to the desired processor performance state.

Arguments:

None

Return Value:

A Package as described below
UEFI Forum, Inc. January 2019 Page 559

ACPI Specification, Version 6.3 Processor Configuration and Control
Return Value Information

Package
{
 ControlRegister // Buffer (Resource Descriptor)
 StatusRegister // Buffer (Resource Descriptor)
}

Table 8-276 PCT Package Values

Element Object Type Description

Control
Register

Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the performance control register.

Status
Register

Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the performance status register.

Example

Name (_PCT, Package()
{
 ResourceTemplate(){Perf_Ctrl_Register}, //Generic Register Descriptor
 ResourceTemplate(){Perf_Status_Register} //Generic Register Descriptor
}) // End of _PCT

8.4.6.2 _PSS (Performance Supported States)

This optional object indicates to OSPM the number of supported processor performance states that any
given system can support. This object evaluates to a packaged list of information about available
performance states including internal CPU core frequency, typical power dissipation, control register
values needed to transition between performance states, and status register values that allow OSPM to
verify performance transition status after any OS-initiated transition change request. The list is sorted in
descending order by typical power dissipation. As a result, the zeroth entry describes the highest
performance state and the ‘nth’ entry describes the lowest performance state.

Arguments:

None

Return Value:

A variable-length Package containing a list of Pstate sub-packages as described below

Return Value Information
Package {
 PState [0] // Package – Performance state 0
 ….
 PState [n] // Package – Performance state n
}

UEFI Forum, Inc. January 2019 Page 560

ACPI Specification, Version 6.3 Processor Configuration and Control
Each Pstate sub-Package contains the elements described below:

Package {
 CoreFrequency // Integer (DWORD)
 Power // Integer (DWORD)
 Latency // Integer (DWORD)
 BusMasterLatency // Integer (DWORD)
 Control // Integer (DWORD)
 Status // Integer (DWORD)
}

Table 8-277 PState Package Values

Element Object Type Description

Core
Frequency

Integer
(DWORD)

Indicates the core CPU operating frequency (in MHz).

Power Integer
(DWORD)

Indicates the performance state’s maximum power dissipation (in
milliwatts).

Latency Integer
(DWORD)

Indicates the worst-case latency in microseconds that the CPU is unavailable
during a transition from any performance state to this performance state.

Bus Master
Latency

Integer
(DWORD)

Indicates the worst-case latency in microseconds that Bus Masters are
prevented from accessing memory during a transition from any
performance state to this performance state.

Control Integer
(DWORD)

Indicates the value to be written to the Performance Control Register
(PERF_CTRL) in order to initiate a transition to the performance state.

Status Integer
(DWORD)

Indicates the value that OSPM will compare to a value read from the
Performance Status Register (PERF_STATUS) to ensure that the transition to
the performance state was successful. OSPM may always place the CPU in
the lowest power state, but additional states are only available when
indicated by the _PPC method.

8.4.6.3 _PPC (Performance Present Capabilities)

This optional object is a method that dynamically indicates to OSPM the number of performance states
currently supported by the platform. This method returns a number that indicates the _PSS entry number
of the highest performance state that OSPM can use at a given time. OSPM may choose the
corresponding state entry in the _PSS as indicated by the value returned by the _PPC method or any
lower power (higher numbered) state entry in the _PSS.

Arguments:

None

Return Value:

An Integer containing the range of states supported

0 – States 0 through nth state are available (all states available)

1 – States 1 through nth state are available
UEFI Forum, Inc. January 2019 Page 561

ACPI Specification, Version 6.3 Processor Configuration and Control
2 – States 2 through nth state are available

…

n – State n is available only

In order to support dynamic changes of _PPC object, Notify events on the processor object are allowed.
Notify events of type 0x80 will cause OSPM to reevaluate any _PPC objects residing under the particular
processor object notified. This allows AML code to notify OSPM when the number of supported states
may have changed as a result of an asynchronous event (AC insertion/removal, docked, undocked, and so
on).

8.4.6.3.1 OSPM _OST Evaluation

When processing of the _PPC object evaluation completes, OSPM evaluates the _OST object, if present
under the Processor device, to convey _PPC evaluation status to the platform. _OST arguments specific
to _PPC evaluation are described below.

Arguments: (2)

Arg0 – Source Event (Integer) : 0x80

Arg1 – Status Code (Integer) : see below

Return Value:

None

Argument Information:
Arg1 – Status Code

0: Success – OSPM is now using the performance states specified

1: Failure – OSPM has not changed the number of performance states in use.

8.4.6.4 Processor Performance Control Example

Example
This is an example of processor performance control objects in a processor object list.

In this example, a uniprocessor platform that has processor performance capabilities with support for
three performance states as follows:

1. 500 MHz (8.2W) supported at any time

2. 600 MHz (14.9W) supported only when AC powered

3. 650 MHz (21.5W) supported only when docked

It takes no more than 500 microseconds to transition from one performance state to any other
performance state.

During a performance transition, bus masters are unable to access memory for a maximum of 300
microseconds.

The PERF_CTRL and PERF_STATUS registers are implemented as Functional Fixed Hardware.

The following ASL objects are implemented within the system:
UEFI Forum, Inc. January 2019 Page 562

ACPI Specification, Version 6.3 Processor Configuration and Control
_SB.DOCK: Evaluates to 1 if system is docked, zero otherwise.

_SB.AC: Evaluates to 1 if AC is connected, zero otherwise.

 Processor (
 _SB.CPU0, // Processor Name
 1, // ACPI Processor number
 0x120, // PBlk system IO address
 6) // PBlkLen
 {
 Name(_PCT, Package () // Performance Control
object
 {
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, // PERF_CTRL
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)} // PERF_STATUS
 }) // End of _PCT object

 Name (_PSS, Package()
 {
 Package(){650, 21500, 500, 300, 0x00, 0x08}, // Performance State
zero (P0)
 Package(){600, 14900, 500, 300, 0x01, 0x05}, // Performance State one
(P1)
 Package(){500, 8200, 500, 300, 0x02, 0x06} // Performance State two
(P2)
 }) // End of _PSS object

 Method (_PPC, 0) // Performance Present Capabilities method
 {
 If (_SB.DOCK)
 {
 Return(0) // All _PSS states available (650, 600, 500).
 }
 If (_SB.AC)
 {
 Return(1) // States 1 and 2 available (600, 500).
 }
 Else
 {
 Return(2) // State 2 available (500)
 }
 } // End of _PPC method
 } // End of processor object list

The platform will issue a Notify(_SB.CPU0, 0x80) to inform OSPM to re-evaluate this object when the
number of available processor performance states changes.
UEFI Forum, Inc. January 2019 Page 563

ACPI Specification, Version 6.3 Processor Configuration and Control
8.4.6.5 _PSD (P-State Dependency)

This optional object provides performance control, P-state or CPPC, logical processor dependency
information to OSPM. The _PSD object evaluates to a packaged list containing a single entry that
expresses the performance control dependency among a set of logical processors.

Arguments:

None

Return Value:

A Package with a single entry consisting of a P-state dependency Package as described below.

Return Value Information

Package {
 PStateDependency[0] // Package
}

The PStateDependency sub-Package contains the elements described below:

Package {
 NumEntries // Integer
 Revision // Integer (BYTE)
 Domain // Integer (DWORD)
 CoordType // Integer (DWORD)
 NumProcessors // Integer (DWORD)
}

Table 8-278 PStateDependency Package Values

Element Object Type Description

NumEntries Integer The number of entries in the PStateDependency package including this field.
Current value is 5.

Revision Integer
(BYTE)

The revision number of the PStateDependency package format. Current
value is 0.

Domain Integer
(DWORD)

The dependency domain number to which this P state entry belongs.

CoordType Integer
(DWORD)

The type of coordination that exists (hardware) or is required (software) as
a result of the underlying hardware dependency. Could be either 0xFC
(SW_ALL), 0xFD (SW_ANY) or 0xFE (HW_ALL) indicating whether OSPM is
responsible for coordinating the P-state transitions among processors with
dependencies (and needs to initiate the transition on all or any processor in
the domain) or whether the hardware will perform this coordination.
UEFI Forum, Inc. January 2019 Page 564

ACPI Specification, Version 6.3 Processor Configuration and Control
Example
This is an example usage of the _PSD structure in a Processor structure in the namespace. The example
represents a two processor configuration with three performance states per processor. For all
performance states, there exists dependence between the two processors, such that one processor
transitioning to a particular performance state, causes the other processor to transition to the same
performance state. OSPM will be required to coordinate the P-state transitions between the two
processors and can initiate a transition on either processor to cause both to transition to the common
target P-state.

 Processor (
 _SB.CPU0, // Processor Name
 1, // ACPI Processor number
 0x120, // PBlk system IO address
 6) // PBlkLen
 {
 Name(_PCT, Package () // Performance Control object
 {
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, // PERF_CTRL
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)} // PERF_STATUS
 }) // End of _PCT object

 Name (_PSS, Package()
 {
 Package(){650, 21500, 500, 300, 0x00, 0x08}, // Performance State zero
(P0)
 Package(){600, 14900, 500, 300, 0x01, 0x05}, // Performance State one
(P1)
 Package(){500, 8200, 500, 300, 0x02, 0x06} // Performance State two
(P2)
 }) // End of _PSS object

 Method (_PPC, 0) // Performance Present Capabilities method
 {
 } // End of _PPC method

 Name (_PSD, Package()
 {
 Package(){5, 0, 0, 0xFD, 2} // 5 entries, Revision 0), Domain 0, OSPM
 // Coordinate, Initiate on any Proc, 2 Procs
 }) // End of _PSD object
 } // End of processor object list

 Processor (

Num
Processors

Integer
(DWORD)

The number of processors belonging to the domain for this logical
processor’s P-states. OSPM will not start performing power state transitions
to a particular P-state until this number of processors belonging to the same
domain have been detected and started.
UEFI Forum, Inc. January 2019 Page 565

ACPI Specification, Version 6.3 Processor Configuration and Control
 _SB.CPU1, // Processor Name
 2, // ACPI Processor number
 , // PBlk system IO address
) // PBlkLen
 {
 Name(_PCT, Package () // Performance Control object
 {
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, // PERF_CTRL
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)} // PERF_STATUS
 }) // End of _PCT object

 Name (_PSS, Package()
 {
 Package(){650, 21500, 500, 300, 0x00, 0x08}, // Performance State zero
(P0)
 Package(){600, 14900, 500, 300, 0x01, 0x05}, // Performance State one
(P1)
 Package(){500, 8200, 500, 300, 0x02, 0x06} // Performance State two
(P2)
 }) // End of _PSS object

 Method (_PPC, 0) // Performance Present Capabilities method
 {
 } // End of _PPC method

 Name (_PSD, Package()
 {
 Package(){5, 0, 0, 0xFD, 2} // 5 entries, Revision 0, Domain 0, OSPM
 // Coordinate, Initiate on any Proc, 2 Procs
 }) // End of _PSD object
 } // End of processor object list

8.4.6.6 _PDL (P-state Depth Limit)

This optional object evaluates to the _PSS entry number of the lowest performance P-state that OSPM
may use when performing passive thermal control. OSPM may choose the corresponding state entry in
the _PSS as indicated by the value returned by the _PDL object or a higher performance (lower
numbered) state entry in the _PSS down to and including the _PSS entry number returned by the _PPC
object or the first entry in the table (if _PPC is not implemented). The value returned by the _PDL object
must be greater than or equal to the value returned by the _PPC object or the corresponding value to the
last entry in the _PSS if _PPC is not implemented. In the event of a conflict between the values returned
by the evaluation of the _PDL and _PPC objects, OSPM gives precedence to the _PPC object, limiting
power consumption.

Arguments:

None

Return Value:

An Integer containing the P-state Depth Limit _PSS entry number:
UEFI Forum, Inc. January 2019 Page 566

ACPI Specification, Version 6.3 Processor Configuration and Control
0 – P0 is the only P-state available for OSPM use

1 – state 1 is the lowest power P-state available

2 – state 2 is the lowest power P-state available

…

n – state n is the lowest power P-state available

In order for the platform to dynamically indicate a change in the P-state depth limit, Notify events on the
processor object of type 0x80 will cause OSPM to reevaluate any _PDL object in the processor’s object
list. This allows AML code to notify OSPM when the number of supported performance states may have
changed as a result of an asynchronous event.\

8.4.7 Collaborative Processor Performance Control

Collaborative processor performance control defines an abstracted and flexible mechanism for OSPM to
collaborate with an entity in the platform to manage the performance of a logical processor. In this
scheme, the platform entity is responsible for creating and maintaining a performance definition that
backs a continuous, abstract, unit-less performance scale. During runtime, OSPM requests desired
performance on this abstract scale and the platform entity is responsible for translating the OSPM
performance requests into actual hardware performance states. The platform may also support the
ability to autonomously select a performance level appropriate to the current workload. In this case,
OSPM conveys information to the platform that guides the platform's performance level selection.

Prior processor performance controls (P-states and T-states) have described their effect on processor
performance in terms of processor frequency. While processor frequency is a rough approximation of the
speed at which the processor completes work, workload performance isn’t guaranteed to scale with
frequency. Therefore, rather than prescribe a specific metric for processor performance, Collaborative
Processor Performance Control leaves the definition of the exact performance metric to the platform.
The platform may choose to use a single metric such as processor frequency, or it may choose to blend
multiple hardware metrics to create a synthetic measure of performance. In this way the platform is free
to deliver the OSPM requested performance level without necessarily delivering a specific processor
frequency. OSPM must make no assumption about the exact meaning of the performance values
presented by the platform, or how they may correlate to specific hardware metrics like processor
frequency.

Platforms must use the same performance scale for all processors in the system. On platforms with
heterogeneous processors, the performance characteristics of all processors may not be identical. In this
case, the platform must synthesize a performance scale that adjusts for differences in processors, such
that any two processors running the same workload at the same performance level will complete in
approximately the same time. The platform should expose different capabilities for different classes of
processors, so as to accurately reflect the performance characteristics of each processor.

The control mechanisms are abstracted by the _CPC object method, which describes how to control and
monitor processor performance in a generic manner. The register methods may be implemented in the
Platform Communications Channel (PCC) interface (see Section 14). This provides sufficient flexibility that
the entity OSPM communicates with may be the processor itself, the platform chipset, or a separate
entity (e.g., a BMC).

In order to provide backward compatibility with existing tools that report processor performance as
frequencies, the _CPC object can optionally provide processor frequency range values for use by the OS.
UEFI Forum, Inc. January 2019 Page 567

ACPI Specification, Version 6.3 Processor Configuration and Control
If these frequency values are provided, the restrictions on _CPC information usage still remain: the OSPM
must make no assumption about the exact meaning of the performance values presented by the
platform, and all functional decisions and interaction with the platform still happen using the abstract
performance scale. The frequency values are only contained in the _CPC object to allow the OS to
present performance data in a simple frequency range, when frequency is not discoverable from the
platform via another mechanism.

8.4.7.1 _CPC (Continuous Performance Control)

This optional object declares an interface that allows OSPM to transition the processor into a
performance state based on a continuous range of allowable values. OSPM writes the desired
performance value to the Desired Performance Register, and the platform maps the desired performance
to an internal performance state.. If supported by the platform, OSPM may alternatively enable
autonomous performance level selection while specifying minimum and maximum performance
requirements.

Optional _CPC package fields that are not supported by the platform should be encoded as follows:

• Integer fields: Integer 0
• Register fields: the following NULL register descriptor should be used:

ResourceTemplate() {Register {(SystemMemory, 0, 0, 0, 0)}}

Arguments:

None

Return Value:

A Package containing the performance control information.

The performance control package contains the elements described below:

Package
{
 NumEntries, // Integer
 Revision, // Integer
 HighestPerformance, // Integer
or Buffer (Resource Descriptor)
 NominalPerformance, // Integer
or Buffer (Resource Descriptor)
 LowestNonlinearPerformance, // Integer
or Buffer (Resource Descriptor)
 LowestPerformance, // Integer
or Buffer (Resource Descriptor)
 GuaranteedPerformanceRegister, // Buffer
(Resource Descriptor)
 DesiredPerformanceRegister, // Buffer
(Resource Descriptor)
 MinimumPerformanceRegister, // Buffer
(Resource Descriptor)
UEFI Forum, Inc. January 2019 Page 568

ACPI Specification, Version 6.3 Processor Configuration and Control
 MaximumPerformanceRegister, // Buffer
(Resource Descriptor)
 PerformanceReductionToleranceRegister, // Buffer
(Resource Descriptor)
 TimeWindowRegister, // Buffer
(Resource Descriptor)
 CounterWraparoundTime, // Integer
or Buffer (Resource Descriptor)
 ReferencePerformanceCounterRegister, // Buffer
(Resource Descriptor)
 DeliveredPerformanceCounterRegister, // Buffer
(Resource Descriptor)
 PerformanceLimitedRegister, // Buffer
(Resource Descriptor)
 CPPCEnableRegister // Buffer
(Resource Descriptor)
 AutonomousSelectionEnable, // Integer
or Buffer (Resource Descriptor)
 AutonomousActivityWindowRegister, // Buffer
(Resource Descriptor)
 EnergyPerformancePreferenceRegister, // Buffer
(Resource Descriptor)
 ReferencePerformance // Integer
or Buffer (Resource Descriptor)
 LowestFrequency, // Integer or Buffer
(Resource Descriptor)
 NominalFrequency // Integer or Buffer
(Resource Descriptor)
}

Table 8-279 Continuous Performance Control Package Values

Element
Object
Type

Description

NumEntries Integer The number of entries in the _CPC package, including this one.
Current value is 23.

Revision Integer
(BYTE)

The revision number of the _CPC package format. Current value is 3.

Highest Performance Integer
(DWORD)
or Buffer

Indicates the highest level of performance the processor is
theoretically capable of achieving, given ideal operating conditions. If
this element is an Integer, OSPM reads the integer value directly. If
this element is a Buffer, it must contain a Resource Descriptor with a
single Register() to read the value from.
UEFI Forum, Inc. January 2019 Page 569

ACPI Specification, Version 6.3 Processor Configuration and Control
Nominal Performance Integer
(DWORD)
or Buffer

Indicates the highest sustained performance level of the processor. If
this element is an Integer, OSPM reads the integer value directly. If
this element is a Buffer, it must contain a Resource Descriptor with a
single Register() to read the value from.

Lowest Nonlinear
Performance

Integer
(DWORD)
or Buffer

Indicates the lowest performance level of the processor with non-
linear power savings. If this element is an Integer, OSPM reads the
integer value directly. If this element is a Buffer, it must contain a
Resource Descriptor with a single Register() to read the value from.

Lowest Performance Integer
(DWORD)
or Buffer

Indicates the lowest performance level of the processor. If this
element is an Integer, OSPM reads the integer value directly. If this
element is a Buffer, it must contain a Resource Descriptor with a
single Register() to read the value from.

Guaranteed
Performance Register

Buffer Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes the register to read the current
guaranteed performance from. See the section “Performance
Limiting” for more details.

Desired Performance
Register

Buffer Contains a resource descriptor with a single Register() descriptor that
describes the register to write the desired performance level. This
register is optional when OSPM indicates support for CPPC2 in the
platform-wide _OSC capabilities and the Autonomous Selection
Enable register is Integer 1

Minimum
Performance Register

Buffer Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes the register to write the
minimum allowable performance level to. The value 0 is equivalent
to Lowest Performance (no limit).

Maximum
Performance Register

Buffer Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes the register to write the
maximum allowable performance level to. All 1s is equivalent to
Highest Performance (no limit).

Performance
Reduction Tolerance
Register

Buffer Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes the register to write the
performance reduction tolerance.

Time Window Register Buffer Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes the register to write the nominal
length of time (in ms) between successive reads of the platform’s
delivered performance register. See the section “Time Window
Register” for more details.

Counter Wraparound
Time

Integer
(DWORD)
or Buffer

Optional. If supported, indicates the minimum time to counter
wraparound, in seconds. If this element is an Integer, OSPM reads
the integer value directly. If this element is a Buffer (and supported),
it must contain a Resource Descriptor with a single Register() to read
the value from.

Element
Object
Type

Description
UEFI Forum, Inc. January 2019 Page 570

ACPI Specification, Version 6.3 Processor Configuration and Control
Reference
Performance Counter
Register

Buffer Contains a resource descriptor with a single Register() descriptor that
describes the register to read a counter that accumulates at a rate
proportional the reference performance of the processor.

Delivered
Performance Counter
Register

Buffer Contains a resource descriptor with a single Register() descriptor that
describes the register to read a counter that accumulates at a rate
proportional to the delivered performance of the processor.

Performance Limited
Register

Buffer Contains a resource descriptor with a single Register() descriptor that
describes the register to read to determine if performance was
limited. A nonzero value indicates performance was limited. This
register is sticky, and will remain set until reset or OSPM clears it by
writing 0. See the section “Performance Limiting” for more details.

CPPC EnableRegister Buffer Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes a register to which OSPM writes
a One to enable CPPC on this processor. Before this register is set,
the processor will be controlled by legacy mechanisms (ACPI P-
states, firmware, etc.).

Autonomous Selection
Enable

Integer
(DWORD)
or Buffer

Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes a register to which OSPM writes
a One to enable autonomous performance level selection. Platforms
that exclusively support Autonomous Selection must populate this
field as an Integer with a value of 1.

AutonomousActivityW
indowRegister

Buffer Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes a register to which OSPM writes
a time value that indicates a moving utilization sensitivity window for
the autonomous selection policy.

EnergyPerformancePr
eferenceRegister

Buffer Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes a register to which OSPM writes
a value to control the Energy vs. Performance preference of the
platform's energy efficiency and performance optimization policies
when Autonomous Selection is enabled

Reference
Performance

Integer
(DWORD)
or Buffer

Optional. If supported, indicates the performance level at which the
Reference Performance Counter accumulates. If not supported, The
Reference Performance Counter accumulates at the Nominal
performance level. If this element is an Integer, OSPM reads the
integer value directly. If this element is a Buffer (and supported), it
must contain a Resource Descriptor with a single Register() to read
the value from

Element
Object
Type

Description
UEFI Forum, Inc. January 2019 Page 571

ACPI Specification, Version 6.3 Processor Configuration and Control
The _CPC object provides OSPM with platform-specific performance capabilities / thresholds and control
registers that OSPM uses to control the platform’s processor performance settings. These are described
in the following sections. While the platform may specify register sizes within an allowable range, the size
of the capabilities / thresholds registers must be compatible with the size of the control registers. If the
platform supports CPPC, the _CPC object must exist under all processor objects. That is, OSPM is not
expected to support mixed mode (CPPC & legacy PSS, _PCT, _PPC) operation.

Starting with ACPI Specification 6.2, all _CPC registers can be in PCC, System Memory, System IO, or
Functional Fixed Hardware address spaces. OSPM support for this more flexible register space scheme is
indicated by the “Flexible Address Space for CPPC Registers” _OSC bit.

8.4.7.1.1 Performance Capabilities / Thresholds

Performance-based controls operate on a continuous range of processor performance levels, not
discrete processor states. As a result, platform capabilities and OSPM requests are specified in terms of
performance thresholds. Figure 8-45 outlines the static performance thresholds of the platform and the
dynamic guaranteed performance threshold.

Lowest Frequency Integer
(DWORD)
or Buffer

Optional. If supported, indicates the lowest frequency for this
processor in MHz. It should correspond roughly to the Lowest
Performance value, but is not guaranteed to have any precise
correlation. This value should only be used for the purpose of
reporting processor performance in absolute frequency rather than
on an abstract scale, and not for functional decisions or platform
communication. If this element is an Integer, OSPM reads the
integer value directly. If this element is a Buffer (and supported), it
must contain a Resource Descriptor with a single Register() to read
the value from.

Nominal Frequency Integer
(DWORD)
or Buffer

Optional. If supported, indicates the nominal frequency for this
processor in MHz. It should correspond roughly to the Nominal
Performance value, but is not guaranteed to have any precise
correlation. This value should only be used for the purpose of
reporting processor performance in absolute frequency rather than
on an abstract scale, and not for functional decisions or platform
communication. If this element is an Integer, OSPM reads the
integer value directly. If this element is a Buffer (and supported), it
must contain a Resource Descriptor with a single Register() to read
the value from.

Element
Object
Type

Description
UEFI Forum, Inc. January 2019 Page 572

ACPI Specification, Version 6.3 Processor Configuration and Control

0

Lowest Performance

Lowest Nonlinear Performance

Nominal Performance

Highest Performance

Guaranteed Performance
Allowed Range

Figure 8-45 Platform performance thresholds

Note: Not all performance levels need be unique. A platform's nominal performance level may also be
its highest performance level, for example.

8.4.7.1.1.1 Highest performance

Register or DWORD
Attribute: Read
Size: 8-32 bits

Highest performance is the absolute maximum performance an individual processor may reach,
assuming ideal conditions. This performance level may not be sustainable for long durations, and may
only be achievable if other platform components are in a specific state; for example, it may require other
processors be in an idle state.

Notify events of type 0x85 to the processor device object cause OSPM to re-evaluate the Highest
Performance Register, but only when it is encoded as a buffer. Note: OSPM will not re-evaluate the _CPC
object as a result of the notification.

8.4.7.1.1.2 Nominal Performance

Register or DWORD
Attribute: Read
Size: 8-32 bits

Nominal Performance is the maximum sustained performance level of the processor, assuming ideal
operating conditions. In absence of an external constraint (power, thermal, etc.) this is the performance
level the platform is expected to be able to maintain continuously. All processors are expected to be able
to sustain their nominal performance state simultaneously.
UEFI Forum, Inc. January 2019 Page 573

ACPI Specification, Version 6.3 Processor Configuration and Control
8.4.7.1.1.3 Reference Performance

Optional
Register or DWORD
Attribute: Read
Size: 8-32 bits

If supported by the platform, Reference Performance is the rate at which the Reference Performance
Counter increments. If not implemented (or zero), the Reference Performance Counter increments at a
rate corresponding to the Nominal Performance level.

8.4.7.1.1.4 Lowest Nonlinear Performance

Register or DWORD
Attribute: Read
Size: 8-32 bits

Lowest Nonlinear Performance is the lowest performance level at which nonlinear power savings are
achieved, for example, due to the combined effects of voltage and frequency scaling. Above this
threshold, lower performance levels should be generally more energy efficient than higher performance
levels. In traditional terms, this represents the P-state range of performance levels.

This register effectively conveys the most efficient performance level to OSPM.

8.4.7.1.1.5 Lowest Performance

Register or DWORD
Attribute: Read
Size: 8-32 bits

Lowest Performance is the absolute lowest performance level of the platform. Selecting a performance
level lower than the lowest nonlinear performance level may actually cause an efficiency penalty, but
should reduce the instantaneous power consumption of the processor. In traditional terms, this
represents the T-state range of performance levels.

8.4.7.1.1.6 Guaranteed Performance Register

Optional
Attribute: Read
Size: 8-32 bits

Guaranteed Performance Register conveys to OSPM a Guaranteed Performance level, which is the
current maximum sustained performance level of a processor, taking into account all known external
constraints (power budgeting, thermal constraints, AC vs DC power source, etc.). All processors are
expected to be able to sustain their guaranteed performance levels simultaneously. The guaranteed
performance level is required to fall in the range [Lowest Performance, Nominal performance], inclusive.

If this register is not implemented, and Autonomous Selection is not enabled, OSPM assumes guaranteed
performance is always equal to nominal performance.

Notify events of type 0x83 to the processor device object will cause OSPM to re-evaluate the Guaranteed
Performance Register. Changes to guaranteed performance should not be more frequent than once per
second. If the platform is not able to guarantee a given performance level for a sustained period of time
UEFI Forum, Inc. January 2019 Page 574

ACPI Specification, Version 6.3 Processor Configuration and Control
(greater than one second), it should guarantee a lower performance level and opportunistically enter the
higher performance level as requested by OSPM and allowed by current operating conditions.

8.4.7.1.1.7 Lowest Frequency and Nominal Frequency

Optional

Register or DWORD

Attribute: Read

Size: 32 bits

If supported by the platform, Lowest Frequency and Nominal Frequency values convey are the lowest
and nominal CPU frequencies of the platform, respectively, in megahertz (MHz). They should
correspond roughly to Lowest Performance and Nominal Performance on the CPPC abstract performance
scale but precise correlation is not guaranteed. See Section 8.4.7.1.1.5 and Section 8.4.7.1.1.2 for
definitions of lowest and nominal performance.

These values should not be used for functional decision making or platform communication which are
based on the CPPC abstract performance scale. They are only intended to enable CPPC platforms to be
backwards compatible with OSs that report performance as CPU frequencies. The OS should use Lowest
Frequency/Performance and Nominal Frequency/Performance as anchor points to create a linear
mapping of CPPC abstract performance to CPU frequency, interpolating between Lowest and Nominal,
and extrapolating from Nominal to Highest. Note that this mapping is not guaranteed to be accurate
since CPPC abstract performance is not required to be based purely on CPU frequency, but it is better
than no data if the OS must report performance as CPU frequency. Platforms should provide these
values when they must work with OSs which need to report CPU frequency, and there is no alternate
mechanism to discover this information.
UEFI Forum, Inc. January 2019 Page 575

ACPI Specification, Version 6.3 Processor Configuration and Control
8.4.7.1.2 Performance Controls

Under CPPC, OSPM has several performance settings it may use in conjunction to control/influence the

performance of the platform. These control inputs are outlined in Figure 8-46.

Minimum Performance

Desired Performance

Maximum Performance

Performance
Allowed Range

Performance Reduction Tolerance

Figure 8-46 OSPM performance controls

OSPM may select any performance value within the continuous range of values supported by the
platform. Internally, the platform may implement a small number of discrete performance states and
may not be capable of operating at the exact performance level desired by OSPM. If a platform-internal
state does not exist that matches OSPM’s desired performance level, the platform should round desired
performance as follows:

• If OSPM has selected a desired performance level greater than or equal to guaranteed
performance, the platform may round up or down. The result of rounding must not be less
than guaranteed performance.

• If OSPM has selected a desired performance level less than guaranteed performance and a
maximum performance level not less than guaranteed performance, the platform must round
up.

If OSPM has selected both desired performance level and maximum performance level less than
guaranteed performance, the platform must round up if rounding up does not violate the maximum
performance level. Otherwise, round down. OSPM must tolerate the platform rounding down if it
chooses to set the maximum performance level less than guaranteed performance.This approach favors
performance, except in the case where performance has been limited due to a platform or OSPM
constraint.

When Autonomous Selection is enabled, OSPM limits the processor's performance selection by writing
appropriate constraining values to the Minimum and Maximum Performance registers. Setting Minimum
and Maximum to the same value effectively disables Autonomous selection.
UEFI Forum, Inc. January 2019 Page 576

ACPI Specification, Version 6.3 Processor Configuration and Control
Note: When processors are within the same dependency domain, Maximum performance may only be
actually limited when allowed by hardware coordination.

8.4.7.1.2.1 Maximum Performance Register

Optional
Attribute: Read/Write
Size: 8-32 bits

Maximum Performance Register conveys the maximum performance level at which the platform may
run. Maximum performance may be set to any performance value in the range [Lowest Performance,
Highest Performance], inclusive.

The value written to the Maximum Performance Register conveys a request to limit maximum
performance for the purpose of energy efficiency or thermal control and the platform limits its
performance accordingly as possible. However, the platform may exceed the requested limit in the event
it is necessitated by internal package optimization. For Example, hardware coordination among multiple
logical processors with interdependencies.

OSPM's use of this register to limit performance for the purpose of thermal control must comprehend
multiple logical processors with interdependencies. i.e. the same value must be written to all processors
within a domain to achieve the desired result.

The platform must implement either both the Minimum Performance and Maximum Performance
registers or neither register. If neither register is implemented and Autonomous Selection is disabled, the
platform must always deliver the desired performance.

8.4.7.1.2.2 Minimum Performance Register

Optional
Attribute: Read/Write
Size: 8-32 bits

The Minimum Performance Register allows OSPM to convey the minimum performance level at which
the platform may run. Minimum performance may be set to any performance value in the range [Lowest
Performance, Highest Performance], inclusive but must be set to a value that is less than or equal to that
specified by the Maximum Performance Register.

In the presence of a physical constraint, for example a thermal excursion, the platform may not be able to
successfully maintain minimum performance in accordance with that set via the Minimum Performance
Register. In this case, the platform issues a Notify event of type 0x84 to the processor device object and
sets the Minimum_Excursion bit within the Performance Limited Register.

The platform must implement either both the Minimum Performance and Maximum Performance
registers or neither register. If neither register is implemented and Autonomous Selection is disabled, the
platform must always deliver the desired performance.
UEFI Forum, Inc. January 2019 Page 577

ACPI Specification, Version 6.3 Processor Configuration and Control
8.4.7.1.2.3 Desired Performance Register

Optional (depending on Autonomous Selection support)
Attribute: Read/Write
Size: 8-32 bits

When Autonomous Selection is disabled, the Desired Performance Register is required and conveys the
performance level OSPM is requesting from the platform. Desired performance may be set to any
performance value in the range [Minimum Performance, Maximum Performance], inclusive. Desired
performance may take one of two meanings, depending on whether the desired performance is above or
below the guaranteed performance level.

• Below the guaranteed performance level, desired performance expresses the average
performance level the platform must provide subject to the Performance Reduction Tolerance.

• Above the guaranteed performance level, the platform must provide the guaranteed
performance level. The platform should attempt to provide up to the desired performance
level, if current operating conditions allow for it, but it is not required to do so

When Autonomous Selection is enabled, it is not necessary for OSPM to assess processor workload
performance demand and convey a corresponding performance delivery request to the platform via the
Desired Register. If the Desired Performance Register exists, OSPM may provide an explicit performance
requirement hint to the platform by writing a non-zero value. In this case, the delivered performance is
not bounded by the Performance Reduction Tolerance Register, however, OSPM can influence the
delivered performance by writing appropriate values to the Energy Performance Preference Register.
Writing a zero value to the Desired Performance Register or the non-existence of the Desired
Performance Register causes the platform to autonomously select a performance level appropriate to
the current workload.

Note: The Desired Performance Register is optional only when OPSM indicates support for CPPC2 in the
platform-wide _OSC capabilities and the Autonomous Selection Enable field is encoded as an
Integer with a value of 1.

8.4.7.1.2.4 Performance Reduction Tolerance Register

Optional
Attribute: Read/Write
Size: 8-32 bits

The Performance Reduction Tolerance Register is used by OSPM to convey the deviation below the
Desired Performance that is tolerable. It is expressed by OSPM as an absolute value on the performance
scale. Performance Tolerance must be less than or equal to the Desired Performance. If the platform
supports the Time Window Register, the Performance Reduction Tolerance conveys the minimal
performance value that may be delivered on average over the Time Window. If this register is not
implemented, the platform must assume Performance Reduction Tolerance = Desired Performance.

When Autonomous Selection is enabled, values written to the Performance Reduction Tolerance Register
are ignored.
UEFI Forum, Inc. January 2019 Page 578

ACPI Specification, Version 6.3 Processor Configuration and Control
8.4.7.1.2.5 Time Window Register

Optional
Attribute: Read/Write
Size: 8-32 bits
Units: milliseconds

When Autonomous Selection is not enabled, OSPM may write a value to the Time Window Register to
indicate a time window over which the platform must provide the desired performance level (subject to
the Performance Reduction Tolerance). OSPM sets the time window when electing a new desired
performance The time window represents the minimum time duration for OSPM’s evaluation of the
platform’s delivered performance (see Section 8.4.7.1.3.1 “Performance Counters” for details on how
OSPM computes delivered performance). If OSPM evaluates delivered performance over an interval
smaller than the specified time window, it has no expectations of the performance delivered by the
platform. For any evaluation interval equal to or greater than the time window, the platform must deliver
the OSPM desired performance within the specified tolerance bound.

If OSPM specifies a time window of zero or if the platform does not support the time window register, the
platform must deliver performance within the bounds of Performance Reduction Tolerance irrespective
of the duration of the evaluation interval.

When Autonomous Selection is enabled, values written to the Time Window Register are ignored. Reads
of the Time Window register indicate minimum length of time (in ms) between successive reads of the
platform's performance counters. If the Time Window register is not supported then there is no
minimum time requirement between successive reads of the platform's performance counters.

8.4.7.1.3 Performance Feedback

The platform provides performance feedback via set of performance counters, and a performance
limited indicator.

8.4.7.1.3.1 Performance Counters

To determine the actual performance level delivered over time, OSPM may read a set of performance
counters from the Reference Performance Counter Register and the Delivered Performance Counter
Register.

OSPM calculates the delivered performance over a given time period by taking a beginning and ending
snapshot of both the reference and delivered performance counters, and calculating:

delivered performance = reference performance
∆reference performance counter

 ∆delivered performance counter

X

The delivered performance should always fall in the range [Lowest Performance, Highest Performance],
inclusive. OSPM may use the delivered performance counters as a feedback mechanism to refine the
desired performance state it selects.

When Autonomous Selection is not enabled, there are constraints that govern how and when the
performance delivered by the platform may deviate from the OSPM Desired Performance. Corresponding
UEFI Forum, Inc. January 2019 Page 579

ACPI Specification, Version 6.3 Processor Configuration and Control
to OSPM setting a Desired Performance: at any time after that, the following constraints on delivered
performance apply

• Delivered performance can be higher than the OSPM requested desired performance if the
platform is able to deliver the higher performance at same or lower energy than if it were
delivering the desired performance.

• Delivered performance may be higher or lower than the OSPM desired performance if the
platform has discrete performance states and needed to round down performance to the
nearest supported performance level in accordance to the algorithm prescribed in the OSPM
controls section.

• Delivered performance may be lower than the OSPM desired performance if the platform’s
efficiency optimizations caused the delievered performance to be less than desired
performance. However, the delivered performance should never be lower than the OSPM
specified.

• Performance Reduction Tolerance. The Performance Reduction Tolerance provides a bound to
the platform on how aggressive it can be when optimizing performance delivery. The platform
should not perform any optimization that would cause delivered performance to be lower than
the OSPM specified Performance Reduction Tolerance.

8.4.7.1.3.1.1 Reference Performance Counter Register
Attribute: Read
Size: 32 or 64 bits

The Reference Performance Counter Register counts at a fixed rate any time the processor is active. It is
not affected by changes to Desired Performance, processor throttling, etc. If Reference Performance is
supported, the Reference Performance Counter accumulates at a rate corresponding to the Reference
Performance level. Otherwise, the Reference Performance Counter accumulates at the Nominal
performance level.

8.4.7.1.3.1.2 Delivered Performance Counter Register
Attribute: Read
Size: 32 or 64 bits

The Delivered Performance Counter Register increments any time the processor is active, at a rate
proportional to the current performance level, taking into account changes to Desired Performance.
When the processor is operating at its reference performance level, the delivered performance counter
must increment at the same rate as the reference performance counter.

8.4.7.1.3.1.3 Counter Wraparound Time
Optional
Register or DWORD
Attribute: Read
Size: 32 or 64 bits
Units: seconds

Counter Wraparound Time provides a means for the platform to specify a rollover time for the
Reference/Delivered performance counters. If greater than this time period elapses between OSPM
querying the feedback counters, the counters may wrap without OSPM being able to detect that they
have done so.
UEFI Forum, Inc. January 2019 Page 580

ACPI Specification, Version 6.3 Processor Configuration and Control
If not implemented (or zero), the performance counters are assumed to never wrap during the lifetime of
the platform.

8.4.7.1.3.2 Performance Limited Register

Attribute: Read/Write
Size: >=2 bit(s)

In the event that the platform must constrain the delivered performance to less than the minimum
performance or the desired performance (or, less than the guaranteed performance, if desired
performance is greater than guaranteed performance) due to an unpredictable event, the platform must
set the performance limited indicator to a non-zero value. This indicates to OSPM that an unpredictable
event has limited processor performance, and the delivered performance may be less than desired /
minimum performance.

Table 8-280 Performance Limited Register Status Bits

Bit Name Description

0 Desired_Excursion Set when Delivered Performance has been constrained to less than
Desired Performance (or, less than the guaranteed performance, if
desired performance is greater than guaranteed performance). This bit is
not utilized when Autonomous Selection is enabled.

1 Minimum_Excursion Set when Delivered Performance has been constrained to less than
Minimum Performance

2-n Reserved Reserved

Bits within the Performance Limited Register are sticky, and will remain non-zero until OSPM clears the
bit. The platform should only issue a Notify when Minimum Excursion transitions from 0 to 1 to avoid
repeated events when there is sustained or recurring limiting but OSPM has not cleared the previous
indication.

Note: All accesses to the Performance Limited Register must be made using interlocked operations, by
both accessing entities.

The performance limited register should only be used to report short term, unpredictable events (e.g.,
PROCHOT being asserted). If the platform is capable of identifying longer term, predictable events that
limit processor performance, it should use the guaranteed performance register to notify OSPM of this
limitation. Changes to guaranteed performance should not be more frequent than once per second. If
the platform is not able to guarantee a given performance level for a sustained period of time (greater
than one second), it should guarantee a lower performance level and opportunistically enter the higher
performance level as requested by OSPM and allowed by current operating conditions.

8.4.7.1.4 CPPC Enable Register

Optional
Attribute: Read/Write
Size: >=1 bit(s)

If supported by the platform, OSPM writes a one to this register to enable CPPC on this processor.

If not implemented, OSPM assumes the platform always has CPPC enabled.
UEFI Forum, Inc. January 2019 Page 581

ACPI Specification, Version 6.3 Processor Configuration and Control
8.4.7.1.5 Autonomous Selection Enable Register

Optional
Register or DWORD
Attribute: Read/Write
Size: >=1 bit(s)

If supported by the platform, OSPM writes a one to this register to enable Autonomous Performance
Level Selection on this processor. CPPC must be enabled via the CPPC Enable Register to enable
Autonomous Performance Level Selection. Platforms that exclusively support Autonomous Selection
must populate this field as an Integer with a value of 1.

When Autonomous Selection is enabled, the platform is responsible for selecting performance states.
OSPM is not required to assess processor workload performance demand and convey a corresponding
performance delivery request to the platform via the Desired Performance Register.

8.4.7.1.6 Autonomous Activity Window Register

Optional
Attribute: Read/Write
Size: 10 bit(s)
Units: Bits 06:00 - Significand, Bits 09:07 -
Exponent, Base_Time_Unit = 1E-6 seconds (1 microsecond)

If supported by the platform, OSPM may write a time value (10^3-bit exp * 7-bit mantissa in 1µsec units:
1us to 1270 sec) to this field to indicate a moving utilization sensitivity window to the platform's
autonomous selection policy. Combined with the Energy Performance Preference Register value, the
Activity Window influences the rate of performance increase / decrease of the platform's autonomous
selection policy. OSPM writes a zero value to this register to enable the platform to determine an
appropriate Activity Window depending on the workload.

Writes to this register only have meaning when Autonomous Selection is enabled.

8.4.7.1.7 Energy Performance Preference Register

Optional
Attribute: Read/Write
Size: 4-8 bit(s

If supported by the platform, OSPM may write a range of values from 0 (performance preference) to 0xFF
(energy efficiency preference) that influences the rate of performance increase /decrease and the result
of the hardware's energy efficiency and performance optimization policies.This provides a means for
OSPM to limit the energy efficiency impact of the platform's performance-related optimizations / control
policy and the performance impact of the platform's energy efficiency-related optimizations / control
policy.

Writes to this register only have meaning when Autonomous Selection is enabled.

8.4.7.1.8 OSPM Control Policy

8.4.7.1.8.1 In-Band Thermal Control

A processor using performance controls may be listed in a thermal zone’s _PSL list. If it is and the thermal
zone engages passive cooling as a result of passing the _PSV threshold, OSPM will apply the ∆P[%] to
UEFI Forum, Inc. January 2019 Page 582

ACPI Specification, Version 6.3 Processor Configuration and Control
modify the value in the desired performance register. Any time that passive cooling is engaged, OSPM
must also set the maximum performance register equal to the desired performance register, to enforce
the platform does not exceed the desired performance opportunistically.

Note: In System-on-Chip-based platforms where the SoC is comprised of multiple device components in
addition to the processor, OSPM’s use of the Desired and Maximum registers for thermal control
may not produce an optimal result because of SoC device interaction. The use of proprietary
package level thermal controls (if they exist) may produce more optimal results.

8.4.7.1.9 Using PCC Registers

If the PCC register space is used, all PCC registers, for all processors in the same performance domain (as
defined by _PSD), must be defined to be in the same subspace. If _PSD is not used, the restriction applies
to all registers within a given _CPC object. OSPM will write registers by filling in the register value and
issuing a PCC write command (see Table 8-281). It may read static registers, counters, and the
performance limited register by issuing a read command (see Table 8-281). To amortize the cost of PCC
transactions, OSPM should read or write all PCC registers via a single read or write command when
possible.

Table 8-281 PCC Commands Codes used by Collaborative Processor Performance Control

Command Description

0x00 Read registers. Executed to request the platform update all registers for all enabled
processors with their current value.

0x01 Write registers. Executed to notify the platform one or more read/write registers for an
enabled processor has been updated.

0x02-0xFF All other values are reserved.

8.4.7.1.10 Relationship to other ACPI-defined Objects and Notifications

 If _CPC is present, its use supersedes the use of the following existing ACPI objects:

• The P_BLK P_CNT register
• _PTC
• _TSS
• _TPC
• _TSD
• _TDL
• _PCT
• _PSS
• _PPC
• _PDL
• Notify 0x80 on the processor device
• Notify 0x82 on the processor device

The _PSD object may be used to specify domain dependencies between processors. On a system with
heterogeneous processors, all processors within a single domain must have the same performance
capabilities.
UEFI Forum, Inc. January 2019 Page 583

ACPI Specification, Version 6.3 Processor Configuration and Control
8.4.7.1.11 _CPC Implementation Example

This example shows a two processor implementation of the _CPC interface via the PCC interface, in PCC
subspace 2. This implementation uses registers to describe the processor’s capabilities, and does not
support the Minimum Performance, Maximum Performance, or Time Window registers.

Processor (_SB.CPU0, 1, 0, 0)

{
Name(_CPC, Package()
{

21, // NumEntries
2, // Revision
ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},

// Highest Performance
ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},

// Nominal Performance
ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},

// Lowest Nonlinear Performance
ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},

// Lowest Performance
ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},

// Guaranteed Performance Register
ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},

// Desired Performance Register
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},

// Minimum Performance Register
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},

// Maximum Performance Register
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},

// Performance Reduction Tolerance Register
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},

// Time Window Register
ResourceTemplate(){Register(PCC, 8, 0, 0x11B, 2)},

// Counter Wraparound Time
ResourceTemplate(){Register(PCC, 32, 0, 0x114, 2)},

// Reference Performance Counter Register
ResourceTemplate(){Register(PCC, 32, 0, 0x116, 2)},

// Delivered Performance Counter Register
ResourceTemplate(){Register(PCC, 8, 0, 0x11A, 2)},

// Performance Limited Register
ResourceTemplate(){Register(PCC, 1, 0, 0x100, 2)},

// CPPC Enable Register
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},

// Autonomous Selection Enable
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},

// Autonomous Activity Window Register
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},

// Energy Performance Preference Register
UEFI Forum, Inc. January 2019 Page 584

ACPI Specification, Version 6.3 Processor Configuration and Control
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}
// Reference Performance

})
}

Processor (_SB.CPU1, 2, 0, 0)
{

Name(_CPC, Package()
{

21, // NumEntries
2, // Revision
ResourceTemplate(){Register(PCC, 32, 0, 0x220, 2)},

// Highest Performance
ResourceTemplate(){Register(PCC, 32, 0, 0x224, 2)},

// Nominal Performance
ResourceTemplate(){Register(PCC, 32, 0, 0x228, 2)},

// Lowest Nonlinear Performance
ResourceTemplate(){Register(PCC, 32, 0, 0x22C, 2)},

// Lowest Performance
ResourceTemplate(){Register(PCC, 32, 0, 0x230, 2)},

// Guaranteed Performance Register
ResourceTemplate(){Register(PCC, 32, 0, 0x210, 2)},

// Desired Performance Register
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},

// Minimum Performance Register
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},

// Maximum Performance Register
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},

// Performance Reduction Tolerance Register
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},

// Time Window Register
ResourceTemplate(){Register(PCC, 8, 0, 0x21B, 2)},

// Counter Wraparound Time
ResourceTemplate(){Register(PCC, 32, 0, 0x214, 2)},

// Reference Performance Counter Register
ResourceTemplate(){Register(PCC, 32, 0, 0x216, 2)},

// Delivered Performance Counter Register
ResourceTemplate(){Register(PCC, 8, 0, 0x21A, 2)},

// Performance Limited Register
ResourceTemplate(){Register(PCC, 1, 0, 0x200, 2)},

// CPPC Enable Register
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},

// Autonomous Selection Enable
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},

// Autonomous Activity Window Register
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},

// Energy Performance Preference Register
UEFI Forum, Inc. January 2019 Page 585

ACPI Specification, Version 6.3 Processor Configuration and Control
ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}
// Reference Performance

})

8.4.8 _PPE (Polling for Platform Errors)

This optional object, when present, is evaluated by OSPM to determine if the processor should be polled
to retrieve corrected platform error information. This object augments /overrides information provided
in the CPEP , if supplied. See Section 5.2.18 “Corrected Platform Error Polling Table (CPEP)”.

Arguments:

None

Return Value:

An Integer containing the recommended polling interval in milliseconds.

0 – OSPM should not poll this processor.

Other values – OSPM should poll this processor at <= the specified interval.

OSPM evaluates the _PPE object during processor object initialization and Bus Check notification
processing.

8.5 Processor Aggregator Device

The following section describes the definition and operation of the optional Processor Aggregator device.
The Processor Aggregator Device provides a control point that enables the platform to perform specific
processor configuration and control that applies to all processors in the platform.

The Plug and Play ID of the Processor Aggregator Device is ACPI000C.

Table 8-282 Processor Aggregator Device Objects

Object Description

_PUR Requests a number of logical processors to be placed in an idle state

8.5.1 Logical Processor Idling

In order to reduce the platform’s power consumption, the platform may direct OSPM to remove a logical
processor from the operating system scheduler’s list of processors where non-processor affinitized work
is dispatched. This capability is known as Logical Processor Idling and provides a means to reduce
platform power consumption without undergoing processor ejection / insertion processing overhead.
Interrupts directed to a logical processor and processor affinitized workloads will impede the
effectiveness of logical processor idling in reducing power consumption as OSPM is not expected to re-
target this work when a logical processor is idled.

8.5.1.1 PUR (Processor Utilization Request)

The _PUR object is an optional object that may be declared under the Processor Aggregator Device and
provides a means for the platform to indicate to OSPM the number of logical processors to be idled.
OSPM evaluates the _PUR object as a result of the processing of a Notify event on the Processor
Aggregator device object of type 0x80.
UEFI Forum, Inc. January 2019 Page 586

ACPI Specification, Version 6.3 Processor Configuration and Control
Arguments:

None

Return Value:

A Package as described below.

Return Value Information
Package
{
 RevisionID // Integer: Current value is 1
 NumProcessors // Integer
}

The NumProcessors package element conveys the number of logical processors that the platform wants
OSPM to idle. This number is an absolute value. OSPM increments or decrements the number of logical
processors placed in the idle state to equal the NumProcessors value as possible. A NumProcessors value
of zero causes OSPM to place all logical processor in the active state as possible.

OSPM uses internal logical processor to physical core and package topology knowledge to idle logical
processors successively in an order that maximizes power reduction benefit from idling requests. For
example, all SMT threads constituting logical processors on a single processing core should be idled to
allow the core to enter a low power state before idling SMT threads constituting logical processors on
another core.

8.5.2 OSPM _OST Evaluation

When processing of the _PUR object evaluation completes, OSPM evaluates the _OST object, if present
under the Processor Aggregator device, to convey _PUR evaluation status to the platform. _OST
arguments specific to _PUR evaluation are described below.

Arguments: (3)

Arg0 – Source Event (Integer) : 0x80

Arg1 – Status Code (Integer) : see below

Arg2 – Idled Procs (Buffer) : see below

Return Value:

None

Argument Information:
Arg1 – Status Code

0: success – OSPM idled the number of logical processors indicated by the value of Arg2
1: no action was performed

Arg2 – A 4-byte buffer that represents a DWORD that is the number of logical processors that are now
idled)
UEFI Forum, Inc. January 2019 Page 587

ACPI Specification, Version 6.3 Processor Configuration and Control
The platform may request a number of logical processors to be idled that exceeds the available number
of logical processors that can be idled from an OSPM context for the following reasons:

• The requested number is larger than the number of logical processors currently defined.
• Not all the defined logical processors were onlined by the OS (for example. for licensing

reasons)

Logical processors critical to OS function (for example, the BSP) cannot be idled.
UEFI Forum, Inc. January 2019 Page 588

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9 ACPI-Defined Devices and Device-Specific Objects

This section describes ACPI defined devices and device-specific objects. The system status indicator
objects, declared under the _SI scope in the ACPI Namespace, are also specified in this section.

9.1 Device Object Name Collision

Devices containing both _HID and _CID may have device specific control methods pertaining to both the
device ID in the _HID and the device ID in the _CID. These device specific control methods are defined by
the device owner (a standard body or a vendor or a group of vendor partners). Since these object names
are not controlled by a central authority, there is a likelihood that the names of objects will conflict
between two defining parties. The _DSM object described in the next section solves this conflict.

9.1.1 _DSM (Device Specific Method)

This optional object is a control method that enables devices to provide device specific control functions
that are consumed by the device driver.

Arguments: (4)

Arg0 – A Buffer containing a UUID

Arg1 – An Integer containing the Revision ID

Arg2 – An Integer containing the Function Index

Arg3 – A Package that contains function-specific arguments

Return Value:

If Function Index = 0, a Buffer containing a function index bitfield. Otherwise, the return value and type
depends on the UUID and revision ID (see below).

Argument Information:

Arg0: UUID – A Buffer containing the UUID (see Section 5.2.4) (16 Bytes)

Arg1:Revision ID – the function’s revision. This revision is specific to the UUID.

Arg2: Function Index – Represents a specific function whose meaning is specific to the UUID and Revision
ID. Function indices should start with 1. Function number zero is a query function (see the special return
code defined below).

Arg3: Function Arguments – a package containing the parameters for the function specified by the UUID,
Revision ID and Function Index.

Successive revisions of Function Arguments must be backward compatible with earlier revisions. New
UUIDs may also be created by OEMs and IHVs for custom devices and other interface or device governing
bodies (e.g. the PCI SIG), as long as the UUID is different from other published UUIDs. Only the issuer of a
UUID can authorize a new Function Index, Revision ID or Function Argument for that UUID.
UEFI Forum, Inc. January 2019 Page 589

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Return Value Information:

If Function Index is zero, the return is a buffer containing one bit for each function index, starting with
zero. Bit 0 indicates whether there is support for any functions other than function 0 for the specified
UUID and Revision ID. If set to zero, no functions are supported (other than function zero) for the
specified UUID and Revision ID. If set to one, at least one additional function is supported. For all other
bits in the buffer, a bit is set to zero to indicate if that function index is not supported for the specific
UUID and Revision ID. (For example, bit 1 set to 0 indicates that function index 1 is not supported for the
specific UUID and Revision ID.)

If the bit representing a particular function index would lie outside of the buffer, it should be assumed to
be 0 (that is, not supported).

If Function Index is non-zero, the return is any data object. The type and meaning of the returned data
object depends on the UUID, Revision ID, Function Index, and Function Arguments.

Note: For backward compatibility _DSM requires that each Revision ID support all of the functions
defined by all previous Revision IDs for the same UUID.

Implementation Note

Since the purpose of the _DSM method is to avoid the namespace collision, the implementation of this
method shall not use any other method or data object which is not defined in this specification unless its
driver and usage is completely under the control of the platform vendor.

Example:

// _DSM – Device Specific Method
//
// Arg0: UUID Unique function identifier
// Arg1: Integer Revision Level
// Arg2: Integer Function Index (0 = Return Supported Functions)
// Arg3: Package Parameters
Function(_DSM,{IntObj,BuffObj},{BuffObj, IntObj, IntObj, PkgObj})
{
 //
 // Switch based on which unique function identifier was passed in
 //
 switch(Arg0)
 {
 //
 // First function identifier
 //
 case(ToUUID(“893f00a6-660c-494e-bcfd-3043f4fb67c0”))
 {
 switch(Arg2)
 {
 //
 // Function 0: Return supported functions, based on revision
 //
 case(0)
 {
UEFI Forum, Inc. January 2019 Page 590

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
 switch(Arg1)
 {
 // revision 0: functions 1-4 are supported
 case(0) {return (Buffer() {0x1F})}
 // revision 1: functions 1-5 are supported
 case(1) {return (Buffer() {0x3F})}
 }
 // revision 2+: functions 1-7 are supported
 return (Buffer() {0xFF})
 }
 //
 // Function 1:
 //
 case(1)
 {
 … function 1 code …
 Return(Zero)
 }
 //
 // Function 2:
 //
 case(2)
 {
 … function 2 code …
 Return(Buffer(){0x00})
 }
 case(3) { … function 3 code …}
 case(4) { … function 4 code …}
 case(5) { if (LLess(Arg1,1) BreakPoint; … function 5 code … }
 case(6) { if (LLess(Arg1,2) BreakPoint; … function 6 code …)
 case(7) { if (LLess(Arg1,3) BreakPoint; … function 7 code …)
 default {BreakPoint }
 }
 }
 //
 // Second function identifier
 //
 case(ToUUID(“107ededd-d381-4fd7-8da9-08e9a6c79644”))
 {
 //
 // Function 0: Return supported functions (there is only one revision)
 //
 if (LEqual(Arg2,Zero))
 return (Buffer() {0x3}) // only one function supported
 //
 // Function 1
 //
 if (LEqual(Arg2,One))
 {
 … function 1 code …
 Return(Unicode(“text”))
UEFI Forum, Inc. January 2019 Page 591

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
 }
 //
 // Function 2+: Runtime Error
 //
 else
 BreakPoint;
 }
 }
 //
 // If not one of the UUIDs we recognize, then return a buffer
 // with bit 0 set to 0 indicating no functions supported.
 //
 return(Buffer(){0})
}

9.2 _SI System Indicators

ACPI provides an interface for a variety of simple and icon-style indicators on a system. All indicator
controls are in the _SI portion of the namespace. The following table lists all defined system indicators.
(Notice that there are also per-device indicators specified for battery devices).

Table 9-283 System Indicator Control Methods

Object Description

_SST System status indicator

_MSG Messages waiting indicator

_BLT Battery Level Threshold

9.2.1 _SST (System Status)

This optional object is a control method that OSPM invokes to set the system status indicator as desired.

Arguments: (1)

Arg0 – An Integer containing the system status indicator identifier

0 – No system state indication. Indicator off

1 – Working

2 – Waking

3 – Sleeping. Used to indicate system state S1, S2, or S3

4 – Sleeping with context saved to non-volatile storage

Return Value:

None

9.2.2 _MSG (Message)

This control method sets the system’s message-waiting status indicator.
UEFI Forum, Inc. January 2019 Page 592

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Arguments: (1)

Arg0 – An Integer containing the number of waiting messages

Return Value:

None

9.2.3 _BLT (Battery Level Threshold)

This optional control method is used by OSPM to indicate to the platform the user’s preference for
various battery level thresholds. This method allows platform battery indicators to be synchronized with
OSPM provided battery notification levels. Note that if _BLT is implemented on a multi-battery system, it
is required that the power unit for all batteries must be the same. See Section 10.2 for more details on
battery levels.

Arguments: (3)

Arg0 – An Integer containing the preferred threshold for the battery warning level

Arg1 – An Integer containing the preferred threshold for the battery low level

Arg2 – An Integer containing the preferred threshold for the battery wake level

Return Value:

None

Additional Information

The battery warning level in the range 0x00000001 – 0x7FFFFFFF (in units of mWh or mAh, depending on
the Power Units value) is the user’s preference for battery warning. If the level specified is less than the
design capacity of warning, it may be ignored by the platform so that the platform can ensure a
successful wake on low battery.

The battery low level in the range 0x00000001 – 0x7FFFFFFF (in units of mWh or mAh, depending on the
Power Units value) is the user’s preference for battery low. If this level is less than the design capacity of
low, it may be ignored by the platform.

The battery wake level in the range 0x00000001 – 0x7FFFFFFF (in units of mWh or mAh, depending on
the Power Units value) is the user’s preference for battery wake. If this level is less than the platform’s
current wake on low battery level, it may be ignored by the platform. If the platform does not support a
configurable wake on low battery level, this may be ignored by the platform.

9.3 Ambient Light Sensor Device

The following section illustrates the operation and definition of the control method-based Ambient Light
Sensor (ALS) device.

The ambient light sensor device can optionally support power management objects (e.g. _PS0, _PS3) to
allow the OS to manage the device’s power consumption.

The Plug and Play ID of an ACPI control method ambient light sensor device is ACPI0008.
UEFI Forum, Inc. January 2019 Page 593

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Table 9-284 Control Method Ambient Light Sensor Device

Object Description

_ALI The current ambient light illuminance reading in lux (lumen per square meter). [Required]

_ALC The current ambient light color chromaticity reading, specified using x and y coordinates per
the CIE Yxy color model. [Optional]

_ALT The current ambient light color temperature reading in degrees Kelvin. [Optional]

_ALR Returns a set of ambient light illuminance to display brightness mappings that can be used by
an OS to calibrate its ambient light policy. [Required]

_ALP Ambient light sensor polling frequency in tenths of seconds. [Optional]

9.3.1 Overview

This definition provides a standard interface by which the OS may query properties of the ambient light
environment the system is currently operating in, as well as the ability to detect meaningful changes in
these values when the environment changes. Two ambient light properties are currently supported by
this interface: illuminance and color.

Ambient light illuminance readings are obtained via the _ALI method. Illuminance readings indicate the
amount of light incident upon (falling on) a specified surface area. Values are specified in lux (lumen per
square meter) and give an indication of how “bright” the environment is. For example, an overcast day is
roughly 1000 lux, a typical office environment 300-400 lux, and a dimly-lit conference room around 10
lux.

A possible use of ambient light illuminance data by the OS is to automatically adjust the brightness (or
luminance) of the display device – e.g. increase display luminance in brightly-lit environments and
decrease display luminance in dimly-lit environments. Note that Luminance is a measure of light radiated
(reflected, transmitted, or emitted) by a surface, and is typically measured in nits. The _ALR method
provides a set of ambient light illuminance to display luminance mappings that can be used by an OS to
calibrate its policy for a given platform configuration.

Ambient light color readings are obtained via the _ALT and/or _ALC methods. Two methods are defined
to allow varying types/complexities of ambient light sensor hardware to be used. _ALT returns color
temperature readings in degrees Kelvin. Color temperature values correlate a light source to a standard
black body radiator and give an indication of the type of light source present in a given environment (e.g.
daylight, fluorescent, incandescent). ALC returns color chromaticity readings per the CIE Yxy color model.
Chromaticity x and y coordinates provide a more straightforward indication of ambient light color
characteristics. Note that the CIE Yxy color model is defined by the International Commission on
Illumination (abbreviated as CIE from its French title Commission Internationale de l'Eclairage) and is
based on human perception instead of absolute color.

A possible use of ambient light color data by the OS is to automatically adjust the color of displayed
images depending on the environment the images are being viewed in. This may be especially important
for reflective/transflective displays where the type of ambient light may have a large impact on the colors
perceived by the user.
UEFI Forum, Inc. January 2019 Page 594

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9.3.2 _ALI (Ambient Light Illuminance)

This control method returns the current ambient light illuminance reading in lux (lumen per square
meter). Expected values range from ~1 lux for a dark room, ~300 lux for a typical office environment, and
10,000+ lux for daytime outdoor environments – although readings may vary depending on the location
of the sensor to the light source. Special values are reserved to indicate out of range conditions (see
below).

Arguments:

None

Return Value:

An Integer containing the ambient light brightness in lux (lumens per square meter)

0 – The current reading is below the supported range or sensitivity 
 of the sensor.

Ones (-1) – The current reading is above the supported range or sensitivity 
 of the sensor.

Other values – The current ambient light brightness in lux (lumens per square meter)

9.3.3 _ALT (Ambient Light Temperature)

This optional control method returns the current ambient light color temperature reading in degrees
Kelvin (°K). Lower color temperatures imply warmer light (emphasis on yellow and red); higher color
temperatures imply a colder light (emphasis on blue). This value can be used to gauge various properties
of the lighting environment – for example, the type of light source. Expected values range from ~1500°K
for candlelight, ~3000°K for a 200-Watt incandescent bulb, and ~5500°K for full sunlight on a summer day
– although readings may vary depending on the location of the sensor to the light source. Special values
are reserved to indicate out of range conditions (see below).

Arguments:

None

Return Value:

An Integer containing the ambient light temperature in degrees Kelvin

0 – The current reading is below the supported range or sensitivity
of

 the sensor

Ones (-1) – The current reading is above the supported range or sensitivity
of

 the sensor

Other values –The current ambient light temperature in degrees Kelvin

9.3.4 _ALC (Ambient Light Color Chromaticity)

This optional control method returns the current ambient light color chromaticity readings per the CIE

Yxy color model. The x and y (chromaticity) coordinates are specified using a fixed 10-4 notation due to
the lack of floating point values in ACPI. Valid values are within the range 0 (0x0000) through 1 (0x2710).
UEFI Forum, Inc. January 2019 Page 595

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
A single 32-bit integer value is used, where the x coordinate is stored in the high word and the y
coordinate in the low word. For example, the value 0x0C370CDA would be used to specify the white
point for the CIE Standard Illuminant D65 (a standard representation of average daylight) with x = 0.3127
and y = 0.3290. Special values are reserved to indicate out of range conditions (see below).

Arguments:

None

Return Value:

An Integer containing the ambient light temperature in degrees Kelvin

0 – The current reading is below the supported range or sensitivity
of

 the sensor

Ones (-1) – The current reading is above the supported range or sensitivity
of

 the sensor

Other values – The current ambient light color chromaticity x and y coordinate

 values, per the CIE Yxy color model

9.3.5 _ALR (Ambient Light Response)

This object evaluates to a package of ambient light illuminance to display luminance mappings that can
be used by an OS to calibrate its ambient light policy for a given sensor configuration. The OS can use this
information to extrapolate an ALS response curve - noting that these values may be treated differently
depending on the OS implementation but should be used in some form to calibrate ALS policy.

Arguments:

None

Return Value:

A variable-length Package containing a list of luminance mapping Packages. Each mapping package
consists of two Integers.

The return data is specified as a package of packages, where each tuple (inner package) consists of the
pair of Integer values of the form:

{<display luminance adjustment>, <ambient light illuminance>}

Package elements should be listed in monotonically increasing order based upon the ambient light
illuminance value (the Y-coordinate on the graph) to simplify parsing by the OS.

Ambient light illuminance values are specified in lux (lumens per square meter). Display luminance (or
brightness) adjustment values are specified using relative percentages in order simplify the means by
which these adjustments are applied in lieu of changes to the user’s display brightness preference. A
value of 100 is used to indicate no (0%) display brightness adjustment given the lack of signed data types
in ACPI. Values less than 100 indicate a negative adjustment (dimming); values greater than 100 indicate
UEFI Forum, Inc. January 2019 Page 596

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
a positive adjustment (brightening). For example, a display brightness adjustment value of 75 would be
interpreted as a -25% adjustment, and a value of 110 as a +10% adjustment.

0%-10%-20%-30% +10%

Baseline

5

90

350

1200

20

0

Disp lay Lu mina n ce (Br ig h tne ss) Ad ju s tme n t

A
m

b
ie

n
t

L
ig

h
t

Il
lu

m
in

a
n

c
e

 (
L

u
x

)

...

MaxMin

+50%

Typical
Office

(100,300)

(85,80)

Dimly-Lit
Conference

Room

(73,10)

(70,0)

Brightly-Lit
Café

(150,1000)

Figure 9-47 A five-point ALS Response Curve

Figure 9-47 illustrates the use of five points to approximate an example response curve, where the
dotted line represents an approximation of the desired response (solid curve). Extrapolation of the values
between these points is OS-specific – although for the purposes of this example we’ll assume a piecewise
linear approximation. The ALS response curve (_ALR) would be specified as follows:

 Name(_ALR, Package() {
 Package{70, 0}, // Min (-30% adjust at 0 lux)
 Package{73, 10}, // (-27% adjust at 10 lux)
 Package{85, 80}, // (-15% adjust at 80 lux)
 Package{100,300}, // Baseline (0% adjust at 300 lux)
 Package{150,1000} // Max (+50% adjust at 1000 lux)
 })

Within this data set exist three points of particular interest: baseline, min, and max. The baseline value
represents an ambient light illuminance value (in lux) for the environment where this system is most
likely to be used. When the system is operating in this ambient environment the ALS policy will apply no
(0%) adjustment to the default display brightness setting. For example, given a system with a 300 lux
baseline, operating in a typical office ambient environment (~300 lux), configured with a default display
brightness setting of 50% (e.g. 60 nits), the ALS policy would apply no backlight adjustment, resulting in
an absolute display brightness setting of 60 nits.
UEFI Forum, Inc. January 2019 Page 597

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Min and max are used to indicate cutoff points in order to prevent an over-zealous response by the ALS
policy and to influence the policy’s mode of operation. For example, the min and max points from the
figure above would be specified as (70,0) and (150,1000) respectively – where min indicates a maximum
negative adjustment of 30% and max represents a maximum positive adjustment of 50%. Using a large
display brightness adjustment for max allows an ALS response that approaches a fully-bright display
(100% absolute) in very bright ambient environments regardless of the user’s display brightness
preference. Using a small value for max (e.g. 0% @ 300 lux) would influence the ALS policy to limit the
use of this technology solely as a power-saving feature (never brighten the display). Conversely, setting
min to a 0% adjustment instructs ALS policy to brighten but never dim.

A minimum of two data points are required in the return package, interpreted as min and max. Note that
the baseline value does not have to be explicitly stated; it can be derived from the response curve.
Addition elements can be provided to fine-tune the response between these points. Figure 9-48
illustrates the use of two data points to achieve a response similar to (but simpler than) that described in
Figure 9-47 .

0%-10%-20%-30% +10%

Baseline

5

90

350

1200

20

0

Disp lay Lu mina nce (Br ig h tne ss) Ad jus tmen t

A
m

b
ie

n
t

L
ig

h
t

Il
lu

m
in

a
n

c
e

 (
L

u
x

)

Dimly-Lit
Conference

Room

(70,0)

...

Brightly-Lit
Café

(150,1000)

MaxMin

+50%

(70,30)

Typical
Office

Figure 9-48 A two-point ALS Response Curve

This example lacks an explicit baseline and includes a min with an ambient light value above 0 lux. The
baseline can easily be extrapolated by ALS Policy (e.g. 0% adjustment at ~400 lux). All ambient light
brightness settings below min (20 lux) would be treated in a similar fashion by ALS policy (e.g. -30%
adjustment). This two-point response curve would be modeled as:

 Name(_ALR, Package() {
 Package{70, 30}, // Min (-30% adjust at 30 lux)
 Package{150,1000} // Max (+50% adjust at 1000 lux)
 })
UEFI Forum, Inc. January 2019 Page 598

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
This model can be used to convey a wide range of ambient light to display brightness responses. For
example, a transflective display – a technology where illumination of the display can be achieved by
reflecting available ambient light, but also augmented in dimly-lit environments with a backlight – could
be modeled as illustrated in Figure 9-49.

0% +40% +80%

5

90

350

1200

20

0

Disp lay Lu mina nce (Br ig h tne ss) Ad jus tmen t

A
m

b
ie

n
t

L
ig

h
t

Il
lu

m
in

a
n

c
e

 (
L

u
x

)

(70,0)

Brightly-Lit
Café

Min,
Baseline

+100%

Typical
Office

(0,1000)

Dimly-Lit
Conference

Room

(180,0)

Max

(200,30)

Figure 9-49 Example Response Curve for a Transflective Display

This three-point approximation would result in an ALS response that allows the backlight to increase as
the ambient lighting decreases. In this example, no backlight adjustment is needed in bright
environments (1000+ lux), maximum backlight may be needed in dim environments (~30 lux), but a lower
backlight setting may be used in a very-dark room (~0 lux) – resulting in an elbow around 30 lux. This
response would be modeled in _ALR as follows:

 Name(_ALR, Package() {
 Package{180, 0} (+80% adjust at 0 lux)
 Package{200, 30}, // Max (+100% adjust at 30 lux)
 Package{0, 1000}, // Min (0% adjust at 1,000 lux)
 })

Note the ordering of package elements: monotonically increasing from the lowest ambient light value (0
lux) to the highest ambient light value (1000 lux).

The transflective display example also highlights the need for non-zero values for the user’s display
brightness preference – which we’ll refer to as the reference display brightness value. This requirement is
derived from the model’s use of relative adjustments. For example, applying any adjustment to a 0%
reference display brightness value always results in a 0% absolute display brightness setting. Likewise,
UEFI Forum, Inc. January 2019 Page 599

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
using a very small reference display brightness (e.g. 5%) results in a muted response (e.g. +30% of 5% =
6.5% absolute). The solution is to apply a reasonably large value (e.g. 50%) as the reference display
brightness setting – even in the case where no backlight is applied. This allows relative adjustments to be
applied in a meaningful fashion while conveying to the user that the display is still usable (via reflected
light) under typical ambient conditions.

The OS derives the user’s display brightness preference (this reference value) either from the Brightness
Control Levels (_BCL) object or another OS-specific mechanism. See Section 9.3.8, “Relationship to
Backlight Control Methods”, for more information.

9.3.6 _ALP (Ambient Light Polling)

This optional object evaluates to a recommended polling frequency (in tenths of seconds) for this
ambient light sensor. A value of zero – or the absence of this object when other ALS objects are defined –
indicates that OSPM does not need to poll the sensor in order to detect meaningful changes in ambient
light (the hardware is capable of generating asynchronous notifications).

The use of polling is allowed but strongly discouraged by this specification. OEMs should design systems
that asynchronously notify OSPM whenever a meaningful change in the ambient light occurs—relieving
the OS of the overhead associated with polling.

This value is specified as tenths of seconds. For example, a value of 10 would be used to indicate a 1
second polling frequency. As this is a recommended value, OSPM will consider other factors when
determining the actual polling frequency to use.

Arguments:

None

Return Value:

An Integer containing the recommended polling frequency in tenths of seconds

0 – Polling by the host OS is not required

Other – The recommended polling frequency in tenths of seconds

9.3.7 Ambient Light Sensor Events

To communicate meaningful changes in ALS illuminance to OSPM, AML code should issue a
Notify(als_device, 0x80) whenever the lux reading changes more than 10% (from the last
reading that resulted in a notification). OSPM receives this notification and evaluates the _ALI control
method to determine the current ambient light status. The OS then adjusts the display brightness based
upon its ALS policy (derived from _ALR).

The definition of what constitutes a meaningful change is left to the system integrator, but should be at a
level of granularity that provides an appropriate response without overly taxing the system with
unnecessary interrupts. For example, an ALS configuration may be tuned to generate events for all
changes in ambient light illuminance that result in a minimum ±5% display brightness response (as
defined by _ALR).

To communicate meaningful changes in ALS color temperature to OSPM, AML code should issue a
Notify(als_device, 0x81) whenever the lux reading changes more than 10% (from the last
reading that resulted in a notification). OSPM receives this notification and evaluates the _ALT and _ALC
control method to determine the current ambient light color temperature.
UEFI Forum, Inc. January 2019 Page 600

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
To communicate meaningful changes in ALS response to OSPM, AML code should issue a
Notify(als_device, 0x82) whenever the set of points used to convey ambient light response
has changed. OSPM receives this notification and evaluates the _ALR object to determine the current
response points.

9.3.8 Relationship to Backlight Control Methods

The Brightness Control Levels (_BCL) method – described in section 0 – can be used to indicate user-
selectable display brightness levels. The information provided by this method indicates the available
display brightness settings, the recommended default brightness settings for AC and DC operation, and
the absolute maximum and minimum brightness settings. These values indirectly influence the operation
of the OSPM’s ALS policy.

Display brightness adjustments produced by ALS policy are relative to the current user backlight setting,
and the resulting absolute value must be mapped (rounded) to one of the levels specified in _BCL. This
introduces the requirement for fine-grain display brightness control in order to achieve a responsive ALS
system – which typically materializes as a need for additional entries in the _BCL list in order to provide
reasonable resolution to the OS (e.g. 3-10% granularity). Note that user brightness controls (e.g. hotkeys)
are not required to make use of all levels specified in _BCL.

9.4 Battery Device

A battery device is required to either have an ACPI Smart Battery Table or a Control Method Battery
interface. In the case of an ACPI Smart Battery Table, the Definition Block needs to include a Bus/Device
Package for the SMBus host controller. This will install an OS specific driver for the SMBus, which in turn
will locate the Smart Battery System Manager or Smart Battery Selector and Smart Battery Charger
SMBus devices.

The Control Method Battery interface is defined in Section 10.2, “Control Method Batteries.”

9.5 Control Method Lid Device

Platforms containing lids convey lid status (open / closed) to OSPM using a Control Method Lid Device.

To implement a control method lid device, AML code should issue a Notify(lid_device, 0x80)
for the device whenever the lid status has changed. The _LID control method for the lid device must be
implemented to report the current state of the lid as either opened or closed.

The lid device can support _PRW and _PSW methods to select the wake functions for the lid when the lid
transitions from closed to opened.

The Plug and Play ID of an ACPI control method lid device is PNP0C0D.

Table 9-285 Control Method Lid Device

Object Description

_LID Returns the current status of the lid.

9.5.1 _LID

Evaluates to the current status of the lid.
UEFI Forum, Inc. January 2019 Page 601

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Arguments:

None

Return Value:

An Integer containing the current lid status

0 – The lid is closed

Non-zero – The lid is open

9.6 Control Method Power and Sleep Button Devices

The system’s power or sleep button can either be implemented using the fixed register space as defined
in Section 4.8.2.2, “Buttons,” or implemented in AML code as a control method power button device. In
either case, the power button override function or similar unconditional system power or reset
functionality is still implemented in external hardware.

To implement a control method power-button or sleep-button device, implement AML code that delivers
two types of notifications concerning the device. The first is Notify(Object, 0x80) to signal that the button
was pressed while the system was in the S0 state to indicate that the user wants the machine to
transition from S0 to some sleeping state. The other notification is Notify(Object, 0x2) to signal that the
button was pressed while the system was in an S1 to S4 state and to cause the system to wake. When the
button is used to wake the system, the wake notification (Notify(Object, 0x2)) must occur after OSPM
actually wakes, and a button-pressed notification (Notify(Object, 0x80)) must not occur.

The Wake Notification indicates that the system is awake because the user pressed the button and
therefore a complete system resume should occur (for example, turn on the display immediately, and so
on).

9.7 Embedded Controller Device

Operation of the embedded controller host controller register interface requires that the embedded
controller driver has ACPI-specific knowledge. Specifically, the driver needs to provide an “operational
region” of its embedded controller address space, and needs to use an ACPI event to service the host
controller interface. For more information about an ACPI-compatible embedded controller device, see
Section 12, “ACPI Embedded Controller Interface Specification.”

The embedded controller device object provides the _HID of an ACPI-integrated embedded controller
device of PNP0C09 and the host controller register locations using the device standard methods. In
addition, the embedded controller must be declared as a named device object that includes a set of
control methods. For more information, see Section 12.11, “Defining an Embedded Controller Device in
ACPI Namespace”).

9.8 Generic Container Device

A generic container device is a bridge that does not require a special OS driver because the bridge does
not provide or require any features not described within the normal ACPI device functions. The resources
the bridge requires are specified via normal ACPI resource mechanisms. Device enumeration for child
devices is supported via ACPI namespace device enumeration and OS drivers require no other features of
the bus. Such a bridge device is identified with the Plug and Play ID of PNP0A05 or PNP0A06.
UEFI Forum, Inc. January 2019 Page 602

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
A generic bus bridge device is typically used for integrated bridges that have no other means of
controlling them and that have a set of well-known devices behind them. For example, a portable
computer can have a “generic bus bridge” known as an EIO bus that bridges to some number of Super-I/
O devices. The bridged resources are likely to be positively decoded as either a function of the bridge or
the integrated devices. In this example, a generic bus bridge device would be used to declare the bridge
then child devices would be declared below the bridge; representing the integrated Super-I/O devices.

9.9 ATA Controller Devices

There are two types of ATA Controllers: IDE controllers (also known as ATA controllers) and Serial ATA
(SATA) controllers. IDE controllers are those using the traditional IDE programming interface, and may
support Parallel ATA (P-ATA) or SATA connections. SATA controllers may be designed to operate in
emulation mode only, native mode only, or they may be designed to support both native and non-native
SATA modes. Regardless of the mode supported, SATA controllers are designed to work solely with drives
supporting the Serial ATA physical interface. As described below, SATA controllers are treated similarly
but not identically to traditional IDE controllers.

Platforms that contain controllers that support native and non-native SATA modes must take steps to
ensure the proper objects are placed in the namespace for the mode in which they are operating.

Table 9-286 ATA Specific Objects

Object Description
Controller
Type

_GTF Optional object that returns the ATA task file needed to re-initialize the drive
to boot up defaults.

Both

_GTM Optional object that returns the IDE controller timing information. IDE-only

_STM Optional control method that sets the IDE controller’s transfer timing
settings.

IDE-only

_SDD Optional control method that informs the platform of the type of device
attached to a port.

SATA-only

9.9.1 Objects for Both ATA and SATA Controllers

9.9.1.1 _GTF (Get Task File)

This optional object returns a buffer containing the ATA commands used to restore the drive to boot up
defaults (that is, the state of the drive after POST). The returned buffer is an array with each element in
the array consisting of seven 8-bit register values (56 bits) corresponding to ATA task registers 1F1 thru
1F7. Each entry in the array defines a command to the drive.

Arguments:

None

Return Value:

A Buffer containing a byte stream of ATA commands for the drive
UEFI Forum, Inc. January 2019 Page 603

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
This object may appear under SATA port device objects or under IDE channel objects.

ATA task file array definition:

• Seven register values for command 1

— Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)
• Seven register values for command 2

— Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)
• Seven register values for command 3

— Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)
• Etc.

After powering up the drive, OSPM will send these commands to the drive, in the order specified. On
SATA HBAs, OSPM evaluates _SDD before evaluating _GTF. The IDE driver may modify some of the
feature commands or append its own to better tune the drive for OSPM features before sending the
commands to the drive.

This Control Method is listed under each drive device object. OSPM must evaluate the _STM object or the
_SDD object before evaluating the _GTF object.

Example of the return from _GTF:

Method(_GTF, 0x0, NotSerialized)
{
 Return(GTF0)
}
Name(GTF0, Buffer(0x1c)
{
 0x03, 0x00, 0x00, 0x00, 0x00, 0xa0, 0xef, 0x03, 0x00, 0x00, 0x00, 0x00,
 0xa0, 0xef, 0x00, 0x10, 0x00, 0x00, 0x00, 0xa0, 0xc6, 0x00, 0x00, 0x00,
 0x00, 0x00, 0xa0, 0x91
}

9.9.2 IDE Controller Device

Most device drivers can save and restore the registers of their device. For IDE controllers and drives, this
is not true because there are several drive settings for which ATA does not provide mechanisms to read.
Further, there is no industry standard for setting timing information for IDE controllers. Because of this,
ACPI interface mechanisms are necessary to provide the operating system information about the current
settings for the drive and channel, and for setting the timing for the channel.

OSPM and the IDE driver will follow these steps when powering off the IDE subsystem:

1. The IDE driver will call the _GTM control method to get the current transfer timing settings for
the IDE channel. This includes information about DMA and PIO modes.

2. The IDE driver will call the standard OS services to power down the drives and channel.

3. As a result, OSPM will execute the appropriate _PS3 methods and turn off unneeded power
resources.

To power on the IDE subsystem, OSPM and the IDE driver will follow these steps:

1. The IDE driver will call the standard OS services to turn on the drives and channel.
UEFI Forum, Inc. January 2019 Page 604

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
2. As a result, OSPM will execute the appropriate _PS0 methods and turn on required power
resources.

3. The IDE driver will call the _STM control method passing in transfer timing settings for the
channel, as well as the ATA drive ID block for each drive on the channel. The _STM control
method will configure the IDE channel based on this information.

4. For each drive on the IDE channel, the IDE driver will run the _GTF to determine the ATA
commands required to reinitialize each drive to boot up defaults.

5. The IDE driver will finish initializing the drives by sending these ATA commands to the drives,
possibly modifying or adding commands to suit the features supported by the operating
system.

The following shows the namespace for these objects:

_SB // System bus
 PCI0 // PCI bus
 IDE1 // First IDE channel
 _ADR // Indicates address of the channel on the PCI bus
 _GTM // Control method to get current IDE channel settings
 _STM // Control method to set current IDE channel settings
 _PR0 // Power resources needed for D0 power state
 DRV1 // Drive 0
 _ADR // Indicates address of master IDE device
 _GTF // Control method to get task file
 DRV2 // Drive 1
 _ADR // Indicates address of slave IDE device
 _GTF // Control method to get task file
 IDE2 // Second IDE channel
 _ADR // Indicates address of the channel on the PCI bus
 _GTM // Control method to get current IDE channel settings
 _STM // Control method to set current IDE channel settings
 _PR0 // Power resources needed for D0 power state
 DRV1 // Drive 0
 _ADR // Indicates address of master IDE device
 _GTF // Control method to get task file
 DRV2 // Drive 1
 _ADR // Indicates address of slave IDE device
 _GTF // Control method to get task file

The sequential order of operations is as follows:

Powering down:
• Call _GTM.
• Power down drive (calls _PS3 method and turns off power planes).

Powering up:
• Power up drive (calls _PS0 method if present and turns on power planes).
• Call _STM passing info from _GTM (possibly modified), with ID data from
• each drive.
• Initialize the channel.
• May modify the results of _GTF.
UEFI Forum, Inc. January 2019 Page 605

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
• For each drive:

— Call _GTF.

— Execute task file (possibly modified).

9.9.2.1 IDE Controller-specific Objects

9.9.2.1.1 _GTM (Get Timing Mode)

This Control Method exists under each channel device object and returns the current settings for the IDE
channel.

Arguments:

None

Return Value:

A Buffer containing the current IDE channel timing information block as described in Table 9-287 below.

_GTM returns a buffer with the following format

Buffer (){
 PIO Speed 0 //DWORD
 DMA Speed 0 //DWORD
 PIO Speed 1 //DWORD
 DMA Speed 1 //DWORD
 Flags //DWORD
}

Table 9-287 GTM Method Result Codes

Field Format Description

PIO Speed 0 DWORD The PIO bus-cycle timing for drive 0 in nanoseconds. 0xFFFFFFFF indicates
that this mode is not supported by the channel. If the chipset cannot set
timing parameters independently for each drive, this field represents the
timing for both drives.

DMA Speed 0 DWORD The DMA bus-cycle for drive 0 timing in nanoseconds. If bit 0 of the Flags
register is set, this DMA timing is for UltraDMA mode, otherwise the timing
is for multi-word DMA mode. 0xFFFFFFFF indicates that this mode is not
supported by the channel. If the chipset cannot set timing parameters
independently for each drive, this field represents the timing for both
drives.

PIO Speed 1 DWORD The PIO bus-cycle timing for drive 1 in nanoseconds. 0xFFFFFFFF indicates
that this mode is not supported by the channel. If the chipset cannot set
timing parameters independently for each drive, this field must be
0xFFFFFFFF.

DMA Speed 1 DWORD The DMA bus-cycle timing for drive 1 in nanoseconds. If bit 0 of the Flags
register is set, this DMA timing is for UltraDMA mode, otherwise the timing
is for multi-word DMA mode. 0xFFFFFFFF indicates that this mode is not
supported by the channel. If the chipset cannot set timing parameters
independently for each drive, this field must be 0xFFFFFFFF.
UEFI Forum, Inc. January 2019 Page 606

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9.9.2.1.2 _STM (Set Timing Mode)

This Control Method sets the IDE channel’s transfer timings to the setting requested. The AML code is
required to convert and set the nanoseconds timing to the appropriate transfer mode settings for the IDE
controller. _STM may also make adjustments so that _GTF control methods return the correct commands
for the current channel settings.

This control method takes three arguments: Channel timing information (as described in Table 9-6), and
the ATA drive ID block for each drive on the channel. The channel timing information is not guaranteed to
be the same values as returned by _GTM; the OS may tune these values as needed.

Arguments: (3)

Arg0 – A Buffer containing a channel timing information block (described in Table 9-6)

Arg1 – A Buffer containing the ATA drive ID block for channel 0

Arg2 – A Buffer containing the ATA drive ID block for channel 1

Return Value:

None

The ATA drive ID block is the raw data returned by the Identify Drive ATA command, which has the
command code “0ECh.” The _STM control method is responsible for correcting for drives that misreport
their timing information.

9.9.3 Serial ATA (SATA) Controller Device

9.9.3.1 Definitions

HBA Host Bus Adapter

Native SATA aware Refers to system software (platform firmware, option ROM,
operating system, etc) that comprehends a particular SATA HBA
implementation and understands its programming interface and
power management behavior.

Non-native SATA aware Refers to system software (platform firmware, option ROM,
operating system, etc) that does not comprehend a particular
SATA HBA implementation and does not understand its
programming interface or power management behavior.
Typically, non-native SATA aware software will use a SATA
HBA’s emulation interface (e.g. task file registers) to control the
HBA and access its devices.

Flags DWORD Mode flags
Bit [0]: 1 indicates using UltraDMA on drive 0
Bit [1]: 1 indicates IOChannelReady is used on drive 0

Bit [2]: 1 indicates using UltraDMA on drive 1
Bit [3]: 1 indicates IOChannelReady is used on drive 1

Bit [4]: 1 indicates chipset can set timing independently for each drive

Bits [31:5]: reserved (must be 0)

Field Format Description
UEFI Forum, Inc. January 2019 Page 607

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Emulation mode Optional mode supported by a SATA HBA. Allows non-native
SATA aware software to access SATA devices via traditional
task file registers.

Native mode Optional mode supported by a SATA HBA. Allows native SATA
aware software to access SATA devices via registers that are
specific to the HBA.

Hybrid Device Refers to a SATA HBA that implements both an emulation and a
native programming interface.

9.9.3.2 Overview

A SATA HBA differs from an IDE controller in a number of ways. First, it can save its complete device
context. Second, it replaces IDE channels, which may support up to 2 attached devices, with ports, which
support only a single attached device, unless a port multiplier is present. See the SATA spec at “Links to
ACPI-Related Documents” (http://uefi.org/acpi) under the heading "SATA Specification"for more
information. Finally, SATA does not require timing information from the platform, allowing a
simplification in how SATA controllers are represented in ACPI. (_GTM and _STM are replaced by the
simpler _SDD method.)

All ports, even those attached off a port multiplier, are represented as children directly under the SATA
controller device. This is practical because the SATA specification does not allow a port multiplier to be
attached to a port multiplier. Each port’s _ADR indicates to which root port they are connected, as well as
the port multiplier location, if applicable. (See Table 6-190 for _ADR format.)

Since this specification only covers the configuration of motherboard devices, it is also the case that the
control methods defined in this section cannot be used to send taskfiles to devices attached via either an
add-in SATA HBA, or attached via a motherboard SATA HBA, if used with a port multiplier that is not also
on the motherboard.

The following shows an example SATA namespace:

_SB - System bus
 PCI0 - PCI bus
 SATA - SATA Controller device
 ADR - Indicates address of the controller on the PCI bus
 PR0 - Power resources needed for D0 power state
 PRT0 - Port 0 device
 _ADR - Indicates physical port and port multiplier topology
 _SDD - Identify information for drive attached to this port
 _GTF - Control method to get task file
 PRTn - Port n device
 _ADR - Indicates physical port and port multiplier topology
 _SDD - Identify information for drive attached to this port
 _GTF - Control method to get task file

9.9.3.3 SATA controller-specific control methods

In order to ensure proper interaction between OSPM, the firmware, and devices attached to the SATA
controller, it is a requirement that OSPM execute the _SDD and _GTF control methods when certain
events occur. OSPM’s response to events must be as follows:
UEFI Forum, Inc. January 2019 Page 608

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
COMRESET, Initial OS load, device insertion, HBA D3 to D0 transition, asynchronous loss
of signal:

1. OSPM sends IDENTIFY DEVICE or IDENTIFY PACKET DEVICE command to the attached device.

2. OS executes _SDD. _SDD control method requires 1 argument that consists of the data block
received from an attached device as a result of a host issued IDENTIFY DEVICE or IDENTIFY
PACKET DEVICE command.

3. After the _SDD method completes, the OS executes the _GTF method. Using the task file
information provided by _GTF, the OS then sends the _GTF taskfiles to the attached device.

Device removal and HBA D0 to D3 transition:
1. No OSPM action required.

9.9.3.3.1 _SDD (Set Device Data)

This optional object is a control method that conveys to the platform the type of device connected to the
port. The _SDD object may exist under a SATA port device object. The platform typically uses the
information conveyed by the _SDD object to construct the values returned by the _GTF object.

OSPM conveys to the platform the ATA drive ID block, which is the raw data returned by the Identify
(Packet) Device, ATA command (command code “0ech.”). Please see the ATA/ATAPI-6 specification for
more details.

Arguments: (1)

Arg0 – A Buffer containing an ATA drive identify block, contents described by the ATA specification

Return Value:

None

9.10 Floppy Controller Device Objects

9.10.1 _FDE (Floppy Disk Enumerate)

Enumerating devices attached to a floppy disk controller is a time-consuming function. In order to speed
up the process of floppy enumeration, ACPI defines an optional enumeration object that is defined
directly under the device object for the floppy disk controller. It returns a buffer of five 32-bit values. The
first four values are Boolean values indicating the presence or absence of the four floppy drives that are
potentially attached to the controller. A non-zero value indicates that the floppy device is present. The
fifth value returned indicates the presence or absence of a tape controller. Definitions of the tape
presence value can be found in Table 9-288.

Arguments:

None

Return Value:

A Buffer containing a floppy drive information block, as decribed below

Buffer (){
 Floppy 0 // Boolean DWORD
 Floppy 1 // Boolean DWORD
UEFI Forum, Inc. January 2019 Page 609

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
 Floppy 2 // Boolean DWORD
 Floppy 3 // Boolean DWORD
 Tape // DWORD – See table below
}

Table 9-288 Tape Presence

Value Description

0 Device presence is unknown or unavailable

1 Device is present

2 Device is never present

>2 Reserved

9.10.2 _FDI (Floppy Disk Information)

This object returns information about a floppy disk drive. This information is the same as that returned by
the INT 13 Function 08H on IA-PCs.

Arguments:

None

Return Value:

A Package containing the floppy disk information as a list of Integers

Package {
 Drive Number // Integer (BYTE)
 Device Type // Integer (BYTE)
 Maximum Cylinder Number // Integer (WORD)
 Maximum Sector Number // Integer (WORD)
 Maximum Head Number // Integer (WORD)
 disk_specify_1 // Integer (BYTE)
 disk_specify_2 // Integer (BYTE)
 disk_motor_wait // Integer (BYTE)
 disk_sector_siz // Integer (BYTE)
 disk_eot // Integer (BYTE)
 disk_rw_gap // Integer (BYTE)
 disk_dtl // Integer (BYTE)
 disk_formt_gap // Integer (BYTE)
 disk_fill // Integer (BYTE)
 disk_head_sttl // Integer (BYTE)
 disk_motor_strt // Integer (BYTE)
}

Table 9-289 ACPI Floppy Drive Information

Package Element Element Object Type Actual Valid Data Width

00 – Drive Number Integer BYTE
UEFI Forum, Inc. January 2019 Page 610

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9.10.3 _FDM (Floppy Disk Drive Mode)

This control method switches the mode (300 RPM or 360 RPM) of all floppy disk drives attached to this
controller. If this control method is implemented, the platform must reset the mode of all drives to
300RPM mode after a Dx to D0 transition of the controller.

Arguments: (1)

Arg0 – An Integer containing the new drive mode

0 – Set the mode of all drives to 300 RPM mode

1 – Set the mode of all drives to 360 RPM mode

Return Value:

None

9.11 GPE Block Device

The GPE Block device is an optional device that allows a system designer to describe GPE blocks beyond
the two that are described in the FADT. Control methods associated with the GPE pins of GPE block
devices exist as children of the GPE Block device, not within the _GPE namespace. Because GPE block
devices are meant as an extension to the GPE blocks defined in the FADT, and that portion of the FADT is
to be ignored in hardware-reduced ACPI, GPE block devices are not supported in hardware-reduced ACPI.

A GPE Block device consumes I/O or memory address space, as specified by its _PRS or _CRS child objects.
The interrupt vector used by the GPE block does not need to be the same as the SCI_INT field. The
interrupt used by the GPE block device is specified in the _CRS and _PRS methods associated with the

01 – Device Type Integer BYTE

02 – Maximum Cylinder Number Integer WORD

03 – Maximum Sector Number Integer WORD

04 – Maximum Head Number Integer WORD

05 – Disk_specify_1 Integer BYTE

06 – Disk_specify_2 Integer BYTE

07 – Disk_motor_wait Integer BYTE

08 – Disk_sector_siz Integer BYTE

09 – Disk_eot Integer BYTE

10 – Disk_rw_gap Integer BYTE

11 – Disk_dtl Integer BYTE

12 – Disk_formt_gap Integer BYTE

13 – Disk_fill Integer BYTE

14 – Disk_head_sttl Integer BYTE

15 – Disk_motor_strt Integer BYTE

Package Element Element Object Type Actual Valid Data Width
UEFI Forum, Inc. January 2019 Page 611

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
GPE block. The _CRS of a GPE Block device may only specify a single register address range, either I/O or
memory. This range contains two registers: the GPE status and enable registers. Each register’s length is
defined as half of the length of the _CRS-defined register address range.

A GPE Block device must have a _HID or a _CID of “ACPI0006.”

Note: A system designer must describe the GPE block necessary to bootstrap the system in the FADT as
a GPE0/GPE1 block. GPE Block devices cannot be used to implement these GPE inputs.

A GPE Block Device must contain the _Lxx, _Exx, _Wxx, _CRS, _PRS, and _SRS methods required to use
and program that block.

To represent the GPE block associated with the FADT, the system designer shouldinclude in the
namespace a Device object with the ACPI0006 _HID that contains no _CRS, _PRS, _SRS, _Lxx, _Exx, or
_Wxx methods. OSPM assumes that the first such ACPI0006 device is the GPE Block Device that is
associated with the FADT GPEs. (See the example below).

// ASL example of a standard GPE block device
Device(_SB.PCI0.GPE1) {
 Name(_HID, ”ACPI0006”)
 Name(_UID, 2)
 Name(_CRS, Buffer () {
 IO(Decode16, FC00, FC03, 4, 4,)
 IRQ(Level, ActiveHigh, Shared,) { 5 }
 })

 Method(_L02) { … }
 Method(_E07) { … }
 Method(_W04) { … }
}

// ASL example of a GPE block device that refers to the FADT GPEs.
// Cannot contain any _Lxx, _Exx, _Wxx, _CRS, _PRS, or. _SRS methods.
Device(_SB.PCI0.GPE0) {
 Name(_HID,”ACPI0006”)
 Name(_UID,1)
}

Notice that it is legal to replace the I/O descriptors with Memory descriptors if the register is memory
mapped.

If the system must run any GPEs to bootstrap the system (for example, when Embedded Controller
events are required), the associated block of GPEs must be described in the FADT. This register block is
not relocatable and will always be available for the life of the operating system boot.

A GPE block associated with the ACPI0006 _HID can be stopped, ejected, reprogrammed, and so on. The
system can also have multiple such GPE blocks.

9.11.1 Matching Control Methods for Events in a GPE Block Device

When a GPE Device raises an interrupt, OSPM executes a corresponding control method (as described in
Section 5.6.4.1.1, “Queuing the Matching Control Method for Execution”). These control methods (of the
UEFI Forum, Inc. January 2019 Page 612

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
form _Lxx, _Exx, and _Wxx) for GPE Devices are not within the _GPE namespace. They are children of the
GPE Block device.

For example:

Device(GPE5) {
 Name(_HID, “ACPI0006”)

 Method(_L02) { … }
 Method(_E07) { … }
 Method(_W04) { … }
}

9.12 Module Device

This optional device is a container object that acts as a bus node in a namespace. It may contain child
objects that are devices or buses. The module device is declared using the ACPI0004 hardware identifier
(HID).

If the module device contains a _CRS object, the “bus” described by this object is assumed to have these
resources available for consumption by its child devices. If a _CRS object is present, any resources not
produced in the module device’s _CRS object may not be allocated to child devices.

Providing a _CRS object is undesirable in some module devices. For example, consider a module device
used to describe an add-in board containing multiple host bridges without any shared resource decoding
logic. In this case the resource ranges available to the host bridges are not controlled by any entity
residing on the add-in board, implying that a _CRS object in the associated module device would not
describe any real feature of the underlying hardware. A module device must contain a _CRS object if the
device contains any PCI host bridge devices.

To account for cases like this, the system designer may optionally omit the module device’s _CRS object.
If no _CRS object is present, OSPM will assume that the module device is a simple container object that
does not produce the resources consumed by its child devices. In this case, OSPM will assign resources to
the child devices as if they were direct children of the module device's parent object.

For an example with a module device _CRS object present, consider a Module Device containing three
child memory devices. If the _CRS object for the Module Device contains memory from 2 GB through 6
GB, then the child memory devices may only be assigned addresses within this range.

Example:
Device (_SB.NOD0) {
 Name (_HID, "ACPI0004") // Module device
 Name (_UID, 0)
 Name (_PRS, ResourceTemplate() {
 WordIO (
 ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,,, // _MAF
 0x0000, // _GRA
 0x0000, // _MIN
 0x7FFF, // _MAX
 0x0, // _TRA
UEFI Forum, Inc. January 2019 Page 613

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
 0x8000) // _LEN
 DWordMemory (
 ResourceProducer,, // For Main Memory + PCI
 MinNotFixed, // _MIF
 MaxNotFixed, // _MAF
 Cacheable, // _MEM
 ReadWrite, // _RW
 0x0FFFFFFF, // _GRA
 0x40000000, // _MIN
 0x7FFFFFFF, // _MAX
 0x0, // _TRA
 0x00000000) // _LEN
 })
 Method (_SRS, 1) { ... }
 Method (_CRS, 0) { ... }

 Device (MEM0) { // Main Memory (256MB module)
 Name (_HID, EISAID("PNP0C80"))
 Name (_UID, 0)
 Method (_STA, 0) { // If memory not present --> Return(0x00)
 // Else if memory is disabled --> Return(0x0D)
 // Else --> Return(0x0F)
 }
 Name (_PRS, ResourceTemplate () {
 DWordMemory (,,,,
 Cacheable, // _MEM
 ReadWrite, // _RW
 0x0FFFFFFF, // _GRA
 0x40000000, // _MIN
 0x7FFFFFFF, // _MAX
 0x0, // _TRA
 0x10000000) // _LEN
 })
 Method (_CRS, 0) { ... }
 Method (_SRS, 1) { ... }
 Method (_DIS, 0) { ... }
 }
 Device (MEM1) { // Main Memory (512MB module)
 Name (_HID, EISAID("PNP0C80"))
 Name (_UID, 1)
 Method (_STA, 0) { // If memory not present --> Return(0x00)
 // Else if memory is disabled --> Return(0x0D)
 // Else --> Return(0x0F)
 }
 Name (_PRS, ResourceTemplate () {
 DWordMemory (,,,,
 Cacheable, // _MEM
 ReadWrite, // _RW
 0x1FFFFFFF, // _GRA
 0x40000000, // _MIN
 0x7FFFFFFF, // _MAX
UEFI Forum, Inc. January 2019 Page 614

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
 0x0, // _TRA
 0x20000000) // _LEN
 })
 Method (_CRS, 0) { ... }
 Method (_SRS, 1) { ... }
 Method (_DIS, 0) { ... }
 }
 Device (PCI0) { // PCI Root Bridge
 Name (_HID, EISAID("PNP0A03"))
 Name (_UID, 0)
 Name (_BBN, 0x00)
 Name (_PRS, ResourceTemplate () {
 WordBusNumber (
 ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,, // _MAF
 0x00, // _GRA
 0x00, // _MIN
 0x7F, // _MAX
 0x0, // _TRA
 0x80) // _LEN
 WordIO (
 ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,,, // _MAF
 0x0000, // _GRA
 0x0000, // _MIN
 0x0CF7, // _MAX
 0x0, // _TRA
 0x0CF8) // _LEN
 WordIO (
 ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,,, // _MAF
 0x0000, // _GRA
 0x0D00, // _MIN
 0x7FFF, // _MAX
 0x0, // _TRA
 0x7300) // _LEN

 DWordMemory (
 ResourceProducer,,
 MinNotFixed, // _MIF
 MaxNotFixed, // _MAF
 NonCacheable, // _MEM
 ReadWrite, // _RW
 0x0FFFFFFF, // _GRA
 0x40000000, // _MIN
 0x7FFFFFFF, // _MAX
 0x0, // _TRA
 0x00000000) // _LEN
UEFI Forum, Inc. January 2019 Page 615

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
 })
 Method (_CRS, 0) { ... }
 Method (_SRS, 1) { ... }
 }
}

9.13 Memory Devices

Memory devices allow a platform to convey dynamic properties of memory to OSPM and are required
when a platform supports the addition or removal of memory while the system is active or when the
platform supports memory bandwidth monitoring and reporting (see Section 9.13.2, Memory Bandwidth
Monitoring and Reporting). Memory devices may describe exactly the same physical memory that the
System Address Map interfaces describe (see chapter 15, System Address Map Interfaces). They do not
describe how that memory is, or has been, used. If a region of physical memory is marked in the System
Address Map interface as AddressRangeReserved or AddressRangeNVS and it is also described in a
memory device, then it is the responsibility of the OS to guarantee that the memory device is never
disabled.

It is not necessary to describe all memory in the system with memory devices if there is some

 memory in the system that is static in nature. If, for instance, the memory that is used for the first 16 MB
of system RAM cannot be ejected, inserted, or disabled, that memory may only be represented by the
System Address Map interfaces. But if memory can be ejected, inserted, or disabled, or if the platform
supports memory bandwidth monitoring and reporting, the memory must be represented by a memory
device.

9.13.1 Address Decoding

Memory devices must provide a _CRS object that describes the physical address space that the memory
decodes. If the memory can decode alternative ranges in physical address space, the devices may also
provide _PRS, _SRS and _DIS objects. Other device objects may also apply if the device can be ejected.

9.13.2 Memory Bandwidth Monitoring and Reporting

During platform operation, an adverse condition external to the platform may arise whose remedy
requires a reduction in the platform’s available memory bandwidth. For example, a server management
controller’s detection of an adverse thermal condition or the need to reduce the total power
consumption of platforms in the data center to stay within acceptable limits. Providing OSPM with
knowledge of a platform induced reduction of memory bandwidth enables OSPM to provide more robust
handling of the condition. The following sections describe objects OSPM uses to configure platform-
based memory bandwidth monitoring and to ascertain available memory bandwidth when the platform
performs memory bandwidth throttling.

9.13.2.1 _MBM (Memory Bandwidth Monitoring Data)

The optional _MBM object provides memory bandwidth monitoring information for the memory device.

Arguments:

None
UEFI Forum, Inc. January 2019 Page 616

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Return Value:

A Package containing memory device status information as described in Table 9-290 below

Return Value Information:
_MBM evaluation returns a package of the following format:

Package (){
 Revision, // Integer
 WindowSize, // Integer DWORD
 SamplingInterval, // Integer DWORD
 MaximumBandwidth, // Integer DWORD
 AverageBandwidth, // Integer DWORD
 LowBandwidth, // Integer DWORD
 LowNotficationThreshold, // Integer DWORD
 HighNotificationThreshold // Integer DWORD
}

Table 9-290 MBM Package Details

Field Format Description

Revision Integer Current revision is: 0

Window Size Integer
(DWORD)

This field indicates the size of the averaging window (in seconds)
that the platform uses to report average bandwidth.

Sampling Interval Integer
(DWORD)

This field indicates the sampling interval (in seconds) that the
platform uses to record bandwidth during the averaging window.

Maximum
Bandwidth

Integer
(DWORD)

This field indicates the maximum memory bandwidth (in megabytes
per second) for the memory described by this memory device.

Average Bandwidth Integer
(DWORD)

This field indicates the moving average memory bandwidth (in
percent) for the averaging window.

Low Bandwidth Integer
(DWORD)

This field indicates the lowest memory bandwidth (in percent)
recorded for the averaging window.

Low Notification
Threshold

Integer
(DWORD)

The platform to issues a Notify (0x80) on the memory device when
the moving average memory bandwidth value (in percent) falls
below the value indicated by this field.

High Notification
Threshold

Integer
(DWORD)

The platform to issues a Notify (0x81) on the memory device when
the moving average memory bandwidth value (in percent) increases
to or exceeds the value indicated by this field.

9.13.2.2 _MSM (Memory Set Monitoring)

This optional object sets the memory bandwidth monitoring parameters described in Table 9-290.

Arguments: (4)

Arg0 – WindowSize (Integer(DWORD)): indicates the window size in seconds.

Arg1 – SamplingInterval (Integer(DWORD)): indicates the sampling interval in seconds.
UEFI Forum, Inc. January 2019 Page 617

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Arg2 – LowNotificationThreshold (Integer(DWORD)): indicates the low notification threshold in percent.
Must be <= HighNotificationThreshold.

Arg3 – HighNotificationThreshold (Integer(DWORD)): indicates the high notification threshold in percent.
Must be >= LowNotificationThreshold.

Return Value:

An Integer (DWORD) containing a bit encoded result code as follows:

0x00000000 – Succeeded to set all memory bandwidth monitoring parameters.

Non-Zero – At least one memory bandwith monitoring parameter value could not be set as
follows:

Table 9-291 MSM Result Encoding

Bits Definition

0 If clear indicates WindowSize was set successfully. If set, indicates invalid WindowSize
argument.

1 If clear indicates SamplingInterval was set successfully. If set, indicates invalid
SamplingInterval argument.

2 If clear indicates LowNotificationThreshold was set successfully. If set, indicates invalid
LowNotificationThreshold argument.

3 If clear indicates HighNotificationThreshold was set successfully. If set, indicates invalid
HighNotificationThreshold argument.

31:4 Reserved (must be 0)

9.13.3 _OSC Definition for Memory Device

OSPM evaluates _OSC under the Memory Device to convey OSPM capabilities to the platform. Argument
definitions are as follows:

Arguments: (4)

Arg0 – UUID (Buffer): 03B19910-F473-11DD-87AF-0800200C9A66

Arg1 – Revision ID (Integer): 1

Arg2 – Count of Entries in Arg3 (Integer): 2

Arg3 – DWORD capabilities (Buffer):

• First DWORD: as described in Section 6.2.10
• Second DWORD: See Table 6-231.

Return Value:

A Buffer containing platform capabilities

Table 9-292 Memory Device _OSC Capabilities DWORD number 2

Bits Field Name Definition
UEFI Forum, Inc. January 2019 Page 618

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Return Value Information
Capabilities Buffer (Buffer) – The platform acknowledges the Capabilities Buffer by returning a

buffer of DWORDs of the same length. Set bits indicate acknowledgement and cleared bits
indicate that the platform does not support the capability.

9.13.4 Example: Memory Device

Scope (_SB){
 Device (MEM0) {
 Name (_HID, EISAID (“PNP0C80”))
 Name (_CRS, ResourceTemplate () {
 QWordMemory
 ResourceConsumer,
 ,
 MinFixed,
 MaxFixed,
 Cacheable,
 ReadWrite,
 0xFFFFFFF,
 0x10000000,
 0x30000000,
 0,
 ,,)
 }
 }
}

9.14 _UPC (USB Port Capabilities)

This optional object is a method that allows the platform to communicate to the operating system,
certain USB port capabilities that are not provided for through current USB host bus adaptor
specifications (e.g. UHCI, OHCI and EHCI). If implemented by the platform, this object will be present for
each USB port (child) on a given USB host bus adaptor; operating system software can examine these
characteristics at boot time in order to gain knowledge about the system’s USB topology, available USB
ports, etc. This method is applicable to USB root hub ports as well as ports that are implemented through
integrated USB hubs.

Arguments:

None

Return Value:

A Package as described below

0 Memory
Bandwidth
Change
Notifications

This bit is set if OSPM supports the processing of memory bandwidth change
notifications. If the platform supports the ability to issue a notification when
Memory Bandwidth changes, it may only do so after _OSC has been evaluated
with this bit set. _OSC evaluation with this bit clear will cause the platform to
cease issuing notifications if previously enabled.

31:1 Reserved (must be 0)
UEFI Forum, Inc. January 2019 Page 619

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Return Value Information:
Package {
 Connectable // Integer (BYTE)
 Type // Integer (BYTE)
 Reserved0 // Integer
 Reserved1 // Integer)
}

Table 9-293 UPC Return Package Values

Element Object Type Description

Connectable Integer
(BYTE)

If this value is non-zero, then the port is connectable. If this value is zero,
then the port is not connectable.

Type Integer
(BYTE)

Specifies the host connector type. It is ignored by OSPM if the port is not
user visible:

0x00: Type ‘A’ connector

0x01: Mini-AB connector

0x02: ExpressCard

0x03: USB 3 Standard-A connector

0x04: USB 3 Standard-B connector

0x05: USB 3 Micro-B connector

0x06: USB 3 Micro-AB connector

0x07: USB 3 Power-B connector

0x08: Type C connector - USB2-only

0x09: Type C connector - USB2 and SS with Switch

0x0A: Type C connector - USB2 and SS without Switch

0x0B– 0xFE: Reserved

0xFF: Proprietary connector

Reserved0 Integer This value is reserved for future use and must be zero.

Reserved1 Integer This value is reserved for future use and must be zero.

Additional Notes:

The definition of a 'connectable' port is dependent upon the implementation of the USB port within a
particular platform. For example,

• If a USB port is user visible (as indicated by the _PLD object) and connectable, then an end user
can freely connect and disconnect USB devices to the USB port.

• If a USB port is not user visible and is connectable, then an end user cannot freely connect and
disconnect USB devices to the USB port. A USB device that is directly "hard-wired" to a USB
port is an example of a USB port that is not user visible and is connectable.

• If a USB port is not user visible and is not connectable, then the USB port is physically
implemented by the USB host controller, but is not being used by the platform and therefore
cannot be accessed by an end user.

A USB port cannot be specified as both visible and not connectable.
UEFI Forum, Inc. January 2019 Page 620

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
The pins of a Type-C connector support one USB2 signal pair (D+/D-) and two SuperSpeed signal pairs
(SSTXp1/SSTXn1 and SSRXp2/SSRXn2). The use of two SS signal pairs allows the CC wire and USB
SuperSpeed data bus wires to be used for signaling within the cable track without regard to the
orientation and twist of the cable.

Type C connector - USB2 USB2-only receptacles

 These only implement the USB2 signal pair, and do not implement the SS signal pairs.

Type C connector - USB2 and SS with Switch receptacles

 These implement the USB2 signal pair, and a Functional Switch with a physical Multiplexer that is
used to dynamically connect one of the two receptacle SuperSpeed signal pairs to a single USB
Host Controller port as function of the Type-C plug orientation.

Type C connector - USB2 and SS without Switch receptacles

These implement the USB2 signal pair and a Functional Switch by connecting each receptacle
SuperSpeed signal pair to a separate USB Host Controller port.

Note: Refer to section 4.5.1.1 in the USB Type-C Specification for more information.

Example

The following is an example of a port characteristics object implemented for a USB host controller’s root
hub where:

• Three Ports are implemented; Port 1 is not user visible/not connectable and Ports 2 and 3 are
user visible and connectable.

• Port 2 is located on the back panel
• Port 3 has an integrated 2 port hub. Note that because this port hosts an integrated hub, it is

therefore not sharable with another host controller (e.g. If the integrated hub is a USB2.0 hub,
the port can never be shared with a USB1.1 companion controller).

• The ports available through the embedded hub are located on the front panel and are adjacent
to one another.

Figure 9-50 USB ports

//
// Root hub device for this host controller. This controller implements 3 root hub
ports.

USB Host Controller

Root Hub

Port 3

Integrated Hub

Port 1

Port 1

Port 2

Port 2
UEFI Forum, Inc. January 2019 Page 621

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
//
Device(RHUB) {
 Name(_ADR, 0x00000000) // Value of 0 is reserved for root HUB
 // Root hub, port 1
 Device(PRT1) {
 // Address object for port 1. This value must be 1
 Name(_ADR, 0x00000001)
 // USB port capabilities object. This object returns the system
 // specific USB port configuration information for port number 1
 // Because this port is not connectable it is assumed to be not visible.
 // Therefore a _PLD descriptor is not required.
 Name(_UPC, Package(){
 0x00, // Port is not connectable
 0xFF, // Connector type (N/A for non-visible ports)
 0x00000000, // Reserved 0 – must be zero
 0x00000000}) // Reserved 1 – must be zero
 } // Device(PRT1)

 //
 // Root Hub, Port 2
 //
 Device(PRT2) {
 // Address object for port 2. This value must be 2
 Name(_ADR, 0x00000002)
 Name(_UPC, Package(){
 0xFF, // Port is connectable
 0x00, // Connector type – Type ‘A’
 0x00000000, // Reserved 0 – must be zero
 0x00000000}) // Reserved 1 – must be zero

 // provide physical port location info
 Name(_PLD, Package(1) {
 Buffer(0x14) {
 0x82,0x00,0x00,0x00, // Revision 2, Ignore color
 // Color (ignored), width and height not
 0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’ type
 // connector

 0x69,0x0c,0x00,0x00, // User visible, Back panel, Vertical
 // Center, shape = vert. rectangle
 0x03,0x00,0x00,0x00, // ejectable, requires OPSM eject assistance
 0xFF,0xFF,0xFF,0xFF})} // Vert. and Horiz. Offsets not supplied
} // Device(PRT2)

 //
 // Root Hub, Port 3
 //
 Device(PRT3) {
 // This device is the integrated USB hub.
 // Address object for port 3. This value must be 3
UEFI Forum, Inc. January 2019 Page 622

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
 Name(_ADR, 0x00000003)
 // Because this port is not connectable it is assumed to be not visible.
 // Therefore a _PLD descriptor is not required.
 Name(_UPC, Package(){
 0xFF, // Port is connectable
 0xFF, // Connector type (N/A for non-visible ports)
 0x00000000, // Reserved 0 – must be zero
 0x00000000}) // Reserved 1 - must be zero

 //
 // Integrated hub, port 1
 //
 Device(PRT1) {
 // Address object for the port. Because the port is implemented on
 // integrated hub port #1, this value must be 1
 Name(_ADR, 0x00000001)
 // USB port characteristics object. This object returns the system
 // specific USB port configuration information for integrated hub port
 // number 1
 Name(_UPC, Package(){
 0xFF, // Port is connectable
 0x00, // Connector type – Type ‘A’
 0x00000000, // Reserved 0 – must be zero
0x00000000}) // Reserved 1 – must be zero

 // provide physical port location info
 Name(_PLD, Package(1) {
 Buffer(0x14) {
 0x82,0x00,0x00,0x00,, // Revision 2, Ignore color
 // Color (ignored), width and height not
 0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’ type
 // connector

 0xa1,0x10,0x00,0x00, // User visible, front panel, Vertical
 // lower, horz. Left, shape = horz. rectangle
 0x03,0x00,0x00,0x00, // ejectable, requires OPSM eject assistance
 0xFF,0xFF,0xFF,0xFF})} // Vert. and Horiz. Offsets not supplied
 } // Device(PRT1)

 //
 // Integrated hub, port 2
 //
 Device(PRT2) {
 // Address object for the port. Because the port is implemented on
 // integrated hub port #2, this value must be 2
 Name(_ADR, 0x00000002)
 // USB port characteristics object. This object returns the system
 // specific USB port configuration information for integrated hub port
 // number 2
 Name(_UPC, Package(){
 0xFF, // Port is connectable
UEFI Forum, Inc. January 2019 Page 623

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
 0x00, // Connector type – Type ‘A’
 0x00000000, // Reserved 0 – must be zero
 0x00000000}) // Reserved 1 – must be zero
 Name(_PLD, Package(1) {
 Buffer(0x14) {
 0x82,0x00,0x00,0x00, // Revision 2, Ignore color
 // Color (ignored), width and height not
 0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’ type
 // connector

 0xa1,0x12,0x00,0x00, // User visible, front panel, Vertical
 // lower, horz. right, shape = horz. rectangle
 0x03,0x00,0x00,0x00, // ejectable, requires OPSM eject assistance
 0xFF,0xFF,0xFF,0xFF}) // Vert. and Horiz. Offsets not supplied
 } // Device(PRT2)
 } // Device(PRT3)
} // Device(RHUB)

9.14.1 USB 2.0 Host Controllers and _UPC and _PLD

Platforms implementing USB2.0 host controllers that consist of one or more USB1.1 compliant
companion controllers (e.g. UHCI or OHCI) must implement a _UPC and a _PLD object for each port USB
port that can be routed between the EHCI host controller and its associated companion controller. This is
required because a USB Port Capabilities object implemented for a port that is a child of an EHCI host
controller may not be available if the OSPM disables the parent host controller. For example, if root port
1 on an EHCI host controller is routable to root port 1 on its companion controller, then the namespace
must provide a _UPC and a _PLD object under each host controller’s associated port 1 child object.

Example

Scope(_SB) {
…
Device(PCI0) {
…
 // Host controller (EHCI)
Device(USB0) {
 // PCI device#/Function# for this HC. Encoded as specified in the ACPI
 // specification
Name(_ADR, 0xyyyyzzzz)
 // Root hub device for this HC #1.
Device(RHUB) {
Name(_ADR, 0x00000000) // must be zero for USB root hub
 // Root hub, port 1
Device(PRT1) {
Name(_ADR, 0x00000001)

 // USB port configuration object. This object returns the system
// specific USB port configuration information for port number 1
// Must match the _UPC declaration for USB1.RHUB.PRT1 as it is this
// host controller’s companion
Name(_UPC, Package(){
UEFI Forum, Inc. January 2019 Page 624

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
0xFF, // Port is connectable
0x00, // Connector type – Type ‘A’
0x00000000, // Reserved 0 – must be zero
0x00000000}) // Reserved 1 – must be zero

// provide physical port location info for port 1
// Must match the _UPC declaration for USB1.RHUB.PRT1 as it is this
// host controller’s companion
Name(_PLD, Package(1) {
 Buffer(0x14) {
 0x82,0x00,0x00,0x00, // Revision 2, Ignore color
 // Color (ignored), width and height not
 0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’
 // type connector

 0xa1,0x10,0x00,0x00, // User visible, front panel, Vertical
 // lower, horz. Left, shape = horz. Rect.
 0x03,0x00,0x00,0x00, // ejectable, needs OPSM eject assistance
 0xFF,0xFF,0xFF,0xFF})} // Vert. and Horiz. Offsets not supplied

} // Device(PRT1)
 //
 // Define other ports, control methods, etc
…
…
} // Device(RHUB)
} // Device(USB0)

 // Companion Host controller (OHCI or UHCI)
Device(USB1) {
 // PCI device#/Function# for this HC. Encoded as specified in the ACPI
 // specification
Name(_ADR, 0xyyyyzzzz)
 // Root hub device for this HC #1.
Device(RHUB) {
Name(_ADR, 0x00000000) // must be zero for USB root hub
 // Root hub, port 1
Device(PRT1) {
Name(_ADR, 0x00000001)
// USB port configuration object. This object returns the system
// specific USB port configuration information for port number 1
// Must match the _UPC declaration for USB0.RHUB.PRT1 as this host
// controller is a companion to the EHCI host controller
// provide physical port location info for port 1
Name(_UPC, Package(){
0xFF, // Port is connectable
0x00, // Connector type – Type ‘A’
0x00000000, // Reserved 0 – must be zero
0x00000000}) // Reserved 1 – must be zero

// Must match the _PLD declaration for USB0.RHUB.PRT1 as this host
UEFI Forum, Inc. January 2019 Page 625

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
// controller is a companion to the EHCI host controller
Name(_PLD, Package(1) {
 Buffer(0x14) {
 0x82,0x00,0x00,0x00, // Revision 2, Ignore color
 // Color (ignored), width and height not
 0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’
 // type connector

 0xa1,0x10,0x00,0x00, // User visible, front panel, Vertical
 // lower, horz. Left, shape = horz. Rect.
 0x03,0x00,0x00,0x00, // ejectable, requires OPSM eject assistance
 0xFF,0xFF,0xFF,0xFF})} // Vert. and Horiz. Offsets not supplied
} // Device(PRT1)
 //
 // Define other ports, control methods, etc
…
…
} // Device(RHUB)
} // Device(USB1)
} // Device(PCI0)
} // Scope(_\SB)

9.15 PC/AT RTC/CMOS Devices

Most computers contain an RTC device which also contains battery-backed RAM represented as a linear
array of bytes. There is a standard mechanism for accessing the first 64 bytes of non-volatile RAM in
devices that are compatible with the Motorola RTC/CMOS device that was in the IBM PC/AT. Newer
devices usually contain at least 128 bytes of battery-backed RAM. New PNP IDs were assigned for these
devices.

Certain bytes within the battery-backed RAM have pre-defined values. In particular, the time, date,
month, year, century, alarm time and RTC periodic interrupt are read-only.

9.15.1 PC/AT-compatible RTC/CMOS Devices (PNP0B00)

The standard PC/AT-compatible RTC/CMOS device is denoted by the PnP ID PNP0B00. If an ACPI platform
uses a device that is compatible with this device, it may describe this in its ACPI namespace. ASL may then
read and write this as a linear 64-byte array. If PNP0B00 is used, ASL and ACPI operating systems may not
assume that any extensions to the CMOS exist.

Note: This means that the CENTURY field in the Fixed ACPI Description Table may only contain values
between 0 and 63.

Example:

This is an example of how this device could be described:

Device (RTC0) {
 Name(_HID, EISAID("PNP0B00"))

Name (_FIX, Package(1) {
UEFI Forum, Inc. January 2019 Page 626

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
EISAID("PNP0B00") }
)
Name(_CRS, ResourceTemplate() {
 IO(Decode16, 0x70, 0x70, 0x1, 0x2)
}

 OperationRegion(CMS1, SystemCMOS, 0, 0x40)

 Field(CMS1, ByteAcc, NoLock, Preserve) {
 AccessAs(ByteAcc, 0),
 CM00, 8,
 ,256,
 CM01, 8,
 CM02, 16,
 , 216,
 CM03, 8
 }

9.15.2Intel PIIX4-compatible RTC/CMOS Devices (PNP0B01)

The Intel PIIX4 contains an RTC/CMOS device that is compatible with the one in the PC/AT. But it contains
256 bytes of non-volatile RAM. The first 64 bytes are accessed via the same mechanism as the 64 bytes in
the PC/AT. The upper 192 bytes are accessed through an interface that is only used on Intel chips. (See
82371AB PCI-TO-ISA / IDEXCELERATOR (PIIX4) for details.)

Any platform containing this device or one that is compatible with it may use the PNP ID PNP0B01. This
will allow an ACPI-compatible OS to recognize the RTC/CMOS device as using the programming interface
of the PIIX4. Thus, the array of bytes that ASL can read and write with this device is 256 bytes long.

Note: This also means that the CENTURY field in the Fixed ACPI Description Table may contain values
between 0 and 255.

Example:

This is an example of how this device could be described:

Device (RTC0) {
 Name(_HID, EISAID("PNP0B01"))

Name (_FIX, Package(1) {
EISAID("PNP0B01") }
)
 Name(_CRS, ResourceTemplate() {
 IO(Decode16, 0x70, 0x70, 0x1, 0x2)
 IO(Decode16, 0x72, 0x72, 0x1, 0x2)
 }

 OperationRegion(CMS1, SystemCMOS, 0, 0x100)

 Field(CMS1, ByteAcc, NoLock, Preserve) {
 AccessAs(ByteAcc, 0),
 CM00, 8,
UEFI Forum, Inc. January 2019 Page 627

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
 ,256,
 CM01, 8,
 CM02, 16,
 , 224,
 CM03, 8,
 , 184,
 CENT, 8
 }

9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNP0B02)

Dallas Semiconductor RTC/CMOS devices are compatible with the one in the PC/AT, but they contain 256
bytes of non-volatile RAM or more. The first 64 bytes are accessed via the same mechanism as the 64
bytes in the PC/AT. The upper bytes are accessed through an interface that is only used on Dallas
Semiconductor chips.

Any platform containing this device or one that is compatible with it may use the PNP ID PNP0B02. This
will allow an ACPI-compatible OS to recognize the RTC/CMOS device as using the Dallas Semiconductor
programming interface. Thus, the array of bytes that ASL can read and write with this device is 256 bytes
long.

Description of these devices is similar to the PIIX4 example above, and the CENTURY field of the FADT
may also contain values between 0 and 255.

9.16 User Presence Detection Device

The following section illustrates the operation and definition of the control method-based User Presence
Detection (UPD) device.

The user presence detection device can optionally support power management objects (e.g. _PS0, _PS3)
to allow the OS to manage the device’s power consumption.

The Plug and Play ID of an ACPI control method user presence detection device is ACPI000F.

Table 9-294 User Presence Detection Device

Object Description

_UPD The current user presence detection reading. [Required]

_UPP User presence detection polling frequency in tenths of seconds. [Optional]

9.16.1 _UPD (User Presence Detect)

This control method returns the user presence detection reading, indicating whether or not the user is
currently present from the perspective of this sensor. Three states are currently defined for UPD sensor
readings: absent, present, and unknown, represented by the values 0x00, 0x01, and 0xFF respectively.
The unknown state is used to convey that the sensor is currently unable to determine user presence due
to some environmental or other transient factor. All other values are reserved.
UEFI Forum, Inc. January 2019 Page 628

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Arguments:

None

Return Value:

An Integer containing the user presence code:

0x00 –Absent: A user is not currently detected by this sensor.

0x01 –Present: A user is currently detected by this sensor.

0xFF –Unknown: The sensor is currently unable to determine if a user is present or absent.

9.16.2 _UPP (User Presence Polling)

This optional object evaluates to a recommended polling frequency (in tenths of seconds) for this user
presence sensor. A value of zero – or the absence of this object when other UPD objects are defined –
indicates that the OS does not need to poll the sensor in order to detect meaningful changes in user
presence (the hardware is capable of generating asynchronous notifications).

Arguments:

None

Return Value:

An Integer containing the recommended polling frequency in tenths of seconds. A value of zero indicates
that polling is not required.

The use of polling is allowed but strongly discouraged by this specification. OEMs should design systems
that asynchronously notify OSPM whenever a meaningful change in user presence occurs—relieving the
OS of the overhead associated with polling.

This value is specified as tenths of seconds. For example, a value of 10 would be used to indicate a 1
second polling frequency. As this is a recommended value, OSPM will consider other factors when
determining the actual polling frequency to use.

9.16.3 User Presence Sensor Events

To communicate changes in user presence to OSPM, AML code should issue a Notify(upd_device,
0x80) whenever a change in user presence has occurred. The OS receives this notification and calls the
_UPD control method to determine the current user presence status.

UPD notifications should be generated whenever a transition occurs between one of the user presence
states (absent, present, or unknown) – but at a level of granularity that provides an appropriate response
without overly taxing the system with unnecessary interrupts.

9.17 I/O APIC Device

This optional device describes a discrete I/O APIC device that is not bus enumerated (e.g., as a PCI
device). Describing such a device in the ACPI namespace is only necessary if hot plug of this device is
supported. If hot plug of this device is not supported, an MADT I/O APIC (Section 5.2.12.3,”I/O APIC
Structure”) entry or I/O SAPIC (Section 5.2.12.9, “I/O SAPIC Structure”) entry is sufficient to describe this
device.
UEFI Forum, Inc. January 2019 Page 629

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
An I/O APIC device is an I/O unit that complies with either of the APIC interrupt models supported by
ACPI. These interrupt models are described Section 5.2.12.3,”I/O APIC Structure” and Section 5.2.12.9,”I/
O SAPIC Structure”. If the device is an I/O unit that complies with the APIC interrupt model, it is declared
using the ACPI000A identifier. If this device is an I/O unit that complies with the SAPIC interrupt model, it
is declared using the ACPI000B identifier. If this device complies with both the APIC and SAPIC interrupt
models (I/OxAPIC), it is declared using the ACPI0009 identifier.

An I/O APIC device declared using any of the above identifiers must contain a _GSB object as defined
inSection 6.2.7, “_GSB (Global System Interrupt Base)” to report its Global System Interrupt Base. It must
also contain a _CRS object that reports the base address of the I/O APIC device. The _CRS object is
required to contain only one resource, a memory resource pointing to the I/O APIC register base.

Note: Because the _CRS and _GSB methods provide sufficient information, it is not necessary to provide
_MAT under an I/O APIC device.

For an I/O APIC device that is described both in the MADT and in the namespace, the base address
described in the MADT entry must be the same as the base address in the IO APIC device _CRS at boot
time. OSPM must use the information from the MADT until such a time as the _CRS and _GSB methods in
the namespace device can be processed. At this point OSPM must ignore the MADT entry.

9.18 Time and Alarm Device

The following sections define the operation and definition of the optional control method-based Time
and Alarm device, which provides a hardware independent abstraction and a more robust alternative to
the Real Time Clock (RTC), See Section 9.15, "PC/AT RTC/CMOS Devices".

The time capabilities of the time and alarm device maintain the time of day information across platform
power transitions, and keep track of time even when the platform is turned off. It is expected that the
time on the platform will be consistent when different firmware interfaces are used to query the
platform time. For example, a UEFI call to get the time should return the same time as if the OSPM used
the time and alarm device at the same point in time.

The Time and Alarm device can optionally support power management objects (e.g. _PS0, _PS3) to allow
the OS to manage the device's power consumption.

The Time andAlarm device must support control method _PRW for being enabled to wake up the system.
It might support _DSW or _PSW to provide the functionality to enable or disable the device's ability to
wake a sleep system. On Hardware-reduced ACPI platforms, _PRW is only required if the device depends
on ACPI-defined power resources. _PRW’s GPEInfo structure is ignored by OSPM. For enabling
Wakeup, _DSW and _SxW are used, and the wakeup event is signaled by the GPIO-signaled ACPI event
mechanism (Section 5.6.5).

The Plug and Play ID of the Time and Wake Alarm device is ACPI000E.

Table 9-295 Time and Alarm Device

Object Description

_GCP Get the capabilities of the time and alarm device

_GRT Get the Real time

_SRT Set the Real time
UEFI Forum, Inc. January 2019 Page 630

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9.18.1Overview

The Time and Alarm device provides an alternative to the real time clock (RTC), which is defined as a fixed
feature hardware device. The wake timers allow the system to transition from the S3 (or optionally S4/
S5) state to S0 state after a time period elapses. In comparison with the Real Time Clock (RTC) Alarm, the
Time and Alarm device provides a larger scale of flexibility in the operation of the wake timers, and allows
the implementation of the time source to be abstracted from the OSPM.

Time and Alarm device provides the OSPM with a firmware abstraction of time and alarm services that
can be applicable to a variety of hardware designs. The methods for setting and getting real time provide
an alternative to the (RTC).

Time and Alarm devices that implement AC/DC wake service contain two programmable timers that can
be configured to wake the system depending on the platform's current power source (AC or DC) when
the timers expire. The two timers, which are referred to as the AC timer and the DC timer, are
independent in that they are individually programmable and applicable without interfering each other.
Each of the timers can be programmed with the number of seconds to elapse from the time the timer is
programmed until a wake is requested. When a timer expires, the Time and Alarm device decides
whether to wake the system based on the current power source. If the current power source is consistent
with the timer type that expired, a wake signal will be asserted. Otherwise, the wake signal will not be
asserted.

Time and Alarm devices that implement the AC only (power independent) wake contain one
programmable timer that can be configured to wake up the system regardless of the platform's power
source when the timer expires. To simplify the programming interface the AC wake will use the AC timer
portion of the AC/DC wake; writes to the DC timer when AC only wake is supported will be ignored.

To simplify the programming interface for the time and alarm device, timer expiration events will persist.
This means that if the OSPM programs a wake timer that expires before the OSPM completes the
transition into S3 (or S4/S5 if supported) the time and alarm device will wake the system immediately
after the OSPM completes the transition. Figure 9-52 illustrates this behavior.

_GWS Get Wake status

_CWS Clear Wake Status

_STP Sets expired timer wake policy for the specified timer.

_STV Sets the value in the specified timer.

_TIP Returns the current expired timer policy setting of the specified timer.

_TIV Returns the remaining time of the specified timer.
UEFI Forum, Inc. January 2019 Page 631

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects

S0

S3

OSPM programs
the wake timer

Wake timer

expires

OSPM

completes
transition

into S3

Wake device

immediately
wakes the

system

Time

Figure 9-51 Persistence of expired timer events

The time and alarm device will provide the OSPM with an interface to query the status of the wake timers
and discover what timers have expired. This interface enables the OSPM to discover the wake source.
The status of wake timers can be reset by setting the wake alarm; the OSPM may clear the alarm status
using the clear wake status method. All expired wake timer must be cleared if the OSPM requires the
platform to stay in S3 (S4/S5), otherwise the expired timers will immediately wake up the system.

For the AC/DC wake services, and in case the current power source is inconsistent with the timer type
that expires, an expired timer wake policy value, in units of seconds, is defined that enables the time and
alarm device to wake the system when the power source corresponding to the expired timer becomes
active (wake either immediately, after some time period, or never). The expired timer wake policy is
applicable only on devices that support AC/DC wake and only when the timer expires and the power
source is not consistent with the timer type. The expired timer policy is applied in conjunction with
expired timer persistence described earlier.

For example, if a mobile platform programs the AC timer to be 2 hours long and DC timer to be 4 hours
long and then transitions from the S0 state to S3 state at 1:00 AM, the AC timer is set to expire at 3:00
AM and the DC timer is set to expire at 5:00 AM. For the AC Timer, a expired timer wake policy value is
programmed as 60 seconds.

If the platform is unplugged from AC power at 1:40 AM and remains unplugged, the Time and Alarm
Device will not wake up the system at 3:00 AM. If the platform remains on DC power until 5:00 AM when
the DC timer expires, a wake signal will then be asserted. The following graph illustrates the above
example.
UEFI Forum, Inc. January 2019 Page 632

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Go to S3 AC timer expires DC timer expires

Time

4 hours

2 hours

S0

S3

AC

DC

1:00 AM 1:40 AM 3:00 AM 5:00 AM

Figure 9-52 System transitions with WakeAlarm -- Timer

If the AC power is plugged in again at 4:00 AM, then the system will be woken up at 4:01 AM due to the
AC expired timer wake policy value setting. The following graph illustrates this.

Go to S3 AC timer expires DC timer expires

Time

4 hours

2 hours

S0

S3

AC

DC

1:00 AM 1:40 AM 3:00 AM 5:00 AM

4:00 AM

Figure 9-53 System transitions with WakeAlarm -- Policy

The Time and Alarm device can support a range of services, the OSPM evaluates the _GCP object to get
the supported capabilities of the device. If the capabilities indicate that the device supports time services,
the OSPM evaluates the _GRT and _SRT objects to get and set time respectively.
UEFI Forum, Inc. January 2019 Page 633

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
If alarm services are supported by the device, the OSPM evaluates the _STV object to program both the
AC and DC timer values. The values, which are in units of seconds, indicate the elapsed time before the
timer expires. OSPM evaluates the _TIV object to read the current AC and DC timer values (seconds
remaining until expiration).

OSPM evaluates the _STP object to set timer policies for both the AC and DC timers OSPM reads the
current timer policy by evaluating the _TIP object, which return policy settings for both the AC and DC
timer.

The OSPM evaluates the _GWS object to identify expired timers that may have waked the platform. The
OSPM must evaluate the _CWS object to clear any expired timer events that can prevent the system from
performing a sleep transition according the expired timer wake policy, and the expired timer persistence
described above.

The Time and Alarm device, if implemented with wake support, must support waking up the system from
S3. Waking from S4/S5 support is optional.

9.18.2 _GCP (Get Capability)

This object is required and provides the OSPM with a bit mask of the device capabilities. The device can
implement the time function in addition to the wake function. The capabilities bitmask will indicate to
the OSPM what support is implemented. If the platform implements both AC and DC timers then it is
capable of waking up based on the power source.

Arguments: (0)

Return Value:

A 32-bit integer containing a result bitmask as follows:

Bit [0] - 1 = AC wake implemented, 0 = not supported

Bit [1] - 1 = DC wake implemented, 0 = not supported

Bit [2] - 1 = Get/Set real time features implemented, 0 = not supported

Bit [3] - 1 = Real time accuracy in milliseconds, 0 = Real time accuracy in seconds

Bit [4] - 1 = _GWS returns correct values for wakes from S4/S5 caused by timer. 0 = not supported

 Bit [5] - 1 = Wake supported from S4 on AC, 0 = Wake not supported from S4 on AC

 Bit [6] - 1 = Wake supported from S5 on AC, 0 = Wake not supported from S5 on AC

 Bit [7] - 1 = Wake supported from S4 on DC, 0 = Wake not supported from S4 on DC

 Bit [8] - 1 = Wake supported from S5 on DC, 0 = Wake not supported from S5 on DC

 Bit [9] to Bit [31] are reserved and must be 0.

9.18.3 _GRT (Get Real Time)

This object is required if the capabilities bit 2 is set to 1. The OSPM can use this object to get time. The
return value is a buffer containing the time information as described below.

Arguments: (0)

Return Value:

A buffer containing the time information, in the following format
UEFI Forum, Inc. January 2019 Page 634

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Buffer(){
WORD Year; // 1900 - 9999
BYTE Month; // 1 - 12
BYTE Day; // 1 - 31
BYTE Hour; // 0 - 23
BYTE Minute; // 0 - 59
BYTE Second: // 0 - 59
BYTE Valid; // 0 - Time is not valid (request failed); 1 - Time is valid
WORD milliseconds, // 1-1000
WORD TimeZone; // -1440 to 1440 or 2047 (unspecified)
BYTE Daylight;
BYTE Pad2[3]; // Reserved, must be zero
}

9.18.4 _SRT (Set Real Time)

This object is required if the capabilities bit 2 is set to 1. The OSPM can use this object to set the time. The
argument is a buffer containing the time information, as defined above.

Arguments: (1)

A buffer containing the time information, in the following format:

Buffer(){
WORD Year; // 1900 - 9999
BYTE Month; // 1 - 12
BYTE Day; // 1 - 31
BYTE Hour; // 0 - 23
BYTE Minute; // 0 - 59
BYTE Second; // 0 - 59
BYTE Pad1;
WORD milliseconds, // 1-1000
WORD TimeZone; // -1440 to 1440 or 2047 (unspecified)
BYTE Daylight;
BYTE Pad2[3]; // Reserved, must be zero
}

Return Value:

An Integer:

0 - success

0xFFFFFFFF- Failed
UEFI Forum, Inc. January 2019 Page 635

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Note: Time is maintained using a battery backed time device (e.g. a real time clock)

Note: The time will always be local time; the time zone value can be used to determine the offset from
UTC.

Note: Time zone field is the number of minutes that the local time lags behind the UTC time. (i.e. time
zone = UTC - local time). The time zone is in 2's complement format.

Note: Time zone value of 2047, means that time zone value is not specified, and no relation to UTC can
be inferred.

Note: Daylight is a bitmask containing the daylight savings time information for the time, as follows:

Bit [0]: 1 = the time is affected by daylight savings time, 0= time is not affected by daylight
savings. This value does not indicate that the time has been adjusted for daylight savings
time. It indicates only that it should be adjusted when the time enters daylight savings time.

Bit [1]: 1= the time has been adjusted for daylight savings time, 0= the time hasn't been adjusted
for daylight savings.

All other bits must be zero.

When entering daylight saving time, if the time is affected, but hasn't been adjusted (DST = 1), use the
new calculation:

• The date/time should be increased by the appropriate amount.
• The TimeZone should be decreased by the appropriate amount (EX: +480 changes to +420

when moving from PST to PDT).
• The Daylight value changes to 3.

When exiting daylight saving time, if the time is affected and has been adjusted (DST = 3), use the new
calculation:

• The date/time should be decreased by the appropriate amount.
• The TimeZone should be increased by the appropriate amount.
• The Daylight value changes to 1.

9.18.5 _GWS (Get Wake alarm status)

This object is required and enables the OSPM to read the status of wake alarms. Expired wake timers will
wake the platform even if the transition to a sleep state was completed after the wake timer has expired.
This method enables the OSPM to retrieve the status of wake timers and clear any of them if needed.

Arguments: (1)

Arg0 - Timer Identifier (Integer (DWORD)): indicates the timer to be cleared:

0x00000000 - AC Timer

0x00000001 - DC Timer

Return Value:

An Integer (DWORD) containing current expired timers in bit field

Bit [0]- 1 = timer expired, 0 = timer did not expired

Bit [1]- 1= timer caused a platform wake, 0 = timer did not cause a platform wake
UEFI Forum, Inc. January 2019 Page 636

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Bit [31:2] reserved and should be 0.

9.18.6 _CWS (Clear Wake alarm status)

This object is required and enables the OSPM to clear the status of wake alarms. Expired wake timers will
wake the platform even if the transition to a sleep state was completed after the wake timer has expired.
This method enables the OSPM to clear the status of expired wake timers.

 Arguments: (1)

Arg0 - Timer Identifier (Integer (DWORD)): indicates the timer to be cleared:

0x00000000 - AC Timer

0x00000001 - DC Timer

Return Value:

An Integer (DWORD) containing current expired timer wake policy:

0x00000000 - Success

0x00000001 - Failure

9.18.7 _STP (Set Expired Timer Wake Policy)

This object is required and sets the expired timer wake policy. The policy is applied when a corresponding
timer expired but the wake signal was not asserted as a result of the power source. The platform
accumulates elapsed time on the power source and asserts the wake signal when the elapsed timer on
the power source exceeds the expired timer wake policy value. Power source transitions do not reset the
expired timer wake policy values. When the Wake Alarm device asserts the wake, the expired timer wake
policy values of both the AC timer and DC timer are reset to 0xFFFFFFFF automatically by hardware.

Arguments: (2)

Arg0 – TimerIdentifier (Integer(DWORD)): indicates the timer to be set:

0x00000000 – AC Timer

0x00000001 – DC Timer

Arg1 – ExpiredTimerWakePolicy (Integer(DWORD)): indicates the expired timer wake policy:

0x00000000 – The timer will wake up the system instantly after the power source changes.

0x00000001 – 0xFFFFFFFE: time between the power source changes and the timer wakes up the
system (in units of second).

0xFFFFFFFF – The timer will never wake up the system after the power source changes.

Return Value:

An Integer containing a result code as follows:

0x00000000 – Succeeded to set the expired timer wake policy.

0x00000001 – Failed to set the timer policy. Actual timer policy unknown.

9.18.8 _STV (Set Timer Value)

This object is required and sets the timer to the specified value. As defined in _TIV, the value indicates the
number of seconds between the time when the timer is programmed and the time when it expires. When
UEFI Forum, Inc. January 2019 Page 637

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
the Wake Alarm device asserts the wake signal, the timer value is automatically reset to 0xFFFFFFFF
(disabled).

Arguments: (2)

Arg0 – TimerIdentifier (Integer (DWORD)): indicates the timer to be set:

0x00000000 – AC Timer

0x00000001 – DC Timer

Arg1 – TimerValue (Integer): indicates the value to be set.

Return Value:

An Integer containing a result code as follows:

0x00000000 – Succeeded to set timer value.

0x00000001 – Failed to set timer value. Actual timer value unknown.

9.18.9 _TIP (Expired Timer Wake Policy)

This object is required and returns the current expired timer wake policy setting of the specified timer.

Arguments: (1)

Arg0 – TimerIdentifier (Integer (DWORD)): indicates the timer to be read:

0x00000000 – AC Timer

0x00000001 – DC Timer

Return Value:

An Integer (DWORD) containing current expired timer wake policy:

0x00000000 – The timer will wake up the system instantly after the power source changes

0x00000001 – 0xFFFFFFFE: Time between the power source changes and the timer wakes up the
system (in units of seconds)

0xFFFFFFFF – The timer will never wake up the system after the power source changes

9.18.10 _TIV (Timer Values)

This object is required and returns the remaining time of the specified timer before it expires.

Arguments: (1)

Arg0 – TimerIdentifier (Integer(DWORD)): indicates the timer to be read:

0x00000000 – AC Timer

0x00000001 – DC Timer

Return Value:

An Integer containing the current timer value. A value of 0xFFFFFFFF indicates that the timer is disabled.

9.18.11 ACPI Wakeup Alarm Events

The Wake Alarm, device as a generic hardware, supports control methods _PSW and _PRW to wake up
the system and issues a Notify(<device>, 0x2) on the wakeup alarm device.
UEFI Forum, Inc. January 2019 Page 638

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9.18.12 Relationship to Real Time Clock Alarm

Though both of the devices support wakeup timers to wake up system from sleeping state, they work
independently. The Real Time Clock Alarm is defined as a fixed feature hardware whereas Time and
Alarm device is defined as a generic hardware and can replace or coexist with the real time clock. OSPM
may choose which device to utilize to provide timed wake capability.

9.18.13 Time and Alarm device as a replacement to the RTC

The Time and Alarm device can be an alternative to the RTC on some platforms where the legacy RTC
hardware is not available, on these platforms the OSPM can use the Time and Alarm device to obtain
time and set wake alarms. For platforms that don't require AC/DC wake service (e.g. a platform that have
one power source only) the AC timer can be used to provide all the functions that were traditionally
provided by the RTC. Using the capabilities object the Time and Alarm device can provide a scalable range
of services to the OSPM.

9.18.14 Relationship to UEFI time source

The Time and Alarm device must be driven from the same time source as UEFI time services. This ensures
that the platform has a consistent value of real time (time of day) and wake alarms. The OSPM can
interact with this value using either ACPI or UEFI.

• OSPM must use only one runtime interface to configure/query the platform alarm(s);
undefined behavior may occur if the two wakeup interfaces are used on the same hardware.

• If OSPM is trying to set an alarm using EFI runtime services, the alarm should be honored
regardless of the power source (i.e. if the platform has an independent timer for each power
source, they should both be configured with that alarm).

9.18.15 Example ASL code

The following ASL code serves as an example of how the Time and Alarm Device could be implemented. It
is beyond the capability and the scope of this specification to provide a complete hardware
implementation example.

Example 1: Define an ACPI Wake Alarm device

Device(_SB.AWAK){
Name(_HID, "ACPI000E") //device ID
Name(_PRW, Package(){...})//enable or disable to wake up the system
OperationRegion(CMOP, EmbeddedControl, ...)
Field(CMOP, ByteAcc, ...){
…….. //timer status and policies
}
Method(_GCP) {
Return (0x03) //Both AC and DC alarms are implemented; Time capability is NOT
supported
}
Method(_STP, 2){
If(LEqual(Arg0, 0) {
Store(Arg1, …) //Set AC timer policy
}
Else {
UEFI Forum, Inc. January 2019 Page 639

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Store(Arg1, …) //Set DC timer policy
}
Return(0)
}
Method(_TIP, 1){
If(LEqual(Arg0, 1) {
Store(…, Local0) //Get DC timer policy
}
Else {
Store(…, Local0) //Get AC timer policy
}
Return (Local0)
}
Method(_STV, 2){
If(LEqual(Arg0, 0) {
Store(Arg1, …) //Set AC timer value
}
Else {
Store(Arg1, …) //Set DC timer value
}
Return(0)
}

Method(_TIV, 1){
If(LEqual(Arg0, 1) {
Store(…, Local0) //Get DC timer value
}
Else {
Store(…, Local0) //Get AC timer value
}
Return (Local0)
}

Method(_GWS, 1){
If(LEqual(Arg0, 1) {
Store(…, Local0) //Get DC timer wake status
}
Else {
Store(…, Local0) //Get AC timer wake status
}
Return (Local0)
}
Method(_CWS, 2){
If(LEqual(Arg0, 0) {
Store(0, …) //Clear AC Wake status
}
Else {
Store(0, …) //Clear DC Wake status
}
Return(0)
UEFI Forum, Inc. January 2019 Page 640

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
}
} // end of ACPI Wake Alarm device object
Scope(_GPE) { // Root level event handlers
Method(_Lxx){
Store(One, ...)
Notify(_SB.AWA, 0x2) //notify the OSPM of device wake
}
} // end of _GPE scope

Example 2: Define an ACPI Real Time device on a HW-Reduced ACPI platform
Device(_SB.I2C1) //The controller used to access the RTC hardware
{
 Name (_HID, ...)
 ...// Other objects required for this I2C controller
 // Track status of SPB OpRegion availability for this controller
 Name(AVBL, 0)
 Method(_REG,2)
 {
 /* 9 is the OpRegion type for SPB. (8 == GPIO, etc) */
 If (Lequal(Arg0, 9))
 {
 Store(Arg1, ^AVBL)
 }
 }
}
Device(_SB.TAAD) //The Time and Alarm Device
{
 Name (_HID, "ACPI000E")
 Scope(_SB.I2C1) //OpRegion declaration must appear under the controller
 {
 OperationRegion(TOP1, GenericSerialBus, 254, 0x100)
 Field(TOP1, BufferAcc, NoLock, Preserve)
 {
 Connection(I2CSerialBusV2(0x4a,,400000,,"_SB.I2C1",,,,,)), //Connection to the
controller for the following field accesses
 AccessAs(BufferAcc, AttribWord), //AccessProtocol for the following field(s)
 Y, 8,
 AccessAs(BufferAcc, AttribByte),
 M, 8,
 D, 8,
 H, 8,
 Mi,8,
 S, 8,
 P, 8,
 AccessAs(BufferAcc, AttribWord),
 Ms, 8,
 Tz, 8,
 AccessAs(BufferAcc, AttribByte),
 Dl, 8,
 P2, 8
 }
UEFI Forum, Inc. January 2019 Page 641

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
 }
 Method (_GCP, 0x0, NotSerialized)
 {
 Return(0x4) //Implements Real Time interface, but no alarms
 }
 Method(_GRT, 0x0, NotSerialized)
 {
 If(LNotEqual(_SB.TC1.AVBL, 1)) // Verify that SPB OpRegion is available for this
access
 {
 Return(0)
 }
 Name(BUFF, Buffer(4){}) // Create SerialBus data buffer as BUFF
 CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
 CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Byte)
 Name(BUF2,Buffer(0x10){}) // Create buffer to hold the Real Time structure as BUF2
 CreateWordField(BUF2, 0x0,Y) //year
 CreateByteField(BUF2,0x2,M) //Month
 ...
 CreateByteField(BUF2,0xc,Dl) //Dl
 CreateByteField(BUF2,0xd,P2) //Pad2
 Store(_SB.I2C1.Y, BUFF) //Get each member from the OpRegion and store in the
structure
 Store(DATA,Y)
 Store(_SB.I2C1.M, BUFF)
 Store(DATA,M)
 ...
 Store(_SB.I2C1.Dl, BUFF)
 Store(DATA,Dl)
 Store(_SB.I2C1.P2, BUFF)
 Store(DATA,P2)
 Return(BUF2) // Success -> return what was last in buffer
 }
 Method(_SRT,0x1, NotSerialized)
 {
 Name(BUFF, Buffer(4){}) // Create SerialBus data buffer as BUFF
 CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
 CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Byte)
 // Verify that SPB OpRegion is available for this access
 If(LNotEqual(_SB.I2C1.AVBL, 1))
 {
 Return(0)
 }
 CreateWordField(Arg0,0x0,Y) //Create Fields to access each member of the input data
 ...
 CreateByteField(Arg0,0xd,P2)

 Store(Store(Y, _SB.I2C1.Y), BUFF) //Store each input member into the hardware, and
 //set the transaction status into BUFF
 If(LEqual(STAT, 0x00)) //Transaction was _NOT_successful
 {
UEFI Forum, Inc. January 2019 Page 642

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
 Return(0xFFFFFFFF)
 }

 ...
 Store(Store(P2, _SB.I2C1.P2), BUFF)
 If(LEqual(STAT, 0x00)) //Transaction was _NOT_successful
 {
 Return(0xFFFFFFFF)
 }
 }
 Name(_DEP, Package() {"_SB.I2C1"}) //Identify the OpRegion dependency for this
device
}

9.19 Generic Buttons Device

The Generic Button device is a standard device for reporting button events via hardware interrupts, and
mapping those interrupts to specific usages defined in the Human Interface Device (HID) specification. In
order to express the functionality of a button to the OS, two pieces of information are required: Usage of
the HID Control, and Usage of the HID Collection that the Control belongs to. A Usage is a combination of
a Usage Page and Usage ID. For example, the Volume Up button is identified as the Volume Up Usage
(Usage Page 0x0C, Usage Id 0xE9) in the Consumer Control Collection (Usage Page 0x0C, Usage Id 0x01).

The Plug and Play ID of the Generic Button device is ACPI0011.

Note: If the Power button is described using this device, it must also support the Power Button Override
feature defined in Section 4.8.2.2.1 Power Button Override.

Table 9-296 Generic Buttons Device Child Objects

Object Description

_CRS Lists the resources consumed by the Generic Button device. Only interrupt resources
(GpioInt() and Interrupt()) are valid for this device. Each interrupt listed must signal one
distinct button event.

_DSD Provides a list of HID Button Descriptors, as defined by UUID FA6BD625-9CE8-470D-A2C7-
B3CA36C4282E. (See http://www.uefi.org/sites/default/files/resources/_DSD-HID-
buttondescriptor-UUID.pdf). Only HID 2-state button usages are valid for the descriptors
returned for this device.

Note: If there are more HID Button Descriptors returned by _DSD than there are interrupts listed in
_CRS, behavior is OS-specific.

9.19.1 Button Interrupts

Interrupts for the Generic Buttons Device are required to be edge-triggered and not level-triggered since
there is no interface defined for the driver to quiesce the interrupt line once the interrupt is received. The
polarity (ActiveLow/High vs. ActiveBoth) of the interrupt is determined by the Usage Type of the HID
Usage associated with the interrupt, as described in Table 9-297.
UEFI Forum, Inc. January 2019 Page 643

http://www.usb.org/developers/hidpage/
http://www.usb.org/developers/hidpage/
http://uefi.org/acpi
http://uefi.org/acpi

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Table 9-297 Usage Types and Interrupt Polarity

Usage Type Interrupt Polarity Explanation

OSC - One Shot
Control

ActiveHigh/
ActiveLow

An interrupt should be triggered on a button press. This is for a
toggle button. On every such event (interrupt), the Operating
System will toggle the internal property of the entity that it
controls. Example: Mute button

MC - Momentary
Control

ActiveBoth An interrupt should be triggered on both the button press and
release. Example: Left mouse button.

RTC - Re-trigger
Control

ActiveBoth An interrupt should be triggered on both the button press and
release. While the button is pressed, the Operating System will
repeatedly re-execute the action that it would take when the
button is pressed. Example: A Volume Up button when pressed
and held, will repeatedly increment the Volume.

OOC - On/Off
Control

ActiveHigh/
ActiveLow
OR
ActiveBoth

ActiveHigh/ActiveLow polarity should be specified if implemented
as a button that goes back to its initial state automatically. E.g. A
Push Button or a spring-loaded Slider switch. Only one interrupt
should be fired for press/release pair.

Example: A spring-loaded Wireless Radio Slider Switch.

ActiveBoth polarity should be specified if implemented as a
button that stays in its state until the user moves it again. E.g. A
button that stays in pressed state, or a Slider switch that sticks to
its position. Example: Wireless Radio Slider Switch.

9.19.2 Button Usages and Collections

The HID Usage tables have an extensive list of Standardized Usages for various kinds of buttons. Some of

the common buttons found on Computing devices and their Usages are listed in Table 9-298.

For the full list, see “HID Usage Tables”, available from “Links to ACPI-Related Documents” (http://
uefi.org/acpi) under the heading "HID Usage Tables".

Buttons are grouped under a HID Collection. Several HID Collections are commonly understood by
Operating Systems, e.g., Keyboard Collection, Consumer Controls Collection, Wireless Radio Controls
Collection, etc.

Table 9-298 Common HID Button Usages

Button Usage Page / Usage Usage
Type

Interrupt Polarity Spec Reference

Power Generic Desktop Page
(0x01)
System Power Down
(0x01)

OSC ActiveBoth1 HID Usage Tables 1.12

 Section 4

Volume Up Consumer Page (0x0C)
Volume Increment (0xE9)

RTC ActiveBoth HID Usage Tables 1.12

 Section 15
UEFI Forum, Inc. January 2019 Page 644

http://www.usb.org/developers/hidpage/Hut1_12v2.pdf
http://www.usb.org/developers/hidpage/Hut1_12v2.pdf

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
1 The System Power Down Usage (Page:01, ID: 81) has Type OSC, although its interrupt must
be ActiveBoth in order to allow drivers to perform functions based on “hold-down” timing. This is
an exception to the Usage Type Rules for Interrupt Polarity (Table 9-297).

9.19.3 Example
Device(BTNS)
{
Name(_HID, “ACPI0011”)
Name(_CRS, ResourceTemplate() {

 GpioInt(Edge, ActiveBoth…) {pin} //Vol Down
 GpioInt(Edge, ActiveBoth…) {pin} //Vol Up
 GpioInt(Edge, ActiveBoth,…) {pin} //Power (MUST BE

 //ACTIVEBOTH!)
})

Name(_DSD, Package(2) {
//UUID for HID Button Descriptors:

ToUUID(“FA6BD625-9CE8-470D-A2C7-B3CA36C4282E”),
//Data structure for this UUID:
Package() {

Package(5) {
0, //Declare a Collection
1, //Unique ID for this collection
0, //It is a top-level collection
0x0c,//Usage Page (“Consumer”)

Volume
Down

Consumer Page (0x0C)
Volume Decrement
(0xEA)

RTC ActiveBoth HID Usage Tables 1.12

 Section 15

Camera
Shutter

Camera Control Page
(0x90)
Camera Shutter (0x21)

OSC Active High/
ActiveLow

Camera Shutter Usage 0x21 is
planned for a future version of
the HID Usage Tables.

Display
Brightness
Up

Consumer Page (0x0C)
Display Brightness
Increment (0x6F)

RTC ActiveBoth Review Request 41

 Display Brightness Controls

Display
Brightness
Down

Consumer Page (0x0C)
Display Brightness
Decrement (0x6F)

RTC ActiveBoth Review Request 41

 Display Brightness Controls

Wireless
Radio Button

Generic Desktop Page
(0x01)
Wireless Radio Button
(0xC6)

OOC ActiveHigh/
ActiveLow

Review Request 40

 HID Radio On/Off Usages

Wireless
Radio Slider
Switch

Generic Desktop Page
(0x01)
Wireless Radio Slider
Switch (0xC8)

OOC ActiveBoth Review Request 40

 HID Radio On/Off Usages

Button Usage Page / Usage Usage
Type

Interrupt Polarity Spec Reference
UEFI Forum, Inc. January 2019 Page 645

http://www.usb.org/developers/hidpage/Hut1_12v2.pdf
http://www.usb.org/developers/hidpage/HUTRR41.pdf
http://www.usb.org/developers/hidpage/HUTRR41.pdf
http://www.usb.org/developers/hidpage/HUTRR40RadioHIDUsagesFinal.pdf
http://www.usb.org/developers/hidpage/HUTRR40RadioHIDUsagesFinal.pdf

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
0x01 //Usage (“Consumer Control”)
},
Package(5) {

0, //Declare another Collection
2, //Unique ID for this collection
0, //Also a top-level collection
0x01,// Usage Page (”Generic Desktop”)
0x80 //Usage (“System Control”)

},
Package(5) {

1, //Declare a Control
0, //Interrupt index in _CRS for Vol Down
1, //In the “Consumer Control” collection
0x0c,//Usage Page (“Consumer”)
0xEA //Usage (“Volume Decrement”)

},
Package(5) {

1, //Declare another Control
2, //Interrupt index for the Power Button
2, //In the “System Control” collection
0x01,//Usage Page (”Generic Desktop”)
0x81 //Usage (“System Power Down”)

},
Package(5) {

1, //Declare another Control
1, //Interrupt index for the Vol Up button
1, //In the “Consumer Control” collection
0x0c,//Usage Page (“Consumer”)
0xE9 //Usage (“Volume Increment”)

},
Package(5) {

1, //Another Control
 0xFF,//No Interrupt for this one… e.g. OS-

// specific signaling for Rotation Lock
1, //In the “Consumer Control” collection
0x0C,//Usage Page (“Consumer”)
0x245 //Usage (“AC Rotate”)

}
}

})
}// End Device
UEFI Forum, Inc. January 2019 Page 646

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9.20 NVDIMM Devices

9.20.1 Overview

In order to handle NVDIMMs, the OS must first be able to detect and enumerate the NVDIMMs. To
facilitate the plug and play discovery of NVDIMM and driver loading, ACPI namespace devices are used.

9.20.2 NVDIMM Root Device

The NVDIMM root device is represented by an ACPI namespace device with a _HID of "ACPI0012" (see
Section 6.1.5 and Table 5-183). If the platform supports NVDIMMs, then platform firmware shall report
one NVDIMM root device in the \SB scope (see Section 5.3.1). This device allows the OS to trigger
enumeration of NVDIMMs through NFIT (see Section 5.2.25) at boot time and re-enumeration at root
level via the _FIT method (see Section 6.5.9) during runtime.

Table 5-173 defines NFIT Update Notification notification values for the NVDIMM root device.

For each NVDIMM present or intended to be supported by platform, platform firmware also exposes an
NVDIMM device (see Section 9.20.3) under the NVDIMM root device.

9.20.3 NVDIMM Device

Each NVDIMM is represented by an ACPI namespace device under the NVDIMM root device (see
Section 9.20.2) with an _ADR (see Section 6.1.1) containing the NFIT Device Handle.

The NFIT Device Handle is constructed as follows:

• Bits [3:0] DIMM number within the memory channel
• Bits [7:4] memory channel number within the memory controller
• Bits [11:8] memory controller ID within the socket
• Bits [15:12] socket ID within the node controller, if any
• Bits [27:16] node controller ID, if any
• Bits [31:28] Reserved

Table 5-174 defines NVDIMM Device Notification Values for an NVDIMM device.

Information about the Label Storage Area on the NVDIMM is provided by the _LSI (see Section 6.5.10.1)
method. The OSPM uses the methods _LSR (see Section 6.5.10.2) and _LSW (see Section 6.5.10.3) to read
and write to the Label Storage Area. The format of the Label Storage Area data is defined in UEFI.

9.20.4 Example

An example name space is shown below for a platform containing one NVDIMM:

 Scope (_SB){
 Device (NVDR) // NVDIMM root device
 {
 Name (_HID, “ACPI0012”)
 Method (_STA) {…}
 Method (_FIT) {…}
 Method (_DSM, …) {
 …
 }
UEFI Forum, Inc. January 2019 Page 647

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
 Device (NVD) // NVDIMM device
 {
 Name(_ADR, h) //where h is NFIT Device Handle for this NVDIMM
 Method (_DSM, …) {
 …
 }
 }
 }
 }

9.20.5 Loading NVDIMM drivers

While using ACPI namespace devices allows for OS handling of NVDIMMs in a standard manner, the
format of the address ranges described by this scheme may still vary depending on the vendor (or even
different NVDIMM version of the vendor). For example, the command and status values supported by a
Block Control Window are vendor specific and possibly even vary for a given vendor.

The NVDIMM Control Region Structure (see Section 5.2.25.6) includes a Vendor ID, Device ID, and
Revision ID. Because an NVDIMM could be a combination device consisting of different region types (e.g.,
Persistent Memory and Block), a Region Format Interface Code is also included to indicate the region
type as well as the specific implementation within that type. This allows for variability across vendors as
well as within vendor offerings.

These fields enable loading of drivers for managing the NVDIMM as well as for handling the address
ranges supported by the NVDIMM. The Region Format Interface Code is used to load generic drivers for
the following: management driver, persistent memory driver and block driver. A vendor specific driver
for each of the above can be loaded by matching on Vendor ID, Device ID and Revision ID (in addition to
the Region Format Interface Code).

Region Format Interface Code requirements shall be met by all compliant NVDIMMs. Any Vendor specific
extensions are only allowed to extend on top of the Region Format Interface Code requirements.

It is assumed that the OSPM is capable of loading the Region Format Interface Code specific driver or
vendor specific drivers based on such discovery. This scheme is as shown in Figure 9-54.

Figure 9-54 Vendor/Device Specific Driver Loading
UEFI Forum, Inc. January 2019 Page 648

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
The Subsystem Vendor ID, Subsystem Device ID and Subsystem Revision ID fields allow selection of
specific solution provider drivers that may span across devices from multiple vendors.

9.20.6 Hot Plug Support

The NVDIMM memory hot plug representation of the ACPI Name Space is described in this section. The
NVDR device is the NVDIMM root device, the NVD1 and NVD2 are NVDIMM devices, the MEM0 is
memory module device corresponding to the NVD1 and NVD2 devices. The _FIT method under NVDR
device returns all NFIT entries including the hot added devices.

 Device (NVDR) // Root device
 {
 Name (_HID, “ACPI0012”)
 Method (_STA) {…}
 Method (_FIT) {…}
 Method (_DSM, …) {
 …
 }
 Device (NVD1) // NVDIMM1
 {
 Name(_ADR, h1) //where h1 is NFIT Device Handle for this NVDIMM1
 Method (_DSM, …) {
 …
 }

 }
 Device (NVD2) // NVDIMM2
 {
 Name(_ADR, h2) //where h2 is NFIT Device Handle for this NVDIMM2
 Method (_DSM, …) {
 …
 }
 }
 }

 Device (MEM0) // Memory module
 {
 Name (_HID, EISAID (“PNP0C80”))
 Method (_STA) {…}
 Method (_CRS) {…}
 }

 Scope (_GPE)
 {
 Method (_L00) {
 Notify (_SB.NVDR, 0x80) // Notify to NVDIMM root device
 Notify (_SB.MEM0, 1) // Device Check to Memory Module
 }
 }
UEFI Forum, Inc. January 2019 Page 649

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Hot Plugged memory is indicated to OS using ACPI Name Space device with PNPID of PNP0C80. The NFIT
entries created by the hot plug NVDIMM are communicated by the ACPI Name Space device with
ACPI0012.

NVDIMM hot add flow:

1. Prior to hot add of the NVDIMM, the corresponding ACPI Name Space devices, NVD1, NVD2
return an address from _ADR object (NFIT Device handle) which does not match any entries
present in NFIT (either the static or from _FIT) indicating that the corresponding NVDIMM is
not present. Further ACPI Name Space Device MEM0 returns _STA status of 0 indicating that
the devices are not present, not enabled and not functioning.

2. On hot add

a Send Notify 0x80 to NVDR to cause NVDIMM bus driver to enumerate all the devices
under the root hierarchy

b NVDIMM bus driver evaluates the _FIT method under the NVDR device and identifies the
changes to the NVDIMM devices present (by identifying new NFIT Device handles that
have been added).

c NVDIMM bus driver now finds matching entries for addresses returned by _ADR objects of
NVD1 and NVD2 and loads the corresponding drivers.

d Send Notify Device Check to MEM0 to cause re-enumeration of device causing the memory
manager to add _CRS range to the memory pool.

3. MEM0 will now report all the memory ranges now created and made visible.

9.20.7 NVDIMM Root Device _DSMs

A device specific method (_DSM) for NVDIMM root devices (see Section 9.20.2) is described in this
section.

9.20.7.1 Input Parameters:

Arg0 – UUID (see Section 5.2.4) (set to 2f10e7a4-9e91-11e4-89d3-123b93f75cba)

Arg1 – Revision ID (set to 1)

Arg2 – Function Index

Table 9-299 NVDIMM Root Device Function Index

Function Index Description

0 Query command implemented (see Section 9.1.1)

1 Query Address Range Scrub (ARS) Capabilities (see Section 9.20.7.4)

2 Start Address Range Scrub (ARS) (see Section 9.20.7.5)

3 Query Address Range Scrub (ARS) Status (see Section 9.20.7.6)

4 Clear Uncorrectable Error (see Section 9.20.7.7)

5 Translate SPA

6 Reserved
UEFI Forum, Inc. January 2019 Page 650

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Arg3 – a package containing parameters for the function specified by the UUID, Revision ID and Function
Index. The layout of the package for each command along with the corresponding output is illustrated in
the following tables. The input and output package are a list of bytes (Buffer).

9.20.7.2 Address Range Scrubbing (ARS) Overview

ARS allows the platform to communicate memory errors to system software. This capability allows
system software to prevent accesses to addresses with uncorrectable errors in memory.

The ARS functions are system scope and are not specific to a single NVDIMM, i.e., they manage all
NVDIMMs present in the system.

The Query ARS Capabilities function indicates if ARS is supported for an address range and to discover
system-wide attributes, such as the maximum amount of data that can be returned from a Query ARS
Status function and whether the platform provides an asynchronous ACPI notification that a new
uncorrectable error has been discovered.

Only one scrub can be in progress system wide at any given time. OSPM should first issue a Query ARS
Status function and ensure no ARS is in progress before issuing a Start ARS function. If a successful status
is returned, the extended status of the Query ARS Status function indicates to OSPM one of the
following:

• An ARS has been completed and ARS results are returned. These results should be processed
by OSPM before issuing another Start ARS function. When a new address range scrub
operation is started, the previous ARS results are lost.

• An ARS is in progress and no ARS results are returned. A Start ARS function fails while an ARS is
in progress. OSPM should periodically issue Query ARS Status functions until the ARS is no
longer in progress.

• There has been no ARS since the platform was booted so there are no ARS results returned. A
new Start ARS function may be issued.

• An ARS stopped prematurely and partial results are returned. If the platform has more data to
return than will fit in the Max Query ARS Status Output Buffer Size (see Section 9.20.7.4),
OSPM may issue Start ARS and Query ARS Status functions in a loop and retrieve all of the ARS
Error Records, modifying the ARS Start SPA Address and length with each iteration.

If a Start ARS function is issued, the OSPM provides the ARS Start SPA Address and ARS Length for the
range to be scrubbed. If the previous ARS stopped prematurely, these fields should be set to the values
from the Restart ARS Start SPA Address and Restart ARS Length from the previous Query ARS Status
output buffer. For any Start ARS function, OSPM may optionally set the Flags Bit[0] to indicate to the
platform that the ARS is a priority and may cause delays in other processing, such as when booting. The
output from a successful Start ARS function provides an estimated time for the scrub to complete as a
hint to the OSPM regarding when to issue a Query ARS Status function.

7 ARS Error Inject

8 ARS Error Inject Clear

9 ARS Error Inject Status Query

0xA Query ARS Error Inject Capabilities

0xB – 0xFFFF Reserved
UEFI Forum, Inc. January 2019 Page 651

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
As indicated in the Query ARS Capabilities function output, a platform may issue the asynchronous event
notification 0x81 (Unconsumed Uncorrectable Memory Error Detected Notification) when new
uncorrectable errors are detected. Upon receiving the notification, the OSPM may decide to issue a Start
ARS with Flags Bit [1] set to prepare for the retrieval of existing records and issue the Query ARS Status
function to retrieve the records. The OSPM can pass the entire range of persistent memory as ‘ARS Start
SPA Address’ and ‘ARS Length’ for Start ARS, even if the persistent memory range is not contiguous.
Alternatively, the OSPM may decide to ignore event notification 0x81. If the memory range is accessed
before OSPM can process the ARS data, default platform error handing sequences, such as Machine
Check, may occur.

Platforms may support the ability for OSPM to clear an error previously reported from an ARS. OSPM
should only issue the Clear Uncorrectable Error function for a memory address range if that the address
range has been retired from further use or if valid error-free data is written to the range before those
locations are read. If the Clear Uncorrectable Error function is not supported by the platform or if a Clear
Uncorrectable Error function for an address range fails, the OSPM should continue to prevent accesses to
the address ranges.

The ARS related functions use the following convention for the Status and Extended Status fields.

9.20.7.3 Address Range Scrub (ARS) Error Injection Overview

The expected OSPM ARS Error Injection flow is:

1. Inject an error with ARS Error Inject.

2. Optionally and if ARS Unconsumed Uncorrectable Memory Error Detected Notification is
supported by the host, system firmware triggers an ACPI NVDIMM root device notification
0x81 for the OSPM.

3. Use Start ARS with Flags Bit[1] set for OSPM acknowledgment of the notification to system
firmware and use ARS Query Status to query ARS status.

4. Optionally, use ARS Error Inject Status Query to query the error injected ranges.

5. Use ARS Error Inject Clear to clear the ARS error injected ranges. Until the error is cleared,
system firmware will report the error in the ARS Query Status output buffer.

Table 9-300 Status and Extended Status Field Generic Interpretations

Bytes Field Name Description

1-0 Status 0 – Success

1 – Function Not Supported

2 – Invalid Input Parameters

3 – Hardware Error

4 – Retry Suggested; it is up to the OSPM
regarding the number of retries to perform.

5 – Error – Unknown Reason

6 – Function-Specific Error Code

7 - FFFFh Reserved for errors

3-2 Extended Status Function Specific
UEFI Forum, Inc. January 2019 Page 652

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Note: If Status is nonzero, the Output Buffer for all the functions in this _DSM (see Section 9.1.1) is
limited to only the Status and Extended Status fields.

9.20.7.4 Function Index 1 - Query ARS Capabilities

This function provides ARS capabilities for a given address range. The format of the input and output for
this function is given below.

9.20.7.4.1 Function Input

Table 9-301 Query ARS Capabilities – Input Buffer

Field Byte Length Byte Offset Description

ARS Start SPA Address 8 0 Starting of System Physical Address of ARS

ARS Length 8 8 In bytes

9.20.7.4.2 Function Output

Table 9-302 Query ARS Capabilities – Output Buffer

Field Byte Length Byte Offset Description

Status 2 0 Defined in Table 9-300.

All other fields in this structure are Reserved if Status is
not set to 0 (i.e., Success).

Extended Status 2 2 Bit[0] – If set to 1, indicates scrub of Volatile Memory is
supported. Volatile memory is any region that is not
marked as Persistent Memory in UEFI or in an ACPI
Address Range Type.

Bit[1] – If set to 1, indicates scrub of Persistent Memory
is supported. Persistent Memory is any region that has
one of the following memory range types:

• UEFI memory type of EfiPersistentMemory

• Any UEFI memory type that has the
EFI_MEMORY_NV memory attribute set

• ACPI Address Range Type of
AddressRangePersistentMemory

Bits[15:2] – Reserved

Max Query ARS
Status Output
Buffer Size

4 4 In bytes.

Maximum size of buffer (including the Status and
Extended Status fields) returned by the Query ARS
Status function. This can be used to calculate the
maximum number of ARS Error Records that are
supported.

This value shall be a constant for the platform,
independent of the input SPA range. As long as a valid
input SPA range is specified, the value returned for this
shall always be the same.
UEFI Forum, Inc. January 2019 Page 653

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9.20.7.5 Function Index 2 - Start ARS

The Start ARS function triggers an Address Range Scrub for the given range of memory. Address
scrubbing can be done for volatile memory, persistent memory, or both. For the given input ARS Start
SPA and length, there may be one or more ranges, including gaps between them for the given Type
parameter.

9.20.7.5.1 Function Input

Table 9-303 Start ARS – Input Buffer

Clear
Uncorrectable
Error Range
Length Unit Size

4 8 In bytes.

This field describes the uncorrectable error clearing unit

size. This value shall be a power of two.

The Clear Uncorrectable Error Range Length argument
to the Clear Uncorrectable Errors LSM function shall be
an integer multiple of this unit size.

The Query ARS Status ARS Error Record Format
“Length” field shall be an integer multiple of this unit
size.

This value shall be a constant for the platform,
independent of the input SPA range.

Flags 2 12 Bit[0] – Unconsumed Uncorrectable Memory Error
Detected Notification flag. If set to 1, indicates platform
supports the ACPI NVDIMM Root Device Unconsumed
Error Notification (0x81) as described in Table 5-173. If
set to 0, the platform doesn’t support this notification
mechanism.

Bit[1] – ARS Stopped Notification flag. If set to 1,
indicates the platform supports ARS Stopped
Notification (0x82) as described in Table 5-173 . If set to
0, the platform does not support this notification.

Bit[15-2] - Reserved.

Reserved 2 14

Field Byte Length Byte Offset Description

ARS Start SPA Address 8 0 In bytes

ARS Length 8 8 In bytes

Type 2 16 Bit[0] – If set to 1, Scrub Volatile Memory

Bit[1] – If set to 1, Scrub Persistent Memory

Bits[15:2] Reserved

Note: If the range provided includes both
volatile and persistent sub-ranges, only the
types indicated here will be scrubbed.

Field Byte Length Byte Offset Description
UEFI Forum, Inc. January 2019 Page 654

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9.20.7.5.2 Function Output

Table 9-304 Start ARS – Output Buffer

Field Byte Length Byte Offset Description

Status 2 0 6 – ARS already in progress

All other values defined in Table 9-300

Extended
Status

2 2 Reserved

Estimated
Time for Scrub

4 4 In seconds

Estimated time to scrub the given address range.

9.20.7.6 Function Index 3 - Query ARS Status

The Query ARS Status command allows software to get the status of ARS.

If the platform supports ARS error injection, then it shall also include injected errors as part of its payload.

9.20.7.6.1 Function Input

None

Flags 1 18 Bit[0] – If set to 1 specifies that the platform
may cause delays in processing other
operations while performing the ARS (e.g.,
for use during system boot). If set to 0
specifies that the platform shall not cause
delays in processing other operations while
performing the ARS (e.g., for use during run
time).

Bit[1]: If set to 1 the firmware shall return
data from a previous scrub, if any, without
starting a new scrub. If set to 0 firmware
shall start a new ARS.

Reserved 5 19
UEFI Forum, Inc. January 2019 Page 655

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9.20.7.6.2 Function Output

Table 9-305 Query ARS Status – Output Buffer

Field Byte Length Byte Offset Interpretation

Status 2 0 Defined in Table 9-300

Extended
Status

2 2 0 – ARS complete

1 – ARS in progress. Any returned ARS data shall be all
zeros.

2 – No ARS performed for current boot. Any returned
ARS data shall be all zeros.

3 – ARS Stopped Prematurely – This may occur when the
implementation reaches the maximum number of errors
that can be reported.

4 ..0xFFFF– Reserved. Any returned ARS Data shall be all
zeros.

 ARS Data Varies 4 See Table 9-306.

The output SPA range return indicates the scope of the ARS scrub for the specified type.

Table 9-306 ARS Data

Field Byte Length Byte Offset Interpretation

Output (Size) 4 0 Size of Output Buffer in bytes, including this field.

Start SPA 8 4 In bytes

Length 8 12 In bytes

ARS performed range is from Start SPA to Start SPA +
Length

Restart ARS
Start SPA
Address

8 20 Starting SPA to restart the ARS if Status is Success and
Extended Status was reported as ARS Stopped Prematurely.
The value specified here is used without modification as the
ARS Start SPA Address when calling Start ARS to continue an
ARS that stopped prematurely before completing the
requested ARS Length.

Note: It is not required to continue an ARS that has stopped
prematurely.

Restart ARS
Length

8 28 SPA Length to restart the ARS if Status is Success and
Extended Status was reported as ARS Stopped Prematurely.
The value specified here is used without modification as the
ARS Length when calling Start ARS to continue an ARS that
stopped prematurely before completing the requested ARS
Length.
UEFI Forum, Inc. January 2019 Page 656

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Table 9-307 ARS Error Record Format

Field Byte Length Byte Offset Description

NFIT Handle 4 0 NFIT Handle indicates the specific NVDIMM at Start SPA of
Error Location (offset 8)

Reserved 4 4 Reserved

Start SPA of
Error
Location

8 8 Start of System Physical Address of the error.

Length 8 16 Length indicates the consecutive bytes from Start SPA of
Error Location that are in error. Due to interleaving, the
range covered by Start SPA of Error Location and Length
may include addresses that are present in other NVDIMMs
in an interleave set.

In case of overflow, the address range indicated by Start
SPA of Error Location and Length will cover the NVDIMM
interleave set that is impacted by the error.

The range covered by Start SPA of Error Location and Length
may exceed the requested scrub range due to platform
limitations.

9.20.7.7 Function Index 4 - Clear Uncorrectable Error

The Clear Uncorrectable Error Function allows system software to clear uncorrectable errors from the
NVDIMM based on System Physical Address (SPA). Uncorrectable errors reported by the Query ARS
Status function can be cleared utilizing this mechanism.

Type 2 36 Bit[0] – Volatile Memory range if set to 1

Bit[1] – Persistent Memory range if set to 1

If both bit[0] and bit[1] are set, both Persistent Memory and
volatile memory are in this range.

Bits[15:2] – Reserved

Flags 2 38 Bit[0] – If set to 1, indicates an overflow condition has
occurred. This means that more errors were reported in the
error log than will fit in the maximum total buffer size of
Max Query ARS Status Data Size from the Query ARS
Capabilities. The returned Extended Status should be ARS
Stopped Prematurely when this bit is set to 1.

Bits[15:1] Reserved

Number of
Error Records

4 40 Number of ARS Error Record structures reported

ARS Error
Records

Varies 44 Refer to Table 9-307 for the format of the error record.

Field Byte Length Byte Offset Interpretation
UEFI Forum, Inc. January 2019 Page 657

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
For each uncorrectable error range length covered by the specified SPA range that contains an
uncorrectable error, platform software shall clear the error and may modify the data at those addresses.
For each uncorrectable error range length covered by the specified SPA range that does not contain an
uncorrectable error, platform software shall do nothing.

The Clear Uncorrectable Error SPA Range Base shall be aligned to the Clear Uncorrectable Error Range
Length Unit Size and the Clear Uncorrectable Error Range Length must be an integer multiple of the Clear
Uncorrectable Error Range Length Unit Size. The Clear Uncorrectable Error request shall result in an
Invalid Parameter error status if these rules are not followed.

Attempting to clear an error with a range length that overruns the end of a region shall result in an Invalid
Parameter error status.

Attempting to clear an error with a range length that is greater than the range of uncorrectable errors is
not considered a failure.

Attempting to clear an error from an address that does not currently have an uncorrectable error is not
considered a failure.

Note: The data contained in the locations that are cleared with this command are indeterminate. Care
must be taken when using this command since once the error has been cleared, subsequent reads
of those cleared locations will cause silent data corruption if software is unaware that the original
contents were lost. Software should only utilize this command if it can guarantee that the
locations have been retired from further use or will be written with valid data before the locations
are read.

OSPM may call Clear Uncorrectable Error on an ARS error range that was injected via the ARS
Error Inject function. If the platform supports this, it should ultimately treat it as if the ARS Error
Inject Clear function was called. If the platform does not support this, it should fail with an Invalid
Input Parameter error.

9.20.7.7.1 Function Input

Table 9-308 Clear Uncorrectable Error – Input Buffer

Field Byte Length Byte Offset Description

Clear
Uncorrectable
Error SPA Range
Base

8 0 In bytes

Starting location from which to clear the uncorrectable
error. This address should be aligned to the Clear
Uncorrectable Error Range Length Unit Size reported in
the Query ARS Capabilities function (see
Section 9.20.7.4).

Clear
Uncorrectable
Error Range
Length

8 8 In bytes

Length of the region to clear the uncorrectable error
from. This length should be an integer multiple of the
Clear Uncorrectable Error Range Length Unit Size
reported in the Query ARS Capabilities function (see
Section 9.20.7.4).
UEFI Forum, Inc. January 2019 Page 658

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9.20.7.7.2 Function Output

Table 9-309 Clear Uncorrectable Error – Output Buffer

Field Byte Length Byte Offset Description

Status 2 0 Defined in Table 9-300

Extended Status 2 2 Reserved

Reserved 4 4 Reserved

Cleared
Uncorrectable
Error Range
Length

8 8 The range of errors actually cleared by the platform,
starting from the requested Clear Uncorrectable Error
SPA Range Base. This length shall be an integer
multiple of the Clear Uncorrectable Error Range Length
Unit Size reported in the Query ARS Capabilities
function (see Section 9.20.7.4).

Note: This range length may be smaller than the length
requested by the input range length.

9.20.7.8 Function Index 5 - Translate SPA

This command instructs the platform to translate the requested System Physical Address (SPA) in to one
or more NVDIMM devices consisting of an NFIT Device Handle and DIMM Physical Address (DPA) on that
device.

• The SPA address to translate must lie within one of the SPA ranges described in the NFIT
System Physical Address Range table.

• For non-mirrored interleave sets, the SPA address will translate to a single NVDIMM and single
DPA.

• For a HW mirrored interleave set, the Flags Bit[0] - Mirrored SPA Location bit is set and all
NVDIMM Devices the SPA translates to are included in the returned NVDIMM Device List.

Function Input

The following table outlines the expected input payload for this command.

Table 9-310 Translate SPA - Input Payload Format

Field
Byte
Length

Byte Offset Description

SPA 8 0 System Physical Address to translate. This is a byte aligned
address and all bits are considered valid. No masking or
shifting occurs.
UEFI Forum, Inc. January 2019 Page 659

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Function Output

The following tables outline the expected output payload for this command.

Table 9-311 Translate SPA - Output Payload Format

Field
Byte
Length

Byte Offset Description

Status 2 0 Defined in Table 9-300.

If the SPA does not lie within one of the SPA ranges described
in the NFIT System Physical Address Range table, a status of 2,
Invalid Input Parameter, is returned.


All other fields in this structure are Reserved if Status is
not set to 0 (i.e., Success).

Extended Status 2 2 Extended Status Field (Vendor Defined)

Flags 1 4 Bit[0] – Mirrored SPA Location - If set to 1, indicates the SPA
location maps to one or more NVDIMMs that are mirrored
together and contributing to a single SPA range.

All NVDIMMs currently contributing to the HW Mirror shall be
reported and the Number of NVDIMMs shall report all of the
devices in the Mirrored SPA range.

Reserved 3 5 Must be 0

Translated
Length

8 8 The number of bytes the returned SPA translation applies to.
The SPA range defined by the input SPA + output Translated
Length -1 will yield an address translation with a constant
Translated NVDIMM Device List containing a constant set of
NFIT Device Handles.

Number of
NVDIMMs

4 16 The number of NVDIMM devices being returned in the list of
Translated NVDIMM Devices.

This is typically 1 for a given SPA location but for Mirrored SPA
Locations, it is possible to have multiple NVDIMMs that
provide the same SPA.

Translated
NVDIMM
Device List

Varies 20 List of one or more Translated NVDIMM Devices
UEFI Forum, Inc. January 2019 Page 660

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Translated NVDIMM Device

Table 9-312 Translate SPA – Translated NVDIMM Device List Output Payload Format

Field
Byte
Length

Byte Offset Description

NFIT Device
Handle

4 0 Handle to physical NVDIMM that the SPA maps to. This handle
can be utilized to retrieve other NFIT table data that further
describes the physical device.

Reserved 4 4 Returned as zero

DPA 8 8 DIMM Physical Address that the SPA translates to.

9.20.7.9 Function Index 7 - ARS Error Inject

ARS Error Inject allows the injection of an error for the memory range in the defined input payload. Input
is a package containing a single buffer, where the buffer is formatted as shown in Table 9-313.

9.20.7.9.1 Input (Arg3)

Table 9-313 ARS Error Inject – Input Format

Field
Byte
Length

Byte
Offset

Description

ARS Error Inject
SPA Range Base

8 0 Starting location from which to inject the error.

ARS Error Inject
SPA Range Length

8 8 In bytes

Length of the region to inject the error from.

If Length makes the range cross NVDIMM SPA ranges, the system
firmware implementation may report more than one ARS error record
in the output buffer of the ARS Query Status _DSM function.

ARS Error Inject
Options

1 16 Bit 0: Unconsumed Uncorrectable Memory Error Detected Notification.
Set to 1 Firmware shall notify the OSPM. Set to 0 the notification will
not occur.

Bit 1: Force Overflow. Set to 1 to trigger a Query ARS Status overflow
condition with this range. A value of 0 is ignored. See below for details.

Bit 2: Persistent Error. Set to 1 to persist this error across reboots.
These are uncorrectable errors injected to specified memory locations.
Set to 0 to ensure this error is cleared on reboot.

Bits 7-3: Reserved.

OSPM can trigger a Query ARS Status overflow condition by setting the Force Overflow bit (bit 1) in the
ARS Error Inject Options in the input structure.

If the Force Overflow bit is set to 0 then the platform may still trigger an overflow condition if necessary
(e.g. the number of error records to return from Query ARS Status exceeds Query ARS Status Data Size).
UEFI Forum, Inc. January 2019 Page 661

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
The typical sequence to force an overflow condition is as follows:

1. OSPM calls ARS Error Inject to inject an error for a particular range and sets the following fields in the
input structure:

a. ARS Error Inject Options bit 0 to 0 so that the Unconsumed Uncorrectable Memory Error
Detected notification does not occur for this range.

b. ARS Error Inject Options bit 1 set to 1 to indicate system firmware should force an overflow
condition when it encounters this range.

2. OSPM injects a second error with ARS Error inject, setting ARS Error Inject Options bit 0 to 1 and
clearing bit 1 to 0.

3. System firmware notifies the OSPM of the new errors with the Unconsumed Uncorrectable Memory
Error Detected notification.

4. OSPM calls Query ARS Status in response to the notification.

5. When system firmware encounters the first injected range, it sees that ARS Error Inject Options bit 1
was set and sets Flags bit 0 to 1 in the output ARS Data to indicate an overflow condition. System
firmware also sets the Restart ARS Start SPA Address and Restart ARS Length accordingly.

6. OSPM calls Start ARS with the following fields set in the input structure:

a. Flags bit 1 set to 1 to indicate it does not want to initiate a new scrub.

b. ARS Start SPA Address set to the Restart ARS Start SPA Address from the Query ARS Status
output.

c. ARS Length set to the Restart ARS Length from the Query ARS Status output.

7. OSPM calls Query ARS Status.

8. System firmware returns the second injected range.

When the Persistent Error bit is set, the error range and the ARS Error Inject Options bits should persist
across reboots.

9.20.7.9.2 Output

Return Value for this function is a buffer formatted as shown in Table 9-314.
UEFI Forum, Inc. January 2019 Page 662

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Table 9-314 ARS Error Inject – Output Format

Field Byte Length Byte Offset Description

Status 2 0 Bytes[1-0]

0 – Success

1 – Not Supported. The ARS Error Inject method is
not supported by the platform.

2 – Invalid Input Parameters. Platform reports that
the SPA range parameters passed to the ARS Error
Inject method are invalid or if notification is not
supported.

Extended Status 2 2 Reserved

9.20.7.10 Function Index 8 - ARS Error Inject Clear

ARS Error Clear allows the clearing of the injected error state in the persistent memory range in the
defined input payload.

9.20.7.10.1 Input (Arg3)

Input is a package containing a single buffer, where the buffer is formatted as shown in Table 9-315.

Table 9-315 ARS Error Inject Clear – Input Format

Field Byte Length Byte Offset Description

ARS Error Inject Clear
SPA Range Base

8 0

ARS Error Inject Clear
SPA Range Length

8 8 In bytes

9.20.7.10.2 Output

Return Value for this function is a buffer formatted as shown in Table 9-316.

Table 9-316 ARS Error Inject Clear – Output Format

Field Byte Length Byte Offset Description

Status 2 0 Bytes[1-0]

0 – Success

1 – Not Supported. The ARS Error Inject Clear method is
not supported by the platform.

2 – Invalid Input Parameters. Platform reports that the SPA
range parameters passed to the ARS Error Inject method
are invalid or the specified range does not have an
injected error.

Extended Status 2 2 Reserved
UEFI Forum, Inc. January 2019 Page 663

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9.20.7.11 Function Index 9 - ARS Error Inject Status Query

The maximum buffer size returned by the ARS Error Inject Status Query function is the same as the Max
Query ARS Status Output Buffer Size reported by the Query ARS Capabilities function.

This ARS Error Inject Status Query allows the OSPM to list the currently active injected errors in the
persistent memory ranges presented in the output buffer payload.

9.20.7.11.1 Input (Arg3)

None.

9.20.7.11.2 Output

Return Value for this function is a buffer, formatted as shown below.

Table 9-317 ARS Error Inject Status Query – Output Format

Field Byte Length Byte Offset Description

Status 2 0 Bytes[1-0]

0 – Success.

1 – Not Supported. The ARS Error Inject Status Query
method is not supported by the platform.

Extended Status 2 2 Reserved

Injected Error Record
Count

4 4 Number of Error Records in the following array of
Error Records.

If no ARS injected error, the Injected Error Count
field is 0.

ARS Error Inject Status
Query Error Records

Varies 8 Refer to Table 9-318, ARS Error Inject Status Query –
Error Record Format for the format of the ARS Error
Inject Status Query Error Record.

The ARS Error Status Query Error Record is defined as follows.

Table 9-318 ARS Error Inject Status Query – Error Record Format

Field Byte Length Byte Offset Description

ARS Error Inject Status Query
Error Record SPA Range Base

8 0 Starting SPA range of an injected error.

ARS Error Inject Status Query
Error Record SPA Range Length

8 8 Length in bytes of the injected error starting
at the SPA range.

9.20.7.12 Function Index 0xA – Query ARS Error Inject Capabilities

Query ARS Error Inject Capabilities is used by software to detect the system platforms capabilities related
to injecting ARS errors.

9.20.7.12.1 Function Input (Arg3)

None.
UEFI Forum, Inc. January 2019 Page 664

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9.20.7.12.2 Function Output

Table 9-319 ARS Error Inject Options Support

Field
Byte
Length

Byte
Offset

Description

Status 2 0 Defined in Table 9-299

Extended
Status

2 2 Reserved

Platform
Support

4 4 Bit 0: Injected ARS Error Persistence. This bit only applies if Bit 2 of the ARS
Error Inject Options Support, Persistent Error Support, is 0. If set to 1, all
injected ARS errors persist across reboots and the OSPM must explicitly
clear them. These are uncorrectable errors injected to specified memory
locations. If set to 0, all injected ARS errors are cleared on reboot.

Bits 31-1: Reserved

ARS Error
Inject
Options
Support

1 8 Bit 0: Unconsumed Uncorrectable Memory Error Detected Notification
Support. If set to 1, indicates system platform supports Bit 0 in the ARS
Error Inject Options field in the ARS Error Inject input structure.

Bit 1: Force Overflow Support. If set to 1, indicates system platform
supports Bit 1 in the ARS Error Inject Options field in the ARS Error Inject
input structure.

Bit 2: Persistent Error Support. If set to 1, indicates system platform
supports Bit 2 in the ARS Error Inject Options field in the ARS Error Inject
input structure.

Bits 7-3: Reserved

9.20.8 NVDIMM Device Methods

The return status codes for NVDIMM device methods is described in the following table.

Table 9-320 NVDIMM Device Method Return Status Code

Field
Byte

Length

Byte

Offset
Description

Status 2 0

0 – Success
1 – Not Implemented
2 – Invalid Input Parameters
3 – Hardware Error
4 – Retry Suggested
5 – Error – Unknown Reason
6 – Method Specific Error Code
7 – FFFFh Reserved

Extended Status 2 2 Method Specific
UEFI Forum, Inc. January 2019 Page 665

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9.20.8.1 _NCH (Get NVDIMM Current Health Information)

This method provides current health information of the NVDIMM device. The platform notifies OSPM by
NVDIMM Device NFIT Health Event Notification (see Table 5-174) whenever anything happens that can
impact health of NVDIMM device (see Table 9-321). When OSPM receives the notification, it can get the
current health information by calling this method. Regardless of health notification, OSPM can call this
method at any time to get the current health of the NVDIMM device.

During boot time, the OSPM can call this method to get the current health of NVDIMM device and take
appropriate action. During OSPM runtime, if a health problem gets corrected then also the platform shall
notify OSPM by the NVDIMM Device NFIT Health Event Notification.

Arguments:

 None

Return Value:

 A buffer containing the current health information as described below

Return Value Information:

Table 9-321 _NCH Return Value

Field
Byte
Length

Byte
Offset

Description

Status 2 0 See Table 9-320

Extended Status 2 2 Reserved

Validation Flags 2 4

Bit [0] – Set to 1 to indicate that the Overall Health Status Flags field is valid. This bit is

set to 1.

Bit [1] – Set to 1 to indicate that the Overall Health Status Attributes field is valid.

Bit [2-15] – Reserved
UEFI Forum, Inc. January 2019 Page 666

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Note: These fields do not track data loss during the previous shutdown or any failures during boot time. If the
condition that caused those failures still exists when _NCH method is called, then platform shall reflect appropriately
in the fields of this method.

Overall Health

Status Flags
4 6

Multiple bits may be set as appropriate. A bit set to 0 means the respective health

problem does not exist or the bit is not applicable to the NVDIMM. If all bits are 0, the

NVDIMM is healthy.

Bit [0] – MAINTENANCE NEEDED. This bit is set to 1 to indicate that maintenance

is required e.g. temperature alarm tripped, energy source lifetime alarm tripped.

Bit [1] – PERFORMANCE DEGRADED. This bit is set to 1 to indicate that

performance is degraded.

Bit [2-7] - Reserved

Following bits indicate situations where the OSPM should assume write persistency

loss but reads still function properly:

Bit [8] – WRITE PERSISTENCY LOSS IN EVENT OF POWER LOSS. This bit is set to 1

to indicate that the OSPM should assume that all the writes since last time the

NVDIMM was brought online may be lost in event of power loss.

Bit [9] – WRITE PERSISTENCY LOSS IN EVENT OF OFFLINE. This bit is set to 1 to

indicate that the OSPM should assume that all the writes since last time the

NVDIMM was brought online may be lost when any subsequent offline operation

is attempted.

Bit [10] – WRITE PERSISTENCY LOSS IMMINENT. This bit is set to 1 to indicate that

the OSPM should assume that subsequent writes may not persist.

Bit [11-15] - Reserved

Following bits indicate situations where the OSPM should assume all data loss:

Bit [16] - ALL DATA LOSS IN THE EVENT OF POWER LOSS. This bit is set to 1 to

indicate that the OSPM should assume that all data may be lost in the event of

power loss.

Bit [17] – ALL DATA LOSS IN THE EVENT OF OFFLINE. This bit is set to 1 to indicate

that the OSPM should assume that all data may be lost when any subsequent

offline operation is attempted.

Bit [18] – ALL DATA LOSS IMMINENT. This bit is set to 1 to indicate that the OSPM

should assume that subsequent reads may fail or return invalid data and

subsequent writes may not persist.

Bit [19-31] – Reserved

Overall Health
Status Attributes

4 10

Bit [0] – PERMANENT HEALTH CONDITION - This bit is set to 1 to indicate that the
health problem(s) reported in Overall Health Status Flags are permanent. If all the
bits of Overall Health Status Flags are 0’s, then NVDIMM is healthy and this bit shall
be ignored by OSPM.

Bit [1-31] – Reserved

Reserved 50 14 Reserved
UEFI Forum, Inc. January 2019 Page 667

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
9.20.8.2 _NBS (Get NVDIMM Boot Status)

This method provides information about NVDIMM device’s status at boot time. The information provided
by this method is updated by the platform during boot and remains unchanged during runtime.

Arguments:

None

Return Value:
A buffer containing device boot status information as described below

Return Value Information:

Table 9-322 _NBS Return Value

Field
Byte

Length

Byte

Offset
Description

Status 2 0 See Table 9-320

Extended Status 2 2 Reserved

Validation Flags 2 4
Bit [0] – Set to 1 to indicate that Data Loss Count field is valid. This bit is set to 1.

Bit [1-15] – Reserved

Data Loss Count 4 6

A monotonically increasing counter which is incremented whenever the NVDIMM

device fails to save and/or flush data to the persistent media. This also includes any

data corruption or loss which is not signaled to the OSPM by any other architected

means.

This counter is intended for the OSPM to compare against one previously saved by

the OSPM in determining the possibility of catastrophic data loss. For example, since

data loss counter is monotonically increasing, OSPM can detect data loss if another

OSPM was booted on the machine between the shutdown and boot of the original

OSPM.

Reserved 54 10 Reserved

9.20.8.3 _NIC (Get NVDIMM Health Error Injection Capabilities)

This method reports health error injection capabilities that are supported by the platform. The health
errors mentioned in table 9-320 are same as those mentioned in _NCH method (see Section 10.20.8.1).

Arguments:

None

Return Value:

See Table 9-323 below.
UEFI Forum, Inc. January 2019 Page 668

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Table 9-323 _NIC Output Buffer

Field
Byte
Length

Byte
Offset

Description

Status 2 0 See Table 9-320

Extended Status 2 2 Reserved

Health Error
Injection
Capabilities

4 4

A bit is set to 1 if the respective health error injection is supported, otherwise the bit
is set to 0.

Bit [0] – MAINTENANCE NEEDED

Bit [1] – PERFORMANCE DEGRADED

Bit [2-7] - Reserved

Bit [8] – WRITE PERSISTENCY LOSS IN EVENT OF POWER LOSS

Bit [9] – WRITE PERSISTENCY LOSS IN EVENT OF OFFLINE

Bit [10] – WRITE PERSISTENCY LOSS IMMINENT

Bit [11-15] - Reserved

Bit [16] - ALL DATA LOSS IN THE EVENT OF POWER LOSS

Bit [17] – ALL DATA LOSS IN THE EVENT OF OFFLINE

Bit [18] – ALL DATA LOSS IMMINENT

Bit[19-31] – Reserved

Overall Health
Status Attributes
Capabilities

4 8

Bit [0] – PERMANENT HEALTH CONDITION. This bit is set to 1 if permanent health
errors can be injected, otherwise the bit is set to 0.

Bit [1-31] – Reserved

Reserved 52 12

9.20.8.4 _NIH (NVDIMM Inject/Clear Health Errors)

This method has two modes: Inject mode and Clear mode. The OSPM should use this method for health
error injection only after verifying that the NVDIMM device has no real health errors.

In Inject mode, the OSPM can request the platform to:

• inject one or more health errors
• set one or more “Overall Health Status Attributes”

The OSPM can request either or both the items mentioned above in a single call. Unless errors are
cleared, the platform shall accumulate the injected errors and attributes through subsequent calls of this
method.

If platform can inject at least one error or set at least one attribute, then the platform shall send
NVDIMM Device Health Event Notification if supported (see Table 5-174) . The OSPM can call _NCH (see
Section 9.20.8.1) and the platform shall report the currently injected errors and attributes in the return
buffer.

If a platform can inject only a subset of OSPM requested errors or set only a subset of OSPM requested
attributes, then the platform shall return an output buffer with Status set to 6 (see Table 9-320) and
Extended Status set to 1 (see Table 9-325). At that time, the OSPM can call the _NIG method (see
UEFI Forum, Inc. January 2019 Page 669

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Section 9.20.8.5) to get currently injected errors. If the OPSM requests to inject errors which is already
injected, then the platform shall return Success. If the OSPM requests to inject an error or set an attribute
which is not supported by method _NIC, then that method shall return output buffer with Status set to 2
(see Table 9-320).

The impact of the injected errors on fields reported by the method _NCH, NVDIMM State Flags of
NVDIMM Region Mapping Structure (see Table 5-133) and on fields reported by NVDIMM device method
_NBS (see Section 9.20.8.2) after a reset is implementation specific.

In Clear mode, the OSPM can request the platform to:

clear one or more currently injected errors

• clear one or more “Overall Health Status Attributes” of currently injected error(s)
• The OSPM can request either or both the items mentioned above in a single call.

If platform can clear at least one error or one attribute, then it shall send NVDIMM Device Health Event
Notification (see Table 5-174) if supported. The OSPM can call _NCH (see Section 9.20.8.1) and the
platform shall report any remaining injected errors and the attributes in the return buffer.

If a platform can clear only a subset of OSPM requested errors and attributes, then the platform shall
return an output buffer with Status set to 6 (see Table 9-320) and Extended Status set to 1 (see Table 9-
325). At that time, the OSPM can call _NIG method (see Section 9.20.8.5) to get currently injected errors.
If the OPSM requests to clear error(s) which are not currently injected or requests to clear attribute(s)
which are not currently set, then the platform shall return Success. If the OSPM requests to clear an error
or clear an attribute which is not supported by method _NIC, then this method shall return output buffer
with Status set to 2 (see Table 9-320).

One implementation of the health error injection is to emulate at firmware level without injecting any
errors in real hardware.

Arguments:

Table 9-324 _NIH Input Buffer

Field
Byte
Length

Byte
Offset

Description

Mode 1 0

0 – Reserved

1 – Inject error(s)

2 – Clear error(s)

3 – 255 – Reserved

Reserved 3 1 Reserved
UEFI Forum, Inc. January 2019 Page 670

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Return Value:

Table 9-325 _NIH Output Buffer

Field
Byte
Length

Byte
Offset

Description

Status 2 0 Set Table 9-320

Extended Status 2 2

0 – Reserved

1 – If Mode is 1, only a subset of requested errors is injected or only a subset of
requested attributes is set. If Mode is 2, only a subset of requested errors is cleared
or only a subset of requested attributes is cleared.

2 – FFFFh Reserved

9.20.8.5 _NIG (Get NVDIMM Inject Health Error Status)

This method reports currently active health errors and their error attributes that are injected by
NVDIMM device method _NIH (see Section 9.20.8.4).

Overall Health
Status Errors

4 4

These bits are used to inject/clear health error(s) reported by _NIC method (see
Section 9.20.8.4). If Mode is set to 1, a bit is set to 1 to inject the respective error.
OSPM can set one or more error bits to 1.

If Mode is set to 2, a bit is set to 1 to clear the respective error. OSPM can set one or
more error bits to 1.

Bit [0] – MAINTENANCE NEEDED

Bit [1] – PERFORMANCE DEGRADED

Bit [2-7] – Reserved

Bit [8] – WRITE PERSISTENCY LOSS IN EVENT OF POWER LOSS

Bit [9] – WRITE PERSISTENCY LOSS IN EVENT OF OFFLINE

Bit [10] – WRITE PERSISTENCY LOSS IMMINENT

Bit [11-15] – Reserved

Bit [16] - ALL DATA LOSS IN THE EVENT OF POWER LOSS

Bit [17] – ALL DATA LOSS IN THE EVENT OF OFFLINE

Bit [18] – ALL DATA LOSS IMMINENT

Bit [19-31] – Reserved

Overall Health
Status Attributes

4 8

Bit [0] – PERMANENT HEALTH CONDITION. If Mode is set to 1, this bit is set to 1 to
inject health errors as permanent errors, otherwise the bit is set to 0. If Mode is set to
2, this bit is set to 1 to clear the “Permanent Health Condition” of the injected errors.

Bit [1-31] – Reserved

Reserved 52 12 Reserved
UEFI Forum, Inc. January 2019 Page 671

ACPI Specification, Version 6.3 ACPI-Defined Devices and Device-Specific Objects
Arguments:

None

Return Value:

Table 9-326 _NIG Output Buffer

Field
Byte
Length

Byte
Offset

Description

Status 2 0 See Table 9-320

Extended Status 2 2 Reserved

Validation Flags 2 4

Bit [0] – Set to 1 to indicate that the “Injected Overall Health Status Flags” field is
valid. This bit is set to 1.
Bit [1] – Set to 1 to indicate that the “Overall Health Status Attributes of Injected
Errors” field is valid.
Bit [2-15] – Reserved

Injected Overall
Health Status
Errors

4 6

If a bit is set to 1 then the respective error is currently injected.

Bit [0] – MAINTENANCE NEEDED

Bit [1] – PERFORMANCE DEGRADED

Bit [2-7] - Reserved

Bit [8] – WRITE PERSISTENCY LOSS IN EVENT OF POWER LOSS

Bit [9] – WRITE PERSISTENCY LOSS IN EVENT OF OFFLINE

Bit [10] – WRITE PERSISTENCY LOSS IMMINENT

Bit [11-15] - Reserved

Bit [16] - ALL DATA LOSS IN THE EVENT OF POWER LOSS

Bit [17] – ALL DATA LOSS IN THE EVENT OF OFFLINE

Bit [18] – ALL DATA LOSS IMMINENT

Bit [19-31] – Reserved

Overall Health
Status Attributes
of Injected Errors

4 10

Bit [0] – PERMANENT HEALTH CONDITION. This bit is set to 1 to indicate that the
injected error(s) are permanent health error(s), otherwise the bit is set to 0.

Bit [1-31] – Reserved

Reserved 50 14 Reserved
UEFI Forum, Inc. January 2019 Page 672

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
10 Power Source and Power Meter Devices

This section specifies the battery, AC adapter, and power source device objects OSPM uses to manage
power resources, as well as the power meter device objects OSPM uses to measure power consumption.

A battery device is required to either have a Smart Battery subsystem or a Control Method Battery
interface as described in this section. OSPM is required to be able to connect and manage a battery on
either of these interfaces. This section describes these interfaces.

In the case of a compatible ACPI Smart Battery Table, the Definition Block needs to include a Bus/Device
package for the SMB-HC. This will install an OS-specific driver for the SMBus, which in turn will locate the
components of the Smart Battery subsystem. In addition to the battery or batteries, the Smart Battery
subsystem includes a charger and a manager device to handle subsystems with multiple batteries.

The Smart Battery System Manager is one implementation of a manager device that is capable of
arbitrating among the available power sources (AC power and batteries) for a system. It provides a
superset of the Smart Battery Selector functionality, such as safely responding to power events (AC
versus battery power), inserting and removing batteries and notifying the OS of all such changes.
Additionally, the Smart Battery System Manager is capable of handling configurations including
simultaneous charging and discharging of multiple batteries. Unlike the Smart Battery Selector that
shares responsibility for configuring the battery system with OSPM, the Smart Battery System Manager
alone controls the safe configuration of the battery system and simply issues status changes to OSPM
when the configuration changes. Smart Battery System Manager is the recommended solution for
handling multiple-battery systems.

A Power Meter device is the logical representation of a platform sensor that measures the power
consumption of one or more devices in the system. A basic platform implementation implements
interfaces that query the current power consumption and get the currently configured power
consumption hardware limit, while more advance power meter device implementations provide
interfaces that support OSPM configurable power consumption trip points that trigger SCI events, or
enable configuration of the underlying hardware to enforce a hard limit on the maximum amount of
power that can be consumed.

10.1 Smart Battery Subsystems

The Smart Battery subsystem is defined by the:

• System Management Bus Specification (SMBS)
• Smart Battery Data Specification (SBDS)
• Smart Battery Charger Specification (SBCS)
• Smart Battery System Manager Specification (SBSM)
• Smart Battery Selector Specification (SBSS)

An ACPI-compatible Smart Battery subsystem consists of:

• An SMB-HC (CPU to SMB-HC) interface
• At least one Smart Battery
• A Smart Battery Charger
UEFI Forum, Inc. January 2019 Page 673

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
• Either a Smart Battery System Manager or a Smart Battery Selector if more than one Smart
Battery is supported

In such a subsystem, a standard way of communicating with a Smart Battery and Smart Battery Charger is
through the SMBus physical protocols. The Smart Battery System Manager or Smart Battery Selector
provides event notification (battery insertion/removal, and so on) and charger SMBus routing capability
for any Smart Battery subsystem. A typical Smart Battery subsystem is illustrated below:

SMBus
Host

Controller
(0x8)

SBS
Charger

0x9

SBS
System

Manager
0xA

SBS
Battery0

0xB

SBS
Battery1

0xB

SBS
Battery2

0xB

SBS
Battery3

0xB

SMBus

SMBus

SMBus

SMBus

SMBus

SMBus

Host
Interface

Figure 10-55 Typical Smart Battery Subsystem (SBS)

SMBus defines a fixed 7-bit slave address per device. This means that all batteries in the system have the
same address (defined to be 0xB). The slave addresses associated with Smart Battery subsystem
components are shown in the following table.

Table 10-327 Example SMBus Device Slave Addresses

SMBus Device Description SMBus Slave Address (A0-A6)

SMBus Host Slave Interface 0x8

Smart Battery Charger/Charger Selector or Charger System Manager 0x9

Smart Battery System Manager or Smart Battery Selector 0xA

Smart Battery 0xB

Each SMBus device has up to 256 registers that are addressed through the SMBus protocol’s Command
value. SMBus devices are addressed by providing the slave address with the desired register’s Command
value. Each SMBus register can have non-linear registers; that is, command register 1 can have a 32-byte
string, while command register 2 can have a byte, and command register 3 can have a word.

The SMBus host slave interface provides a standard mechanism for the host CPU to generate SMBus
protocol commands that are required to communicate with SMBus devices (in other words, the Smart
Battery components). ACPI defines such an SMB-HC that resides in embedded controller address space;
however, an OS can support any SMB-HC that has a native SMB-HC device driver.

• Event notification for battery insertion and removal
UEFI Forum, Inc. January 2019 Page 674

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
• Event notification for AC power connected or disconnected
• Status of which Smart Battery is communicating with the SMB-HC
• Status of which Smart Battery(s) are powering the system
• Status of which Smart Battery(s) are connected to the charger
• Status of which Smart Batteries are present in the system
• Event notification when the Smart Battery System Manager switches from one power source to

another
• Hardware-switching to an alternate Smart Battery when the Smart Battery supplying power

runs low
• Hardware switching between battery-powered and AC-powered powered operation
•

The Smart Battery System Manager function can reside in a standalone SMBus slave device (Smart
Battery System Manager that responds to the 0xA slave address), may be present within a smart charger
device (Smart Battery Charger that responds to the 0x9 slave address), or may be combined within the
embedded controller (that responds to the 0xA slave address). If both a Smart Battery Charger and a
standalone Smart Battery System Manager are present in the same Smart Battery subsystem, then the
driver assumes that the standalone Smart Battery System Manager is wired to the batteries.

The Smart Battery charger is an SMBus device that provides a standard programming model to control
the charging of Smart Batteries present in a Smart Battery subsystem. For single battery systems, the
Smart Battery Charger is also responsible for notifying the system of the battery and AC status.

The Smart Battery provides intelligent chemistry-independent power to the system. The Smart Battery is
capable of informing the Smart Battery charger of its charging requirements (which provides chemistry
independence) and providing battery status and alarm features needed for platform battery
management.

10.1.1 ACPI Smart Battery Status Change Notification Requirements

The Smart Battery System Manager, the Smart Battery Selector, and the Smart Battery Charger each have
an optional mechanism for notifying the system that the battery configuration or AC status has changed.
ACPI requires that this interrupt mechanism be through the SMBus Alarm Notify mechanism.

For systems using an embedded controller as the SMBus host, a battery system device issues a status
change notification by either mastering the SMBus to send the notification directly to the SMBus host, or
by emulating it in the embedded controller. In either case, the process is the same. After the notification
is received or emulated, the embedded controller asserts an SCI. The source of the SCI is identified by a
GPE that indicates the SCI was caused by the embedded controller. The embedded controller’s status
register alarm bit is set, indicating that the SMBus host received an alarm message. The Alarm Address
Register contains the address of the SMBus device that originated the alarm and the Alarm Data Registers
contain the contents of that device’s status register.

10.1.1.1 Smart Battery Charger

This requires a Smart Battery Charger, on a battery or AC status change, to generate an SMBus Alarm
Notify. The contents of the Smart Battery Charger’s ChargerStatus() command register (0x13) is placed in

the embedded controller’s Alarm Data Registers, the Smart Battery Charger’s slave address1 (0x09) is
placed in the embedded controller’s Alarm Address Register and the EC’s Status Register’s Alarm bit is
set. The embedded controller then asserts an SCI.
UEFI Forum, Inc. January 2019 Page 675

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
10.1.1.2 Smart Battery Charger with optional System Manager or Selector

A Smart Battery Charger that contains the optional System Manager or Selector function (as indicated by
the ChargerSpecInfo() command register, 0x11, bit 4) is required to generate an SMBus Alarm Notify on a
battery or AC status change. The content of the Smart Battery Charger with an optional System Manager,
the BatterySystemState() command register (0x21) (or in the case of an optional Selector, the
SelectorState() (0x01)), is placed in the EC’s Alarm Data Registers, the Smart Battery Charger’s slave
address (0x09) is placed in the embedded controller’s Alarm Address Register, and the embedded
controller’s Status Register’s Alarm bit is set. The embedded controller then asserts an SCI.

10.1.1.3 Smart Battery System Manager

The Smart Battery System Manager is required to generate an SMBus Alarm Notify on a battery or AC
status change. The content of the Smart Battery System Manager’s BatterySystemState() command
register (0x01) is placed in the EC’s Alarm Data Registers, the Smart Battery System Manager’s slave
address (0x0A) is placed in the EC’s Alarm Address Register, and the embedded controller’s Status
Register’s Alarm bit is set. The embedded controller then asserts an SCI.

10.1.1.4 Smart Battery Selector

The requirements for the Smart Battery Selector are the same as the requirements for the Smart Battery
System Manager, with the exception that the contents of the SelectorState() command register (0x01)
are used instead of BatterySystemState(). The Smart Battery Selector is a subset of the Smart Battery
System Manager and does not have the added support for simultaneous charge/discharge of multiple
batteries. The System Manager is the preferred implementation.

10.1.2 Smart Battery Objects

The Smart Battery subsystem requires a number of objects to define its interface. These are summarized
below:

Table 10-328 Smart Battery Objects

Object Description

_HID This is the hardware ID named object that contains a string. For Smart Battery subsystems, this
object returns the value of “ACPI0002.” This identifies the Smart Battery subsystem to the
Smart Battery driver.

_SBS This is the Smart Battery named object that contains a DWORD. This named object returns the
configuration of the Smart Battery.

10.1.3 _SBS (Smart Battery Subsystem)

The _SBS control method returns the configuration of the Smart Battery subsystem. This named object
returns a DWORD value with a number from 0 to 4. If the number of batteries is greater than 0, then the

1. Notice that the 1.0 SMBus protocol specification is ambiguous about the definition of the “slave address”
written into the command field of the host controller. In this case, the slave address is actually the combination of
the 7-bit slave address and the Write protocol bit. Therefore, bit 0 of the initiating device’s slave address is aligned
to bit 1 of the host controller’s slave command register, bit 1 of the slave address is aligned to bit 2 of the control-
ler’s slave command register, and so on.
UEFI Forum, Inc. January 2019 Page 676

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
Smart Battery driver assumes that a Smart Battery System Manager or Smart Battery Selector is present.
If 0, then the Smart Battery driver assumes a single Smart Battery and neither a Smart Battery System
Manager nor Smart Battery Selector is present.

The DWORD returned by _SBS is encoded as follows:

• 0 – Maximum of one Smart Battery and no Smart Battery System Manager or Smart Battery
Selector.

• 1 – Maximum of one Smart Battery and a Smart Battery System Manager or Smart Battery
Selector.

• 2 – Maximum of two Smart Batteries and a Smart Battery System Manager or Smart Battery
Selector.

• 3 – Maximum of three Smart Batteries and a Smart Battery System Manager or Smart Battery
Selector.

• 4 – Maximum of four Smart Batteries and a Smart Battery System Manager or Smart Battery
Selector.

Arguments:

None

Return Value:

An Integer containing the Smart Battery subsystem configuration:

0 – Maximum 1 Smart Battery, system manager/selector not present

1 – Maximum 1 Smart Battery, system manager/selector present

2 – Maximum 2 Smart Batteries, system manager/selector present

3 – Maximum 3 Smart Batteries, system manager/selector present

4 – Maximum 4 Smart Batteries, system manager/selector present

The maximum number of batteries is for the entire system. Therefore, if the platform is capable of
supporting four batteries, but only two are normally present in the system, then this field should return
4. Notice that a value of 0 indicates a maximum support of one battery and there is no Smart Battery
System Manager or Smart Battery Selector present in the system

As the SMBus is not an enumerable bus, all devices on the bus must be declared in the ACPI name-space.
As the Smart Battery driver understands Smart Battery, Smart Battery Charger, and Smart Battery System
Manager or Smart Battery Selector; only a single device needs to be declared per Smart Battery
subsystem. The driver gets information about the subsystem through the hardware ID (which defines a
Smart Battery subsystem) and the number of Smart Batteries supported on this subsystem (_SBS named
object). The ACPI Smart Battery table indicates the energy levels of the platform at which the system
should warn the user and then enter a sleeping state. The Smart Battery driver then reflects these as
threshold alarms for the Smart Batteries.

A Smart Battery device declaration in the ACPI namespace requires the _GLK object if potentially
contentious accesses to device resources are performed by non-OS code. See Section 6.5.7 “_GLK (Global
Lock),” for details about the _GLK object.
UEFI Forum, Inc. January 2019 Page 677

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
10.1.3.1 Example: Single Smart Battery Subsystem

This section illustrates how to define a Smart Battery subsystem containing a single Smart Battery and
charger. The platform implementation is illustrated below:

Embedded

Controller
Ports: 0x62, 0x66

Offset: 0x80
Query: 0x30

SMBus
Host

Controller
(0x8) SBS

Charger
0x9

SBS
Battery

0xB

SMBus
Host

Interface

Figure 10-56 Single Smart Battery Subsystem

In this example, the platform is using an SMB-HC that resides within the embedded controller and meets
the ACPI standard for an embedded controller interface and SMB-HC interface. The embedded controller
interface sits at system I/O port addresses 0x62 and 0x66. The SMB-HC is at base address 0x80 within
embedded controller address space (as defined by the ACPI embedded controller specification) and
responds to events on query value 0x30.

In this example the Smart Battery subsystem only supports a single Smart Battery. The ASL code for
describing this interface is shown below:

Device (EC0) {
 Name (_HID, EISAID("PNP0C09"))
 Name (_CRS,
 ResourceTemplate () { // port 0x62 and 0x66
 IO (Decode16, 0x62, 0x62, 0, 1),
 IO (Decode16, 0x66, 0x66, 0, 1)
 }
)
 Name (_GPE, 0)
 Device (SMB0) {
 Name (_HID, "ACPI0001") // Smart Battery Host Controller
 Name (_EC, 0x8030) // EC offset (0x80), Query (0x30)
 Device (SBS0){ // Smart Battery Subsystem
 Name (_HID, "ACPI0002") // Smart Battery Subsystem ID
 Name(_SBS, 0x1) // Indicates support for one battery
 } // end of SBS0
 } // end of SMB0
} // end of EC
UEFI Forum, Inc. January 2019 Page 678

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
10.1.3.2 Multiple Smart Battery Subsystem: Example

This section illustrates how to define a Smart Battery subsystem that contains three Smart Batteries, a
Smart Battery System Manager, and a Smart Battery Charger. The platform implementation is illustrated
below:

Figure 10-57 Smart Battery Subsystem

In this example, the platform is using an SMB-HC that resides within the embedded controller and meets
the ACPI standard for an embedded controller interface and SMB-HC interface. The embedded controller
interface sits at system I/O port addresses 0x100 and 0x101. The SMB-HC resides at base address 0x90
within embedded controller address space (as defined by the ACPI embedded controller specification)
and responds to events on query value 0x31.

In this example the Smart Battery subsystem supports three Smart Batteries. The Smart Battery Charger
and Smart Battery System Manager reside within the embedded controller, meet the Smart Battery
System Manager and Smart Battery Charger interface specification, and respond to their 7-bit addresses
(0xA and 0x9 respectively). The ASL code for describing this interface is shown below:

Device (EC1) {

Name (_HID, EISAID("PNP0C09"))
 Name (_CRS,
 ResourceTemplate () { // port 0x100 and 0x101
 IO(Decode16, 0x100, 0x100, 0, 2)
 }
)
 Name (_GPE, 1)
 Device (SMB1) {
 Name (_HID, "ACPI0001") // Smart Battery Host Controller
 Name (_EC, 0x9031) // EC offset (0x90), Query (0x31)
 Device (SBS1){ // Smart Battery Subsystem
 Name (_HID, "ACPI0002") // Smart Battery Subsystem ID
 Name (_SBS, 0x3) // Indicates support for three batteries
 } // end of SBS1
 } // end of SMB1

Embedded Controller
Ports: 0x100, 0x101
Offset: 0x90
Query: 0x31

SMBus
Host

Controller
(0x8)

SBS
Charger

0x9

SBS
System

Manager
0xA

SBS
Battery0

0xB

SBS
Battery1

0xB

SBS
Battery2

0xB

Virtual
SMBus

Virtual
SMBus

SMBus

SMBus

SMBus

Host
Interface
UEFI Forum, Inc. January 2019 Page 679

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
} // end of EC

10.2 Control Method Batteries

The following section illustrates the operation and definition of the Control Method Battery.

10.2.1 Battery Events

The AML code handling an SCI for a battery event notifies the system of which battery’s status may have
changed. The OS uses the _BST control method to determine the current status of the batteries and what
action, if any, should be taken (for more information about the _BST control method, see Section 10.2.2,
“Battery Control Methods”). The typical action is to notify applications monitoring the battery status to
provide the user with an up-to-date display of the system battery state. But in some cases, the action
may involve generating an alert or even forcing a system into a sleeping state. In any case, any changes in
battery status should generate an SCI in a timely manner to keep the system power state UI consistent
with the actual state of the system battery (or batteries).

Unlike most other devices, when a battery is inserted or removed from the system, the device itself (the
battery bay) is still considered to be present in the system. For most systems, the _STA for this device will
always return a value with bits 0-3 set and will toggle bit 4 to indicate the actual presence of a battery
(see Section 6.3.7, “_STA [Status]”). When this insertion or removal occurs, the AML code handler for this
event should issue a Notify(battery_device, 0x81) to indicate that the static battery information has
changed. For systems that have battery slots in a docking station or batteries that cannot be surprise-
removed, it may be beneficial or necessary to indicate that the entire device has been removed. In this
case, the standard methods and notifications described in Section 6.3, “Device Insertion, Removal, and
Status Objects,” should be used.

When the present state of the battery has changed or when the trip point set by the _BTP control
method is reached or crossed, the hardware will assert a general purpose event. The AML code handler
for this event issues a Notify(battery_device, 0x80) on the battery device. This notification is also sent
when the Status Flags returned from _BMD change.

In the case where the remaining battery capacity becomes critically low, the AML code handler issues a
Notify(battery_device, 0x80) and reports the battery critical flag in the _BST object. The OS performs an
emergency shutdown. For a full description of the critical battery state, see Section 3.9.4, “Low Battery
Levels.”

Sometimes the value to be returned from _BST or _BIF will be temporarily unknown. In this case, the
method may return the value 0xFFFFFFFF as a placeholder. When the value becomes known, the
appropriate notification (0x80 for _BST or 0x81 for BIF) should be issued, in like manner to any other
change in the data returned by these methods. This will cause OSPM to re-evaluate the method—
obtaining the correct data value.

When one or more of the status flags returned by the _BMD control method change, AML code issues a
Notify(battery_device, 0x82) on the battery device unless this change occurs during a call to _BMC and
the value of the status flags in _BMD match the value passed in to _BMC. If the value of the status bits
cannot be set to reflect the action requested by the executing _BMC, the AML code will issue this
notification. For example, calling _BMC with bit 0 set to initiate a calibration cycle while AC power is not
available will cause AML to issue a Notify(battery_device, 0x82).
UEFI Forum, Inc. January 2019 Page 680

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
10.2.2 Battery Control Methods

The Control Method Battery is a battery with an AML code interface between the battery and the host
PC. The battery interface is completely accessed by AML code control methods, allowing the OEM to use
any type of battery and any kind of communication interface supported by ACPI. OSPM requires accurate
battery data to perform optimal power management policy and to provide the end user with a
meaningful estimation of remaining battery life. As such, control methods that return battery
information should calculate this information rather than return hard coded data.

A Control Method Battery is described as a device object. Each device object supporting the Control
Method Battery interface contains the following additional control methods. When there are two or
more batteries in the system, each battery will have an independent device object in the namespace.

Table 10-329 Battery Control Methods

Object Description

_BIF Returns static information about a battery (in other words, model number, serial number, design
voltage, and so on).

_BIX Returns extended static information about a battery (in other words, model number, serial
number, design voltage, and so on).

_OSC OSPM Capabilities conveyance for batteries.

_BMA Sets the averaging interval of the battery capacity measurement, in milliseconds.

_BMS Sets the sampling time of the battery capacity measurement, in milliseconds.

_BST Returns the current battery status (in other words, dynamic information about the battery, such
as whether the battery is currently charging or discharging, an estimate of the remaining battery
capacity, and so on).

_BTH Communicates battery thermal throttle limit set by battery thermal zone.

_BTP Sets the Battery Trip point, which generates an SCI when batterycapacity reaches the specified
point.

_PCL List of pointers to the device objects representing devices powered by the battery.

_STA Returns general status of the battery (for a description of the _STA control method, see
Section 6.3.7, “_STA (Status]”).

_BTM Returns battery estimated runtime at the present average rate of drain, or the runtime at a
specified rate.

_BCT Returns battery estimated charging time.

_BMD Returns battery information related to battery recalibration and charging control.

_BMC Control calibration and charging.

A Control Method Battery device declaration in the ACPI namespace requires the _GLK object if
potentially contentious accesses to device resources are performed by non-OS code. See Section 6.5.7,
“_GLK (Global Lock),” for details about the _GLK object.
UEFI Forum, Inc. January 2019 Page 681

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
10.2.2.1 _BIF (Battery Information)

This object returns the static portion of the Control Method Battery information. This information
remains constant until the battery is changed. This object is deprecated in ACPI 4.0. The _BIX object
provides expanded battery information and includes all of the information provide by _BIF. See
Section 10.2.2.2, “Battery Information Extended”).

Arguments:

None

Return Value:

A Package containing the battery information as described below.

Return Value Information:
_BIF returns a package in the format below

Package {
 Power Unit // Integer (DWORD)
 Design Capacity // Integer (DWORD)
 Last Full Charge Capacity // Integer (DWORD)
 Battery Technology // Integer (DWORD)
 Design Voltage // Integer (DWORD)
 Design Capacity of Warning // Integer (DWORD)
 Design Capacity of Low // Integer (DWORD)
 Battery Capacity Granularity 1 // Integer (DWORD)
 Battery Capacity Granularity 2 // Integer (DWORD)
 Model Number // String (ASCIIZ)
 Serial Number // String (ASCIIZ)
 Battery Type // String (ASCIIZ)
 OEM Information // String (ASCIIZ)
}

Table 10-330 BIF Return Package Values

Field Format Description

Power Unit Integer
(DWORD)

Indicates the units used by the battery to report its capacity and charge/
discharge rate information to the OS.

0x00000000 – Capacity information is reported in [mWh] and charge/
discharge rate information in [mW].

0x00000001 – Capacity information is reported in [mAh] and charge/
discharge rate information in [mA].

Design Capacity Integer
(DWORD)

Battery’s design capacity. Design Capacity is the nominal capacity of a
new battery. The Design Capacity value is expressed as power [mWh] or
current [mAh] depending on the Power Unit value.

0x000000000 – 0x7FFFFFFF (in [mWh] or [mAh])
0xFFFFFFFF – Unknown design capacity
UEFI Forum, Inc. January 2019 Page 682

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
Additional Notes:
• A secondary-type battery should report the corresponding capacity (except for Unknown).
• On a multiple-battery system, all batteries in the system should return the same granularity.
• Operating systems prefer these control methods to report data in terms of power (watts).
• On a multiple-battery system, all batteries in the system must use the same power unit.
• The definition of battery capacity granularity has been clarified. For OSPM to determine if

systems support the clarified definition of battery capacity granularity, OSPM may evaluate an

Last Full Charge
Capacity

Integer
(DWORD)

Predicted battery capacity when fully charged. The Last Full Charge
Capacity value is expressed as power (mWh) or current (mAh) depending
on the Power Unit value.

0x000000000h – 0x7FFFFFFF (in [mWh] or [mAh])
0xFFFFFFFF – Unknown last full charge capacity

Battery
Technology

Integer
(DWORD)

0x00000000 – Primary (for example, non-rechargeable)
0x00000001 – Secondary (for example, rechargeable)

Design Voltage Integer
(DWORD)

Nominal voltage of a new battery.

0x000000000 – 0x7FFFFFFF in [mV]
0xFFFFFFFF – Unknown design voltage

Design capacity of
Warning

Integer
(DWORD)

OEM-designed battery warning capacity. See Section 3.9.4, “Low
Battery Levels.”

0x000000000 – 0x7FFFFFFF in [mWh] or [mAh]

Design Capacity of
Low

Integer
(DWORD)

OEM-designed low battery capacity. See Section 3.9.4, “Low Battery
Levels.”

0x000000000 – 0x7FFFFFFF in [mWh] or [mAh]

Battery Capacity
Granularity 1

Integer
(DWORD)

Battery capacity granularity between low and warning in [mAh] or
[mWh]. That is, this is the smallest increment in capacity that the battery
is capable of measuring. See note below for more details

Battery Capacity
Granularity 2

Integer
(DWORD)

Battery capacity granularity between warning and Full in [mAh] or
[mWh]. That is, this is the smallest increment in capacity that the battery
is capable of measuring. This may be a different value than Battery
Capacity Granularity 1 to accommodate systems where the granularity
accuracy may change depending on the battery level. See note below for
more details.

Model Number String
(ASCIIZ)

OEM-specific Control Method Battery model number

Serial Number String
(ASCIIZ)

OEM-specific Control Method Battery serial number

Battery Type String
(ASCIIZ)

The OEM-specific Control Method Battery type

OEM Information String
(ASCIIZ)

OEM-specific information for the battery that the UI uses to display the
OEM information about the Battery. If the OEM does not support this
information, this field should contain a NULL string.

Field Format Description
UEFI Forum, Inc. January 2019 Page 683

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
_OSC method at the battery scope to indicate support for this capability, and for the platform
to indicate if it supports these extended capabilities.

10.2.2.2 _BIX (Battery Information Extended)

The _BIX object returns the static portion of the Control Method Battery information. This information
remains constant until the battery is changed. The _BIX object returns all information available via the
_BIF object plus additional battery information. The _BIF object is deprecated in lieu of _BIX in ACPI 4.0.

Arguments:

None

Return Value:

A Package containing the battery information as described below

Return Value Information:
_BIX returns a package in the format below

Package {
 // ASCIIZ is ASCII character string terminated with a 0x00.
 Revision //Integer
 Power Unit //Integer (DWORD)
 Design Capacity //Integer (DWORD)
 Last Full Charge Capacity //Integer (DWORD)
 Battery Technology //Integer (DWORD)
 Design Voltage //Integer (DWORD)
 Design Capacity of Warning //Integer (DWORD)
 Design Capacity of Low //Integer (DWORD)
 Cycle Count //Integer (DWORD)
 Measurement Accuracy //Integer (DWORD)
 Max Sampling Time //Integer (DWORD)
 Min Sampling Time //Integer (DWORD)
 Max Averaging Interval //Integer (DWORD)
 Min Averaging Interval //Integer (DWORD)
 Battery Capacity Granularity 1 //Integer (DWORD)
 Battery Capacity Granularity 2 //Integer (DWORD)
 Model Number //String (ASCIIZ)
 Serial Number //String (ASCIIZ)
 Battery Type //String (ASCIIZ)
 OEM Information //String (ASCIIZ)
 Battery Swapping Capability //Integer (DWORD)
}

Table 10-331 BIX Return Package Values

Field Format Description

Revision Integer Current revision is: 1
UEFI Forum, Inc. January 2019 Page 684

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
Power Unit Integer
(DWORD)

Indicates the units used by the battery to report its capacity and charge/
discharge rate information to the OS.

• 0x00000000 – Capacity information is reported in [mWh] and charge/
discharge rate information in [mW].

• 0x00000001 – Capacity information is reported in [mAh] and charge/
discharge rate information in [mA].

Design Capacity Integer
(DWORD)

Battery’s design capacity. Design Capacity is the nominal capacity of a
new battery. The Design Capacity value is expressed as power [mWh] or
current [mAh] depending on the Power Unit value.

• 0x000000000 – 0x7FFFFFFF (in [mWh] or [mAh])

• 0xFFFFFFFF – Unknown design capacity

Last Full Charge
Capacity

Integer
(DWORD)

Predicted battery capacity when fully charged. The Last Full Charge
Capacity value is expressed as power (mWh) or current (mAh)
depending on the Power Unit value.

• 0x000000000h – 0x7FFFFFFF (in [mWh] or [mAh])

• 0xFFFFFFFF – Unknown last full charge capacity

Battery
Technology

Integer
(DWORD)

• 0x00000000 – Primary (for example, non-rechargeable)

• 0x00000001 – Secondary (for example, rechargeable)

Design Voltage Integer
(DWORD)

Nominal voltage of a new battery.

• 0x000000000 – 0x7FFFFFFF in [mV]

• 0xFFFFFFFF – Unknown design voltage

Design capacity
of Warning

Integer
(DWORD)

OEM-designed battery warning capacity. See Section 3.9.4, “Low
Battery Levels.”

• 0x000000000 – 0x7FFFFFFF in [mWh] or [mAh]

Design Capacity
of Low

Integer
(DWORD)

OEM-designed low battery capacity. See Section 3.9.4, “Low Battery
Levels.”

• 0x000000000 – 0x7FFFFFFF in [mWh] or [mAh]

Cycle Count Integer
(DWORD)

The number of cycles the battery has experienced. A cycle is defined as:

An amount of discharge approximately equal to the value of Design
Capacity.

• 0x000000000 – 0xFFFFFFFE

• 0xFFFFFFFF – Unknown cycle count

Measurement
Accuracy

Integer
(DWORD)

The accuracy of the battery capacity measurement, in thousandth of a
percent. (0% - 100.000%) For example, The value 80000 would mean
80% accuracy.

Field Format Description
UEFI Forum, Inc. January 2019 Page 685

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
Max Sampling
Time

Integer
(DWORD)

The sampling time is the duration between two consecutive
measurements of the battery’s capacities specified in _BST, such as
present rate and remaining capacity. If the OSPM makes two succeeding
readings through _BST beyond the duration, two different results will be
returned.

The Max Sampling Time is the maximum sampling time the battery can
support, in milliseconds.

0xFFFFFFFF is returned if the information is unavailable.

Min Sampling
Time

Integer
(DWORD)

The Min Sampling Time is the minimum sampling time the battery can
support, in milliseconds.

0xFFFFFFFF is returned if the information is unavailable.

Max Averaging
Interval

Integer
(DWORD)

The Average Interval is the length of time (in milliseconds) within which
the battery averages the capacity measurements specified in _BST, such
as remaining capacity and present rate.

The Sampling time specifies the frequency of measurements, and the
average interval specifies the width of the time window of every
measurement.

This field indicates the maximum Average Interval that the battery
supports.

Min Averaging
Interval

Integer
(DWORD)

This field indicates the minimum Average Interval that the battery
supports

Battery Capacity
Granularity 1

Integer
(DWORD)

Battery capacity granularity between low and warning in [mAh] or
[mWh]. That is, this is the smallest increment in capacity that the
battery is capable of measuring. See note below for more details

Battery Capacity
Granularity 2

Integer
(DWORD)

Battery capacity granularity between warning and Full in [mAh] or
[mWh]. That is, this is the smallest increment in capacity that the
battery is capable of measuring. This may be a different value than
Battery Capacity Granularity 1 to accommodate systems where the
granularity accuracy may change depending on the battery level. See
note below for more details.

Model Number String
(ASCIIZ)

OEM-specific Control Method Battery model number

Serial Number String
(ASCIIZ)

OEM-specific Control Method Battery serial number

Battery Type String
(ASCIIZ)

The OEM-specific Control Method Battery type

OEM
Information

String
(ASCIIZ)

OEM-specific information for the battery that the UI uses to display the
OEM information about the Battery. If the OEM does not support this
information, this field should contain a NULL string.

Field Format Description
UEFI Forum, Inc. January 2019 Page 686

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
Note: A secondary-type battery should report the corresponding capacity (except for Unknown).

Note: On a multiple-battery system, all batteries in the system should return the same granularity.

Note: Operating systems prefer these control methods to report data in terms of power (watts).

Note: On a multiple-battery system, all batteries in the system must use the same power unit.

Note: The definition of battery capacity granularity has been clarified. For OSPM to determine if
systems support the clarified definition of battery capacity granularity, OSPM may evaluate an
_OSC method at the battery scope to indicate support for this capability, and for the platform to
indicate if it supports these extended capabilities.

10.2.2.3 _OSC Definition for Control Method Battery

_OSC for control method battery is uniquely identified by the UUID:

F18FC78B-0F15-4978-B793-53F833A1D35B

The Revision 1 capabilities described under this _OSC are defined in Table 10-332.

Table 10-332 Control Method Battery _OSC Capabilities DWORD2 Bit Definitions

Capabilities
DWORD2 bits

Interpretation

0 0 – OS does not support revised battery granularity definition.

1 – OS supports revised battery granularity definition.

1 0 – OS does not support specifying wake on low battery user preference.

1 – OS supports specifying wake on low battery user preference, See Section 9.2.3,
_BLT Battery Level Threshold) for more information.

2-31 Reserved

Bits defined in Capabilities DWORD2 provide information regarding OS supported features. Contents in
DWORD2 are passed one-way; the OS will disregard the corresponding bits of DWORD2 in the Return
Code.

10.2.2.4 _BMA (Battery Measurement Averaging Interval)

This object is used to set the averaging interval of the battery capacity measurement, in milliseconds. The
Battery Measurement Averaging Interval is the length of time within which the battery averages the
capacity measurements specified in _BST, such as remaining capacity and present rate.

Battery
Swapping
Capability

Integer
(DWORD)

• 0x00000000 Non swappable battery (for example, sealed internal
battery not accessible to user)

• 0x00000001 Cold swappable battery, i.e. batteries that require system
to be shut down in order to replace the battery while on DC power (for
example, phone and laptop batteries accessible to user)

• 0x00000010 Hot swappable battery, i.e. batteries that do not require
the system to be shut down in order to replace/remove the battery
while on DC power (for example, accessory batteries, cd tray
batteries, external batteries, dock batteries, keyboard batteries)

Field Format Description
UEFI Forum, Inc. January 2019 Page 687

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
The OSPM may read the Max Average Interval and Min Average Interval with _BIX during boot time, and
set a specific average interval within the range with _BMA.

Arguments: (1)

Arg0 – AveragingInterval (Integer(DWORD)) the averaging interval of battery capacity measurement:

0x00000001 – 0xFFFFFFFF (in units of millisecond)

Return Value:

An Integer (DWORD) containing a result code as follows:

0x00000000 – Success.

0x00000001 – Failure to set Battery Measurement Averaging Interval because it is out of the
battery’s measurement capability.

0x00000002 – 0xFFFFFFFF – Reserved.

10.2.2.5 _BMS (Battery Measurement Sampling Time)

This object is used to set the sampling time of the battery capacity measurement, in milliseconds.

The Sampling Time is the duration between two consecutive measurements of the battery’s capacities
specified in _BST, such as present rate and remaining capacity. If the OSPM makes two succeeding
readings through _BST beyond the duration, two different results will be returned.

The OSPM may read the Max Sampling Time and Min Sampling Time with _BIX during boot time, and set
a specific sampling time within the range with _BMS.

Arguments: (1)

Arg0 – SamplingTime (Integer(DWORD)) the sampling time of battery capacity measurement:

0x00000001 – 0xFFFFFFFF (in units of millisecond)

Return Value:

An Integer (DWORD) containing a result code as follows:

0x00000000 – Success.

0x00000001 – Failure to set Battery Measurement Sampling Time because it is out of the battery’s
measurement capability.

0x00000002 – 0xFFFFFFFF – Reserved.

10.2.2.6 _BST (Battery Status)

This object returns the present battery status. Whenever the Battery State value changes, the system will
generate an SCI to notify the OS.

Arguments:

None

Return Value:

A Package containing the battery status as described below
UEFI Forum, Inc. January 2019 Page 688

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
Return Value Information:
_BST returns a package in the format below

Package {
 Battery State // Integer (DWORD)
 Battery Present Rate // Integer (DWORD)
 Battery Remaining Capacity // Integer (DWORD)
 Battery Present Voltage // Integer (DWORD)
}

Table 10-333 BST Return Package Values

Element Format Description

Battery
State

Integer
(DWORD)

Bit values. Notice that the Charging bit and the Discharging bit are mutually
exclusive and must not both be set at the same time. Even in critical state,
hardware should report the corresponding charging/discharging state.

• Bit [0] – 1 indicates the battery is discharging.

• Bit [1] – 1 indicates the battery is charging.

• Bit [2]– 1 indicates the battery is in the critical energy state (see
Section 3.9.4, “Low Battery Levels”). This does not mean battery failure.

Battery
Present
Rate

Integer
(DWORD)

Returns the power or current being supplied or accepted through the battery’s
terminals (direction depends on the Battery State value). The Battery Present
Rate value is expressed as power [mWh] or current [mAh] depending on the
Power Unit value.

Batteries that are rechargeable and are in the discharging state are required to
return a valid Battery Present Rate value.

• 0x00000000 – 0x7FFFFFFF in [mW] or [mA]
0xFFFFFFFF – Unknown rate

Battery
Remaining
Capacity

Integer
(DWORD)

Returns the estimated remaining battery capacity. The Battery Remaining
Capacity value is expressed as power [mWh] or current [mAh] depending on
the Power Unit value.

Batteries that are rechargeable are required to return a valid Battery
Remaining Capacity value.

• 0x00000000 – 0x7FFFFFFF in [mWh] or [mAh]

• 0xFFFFFFFF – Unknown capacity

Battery
Present
Voltage

Integer
(DWORD)

Returns the voltage across the battery’s terminals.

Batteries that are rechargeable must report Battery Present Voltage.

• 0x000000000 – 0x7FFFFFFF in [mV]

• 0xFFFFFFFF – Unknown voltage

Note: Only a primary battery can report unknown voltage.

Notice that when the battery is a primary battery (a non-rechargeable battery such as an Alkaline-
Manganese battery) and cannot provide accurate information about the battery to use in the calculation
of the remaining battery life, the Control Method Battery can report the percentage directly to OS. It
does so by reporting the Last Full Charged Capacity =100 and BatteryPresentRate=0xFFFFFFFF. This
UEFI Forum, Inc. January 2019 Page 689

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
means that Battery Remaining Capacity directly reports the battery’s remaining capacity [%] as a value in
the range 0 through 100 as follows:

Figure 10-58 Remaining Battery Percent Formula

Figure 10-59 Remaining Battery Life Formula

10.2.2.7 _BTH (Battery Throttle Limit)

This method will communicate to the platform firmware the thermal throttle limit set by on the battery.

Arguments:

Arg0 – An integer from 0 to 100 containing the battery thermal throttle limit in percentage. At 100%, the
battery can be charged at maximum current.

Return Value:
None.

Note: Firmware is responsible for taking the current thermal throttle limit into account when engaging
charging.

Example:
Scope(_SB) {
Scope(_SB.PCI0.ISA0) {
 Device(EC0) {
 Name(_HID, EISAID("PNP0C09")) // ID for this EC
 // current resource description for
this EC
 Name(_CRS, ResourceTemplate() {
 IO(Decode16,0x62,0x62,0,1)
 IO(Decode16,0x66,0x66,0,1)
 })
 Name(_GPE, 0) // GPE index for this EC
 // create EC's region and field for thermal support
 OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
 Field(EC0, ByteAcc, Lock, Preserve) {
 TMP, 16, // current temp
 PSV, 16, // passive cooling temp
 BTH 16, // battery charge rate limit
 }
 // following is a method that OSPM will schedule after
 // it receives an SCI and queries the EC to receive value 7
 Method(_Q07) {

Remaining Battery Percentage[%] =
Battery Remaining Capacity [=0 ~ 100]

Last Full Charged Capacity [=100]
* 100

Remaining Battery Life [h] =
Battery Remaining Capacity [mAh/mWh]

Battery Present Rate [=0xFFFFFFFF]
= unknown
UEFI Forum, Inc. January 2019 Page 690

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
 Notify (_SB.PCI0.ISA0.EC0.TZ0, 0x80) } // end of Notify method
 // create a thermal zone
 ThermalZone (TZ0) {
 Method(_TMP) { Return (_SB.PCI0.ISA0.EC0.TMP)} // get current
temp
 Method(_PSV) { Return (_SB.PCI0.ISA0.EC0.PSV) } // passive
cooling temp
 Name(_TZD, Package (){_SB.PCI0.ISA0.EC0.BAT0}) // passive
cooling devices
 Name(_TC1, 4) // bogus
example constant
 Name(_TC2, 3) // bogus
example constant
 Name(_TSP, 150) // passive
sampling = 15 sec
 } // end of TZ0
 Device (BAT0) {
 Name(_HID, "PNP0C0A")
 Name(_UID, One)
 Method (_BTH, 0x1, NotSerialized) {
 Store(Arg0, _SB.PCI0.ISA0.EC0.BTH)
 }
 // additional battery objects
 }
 } // end of ECO
} // end of
_SB.PCI0.ISA0 scope
} // end of _SB
scope

10.2.2.8 _BTP (Battery Trip Point)

This object is used to set a trip point to generate an SCI whenever the Battery Remaining Capacity
reaches or crosses the value specified in the _BTP object. Specifically, if Battery Remaining Capacity is
less than the last argument passed to _BTP, a notification must be issued when the value of Battery
Remaining Capacity rises to be greater than or equal to this trip-point value. Similarly, if Battery
Remaining Capacity is greater than the last argument passed to _BTP, a notification must be issued when
the value of Battery Remaining Capacity falls to be less than or equal to this trip-point value. The last
argument passed to _BTP will be kept by the system.

If the battery does not support this function, the _BTP control method is not located in the namespace. In
this case, the OS must poll the Battery Remaining Capacity value.

Arguments: (1)

Arg0 – An Integer containing the new battery trip point

0 – Clear the trip point

1 – 0x7FFFFFFF – New trip point, in units of mWh or mAh depending on the Power Units value

Return Value:

None
UEFI Forum, Inc. January 2019 Page 691

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
10.2.2.9 _BTM (Battery Time)

This optional object returns the estimated runtime of the battery while it is discharging.

Arguments: (1)

Arg0 – An Integer containing the rate at which the battery is expected to discharge

0 – Indicates that the battery will continue discharging at the current rate. The rate should be based
on the average rate of drain, not the current rate of drain.

1 – 0x7FFFFFFFThe discharge rate (in mA or mW)

Return Value:

An Integer containing the estimated remaining runtime

0 – The input discharge rate (Arg0) is too large for the battery or batteries to supply. If the input
argument was 0, this value indicates that the battery is critical.

1 – 0xFFFFFFFE –Estimated runtime in seconds

0xFFFFFFFF –Runtime is unknown

10.2.2.10 _BCT (Battery Charge Time)

When the battery is charging, this optional object returns the estimated time from present to when it is
charged to a given percentage of Last Full Charge Capacity.

Arguments:

Arg0 – ChargeLevel (Integer (DWORD)): The queried charge level in units of percent of Last Full Charge
Capacity. For example: 96 refers to 96% of Last Full Charge Capacity. Valid values are 1 – 100
(0x00000001 – 0x00000064).

Return Value:

An Integer (DWORD) containing a result code as follows:

0x00000000 –Specified targeted charging capacity is smaller than the current remaining capacity
or larger than 100% of Last Full Charge Capacity.

0x00000001 –0xFFFFFFFE – Estimated charging time in seconds

0xFFFFFFFF –Charging time is unknown

10.2.2.11 _BMD (Battery Maintenance Data)

This optional object returns information about the battery’s capabilities and current state in relation to
battery calibration and charger control features. If the _BMC object (defined below) is present under a
battery device, this object must also be present. Whenever the Status Flags value changes, AML code will
issue a Notify(battery_device, 0x82). In addition, AML will issue a Notify(battery_device, 0x82) if
evaluating _BMC did not result in causing the Status Flags to be set as indicated in that argument to
_BMC. AML is not required to issue Notify(battery_device, 0x82) if the Status Flags change while
evaluating _BMC unless the change does not correspond to the argument passed to _BMC.

Arguments:

None
UEFI Forum, Inc. January 2019 Page 692

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
Return Value:

A Package containing the battery maintenance data as described below

Return Value Information:
_BMD returns a package in the format below:

Package {
 Status Flags // Integer (DWORD)
 Capability Flags // Integer (DWORD)
 Recalibrate Count // Integer (DWORD)
 Quick Recalibrate Time // Integer (DWORD)
 Slow Recalibrate Time // Integer (DWORD)
}

Table 10-334 BMD Return Package Values

Field Format Description

Status Flags Integer
(DWORD)

Bit values. Bit [0] is mutually exclusive with bit [1] and bit [2]. If the charger is being
manually controlled, there cannot be an AML controlled calibration cycle.

• Bit [0]– 1 indicates the battery is running an AML controlled calibration cycle

• Bit [1] – 1 indicates that charging has been disabled.

• Bit [2] – 1 indicates the battery is configured to discharge while AC power is
available.

• Bit [3] – 1 indicates that the battery should be recalibrated.

• Bit [4]– 1 indicates that the OS should put the system into standby to speed
charging during a calibration cycle. This is optional (based on user preference) if
“Slow Recalibrate Time” is not equal to 0x00000000.

• Bit [31:5] – reserved.

Capability
Flags

Integer
(DWORD)

Bit values that describe the capabilities of the battery system. These bits allows a
battery system with more limited capabilities to still be calibrated by OSPM.

• Bit [0] – 1 indicates that an AML controlled calibration cycle is supported.

• Bit [1] – 1 indicates that disabling the charger is supported.

• Bit [2]– 1 indicates that discharging while running on AC is supported.

• Bit [3]– 1 indicates that calling _BMC for one battery will affect the state of all
batteries in the system. This is for battery systems that cannot control batteries
individually.

• Bit [4]– 1 indicates that calibration should be done by first fully charging the
battery and then discharging it. Not setting this bit will indicate that calibration can
be done by simply discharging the battery.

• Bit [31:5] – reserved.

Recalibrate
Count

Integer
(DWORD)

This is used by battery systems that can’t detect when calibration is required, but
wish to recommend that the battery should be calibrated after a certain number of
cycles. Counting the number of cycles and partial cycles is done by the OS.

• 0x00000000 – Only calibrate when Status Flag bit [3] is set.

• 0x00000000 – 0xFFFFFFFF – calibrate battery after detecting this many battery
cycles.
UEFI Forum, Inc. January 2019 Page 693

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
See Section 3.9.5, “Battery Calibration” for an overview of Battery Calibration.

The Capability Flags and Recalibration Count are used to indicate what functions are controlled by AML
and what functions are controlled by OSPM as described in section 3.9.5, “Battery Calibration”. If the
system does not implement an AML controlled calibration cycle (bit [0]), it may indicate using bit [1] and
bit [2] that the OS can control a generic calibration cycle without prompting the user to remove the
power cord. Recalibration Count may be used to indicate that the platform runtime firmware cannot
determine when calibration should be preformed so bit 3 of the Status Flags will never be set. In that
case, OSPM will attempt to count the number of cycles.

Bit [3] is used by systems that do not have individual control over the batteries and can only perform
calibration on all batteries in the system at once. On such a system, if one battery requests calibration
and another battery does not, the OS may suggest that the user remove the battery that doesn’t need
calibration, before initiating the calibration cycle. When this bit is set, reading the Recalibrate Time from
either battery should give the time to recalibrate all batteries present in the system.

10.2.2.12 _BMC (Battery Maintenance Control)

This object is used to initiate calibration cycles or to control the charger and whether or not a battery is
powering the system. This object is only present under a battery device if the _BMD Capabilities Flags
field has bit 0, 1, or 2 set.

Arguments: (1)

Arg0 – An Integer containing feature control flags

Bit [0] – Set to initiate an AML controlled calibration cycle. Clear to end the calibration cycle

Bit [1] – Set to disable charging. Clear to enable charging

Bit [2] – Set to allow the battery to discharge while AC power is available. Clear to prevent
discharging while AC power is available

Quick
Recalibrate
Time

Integer
(DWORD)

Returns the estimated time it will take to calibrate the battery if the system is put
into standby whenever Status Flags bit [4] is set. While the AML controlled
calibration cycle is in progress, this returns the remaining time in the calibration
cycle.

• 0x000000000 – indicates that standby while calibrating the battery is not
supported. The system should remain in S0 until calibration is completed.

• 0x00000001 – 0xFFFFFFFE – estimated recalibration time in seconds.

• 0xFFFFFFFF – indicates that the estimated time to recalibrate the battery is
unknown.

Slow
Recalibrate
Time

Integer
(DWORD)

Returns the estimated time it will take to calibrate the battery if Status Flag Bit [4]
is ignored. While the AML controlled calibration cycle is in progress, this returns
the remaining time in the calibration cycle.

• 0x000000000 – indicates that battery calibration may not be successful if Status
Flags Bit [4] is ignored.

• 0x00000001 – 0xFFFFFFFE – estimated recalibration time in seconds.

• 0xFFFFFFFF – indicates that the estimated time to recalibrate the battery is
unknown.

Field Format Description
UEFI Forum, Inc. January 2019 Page 694

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
Return Value:

None

See Section 3.9.5 for an overview of Battery Calibration.

Evaluating this object with bit0 set will initiate an AML controlled recalibration cycle if _BMD indicates
that this is supported. The calibration cycle is controlled by the platform and will typically include
disabling the AC adapter and discharging the battery, then charging the battery. While the battery is
charging, the platform runtime firmware should set Bit [4] of the Status flags returned by _BMD if it is
possible to put the system into standby during calibration to speed up charging. Evaluating this with Bit
[0] equal to 0 will abort the calibration cycle if one is in process. If the platform runtime firmware
determines that the calibration cycle must be aborted (for example AC power is lost), or the calibration
completes successfully, the platform runtime firmware will end the cycle automatically, clear the _BMD
Status Flag Bit [0], and send a notify 0x82. While the calibration cycle is in process, the battery will report
data normally, so the OS must disable battery alarms.

Bit [1] and Bit [2] may not be used in conjunction with the AML controlled calibration cycle. Having Bit [0]
set will override Bit [1] and Bit [2]. Bit [1] will prevent the battery from charging even though AC power is
connected. Bit [2] will allow the system to draw its power from the battery even though AC power is
available. When the battery is no longer capable of delivering current, this setting is automatically
cleared, and the system will continue running off AC power without interruption. In addition, if AC power
is lost this bit will be cleared. When AC power comes back, the OS must set the bit again if the user wants
to continue discharging. When the system clears this bit automatically, it will result in a change in the
Status Flags returned by _BMD. This will cause a notify 0x82. Bit [1] is only cleared automatically if an
AML controlled calibration cycle is initiated.

When a battery is discharging because Bit [2] is set, the _PSR method of the AC adapter device will report
that AC is offline because the system is not running off of the AC adapter. If the batteries are controlled
individually (Bit [3] of the _BMD Capabilities Flags), setting either battery to discharge will cause _PSR to
report AC offline. If more than one battery in the system has Bit [2] set to discharge the battery, it is up to
the system to decide which battery to discharge, so only on a system that discharges the batteries one at
a time, a battery with Bit2 set may not be discharging if another battery in the system is being discharged.

If Batteries are not controlled individually, calling _BMC will initiate calibration, disable charge, and/or
allow discharge on all batteries in the system. The state of these batteries will be reflected in the _BMD
Status Flags for all batteries.

10.3 AC Adapters and Power Source Objects

The Power Source objects describe the system’s power source. These objects may be defined under a
Power Source device which is declared using a hardware identifier (_HID) of “ACPI0003”. Typically there
will be a power source device for each physical power supply contained within the system. However, in
cases where the power supply is shared, as in a blade server configuration, this may not be possible.
Instead the firmware can choose to expose a virtual power supply that represents one or more of the
physical power supplies.
UEFI Forum, Inc. January 2019 Page 695

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
Table 10-335 Power Source Objects

Object Description

_PSR Returns whether this power source device is currently online.

_PCL List of pointers to devices this power source is powering.

_PIF Returns static information about a power source.

_PRL List of pointers to all the other power source devices that belong in the same redundancy
group of which the power supply device is a member.

10.3.1 _PSR (Power Source)

Returns whether the power source device is currently in use. This can be used to determine if system is
running off this power supply or adapter. On mobile systes this will report that the system is not running
on the AC adapter if any of the batteries in the system is being forced to discharge. In systems that
contains multiple power sources, this object reports the power source’s online or offline status.

Arguments:

None

Return Value:

An Integer containing the power source status

0 – Off-line (not on AC power)

1 – On-line

10.3.2 _PCL (Power Consumer List)

This object evaluates to a list of pointers, each pointing to a device or a bus powered by the power source
device. Pointing to a bus indicates that all devices under the bus are powered by the power source
device.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to devices or buses

10.3.3 _PIF (Power Source Information)

This object returns information about the Power Source, which remains constant until the Power Source
is changed. When the power source changes, the platform issues a Notify(0x0) (Bus Check) to the Power
Source device to indicate that OSPM must re-evaluate the _PIF object.

Arguments:

None
UEFI Forum, Inc. January 2019 Page 696

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
Return Value:

A Package with the following format:

Package {
 Power Source State // Integer (DWORD)
 Maximum Output Power // Integer (DWORD)
 Maximum Input Power // Integer (DWORD)
 Model Number // String (ASCIIZ)
 Serial Number // String (ASCIIZ)
 OEM Information // String (ASCIIZ)
}

Table 10-336 PIF Method Result Codes

Element Object Type Description

Power Source State Integer
(DWORD)

Bit values that describe the type of this Power Source. These bits are
especially useful in server scenarios.

Bit [0] – indicates the power source is a redundant one. If this bit is set,
this Power Source device should have a _PRL object.

Bit [1] – indicates the power source is being shared across multiple
machines.

Bit [31:2] – Reserved.

Maximum Output
Power

Integer
(DWORD)

The maximum rated output wattage of the power source device. [mW]

 0xFFFFFFFF is returned if the information is unavailable.

Maximum Input
Power

Integer

(DWORD)

The maximum rated input wattage of the power source device. [mW]

0xFFFFFFFF is returned if the information is unavailable.

Model Number String (ASCIIZ) OEM-specific Power Source model number. This element is optional and
an empty string (a null character) should be used if this is not supported.

Serial Number String (ASCIIZ) OEM-specific Power Source serial number. This element is optional and
an empty string (a null character) should be used if this is not supported.

OEM Information String (ASCIIZ) OEM-specific information that the UI uses to display about the Power
Source device. This element is optional and a NULL string should be used
if this is not supported.

10.3.4 _PRL (Power Source Redundancy List)

This optional object evaluates to a list of Power Source devices that are in the same redundancy grouping
as Power Source device under which this object is defined. A redundancy grouping is a group of power
supplies that together provide redundancy. For example, on a system that contains two power supplies
that each could independently power the system, both power supplies would be part of the same
redundancy group. This is used in conjunction with the Power Source State values specified by the _PIF
object.

The entries should be in the format of a fully qualified ACPI namespace path.
UEFI Forum, Inc. January 2019 Page 697

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
Arguments:

None

Return Value:

A variable-length Package containing a list of References to power source devices. It has the following
format:

Package {
 Power source[0], // Reference
 Power source[1], // Reference

 Power source[n] // Reference
}

10.4 Power Meters

The following section describes Power Metering objects. These objects may be defined under a Power
Meter device which is declared using the ACPI000D hardware identifier (_HID).

Table 10-337 Power Meter Objects

Object Description

_GAI Gets the averaging interval used by the power meter.

_GHL Gets the hardware power consumption limit that is enforced by the Power Meter.

_PAI Sets the power averaging interval used by the Power Meter.

_PMC Returns Power Meter capabilities.

_PMD Returns a list of devices whose power consumption is measured by the Power Meter.

_PMM Returns the power consumption measured by the Power Meter.

_PTP Sets Power Meter device trip points.

_SHL Sets the hardware power consumption limit that is enforced by the Power Meter.

10.4.1 _PMC (Power Meter Capabilities)

This object returns the capabilities of a power meter. This information remains constant unless either the
power meter’s firmware or the BMC hardware changes, at which time the platform is required to send
Notify(power_meter, 0x80) for the OSPM to re-evaluate _PMC.

Arguments:

None

Return Value:

A Package with the following format:

Package {
 Supported Capabilities // Integer (DWORD)
 Measurement Unit // Integer (DWORD)
UEFI Forum, Inc. January 2019 Page 698

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
 Measurement Type // Integer (DWORD)
 Measurement Accuracy // Integer (DWORD)
 Measurement Sampling Time // Integer (DWORD)
 Minimum Averaging Interval // Integer (DWORD)
 Maximum Averaging Interval // Integer (DWORD)
 Hysteresis Margin // Integer (DWORD)
 Hardware Limit Is Configurable // Boolean (DWORD)
 Min Configurable Hardware Limit // Integer (DWORD)
 Max Configurable Hardware Limit // Integer (DWORD)
 Model Number // String
 Serial Number // String
 OEM Information // String
}

Table 10-338 PMC Method Result Codes

Element Object Type Description

Supported
Capabilities

Integer

(DWORD)

A bitmask that represents the capability flags:

Bit [0] – indicates the power meter supports measurement.

Bit [1] – indicates the power meter supports trip points.

Bit [2] – indicates the power meter supports hardware enforced limit.

Bit [3]– indicates that the power meter supports notifications when the
hardware limit is enforced.

Bit [7:4] – reserved.

Bit [8] – indicates the power meter only reports data when discharging. This
applies to power meters that are battery-type devices.

 Bit [9:31] Reserved

Measurement
Unit

Integer
(DWORD)

The units used by the power meter to report measurement and configure
trip points and hardware enforced limits.

0x00000000 – indicates measurements are reported in [mW].

Measurement
Type

Integer
(DWORD)

The type of measurement the power meter is measuring. A power meter
may measure either input or output power, not both.

0x00000000 – indicates the power meter is measuring input power.

0x00000001 – indicates the power meter is measuring output power.

Measurement
Accuracy

Integer
(DWORD)

The accuracy of the power meter device, in thousandth of a percent. (0% -
100.000%) For example, The value 80000 would mean 80% accuracy.

Measurement
Sampling
Time

Integer
(DWORD)

The sampling time of the power meter device, in milliseconds. This is the
minimum amount of time at which the measurement value will change. In
other words, the same reading will be returned by _PMM if OSPM makes 2
consecutive reads within a measurement sampling time. 0xFFFFFFFF is
returned if the information is unavailable.

Minimum
Averaging
Interval

Integer
(DWORD)

This is the minimum length of time (in milliseconds) within which the power
meter firmware is capable of averaging the measurements within it.
UEFI Forum, Inc. January 2019 Page 699

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
10.4.2 _PTP (Power Trip Points)

This object sets the upper and lower trip points for the power meter device. These 2 trip points define a
hysteresis range for which the OSPM can tolerate without re-reading the current measurement via
_PMM. When the power meter draw goes outside the range, a Notify(power_meter, 0x81) should be
sent to notify the OSPM, at which time the OSPM should re-evaluate _PMM and also set a pair of trip
points around the newest reading. If the latest value measured by the power meter is outside of the
range defined by the trip points by the time _PTP is called, a result code is returned.

Arguments: (2)

Arg0 (Integer) : Upper Trip Point

Arg1 (Integer) : Lower Trip Point

Return Value:

An Integer containing the status of the operation:

Maximum
Averaging
Interval

Integer
(DWORD)

This is the maximum length of time (in milliseconds) within which the power
meter firmware is capable of averaging the measurements within it.

Hysteresis
Margin

Integer
(DWORD)

The margin used by the BMC for hysteresis, in the unit of [Measurement
Unit / Measurement Sampling Time]. This indicates the margin built around
the trip points and hardware limit notifications. This margin prevents
unnecessary notifies to the OSPM when the reading is fluctuating very close
to one of the trip points or the hardware limit. 0xFFFFFFFF is returned if the
information is unavailable.

Hardware
Limit Is
Configurable

Integer
(DWORD)

This boolean value represents whether hardware enforced limit is
configurable by the OSPM.

0x00000000 (zeros) – indicates the limit is read-only.

0xFFFFFFFF (ones) – indicates the limit is writable.

Minimum
Configurable
Hardware
Limit

Integer
(DWORD)

The minimum value that can be configured into the hardware enforced
limit, expressed in the units as specified by Measurement Unit.

Maximum
Configurable
Hardware
Limit

Integer
(DWORD)

The maximum value that can be configured into the hardware enforced
limit, expressed in the units as specified by Measurement Unit.

Model
Number

String
(ASCIIZ)

OEM-specific Power meter model number. This element is optional and an
empty string (a null character) should be used if this is not supported.

Serial Number String
(ASCIIZ)

OEM-specific Power meter serial number. This element is optional and an
empty string (a null character) should be used if this is not supported.

OEM
Information

String
(ASCIIZ)

OEM-specific information that the UI uses to display about the Power meter
device. This element is optional and a NULL string should be used if this is
not supported.

Element Object Type Description
UEFI Forum, Inc. January 2019 Page 700

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
0x00000000 – Success

0x00000001 – Failure to set trip points because latest measurement is out of range

0x00000002 – Failure to set trip points due to hardware timeout

0x00000003 – Failure to set trip points due to unknown hardware error

0x00000004 – 0xFFFFFFFF - Reserved

10.4.3 _PMM (Power Meter Measurement)

This object returns the latest measurement reading from the power meter device. The value returned
represents real power (i.e. power factor is included in the value). In most cases this is a rolling average
value that is computed by the firmware over an averaging interval. On systems where this interval can be
configured, the _PAI object should be present under the power meter device (see Section 10.4.4).

Arguments:

None

Return Value:

An Integer is returned to represent the latest measurement reading from the power meter device. This
value should be in the unit specified in the power meter capabilities (typically in milliwatts), and is
required to be the RMS value if the power meter is measuring in AC. If an error occurs while obtaining the
meter reading or if the value is not available then an Integer with all bits set is returned.

10.4.4 _PAI (Power Averaging Interval)

This object sets the averaging interval used by the power meter. The averaging interval is the total time
the power meter will take instantaneous measurement samples for, before averaging them to produce
the average power measurement as returned by _PMM. If the platform changes the averaging interval
independently from OSPM, the platform must issue a Notify(power_meter, 0x84) to indicate the change
to the OSPM. Upon receiving the notification, OSPM evaluates the _GAI object to read the new averaging
interval.

Arguments: (1)

Arg0 – An Integer that represents the desired value OSPM chose to be the power averaging interval, in
milliseconds. This value needs to be within the minimum and maximum averaging interval as specified by
_PMC. Otherwise, a failure result code is returned.

Return Value:

An Integer containing the status of the operation:

0x00000000 – Success

0x00000001 – Failure to set power averaging interval because it is out of range

0x00000002 – Failure to set power averaging interval due to hardware timeout

0x00000003 – Failure to set power averaging interval due to unknown hardware error

0x00000004 – 0xFFFFFFFF - Reserved
UEFI Forum, Inc. January 2019 Page 701

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
10.4.5 _GAI (Get Averaging Interval)

This object gets the averaging interval used by the power meter. The averaging interval is the total time
the power meter will take instantaneous measurement samples for, before averaging them to produce
the average power measurement as returned by _PMM. If the platform changes the averaging interval
independently from OSPM, the platform must issue a Notify(power_meter, 0x84) to indicate the change
to the OSPM. Upon receiving the notification, OSPM evaluates the _GAI object to read the new averaging
interval.

Arguments:

None

Return Value:

An Integer containing the currently configured power averaging interval, in milliseconds. If an error
occurs while obtaining the averaging interval or if the value is not available then an Integer with all bits
set is returned.

10.4.6 _SHL (Set Hardware Limit)

This object sets the hardware limit enforced by the power meter. This limit, if supported, will be enforced
by the circuitry on the platform hardware, to the best of its effort. This value is typically also configurable
via other out-of-band management mechanism. When the enforcement happens, the platform should
send a Notify(power_meter, 0x83) to the OSPM.

Arguments: (1)

Arg0 – An Integer value that represent the desired value OSPM chose as the hardware enforced limit of
this power meter, in the unit specified in _PMC. This value needs to be within the minimum and
maximum hardware limit as specified by _PMC. Otherwise, a failure result code is returned.

Return Value:

An Integer containing the status of the operation:

0x00000000 – Success

0x00000001 – Failure to set hardware limit because it is out of range

0x00000002 – Failure to set hardware limit due to the hardware timeout

0x00000003 – Failure to set hardware limit due to unknown hardware error

0x00000004 – 0xFFFFFFFF - Reserved

10.4.7 _GHL (Get Hardware Limit)

This object gets the hardware limit enforced by the power meter. This limit can be changed by either the
OSPM or by the platform through some out-of-band mechanism. When this value is changed, a
Notify(power_meter, 0x82) should be sent to notify the OSPM to re-read the hardware limit. If an error
occurs while obtaining the hardware limit or if the value is not available then an Integer with all bits set is
returned.

Arguments:

None
UEFI Forum, Inc. January 2019 Page 702

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
Return Value:

An Integer is returned to represent the currently configured hardware enforced limit of the power meter,
in the unit specified in _PMC.

10.4.8 _PMD (Power Metered Devices)

This object evaluates to a package of device names. Each name corresponds to a device in the ACPI
namespace that is being measured by the power meter device. The measurement reported by the power
meter is roughly correspondent to the total power draw of all the devices returned.

If this control method is present, the package needs to contain at least 1 device. On a system that
supports power metering, a system power meter that measures the power draw of the entire system
should always be present and have a _PMD that contains _SB as its sole entry.

Arguments:

None

Return Value:

A variable-length Package consisting of references to devices being measured by the power meter.

Package {
 Power Meter[0] // NamePath
 Power Meter[1] // NamePath
 ...
 Power Meter[n] // NamePath
}

10.5 Wireless Power Controllers

FCC regulations dictate reduced output power levels for wireless devices in the presence of a human
body. To get platform certifications and for regulatory compliance, wireless devices put static transmit
power limit data in device memory (either EEPROM or flash) and apply it on a per band/country basis.
FCC regulations allow devices to dynamically reduce Effective Isotropically Radiated Power (EIRP) when in
close proximity to a human body to mitigate its adverse effects.

On current platforms, a dedicated Specific Absorption Rate (SAR) sensor for each wireless device is used
for notifying the wireless device that the system is in close proximity to a human body. This solution
requires multiple SAR sensors for systems that have multiple wireless devices, and doesn’t provide any
mechanism for the wireless devices to collaborate for better efficiency.

The idea is to create a well-defined Wireless Power Calibration ACPI device with an ACPI event which can
constitute the basis for notifying the Operating System (OS) and all other wireless devices on a given
system. Wireless Power Calibration device event can be triggered from any proximity sensor device or by
wireless device to mitigate interference from other wireless devices as well. The OS can then map specific
notifications to each wireless device to invoke specific actions.

1. Define Plug and play ID for Wireless Power Calibration device(ACPI0014)

Wireless Power Calibration Device. This device can have a control method to sense proximity
using platform defined sensor such as SAR, depth camera, touch device etc.
UEFI Forum, Inc. January 2019 Page 703

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
Device can also have control method to broadcast other wireless device notifying the user
proximity change or in band interference.

2. Define a notification value for the device
Notifying the Wireless Power Calibration device with specific ACPI notify event id will enable
wireless device or platform drivers to notify if EIRP needs to be regulated.

Table 10-339 Wireless Power Calibration

Object Description

_WPC Indicate the WPC device current operational state.[Required]

_WPP Evaluate the WPC object and return the status of last operational state.[Optional]

10.5.1 Wireless Power Calibration Device

The following sections illustrate the operation and definition of the control method based Wireless
Power Calibration Device (WPC).

10.5.2 Wireless Power Calibration (_WPC)

The wireless power calibration can support the _WPC methods per participant device to calibrate power
and notify the participant device as the case me be. (i.e. Either direct proximity based power calibration
or notification for interference mitigation).

The _WPC method of the WPC device functions as a notifier to the participant wireless devices and
indicates either the messaging is for interference mitigation or direct power calibration.

Return Value:

0x00 – Direct Proximity Power Control

0x01 – Interference Mitigation Control

0x02 – Operational Band Change Control

0xFF – Reserved

10.5.3 Wireless Power Polling (_WPP)

This optional method evaluates the recommended polling frequency (in tenths of seconds) for this
Wireless Power Calibration device. A value of zero – or the absence of this object when other WPC
objects are defined – indicates that the OS does not need to poll the WPC device in order to detect
meaningful changes in Wireless power calibration (the hardware is capable of generating asynchronous
notifications).

Argument:

None

Return:

An Integer containing the recommended polling frequency in tenths of seconds. A value of zero indicates
that polling is not required.
UEFI Forum, Inc. January 2019 Page 704

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
10.6 Wireless Power Calibration Event

To communicate the changes in wireless power transmission or interference mitigation to the OSPM.
AML code should issue a Notify (wpc_device, 0xXX) whenever a change in power calibration or
interference mitigation is required to happen. The OS receives this notification and may call the _WPD
control method to determine the notification action associated with it. Event generated may contain the
information related to associate action that recipient devices need to take.

WPD notification should occur whenever a change in power transmission needed either as a result of
human proximity or interference mitigation. The granularity of the interference mitigation and power
transmission can be address as per the operational device characteristics.

The WPC notification for interference mitigation will generate pairwise event among participant devices
or multicast is if the interference is observed in all the bands of operations involving the wireless devices.

Table 10-340 Wireless Power Control Notification Values:

Hex Value Description

0x80 Proximity based power calibration

0x81 Interference mitigation between Wifi (802.11) and Bluetooth devices

0x82-85 Reserved for Wifi/BT interference mitigation for later use

0x86 Interference mitigation between Wifi (802.11) and LTE/3GPP bands

0x87-90 Reserved for Wifi/LTE/3GPP interference mitigation for later use

0x91 Interference mitigation between Bluetooth and LTE/3GPP devices

0x92-0x95 Reserved for Bluetooth and LTE/3GPP interference mitigation for later use

10.7 Example: Power Source and Power Meter Namespace

Figure 10-60 below shows the ACPI namespace for a computer with a power meter, AC adapter and two
batteries associated with a docking station which itself has an AC adapter.
UEFI Forum, Inc. January 2019 Page 705

ACPI Specification, Version 6.3 Power Source and Power Meter Devices
Figure 10-60 Power Meter and Power Source/Docking Namespace Example

PM

d

\ (Root)

_SB

PMT1

_PMC

_PMM

_GAI

_PMD

_PAI

_PTP

_GHL

_SHL

Power Consumer List

d

d

d

_BTP

_PCL

_BST

_BIX

_STA

_HID

_BTP

_PCL

_BST

_BIX

PCI0

DOCK

_PSR

ADP2

_PCL

BAT1

d

_STA

_HID

BAT2

d

_PCL

_PSR

ADP1

Power Source Type

Power Source Type

Power Consumer List

AC Adapter #1

Battery #2

Plug and Play ID for BAT2

Battery 2 Device Status

Battery 2 Information

Battery 2 Status

Battery 2 Trip Point

Power Consumer List

PCI Root Bridge #0

Docking Station

AC Adapter #2

Battery #1

Plug and Play ID for BAT1

Battery 1 Device Status

Battery 1 Information

Battery 1 Status

Battery 1 Trip Point

Power Consumer List

Set Hardware Limit

Get Hardware Limit

Power Meter Capabilities
Power Metered Device List

System Bus

ACPI Namespace Root

Power Meter Measurement

Power Meter #1

Power Averaging Interval

Power Trip Points

PAI
UEFI Forum, Inc. January 2019 Page 706

ACPI Specification, Version 6.3 Thermal Management
11 Thermal Management

This section describes the ACPI thermal model and specifies the ACPI Namespace objects OSPM uses for
thermal management of the platform.

11.1 Thermal Control

ACPI defines interfaces that allow OSPM to be proactive in its system cooling policies. With OSPM in
control of the operating environment, cooling decisions can be made based on the system’s application
load, the user’s preference towards performance or energy conservation, and thermal heuristics.
Graceful shutdown of devices or the entire system at critical heat levels becomes possible as well. The
following sections describe the ACPI thermal model and the ACPI Namespace objects available to OSPM
to apply platform thermal management policy.

The ACPI thermal model is based around conceptual platform regions called thermal zones that physically
contain devices, thermal sensors, and cooling controls. Generally speaking, the entire platform is one
large thermal zone, but the platform can be partitioned into several ACPI thermal zones if necessary to
enable optimal thermal management.

ACPI Thermal zones are a logical collection of interfaces to temperature sensors, trip points, thermal
property information, and thermal controls. Thermal zone interfaces apply either thermal zone wide or
to specific devices, including processors, contained within the thermal zone. ACPI defines namespace
objects that provide the thermal zone-wide interfaces in Section 11.3, “Thermal Objects”. A subset of
these objects may also be defined under devices. OS implementations compatible with the ACPI 3.0
thermal model, interface with these objects but also support OS native device driver interfaces that
perform similar functions at the device level. This allows the integration of devices with embedded
thermal sensors and controls, perhaps not accessible by AML, to participate in the ACPI thermal model
through their inclusion in the ACPI thermal zone. OSPM is responsible for applying an appropriate
thermal policy when a thermal zone contains both thermal objects and native OS device driver interfaces
for thermal control.

Some devices in a thermal zone may be comparatively large producers of thermal load in relation to
other devices in the thermal zone. Devices may also have varying degrees of thermal sensitivity. For
example, some devices may tolerate operation at a significantly higher temperature than other devices.
As such, the platform can provide OSPM with information about the platform’s device topology and the
resulting influence of one device’s thermal load generation on another device. This information must be
comprehended by OSPM for it to achieve optimal thermal management through the application of
cooling controls.

ACPI expects all temperatures to be represented in tenths of degrees. This resolution is deemed
sufficient to enable OSPM to perform robust platform thermal management.
UEFI Forum, Inc. January 2019 Page 707

ACPI Specification, Version 6.3 Thermal Management
T

Processor

T

Device

T

Represents a Temperature Sensor

Thermal Zone-wide active
cooling device (Fan)

Device with embedded temperature
sensor and local active cooling device

(Fan)

T

 Thermal Zone-wide
temperature sensor

Processor with embedded
temperature sensor

Thermal Zone

Figure 11-61 ACPI Thermal Zone

11.1.1 Active, Passive, and Critical Policies

There are three cooling policies that OSPM uses to control the thermal state of the hardware. The
policies are active, passive and critical.

• Active Cooling. OSPM takes a direct action such as turning on one or more fans. Applying active
cooling controls typically consume power and produce some amount of noise, but are able to
cool a thermal zone without limiting system performance. Active cooling temperature trip
points declare the temperature thresholds OSPM uses to decide when to start or stop different
active cooling devices.

• Passive Cooling. OSPM reduces the power consumption of devices to reduce the temperature
of a thermal zone, such as slowing (throttling) the processor clock. Applying passive cooling
controls typically produces no user-noticeable noise. Passive cooling temperature trip points
specify the temperature thresholds where OSPM will start or stop passive cooling.

• Critical Trip Points. These are threshold temperatures at which OSPM performs an orderly, but
critical, shutdown of a device or the entire system. The _HOT object declares the critical
temperature at which OSPM may choose to transition the system into the S4 sleeping state, if
supported, The _CRT object declares the critical temperature at which OSPM must perform a
critical shutdown.
UEFI Forum, Inc. January 2019 Page 708

ACPI Specification, Version 6.3 Thermal Management
When a thermal zone appears in the ACPI Namespace or when a new device becomes a member of a
thermal zone, OSPM retrieves the temperature thresholds (trip points) at which it executes a cooling
policy. When OSPM receives a temperature change notification, it evaluates the thermal zone’s
temperature interfaces to retrieve current temperature values. OSPM compares the current temperature
values against the temperature thresholds. If any temperature is greater than or equal to a
corresponding active trip point then OSPM will perform active cooling . If any temperature is greater than
or equal to a corresponding passive trip point then OSPM will perform passive cooling. If the _TMP object
returns a value greater than or equal to the value returned by the _HOT object then OSPM may choose to
transition the system into the S4 sleeping state, if supported. If the _TMP object returns a value greater
than or equal to the value returned by the _CRT object then OSPM must shut the system down.
Embedded Hot and Critical trip points may also be exposed by individual devices within a thermal zone.
Upon passing of these trip points, OSPM must decide whether to shut down the device or the entire
system based upon device criticality to system operation. OSPM must also evaluate the thermal zone’s
temperature interfaces when any thermal zone appears in the namespace (for example, during system
initialization) and must initiate a cooling policy as warranted independent of receipt of a temperature
change notification. This allows OSPM to cool systems containing a thermal zone whose temperature has
already exceeded temperature thresholds at initialization time.

An optimally designed system that uses several thresholds can notify OSPM of thermal increase or
decrease by raising an event every several degrees. This enables OSPM to anticipate thermal trends and
incorporate heuristics to better manage the system’s temperature.

To implement a preference towards performance or energy conservation, OSPM can request that the
platform change the priority of active cooling (performance) versus passive cooling (energy conservation/
silence) by evaluating the _SCP (Set Cooling Policy) object for the thermal zone or a corresponding OS-
specific interface to individual devices within a thermal zone.

11.1.2 Dynamically Changing Cooling Temperature Trip Points

The platform or its devices can change the active and passive cooling temperature trip points and notify
OSPM to reevaluate the trip point interfaces to establish the new policy threshold settings. The following
are the primary uses for this type of thermal notification:

• When OSPM changes the platform’s cooling policy from one cooling mode to another.
• When a swappable bay device is inserted or removed. A swappable bay is a slot that can

accommodate several different devices that have identical form factors, such as a CD-ROM
drive, disk drive, and so on. Many mobile PCs have this concept already in place.

• After the crossing of an active or passive trip point is signaled to implement hysteresis.

In each situation, OSPM must be notified to re-evaluate the thermal zone’s trip points via the AML code
execution of a Notify(thermal_zone, 0x81) statement or via an OS specific interface invoked by device
drivers for zone devices participating in the thermal model.

11.1.2.1 OSPM Change of Cooling Policy

When OSPM changes the platform’s cooling policy from one cooling mode to the other, the following
occurs:

1. OSPM notifies the platform of the new cooling mode by running the Set Cooling Policy (_SCP)
control method in all thermal zones and invoking the OS-specific Set Cooling Policy interface to
all participating devices in each thermal zone.
UEFI Forum, Inc. January 2019 Page 709

ACPI Specification, Version 6.3 Thermal Management
2. Thresholds are updated in the hardware and OSPM is notified of the change.

3. OSPM re-evaluates the active and passive cooling temperature trip points for the zone and all
devices in the zone to obtain the new temperature thresholds.

11.1.2.2 Resetting Cooling Temperatures to Adjust to Bay Device Insertion or Removal

The platform can adjust the thermal zone temperature to accommodate the maximum operating
temperature of a bay device as necessary. For example:

1. Hardware detects that a device was inserted into or removed from the bay, updates the
temperature thresholds, and then notifies OSPM of the thermal policy change and device
insertion events.

2. OSPM re-enumerates the devices and re-evaluates the active and passive cooling temperature
trip points.

11.1.2.3 Resetting Cooling Temperatures to Implement Hysteresis

An OEM can build hysteresis into platform thermal design by dynamically resetting cooling temperature
thresholds. For example:

1. When the temperature increases to the designated threshold, OSPM will turn on the
associated active cooling device or perform passive cooling.

2. The platform resets the threshold value to a lower temperature (to implement hysteresis) and
notifies OSPM of the change. Because of this new threshold value, the fan will be turned off at
a lower temperature than when it was turned on (therefore implementing a negative
hysteresis).

3. When the temperature hits the lower threshold value, OSPM will turn off the associated active
cooling device or cease passive cooling. The hardware will reset _ACx to its original value and
notify OSPM that the trip points have once again been altered.

11.1.3 Detecting Temperature Changes

The ability of the platform and its devices to asynchronously notify an ACPI-compatible OS of meaningful
changes in the thermal zone’s temperature is a highly desirable capability that relieves OSPM from
implementing a poll-based policy and generally results in a much more responsive and optimal thermal
policy implementation. Each notification instructs OSPM to evaluate whether a trip point has been
crossed and allows OSPM to anticipate temperature trends for the thermal zone.

It is recognized that much of the hardware used to implement thermal zone functionality today is not
capable of generating ACPI-visible notifications (SCIs) or only can do so with wide granularity (for
example, only when the temperature crosses the critical threshold). In these environments, OSPM must
poll the thermal zone's temperature periodically to implement an effective policy.

While ACPI specifies a mechanism that enables OSPM to poll thermal zone temperature, platform
reliance on thermal zone polling is strongly discouraged by this specification. OEMs should design
systems that asynchronously notify OSPM whenever a meaningful change in the zone’s temperature
occurs – relieving OSPM of the overhead associated with polling. In some cases, embedded controller
firmware can overcome limitations of existing thermal sensor capabilities to provide the desired
asynchronous notification.
UEFI Forum, Inc. January 2019 Page 710

ACPI Specification, Version 6.3 Thermal Management
Notice that the _TZP (thermal zone polling) object is used to indicate whether a thermal zone must be
polled by OSPM, and if so, a recommended polling frequency. See Section 11.4.26, “_TZP,” for more
information.

11.1.3.1 Temperature Change Notifications

Thermal zone-wide temperature sensor hardware that supports asynchronous temperature change
notifications does so using an SCI. The AML code that responds to this SCI must execute a
Notify(thermal_zone, 0x80) statement to inform OSPM that a meaningful change in temperature has
occurred. Alternatively, devices with embedded temperature sensors may signal their associated device
drivers and the drivers may use an OS-specific interface to signal OSPM’s thermal policy driver. A device
driver may also invoke a device specific control method that executes a Notify(thermal_zone, 0x80)
statement. When OSPM receives this thermal notification, it will evaluate the thermal zone’s
temperature interfaces to evaluate the current temperature values. OSPM will then compare the values
to the corresponding cooling policy trip point values (either zone-wide or device-specific). If the
temperature has crossed over any of the policy thresholds, then OSPM will actively or passively cool (or
stop cooling) the system, or shut the system down entirely.

Both the number and granularity of thermal zone trip points are OEM-specific. However, it is important
to notice that since OSPM can use heuristic knowledge to help cool the system, the more events OSPM
receives the better understanding it will have of the system’s thermal characteristic.

Figure 11-62 Thermal Events

For example, the simple thermal zone illustrated above includes hardware that will generate a
temperature change notification using a 5 Celsius granularity. All thresholds (_PSV, _AC1, _AC0, and
_CRT) exist within the monitored range and fall on 5 boundaries. This granularity is appropriate for this
system as it provides sufficient opportunity for OSPM to detect when a threshold is crossed as well as to
understand the thermal zone’s basic characteristics (temperature trends).

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25

Temperature Change
Events (SCIs)

_CRT: Critical shutdown threshold

_AC0: Fan high speed threshold

_AC1: Fan low speed threshold

_PSV: Passive cooling threshold
UEFI Forum, Inc. January 2019 Page 711

ACPI Specification, Version 6.3 Thermal Management
Note: The ACPI specification defines Kelvin as the standard unit for absolute temperature values. All
thermal zone objects must report temperatures in Kelvin when reporting absolute temperature
values. All figures and examples in this section of the specification use Celsius for reasons of

clarity. ACPI allows Kelvin to be declared in precision of 1/10th of a degree (for example, 310.5).
Kelvin is expressed as /K = TC + 273.2.

11.1.3.2 Polling

Temperature sensor hardware that is incapable of generating thermal change events, or that can do so
for only a few thresholds should inform OSPM to implement a poll-based policy. OSPM does this to
ensure that temperature changes across threshold boundaries are always detectable.

Polling can be done in conjunction with hardware notifications. For example, thermal zone hardware that
only supports a single threshold might be configured to use this threshold as the critical temperature trip
point. Assuming that hardware monitors the temperature at a finer granularity than OSPM would, this
environment has the benefit of being more responsive when the system is overheating.

A thermal zone advertises the need to be polled by OSPM via the _TZP object. See Section 11.4.26,
“_TZP,” for more information.

11.1.4 Active Cooling

Active cooling devices typically consume power and produce some amount of noise when enabled. These
devices attempt to cool a thermal zone through the removal of heat rather than limiting the performance
of a device to address an adverse thermal condition.

The active cooling interfaces in conjunction with the active cooling lists or the active cooling relationship
table (_ART) allow the platform to use an active device that offers varying degrees of cooling capability or
multiple cooling devices. The active cooling temperature trip points designate the temperature where
Active cooling is engaged or disengaged (depending upon the direction in which the temperature is
changing). For thermal zone-wide active cooling controls, the _ALx object evaluates to a list of devices
that actively cool the zone or the _ART object evaluates to describe the entire active cooling relationship
of various devices. For example:

• If a standard single-speed fan is the Active cooling device, then _AC0 evaluates to the
temperature where active cooling is engaged and the fan is listed in _AL0.

• If the zone uses two independently controlled single-speed fans to regulate the temperature,
then _AC0 will evaluate to the maximum cooling temperature using two fans, and _AC1 will
evaluate to the standard cooling temperature using one fan.

• If a zone has a single fan with a low speed and a high speed, the _AC0 will evaluate to the
temperature associated with running the fan at high-speed, and _AC1 will evaluate to the
temperature associated with running the fan at low speed. _AL0 and _AL1 will both point to
different device objects associated with the same physical fan, but control the fan at different
speeds.

• If the zone uses two independently controlled multiple-speed fans to regulate the
temperature, _AC0 of the target devices evaluates to the temperature at which OSPM will
engage fan devices described by the _ART object as needed up to a maximum capability level.

For ASL coding examples that illustrate these points, see Section 11.6, “Thermal Zone Interface
Requirements,” and Section 11.7, “Thermal Zone Examples.”
UEFI Forum, Inc. January 2019 Page 712

ACPI Specification, Version 6.3 Thermal Management
11.1.5 Passive Cooling

Passive cooling controls are able to cool a thermal zone without creating noise and without consuming
additional power (actually saving power), but do so by decreasing the performance of the devices in the
zone .

11.1.5.1 Processor Clock Throttling

The processor passive cooling threshold (_PSV) in conjunction with the processor list (_PSL) allows the
platform to indicate the temperature at which a passive control, for example clock throttling, will be
applied to the processor(s) residing in a given thermal zone. Unlike other cooling policies, during passive
cooling of processors OSPM may take the initiative to actively monitor the temperature in order to cool
the platform.

On an ACPI-compatible platform that properly implements CPU throttling, the temperature transitions
will be similar to the following figure, in a coolable environment, running a coolable workload:

C
P

U
 P

e
rfo

rm
a

n
ce

Time

T
e
m

p
e
ra

tu
re

P

_TSP (Sampling period)

100%

50%

Tt

Tn - 1

Tn

Figure 11-63 Temperature and CPU Performance Versus Time

The following equation should be used by OSPM to assess the optimum CPU performance change
necessary to lower the thermal zone’s temperature:

Equation #1:
P [%] = _TC1 * (Tn - Tn-1) + _TC2 * (Tn - Tt)

Where:

Tn = current temperature

Tt = target temperature (_PSV)

The two coefficients _TC1 and _TC2 and the sampling period _TSP are hardware-dependent constants
the OEM must supply to OSPM (for more information, see Section 11.4, “Thermal Objects”). The _TSP
UEFI Forum, Inc. January 2019 Page 713

ACPI Specification, Version 6.3 Thermal Management
object contains a time interval that OSPM uses to poll the hardware to sample the temperature.
Whenever the time value returned by _TSP has elapsed, OSPM will evaluate _TMP to sample the current
temperature (shown as Tn in the above equation). Then OSPM will use the sampled temperature and the
passive cooling temperature trip point (_PSV) (which is the target temperature Tt) to evaluate the
equation for P. The granularity of P is determined by the CPU duty width of the system.

Note: Equation #1 has an implied formula.

Equation #2:

Pn = Pn-1 + HW[- ?P] where Minimum% <= Pn <= 100%

For Equation #2, whenever Pn-1 + ?P lies outside the range Minimum0-100%, then Pn will be truncated
to Minimum0-100%. Minimum% is the _MTL limit, or 0% if _MTL is not defined. For hardware that cannot
assume all possible values of Pn between Minimum0 and 100%, a hardware specific mapping function
HW is used.

In addition, the hardware mapping function in Equation #2 should be interpreted as follows:

For absolute temperatures:

1. If the right hand side of Equation #1 is negative, HW[P] is rounded to the next available
higher setting of frequency.

2. If the right hand side of Equation #1 is positive, HW[P] is rounded to the next available lower
setting of frequency.

For relative temperatures:

1. If the right hand side of Equation #1 is positive, HW[P] is rounded to the next available higher
setting of frequency.

2. If the right hand side of Equation #1 is negative, HW[P] is rounded to the next available lower
setting of frequency.

• The calculated Pn becomes Pn-1 during the next sampling period.
• For more information about CPU throttling, see Section 8.1.1, Processor Power State C0.” A

detailed explanation of this thermal feedback equation is beyond the scope of this
specification.

11.1.6 Critical Shutdown

When the thermal zone-wide temperature sensor value reaches the threshold indicated by _CRT, OSPM
must immediately shut the system down. The system must disable the power either after the
temperature reaches some hardware-determined level above _CRT or after a predetermined time has
passed. Before disabling power, platform designers should incorporate some time that allows OSPM to
run its critical shutdown operation. There is no requirement for a minimum shutdown operation window
that commences immediately after the temperature reaches _CRT. This is because:

• Temperature might rise rapidly in some systems and slowly on others, depending on casing
design and environmental factors.

• Shutdown can take several minutes on a server and only a few seconds on a hand-held device.

Because of this indistinct discrepancy and the fact that a critical heat situation is a remarkably rare
occurrence, ACPI does not specify a target window for a safe shutdown. It is entirely up to the OEM to
build in a safe buffer that it sees fit for the target platform.
UEFI Forum, Inc. January 2019 Page 714

ACPI Specification, Version 6.3 Thermal Management
11.2 Cooling Preferences

A robust OSPM implementation provides the means for the end user to convey a preference (or a level of
preference) for either performance or energy conservation to OSPM. Allowing the end user to choose
this preference is most critical to mobile system users where maximizing system run-time on a battery
charge often has higher priority over realizing maximum system performance. For example, if a user is
taking notes on her PC in a quiet environment, such as a library or a corporate meeting, she may want the
system to emphasize passive cooling so that the system operates quietly, even at the cost of system
performance.

A user preference towards performance corresponds to the Active cooling mode while a user’s
preference towards energy conservation or quiet corresponds to the Passive cooling mode. ACPI defines
an interface to convey the cooling mode to the platform. Active cooling can be performed with minimal
OSPM thermal policy intervention. For example, the platform indicates through thermal zone parameters
that crossing a thermal trip point requires a fan to be turned on. Passive cooling requires OSPM thermal
policy to manipulate device interfaces that reduce performance to reduce thermal zone temperature.

Either cooling mode will be activated only when the thermal condition requires it. When the thermal
zone is at an optimal temperature level where it does not warrant any cooling, both modes result in a
system operating at its maximum potential with all fans turned off.

Thermal zones supporting the Set Cooling Policy interface allow the user to switch the system’s cooling
mode emphasis. See Section 11.4.13, “_SCP,” for more information.

Figure 11-64 Active and Passive Threshold Values

As illustrated in Figure 11-64, the platform must convey the value for each threshold to instruct OSPM to
initiate the cooling policies at the desired target temperatures. The platform can emphasize active or
passive cooling modes by assigning different threshold values. Generally, if _ACx is set lower than _PSV,
then the system emphasizes active cooling. Conversely, if _PSV is set lower than _ACx, then the emphasis
is placed on passive cooling.

For example, a thermal zone that includes a processor and one single-speed fan may use _PSV to indicate
the temperature value at which OSPM would enable passive cooling and _AC0 to indicate the
temperature at which the fan would be turned on. If the value of _PSV is less than _AC0 then the system

Active Cooling Thresholds (_ACx) Passive Cooling Threshold (_PSV)

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25
UEFI Forum, Inc. January 2019 Page 715

ACPI Specification, Version 6.3 Thermal Management
will favor passive cooling (for example, CPU clock throttling). On the other hand, if _AC0 is less than _PSV
the system will favor active cooling (in other words, using the fan). See Figure 11-65 below.

Figure 11-65 Cooling Preferences

The example on the left enables active cooling (for example, turn on a fan) when OSPM detects the
temperature has risen above 50. If for some reason the fan does not reduce the system temperature,
then at 75 OSPM will initiate passive cooling (for example, CPU throttling) while still running the fan. If
the temperature continues to climb, OSPM will quickly shut the system down when the temperature
reaches 90C. The example on the right is similar but the _AC0 and _PSV threshold values have been
swapped to emphasize passive cooling.

The ACPI thermal model allows flexibility in the thermal zone design. An OEM that needs a less elaborate
thermal implementation may consider using only a single threshold (for example, _CRT). Complex
thermal implementations can be modeled using multiple active cooling thresholds and devices, or
through the use of additional thermal zones.

11.2.1 Evaluating Thermal Device Lists

The Notify(thermal_zone, 0x82) statement is used to inform OSPM that a change has been made to the
thermal zone device lists. This thermal event instructs OSPM to re-evaluate the _ALx, _PSL, and _TZD
objects.

For example, a system that supports the dynamic insertions of processors might issue this notification to
inform OSPM of changes to _PSL following the insertion or removal of a processor. OSPM would re-
evaluate all thermal device lists and adjust its policy accordingly.

Notice that this notification can be used with the Notify(thermal_zone, 0x81) statement to inform OSPM
to both re-evaluate all device lists and all thresholds.

_CRT

_PSV

_AC0

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25

Active Cooling
Preference

_CRT

_AC0

_PSV

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25

Passive Cooling
Preference
UEFI Forum, Inc. January 2019 Page 716

ACPI Specification, Version 6.3 Thermal Management
Alternatively, devices may include the _TZM (Thermal Zone Member) object their device scope to convey
their thermal zone association to OSPM. Section 11.4.25, “_TZM (Thermal Zone Member)”, for more
information.

11.2.2 Evaluating Device Thermal Relationship Information

The Notify(thermal_zone, 0x83) statement is used to inform OSPM that a change has been made to the
thermal relationship information. This thermal event instructs OSPM to re-evaluate the _TRT and _ART
objects. The thermal influence between devices may change when active cooling moves air across device
packages as compared to when only passive cooling controls are applied. Similarly, the active cooling
relationship may change as various fans are engaged to actively cool a platform or if user preferences
change.

11.2.3Fan Device Notifications

Notify events of type 0x80 will cause OSPM to evaluate the _FST object to evaluate the fan’s current
speed.

11.3 Fan Device

ACPI 1.0 defined a simple fan device that is assumed to be in operation when it is in the D0 state. Thermal
zones reference fan device(s) as being responsible primarily for cooling within that zone. Notice that
multiple fan devices can be present for any one thermal zone. They might be actual different fans, or they
might be used to implement one fan of multiple speeds (for example, by turning both “fans” on the one
fan will run full speed).

ACPI 4.0 defines additional fan device interface objects enabling OSPM to perform more robust active
cooling thermal control. These objects are summarized in Table 11-341. OSPM requires that all of the
objects listed in Table 11-341 be defined under a fan device to enable advanced active cooling control.
The absence of any of these objects causes OSPM to perform ACPI 1.0 style simple fan control .

The Plug and Play ID of a fan device is PNP0C0B.

Table 11-341 Fan Specific Objects

Object Description

_FIF Returns fan device information.

_FPS Returns a list of supported fan performance states.

_FSL Control method that sets the fan device’s speed level (performance state).

_FST Returns current status information for a fan device.

While the Fan Device and its associated objects are optional, if the Fan Device is implemented by the
platform, all objects listed in Table 11-341 are required and must be provided.
UEFI Forum, Inc. January 2019 Page 717

ACPI Specification, Version 6.3 Thermal Management
11.3.1 Fan Objects

11.3.1.1 _FIF (Fan Information)

The optional _FIF object provides OSPM with fan device capability information.

Arguments:

None

Return Value:

A Package containing the fan device parameters as described in Table 11-342 below

_FIF evaluation returns a package of the following format:

Package (){
 Revision, // Integer
 FineGrainControl, // Integer Boolean
 StepSize // Integer DWORD
 LowSpeedNotificationSupport // Integer Boolean
}

Table 11-342 FIF Package Details

Field Format Description

Revision Integer Current revision is: 0

Fine Grain
Control

Integer
(Boolean)

A non zero value in this field indicates OSPM may evaluate the fan device’s
_FSL object with a Level argument value in the range of 0-100, which
represents a percentage of maximum speed. A zero value in this field
indicates that OSPM may evaluate the fan device’s _FSL object with a Level
argument value that is a Control field value from a package in the _FPS
object’s package list only.

Step Size Integer
(DWORD)

The recommended minimum step size in percentage points to be used
when OSPM performs fine-grained fan speed control. OSPM may utilize
the value of this field if the FineGrainControl field is non-zero the value in
this field is between 1 and 9.

Low Speed
Notification
Support

Integer
(Boolean)

A non zero value in this field indicates that the platform will issue a Notify
(0x80) to the fan device if a low (errant) fan speed is detected.

If a fan device supports fine-grained control, OSPM may evaluate a fan device’s _FSL object with any
Level argument value that is less than or equal to the Control field value specified in the package of the
_FPS object’s package list that corresponds to the active cooling trip point that has been exceeded. This
capability provides OSPM access to one hundred fan speed settings thus enabling fine-grained fan speed
control. The platform uses the StepSize field to help OSPM optimize its fan level selection policy by fine-
grained fan speed control. The platform uses the StepSize field to help OSPM optimize its fan level
selection policy by indicating recommended increments in the fan speed level value that are appropriate
for the fan when one percent increments are not optimal. In the event OSPM’s incremental selections of
Level using the StepSize field value do not sum to 100%, OSPM may select an appropriate ending Level
increment to reach 100%. OSPM should use the same residual step value first when reducing Level.
UEFI Forum, Inc. January 2019 Page 718

ACPI Specification, Version 6.3 Thermal Management
11.3.1.2 _FPS (Fan Performance States)

The optional _FPS object evaluates to a variable-length package containing a list of packages that
describe the fan device’s performance states. A temperature reading above an active cooling trip point
defined by an _ACx object in a thermal zone or above a native active cooling trip point of a device within
the thermal zone causes OSPM thermal control to engage the appropriate corresponding fan
performance state from the list of fan performance states described by the _FPS object if the fan device is
present in the corresponding _ALx device list or if an entry exists for the fan and trip point in the active
cooling relationship table (_ART).

OSPM assumes a linear relationship for the acoustic impact and power consumption values between
successive entries in the fan performance state list. Notice that the acoustic impact measurement unit
(Decibels) is inherently non-linear. As such, the platform should populate _FPS entries as necessary to
enable OSPM to achieve optimal results.

Arguments:

None

Return Value:

A variable-length Package containing a Revision ID and a list of Packages that describe the fan device’s
performance states as described in Table 11-343 below.

Return Value Information

Package {
 Revision, // Integer - Current revision is: 0
 FanPState[0], // Package
 ….
 FanPState[n] // Package
}

Each FanPState sub-Package contains the elements described below:

Package () // Fan P-State
{
 Control, // Integer DWORD
 TripPoint, // Integer DWORD
 Speed, // Integer DWORD
 NoiseLevel, // Integer DWORD
 Power // Integer DWORD
}

UEFI Forum, Inc. January 2019 Page 719

ACPI Specification, Version 6.3 Thermal Management
Table 11-343 FPS FanPstate Package Details

Field Format Description

Control Integer
(DWORD)

Indicates the value to be used to set the fan speed to a specific level using the
_FSL object.

If the fan device supports fine-grained control as indicated by the _FIF object,
this value is a percentage (0-100) of maximum speed level.

If the fan device does not support fine-grained control, this field is an opaque
value that OSPM must simply use in its evaluation of the _FSL object to set
the level to this performance state.

TripPoint Integer
(DWORD)

0-9: The active cooling trip point number that corresponds to this
performance state. If the _ART object is defined, OSPM may optionally use
information provided by the _ART object and _FPS objects to select
alternative fan performance states. Only one entry per unique trip point
number is allowed in the _FPS.

0x0A- 0xFFFFFFFE: Reserved

0x0FFFFFFFF: Indicates that this performance state does not correspond with
a specific active cooling trip point.

Speed Integer
(DWORD)

Indicates the speed of the fan in revolutions per minute in this performance
state.

NoiseLevel Integer
(DWORD)

This optional field indicates the audible noise emitted by the fan in this
performance state. The value represents the noise in 10ths of decibels. For
example, if the fan emits noise at 28.3dB in this performance state, the value
of this field would be 283. A value of 0xFFFFFFFF indicates that this field is not
populated.

Power Integer
(DWORD)

This optional field indicates the power consumption (in milliwatts) of the fan
in this performance state. For example, if the fan consumes .5W in this
performance state, the value of this field would be 500. A value of 0xFFFFFFFF
indicates that this field is not populated.

11.3.1.3 FSL (Fan Set Level)

The optional _FSL object is a control method that OSPM evaluates to set a fan device’s speed
(performance state) to a specific level

Arguments: (1)

Arg0 – Level (Integer): conveys to the platform the fan speed level to be set.

Return Value:

None

Argument Information
Arg0: Level. If the fan supports fine-grained control, Level is a percentage of maximum level (0-100) that
the platform is to engage the fan. If the fan does not support fine-grained control, Level is a Control field
value from a package in the _FPS object’s package list. A Level value of zero causes the platform to turn
off the fan.
UEFI Forum, Inc. January 2019 Page 720

ACPI Specification, Version 6.3 Thermal Management
11.3.1.4 _FST (Fan Status)

The optional _FST object provides status information for the fan device.

Arguments:

None

Return Value:

A Package containing fan device status information as described in Table 11-344 below

_FST evaluation returns a package of the following format:

Package (){
 Revision, // Integer
 Control, // Integer DWORD
 Speed // Integer DWORD
}

Table 11-344 FST Package Details

Field Format Description

Revision Integer Current revision is: 0

Control Integer
(DWORD)

The current control value used to operate the Fan. If the fan is not operating
Control will be zero. If the fan is operating, Control is the Level argument
passed in the evaluation of the _FSL object.

Speed Integer
(DWORD)

The current fan speed in revolutions per minute at which the fan is rotating. A
value of 0xFFFFFFFF indicates that the fan does not support speed reporting.

11.4 Thermal Objects

Objects related to thermal management are listed in the following table.

Table 11-345 Thermal Objects

Object Description

_ACx Returns active cooling policy threshold values in tenths of degrees.

_ALx List of active cooling device objects.

_ART Table of values that convey the Active Cooling Relationship between devices

_CRT Returns critical trip point in tenths of degrees where OSPM must perform a critical shutdown.

_HOT Returns critical trip point in tenths of degrees where OSPM may choose to transition the system
into S4.

_MTL Returns the minimum throttle limit of a zone, when defined under a thermal zone. T

_NTT Returns the temperature change threshold for devices containing native temperature sensors
to cause evaluation of the _TPT object

_PSL List of processor device objects for clock throttling.
UEFI Forum, Inc. January 2019 Page 721

ACPI Specification, Version 6.3 Thermal Management
With the exception of _TPT, _TST, and the _TZM objects, the objects described in the following sections
may exist under a thermal zone. Devices with embedded thermal sensors and controls may contain static
cooling temperature trip points or dynamic cooling temperature trip points that must be programmed by
the device’s driver. In this case, thermal objects defined under a device serve to convey the platform
specific values for these settings to the devices driver.

11.4.1 _ACx (Active Cooling)

This optional object, if present under a thermal zone, returns the temperature trip point at which OSPM
must start or stop Active cooling, where x is a value between 0 and 9 that designates multiple active
cooling levels of the thermal zone. If the Active cooling device has one cooling level (that is, “on”) then
that cooling level must be defined as _AC0. If the cooling device has two levels of capability, such as a
high fan speed and a low fan speed, then they must be defined as _AC0 and _AC1 respectively. The
smaller the value of x, the greater the cooling strength _ACx represents. In the above example, _AC0
represents the greater level of cooling (the faster fan speed) and _AC1 represents the lesser level of
cooling (the slower fan speed). For every _ACx method, there must be a matching _ALx object or a
corresponding entry in an _ART object’s active cooling relationship list.

If this object it present under a device, the device’s driver evaluates this object to determine the device’s
corresponding active cooling temperature trip point. This value may then be used by the device’s driver
to program an internal device temperature sensor trip point. When this object is present under a device,
the device must contain a native OS device driver interface supporting a corresponding active cooling

_PSV Returns the passive cooling policy threshold value in tenths of degrees.

_RTV Conveys whether temperatures are expressed in terms of absolute or relative values.

_SCP Sets platform cooling policy (active or passive).

_STR String name for this thermal zone.

_TC1 Thermal constant for passive cooling.

_TC2 Thermal constant for passive cooling.

_TFP Thermal fast sampling period for Passive cooling in milliseconds.

_TMP Returns the thermal zone’s current temperature in tenths of degrees.

_TPT Conveys the temperature of a devices internal temperature sensor to the platform when a
temperature trip point is crossed or a meaningful change in temperature occurs.

_TRT Table of values that convey the Thermal Relationship between devices

_TSN Returns a reference to the thermal sensor device used to monitor the temperature of the
thermal zone (when defined under a thermal zone).

_TSP Thermal sampling period for Passive cooling in tenths of seconds.

_TST Conveys the minimum separation for a devices’ programmable temperature trip points.

_TZD List of devices whose temperature is measured by this thermal zone.

_TZM Returns the thermal zone for which a device is a member.

_TZP Thermal zone polling frequency in tenths of seconds.

Object Description
UEFI Forum, Inc. January 2019 Page 722

ACPI Specification, Version 6.3 Thermal Management
control, a matching _ALx object under the thermal zone of which the device is a member must exist, or a
corresponding entry in an _ART object’s active cooling relationship list must.

Arguments:

None

Return Value:

An Integer containing the active cooling temperature threshold in tenths of degrees Kelvin

The return value is an integer that represents tenths of degrees Kelvin. For example, 300.0K is
represented by the integer 3000.

11.4.2 _ALx (Active List)

This object is defined under a thermal zone and evaluates to a list of Active cooling devices to be turned
on when the corresponding _ACx temperature threshold is exceeded. For example, these devices could
be fans.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to active cooling devices

The return value is a package consisting of references to all active cooling devices that should be engaged
when the associated active cooling threshold (_ACx) is exceeded.

When the returned package consists of references to an active cooling device that is a fan device and the
fan device implements _FPS and _FSL objects, OSPM activates the identified fan at a capability level
matching the level identified by this object. For example, if the system has a fan that implements _FPS
object with 5 levels, and if _AL3 is evaluated by the OSPM causing it to return this fan’s reference, then
the fan is activated by evaluating _FSL with the value from the Control field of an _FPS entry whose
TripPoint field value equals 3.

If a thermal zone has the _ART object defined, then it is not necessary to have any _ALx objects
implemented.

Note: If a thermal zone has _ART object defined as well as _ALx defined, the OSPM ignores _ALx objects
and uses _ART exclusively.

11.4.3 _ART (Active Cooling Relationship Table)

The optional _ART object evaluates to a variable-length package containing a list of packages each of
which describes the active cooling relationship between a device within a thermal zone and an active
cooling device. OSPM uses the combined information about the active cooling relationships of all devices
in the thermal zone to make active cooling policy decisions.

If _ART is implemented within a thermal zone, OSPM ignores all _ALx objects as _ART conveys a mapping
for each of the _ACx trip points to active cooling devices.
UEFI Forum, Inc. January 2019 Page 723

ACPI Specification, Version 6.3 Thermal Management
The platform can dynamically change the _ART object by notifying the thermal zone object with a Notify
code of 0x83, which will cause OSPM to re-evaluate both the _TRT and _ART objects. This allows the
platform to change the capability level mapping to various _ACx trip points dynamically at run time.

Arguments:

None

Return Value:

A variable-length Package containing a Revision ID and a list of Active Relationship Packages as described
below:

Return Value Information

Package {
 Revision, // Integer – Current revision is: 0
 ActiveRelationship[0] // Package
 ….
 ActiveRelationship[n] // Package
}

Each ActiveRelationship sub-Package contains the elements described below:

Package {
 SourceDevice, // Object Reference to a Fan Device Object
 TargetDevice, // Object Reference to a Device Object
 Weight, // Integer
 AC0MaxLevel, // Integer
 AC1MaxLevel, // Integer
 AC2MaxLevel, // Integer
 AC3MaxLevel, // Integer
 AC4MaxLevel, // Integer
 AC5MaxLevel, // Integer
 AC6MaxLevel, // Integer
 AC7MaxLevel, // Integer
 AC8MaxLevel, // Integer
 AC9MaxLevel // Integer
}

Table 11-346 Thermal Relationship Package Values

Element Object Type Description

SourceDevice Reference (to
a device)

The fan device that has an impact on the cooling of the device indicated by
TargetDevice.

TargetDevice Reference (to
a device)

The device that is impacted by the fan device indicated by SourceDevice.
UEFI Forum, Inc. January 2019 Page 724

ACPI Specification, Version 6.3 Thermal Management
Weight Integer Indicates the SourceDevice’s contribution to the platform’s TargetDevice
total cooling capability when the fans of all entries in the _ART with the same
target device are engaged at their highest (maximum capability)
performance state. This is represented as a percentage value (0-100).

AC0MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM may
engage on the SourceDevice when a temperature exceeds the _AC0 trip
point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not to be
engaged for the trip point.

AC1MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM may
engage on the SourceDevice when a temperature exceeds the _AC1 trip
point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not to be
engaged for the trip point.

AC2MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM may
engage on the SourceDevice when a temperature exceeds the _AC2 trip
point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not to be
engaged for the trip point.

AC3MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM may
engage on the SourceDevice when a temperature exceeds the _AC3 trip
point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not to be
engaged for the trip point.

AC4MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM may
engage on the SourceDevice when a temperature exceeds the _AC4 trip
point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not to be
engaged for the trip point.

AC5MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM may
engage on the SourceDevice when a temperature exceeds the _AC5 trip
point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not to be
engaged for the trip point.

AC6MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM may
engage on the SourceDevice when a temperature exceeds the _AC6 trip
point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not to be
engaged for the trip point.

Element Object Type Description
UEFI Forum, Inc. January 2019 Page 725

ACPI Specification, Version 6.3 Thermal Management
In the case multiple active cooling trip points have been exceeded and _ART entries indicate various
maximum limits for the same SourceDevice, OSPM may operate the SourceDevice up to the highest
ACxMaxLevel value indicated for all exceeded trip points.

11.4.4 _CRT (Critical Temperature)

This object, when defined under a thermal zone, returns the critical temperature at which OSPM must
shutdown the system. If this object it present under a device, the device’s driver evaluates this object to
determine the device’s critical cooling temperature trip point. This value may then be used by the
device’s driver to program an internal device temperature sensor trip point.

Arguments:

None

Return Value:

An Integer containing the critical temperature threshold in tenths of degrees Kelvin

The result is an integer value that represents the critical shutdown threshold in tenths of degrees. For
example, 300.0K is represented by the integer 3000.

11.4.5 _CR3 (Warm/Standby Temperature)

This object, when defined under a thermal zone, returns the critical temperature at which OSPM may
choose to transition the system into a low power state with a faster exit latency than S4 sleeping state
(e.g. S3, or an equivalent low power state if the LOW_POWER_S0_IDLE_CAPABLE FADT flag is set). The
platform vendor should define _CR3 to be sufficiently below _CRT so as to allow enough time to
transition the system into this low power state. It may be sufficient to define either _CR3 or _HOT
depending on the type and thermal characteristics of the specific thermal zone under consideration. If
this object it present under a device, the device’s driver evaluates this object to determine the device’s
warm/standby cooling temperature trip point. This value may then be used by the device’s driver to
program an internal device temperature sensor trip point.

AC7MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM may
engage on the SourceDevice when a temperature exceeds the _AC7 trip
point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not to be
engaged for the trip point.

AC8MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM may
engage on the SourceDevice when a temperature exceeds the _AC8 trip
point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not to be
engaged for the trip point.

AC9MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM may
engage on the SourceDevice when a temperature exceeds the _AC9 trip
point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not to be
engaged for the trip point.

Element Object Type Description
UEFI Forum, Inc. January 2019 Page 726

ACPI Specification, Version 6.3 Thermal Management
Arguments:

None

Return Value:

An Integer containing the critical temperature threshold in tenths of degrees Kelvin

The result is an integer value that represents the critical shutdown threshold in tenths of degrees. For
example, 300.0K is represented by the integer 3000.

11.4.6 _DTI (Device Temperature Indication)

This optional object may be present under a device and is evaluated by OSPM when the device’s native
(driver managed) temperature sensor has crossed a cooling temperature trip point or when a meaningful
change in temperature (as indicated by evaluation of the _NTT object) has occurred. OSPM evaluation of
the _DTI object enables the platform to take action as a result of these events. For example, the platform
may choose to implement fan control hysteresis based on the conveyed value or signal the revaluation of
the _TDL or _PDL objects.

Arguments: (1)

Arg0 – An Integer containing the current value of the temperature sensor (in tenths Kelvin)

Return Value:

None

11.4.7 _HOT (Hot Temperature)

This optional object, when defined under a thermal zone, returns the critical temperature at which OSPM
may choose to transition the system into the S4 sleeping state. The platform vendor should define _HOT
to be far enough below _CRT so as to allow OSPM enough time to transition the system into the S4
sleeping state. While dependent on the amount of installed memory, on typical platforms OSPM
implementations can transition the system into the S4 sleeping state in tens of seconds. If this object it
present under a device, the device’s driver evaluates this object to determine the device’s hot cooling
temperature trip point. This value may then be used by the device’s driver to program an internal device
temperature sensor trip point.

Arguments:

None

Return Value:

An Integer containing the critical temperature threshold in tenths of degrees Kelvin

The return value is an integer that represents the critical sleep threshold tenths of degrees Kelvin. For
example, 300.0K is represented by the integer 3000.

11.4.8 _MTL (Minimum Throttle Limit)

This object, when defined under a thermal zone, returns the minimum throttle limit of a zone. This will
determine how much a thermal zone limits the performance of its controlled devices. This value can be
used by OSPM to calculate the changes in performance limits it applies to the devices of the thermal
zone.
UEFI Forum, Inc. January 2019 Page 727

ACPI Specification, Version 6.3 Thermal Management
Arguments:

None

Return Value:

An Integer value with the current minimum throttle limit, expressed as a percentage

11.4.9 _NTT (Notification Temperature Threshold)

This optional object may be defined under devices containing native temperature sensors and evaluates
to the temperature change threshold for the device where the platform requires notification of the
change via evaluation of the _TPT object.

Arguments:

None

Return Value:

An Integer containing the temperature threshold in tenths of degrees Kelvin.

The return value is an integer that represents the amount of change in device temperature that is
meaningful to the platform and for which the platform requires notification via evaluation of the _TPT
object.

11.4.10 _PSL (Passive List)

This object is defined under a thermal zone and evaluates to a list of processor objects to be used for
passive cooling.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to processor objects

The return value is a package consisting of references to all processor objects that will be used for passive
cooling when the zone’s passive cooling threshold (_PSV) is exceeded.

11.4.11 _PSV (Passive)

This optional object, if present under a thermal zone, evaluates to the temperature at which OSPM must
activate passive cooling policy.

Arguments:

None

Return Value:

An Integer containing the passive cooling temperature threshold in tenths of degrees Kelvin

The return value is an integer that represents tenths of degrees Kelvin. For example, 300.0 Kelvin is
represented by 3000.
UEFI Forum, Inc. January 2019 Page 728

ACPI Specification, Version 6.3 Thermal Management
If this object it present under a device, the device’s driver evaluates this object to determine the device’s
corresponding passive cooling temperature trip point. This value may then be used by the device’s driver
to program an internal device temperature sensor trip point. When this object is present under a device,
the device must contain a native OS device driver interface supporting a passive cooling control.

11.4.12 _RTV (Relative Temperature Values)

This optional object may be present under a device or a thermal zone and is evaluated by OSPM to
determine whether the values returned by temperature trip point and current operating temperature
interfaces under the corresponding device or thermal zone represent absolute or relative temperature
values.

Arguments:

None

Return Value:

An Integer containing a relative versus absolute indicator

0 Temperatures are absolute

Other Temperatures are relative

The return value is an integer that indicates whether values returned by temperature trip point and
current operating temperature interfaces represent absolute or relative temperature values.

If the _RTV object is not present or is present and evaluates to zero then OSPM assumes that all values
returned by temperature trip point and current operating temperature interfaces under the device or
thermal zone represent absolute temperature values expressed in tenths of degrees Kelvin.

If the _RTV object is present and evaluates to a non zero value then all values returned by temperature
trip point and current operating temperature interfaces under the corresponding device or thermal zone
represent temperature values relative to a zero point that is defined as the maximum value of the
device’s or thermal zone’s critical cooling temperature trip point. In this case, temperature trip point and
current operating temperature interfaces return values in units that are tenths of degrees below the zero
point.

OSPM evaluates the _RTV object before evaluating any other temperature trip point or current operating
temperature interfaces.

11.4.13 _SCP (Set Cooling Policy)

This optional object is a control method that OSPM invokes to set the platform’s cooling mode policy
setting. The platform may use the evaluation of _SCP to reassign _ACx and _PSV temperature trip points
according to the mode or limits conveyed by OSPM. OSPM will automatically evaluate _ACx and _PSV
objects after executing _SCP. This object may exist under a thermal zone or a device.

Arguments: (3)

Arg0 – Mode An Integer containing the cooling mode policy code

Arg1 – AcousticLimit An Integer containing the acoustic limit

Arg2 – PowerLimit An Integer containing the power limit
UEFI Forum, Inc. January 2019 Page 729

ACPI Specification, Version 6.3 Thermal Management
Return Value:

None

Argument Information:
Mode – 0 = Active, 1 = Passive

Acoustic Limit – Specifies the maximum acceptable acoustic level that active cooling devices may
generate. Values are 1 to 5 where 1 means no acoustic tolerance and 5 means maximum
acoustic tolerance.

Power Limit – Specifies the maximum acceptable power level that active cooling devices may
consume. Values are from 1 to 5 where 1 means no power may be used to cool and 5 means
maximum power may be used to cool.

Example:
// Fan Control is defined as follows:
// Speed 1 (Fan is Off): Acoustic Limit 1, Power Limit 1, <= 64C
// Speed 2: Acoustic Limit 2, Power Limit 2, 65C - 74C
// Speed 3: Acoustic Limit 3, Power Limit 3, 75C - 84C
// Speed 4: Acoustic Limit 4, Power Limit 4, 85C - 94C
// Speed 5: Acoustic Limit 5, Power Limit 5, >= 95C

// _SCP Notifies the platform the current cooling mode.
// Arg0 = Mode
// 0 - Active cooling
// 1 - Passive cooling
// Arg1 = Acoustic Limit
// 1 = No acoustic tolerance
// ...
// 5 = maximum acoustic tolerance
// Arg2 = Power Limit
// 1 = No power may be used to cool
// ...
// 5 = maximum power may be used to cool

Method(_SCP,3,Serialized)
{
 // Store the Cooling Mode in NVS and use as needed in
 // the rest of the ASL Code.
 Store(Arg0, CTYP)

 // Set PSVT to account for a Legacy OS that does not pass
 // in either the acoustic limit or Power Limit.
 If(Arg0)
 {
 Store(60,PSVT)
 }
 Else
 {
 Store(97,PSVT)
 }
UEFI Forum, Inc. January 2019 Page 730

ACPI Specification, Version 6.3 Thermal Management
 If (CondRefOf (_OSI,Local0))
 {
 If (_OSI ("3.0 _SCP Extensions"))
 {
 // Determine Power Limit.
 //
 // NOTE1: PSVT = Passive Cooling Trip Point stored
 // in NVS in Celsius.
 //
 // NOTE2: 4 Active Cooling Trips Points correspond to 5
 // unique Power Limit regions and 5 unique acoustic limit
 // regions.

 //
 // NOTE3: This code will define Passive cooling so that
 // CPU throttling will be initiated within the Power Limit
 // Region passed in such that the next higher Power Limit
 // Region will not be reached.
 Switch(Arg2)
 {

 Case(1) // Power Limit = 1.
 {
 // Stay in Acoustic Limit 1.
 Store(60,PSVT) // Passive = 60C.
 }
 Case(2) // Power Limit = 2.
 {
 // Store Highest supported Acoustic Level
 // at this Power Limit (1 or 2).
 Store(70,PSVT)
 If(Lequal(Arg1,1))
 {
 // Stay in Acoustic Level 1.
 Store(60,PSVT)
 }
 }
 Case(3) // Power Limit = 3.
 {
 // Store Highest supported Acoustic Level
 // at this Power Limit (1, 2, or 3).
 Store(80,PSVT)
 If(Lequal(Arg1,2))
 {
 // Stay in Acoustic Level 1 or 2.
 Store(70,PSVT)
 }
 If(Lequal(Arg1,1))
 {
 // Stay in Acoustic Level 1.
UEFI Forum, Inc. January 2019 Page 731

ACPI Specification, Version 6.3 Thermal Management
 Store(60,PSVT)
 }
 }
 Case(4) // Power Limit = 4.
 {
 // Store Highest supported Acoustic Level
 // at this Power Limit (1, 2, 3, or 4).
 Store(90,PSVT)
 If(Lequal(Arg1,3))
 {
 // Stay in Acoustic Level 1 or 2.
 Store(80,PSVT)
 }
 If(Lequal(Arg1,2))
 {
 // Stay in Acoustic Level 1 or 2.
 Store(70,PSVT)
 }
 If(Lequal(Arg1,1))
 {
 // Stay in Acoustic Level 1.
 Store(60,PSVT)
 }
 }
 Case(5) // Power Limit = 5.
 {
 // Store Highest supported Acoustic Level
 // at this Power Limit (1, 2, 3, 4, or 5).
 Store(97,PSVT)
 If(Lequal(Arg1,4))
 {
 // Stay in Acoustic Level 1 or 2.
 Store(90,PSVT)
 }
 If(Lequal(Arg1,3))
 {
 // Stay in Acoustic Level 1 or 2.
 Store(80,PSVT)
 }
 If(Lequal(Arg1,2))
 {
 // Stay in Acoustic Level 1 or 2.
 Store(70,PSVT)
 }
 If(Lequal(Arg1,1))
 {
 // Stay in Acoustic Level 1.
 Store(60,PSVT)
 }
 } // Case 5
 } // Switch Arg 2
UEFI Forum, Inc. January 2019 Page 732

ACPI Specification, Version 6.3 Thermal Management
 } // _OSI - Extended _SCP
 } // CondRefOf _OSI
} // Method _SCP

11.4.14 _STR (String)

This optional object, when defined under a thermal zone, returns a string name for this thermal zone.
See Section 6.1.10 for full definition of _STR.

11.4.15 _TC1 (Thermal Constant 1)

This object evaluates to the constant _TC1 for use in the Passive cooling formula:

Performance [%]= _TC1 * (Tn - Tn-1) + _TC2 * (Tn. - Tt)

Arguments:

None

Return Value:

An Integer containing Thermal Constant #1

11.4.16 _TC2 (Thermal Constant 2)

This object evaluates to the constant _TC2 for use in the Passive cooling formula:

Performance [%]= _TC1 * (Tn - Tn-1) + _TC2 *(Tn - Tt)

Arguments:

None

Return Value:

An Integer containing Thermal Constant #2

11.4.17 _TFP (Thermal fast Sampling Period)

This object evaluates to a thermal sampling period (in milliseconds) used by OSPM to implement the
Passive cooling equation. This value, along with _TC1 and _TC2, will enable OSPM to provide the proper
hysteresis required by the system to accomplish an effective passive cooling policy.

Arguments:

None

Return Value:

An Integer containing the sampling period in milliseconds

The granularity of the sampling period is 1 milliseconds. For example, if the sampling period is 30.0
seconds, then _TFP needs to report 30,000; if the sampling period is 0.5 seconds, then it will report 500.
OSPM can normalize the sampling over a longer period if necessary.

If both _TFP and _TSP are present in a Thermal Zone, _TFP overrides _TSP. Platforms which need to
support legacy operating systems from before _TFP in ACPI 6.0, must specify a _TSP if a sampling period
is required. OS support for _TFP can be discovered via _OSC (see Table 6-200).
UEFI Forum, Inc. January 2019 Page 733

ACPI Specification, Version 6.3 Thermal Management
11.4.18 _TMP (Temperature)

This control method returns the thermal zone’s current operating temperature.

Arguments:

None

Return Value:

An Integer containing the current temperature of the thermal zone (in tenths of degrees Kelvin)

The return value is the current temperature of the thermal zone in tenths of degrees Kelvin. For example,
300.0K is represented by the integer 3000.

11.4.19 _TPT (Trip Point Temperature)

This optional object may be present under a device and is invoked by OSPM to indicate to the platform
that the devices’ embedded temperature sensor has crossed a cooling temperature trip point. After
invocation, OSPM immediately evaluates the devices’ Active and Passive cooling temperature trip point
values. This enables the platform to implement hysteresis.

Arguments: (1)

Arg0 – An Integer containing the current value of the temperature sensor (in tenths Kelvin)

Return Value:

None

The _TPT object is deprecated in ACPI 4.0. The _DTI object , Section 11.4.6 “_DTI (Device Temperature
Indication)”, should be used instead.

11.4.20 _TRT (Thermal Relationship Table)

This object evaluates to a package of packages each of which describes the thermal relationship between
devices within a thermal zone. OSPM uses the combined information about the thermal relationships of
all devices in the thermal zone to make thermal policy decisions.

Arguments:

None

Return Value:

A variable-length Package containing a list of Thermal Relationship Packages as described below

Return Value Information

Package {
 ThermalRelationship[0] // Package
 ….
 ThermalRelationship[n] // Package
}

Each ThermalRelationship sub-Package contains the elements described below:

Package {
UEFI Forum, Inc. January 2019 Page 734

ACPI Specification, Version 6.3 Thermal Management
 SourceDevice, // Object Reference to a Device Object
 TargetDevice, // Object Reference to a Device Object
 Influence, // Integer
 SamplingPeriod, // Integer
 Reserved1, // Integer
 Reserved2, // Integer
 Reserved3, // Integer
 Reserved4 // Integer
},

Table 11-347 Thermal Relationship Package Values

Element Object Type Description

Source
Device

Reference (to
a device)

The device that is influencing the device indicated by TargetDevice.

Target
Device

Reference (to
a device)

The device that is influenced by the device indicated by SourceDevice.

Influence Integer The thermal influence of SourceDevice on TargetDevice - represented as
tenths of degrees Kelvin that the device indicated by SourceDevice raises the
temperature of the device indicated by TargetDevice per watt of thermal
load that SourceDevice generates.

Sampling
Period

Integer The minimum period of time in tenths of seconds that OSPM should wait
after applying a passive control to the device indicated by SourceDevice to
detect its impact on the device indicated by TargetDevice.

Reserved (1-
4)

Integer Reserved for future use.

11.4.21 _TSN (Thermal Sensor Device)

This object, when defined under a thermal zone, returns a reference to the thermal sensor device used to
monitor the temperature of the thermal zone. For Native OS Device Driver Thermal Interfaces, see
Table 11.5.

Arguments:

None

Return Value:

A single Reference to the namespace device object that monitors the temperature of the thermal zone.

11.4.22 _TSP (Thermal Sampling Period)

This object evaluates to a thermal sampling period (in tenths of seconds) used by OSPM to implement the
Passive cooling equation. This value, along with _TC1 and _TC2, will enable OSPM to provide the proper
hysteresis required by the system to accomplish an effective passive cooling policy.

Arguments:

None
UEFI Forum, Inc. January 2019 Page 735

ACPI Specification, Version 6.3 Thermal Management
Return Value:

An Integer containing the sampling period in tenths of seconds

The granularity of the sampling period is 0.1 seconds. For example, if the sampling period is 30.0 seconds,
then _TSP needs to report 300; if the sampling period is 0.5 seconds, then it will report 5. OSPM can
normalize the sampling over a longer period if necessary.

If both _TFP and _TSP are present in a Thermal Zone, _TFP overrides _TSP. Platforms which need to
support legacy operating systems from before _TFP in ACPI 6.0 must specify a _TSP if a sampling period is
required. OS support for _TFP can be discovered via _OSC (see Table 6-200).

11.4.23 _TST (Temperature Sensor Threshold)

This optional object may be present under a device and is evaluated by OSPM to determine the minimum
separation for a devices’ programmable temperature trip points. When a device contains multiple
programmable temperature trip points, it may not be necessary for OSPM to poll the device’s
temperature after crossing a temperature trip point when performing passive cooling control policy.

Arguments:

None

Return Value:

An Integer containing the sensor threshold (in tenths of degrees Kelvin)

To eliminate polling, the device can program intermediate trip points of interest (higher or lower than the
current temperature) and signal the crossing of the intermediate trip points to OSPM. The distance
between the current temperature and these intermediate trip points may be platform specific and must
be set far enough away from the current temperature so as to not to miss the crossing of a meaningful
temperature point. The _TST object conveys the recommended minimum separation between the
current temperature and an intermediate temperature trip point to OSPM.

11.4.24 _TZD (Thermal Zone Devices)

This optional object evaluates to a package of device names. Each name corresponds to a device in the
ACPI namespace that is associated with the thermal zone. The temperature reported by the thermal zone
is roughly correspondent to that of each of the devices.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to thermal zone devices

The list of devices returned by the control method need not be a complete and absolute list of devices
affected by the thermal zone. However, the package should at least contain the devices that would
uniquely identify where this thermal zone is located in the machine. For example, a thermal zone in a
docking station should include a device in the docking station, a thermal zone for the CD-ROM bay,
should include the CD-ROM.
UEFI Forum, Inc. January 2019 Page 736

ACPI Specification, Version 6.3 Thermal Management
11.4.25 _TZM (Thermal Zone Member)

This optional object may exist under any device definition and evaluates to a reference to the thermal
zone of which the device is a member.

Arguments:

None

Return Value:

A Reference to the parent device

11.4.26 _TZP (Thermal Zone Polling)

This optional object evaluates to a recommended polling frequency (in tenths of seconds) for this thermal
zone. A value of zero indicates that OSPM does not need to poll the temperature of this thermal zone in
order to detect temperature changes (the hardware is capable of generating asynchronous notifications).

Arguments:

None

Return Value:

An Integer containing the recommended polling frequency in tenths of seconds

The return value contains the recommended polling frequency, in tenths of seconds. A value of zero
indicates that polling is not necessary.

The use of polling is allowed but strongly discouraged by this specification. OEMs should design systems
that asynchronously notify OSPM whenever a meaningful change in the zone’s temperature occurs—
relieving the OS of the overhead associated with polling. See Section 11.1.3, “Detecting Temperature
Changes,” for more information.

This value is specified as tenths of seconds with a 1 second granularity. A minimum value of 30 seconds
(_TZP evaluates to 300) and a maximum value of 300 seconds (in other words, 5 minutes) (_TZP evaluates
to 3000) may be specified. As this is a recommended value, OSPM will consider other factors when
determining the actual polling frequency to use.

11.5 Native OS Device Driver Thermal Interfaces

OS implementations compatible with the ACPI 3.0 thermal model, interface with the thermal objects of a
thermal zone but also comprehend the thermal zone devices’ OS native device driver interfaces that
perform similar functions to the thermal objects at the device level.

The recommended native OS device driver thermal interfaces that enable OSPM to perform optimal
performance / thermal management include:

• Reading a value from a device’s embedded thermal sensor
• Reading a value that indicates whether temperature and trip point values are reported in

absolute or relative temperatures
• Setting the platform’s cooling mode policy setting
• Reading the embedded thermal sensor’s threshold
• Reading the device’s active and passive cooling temperature trip points
UEFI Forum, Inc. January 2019 Page 737

ACPI Specification, Version 6.3 Thermal Management
• Reading the device’s association to a thermal zone
• Signaling the crossing of a thermal trip point
• Reading the desired polling frequency at which to check the devices temperature if the device

cannot signal OSPM or signal OSPM optimally (both before and after a temperature trip point is
crossed)

• Setting / limiting a device’s performance / throttling states
• Engaging / disengaging a device’s active cooling controls

These interfaces are OS specific and as such the OS vendor defines the exact interface definition for each
target operating system.

11.6 Thermal Zone Interface Requirements

While not all thermal zone interfaces are required to be present in each thermal zone, OSPM levies
conditional requirements for the presence of specific thermal zone interfaces based on the existence of
other related thermal zone interfaces. These interfaces may be implemented by thermal zone-wide
objects or by OS-specific device driver exposed thermal interfaces. The requirements are outlined below:

• A thermal zone must contain at least one temperature interface; either the _TMP object or a
member device temperature interface.

• A thermal zone must contain at least one trip point (critical, near critical, active, or passive).
• If _ACx is defined then an associated _ALx must be defined (e.g. defining _AC0 requires _AL0

also be defined).
• If _PSV is defined then either the _PSL or _TZD objects must exist. The _PSL and _TZD objects

may both exist.
• If _PSL is defined then:

— If a linear performance control register is defined (via either P_BLK or the _PTC, _TSS, _TPC
objects) for a processor defined in _PSL or for a processor device in the zone as indicated
by _TZM then the _TC1, _TC2, and objects must exist. A_TFP or _TSP object must also be
defined if the device requires polling.

— If a linear performance control register is not defined (via either P_BLK or the _PTC, _TSS,
_TPC objects) for a processor defined in _PSL or for a processor device in the zone as
indicated by _TZM then the processor must support processor performance states (in
other words, the processor’s processor object must include _PCT, _PSS, and _PPC).

• If _PSV is defined and _PSL is not defined then at least one device in thermal zone, as indicated
by either the _TZD device list or devices’ _TZM objects, must support device performance
states.

• _SCP is optional.
• _TZD is optional outside of the _PSV requirement outlined above.
• If _HOT is defined then the system must support the S4 sleeping state.

11.7 Thermal Zone Examples

11.7.1 Example: The Basic Thermal Zone

The following ASL describes a basic configuration where the entire system is treated as a single thermal
zone. Cooling devices for this thermal zone consist of a processor and one single-speed fan. This is an
example only.
UEFI Forum, Inc. January 2019 Page 738

ACPI Specification, Version 6.3 Thermal Management
Notice that this thermal zone object (TZ0) is defined in the _SB scope. Thermal zone objects should
appear in the namespace under the portion of the system that comprises the thermal zone. For example,
a thermal zone that is isolated to a docking station should be defined within the scope of the docking
station device. Besides providing for a well-organized namespace, this configuration allows OSPM to
dynamically adjust its thermal policy as devices are added or removed from the system.

Scope(_SB) {
 Device(CPU0) {
 Name(_HID, “ACPI0007”)
 Name(_UID, 1) // unique number for this processor
 }
<…>

Scope(_SB.PCI0.ISA0) {
 Device(EC0) {
 Name(_HID, EISAID("PNP0C09")) // ID for this EC
 // current resource description for this EC
 Name(_CRS, ResourceTemplate() {
 IO(Decode16,0x62,0x62,0,1)
 IO(Decode16,0x66,0x66,0,1)
 })
 Name(_GPE, 0) // GPE index for this EC

 // create EC's region and field for thermal support
 OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
 Field(EC0, ByteAcc, Lock, Preserve) {
 MODE, 1, // thermal policy (quiet/perform)
 FAN, 1, // fan power (on/off)
 , 6, // reserved
 TMP, 16, // current temp
 AC0, 16, // active cooling temp (fan high)
 , 16, // reserved
 PSV, 16, // passive cooling temp
 HOT 16, // critical S4 temp
 CRT, 16 // critical temp
 }

 // following is a method that OSPM will schedule after
 // it receives an SCI and queries the EC to receive value 7
 Method(_Q07) {
 Notify (_SB.PCI0.ISA0.EC0.TZ0, 0x80)
 } // end of Notify method

 // fan cooling on/off - engaged at AC0 temp
 PowerResource(PFAN, 0, 0) {
 Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN) } // check power state
 Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN) } // turn on fan
 Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN) } // turn off fan
 }

 // Create FAN device object
UEFI Forum, Inc. January 2019 Page 739

ACPI Specification, Version 6.3 Thermal Management
 Device (FAN) {
 // Device ID for the FAN
 Name(_HID, EISAID("PNP0C0B"))
 // list power resource for the fan
 Name(_PR0, Package(){PFAN})
 }

 // create a thermal zone
 ThermalZone (TZ0) {
 Method(_TMP) { Return (_SB.PCI0.ISA0.EC0.TMP)} // get current temp
 Method(_AC0) { Return (_SB.PCI0.ISA0.EC0.AC0) } // fan high temp
 Name(_AL0, Package(){_SB.PCI0.ISA0.EC0.FAN}) // fan is act cool dev
 Method(_PSV) { Return (_SB.PCI0.ISA0.EC0.PSV) } // passive cooling temp
 Name(_PSL, Package (){_SB.CPU0}) // passive cooling devices
 Method(_HOT) { Return (_SB.PCI0.ISA0.EC0.HOT) } // get critical S4 temp
 Method(_CRT) { Return (_SB.PCI0.ISA0.EC0.CRT) } // get critical temp
 Method(_SCP, 1) { Store (Arg1, _SB.PCI0.ISA0.EC0.MODE) } // set cooling mode
 Name(_TC1, 4) // bogus example
constant
 Name(_TC2, 3) // bogus example
constant
 Name(_TSP, 150) // passive sampling
= 15 sec
 Name(_TZP, 0) // polling not required
 Name (_STR, Unicode (“System thermal zone”))
 } // end of TZ0

 } // end of ECO
} // end of _SB.PCI0.ISA0
scope-

} // end of _SB scope

11.7.2 Example: Multiple-Speed Fans

The following ASL describes a thermal zone consisting of a processor and one dual-speed fan. As with the
previous example, this thermal zone object (TZ0) is defined in the _SB scope and represents the entire
system. This is an example only.

Scope(_SB) {
 Device(CPU0) {
 Name(_HID, "ACPI0007")
 Name(_UID, 1) // unique number for this processor
 }
<…>

Scope(_SB.PCI0.ISA0) {
 Device(EC0) {
 Name(_HID, EISAID("PNP0C09")) // ID for this EC
 // current resource description for this EC
 Name(_CRS, ResourceTemplate() {
UEFI Forum, Inc. January 2019 Page 740

ACPI Specification, Version 6.3 Thermal Management
 IO(Decode16,0x62,0x62,0,1)
 IO(Decode16,0x66,0x66,0,1)
 })
 Name(_GPE, 0) // GPE index for this EC

 // create EC's region and field for thermal support
 OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
 Field(EC0, ByteAcc, Lock, Preserve) {
 MODE, 1, // thermal policy (quiet/perform)
 FAN0, 1, // fan strength high/off
 FAN1, 1, // fan strength low/off
 , 5, // reserved
 TMP, 16, // current temp
 AC0, 16, // active cooling temp (high)
 AC1, 16, // active cooling temp (low)
 PSV, 16, // passive cooling temp
 HOT 18, // critical S4 temp
 CRT, 16 // critical temp
 }

 // following is a method that OSPM will schedule after it
 // receives an SCI and queries the EC to receive value 7
 Method(_Q07) {
 Notify (_SB.PCI0.ISA0.EC0.TZ0, 0x80)
 } end of Notify method

 // fan cooling mode high/off - engaged at AC0 temp
 PowerResource(FN10, 0, 0) {
 Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN0) } // check power
state
 Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN0) } // turn on fan at
high
 Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN0) } // turn off fan
 }

 // fan cooling mode low/off - engaged at AC1 temp
 PowerResource(FN11, 0, 0) {
 Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN1) } // check power
state
 Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN1) } // turn on fan at
low
 Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN1) } // turn off fan
}

 // Following is a single fan with two speeds. This is represented
 // by creating two logical fan devices. When FN2 is turned on then
 // the fan is at a low speed. When FN1 and FN2 are both on then
 // the fan is at high speed.
 //
UEFI Forum, Inc. January 2019 Page 741

ACPI Specification, Version 6.3 Thermal Management
 // Create FAN device object FN1
 Device (FN1) {
 // Device ID for the FAN
 Name(_HID, EISAID("PNP0C0B"))
 Name(_UID, 0)
 Name(_PR0, Package(){FN10, FN11})
 }

 // Create FAN device object FN2
 Device (FN2) {
 // Device ID for the FAN
 Name(_HID, EISAID("PNP0C0B"))
 Name(_UID, 1)
 Name(_PR0, Package(){FN10})
 }

 // create a thermal zone
 ThermalZone (TZ0) {
 Method(_TMP) { Return (_SB.PCI0.ISA0.EC0.TMP)} // get current temp
 Method(_AC0) { Return (_SB.PCI0.ISA0.EC0.AC0) } // fan high temp
 Method(_AC1) { Return (_SB.PCI0.ISA0.EC0.AC1) } // fan low temp
 Name(_AL0, Package() {_SB.PCI0.ISA0.EC0.FN1}) // active cooling
(high)
 Name(_AL1, Package() {_SB.PCI0.ISA0.EC0.FN2}) // active cooling
(low)
 Method(_PSV) { Return (_SB.PCI0.ISA0.EC0.PSV) } // passive cooling
temp
 Name(_PSL, Package() {_SB.CPU0}) // passive cooling
devices
 Method(_HOT) { Return (_SB.PCI0.ISA0.EC0.HOT) } // get critical S4
temp
 Method(_CRT) { Return (_SB.PCI0.ISA0.EC0.CRT) } // get crit. temp
 Method(_SCP, 1) { Store (Arg1, _SB.PCI0.ISA0.EC0.MODE) } // set cooling mode
 Name(_TC1, 4) // bogus example
constant
 Name(_TC2, 3) // bogus example
constant
 Name(_TSP, 150) // passive sampling
= 15 sec
 Name(_TZP, 0) // polling not required
 } // end of TZ0

 } // end of ECO
} // end of _SB.PCI0.ISA0 scope

} // end of _SB scope

11.7.3 Example: Thermal Zone with Multiple Devices

Scope(_SB) {
UEFI Forum, Inc. January 2019 Page 742

ACPI Specification, Version 6.3 Thermal Management
 Device(CPU0) {

 Name(_HID, "ACPI0007")
 Name(_UID, 0)

 //
 // Load additional objects if 3.0 Thermal model support is available
 //
 Method(_INI, 0) {
 If (_OSI("3.0 Thermal Model")) {
 LoadTable("OEM1", "PmRef", "Cpu0", "_SB.CPU0") // 3.0 Thermal Model
 }
 }

 // For brevity, most processor objects have been excluded
 // from this example (such as _PSS, _CST, _PCT, _PPC, etc.)

 // Processor Throttle Control object
 Name(_PTC, ResourceTemplate() {
 Register(SystemIO, 32, 0, 0x120) // Processor Control
 Register(SystemIO, 32, 0, 0x120) // Processor Status
 })

 // Throttling Supported States
 // The values shown are for exemplary purposes only
 Name(_TSS, Package() {
 // Read: freq percentage, power, latency, control, status
 Package() {0x64, 1000, 0x0, 0x7, 0x0}, // Throttle off (100%)
 Package() {0x58, 800, 0x0, 0xF, 0x0}, // 87.5%
 Package() {0x4B, 600, 0x0, 0xE, 0x0}, // 75%
 Package() {0x3F, 400, 0x0, 0xD, 0x0} // 62.5%
 })

 // Throttling Present Capabilities
 // The values shown are for exemplary purposes only
 Method(_TPC) {
 If(_SB.AC) {
 Return(0) // All throttle states available
 } Else {
 Return(2) // Throttle states >= 2 are available
 }
 }
 } // end of CPU0 scope

 Device(CPU1) {

 Name(_HID, "ACPI0007")
 Name(_UID, 1)

 //
 // Load additional objects if 3.0 Thermal model support is available
UEFI Forum, Inc. January 2019 Page 743

ACPI Specification, Version 6.3 Thermal Management
 //
 Method(_INI, 0) {
 If (_OSI("3.0 Thermal Model")) {
 LoadTable("OEM1", "PmRef", "Cpu1", "_SB.CPU1") // 3.0 Thermal Model
 }
 }

 // For brevity, most processor objects have been excluded
 // from this example (such as _PSS, _CST, _PCT, _PPC, _PTC, etc.)

 // Processor Throttle Control object
 Name(_PTC, ResourceTemplate() {
 Register(SystemIO, 32, 0, 0x120) // Processor Control
 Register(SystemIO, 32, 0, 0x120) // Processor Status
 })

 // Throttling Supported States
 // The values shown are for exemplary purposes only
 Name(_TSS, Package() {
 // Read: freq percentage, power, latency, control, status
 Package() {0x64, 1000, 0x0, 0x7, 0x0}, // Throttle off (100%)
 Package() {0x58, 800, 0x0, 0xF, 0x0}, // 87.5%
 Package() {0x4B, 600, 0x0, 0xE, 0x0}, // 75%
 Package() {0x3F, 400, 0x0, 0xD, 0x0} // 62.5%
 })

 // Throttling Present Capabilities
 // The values shown are for exemplary purposes only
 Method(_TPC) {
 If(_SB.AC) {
 Return(0) // All throttle states available
 } Else {
 Return(2) // Throttle states >= 2 are
available
 }
 }
 } // end of CPU1 scope

Scope(_SB.PCI0.ISA0) {
 Device(EC0) {
 Name(_HID, EISAID("PNP0C09")) // ID for this EC

 //
 // Load additional objects if 3.0 Thermal model support is available
 //
 Method(_INI, 0) {
 If (_OSI("3.0 Thermal Model")) {
 LoadTable("OEM1", "PmRef", "Tz3", "_SB.PCI0.ISA0.EC0") // 3.0 Tz
 }
 }
UEFI Forum, Inc. January 2019 Page 744

ACPI Specification, Version 6.3 Thermal Management
 // Current resource description for this EC
 Name(_CRS,
 ResourceTemplate() {
 IO(Decode16,0x62,0x62,0,1)
 IO(Decode16,0x66,0x66,0,1)
 })

 Name(_GPE, 0) // GPE index for this EC

 // Create EC's region and field for thermal support
 OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
 Field(EC0, ByteAcc, Lock, Preserve) {
 MODE, 1, // thermal policy (quiet/perform)
 FAN0, 1, // fan strength high/off
 , 6, // reserved
 TMP, 16, // current temp
 AC0, 16, // active cooling temp
 PSV, 16, // passive cooling temp
 HOT, 16, // critical S4 temp
 CRT, 16 // critical temp
 }

 // Following is a method that OSPM will schedule after it
 // fan cooling mode high/off - engaged at AC0 temp
 PowerResource(FN10, 0, 0) {
 Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN0) } // check power state
 Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN0) } // turn on fan at high
 Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN0) } // turn off fan
 }

 // Following is a single fan with one speed.
 // Create FAN device object FN1
 Device (FN1) {
 // Device ID for the FAN
 Name(_HID, EISAID("PNP0C0B"))
 Name(_UID, 0)
 Name(_PR0, Package(){FN10})
 }

 // Receives an SCI and queries the EC to receive value 7
 Method(_Q07) {
 Notify (_SB.PCI0.ISA0.EC0.TZ0, 0x80)
 } // end of Notify method

 // Create standard specific thermal zone
 ThermalZone (TZ0) {
 Method(_TMP) { Return (_SB.PCI0.ISA0.EC0.TMP)} // get current temp
 Name(_PSL, Package() {_SB.CPU0, _SB.CPU1}) // passive cooling
devices
 Name(_AL0, Package() {_SB.PCI0.ISA0.EC0.FN1}) // active cooling
 Method(_AC0) { Return (_SB.PCI0.ISA0.EC0.AC0) } // fan temp (high)
UEFI Forum, Inc. January 2019 Page 745

ACPI Specification, Version 6.3 Thermal Management
 Method(_AC1) { Return (_SB.PCI0.ISA0.EC0.AC1) } // fan temp (low)
 Method(_PSV) { Return (_SB.PCI0.ISA0.EC0.PSV) } // passive cooling
temp
 Method(_HOT) { Return (_SB.PCI0.ISA0.EC0.HOT) } // get critical S4
temp
 Method(_CRT) { Return (_SB.PCI0.ISA0.EC0.CRT) } // get crit. temp
 Name(_TC1, 4) // bogus example
constant
 Name(_TC2, 3) // bogus example
constant
 Method(_SCP, 1) { Store (Arg0, _SB.PCI0.ISA0.EC0.MODE) } // set cooling mode
 Name(_TSP, 150) // passive sampling
= 15 sec
 } // end of TZ0

 } // end of ECO
} // end of _SB.PCI0.ISA0 scope
} // end of _SB scope

//
// ACPI 3.0 Thermal Model SSDT
//
DefinitionBlock (
 "TZASSDT.aml",
 "OEM1",
 0x01,
 "PmRef",
 "Tz3",
 0x3000
)
{
 External(_SB.PCI0.ISA0.EC0, DeviceObj)
 External(_SB.CPU0, DeviceObj)
 External(_SB.CPU1, DeviceObj)

 Scope(_SB.PCI0.ISA0.EC0)
 {
 // Create an ACPI 3.0 specific thermal zone
 ThermalZone (TZ0) {
 // This TRT is for exemplary purposes only
 Name(_TRT, Package() {
 // Thermal relationship package data. A package is generated for
 // each permutation of device sets. 2 devices = 4 entries.
 // Read: source, target, thermal influence, sampling period, 4 reserved
 Package () {_SB.CPU0, _SB.CPU0, 20, 1, 0, 0, 0, 0},
 Package () {_SB.CPU0, _SB.CPU1, 10, 15, 0, 0, 0, 0},
 Package () {_SB.CPU1, _SB.CPU0, 10, 15, 0, 0, 0, 0},
 Package () {_SB.CPU1, _SB.CPU1, 20, 1, 0, 0, 0, 0}
 }) // end of TRT
 } // end of TZ0
 } // end of EC0 Scope
UEFI Forum, Inc. January 2019 Page 746

ACPI Specification, Version 6.3 Thermal Management
} // end of SSDT

//
// CPU0 3.0 Thermal Model SSDT
//
DefinitionBlock (
 "CPU0SSDT.aml",
 "OEM1",
 0x01,
 "PmRef",
 "CPU0",
 0x3000
)
{
 External(_SB.CPU0, DeviceObj)
 External(_SB.PCI0.ISA0.TZ0, ThermalZoneObj)

 Scope(_SB.CPU0)
 {
 //
 // Add the objects required for 3.0 extended thermal support
 //
 // Create a region and fields for thermal support; the platform
 // fills in the values and traps on writes to enable hysteresis.
 // The Operation Region location is invalid
 OperationRegion(CP00, SystemMemory, 0x00000000, 0xA)
 Field(CP00, ByteAcc, Lock, Preserve) {
 SCP, 1, // thermal policy (passive/active)
 RTV, 1, // absolute or relative temperature
 , 6, // reserved
 AC0, 16, // active cooling temp
 PSV, 16, // passive cooling temp
 CRT, 16, // critical temp
 TPT, 16, // Temp trip point crossed
 TST, 8 // Temp sensor threshold
 }

 Method(_TZM, 0) { Return(_SB.PCI0.ISA0.TZ0) } // thermal zone member

 // Some thermal zone methods are now located under the
 // thermal device participating in the 3.0 thermal model.
 // These methods provide device specific thermal information
 Method(_SCP, 1) { Store (Arg0, _SB.CPU0.SCP) } // set cooling mode
 Method(_RTV) { Return (_SB.CPU0.RTV) } // absolute or relative temp
 Method(_AC0) { Return (_SB.CPU0.AC0) } // active cooling (fan) temp
 Method(_PSV) { Return (_SB.CPU0.PSV) } // passive cooling temp
 Method(_CRT) { Return (_SB.CPU0.CRT) } // critical temp
 Name(_TC1, 4) // thermal constant 1 (INVALID)
 Name(_TC2, 3) // thermal constant 2 (INVALID)
 Method(_TPT, 1) { Store (Arg0, _SB.CPU0.TPT)} // trip point temp
UEFI Forum, Inc. January 2019 Page 747

ACPI Specification, Version 6.3 Thermal Management
 Method(_TST) { Return (_SB.CPU0.TST) } // temp sensor threshold

 } // end of CPU0 scope
} // end of SSDT

//
// CPU1 3.0 Thermal Model SSDT
//
DefinitionBlock (
 "CPU1SSDT.aml",
 "OEM1",
 0x01,
 "PmRef",
 "CPU1",
 0x3000
)
{
 External(_SB.CPU1, DeviceObj)
 External(_SB.PCI0.ISA0.TZ0, ThermalZoneObj)

 Scope(_SB.CPU1)
 {
 //
 // Add the objects required for 3.0 extended thermal support
 //
 // Create a region and fields for thermal support; the platform
 // fills in the values and traps on writes to enable hysteresis.
 // The Operation Region location is invalid
 OperationRegion(CP01, SystemIO, 0x00000008, 0xA)
 Field(CP01, ByteAcc, Lock, Preserve) {
 SCP, 1, // thermal policy (passive/active)
 RTV, 1, // absolute or relative temperature
 , 6, // reserved
 AC0, 16, // active cooling temp
 PSV, 16, // passive cooling temp
 CRT, 16, // critical temp
 TPT, 16, // Temp trip point crossed
 TST, 8 // Temp sensor threshold
 }

 Method(_TZM, 0) { Return(_SB.PCI0.ISA0.TZ0) } // thermal zone member

 // Some thermal zone methods are now located under the
 // thermal device participating in the 3.0 thermal model.
 // These methods provide device specific thermal information
 Method(_SCP, 1) { Store (Arg0, _SB.CPU1.SCP) } // set cooling mode
 Method(_RTV) { Return (_SB.CPU1.RTV) } // absolute or relative temp
 Method(_AC0) { Return (_SB.CPU1.AC0) } // active cooling (fan) temp
 Method(_PSV) { Return (_SB.CPU1.PSV) } // passive cooling temp
 Method(_CRT) { Return (_SB.CPU1.CRT) } // critical temp
UEFI Forum, Inc. January 2019 Page 748

ACPI Specification, Version 6.3 Thermal Management
 Name(_TC1, 4) // thermal constant 1 (INVALID)
 Name(_TC2, 3) // thermal constant 2 (INVALID)
 Method(_TPT, 1) { Store (Arg0, _SB.CPU1.TPT)} // trip point temp
 Method(_TST) { Return (_SB.CPU1.TST) } // temp sensor threshold

 } // end of CPU1 scope
} // end of SSDT
UEFI Forum, Inc. January 2019 Page 749

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
12 ACPI Embedded Controller Interface
Specification

ACPI defines a standard hardware and software communications interface between an OS driver and an
embedded controller. This allows any OS to provide a standard driver that can directly communicate with
an embedded controller in the system, thus allowing other drivers within the system to communicate
with and use the resources of system embedded controllers. This in turn enables the OEM to provide
platform features that the OS OSPM and applications can take advantage of.

ACPI also defines a standard hardware and software communications interface between an OS driver and
an Embedded Controller-based SMB-HC (EC-SMB-HC).

The ACPI standard supports multiple embedded controllers in a system, each with its own resources.
Each embedded controller has a flat byte-addressable I/O space, currently defined as 256 bytes. Features
implemented in the embedded controller have an event “query” mechanism that allows feature
hardware implemented by the embedded controller to gain the attention of an OS driver or ASL/AML
code handler. The interface has been specified to work on the most popular embedded controllers on the
market today, only requiring changes in the way the embedded controller is “wired” to the host
interface.

Two interfaces are specified:

• A private interface, exclusively owned by the embedded controller driver.
• A shared interface, used by the embedded controller driver and some other driver.

This interface is separate from the traditional PC keyboard controller. Some OEMs might choose to
implement the ACPI Embedded Controller Interface (ECI) within the same embedded controller as the
keyboard controller function, but the ECI requires its own unique host resources (interrupt event and
access registers).

This interface does support sharing the ECI with an inter-environment interface (such as SMI) and relies
on the ACPI-defined “Global Lock” protocol. Note, however, that HW-reduced ACPI platforms, which do
not support the Global Lock, cannot share the EC interface. For information about the Global Lock
interface, see Section 5.2.10.1, “Global Lock.” Both the shared and private EC interfaces are described in
the following sections.

The ECI has been designed such that a platform can use it in either the legacy or ACPI modes with
minimal changes between the two operating environments. This is to encourage standardization for this
interface to enable faster development of platforms as well as opening up features within these
controllers to higher levels of software.

12.1 Embedded Controller Interface Description

Embedded controllers are the general class of microcontrollers used to support OEM-specific
implementations. The ACPI specification supports embedded controllers in any platform design, as long
as the microcontroller conforms to one of the models described in this section. The embedded controller
is a unique feature in that it can perform complex low-level functions through a simple interface to the
host microprocessor(s).
UEFI Forum, Inc. January 2019 Page 750

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
Although there is a large variety of microcontrollers in the market today, the most commonly used
embedded controllers include a host interface that connects the embedded controller to the host data
bus, allowing bi-directional communications. A bi-directional interrupt scheme reduces the host
processor latency in communicating with the embedded controller.

Currently, the most common host interface architecture incorporated into microcontrollers is modeled
after the standard IA-PC architecture keyboard controller. This keyboard controller is accessed at 0x60
and 0x64 in system I/O space. Port 0x60 is termed the data register, and allows bi-directional data
transfers to and from the host and embedded controller. Port 0x64 is termed the command/status
register; it returns port status information upon a read, and generates a command sequence to the
embedded controller upon a write. This same class of controllers also includes a second decode range
that shares the same properties as the keyboard interface by having a command/status register and a
data register. The following diagram graphically depicts this interface.

EC STATUS
REGISTER

EC OUTPUT
BUFFER

EC INPUT
BUFFER

INTERFACE
ARBITRATION

CODE

SMI
INTERFACE

CODE

SCI
INTERFACE

CODE

COMMAND WRITE (SMI/SCI)

DATA WRITE (SMI/SCI)

DATA READ (SMI/SCI)

STATUS READ (SMI/SCI)

EC_SCI_EN

EC_SMI_EN

EC_SMI_STS

EC_SCI_STS

EC_SMI

EC_SCI

I/O
MAIN

FIRMWARE

Figure 12-66 Shared Interface

The diagram above depicts the general register model supported by the ACPI Embedded Controller
Interface.

The first method uses an embedded controller interface shared between OSPM and the system
management code, which requires the Global Lock semaphore overhead to arbitrate ownership. The
second method is a dedicated embedded controller decode range for sole use by OSPM driver. The
following diagram illustrates the embedded controller architecture that includes a dedicated ACPI
interface.
UEFI Forum, Inc. January 2019 Page 751

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
Figure 12-67 Private Interface

The private interface allows OSPM to communicate with the embedded controller without the additional
software overhead associated with using the Global Lock. Several common system configurations can
provide the additional embedded controller interfaces:

• Non-shared embedded controller. This will be the most common case where there is no need
for the system management handler to communicate with the embedded controller when the
system transitions to ACPI mode. OSPM processes all normal types of system management
events, and the system management handler does not need to take any actions.

• Integrated keyboard controller and embedded controller. This provides three host interfaces
as described earlier by including the standard keyboard controller in an existing component
(chip set, I/O controller) and adding a discrete, standard embedded controller with two
interfaces for system management activities.

SCI
INTERFACE

CODE

I/O

EC_SCI_EN

EC_SCI_STS

EC_SCI

SCI STATUS
REGISTER

SCI OUTPUT
BUFFER

SCI INPUT
BUFFER

COMMAND WRITE (SCI)

DATA WRITE (SCI)

DATA READ (SCI)

STATUS READ (SCI)

SMI STATUS
REGISTER

SMI OUTPUT
BUFFER

SMI INPUT
BUFFER

SMI
INTERFACE

CODE

COMMAND WRITE (SMI)

DATA WRITE (SMI)

DATA READ (SMI)

STATUS READ (SMI)

EC_SMI_EN

EC_SMI_STS

EC_SMI

MAIN
FIRMWARE
UEFI Forum, Inc. January 2019 Page 752

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
• Standard keyboard controller and embedded controller. This provides three host interfaces by
providing a keyboard controller as a distinct component, and two host interfaces are provided
in the embedded controller for system management activities.

• Two embedded controllers. This provides up to four host interfaces by using two embedded
controllers; one controller for system management activities providing up to two host
interfaces, and one controller for keyboard controller functions providing up to two host
interfaces.

• Embedded controller and no keyboard controller. Future platforms might provide keyboard
functionality through an entirely different mechanism, which would allow for two host
interfaces in an embedded controller for system management activities.

To handle the general embedded controller interface (as opposed to a dedicated interface) model, a
method is available to make the embedded controller a shareable resource between multiple tasks
running under the operating system’s control and the system management interrupt handler. This
method, as described in this section, requires several changes:

• Additional external hardware
• Embedded controller firmware changes
• System management interrupt handler firmware changes
• Operating software changes

Access to the shared embedded controller interface requires additional software to arbitrate between
the operating system’s use of the interface and the system management handler’s use of the interface.
This is done using the Global Lock as described in Section 5.2.10.1, “Global Lock", but is not supported on
HW-reduced ACPI platforms.

This interface sharing protocol also requires embedded controller firmware changes, in order to ensure
that collisions do not occur at the interface. A collision could occur if a byte is placed in the system output
buffer and an interrupt is then generated. There is a small window of time when the incorrect recipient
could receive the data. This problem is resolved by ensuring that the firmware in the embedded
controller does not place any data in the output buffer until it is requested by OSPM or the system
management handler.

More detailed algorithms and descriptions are provided in the following sections.

12.2 Embedded Controller Register Descriptions

The embedded controller contains three registers at two address locations: EC_SC and EC_DATA. The
EC_SC, or Embedded Controller Status/Command register, acts as two registers: a status register for
reads to this port and a command register for writes to this port. The EC_DATA (Embedded Controller
Data register) acts as a port for transferring data between the host CPU and the embedded controller.

12.2.1 Embedded Controller Status, EC_SC (R)

This is a read-only register that indicates the current status of the embedded controller interface.

Table 12-348

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

IGN SMI_EVT SCI_EVT BURST CMD IGN IBF OBF

Read only register table
UEFI Forum, Inc. January 2019 Page 753

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
Where:

Table 12-349 Register details

IGN: Ignored

SMI_EVT: 1 – Indicates SMI event is pending (requesting SMI query).

0 – No SMI events are pending.

SCI_EVT: 1 – Indicates SCI event is pending (requesting SCI query).

0 – No SCI events are pending.

BURST: 1 – Controller is in burst mode for polled command processing.

0 – Controller is in normal mode for interrupt-driven command processing.

CMD: 1 – Byte in data register is a command byte (only used by controller).

0 – Byte in data register is a data byte (only used by controller).

IBF: 1 – Input buffer is full (data ready for embedded controller).

0 – Input buffer is empty.

OBF: 1 – Output buffer is full (data ready for host).

0 – Output buffer is empty.

The Output Buffer Full (OBF) flag is set when the embedded controller has written a byte of data into the
command or data port but the host has not yet read it. After the host reads the status byte and sees the
OBF flag set, the host reads the data port to get the byte of data that the embedded controller has
written. After the host reads the data byte, the OBF flag is cleared automatically by hardware. This signals
the embedded controller that the data has been read by the host and the embedded controller is free to
write more data to the host.

The Input Buffer Full (IBF) flag is set when the host has written a byte of data to the command or data
port, but the embedded controller has not yet read it. After the embedded controller reads the status
byte and sees the IBF flag set, the embedded controller reads the data port to get the byte of data that
the host has written. After the embedded controller reads the data byte, the IBF flag is automatically
cleared by hardware. This is the signal to the host that the data has been read by the embedded
controller and that the host is free to write more data to the embedded controller.

The SCI event (SCI_EVT) flag is set when the embedded controller has detected an internal event that
requires the operating system’s attention. The embedded controller sets this bit in the status register,
and generates an SCI to OSPM. OSPM needs this bit to differentiate command-complete SCIs from
notification SCIs. OSPM uses the query command to request the cause of the SCI_EVT and take action.
For more information, see Section 12.3, “Embedded Controller Command Set.”)

The SMI event (SMI_EVT) flag is set when the embedded controller has detected an internal event that
requires the system management interrupt handler's attention. The embedded controller sets this bit in
the status register before generating an SMI.

The Burst (BURST) flag indicates that the embedded controller has received the burst enable command
from the host, has halted normal processing, and is waiting for a series of commands to be sent from the
UEFI Forum, Inc. January 2019 Page 754

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
host. This allows OSPM or system management handler to quickly read and write several bytes of data at
a time without the overhead of SCIs between the commands.

12.2.2 Embedded Controller Command, EC_SC (W)

This is a write-only register that allows commands to be issued to the embedded controller. Writes to this
port are latched in the input data register and the input buffer full flag is set in the status register. Writes
to this location also cause the command bit to be set in the status register. This allows the embedded
controller to differentiate the start of a command sequence from a data byte write operation.

12.2.3 Embedded Controller Data, EC_DATA (R/W)

This is a read/write register that allows additional command bytes to be issued to the embedded
controller, and allows OSPM to read data returned by the embedded controller. Writes to this port by the
host are latched in the input data register, and the input buffer full flag is set in the status register. Reads
from this register return data from the output data register and clear the output buffer full flag in the
status register.

12.3 Embedded Controller Command Set

The embedded controller command set allows OSPM to communicate with the embedded controllers.
ACPI defines the commands and their byte encodings for use with the embedded controller that are
shown in the following table.

Table 12-350 Embedded Controller Commands

Embedded Controller Command Command Byte Encoding

Read Embedded Controller (RD_EC) 0x80

Write Embedded Controller (WR_EC) 0x81

Burst Enable Embedded Controller (BE_EC) 0x82

Burst Disable Embedded Controller (BD_EC) 0x83

Query Embedded Controller (QR_EC) 0x84

12.3.1 Read Embedded Controller, RD_EC (0x80)

This command byte allows OSPM to read a byte in the address space of the embedded controller. This
command byte is reserved for exclusive use by OSPM, and it indicates to the embedded controller to
generate SCIs in response to related transactions (that is, IBF=0 or OBF=1 in the EC Status Register),
rather than SMIs. This command consists of a command byte written to the Embedded Controller
Command register (EC_SC), followed by an address byte written to the Embedded Controller Data
register (EC_DATA). The embedded controller then returns the byte at the addressed location. The data is
read at the data port after the OBF flag is set.

12.3.2 Write Embedded Controller, WR_EC (0x81)

This command byte allows OSPM to write a byte in the address space of the embedded controller. This
command byte is reserved for exclusive use by OSPM, and it indicates to the embedded controller to
generate SCIs in response to related transactions (that is, IBF=0 or OBF=1 in the EC Status Register),
rather than SMIs. This command allows OSPM to write a byte in the address space of the embedded
UEFI Forum, Inc. January 2019 Page 755

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
controller. It consists of a command byte written to the Embedded Controller Command register (EC_SC),
followed by an address byte written to the Embedded Controller Data register (EC_DATA), followed by a
data byte written to the Embedded Controller Data Register (EC_DATA); this is the data byte written at
the addressed location.

12.3.3 Burst Enable Embedded Controller, BE_EC (0x82)

This command byte allows OSPM to request dedicated attention from the embedded controller and
(except for critical events) prevents the embedded controller from doing tasks other than receiving
command and data from the host processor (either the system management interrupt handler or OSPM).
This command is an optimization that allows the host processor to issue several commands back to back,
in order to reduce latency at the embedded controller interface. When the controller is in the burst
mode, it should transition to the burst disable state if the host does not issue a command within the
following guidelines:

• First Access – 400 microseconds
• Subsequent Accesses – 50 microseconds each
• Total Burst Time – 1 millisecond

In addition, the embedded controller can disengage the burst mode at any time to process a critical
event. If the embedded controller disables burst mode for any reason other than the burst disable
command, it should generate an SCI to OSPM to indicate the change.

While in burst mode, the embedded controller follows these guidelines for OSPM driver:

SCIs are generated as normal, including IBF=0 and OBF=1.

Accesses should be responded to within 50 microseconds.

Burst mode is entered in the following manner:

OSPM driver writes the Burst Enable Embedded Controller, BE_EC (0x82) command byte and then the
Embedded Controller will prepare to enter the Burst mode. This includes processing any routine activities
such that it should be able to remain dedicated to OSPM interface for ~ 1 microsecond.

The Embedded Controller sets the Burst bit of the Embedded Controller Status Register, puts the Burst
Acknowledge byte (0x90) into the SCI output buffer, sets the OBF bit, and generates an SCI to signal
OSPM that it is in Burst mode.

Burst mode is exited the following manner:

OSPM driver writes the Burst Disable Embedded Controller, BD_EC (0x83) command byte and then the
Embedded Controller will exit Burst mode by clearing the Burst bit in the Embedded Controller Status
register and generating an SCI signal (due to IBF=0).

The Embedded Controller clears the Burst bit of the Embedded Controller Status Register.

12.3.4 Burst Disable Embedded Controller, BD_EC (0x83)

This command byte releases the embedded controller from a previous burst enable command and allows
it to resume normal processing. This command is sent by OSPM or system management interrupt handler
after it has completed its entire queued command sequence to the embedded controller.
UEFI Forum, Inc. January 2019 Page 756

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
12.3.5 Query Embedded Controller, QR_EC (0x84)

OSPM driver sends this command when the SCI_EVT flag in the EC_SC register is set. When the
embedded controller has detected a system event that must be communicated to OSPM, it first sets the
SCI_EVT flag in the EC_SC register, generates an SCI, and then waits for OSPM to send the query (QR_EC)
command. OSPM detects the embedded controller SCI, sees the SCI_EVT flag set, and sends the query
command to the embedded controller. Upon receipt of the QR_EC command byte, the embedded
controller places a notification byte with a value between 0-255, indicating the cause of the notification.
The notification byte indicates which interrupt handler operation should be executed by OSPM to
process the embedded controller SCI. The query value of zero is reserved for a spurious query result and
indicates “no outstanding event.”

12.4 SMBus Host Controller Notification Header (Optional),
OS_SMB_EVT

This query command notification header is the special return code that indicates events with an SMBus
controller implemented within an embedded controller. These events include:

• Command completion
• Command error
• Alarm reception

The actual notification value is declared in the EC-SMB-HC device object in the ACPI Namespace.

12.5 Embedded Controller Firmware

The embedded controller firmware must obey the following rules in order to be ACPI-compatible:

• SMI Processing. Although it is not explicitly stated in the command specification section, a
shared embedded controller interface has a separate command set for communicating with
each environment it plans to support. In other words, the embedded controller knows which
environment is generating the command request, as well as which environment is to be
notified upon event detection, and can then generate the correct interrupts and notification
values. This implies that a system management handler uses commands that parallel the
functionality of all the commands for ACPI including query, read, write, and any other
implemented specific commands.

• SCI/SMI Task Queuing. If the system design is sharing the interface between both a system
management interrupt handler and OSPM, the embedded controller should always be
prepared to queue a notification if it receives a command. The embedded controller only sets
the appropriate event flag in the status (EC_SC) register if the controller has detected an event
that should be communicated to the OS or system management handler. The embedded
controller must be able to field commands from either environment without loss of the
notification event. At some later time, the OS or system management handler issues a query
command to the embedded controller to request the cause of the notification event.

• Notification Management. The use of the embedded controller means using the query
(QR_EC) command to notify OSPM of system events requiring action. If the embedded
controller is shared with the operating system, the SMI handler uses the SMI_EVT flag and an
SMI query command (not defined in this document) to receive the event notifications. The
embedded controller doesn’t place event notifications into the output buffer of a shared
UEFI Forum, Inc. January 2019 Page 757

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
interface unless it receives a query command from OSPM or the system management interrupt
handler.

12.6 Interrupt Model

The EC Interrupt Model uses pulsed interrupts to speed the clearing process. The Interrupt is firmware
generated using an EC general-purpose output and has the waveform shown in Figure 12-68. The
embedded controller SCI is always wired directly to a GPE input or a GPIO pin, and OSPM driver treats this
as an edge event (the EC SCI cannot be shared).

Figure 12-68 Interrupt Model

12.6.1 Event Interrupt Model

The embedded controller must generate SCIs for the events listed in the following table.

Table 12-351 Events for Which Embedded Controller Must Generate SCIs

Event Description

IBF=0 Signals that the embedded controller has read the last command or data from the input
buffer and the host is free to send more data.

OBF=1 Signals that the embedded controller has written a byte of data into the output buffer
and the host is free to read the returned data.

SCI_EVT=1 Signals that the embedded controller has detected an event that requires OS attention.
OSPM should issue a query (QR_EC) command to find the cause of the event.

12.6.2 Command Interrupt Model

The embedded controller must generate SCIs for commands as follows:

Table 12-352 Read Command (3 Bytes)

Byte #1 (Command byte Header) Interrupt on IBF=0

Byte #2 (Address byte to read) No Interrupt

Byte #3 (Data read to host) Interrupt on OBF=1

T
HOLD

Interrupt detected

Interrupt serviced
and cleared
UEFI Forum, Inc. January 2019 Page 758

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
Table 12-353 Write Command (3 Bytes)

Byte #1 (Command byte Header) Interrupt on IBF=0

Byte #2 (Address byte to write) Interrupt on IBF=0

Byte #3 (Data to read) Interrupt on IBF=0

Table 12-354 Query Command (2 Bytes

Byte #1 (Command byte Header) No Interrupt

Byte #2 (Query value to host) Interrupt on OBF=1

Table 12-355 Burst Enable Command (2 Bytes)

Byte #1 (Command byte Header) No Interrupt

Byte #2 (Burst acknowledge byte) Interrupt on OBF=1

Table 12-356 Burst Disable Command (1 Byte)

Byte #1 (Command byte Header) Interrupt on IBF=0

12.7 Embedded Controller Interfacing Algorithms

To initiate communications with the embedded controller, OSPM or system management handler
acquires ownership of the interface. This ownership is acquired through the use of the Global Lock
(described in Section 5.2.10.1, “Global Lock”), or is owned by default by OSPM as a non-shared resource
(and the Global Lock is not required for accessibility).

After ownership is acquired, the protocol always consists of the passing of a command byte. The
command byte will indicate the type of action to be taken. Following the command byte, zero or more
data bytes can be exchanged in either direction. The data bytes are defined according to the command
byte that is transferred.

The embedded controller also has two status bits that indicate whether the registers have been read.
This is used to ensure that the host or embedded controller has received data from the embedded
controller or host. When the host writes data to the command or data register of the embedded
controller, the input buffer flag (IBF) in the status register is set within 1 microsecond. When the
embedded controller reads this data from the input buffer, the input buffer flag is reset. When the
embedded controller writes data into the output buffer, the output buffer flag (OBF) in the status register
is set. When the host processor reads this data from the output buffer, the output buffer flag is reset.

12.8 Embedded Controller Description Information

Certain aspects of the embedded controller’s operation have OEM-definable values associated with
them. The following is a list of values that are defined in the software layers of the ACPI specification:

• Status flag indicating whether the interface requires the use of the Global Lock.
• Bit position of embedded controller interrupt in general-purpose status register.
• Decode address for command/status register.
• Decode address for data register.
UEFI Forum, Inc. January 2019 Page 759

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
• Base address and query value of any EC-SMBus controller.

For implementation details of the above listed information, see Section 12.11, “Defining an Embedded
Controller Device in ACPI Namespace,” and Section 12.12, “Defining an EC SMBus Host Controller in ACPI
Namespace.”

An embedded controller will require the inclusion of the GLK method in its ACPI namespace if potentially
contentious accesses to device resources are performed by non-OS code. See Section 6.5.7, “_GLK
(Global Lock)” for details about the _GLK method.

12.9 SMBus Host Controller Interface via Embedded Controller

This section specifies a standard interface that an ACPI-compatible OS can use to communicate with
embedded controller-based SMBus host controllers (EC-SMB-HC). This interface allows the host
processor (under control of OSPM) to manage devices on the SMBus. Typical devices residing on the
SMBus include Smart Batteries, Smart Battery Chargers, contrast/backlight control, and temperature
sensors.

The EC-SMB-HC interface consists of a block of registers that reside in embedded controller space. These
registers are used by software to initiate SMBus transactions and receive SMBus notifications. By using a
well-defined register set, OS software can be written to operate with any vendor’s embedded controller
hardware.

Certain SMBus segments have special requirements that the host controller filters certain SMBus
commands (for example, to prevent an errant application or virus from potentially damaging the battery
subsystem). This is most easily accomplished by implementing the host interface controller through an
embedded controller—as embedded controller can easily filter out potentially problematic commands.

Notice that an EC-SMB-HC interface will require the inclusion of the GLK method in its ACPI namespace if
potentially contentious accesses to device resources are performed by non-OS code. See Section 6.5.7,
“_GLK (Global Lock)” for details on using the _GLK method.

12.9.1 Register Description

The EC-SMBus host interface is a flat array of registers that are arranged sequentially in the embedded
controller address space.

12.9.1.1 Status Register, SMB_STS

This register indicates general status on the SMBus. This includes SMB-HC command completion status,
alarm received status, and error detection status (the error codes are defined later in this section). This
register is cleared to zeroes (except for the ALRM bit) whenever a new command is issued using a write
to the protocol (SMB_PRTCL) register. This register is always written with the error code before clearing
the protocol register. The SMB-HC query event (that is, an SMB-HC interrupt) is raised after the clearing
of the protocol register.
UEFI Forum, Inc. January 2019 Page 760

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
Note: OSPM must ensure the ALRM bit is cleared after it has been serviced by writing ‘00’ to the
SMB_STS register.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DONE ALRM RES STATUS

Where:

DONE: Indicates the last command has completed and no error.

ALRM: Indicates an SMBus alarm message has been received.

RES: Reserved

STATUS: Indicates SMBus communication status for one of the reasons listed in the following
table.

Table 12-357 SMBus Status Codes

Status
Code

Name Description

00h SMBus OK Indicates the transaction has been successfully completed.

07h SMBus Unknown Failure Indicates failure because of an unknown SMBus error.

10h SMBus Device Address Not
Acknowledged

Indicates the transaction failed because the slave device address
was not acknowledged.

11h SMBus Device Error
Detected

Indicates the transaction failed because the slave device signaled
an error condition.

12h SMBus Device Command
Access Denied

Indicates the transaction failed because the SMBus host does not
allow the specific command for the device being addressed. For
example, the SMBus host might not allow a caller to adjust the
Smart Battery Charger’s output.

13h SMBus Unknown Error Indicates the transaction failed because the SMBus host
encountered an unknown error.

17h SMBus Device Access
Denied

Indicates the transaction failed because the SMBus host does not
allow access to the device addressed. For example, the SMBus host
might not allow a caller to directly communicate with an SMBus
device that controls the system’s power planes.

18h SMBus Timeout Indicates the transaction failed because the SMBus host detected a
timeout on the bus.

19h SMBus Host Unsupported
Protocol

Indicates the transaction failed because the SMBus host does not
support the requested protocol.

1Ah SMBus Busy Indicates that the transaction failed because the SMBus host
reports that the SMBus is presently busy with some other
transaction. For example, the Smart Battery might be sending
charging information to the Smart Battery Charger.
UEFI Forum, Inc. January 2019 Page 761

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
All other error codes are reserved.

12.9.1.2 Protocol Register, SMB_PRTCL

This register determines the type of SMBus transaction generated on the SMBus. In addition to indicating
the protocol type to the SMB-HC, a write to this register initiates the transaction on the SMBus. Notice
that bit 7 of the protocol value is used to indicate whether packet error checking should be employed. A
value of 1 (one) in this bit indicates that PEC format should be used for the specified protocol, and a value
of 0 (zero) indicates the standard (non-PEC) format should be used.

Where:

PROTOCOL: 0x00 – Controller Not In Use

0x01 – Reserved

0x02 – Write Quick Command

0x03 – Read Quick Command

0x04 – Send Byte

0x05 – Receive Byte

0x06 – Write Byte

0x07 – Read Byte

0x08 – Write Word

0x09 – Read Word

0x0A – Write Block

0x0B – Read Block

0x0C – Process Call

0x0D –

Block Write-Block Read Process Call

For example, the protocol value of 0x09 would be used to communicate to a device that supported the
standard read word protocol. If this device also supported packet error checking for this protocol, a value
of 0x89 (read word with PEC) could optionally be used. See the SMBus specification for more information
on packet error checking.

1Fh SMBus PEC (CRC-8) Error Indicates that a Packet Error Checking (PEC) error occurred during
the last transaction.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

PEC PROTOCOL

Status
Code

Name Description
UEFI Forum, Inc. January 2019 Page 762

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
When OSPM initiates a new command such as write to the SMB_PRTCL register, the SMBus controller
first updates the SMB_STS register and then clears the SMB_PRTCL register. After the SMB_PRTCL
register is cleared, the host controller query value is raised.

All other protocol values are reserved.

12.9.1.3 Address Register, SMB_ADDR

This register contains the 7-bit address to be generated on the SMBus. This is the first byte to be sent on
the SMBus for all of the different protocols.

Where:

RES: Reserved

ADDRESS: 7-bit SMBus address. This address is not zero aligned (in other words, it is only a 7-bit
address (A6:A0) that is aligned from bit 1-7).

12.9.1.4 Command Register, SMB_CMD

This register contains the command byte that will be sent to the target device on the SMBus and is used
for the following protocols: send byte, write byte, write word, read byte, read word, process call, block
read and block write. It is not used for the quick commands or the receive byte protocol, and as such, its
value is a “don’t care” for those commands.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

COMMAND

Where:

12.9.1.5

COMMAND: Command byte to be sent to SMBus device.

Data Register Array, SMB_DATA[i], i=0-31

This bank of registers contains the remaining bytes to be sent or received in any of the different protocols
that can be run on the SMBus. The SMB_DATA[i] registers are defined on a per-protocol basis and, as
such, provide efficient use of register space.

Where:

DATA: One byte of data to be sent or received (depending upon protocol).

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ADDRESS (A6:A0) RES

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DATA
UEFI Forum, Inc. January 2019 Page 763

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
12.9.1.6 Block Count Register, SMB_BCNT

This register contains the number of bytes of data present in the SMB_DATA[i] registers preceding any
write block and following any read block transaction. The data size is defined on a per protocol basis.

12.9.1.7 Alarm Address Register, SMB_ALRM_ADDR

This register contains the address of an alarm message received by the host controller, at slave address
0x8, from the SMBus master that initiated the alarm. The address indicates the slave address of the
device on the SMBus that initiated the alarm message. The status of the alarm message is contained in
the SMB_ALRM_DATAx registers. Once an alarm message has been received, the SMB-HC will not receive
additional alarm messages until the ALRM status bit is cleared.

Where:

RES: Reserved

ADDRESS: Slave address (A6:A0) of the SMBus device that initiated the SMBus alarm message.

12.9.1.8 Alarm Data Registers, SMB_ALRM_DATA[0], SMB_ALRM_DATA[1]

These registers contain the two data bytes of an alarm message received by the host controller, at slave
address 0x8, from the SMBus master that initiated the alarm. These data bytes indicate the specific
reason for the alarm message, such that OSPM can take actions. Once an alarm message has been
received, the SMB-HC will not receive additional alarm messages until the ALRM status bit is cleared.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DATA (D7:D0)

Where:

DATA: Data byte received in alarm message.

The alarm address and alarm data registers are not read by OSPM until the alarm status bit is set. OSPM
driver then reads the 3 bytes, and clears the alarm status bit to indicate that the alarm registers are now
available for the next event.

12.9.2 Protocol Description

This section describes how to initiate the different protocols on the SMBus through the interface
described in Section 12.9.1, “Register Descriptions.” The registers should all be written with the
appropriate values before writing the protocol value that starts the SMBus transaction. All transactions
can be completed in one pass.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

RES BCNT

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ADDRESS (A6:A0) RES
UEFI Forum, Inc. January 2019 Page 764

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
12.9.2.1 Write Quick

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x02 to initiate the write quick protocol.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

12.9.2.2Read Quick

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x03 to initiate the read quick protocol.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

12.9.2.3 Send Byte

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x04 to initiate the send byte protocol, or 0x84 to initiate the send byte
protocol with PEC.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

12.9.2.4 Receive Byte

Data Sent:

SMB_ADDR: Address of SMBus device.
UEFI Forum, Inc. January 2019 Page 765

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
Data Returned:

SMB_DATA[0]: Data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

12.9.2.5 Write Byte

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0]: Data byte to be sent.

SMB_PRTCL: Write 0x06 to initiate the write byte protocol, or 0x86 to initiate the write byte
protocol with PEC.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

SMB_PRTCL: Write 0x05 to initiate the receive byte protocol, or 0x85 to initiate the receive byte
protocol with PEC.
UEFI Forum, Inc. January 2019 Page 766

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
12.9.2.6 Read Byte

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x07 to initiate the read byte protocol, or 0x87 to initiate the read byte
protocol with PEC.

Data Returned:

SMB_DATA[0]: Data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

12.9.2.7 Write Word

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0]: Low data byte to be sent.

SMB_DATA[1]: High data byte to be sent.

SMB_PRTCL: Write 0x08 to initiate the write word protocol, or 0x88 to initiate the write word
protocol with PEC.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

12.9.2.8 Read Word

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x09 to initiate the read word protocol, or 0x89 to initiate the read word
protocol with PEC.
UEFI Forum, Inc. January 2019 Page 767

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
Data Returned:

SMB_DATA[0]: Low data byte received.

SMB_DATA[1]: High data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

12.9.2.9 Write Block

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0-31]: Data bytes to write (1-32).

SMB_BCNT: Number of data bytes (1-32) to be sent.

SMB_PRTCL: Write 0x0A to initiate the write block protocol, or 0x8A to initiate the write block
protocol with PEC.

Data Returned:

SMB_PRTCL: 0x00 to indicate command completion.

SMB_STS: Status code for transaction.

12.9.2.10 Read Block

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x0B to initiate the read block protocol, or 0x8B to initiate the read block
protocol with PEC.

Data Returned:

SMB_BCNT: Number of data bytes (1-32) received.

SMB_DATA[0-31]: Data bytes received (1-32).

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.
UEFI Forum, Inc. January 2019 Page 768

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
12.9.2.11 Process Call

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0]: Low data byte to be sent.

SMB_DATA[1]: High data byte to be sent.

SMB_PRTCL: Write 0x0C to initiate the process call protocol, or 0x8C to initiate the process call
protocol with PEC.

Data Returned:

SMB_DATA[0]: Low data byte received.

SMB_DATA[1]: High data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

12.9.2.12 Block Write-Block Read Process Call

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0-31]: Data bytes to write (1-31).

SMB_BCNT: Number of data bytes (1-31) to be sent.

SMB_PRTCL: Write 0x0D to initiate the write block-read block process call protocol, or 0x8D to
initiate the write block-read block process call protocol with PEC.

Data Returned:

SMB_BCNT: Number of data bytes (1-31) received.

SMB_DATA[0-31]: Data bytes received (1-31).

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

Note: The following restrictions apply: The aggregate data length of the write and read blocks must not
exceed 32 bytes and each block (write and read) must contain at least 1 byte of data.

12.9.2.13 SMBus Register Set

The register set for the SMB-HC has the following format. All registers are 8 bit.
UEFI Forum, Inc. January 2019 Page 769

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
Table 12-358 SMB EC Interface

Location Register Name Description

BASE+0 SMB_PRTCL Protocol register

BASE+1 SMB_STS Status register

BASE+2 SMB_ADDR Address register

BASE+3 SMB_CMD Command register

BASE+4 SMB_DATA[0] Data register zero

BASE+5 SMB_DATA[1] Data register one

BASE+6 SMB_DATA[2] Data register two

BASE+7 SMB_DATA[3] Data register three

BASE+8 SMB_DATA[4] Data register four

BASE+9 SMB_DATA[5] Data register five

BASE+10 SMB_DATA[6] Data register six

BASE+11 SMB_DATA[7] Data register seven

BASE+12 SMB_DATA[8] Data register eight

BASE+13 SMB_DATA[9] Data register nine

BASE+14 SMB_DATA[10] Data register ten

BASE+15 SMB_DATA[11] Data register eleven

BASE+16 SMB_DATA[12] Data register twelve

BASE+17 SMB_DATA[13] Data register thirteen

BASE+18 SMB_DATA[14] Data register fourteen

BASE+19 SMB_DATA[15] Data register fifteen

BASE+20 SMB_DATA[16] Data register sixteen

BASE+21 SMB_DATA[17] Data register seventeen

BASE+22 SMB_DATA[18] Data register eighteen

BASE+23 SMB_DATA[19] Data register nineteen

BASE+24 SMB_DATA[20] Data register twenty

BASE+25 SMB_DATA[21] Data register twenty-one

BASE+26 SMB_DATA[22] Data register twenty-two

BASE+27 SMB_DATA[23] Data register twenty-three

BASE+28 SMB_DATA[24] Data register twenty-four

BASE+29 SMB_DATA[25] Data register twenty-five

BASE+30 SMB_DATA[26] Data register twenty-six

BASE+31 SMB_DATA[27] Data register twenty-seven
UEFI Forum, Inc. January 2019 Page 770

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
12.10 SMBus Devices

The embedded controller interface provides the system with a standard method to access devices on the
SMBus. It does not define the data and/or access protocol(s) used by any particular SMBus device.
Further, the embedded controller can (and probably will) serve as a gatekeeper to prevent accidental or
malicious access to devices on the SMBus.

Some SMBus devices are defined by their address and a specification that describes the data and the
protocol used to access that data. For example, the Smart Battery System devices are defined by a series
of specifications including:

• Smart Battery Data specification
• Smart Battery Charger specification
• Smart Battery Selector specification
• Smart Battery System Manager specification

The embedded controller can also be used to emulate (in part or totally) any SMBus device.

12.10.1 SMBus Device Access Restrictions

In some cases, the embedded controller interface will not allow access to a particular SMBus device.
Some SMBus devices can and do communicate directly between themselves. Unexpected accesses can
interfere with their normal operation and cause unpredictable results.

12.10.2 SMBus Device Command Access Restriction

There are cases where part of an SMBus device’s commands are public while others are private. Extraneous
attempts to access these commands might cause interference with the SMBus device’s normal operation.

The Smart Battery and the Smart Battery Charger are good examples of devices that should not have
their entire command set exposed. The Smart Battery commands the Smart Battery Charger to supply a
specific charging voltage and charging current. Attempts by anyone to alter these values can cause
damage to the battery or the mobile system. To protect the system’s integrity, the embedded controller
interface can restrict access to these commands by returning one of the following error codes: Device
Command Access Denied (0x12) or Device Access Denied (0x17).

BASE+32 SMB_DATA[28] Data register twenty-eight

BASE+33 SMB_DATA[29] Data register twenty-nine

BASE+34 SMB_DATA[30] Data register thirty

BASE+35 SMB_DATA[31] Data register thirty-one

BASE+36 SMB_BCNT Block Count Register

BASE+37 SMB_ALRM_ADDR Alarm address

BASE+38 SMB_ALRM_DATA[0] Alarm data register zero

BASE+39 SMB_ALRM_DATA[1] Alarm data register one

Location Register Name Description
UEFI Forum, Inc. January 2019 Page 771

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
12.11 Defining an Embedded Controller Device in ACPI Namespace

An embedded controller device is created using the named device object. The embedded controller’s
device object requires the following elements:

Table 12-359 Embedded Controller Device Object Control Methods

Object Description

_CRS Named object that returns the Embedded Controller’s current resource settings. Embedded
Controllers are considered static resources; hence only return their defined resources. The
embedded controller resides only in system I/O or memory space.

The first address region returned is the data port, and the second address region returned is
the status/command port for the embedded controller. If the EC is used on a HW-Reduced
ACPI platform, a third resource is required, which is the GPIO Interrupt Connection resource
for the EC's SCI Interrupt.

CRS is a standard device configuration control method defined in Section 6.2.2, “_CRS (Current
Resource Settings).”

_HID Named object that provides the Embedded Controller’s Plug and Play identifier. This value is
set to PNP0C09. _HID is a standard device configuration control method defined in
Section 6.1.5, “_HID (Hardware ID).”

_GPE Named Object that evaluates to either an integer or a package. If _GPE evaluates to an integer,
the value is the bit assignment of the SCI interrupt within the GPEx_STS register of a GPE block
described in the FADT that the embedded controller will trigger.

If _GPE evaluates to a package, then that package contains two elements. The first is an object
reference to the GPE Block device that contains the GPE register that will be triggered by the
embedded controller. The second element is numeric (integer) that specifies the bit
assignment of the SCI interrupt within the GPEx_STS register of the GPE Block device
referenced by the first element in the package. This control method is specific to the
embedded controller.

This method is not required on Hardware-reduced ACPI platforms.

12.11.1 Example: EC Definition ASL Code

Example ASL code that defines an embedded controller device is shown below:

Device(EC0) {
 // PnP ID
 Name(_HID, EISAID(“PNP0C09”))
 // Returns the “Current Resources” of EC
 Name(_CRS,
 ResourceTemplate(){ // port 0x62 and 0x66
 IO(Decode16, 0x62, 0x62, 0, 1),
 IO(Decode16, 0x66, 0x66, 0, 1)
 /* For HW-Reduced ACPI Platforms, include a GPIO Interrupt Connection
resource,
 e.g. GPIO controller #2, pin 43.
 GpioInt(Edge, ActiveHigh, ExclusiveAndWake,PullUp 0, “_SB.GPI2”){43}
UEFI Forum, Inc. January 2019 Page 772

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
 */
 }
)

 // Define that the EC SCI is bit 0 of the GP_STS
register
 Name(_GPE, 0) // Not required for HW-Reduced ACPI platforms

 OperationRegion(ECOR, EmbeddedControl, 0, 0xFF)
 Field(ECOR, ByteAcc, Lock, Preserve) {
 // Field definitions go here
 }
 }

12.12 Defining an EC SMBus Host Controller in ACPI Namespace

An EC-SMB-HC device is defined using the named device object. The EC-SMB- HC’s device object requires
the following elements:

Table 12-360 EC SMBus HC Device Objects

Object Description

_HID Named object that provides the EC-SMB- HC’s Plug and Play identifier. This value is be set to
ACPI0001. _HID is a standard device configuration control method defined in Section 6.1.5,
“_HID (Hardware ID).”

_EC Named object that evaluates to a WORD that defines the SMBus attributes needed by the
SMBus driver. _EC is the Embedded Controller Offset Query Control Method. The most
significant byte is the address offset in embedded controller space of the SMBus controller;
the least significant byte is the query value for all SMBus events.

12.12.1 Example: EC SMBus Host Controller ASL-Code

Example ASL code that defines an SMB-HC from within an embedded controller device is shown below:

Device(EC0)
{
 Name(_HID, EISAID("PNP0C09"))
 Name(_CRS, ResourceTemplate()
 {
 IO(Decode16, 0x62, 0x62, 0, 1), // Status port
 IO(Decode16, 0x66, 0x66, 0, 1) // command port
 })
 Name(_GPE, 0)

 Device (SMB0)
 {
 Name(_HID, "ACPI0001") // EC-SMB-HC
 Name(_UID, 0) // Unique device identifier
 Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30
UEFI Forum, Inc. January 2019 Page 773

ACPI Specification, Version 6.3 ACPI Embedded Controller Interface Specification
 :
 }
 Device (SMB1)
 {
 Name(_HID, "ACPI0001") // EC-SMB-HC
 Name(_UID, 1) // Unique device identifier
 Name(_EC, 0x8031) // EC offset 0x80, query bit 0x31
 :
 }
} // end of EC0.
UEFI Forum, Inc. January 2019 Page 774

ACPI Specification, Version 6.3 ACPI System Management Bus Interface Specification
13 ACPI System Management Bus Interface
Specification

This section describes the System Management Bus (SMBus) generic address space and the use of this
address space to access SMBus devices from AML.

Unlike other address spaces, SMBus operation regions are inherently non-linear, where each offset
within an SMBus address space represents a variable-sized (from 0 to 32 bytes) field. Given this
uniqueness, SMBus operation regions include restrictions on their field definitions and require the use of
an SMBus-specific data buffer for all transactions.

The SMBus interface presented in this section is intended for use with any hardware implementation
compatible with the SMBus specification. SMBus hardware is broadly classified as either non-EC–based
or EC-based. EC-based SMBus implementations comply with the standard register set defined in
Section 12, ACPI Embedded Controller Interface Specification.”

Non-EC SMBus implementations can employ any hardware interface and are typically used for their cost
savings when SMBus security is not required. Non–EC-based SMBus implementations require the
development of hardware specific drivers for each OS implementation. See Section 13.2.1, “Declaring
SMBus Host Controller Objects,” for more information.

Support of the SMBus generic address space by ACPI-compatible operating systems is optional. As such,
the Smart Battery System Implementer’s Forum (SBS-IF) has defined an SMBus interface based on a
standard set of control methods. This interface is documented in the SMBus Control Method Interface
Specification, available at “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading
"Smart Battery System Components and SMBus Specification"..

13.1 SMBus Overview

SMBus is a two-wire interface based upon the I²C protocol. The SMBus is a low-speed bus that provides
positive addressing for devices, as well as bus arbitration. For more information, refer to the complete
set of SMBus specifications published by the SBS-IF.

13.1.1 SMBus Slave Addresses

Slave addresses are specified using a 7-bit non-shifted notation. For example, the slave address of the
Smart Battery Selector device would be specified as 0x0A (1010b), not 0x14 (10100b) as might be found
in other documents. These two different forms of addresses result from the format in which addresses
are transmitted on the SMBus.

During transmission over the physical SMBus, the slave address is formatted in an 8-bit block with bits 7-
1 containing the address and bit 0 containing the read/write bit. ASL code, on the other hand, presents
the slave address simply as a 7-bit value making it the responsibility of the OS (driver) to shift the value if
needed. For example, the ASL value would have to be shifted left 1 bit before being written to the
SMB_ADDR register in the EC based SMBus as described in Section 12.9.1.3, “Address Register,
SMB_ADDR.”
UEFI Forum, Inc. January 2019 Page 775

ACPI Specification, Version 6.3 ACPI System Management Bus Interface Specification
13.1.2 SMBus Protocols

There are seven possible command protocols for any given SMBus slave device, and a device may use any
or all of the protocols to communicate. The protocols and associated access type indicators are listed
below. Notice that the protocols values are similar to those defined for the EC-based SMBus in
Section 12.9.1.2, “Protocol Register, SMB_PRTCL,” except that protocol pairs (for example, Read Byte,
Write Byte) have been joined.

Table 13-361 SMBus Protocol Types

Value Type Description

0x02 SMBQuick SMBus Read/Write Quick Protocol

0x04 SMBSendReceive SMBus Send/Receive Byte Protocol

0x06 SMBByte SMBus Read/Write Byte Protocol

0x08 SMBWord SMBus Read/Write Word Protocol

0x0A SMBBlock SMBus Read/Write Block Protocol

0x0C SMBProcessCall SMBus Process Call Protocol

0x0D SMBBlockProcessCall SMBus Write Block-Read Block Process Call Protocol

All other protocol values are reserved.

Notice that bit 7 of the protocol value is used by this interface to indicate to the SMB-HC whether or not
packet error checking (PEC) should be employed for a transaction. Packet error checking is described in
section 7.4 of the System Management Bus Specification, Version 1.1. This highly desirable capability
improves the reliability and robustness of SMBus communications.

The bit encoding of the protocol value is shown below. For example, the value 0x86 would be used to
specify the PEC version of the SMBus Read/Write Byte protocol.

Figure 13-69 Bit Encoding Example

Notice that bit 0 of the protocol value is always zero (even number hexadecimal values). In a manner
similar to the slave address, software that implements the SMBus interface is responsible for setting this
bit to indicate whether the transaction is a read (for example, Read Byte) or write (for example, Write
Byte) operation.

For example, software implanting this interface for EC-SMBus segments would set bit 0 for read
transactions. For the SMBByte protocol (0x06), this would result in the value 0x07 being placed into the
SMB_PRTCL register (or 0x87 if PEC is requested) for write transactions.

Bit 7 = Packet Error Checking

Bits 6:0 = Protocol

45 12367 0
UEFI Forum, Inc. January 2019 Page 776

ACPI Specification, Version 6.3 ACPI System Management Bus Interface Specification
13.1.3 SMBus Status Codes

The use of status codes helps AML determine whether an SMBus transaction was successful. In general, a
status code of zero indicates success, while a non-zero value indicates failure. The SMBus interface uses
the same status codes defined for the EC-SMBus (see Section 12.9.1.1, “Status Register, SMB_STS”).

13.1.4 SMBus Command Values

SMBus devices may optionally support up to 256 device-specific commands. For these devices, each
command value supported by the device is modeled by this interface as a separate virtual register.
Protocols that do not transmit a command value (for example, Read/Write Quick and Send/Receive Byte)
are modeled using a single virtual register (with a command value = 0x00).

13.2 Accessing the SMBus from ASL Code

The following sections demonstrate how to access and use the SMBus from ASL code.

13.2.1 Declaring SMBus Host Controller Objects

EC-based SMBus 1.0-compatible HCs should be modeled in the ACPI namespace as described in
Section 12.11, “Defining an Embedded Controller SMBus Host Controller in ACPI Namespace.” An
example definition is given below. Using the HID value “ACPI0001” identifies that this SMB-HC is
implemented on an embedded controller using the standard SMBus register set defined in Section 12.9,
SMBus Host Controller Interface via Embedded Controller.”

Device (SMB0)
{
 Name(_HID, "ACPI0001") // EC-based SMBus 1.0 compatible Host Controller
 Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30
 :
}

EC-based SMBus 2.0-compatible host controllers should be defined similarly in the namespace as follows:

Device (SMB0)
{
 Name(_HID, "ACPI0005") // EC-based SMBus 2.0 compatible Host Controller
 Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30
 :
}

Non–EC-based SMB-HCs should be modeled in a manner similar to the EC-based SMBus HC. An example
definition is given below. These devices use a vendor-specific hardware identifier (HID) to specify the
type of SMB-HC (do not use “ACPI0001” or “ACPI0005”). Using a vendor-specific HID allows the correct
software to be loaded to service this segment’s SMBus address space.
UEFI Forum, Inc. January 2019 Page 777

ACPI Specification, Version 6.3 ACPI System Management Bus Interface Specification
Device(SMB0)
{
 Name(_HID, "<Vendor-Specific HID>") // Vendor-Specific HID
 :
}

Regardless of the type of hardware, some OS software element (for example, the SMBus HC driver) must
register with OSPM to support all SMBus operation regions defined for the segment. This software allows
the generic SMBus interface defined in this section to be used on a specific hardware implementation by
translating between the conceptual (for example, SMBus address space) and physical (for example,
process of writing/reading registers) models. Because of this linkage, SMBus operation regions must be
defined immediately within the scope of the corresponding SMBus device.

13.2.2 Declaring SMBus Devices

The SMBus, as defined by the SMBus 1.0 Specification, is not an enumerable bus. As a result, an SMBus
1.0-compatible SMB-HC driver cannot discover child devices on the SMBus and load the appropriate
corresponding device drivers. As such, SMBus 1.0-compatible devices are declared in the ACPI
namespace, in like manner to other motherboard devices, and enumerated by OSPM.

The SMBus 2.0 specification adds mechanisms enabling device enumeration on the bus while providing
compatibility with existing devices. ACPI defines and associates the “ACPI0005” HID value with an EC-
based SMBus 2.0-compatible host controller. OSPM will enumerate SMBus 1.0-compatible devices when
declared in the namespace under an SMBus 2.0-compatible host controller.

The responsibility for the definition of ACPI namespace objects, required by an SMBus 2.0-compatible
host controller driver to enumerate non–bus-enumerable devices, is relegated to the Smart Battery
System Implementers Forum. See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the
heading "Smart Battery System Components and SMBus Specification"..

Starting in ACPI 2.0, _ADR is used to associate SMBus devices with their lowest SMBus slave address.

13.2.3 Declaring SMBus Operation Regions

Each SMBus operation region definition identifies a single SMBus slave address. Operation regions are
defined only for those SMBus devices that need to be accessed from AML. As with other regions, SMBus
operation regions are only accessible via the Field term (see Section 13.2.2, “Declaring SMBus Fields”).

This interface models each SMBus device as having a 256-byte linear address range. Each byte offset
within this range corresponds to a single command value (for example, byte offset 0x12 equates to
command value 0x12), with a maximum of 256 command values. By doing this, SMBus address spaces
appear linear and can be processed in a manner similar to the other address space types.

The syntax for the OperationRegion term (from Section 19.6.98, “OperationRegion (Declare Operation
Region]”) is described below.

OperationRegion (
 RegionName, // NameString
 RegionSpace, // RegionSpaceKeyword
 Offset, // TermArg=>Integer
 Length // TermArg=>Integer
)

UEFI Forum, Inc. January 2019 Page 778

ACPI Specification, Version 6.3 ACPI System Management Bus Interface Specification
Where:

• RegionName specifies a name for this slave device (for example, “SBD0”).
• RegionSpace must be set to SMBus (operation region type value 0x04).
• Offset is a word-sized value specifying the slave address and initial command value offset for

the target device. The slave address is stored in the high byte and the command value offset is
stored in the low byte. For example, the value 0x4200 would be used for an SMBus device
residing at slave address 0x42 with an initial command value offset of zero (0).

• Length is set to the 0x100 (256), representing the maximum number of possible command
values, for regions with an initial command value offset of zero (0). The difference of these two
values is used for regions with non-zero offsets. For example, a region with an Offset value of
0x4210 would have a corresponding Length of 0xF0 (0x100 minus 0x10).

For example, the Smart Battery Subsystem (illustrated below) consists of the Smart Battery Charger at
slave address 0x09, the Smart Battery System Manager at slave address 0x0A, and one or more batteries
(multiplexed) at slave address 0x0B. (Notice that Figure 13-2 represents the logical connection of a Smart
Battery Subsystem. The actual physical connections of the Smart Battery(s) and the Smart Battery
Charger are made through the Smart Battery System Manager.) All devices support the Read/Write Word
protocol. Batteries also support the Read/Write Block protocol.

Figure 13-70 Smart Battery Subsystem Devices

The following ASL code shows the use of the OperationRegion term to describe these SMBus devices:

Device (SMB0)
{
 Name(_HID, "ACPI0001") // EC-SMBus Host Controller
 Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30

OperationRegion(SBC0, SMBus, 0x0900, 0x100) // Smart Battery Charger
OperationRegion(SBS0, SMBus, 0x0A00, 0x100) // Smart Battery Selector
OperationRegion(SBD0, SMBus, 0x0B00, 0x100) // Smart Battery Device(s)
 :
}

Notice that these operation regions in this example are defined within the immediate context of the
‘owning’ EC-SMBus device. Each definition corresponds to a separate slave address (device), and happens
to use an initial command value offset of zero (0).

EC

'SMB0'

Smart Battery
System Manager

[0x0A]

[0x0B]
Smart Battery

Device(s)

[0x09]
Smart Battery

Charger
UEFI Forum, Inc. January 2019 Page 779

ACPI Specification, Version 6.3 ACPI System Management Bus Interface Specification
13.2.4 Declaring SMBus Fields

As with other regions, SMBus operation regions are only accessible via the Field term. Each field element
is assigned a unique command value and represents a virtual register on the targeted SMBus device.

The syntax for the Field term (from Section 19.6.40, “Event (Declare Event Synchronization Object]”) is
described below.

Field(
 RegionName, // NameString=>OperationRegion
 AccessType, // AccessTypeKeyword
 LockRule, // LockRuleKeyword
 UpdateRule // UpdateRuleKeyword – ignored
) {FieldUnitList}

Where:

• RegionName specifies the operation region name previously defined for the device.
• AccessType must be set to BufferAcc. This indicates that access to field elements will be done

using a region-specific data buffer. For this access type, the field handler is not aware of the
data buffer’s contents which may be of any size. When a field of this type is used as the source
argument in an operation it simply evaluates to a buffer. When used as the destination,
however, the buffer is passed bi-directionally to allow data to be returned from write
operations. The modified buffer then becomes the execution result of that operation. This is
slightly different than the normal case in which the execution result is the same as the value
written to the destination. Note that the source is never changed, since it could be a read only
object (see Section 13.2.5, “Declaring an SMBus Data Buffer” and Section 19.2.5, “Opcode
Terms”).

• LockRule indicates if access to this operation region requires acquisition of the Global Lock for
synchronization. This field should be set to Lock on system with firmware that may access the
SMBus, and NoLock otherwise.

• UpdateRule is not applicable to SMBus operation regions since each virtual register is accessed
in its entirety. This field is ignored for all SMBus field definitions.

SMBus operation regions require that all field elements be declared at command value granularity. This
means that each virtual register cannot be broken down to its individual bits within the field definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. This limitation
is imposed both to simplify the SMBus interface and to maintain consistency with the physical model
defined by the SMBus specification.

SMBus protocols are assigned to field elements using the AccessAs term within the field definition. The
syntax for this term (from Section 19.2.3, “ASL Root and SecondaryTerms”) is described below.

AccessAs(
 AccessType, //AccessTypeKeyword
 AccessAttribute //Nothing | ByteConst | AccessAttribKeyword
)

Where:

• AccessType must be set to BufferAcc.
UEFI Forum, Inc. January 2019 Page 780

ACPI Specification, Version 6.3 ACPI System Management Bus Interface Specification
• AccessAttribute indicates the SMBus protocol to assign to command values that follow this
term. See Section 13.1.2, “SMBus Protocols,” for a listing of the SMBus protocol types and
values.

An AccessAs term must appear as the first entry in a field definition to set the initial SMBus protocol for
the field elements that follow. A maximum of one SMBus protocol may be defined for each field element.
Devices supporting multiple protocols for a single command value can be modeled by specifying multiple
field elements with the same offset (command value), where each field element is preceded by an
AccessAs term specifying an alternate protocol.

For example, the register at command value 0x08 for a Smart Battery device (illustrated below)
represents a word value specifying the battery temperature (in degrees Kelvin), while the register at
command value 0x20 represents a variable-length (0 to 32 bytes) character string specifying the name of
the company that manufactured the battery.

Figure 13-71 Smart Battery Device Virtual Registers

The following ASL code shows the use of the OperationRegion, Field, AccessAs, and Offset terms to
represent these Smart Battery device virtual registers:

OperationRegion(SBD0, SMBus, 0x0B00, 0x0100)
Field(SBD0, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBWord) // Use the SMBWord protocol for the following…
 MFGA, 8, // ManufacturerAccess() [command value 0x00]
 RCAP, 8, // RemainingCapacityAlarm() [command value 0x01]
 Offset(0x08) // Skip to command value 0x08…
 BTMP, 8, // Temperature() [command value 0x08]
 Offset(0x20) // Skip to command value 0x20…
 AccessAs(BufferAcc, SMBBlock) // Use the SMBBlock protocol for the following…
 MFGN, 8, // ManufacturerName() [command value 0x20]
 DEVN, 8 // DeviceName() [command value 0x21]
}

RemainingCapacityAlarm()

Smart Battery Device

0x00 (Word)

0x01 (Word)

0x08 (Word)

0x20 (Block)

0x21 (Block)

:

Byte 0 Byte 1

Byte 0 Byte 1

Byte 0 Byte 1

Byte 0 ... Byte 31

Byte 0 ... Byte 31

:

Command Value Register

ManufacturerAccess()

Temperature()

ManufacturerName()

DeviceName()

:

UEFI Forum, Inc. January 2019 Page 781

ACPI Specification, Version 6.3 ACPI System Management Bus Interface Specification
Notice that command values are equivalent to the field element’s byte offset (for example, MFGA=0,
RCAP=1, BTMP=8). The AccessAs term indicates which SMBus protocol to use for each command value.

13.2.5 Declaring and Using an SMBus Data Buffer

The use of a data buffer for SMBus transactions allows AML to receive status and data length values, as
well as making it possible to implement the Process Call protocol. As previously mentioned, the
BufferAcc access type is used to indicate to the field handler that a region-specific data buffer will be
used.

For SMBus operation regions, this data buffer is defined as a fixed-length 34-byte buffer that, if
represented using a ‘C’-styled declaration, would be modeled as follows:

typedef struct
{
 BYTE Status; // Byte 0 of the data buffer
 BYTE Length; // Byte 1 of the data buffer
 BYTE[32] Data; // Bytes 2 through 33 of the data buffer
}

Where:

• Status (byte 0) indicates the status code of a given SMBus transaction. See Section 13.1.3,
“SMBus Status Code,” for more information.

• Length (byte 1) specifies the number of bytes of valid data that exists in the data buffer. Use of
this field is only defined for the Read/Write Block protocol, where valid Length values are 0
through 32. For other protocols—where the data length is implied by the protocol—this field is
reserved.

• Data (bytes 33-2) represents a 32-byte buffer, and is the location where actual data is stored.

For example, the following ASL shows the use of the SMBus data buffer for performing transactions to a
Smart Battery device. This code is based on the example ASL presented in Section 13.2.4, “Declaring
SMBus Fields,” which lists the operation region and field definitions for the Smart Battery device.

/* Create the SMBus data buffer */
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, OB1) // OB1 = Status (Byte)
CreateByteField(BUFF, 0x01, OB2) // OB2 = Length (Byte)
CreateWordField(BUFF, 0x02, OB3) // OB3 = Data (Word – Bytes 2 & 3)
CreateField(BUFF, 0x10, 256, OB4) // OB4 = Data (Block – Bytes 2-33)

/* Read the battery temperature */
Store(BTMP, BUFF) // Invoke Read Word transaction
If(LEqual(OB1, 0x00)) // Successful?
{

 // OB3 = Battery temperature in 1/10th degrees
Kelvin
}

/* Read the battery manufacturer name */
UEFI Forum, Inc. January 2019 Page 782

ACPI Specification, Version 6.3 ACPI System Management Bus Interface Specification
Store(MFGN, BUFF) // Invoke Read Block transaction
If(LEqual(OB1, 0x00)) // Successful?
{
 // OB2 = Length of the manufacturer name
 // OB4 = Manufacturer name (as a counted string)
}

Notice the use of the CreateField primitives to access the data buffer’s sub-elements (Status, Length, and
Data), where Data (bytes 33-2) is ‘typecast’ as both word (OB3) and block (OB4) data.

The example above demonstrates the use of the Store() operator to invoke a Read Block transaction to
obtain the name of the battery manufacturer. Evaluation of the source operand (MFGN) results in a 34-
byte buffer that gets copied by Store() to the destination buffer (BUFF).

Capturing the results of a write operation, for example to check the status code, requires an additional
Store() operator, as shown below.

Store(Store(BUFF, MFGN), BUFF) // Invoke Write Block transaction
If(LEqual(OB1, 0x00)) {…} // Transaction successful?

Note that the outer Store() copies the results of the Write Block transaction back into BUFF. This is the
nature of BufferAcc’s bi-directionality described in Section 13.2.4, “Declaring SMBus Fields” It should be
noted that storing (or parsing) the result of an SMBus Write transaction is not required although useful
for ascertaining the outcome of a transaction.

SMBus Process Call protocols require similar semantics due to the fact that only destination operands are
passed bi-directionally. These transactions require the use of the double-Store() semantics to properly
capture the return results.

13.3 Using the SMBus Protocols

This section provides information and examples on how each of the SMBus protocols can be used to
access SMBus devices from AML.

13.3.1 Read/Write Quick (SMBQuick)

The SMBus Read/Write Quick protocol (SMBQuick) is typically used to control simple devices using a
device-specific binary command (for example, ON and OFF). Command values are not used by this
protocol and thus only a single element (at offset 0) can be specified in the field definition. This protocol
transfers no data.

The following ASL code illustrates how a device supporting the Read/Write Quick protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBQuick) // Use the SMBus Read/Write Quick
protocol
 FLD0, 8 // Virtual register at command value 0.
}

/* Create the SMBus data buffer */
UEFI Forum, Inc. January 2019 Page 783

ACPI Specification, Version 6.3 ACPI System Management Bus Interface Specification
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, OB1) // OB1 = Status (Byte)

/* Signal device (e.g. OFF) */
Store(FLD0, BUFF) // Invoke Read Quick transaction
If(LEqual(OB1, 0x00)) {…} // Successful?

/* Signal device (e.g. ON) */
Store(BUFF, FLD0) // Invoke Write Quick transaction

In this example, a single field element (FLD0) at offset 0 is defined to represent the protocol’s read/write
bit. Access to FLD0 will cause an SMBus transaction to occur to the device. Reading the field results in a
Read Quick, and writing to the field results in a Write Quick. In either case data is not transferred—access
to the register is simply used as a mechanism to invoke the transaction.

13.3.2 Send/Receive Byte (SMBSendReceive)

The SMBus Send/Receive Byte protocol (SMBSendReceive) transfers a single byte of data. Like Read/
Write Quick, command values are not used by this protocol and thus only a single element (at offset 0)
can be specified in the field definition.

The following ASL code illustrates how a device supporting the Send/Receive Byte protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBSendReceive) // Use the SMBus Send/Receive Byte
protocol
 FLD0, 8 // Virtual register at command value 0.
}

// Create the SMBus data buffer

Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x02, DATA) // DATA = Data (Byte)

// Receive a byte of data from the device
Store(FLD0, BUFF) // Invoke a Receive Byte transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Received byte…
}

// Send the byte ‘0x16’ to the device
Store(0x16, DATA) // Save 0x16 into the data buffer
Store(BUFF, FLD0) // Invoke a Send Byte transaction
UEFI Forum, Inc. January 2019 Page 784

ACPI Specification, Version 6.3 ACPI System Management Bus Interface Specification
In this example, a single field element (FLD0) at offset 0 is defined to represent the protocol’s data byte.
Access to FLD0 will cause an SMBus transaction to occur to the device. Reading the field results in a
Receive Byte, and writing to the field results in a Send Byte.

13.3.3 Read/Write Byte (SMBByte)

The SMBus Read/Write Byte protocol (SMBByte) also transfers a single byte of data. But unlike Send/
Receive Byte, this protocol uses a command value to reference up to 256 byte-sized virtual registers.

The following ASL code illustrates how a device supporting the Read/Write Byte protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBByte) // Use the SMBus Read/Write Byte protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

 // Create the SMBus data buffer
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x02, DATA) // DATA = Data (Byte)

// Read a byte of data from the device using command value 1
Store(FLD1, BUFF) // Invoke a Read Byte transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Byte read from FLD1…
}

// Write the byte ‘0x16’ to the device using command value 2
Store(0x16, DATA) // Save 0x16 into the data buffer
Store(BUFF, FLD2) // Invoke a Write Byte transaction

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading FLD1 results in a Read Byte with a command value of 1, and writing to FLD2
results in a Write Byte with command value 2.

13.3.4 Read/Write Word (SMBWord)

The SMBus Read/Write Word protocol (SMBWord) transfers 2 bytes of data. This protocol also uses a
command value to reference up to 256 word-sized virtual device registers.

The following ASL code illustrates how a device supporting the Read/Write Word protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
UEFI Forum, Inc. January 2019 Page 785

ACPI Specification, Version 6.3 ACPI System Management Bus Interface Specification
{
 AccessAs(BufferAcc, SMBWord) // Use the SMBus Read/Write Word
protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

// Create the SMBus data buffer
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

// Read two bytes of data from the device using command value 1
Store(FLD1, BUFF) // Invoke a Read Word transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Word read from FLD1…
}
// Write the word ‘0x5416’ to the device using command value 2
Store(0x5416, DATA) // Save 0x5416 into the data buffer
Store(BUFF, FLD2) // Invoke a Write Word transaction

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading FLD1 results in a Read Word with a command value of 1, and writing to FLD2
results in a Write Word with command value 2.

Notice that although accessing each field element transmits a word (16 bits) of data, the fields are listed
as 8 bits each. The actual data size is determined by the protocol. Every field element is declared with a
length of 8 bits so that command values and byte offsets are equivalent.

13.3.5 Read/Write Block (SMBBlock)

The SMBus Read/Write Block protocol (SMBBlock) transfers variable-sized (0-32 bytes) data. This
protocol uses a command value to reference up to 256 block-sized virtual registers.

The following ASL code illustrates how a device supporting the Read/Write Block protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBBlock) // Use the SMBus Read/Write Block
protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

UEFI Forum, Inc. January 2019 Page 786

ACPI Specification, Version 6.3 ACPI System Management Bus Interface Specification
// Create the SMBus data buffer
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, SIZE) // SIZE = Length (Byte)
CreateField(BUFF, 0x10, 256, DATA) // DATA = Data (Block)

// Read block data from the device using command value 1
Store(FLD1, BUFF) // Invoke a Read Block transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // SIZE = Size (number of bytes) of the block data read from FLD1…
 // DATA = Block data read from FLD1…
}

// Write the block ‘TEST’ to the device using command value 2
Store(“TEST”, DATA) // Save “TEST” into the data buffer
Store(4, SIZE) // Length of valid data in the data buffer
Store(BUFF, FLD2) // Invoke a Write Word transaction

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading FLD1 results in a Read Block with a command value of 1, and writing to FLD2
results in a Write Block with command value 2.

13.3.6 Word Process Call (SMBProcessCall)

The SMBus Process Call protocol (SMBProcessCall) transfers 2 bytes of data bi-directionally (performs a
Write Word followed by a Read Word as an atomic transaction). This protocol uses a command value to
reference up to 256 word-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBProcessCall) // Use the SMBus Process Call protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

 // Create the SMBus data buffer
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

// Process Call with input value ‘0x5416’ to the device using command value 1
Store(0x5416, DATA) // Save 0x5416 into the data buffer
Store(Store(BUFF, FLD1), BUFF) // Invoke a Process Call transaction
If(LEqual(STAT, 0x00)) // Successful?
{

UEFI Forum, Inc. January 2019 Page 787

ACPI Specification, Version 6.3 ACPI System Management Bus Interface Specification
 // DATA = Word returned from FLD1…
}

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading or writing FLD1 results in a Process Call with a command value of 1. Notice
that unlike other protocols, Process Call involves both a write and read operation in a single atomic
transaction. This means that the Data element of the SMBus data buffer is set with an input value before
the transaction is invoked, and holds the output value following the successful completion of the
transaction.

13.3.7 Block Process Call (SMBBlockProcessCall)

The SMBus Block Write-Read Block Process Call protocol (SMBBlockProcessCall) transfers a block of data
bi-directionally (performs a Write Block followed by a Read Block as an atomic transaction). The
maximum aggregate amount of data that may be transferred is limited to 32 bytes. This protocol uses a
command value to reference up to 256 block-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMbus device at slave address
0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBBlockProcessCall) // Use the Block Process Call
protocol
 FLD0, 8, // Virtual register representing a command value of 0
 FLD1, 8 // Virtual register representing a command value of 1
}

// Create the SMBus data buffer as BUFF
Name(BUFF, Buffer(34)()) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, SIZE) // SIZE = Length (Byte)
CreateField(BUFF, 0x10, 256, DATA) // Data (Block)

// Process Call with input value "ACPI" to the device using command value 1

Store("ACPI", DATA) // Fill in outgoing data
Store(8, SIZE) // Length of the valid data
Store(Store(BUFF, FLD1), BUFF) // Execute the PC
if (LEqual(STAT, 0x00)) // Test the status
{
 // BUFF now contains information returned from PC
 // SIZE now equals size of data returned
}

UEFI Forum, Inc. January 2019 Page 788

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
14 Platform Communications Channel (PCC)

The platform communication channel is a generic mechanism for OSPM to communicate with an entity in
the platform (e.g. a platform controller, or a Baseboard Management Controller (BMC)). Neither the
entity that OSPM communicates with, nor any aspects of the information passed back and forth is
defined in this section. That information is defined by the actual interface that that employs PCC register
address space as the communication channel.

PCC defines a new address space type (PCC Space, 0xA), which is implemented as one or more
independent communications channels, or subspaces.

This chapter is arranged as follows:

• Section 14.1 and Section 14.2 provide reference information covering the PCCT table, and
expected data structures used with PCC.

• Section 14.4, Section 14.5, and Section 14.6 describe how communications takes place
between the OSPM and the platform over PCC.

The interface is described in the following ACPI system description table.

14.1 Platform Communications Channel Table

Table 14-362 Platform Communications Channel Table (PCCT)

Field
Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘PCCT’ Signature for the Platform Communications Channel
Table.

 Length 4 4 Length, in bytes, of the entire PCCT.

 Revision 1 8 2

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the PCCT, the table ID is the manufacturer model ID.

 OEM Revision 4 24 OEM revision of PCCT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Flags 4 36 Platform Communications Channel Global flags, described in
Table 14-363.

Reserved 8 40 Reserved
UEFI Forum, Inc. January 2019 Page 789

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
14.1.1 Platform Communications Channel Global Flags

Table 14-363 Platform Communications Channel Global Flags

PCC Global Flags
Bit
Length

Bit
Offset

Description

Platform Interrupt 1 0 If set, the platform is capable of generating an interrupt to
indicate completion of a command.

Reserved 31 1 Must be zero.

14.1.2 Platform Communications Channel Subspace Structures

PCC Subspaces are described by the PCC Subspace structure in the PCCT table. The subspace ID of a PCC
subspace is its index in the array of subspace structures, starting with subspace 0. All subspaces have a
common header, followed by a set of type-specific fields:

Table 14-364 Generic PCC Subspace Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 The type of subspace.

Length 1 1 Length of the subspace structure, in bytes. The next subspace
structure begins length bytes after the start of this one.

Type specific fields variable 2 See specific subspace types for more details

This specification defines the following subspaces:

• Type 0, the Generic Communications Subspace,
• Types 1 to 2, HW-Reduced Communications Subspaces,
• Types 3 and 4 are extended PCC subspaces.

All other subspace types are reserved.

14.1.3 Generic Communications Subspace Structure (type 0)

Table 14-365 PCC Subspace Structure type 0 (Generic Communications Subspace)

PCC Subspace
Structure[n]

(n = subspace ID)

— 48 A list of Platform Communications Channel Subspace structures
for this platform. This structure is described in the following
section. At most 256 subspaces are supported.

Field
Byte
Length

Byte
Offset

Description

Type 1 0 0 (Generic Communications Subspace)

Length 1 1 62

Reserved 6 2 Reserved
UEFI Forum, Inc. January 2019 Page 790

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
Note: Inaccurate values for the Maximum Periodic Access Rate and Minimum Request Turnaround Time
fields can result in punitive side effects for features that rely on the PCC interface. The Platform
should report accurate values that allow for maximum channel efficiency while maintaining
maximum channel stability.

Note: The Maximum Periodic Access Rate is used by OSPM to determine the maximum rate for periodic
evaluation of commands. Infrequent, event driven commands are not restricted by the maximum
periodic access rate.

14.1.4 HW-Reduced Communications Subspace Structure (type 1)
The HW-Reduced Communications Subspace is defined in Table 14-366. It is intended for use on HW-
Reduced ACPI Platforms, which do not support the SCI. Aside from the interrupt change, and the allowed
use of the Functional Fixed HW address space for the Doorbell Register, this subspace is identical to the
Generic Communications Subspace described in Section 14.2 and Section 14.4.

Table 14-366 PCC Subspace Structure type 1 (HW-Reduced Communications Subspace)

Base Address 8 8 Base Address of the shared memory range, described in
Table 14-369.

Length 8 16 Length of the memory range. Must be > 8.

Doorbell Register 12 24 Contains the processor relative address, represented in Generic
Address Structure format, of the PCC doorbell.

Note: Only System I/O space and System Memory space are
valid for values for Address_Space_ID.

Doorbell Preserve 8 36 Contains a mask of bits to preserve when writing the doorbell
register.

Doorbell Write 8 44 Contains a mask of bits to set when writing the doorbell
register.

Nominal Latency 4 52 Expected latency to process a command, in microseconds.

Maximum Periodic
Access Rate

4 56 The maximum number of periodic requests that the subspace
channel can support, reported in commands per minute. 0
indicates no limitation.

Minimum Request
Turnaround Time

2 60 The minimum amount of time that OSPM must wait after the
completion of a command before issuing the next command, in
microseconds.

Field Byte
Length

Byte
Offset

Description

Type 1 0 1 (HW-Reduced Communications Subspace)

Length 1 1 62

Platform Interrupt 4 2 GSIV of the interrupt used for the PCC platform interrupt for
this Subspace.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 791

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
Platform Interrupt
Flags

1 6 Bit [2-7] Reserved

Bit [1] Platform interrupt mode

1: Interrupt is Edge triggered

0: Interrupt is Level triggered

Bit [0] Platform interrupt polarity

1: Interrupt is Active low

0: Interrupt is Active high

Reserved 1 7 Reserved

Base Address 8 8 Base Address of the shared memory range, described in
Table 14-369.

Length 8 16 Length of the memory range. Must be > 8.

Doorbell Register 12 24 Contains the processor relative address, represented in Generic
Address Structure format, of the PCC doorbell.

Note: Only the System I/O, System Memory, and Functional
Fixed Hardware spaces are valid for values for
Address_Space_ID.

Doorbell Preserve 8 36 Contains a mask of bits to preserve when writing the doorbell
register.

Doorbell Write 8 44 Contains a mask of bits to set when writing the doorbell
register.

Nominal Latency 4 52 Expected latency to process a command, in microseconds.

Maximum Periodic
Access Rate

4 56 The maximum number of periodic requests that the subspace
channel can support, reported in commands per minute. 0
indicates no limitation.

Minimum Request
Turnaround Time

2 60 The minimum amount of time that OSPM must wait after the
completion of a command before issuing the next command, in
microseconds.

Field Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 792

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
Note: Inaccurate values for the Maximum Periodic Access Rate and Minimum Request Turnaround Time
fields can result in punitive side effects for features that rely on the PCC interface. The Platform
should report accurate values that allow for maximum channel efficiency while maintaining
maximum channel stability.

Note: The Maximum Periodic Access Rate is used by OSPM to determine the maximum rate for periodic
evaluation of commands. Infrequent, event driven commands are not restricted by the maximum
periodic access rate.

Note: Type 1 subspaces do not support a level triggered platform interrupt as no method is provided to
clear the interrupt. Where level interrupts are required, type 2 or type 3 subspaces should be
used.

14.1.5 HW-Reduced Communications Subspace Structure (type 2)

The HW-Reduced Communications Subspace is defined in Table 14-367. It is intended for use on HW-
Reduced ACPI Platforms, which require read-modify-write sequence to acknowledge Platform Interrupt.
Aside from three Platform Ack fields at the bottom of the table, this subspace is identical to the HW-
Reduced Communications Subspace Structure (type 1) described above.

Table 14-367 PCC Subspace Structure type 2 (HW-Reduced Communications Subspace)

Field Byte
Length

Byte
Offset

Description

Type 1 0 2 (HW-Reduced Communications Subspace)

Length 1 1 90

Platform Interrupt 4 2 GSIV of the interrupt used for the PCC platform interrupt for
this Subspace.

Platform Interrupt
Flags

1 6 Bit [2-7] Reserved

Bit [1] Platform interrupt mode

1: Interrupt is Edge triggered

0: Interrupt is Level triggered

Bit [0] Platform interrupt polarity

1: Interrupt is Active low

0: Interrupt is Active high

Reserved 1 7 Reserved

Base Address 8 8 Base Address of the shared memory range, described in
Section 14-369.

Length 8 16 Length of the memory range. Must be > 8.
UEFI Forum, Inc. January 2019 Page 793

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
Note: Inaccurate values for the Maximum Periodic Access Rate and Minimum Request Turnaround Time
fields can result in punitive side effects for features that rely on the PCC interface. The Platform
should report accurate values that allow for maximum channel efficiency while maintaining
maximum channel stability.

Note: The Maximum Periodic Access Rate is used by OSPM to determine the maximum rate for periodic
evaluation of commands. Infrequent, event driven commands are not restricted by the maximum
periodic access rate

14.1.6 Extended PCC subspaces (types 3 and 4)

Extended PCC communication subspaces are of two types:

Type 3 Master subspace: used by the OSPM to communicate with the platform.

Type 4 Slave subspace: Used by the platform to send asynchronous notifications to the OSPM.

Master subspaces are not substantially different to type 0,1, or 2 subspaces, the most notable difference
is that a type 3 master subspace does not support asynchronous notifications. Slave subspaces, type 4,

Doorbell Register 12 24 Contains the processor relative address, represented in Generic
Address Structure format, of the PCC doorbell.

Note: Only the System I/O, System Memory, and Functional
Fixed Hardware spaces are valid for values for
Address_Space_ID.

Doorbell Preserve 8 36 Contains a mask of bits to preserve when writing the doorbell
register.

Doorbell Write 8 44 Contains a mask of bits to set when writing the doorbell
register.

Nominal Latency 4 52 Expected latency to process a command, in microseconds.

Maximum Periodic
Access Rate

4 56 The maximum number of periodic requests that the subspace
channel can support, reported in commands per minute. 0
indicates no limitation.

Minimum Request
Turnaround Time

2 60 The minimum amount of time that OSPM must wait after the
completion of a command before issuing the next command, in
microseconds.

Platform Interrupt
Ack Register

12 62 Contains the processor relative address, represented in Generic
Address Structure format, of the platform interrupt ack
register.

Note: Only the System I/O, System Memory, and Functional
Fixed Hardware spaces are valid for values for
Address_Space_ID.

Platform Interrupt
Ack Preserve

8 74 Contains a mask of bits to preserve when writing the platform
interrupt ack register.

Platform Interrupt
Ack Write

8 82 Contains a mask of bits to set when writing the platform
interrupt ack register.

Field Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 794

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
provide those notifications, and cannot be used by the OSPM to send messages to the platform. Together
a master and slave pair create a bidirectional interface between the OSPM and the platform.

The format for PCCT entries describing master (type 3), and slave (type 4) subspaces is shown in the
following table.

Table 14-368 PCC Subspace Structure type 3 and type 4, master and slave respectively

Field Byte
Length

Byte
Offset

Description

Type 1 0 3 – Master subspace

4 - Slave subspace
Length 1 1 170
Platform Interrupt 4 2 GSIV of an interrupt triggered by the platform:

• For master subspaces (type 3) this is raised when a command
is completed on this subspace.

• For slave subspaces (type 4) this is raised when platform
sends a notification.

For a master subspace this field is ignored if the
platform interrupt flag (table 14-137) of the PCCT is
set to zero. If a slave subspace is present in the
PCCT, then the global Platform Interrupt flag
(Table 14-363) must be set to 1.

Note that if interrupts are edge triggered, then each
subspace must have its own unique interrupt. If
interrupt are level, a GSIV may be shared by multiple
subspaces, but each one must have unique Platform
interrupt Ack preserve and Ack Set masks (see
below)

Platform Interrupt
Flags

1 6 Bit 7:2Reserved

Bit 1:Platform interrupt mode
• Set to 1 if interrupt is Edge triggered

• Set to 0 if interrupt Level triggered

• Bit 0: Platform interrupt polarity

• Set to 1 if interrupt is Active low

• Set to 0 if interrupt is Active high
Reserved 1 7 Reserved must be zero
Base Address 8 16 Base Address of the shared memory range, described in

Table 14-372.
Length 4 24 Length of the memory range. Must be >= 16.
Doorbell Register 12 28 Contains the processor relative address, represented in Generic

Address Structure (GAS) format, of the PCC doorbell.
Note: Only the System I/O, System Memory, and Functional
Fixed Hardware spaces are valid values for
Address_Space_ID

For slave subspaces this field is optional, if not present the field
should just contain zeros.

Doorbell Preserve 8 40 Contains a mask of bits to preserve when writing the
doorbell register.

Doorbell Write 8 48 Contains a mask of bits to set when writing the doorbell register.
 Nominal Latency 4 56 Expected latency to process a command, in microseconds.

This field is only relevant for master subspaces.
UEFI Forum, Inc. January 2019 Page 795

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
Maximum Periodic
Access Rate

4 60 The maximum number of periodic requests that the subspace
subspace can support, reported in commands per minute. 0
indicates no limitation. This field is only relevant for master
subspaces.

Minimum Request
Turnaround Time

4 64 The minimum amount of time that OSPM must wait after the
completion of a command before issuing the next command, in
microseconds. This field is only relevant for master subspaces.

Platform interrupt Ack
Register

12 68 Contains the processor relative address, represented in Generic
Address Structure (GAS) format, of the platform interrupt
acknowledge register.

Note: Only the System I/O, System Memory, and Functional
Fixed Hardware spaces are valid for values for
Address_Space_ID.

If the subspace does not support interrupts or the interrupt is
edge driven the register may be omitted. A value of 0x0 on all
12 bytes of the GAS structure indicates the register is not
present.

If the subspace does support interrupts, and these are level, this
register must be supplied. And is used to clear the interrupt by
using a read, modify, write sequence.

Platform interrupt Ack
Preserve

8 80 Contains a mask of bits to preserve when writing the platform
interrupt ack register.

Platform interrupt Ack
Set

8 88 Contains a mask of bits to set when writing the platform interrupt
ack register.

Reserved 8 96 Reserved must be zero
Command complete
check register
address

12 104 Contains the processor relative address, represented in Generic
Address Structure (GAS) format, of the Command complete
check register.
Note: Only the System I/O, System Memory, and Functional
Fixed Hardware spaces are valid for values for
Address_Space_ID

Command complete
check mask

8 116 Mask to determine whether a command is complete, using the
command complete check register. A command is complete if
the value of the register when combined through a logical AND
with this mask, yields a non-zero value

Command complete
update register
address

12 128 Contains the processor relative address, represented in Generic
Address Structure (GAS) format, of the command complete
update register.
Note: Only the System I/O, System Memory, and Functional
Fixed Hardware spaces are valid for values for
Address_Space_ID

Command complete
update preserve
mask

8 136 Mask of bits to preserve in the command complete update
register, when updating command complete in this subspace.

Field Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 796

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
Note: Inaccurate values for the Maximum Periodic Access Rate and Minimum Request Turnaround Time
fields can result in punitive side effects for features that rely on the PCC interface. The Platform should
report accurate values that allow for maximum channel efficiency while maintaining maximum channel
stability.

Slave subspaces may be used by the platform to send asynchronous notifications to the OSPM. Slave
subspace entries in the PCCT share the same format as master subspaces, with the following
modifications:

• Type is set to 4 – slave subspace
• The doorbell may be zero and if so must be ignored by the OSM. If present, the platform can

request that the OSPM writes to the doorbell after it has processed a notification.

A slave subspace is associated with a master, that is both a master/slave pair will connect the OSPM to
the same processing entity in the platform.

If a slave subspace is included in the PCCT then the global Plaform Interrupt flag (Table 14-363) must be
set to 1.

Command complete
update set mask

8 142 Mask of bits to set in the command complete update register,
when updating command complete in this subspace.

For master subspaces the mask must indicate how to clear the
command complete bit.

For slave subspaces the mask must indicate how set the
command complete bit

Error status register 12 150 Contains the processor relative address, represented in Generic
Address Structure (GAS) format, of the Error status register.

This field is ignored by the OSPM on slave channels
Note: Only the System I/O, System Memory, and Functional
Fixed Hardware spaces are valid for values for
Address_Space_ID
Note: this register can be the same as the command
complete check register.

Error status mask 8 162 The mask contained here can be combined through a logical
AND with content of the Error status register to ascertain
whether an error occurred in the transmission of the command
through the subspace.

The logical NOT of this mask is be used to clear the error. The
inverted mask is combined through a logical AND with the
content of the Error status register, and the result is written back
into said register.

This field is ignored for slave channels.

Field Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 797

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
14.2 Generic Communications Channel Shared Memory Region

Table 14-369 Generic Communications Channel Shared Memory Region

Field Byte
Length

Byte
Offset

Description

Signature 4 0 The PCC signature. The signature of a subspace is computed by
a bitwise-or of the value 0x50434300 with the subspace ID. For
example, subspace 3 has the signature 0x50434303.

Command 2 4 PCC command field, described in Table 14-370.

Status 2 6 PCC status field, described in Table 14-371.

Communication
Space

— 8 Memory region for reading/writing PCC data. The size of this
region is 8 bytes smaller than the size of the shared memory
region (specified in the General Communications Subspace
structure). The first byte of this field represents PCC address 0.

14.2.1 Generic Communications Channel Command Field

For channels of type 0 to 2, this 16-bit field is used to select one of the defined commands for the
platform to perform. OSPM is responsible for populating this field before each command invocation.

Table 14-370 Generic Communications Channel Command Field

Field Bit
Length

Bit
Offset

Description

Command 8 0 Command code to execute. Command codes are application
specific and defined by the consumer of this interface.

Reserved 7 8 Reserved.

Notify on
completion

1 15 If set, the platform should generate a Doorbell interrupt at the
completion of this command. The interrupt is an SCI for a Type 0
subspace structure, or as described by the Doorbell Interrupt field
for Type 1 and Type 2 subspace structures.

If the Doorbell bit is not set in the PCC global flags, this bit must be
cleared.

14.2.2 Generic Communications Channel Status Field

Table 14-371 Generic Communications Channel Status Field

Field Bit
Length

Bit
Offset

Description

Command
Complete

1 0 If set, the platform has completed processing the last command.
UEFI Forum, Inc. January 2019 Page 798

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
Note: OSPM (either in an Interrupt handler or via polling) is required to detect that the Command
Complete bit has been set and to clear it before issuing another command. While waiting for this
bit to be set, OSPM must not modify any portion of the shared memory region.

Note: The Platform Interrupt bit is required to be cleared in OSPM’s Interrupt handler so that a new
event can be detected.

14.3 Extended PCC Subspace Shared Memory Region

Table 14-372 Master Slave Communications Channel Shared Memory Region

Field Byte
Length

Byte
Offset

Description

The 32-bit command field is used to select one of the defined commands for the platform to perform. On
master subspaces the OSPM is responsible for populating this field, alongside the command’s payload,
length and flags. For slave subspaces, the OSPM is responsible for interpreting the command and payload
fields to ascertain the nature of the notification that was sent. The format for the flags field is shown in
Table 14-373

Table 14-373 Master Slave Communications Channel Flags

Platform interrupt 1 1 If set, the platform has issued a Platform Interrupt to this
subspace. OSPM must check the Command Complete and
Platform Notification fields to determine the cause of the
Interrupt.

Error 1 2 If set, an error occurred executing the last command.

Platform
Notification

1 3 If set, indicates the platform is issuing an asynchronous
notification to OSPM.

Reserved 12 4 Reserved.

Signature 4 0 The PCC signature. The signature of a subspace is computed
by a bitwise-or of the value 0x50434300 with the subspace ID.
For example, subspace 3 has the signature 0x50434303.

Flags 4 4 See Table 14-373 below.

Length 4 8 Length of payload being transmitted including command field.

Command 4 12 Command being sent over the subspace.

Communication
subspace

-- 16 Memory region for reading/writing PCC data. The maximum
size of this region is 16 bytes smaller than the size of the
shared memory region (specified in the Master slave
Communications Subspace structure). When a command is
sent to or received from the platform, the size of the data in this
space will be Length (expressed above) minus the 4 bytes
taken up by the command.

Field Bit
Length

Bit
Offset

Description
UEFI Forum, Inc. January 2019 Page 799

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
14.4 Doorbell Protocol

Other than on slave subspaces, the doorbell is used by OSPM to notify the platform that the shared
memory region contains a valid command that is ready to be processed. A doorbell consists of a
hardware register that is accessed via I/O or memory mapped I/O, abstracted in the doorbell field of the
PCC subspace structure. OSPM rings the doorbell by performing a read/modify/write cycle on the
specified register, preserving and setting the bits specified in the preserve and write mask of the PCC
subspace structure.

Figure 14-72 Communication flow of the doorbell protocol

Figure 14-72 illustrates the steps that the OPSM takes to send message to the platform over a PCC
subspace.

Notify on completion 1 0 For master subspaces this field indicates to the platform that it
must generate an interrupt when the command has completed.

• Setting this bit to 1 when sending a command, requests that
completion of the command is signaled via the platform
interrupt.

• Setting it to 0 when sending a command, requests that no
interrupt is asserted when the command is completed.

For slave subspaces, if the doorbell field of the slave subspace
is non zero, and this flag is set, the OSPM must access the
doorbell once it has processed the notification.

This bit is ignored by the platform if the Platform Interrupt field
of the PCC flags (Table 14-363) is set to zero.

Reserved 31 1
UEFI Forum, Inc. January 2019 Page 800

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
1. Firstly the OSPM checks that there is no command pending completion on the subspace,
indicating that the subspace is free for use. This is done by checking that the command
complete bit is set in the status field of the subspace. If the bit is set the subspace is free for
use, and the shared memory associated with the subspace is exclusively owned by the OSPM.

2. The OSPM places a command into the shared memory of the subspace to update the flags,
length, command and payload fields (see Table 14-369). If the platform indicates support for
platform interrupts in the PCCT (see Table 14-363), then the OSPM can request that the
platform generate an interrupt once it has completed processing the command. This is
requested by setting the Notify on completion bit in the flags (see Table 14-363 and Table 14-
373).

3. The OSPM then clears the command complete bit. This step transfers ownership of the shared
memory to the platform.

4. OSPM rings the doorbell by performing a read/modify/write cycle on the specified register,
preserving and setting the bits specified in the preserve and write mask of the PCC subspace
structure.

The management of the command complete bit differs slightly between subspaces of types 0-2 and those
of type 3. For the former, the command complete bit is in a status register which follows a specific format
described in Section 14.2.2. Type 3 subspaces still use a single command complete bit, however allow the
platform to dictate the location and format of the register holding it. Therefore, PCCT structures
describing type 3 subspaces use masks and an address to describe how to set the bit. Equally, masks are
used for describing how to clear the bit. For these subspaces to check if the command complete bit is set,
the OSPM combines the content of command complete check register, through a bitwise AND, with the
command complete check mask. A non-zero value indicates the command complete bit is set. Clearing
the command complete bit is done through the command complete update register, which can differ in
address from the command complete check register. In this case the content of the update register is
combined through a bitwise AND with the preserve mask, the result is then combined through a bitwise
inclusive OR with the set mask, and that result is written back to the update register.

For subspaces of type 1-3, the command complete bit must be initialized to one, command complete set,
prior to OSPM sending a command. On type 0 channels, whether the platform sets command complete
when the subspace is initialized is implementation defined. On these subspaces, the OSPM does not have
to check for command complete to be set before sending the first command.

Figure 14-72 illustrates the steps the platform takes when it receives the command:

5. For robustness the platform might optionally check that command complete bit is clear

6. Processes the command

7. Sets the command complete bit

8. Triggers the platform interrupt indicated by the GSIV of the subspace’s PCCT entry (Table 14-
368). This will only occur if an interrupt has been requested in step 2, and interrupts are
supported by the platform. A platform can indicate support for interrupts through the Platform
interrupt flag (Table 14-363).

OSPM can detect command completion either by polling on the command complete bit or via a platform
interrupts. When the OSPM detects that the command has completed it proceeds with the following
steps:

9. If necessary clears platform interrupt. This step applies if:
• Platform interrupts are supported by the platform on command completion (Table 14-363)
UEFI Forum, Inc. January 2019 Page 801

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
• The interrupt was requested by the OSPM through the Notify on completion flag (see Table 14-
369 and Table 14-373).

• The interrupt is described as being a level triggered through the Platform Interrupt flags, and
Platform Interrupt Ack register address, and associated masks are provided by the subspace
PCCT entry (see table entries for types 2 and 3).

10. If detecting command completion via interrupt, optionally checks command is complete

11. Processes the command response

To ensure correct operation, it is necessary to ensure that all memory updates performed by the OSPM in
step 2 are observable by the platform before step 3 completes. Equally all memory updates performed by
the platform in step 6 must be observable by the OSPM before step 7 completes.

Note: For subspace types 0 to 2, all accesses to the Status Field must be made using interlocked
operations, by both entities sharing the subspace. Types 3-4 avoid this requirement. This
requirement will be removed for subspace types 0 to 2 as part of deprecation of platform async
notifications in a future spec revision – see Section 14.5.

14.5 Platform Notification

The following sections describe platform notifications on subspace types 0-2 and types 3-4.

14.5.1 Platform Notification for Subspace Types 0, 1 and 2

The doorbell protocol is a synchronous notification from OSPM to the platform to process a command. If
the platform wants to notify OSPM of an event asynchronously, it may set the Platform Interrupt and
Platform Notification status bits and issue a Platform Interrupt. OSPM will service the Interrupt, clear the
Platform Interrupt and Platform Notification bits, and service the platform notification. The meaning of
the platform notification and the steps required to service it are defined by the individual components
utilizing the PCC interface.

The platform must wait until OSPM has issued a consumer defined command that serves to notify the
platform that OSPM is ready to service Platform Notifications. The command is subspace specific and
may not be supported by all subspaces. Platform Notifications must be used in conjunction with an
interrupt. Polling for Platform Notifications is not supported.

The platform may not modify any portion of the shared memory region other than the status field when
issuing a platform notification.

Platform notifications for subspace types 0, 1, and 2 will be deprecated in a future revision of the
specification. Implementers requiring the platform be able to send asynchronous notifications to OSPM
should use master/slave subspaces.

Note: All accesses to the Status Field must be made using interlocked operations, by both entities
sharing the subspace. This requirement will be removed for subspace types 0 to 2 as part of
deprecation of platform async notifications in a future spec revision.

14.5.2 Platform Notification for slave PCC subspaces (type 4)

Master and subspaces only allow synchronous communication from the OSPM to the platform, and do
not use the platform notification mechanism provided for subspaces of types 0 to 2. Instead a master
subspace can be paired with a slave subspace, type 4, which is specifically provided for platform to OSPM
communications.
UEFI Forum, Inc. January 2019 Page 802

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
Figure 14-73 Communication flow for notifications on slave subspaces

Like type 3 master subspaces, type 4 slave subspaces include a command complete bit. Slave subspaces
are owned by the OSPM by default, and therefore it must set the set the command complete bit when it
is ready to receive notifications from the platform.

The flow of communications for a notification is illustrated in Figure 14-73. As can be seen the
communication flow is very similar to that of a master subspace, shown in Figure 14-72, except that the
roles of the platform and the OSPM are reversed. The steps are as follows:

1. Firstly, the platform checks that there no command pending completion on the subspace,
indicating that the subspace is free for use. This is done by checking that the command
complete bit is set in the status field of the subspace. If the bit is set the subspace is free for
use, and the shared memory associated with the subspace is exclusively owned by the
platform.

2. The platform places a notification command into the shared memory in the subspace, updating
the flags, length, command and payload fields (see Table 14-372). The platform can request the
OSPM rings the doorbell once it has completed processing the notification command by setting
the Generate Signal bit in the flags (see Table 14-373).

3. The platform then clears the command complete bit. This transfers ownership of the shared
memory to the OSPM.

4. The platform raises the platform interrupt indicated by the GSIV of the slave subspace.

When the OSPM receives the interrupt it executes the following steps:
UEFI Forum, Inc. January 2019 Page 803

ACPI Specification, Version 6.3 Platform Communications Channel (PCC)
5. Clears the platform interrupt. This is required if the interrupt is described as being a level
triggered through the Platform Interrupt flags, and Platform Interrupt Ack register address, and
associated masks are provided by the subspace PCCT entry (see Table 14-368).

6. Optionally checks the command complete bit is clear.

7. Processes the notification command.

8. Sets the command complete bit using the command complete update register and masks.

9. Rings the doorbell. This is required if the doorbell ring was requested by the platform in step 2
above. This also requires that the PCCT entry for the subspace has a non-zero doorbell register
address.

The platform can check whether a notification has been processed by the OSPM either by polling the
command complete bit, or where supported through receiving a doorbell interrupt from the OSPM.
When the platform detects that the notification has been processed by the OSPM, the platform takes the
following steps:

10. If polling check command complete is set. If using a doorbell this step is optional.

11. Processes the command response

The platform must ensure that any writes in step 2, are observable by the OSPM application processors
before writes in step 3. Similarly, the OSPM must ensure that any writes in step 7 are observable by the
platform before step 8 completes.

Individual protocols that use PCC define the meaning of notifications.

14.6 Referencing the PCC address space

An individual PCC register may be referenced by the Generic Address Structure or in a Generic Register
Descriptor by using the Address Space ID PCC (0xA). When using the PCC address space, the Access Size
field is redefined to Subspace ID, and identifies which PCC subspace the descriptor refers to.

As an example, the following resource template refers to the field occupying bits 8 through 15 at address
0x30 in PCC subspace 9:

ResourceTemplate()
{
Register (
PCC, //AddressSpaceKeyword
8, //RegisterBitWidth
8, //RegisterBitOffset
0x30, //RegisterAddress
9 //AccessSize (subspace ID)
)
}

Note that the PCC address space may not be used in any resource template or register unless the
register/resource field explicitly allows the use of the PCC address space.
UEFI Forum, Inc. January 2019 Page 804

ACPI Specification, Version 6.3 System Address Map Interfaces
15 System Address Map Interfaces

This section explains how an ACPI-compatible system conveys its memory resources/type mappings to
OSPM. There are three ways for the system to convey memory resources /mappings to OSPM. The first is
an INT 15 BIOS interface that is used in IA-PC–based systems to convey the system’s initial memory map.
UEFI enabled systems use the UEFI GetMemoryMap() boot services function to convey memory
resources to the OS loader. These resources must then be conveyed by the OS loader to OSPM. See the
UEFI Specification for more information on UEFI services.

Lastly, if memory resources may be added or removed dynamically, memory devices are defined in the
ACPI Namespace conveying the resource information described by the memory device (see Section 9.13,
“Memory Devices”).

ACPI defines the following address range types.

Table 15-374 Address Range Types

Value Mnemonic Save in S4 Description

1 AddressRangeMemory Yes This range is available RAM usable by the operating
system.

2 AddressRangeReserved No This range of addresses is in use or reserved by the
system and is not to be included in the allocatable
memory pool of the operating system's memory
manager.

3 AddressRangeACPI Yes ACPI Reclaim Memory. This range is available RAM
usable by the OS after it reads the ACPI tables.

4 AddressRangeNVS Yes ACPI NVS Memory. This range of addresses is in use
or reserved by the system and must not be used by
the operating system. This range is required to be
saved and restored across an NVS sleep.

5 AddressRangeUnusable No This range of addresses contains memory in which
errors have been detected. This range must not be
used by OSPM.

6 AddressRangeDisabled No This range of addresses contains memory that is
not enabled. This range must not be used by
OSPM.

7 AddressRangePersistentM
emory

No OSPM must comprehend this memory as having
non-volatile attributes and handle distinct from
conventional volatile memory. The memory region
supports byte-addressable non-volatility.

NOTE: Extended Attributes (see Table 15-378) for
the memory reported using
AddressRangePersistentMemory should set Bit [0]
to 1.
UEFI Forum, Inc. January 2019 Page 805

ACPI Specification, Version 6.3 System Address Map Interfaces
Platform runtime firmware can use the AddressRangeReserved address range type to block out various
addresses as not suitable for use by a programmable device. Some of the reasons a platform runtime
firmware would do this are:

• The address range contains system ROM.
• The address range contains RAM in use by the ROM.
• The address range is in use by a memory-mapped system device.
• The address range is, for whatever reason, unsuitable for a standard device to use as a device

memory space.
• The address range is within an NVRAM device where reads and writes to memory locations are

no longer successful, that is, the device was worn out.

Note: OSPM will not save or restore memory reported as AddressRangeReserved,
AddressRangeUnusable, AddressRangeDisabled, or AddressRangePersistentMemory when
transitioning to or from the S4 sleeping state.

Note: Platform boot firmware must ensure that contents of memory that is reported as
AddressRangePersistentMemory is retained after a system reset or a power cycle event.

15.1 INT 15H, E820H - Query System Address Map

This interface is used in real mode only on IA-PC-based systems and provides a memory map for all of the
installed RAM, and of physical memory ranges reserved by the BIOS. The address map is returned
through successive invocations of this interface; each returning information on a single range of physical
addresses. Each range includes a type that indicates how the range of physical addresses is to be treated
by the OSPM.

If the information returned from E820 in some way differs from INT-15 88 or INT-15 E801, the
information returned from E820 supersedes the information returned from INT-15 88 or INT-15 E801.
This replacement allows the BIOS to return any information that it requires from INT-15 88 or INT-15
E801 for compatibility reasons. For compatibility reasons, if E820 returns any AddressRangeACPI or
AddressRangeNVS memory ranges below 16 MiB, the INT-15 88 and INT-15 E801 functions must return
the top of memory below the AddressRangeACPI and AddressRangeNVS memory ranges.

8 - 11 Undefined No Reserved for future use. OSPM must treat any
range of this type as if the type returned was
AddressRangeReserved.

12 OEM defined No An OS should not use a memory type in the vendor-
defined range because collisions may occur
between different vendors.

13 to
0xEFFFF
FFF

Undefined No Reserved for future use. OSPM must treat any
range of this type as if the type returned was
AddressRangeReserved.

0xF0000
000 to
0xFFFFF
FFF

OEM defined No An OS should not use a memory type in the vendor-
defined range because collisions may occur
between different vendors.

Value Mnemonic Save in S4 Description
UEFI Forum, Inc. January 2019 Page 806

ACPI Specification, Version 6.3 System Address Map Interfaces
The memory map conveyed by this interface is not required to reflect any changes in available physical
memory that have occurred after the BIOS has initially passed control to the operating system. For
example, if memory is added dynamically, this interface is not required to reflect the new system
memory configuration.

Table 15-375 Input to the INT 15h E820h Call

Register Contents Description

EAX Function
Code

E820h

EBX Continuatio
n

Contains the continuation value to get the next range of physical memory. This
is the value returned by a previous call to this routine. If this is the first call, EBX
must contain zero.

ES:DI Buffer
Pointer

Pointer to an Address Range Descriptor structure that the BIOS fills in.

ECX Buffer Size The length in bytes of the structure passed to the BIOS. The BIOS fills in the
number of bytes of the structure indicated in the ECX register, maximum, or
whatever amount of the structure the BIOS implements. The minimum size that
must be supported by both the BIOS and the caller is 20 bytes. Future
implementations might extend this structure.

EDX Signature ‘SMAP’ Used by the BIOS to verify the caller is requesting the system map
information to be returned in ES:DI.

Table 15-376 Output from the INT 15h E820h Call

Register Contents Description

CF Carry Flag Non-Carry – Indicates No Error

EAX Signature ‘SMAP.’ Signature to verify correct BIOS revision.

ES:DI Buffer
Pointer

Returned Address Range Descriptor pointer. Same value as on input.

ECX Buffer Size Number of bytes returned by the BIOS in the address range descriptor. The
minimum size structure returned by the BIOS is 20 bytes.

EBX Continuation Contains the continuation value to get the next address range descriptor. The
actual significance of the continuation value is up to the discretion of the BIOS.
The caller must pass the continuation value unchanged as input to the next
iteration of the E820 call in order to get the next Address Range Descriptor. A
return value of zero means that this is the last descriptor.

Note: the BIOS can also indicate that the last descriptor has already been
returned during previous iterations by returning the carry flag set. The caller
will ignore any other information returned by the BIOS when the carry flag is
set.

Table 15-377 Address Range Descriptor Structure

Offset in Bytes Name Description
UEFI Forum, Inc. January 2019 Page 807

ACPI Specification, Version 6.3 System Address Map Interfaces
The BaseAddrLow and BaseAddrHigh together are the 64-bit base address of this range. The base address
is the physical address of the start of the range being specified.

The LengthLow and LengthHigh together are the 64-bit length of this range. The length is the physical
contiguous length in bytes of a range being specified.

The Type field describes the usage of the described address range as defined in Table 15-374.

Table 15-378 Extended Attributes for Address Range Descriptor Structure

Bit Mnemonic Description

0 Reserved Reserved, must be set to 1.

2:1 Reserved Reserved, must be set to 0.

3 AddressRangeErrorLog If set, the address range descriptor represents memory used for
logging hardware errors.

31:4 Reserved Reserved for future use.

Note: Bit [1] and [2] were deprecated as of ACPI 6.1. Bit [3] is used only on PC-AT BIOS systems to
pinpoint the error log in memory. On UEFI-based systems, either UEFI Hardware Error Record
HwErrRec#### runtime UEFI variable interface or the Error Record Serialization Actions 0xD, 0xE
and 0xF for the APEI ERST interface must be implemented for the error logs.

15.2 E820 Assumptions and Limitations

• The platform boot firmware returns address ranges describing baseboard memory.
• The platform boot firmware does not return a range description for the memory mapping of

PCI devices, ISA Option ROMs, and ISA Plug and Play cards because the OS has mechanisms
available to detect them.

• The platform boot firmware returns chip set-defined address holes that are not being used by
devices as reserved.

• Address ranges defined for baseboard memory-mapped I/O devices, such as APICs, are
returned as reserved.

• All occurrences of the system platform boot firmware are mapped as reserved, including the
areas below 1 MB, at 16 MB (if present), and at end of the 4-GB address space.

• Standard PC address ranges are not reported. For example, video memory at A0000 to BFFFF
physical addresses are not described by this function. The range from E0000 to EFFFF is specific
to the baseboard and is reported as it applies to that baseboard.

0 BaseAddrLow Low 32 Bits of Base Address

4 BaseAddrHigh High 32 Bits of Base Address

8 LengthLow Low 32 Bits of Length in Bytes

12 LengthHigh High 32 Bits of Length in Bytes

16 Type Address type of this range

20 Extended Attributes See Table 15-378
UEFI Forum, Inc. January 2019 Page 808

ACPI Specification, Version 6.3 System Address Map Interfaces
• All of lower memory is reported as normal memory. The OS must handle standard RAM
locations that are reserved for specific uses, such as the interrupt vector table (0:0) and the
platform boot firmware data area (40:0).

15.3 UEFI GetMemoryMap() Boot Services Function

EFI enabled systems use the UEFI GetMemoryMap() boot services function to convey memory
resources to the OS loader. These resources must then be conveyed by the OS loader to OSPM.

The GetMemoryMap interface is only available at boot services time. It is not available as a run-time
service after OSPM is loaded. The OS or its loader initiates the transition from boot services to run-time
services by calling ExitBootServices(). After the call to ExitBootServices() all system
memory map information must be derived from objects in the ACPI Namespace.

The GetMemoryMap()interface returns an array of UEFI memory descriptors. These memory
descriptors define a system memory map of all the installed RAM, and of physical memory ranges
reserved by the firmware. Each descriptor contains a type field that dictates how the physical address
range is to be treated by the operating system. Table 15-379 defines the mapping from UEFI memory
types (see UEFI Specification) to ACPI address range types (see Table 15-374) that:

• Platform boot firmware shall follow if describing the memory range in both UEFI and legacy
BIOS modes; and

• an OS loader should use if it conveys that information to the OS using an ACPI E820h system
address map table.

Table 15-379 UEFI Memory Types and mapping to ACPI address range types

Type Mnemonic ACPI Address Range Type

0 EfiReservedMemoryType AddressRangeReserved

1 EfiLoaderCode AddressRangeMemory

2 EfiLoaderData AddressRangeMemory

3 EfiBootServicesCode AddressRangeMemory

4 EfiBootServicesData AddressRangeMemory

5 EfiRuntimeServiceCode AddressRangeReserved

6 EfiRuntimeServicesData AddressRangeReserved

7 EfiConventionalMemory AddressRangeMemory

8 EfiUnusableMemory AddressRangeReserved

9 EfiACPIReclaimMemory AddressRangeACPI

10 EfiACPIMemoryNVS AddressRangeNVS

11 EfiMemoryMappedIO AddressRangeReserved

12 EfiMemoryMappedIOPortSpace AddressRangeReserved

13 EfiPalCode AddressRangeReserved

14 EfiPersistentMemory AddressRangePersistentMemory
UEFI Forum, Inc. January 2019 Page 809

ACPI Specification, Version 6.3 System Address Map Interfaces
Note: Table 15-379 applies to system firmware that supports legacy BIOS mode plus UEFI mode, and OS
loaders.

15.4 UEFI Assumptions and Limitations

• The firmware returns address ranges describing the current system memory configuration.
• The firmware does not return a range description for the memory mapping of PCI devices, ISA

Option ROMs, and ISA Plug and Play cards because the OS has mechanisms available to detect
them.

• The firmware does not return a range description for address space regions that are not
backed by physical hardware except those mentioned above. Regions that are backed by
physical hardware, but are not supposed to be accessed by the OS, must be returned as
reserved. Herein 'reserved' is the definition of the term as noted by the ACPI specification as
ACPI address range reserved. OS may use addresses of memory ranges that are not described
in the memory map at its own discretion

• Address ranges defined for baseboard memory-mapped I/O devices, such as APICs, are
returned as reserved.

• All occurrences of the system firmware are mapped as reserved, including the areas below 1
MB, at 16 MB (if present), and at end of the 4-GB address space. This can include PAL code on
Itanium™ Processor Family (IPF)- based platforms.

• Standard PC address ranges are not reported. For example, video memory at A0000 to BFFFF
physical addresses are not described by this function. The range from E0000 to EFFFF is specific
to the baseboard and is reported as it applies to that baseboard.

• All of lower memory is reported as normal memory. The OS must handle standard RAM
locations that are reserved for specific uses, such as the interrupt vector table (0:0) and the
platform boot firmware data area (40:0). To preserve backward compatibility, platform should
avoid using persistent memory to materialize the lower memory. If persistent memory is used
for lower memory, platform boot firmware must report the lower memory address range using
AddressRangeMemory and must not report using AddressRangePersistentMemory.

• EFI contains descriptors for memory mapped I/O and memory mapped I/O port space to allow
for virtual mode calls to UEFI run-time functions. The OS must never use these regions.

15.5 Example Address Map

This sample address map (for an Intel processor-based system) describes a machine that has 128 MiB of
RAM, 640 KiB of base memory and 127 MiB of extended memory. The base memory has 639 KiB available
for the user and 1 KiB for an extended BIOS data area. A 4-MiB Linear Frame Buffer (LFB) is based at 12
MiB. The memory hole created by the chip set is from 8 MiB to 16 MiB. Memory-mapped APIC devices

15 to
0x6FFFFFFF

Reserved. AddressRangeReserved

0x70000000
to 0x7FFFFFFF

Reserved for OEM used An OS should not use a memory type in the
vendor-defined range because collisions
may occur between different vendors.

0x80000000
to 0xFFFFFFFF

Reserved for use by UEFI OS loaders that
are provided by operating system vendors

OSV defined

Type Mnemonic ACPI Address Range Type
UEFI Forum, Inc. January 2019 Page 810

ACPI Specification, Version 6.3 System Address Map Interfaces
are in the system. The I/O Unit is at FEC00000 and the Local Unit is at FEE00000. The system BIOS is
remapped to 1 GB–64 KiB.

The 639-KiB endpoint of the first memory range is also the base memory size reported in the BIOS data
segment at 40:13. The following table shows the memory map of a typical system.

Table 15-380 Sample Memory Map

Base (Hex) Length Type Description

0000 0000 639 KiB AddressRangeMemory Available Base memory. Typically the same value as is
returned using the INT 12 function.

0009 FC00 1 KiB AddressRangeReserved Memory reserved for use by the BIOS(s). This area
typically includes the Extended BIOS data area.

000F 0000 64 KiB AddressRangeReserved System BIOS

0010 0000 7 MiB AddressRangeMemory Extended memory, which is not limited to the 64-MiB
address range.

0080 0000 4 MiB AddressRangeReserved Chip set memory hole required to support the LFB
mapping at 12 MiB.

0100 0000 60 MiB AddressRangeMemory Baseboard RAM relocated above a chip set memory
hole.

04C0 0000 60 MiB AddressRangePersistent
Memory

Persistent memory that has non-volatile attributes
located in this region.

FEC0 0000 4 KiB AddressRangeReserved I/O APIC memory mapped I/O at FEC00000.

FEE0 0000 4 KiB AddressRangeReserved Local APIC memory mapped I/O at FEE00000.

FFFF 0000 64 KiB AddressRangeReserved Remapped System BIOS at end of address space.

15.6 Example: Operating System Usage

The following code segment illustrates the algorithm to be used when calling the Query System Address
Map function. It is an implementation example and uses non-standard mechanisms.

E820Present = FALSE;
 Reg.ebx = 0;
 do {
 Reg.eax = 0xE820;
 Reg.es = SEGMENT (&Descriptor);
 Reg.di = OFFSET (&Descriptor);
 Reg.ecx = sizeof (Descriptor);
 Reg.edx = 'SMAP';

 _int(15, regs);

 if ((Regs.eflags & EFLAG_CARRY) || Regs.eax != 'SMAP') {
 break;
UEFI Forum, Inc. January 2019 Page 811

ACPI Specification, Version 6.3 System Address Map Interfaces
 }

 if (Regs.ecx < 20 || Reg.ecx > sizeof (Descriptor)) {
 // bug in bios - all returned descriptors must be
 // at least 20 bytes long, and cannot be larger then 
 // the input buffer.

 break;
 }

 E820Present = TRUE;
 .
 .
 .
 Add address range Descriptor.BaseAddress through 
 Descriptor.BaseAddress + Descriptor.Length
 as type Descriptor.Type
 .
 .
 .

 } while (Regs.ebx != 0);

 if (!E820Present) {
 .
 .
 .
 call INT-15 88 and/or INT-15 E801 to obtain old style 
 memory information
 .
 .
 .
 }

.

UEFI Forum, Inc. January 2019 Page 812

ACPI Specification, Version 6.3 Waking and Sleeping
16 Waking and Sleeping

ACPI defines a mechanism to transition the system between the working state (G0) and a sleeping state
(G1) or the soft-off (G2) state. During transitions between the working and sleeping states, the context of
the user’s operating environment is maintained. ACPI defines the quality of the G1 sleeping state by
defining the system attributes of four types of ACPI sleeping states (S1, S2, S3, and S4). Each sleeping
state is defined to allow implementations that can tradeoff cost, power, and wake latencies. Additionally,
ACPI defines the sleeping states such that an ACPI platform can support multiple sleeping states, allowing
the platform to transition into a particular sleeping state for a predefined period of time and then

transition to a lower power/higher wake latency sleeping state (transitioning through the G0 state) 1.

ACPI defines a programming model that provides a mechanism for OSPM to initiate the entry into a

sleeping or soft-off state (S1-S5); this consists of a 3-bit field SLP_TYPx2 that indicates the type of sleep
state to enter, and a single control bit SLP_EN to start the sleeping process. On HW-reduced ACPI
systems, the register described by the SLEEP_CONTROL_REG field in the FADT is used instead of the fixed
SLP_TYPx and SLP_EN register bit fields.

Note: Systems containing processors without a hardware mechanism to place the processor in a low-
power state may additionally require the execution of appropriate native instructions to place the
processor in a low-power state after OSPM sets the SLP_EN bit. The hardware may implement a
number of low-power sleeping states and then associate these states with the defined ACPI
sleeping states (through the SLP_TYPx fields). The ACPI system firmware creates a sleeping object
associated with each supported sleeping state (unsupported sleeping states are identified by the
lack of the sleeping object). Each sleeping object contains two constant 3-bit values that OSPM
will program into the SLP_TYPa and SLP_TYPb fields (in fixed register space), or, on HW-reduced
ACPI platforms, a single 3-bit value that OSPM will write to the register specified by the FADT's
SLEEP_CONTROL_REG field.

On systems that are not HW-reduced ACPI platforms, an alternate mechanism for entering and exiting
the S4 state is defined. This mechanism passes control to the platform runtime firmware to save and
restore platform context. Context ownership is similar in definition to the S3 state, but hardware saves
and restores the context of memory to non-volatile storage (such as a disk drive), and OSPM treats this as
an S4 state with implied latency and power constraints. This alternate mechanism of entering the S4
state is referred to as the S4BIOS transition.

Prior to entering a sleeping state (S1-S4), OSPM will execute OEM-specific AML/ASL code contained in the
_PTS (Prepare To Sleep) control method. One use of the _PTS control method is that it can indicate to the

1. OSPM uses the RTC wakeup feature or the Time and Alarm Namespace device to program in the time tran-
sition delay. Prior to sleeping, OSPM will program the alarm to the closest (in time) wakeup event: either a transi-
tion to a lower power sleeping state, or a calendar event (to run some application).

2. Notice that there can be two fixed PM1x_CNT registers, each pointing to a different system I/O space
region. Normally a register grouping only allows a bit or bit field to reside in a single register group instance (a or b);
however, each platform can have two instances of the SLP_TYP (one for each grouping register: a and b). The _Sx
control method gives a package with two values: the first is the SLP_TYPa value and the second is the SLP_TYPb
value.
UEFI Forum, Inc. January 2019 Page 813

ACPI Specification, Version 6.3 Waking and Sleeping
embedded controller what sleeping state the system will enter. The embedded controller can then
respond by executing the proper power-plane sequencing upon sleep state entry.

The _WAK (Wake) control method is then executed. This control method again contains OEM-specific
AML/ASL code. One use of the _WAK control method requests OSPM to check the platform for any
devices that might have been added or removed from the system while the system was asleep. For
example, a PC Card controller might have had a PC Card added or removed, and because the power to
this device was off in the sleeping state, the status change event was not generated.

This section discusses the system initialization sequence of an ACPI-enabled platform. This includes the
boot sequence, different wake scenarios, and an example to illustrate how to use the system address
map reporting interfaces. This sequence is part of the ACPI event programming model.

Note: HW-reduced ACPI platforms do not implement the Legacy Mode nor the S4BIOS state described
below.

For detailed information on the power management control methods described above, see Section 7,
“Power and Performance Management.”

16.1 Sleeping States

The illustration below shows the transitions between the working state, the sleeping states, and the Soft
Off state.

SLP_TYPx=S1
and

SLP_EN

S1
Sleeping

S2
Sleeping

S3
Sleeping

SLP_TYPx=S5
and

SLP_EN
or

PWRBTN_OR

Wake
Event

S4
Sleeping

ACPI
Boot

(SCI_EN=1)

G2 (S5) -
Soft Off

SLP_TYPx=S2
and

SLP_EN

SLP_TYPx=S3
and

SLP_EN

SLP_TYPx=S4
and

SLP_EN

G0 (S0) -
Working

G1

S4BIOS_REQ
to

SMI_CMD

OEM S4 BIOS
Handler

SLP_TYPx=S4
and

SLP_EN

Figure 16-74 Example Sleeping States

ACPI defines distinct differences between the G0 and G1 system states.
UEFI Forum, Inc. January 2019 Page 814

ACPI Specification, Version 6.3 Waking and Sleeping
• In the G0 state, work is being performed by the OS/application software and the hardware. The
CPU or any particular hardware device could be in any one of the defined power states (C0-C3
or D0-D3); however, some work will be taking place in the system.

• In the G1 state, the system is assumed to be doing no work. Prior to entering the G1 state,
OSPM will place devices in a device power state compatible with the system sleeping state to
be entered; if a device is enabled to wake the system, then OSPM will place these devices into
the lowest Dx state from which the device supports wake. This is defined in the power resource
description of that device object. This definition of the G1 state implies:

• The CPUs execute no instructions in the G1 state.
• Hardware devices are not operating (except possibly to generate a wake event).
• If not HW-reduced, ACPI registers are affected as follows:
• Wake event bits are enabled in the corresponding fixed or general-purpose registers according

to enabled wake options.
• PM1 control register is programmed for the desired sleeping state.
• WAK_STS is set by hardware in the sleeping state.

All sleeping states have these specifications. ACPI defines additional attributes that allow an ACPI
platform to have up to four different sleeping states, each of which has different attributes. The
attributes were chosen to allow differentiation of sleeping states that vary in power, wake latency, and
implementation cost tradeoffs.

Running processors at reduced levels of performance is not an ACPI sleeping state (G1); this is a working
(G0) state–defined event.

The CPU cannot execute any instructions when in the sleeping state; OSPM relies on this fact. A platform
designer might be tempted to support a sleeping system by reducing the clock frequency of the system,
which allows the platform to maintain a low-power state while at the same time maintaining
communication sessions that require constant interaction (as with some network environments). This is
definitely a G0 activity where an OS policy decision has been made to turn off the user interface (screen)
and run the processor in a reduced performance mode. This type of reduced performance state as a
sleeping state is not defined by the ACPI specification; ACPI assumes no code execution during sleeping
states.

ACPI defines attributes for four sleeping states: S1, S2, S3 and S4. (Notice that S4 and S5 are very similar
from a hardware standpoint.) ACPI-compatible platforms can support multiple sleeping states. ACPI
specifies that a 3-bit binary number be associated with each sleeping state (these numbers are given
objects within ACPI’s root namespace: _S0, _S1, _S2, _S3, _S4 and _S5). When entering a system
sleeping state, OSPM will do the following:

1. Pick the deepest sleeping state supported by the platform and enabled waking devices.

2. Execute the _PTS control method (which passes the type of intended sleep state to OEM AML
code).

3. If OS policy decides to enter the S4 state and chooses to use the S4BIOS mechanism and S4BIOS
is supported by the platform, OSPM will pass control to the platform runtime firmware
software by writing the S4BIOS_REQ value to the SMI_CMD port.

4. If not using the S4BIOS mechanism, OSPM gets the SLP_TYPx value from the associated
sleeping object (_S1, _S2, _S3, _S4 or _S5).

5. Program the SLP_TYPx fields with the values contained in the selected sleeping object.
UEFI Forum, Inc. January 2019 Page 815

ACPI Specification, Version 6.3 Waking and Sleeping
Note: Compatibility Note: The _GTS method is deprecated in ACPI 5.0A. For earlier versions, execute the
_GTS control method, passing an argument that indicates the sleeping state to be entered (1, 2, 3,
or 4 representing S1, S2, S3, and S4).

6. If entering S1, S2, or S3, flush the processor caches.

7. If not entering S4BIOS, set the SLP_EN bit to start the sleeping sequence. (This actually occurs
on the same write operation that programs the SLP_TYPx field in the PM1_CNT register.) If
entering S4BIOS, write the S4BIOS_REQ value into the SMI_CMD port.

8. If HW-reduced, program the register indicated by the SLEEP_CONTROL_REG FADT field with
the HW-reduced ACPI Sleep Type value (retrieved from the sleep state object in step 4 above)
and with the SLP_EN bit set to one.

9. On systems containing processors without a hardware mechanism to place the processor in a
low-power state, execute appropriate native instructions to place the processor in a low-power
state.

The _PTS control method provides the platform runtime firmware a mechanism for performing some
housekeeping, such as writing the sleep type value to the embedded controller, before entering the
system sleeping state. Control method execution occurs “just prior” to entering the sleeping state and is
not an event synchronized with the write to the PM1_CNT register. Execution can take place several
seconds prior to the system actually entering the sleeping state. As such, no hardware power-plane
sequencing takes place by execution of the _PTS control method.

Note: Compatibility Note: The _BFS method is deprecated in ACPI 5.0A. In earlier versions, on waking,
the _BFS control method is executed. OSPM then executes the _WAK control method. This control
method executes OEM-specific ASL/AML code that can search for any devices that have been
added or removed during the sleeping state.

The following sections describe the sleeping state attributes.

16.1.1 S1 Sleeping State

The S1 state is defined as a low wake-latency sleeping state. In this state, all system context is preserved
with the exception of CPU caches. Before entering S1, OSPM will flush the system caches. If the platform
supports the WBINVD instruction (as indicated by the WBINVD and WBINVD_FLUSH flags in the FADT),
OSPM will execute the WBINVD instruction. The hardware is responsible for maintaining all other system
context, which includes the context of the CPU, memory, and chipset.

Examples of S1 sleeping state implementation alternatives follow.

16.1.1.1 Example 1: S1 Sleeping State Implementation

This example references an IA processor that supports the stop grant state through the assertion of the
STPCLK# signal. When SLP_TYPx is programmed to the S1 value (the OEM chooses a value, which is then
placed in the _S1 object) and the SLP_ENx bit is subsequently set, or when the HW-reduced ACPI Sleep
Type value for S1 and the SLP_EN bit are written to the Sleep Control Register, the hardware can
implement an S1 state by asserting the STPCLK# signal to the processor, causing it to enter the stop grant
state.

In this case, the system clocks (PCI and CPU) are still running. Any enabled wake event causes the
hardware to de-assert the STPCLK# signal to the processor whereby OSPM must first invalidate the CPU
caches and then transition back into the working state.
UEFI Forum, Inc. January 2019 Page 816

ACPI Specification, Version 6.3 Waking and Sleeping
16.1.1.2 Example 2: S1 Sleeping State Implementation

When SLP_TYPx is programmed to the S1 value and the SLP_ENx bit is subsequently set, or the HW-
reduced ACPI Sleep Type value for S1 and the SLP_EN bit are written to the Sleep Control Register, the
hardware will implement an S1 sleeping state transition by doing the following:

1. Placing the processor into the stop grant state.

2. Stopping the processor’s input clock, placing the processor into the stop clock state.

3. Placing system memory into a self-refresh or suspend-refresh state. Refresh is maintained by
the memory itself or through some other reference clock that is not stopped during the
sleeping state.

4. Stopping all system clocks (asserts the standby signal to the system PLL chip). Normally the RTC
will continue running.

In this case, all clocks in the system have been stopped (except for the RTC). Hardware must reverse the
process (restarting system clocks) upon any enabled wake event whereby OSPM must first invalidate the
CPU caches and then transition back into the working state.

16.1.2 S2 Sleeping State

The S2 state is defined as a low wake latency sleep state. This state is similar to the S1 sleeping state
where any context except for system memory may be lost. Additionally, control starts from the
processor’s reset vector after the wake event. Before entering S2 the SLP_EN bit, OSPM will flush the
system caches. If the platform supports the WBINVD instruction (as indicated by the WBINVD and
WBINVD_FLUSH flags in the FADT), OSPM will execute the WBINVD instruction. The hardware is
responsible for maintaining chip set and memory context. An example of an S2 sleeping state
implementation follows.

16.1.2.1 Example: S2 Sleeping State Implementation

When the SLP_TYPx register(s) are programmed to the S2 value (found in the _S2 object) and the
SLP_EN bit is set, or the HW-reduced ACPI Sleep Type value for S2 and the SLP_EN bit are written to the
Sleep Control Register, the hardware will implement an S2 sleeping state transition by doing the
following:

1. Stopping system clocks (the only running clock is the RTC).

2. Placing system memory into a self-refresh or suspend-refresh state.

3. Powering off the CPU and cache subsystem.

In this case, the CPU is reset upon detection of the wake event; however, core logic and memory
maintain their context. Execution control starts from the CPU’s boot vector. The platform boot firmware
is required to:

• Program the initial boot configuration of the CPU (such as the CPU’s MSR and MTRR registers).
• Initialize the cache controller to its initial boot size and configuration.
• Enable the memory controller to accept memory accesses.
• Jump to the waking vector.

16.1.3 S3 Sleeping State

The S3 state is defined as a low wake-latency sleep state. From the software viewpoint, this state is
functionally the same as the S2 state. The operational difference is that some Power Resources that may
UEFI Forum, Inc. January 2019 Page 817

ACPI Specification, Version 6.3 Waking and Sleeping
have been left ON in the S2 state may not be available to the S3 state. As such, some devices may be in a
lower power state when the system is in S3 state than when the system is in the S2 state. Similarly, some
device wake events can function in S2 but not S3. An example of an S3 sleeping state implementation
follows.

16.1.3.1 Example: S3 Sleeping State Implementation

When the SLP_TYPx register(s) are programmed to the S3 value (found in the _S3 object) and the
SLP_EN bit is set, or the HW-reduced ACPI Sleep Type value for S3 and the SLP_EN bit are written to the
Sleep Control Register, the hardware will implement an S3 sleeping state transition by doing the
following:

1. Placing the memory into a low-power auto-refresh or self-refresh state.

2. Devices that are maintaining memory isolating themselves from other devices in the system.

3. Removing power from the system. At this point, only devices supporting memory are powered
(possibly partially powered). The only clock running in the system is the RTC clock.

In this case, the wake event repowers the system and resets most devices (depending on the
implementation).

Execution control starts from the CPU’s boot vector. The platform boot firmware is required to:

4. Program the initial boot configuration of the CPU (such as the MSR and MTRR registers).

5. Initialize the cache controller to its initial boot size and configuration.

6. Enable the memory controller to accept memory accesses.

7. Jump to the waking vector.

Notice that if the configuration of cache memory controller is lost while the system is sleeping, the
platform boot firmware is required to reconfigure it to either the pre-sleeping state or the initial boot
state configuration. The platform boot firmware can store the configuration of the cache memory
controller into the reserved memory space, where it can then retrieve the values after waking. OSPM will
call the _PTS method once per session (prior to sleeping).

The platform boot firmware is also responsible for restoring the memory controller’s configuration. If this
configuration data is destroyed during the S3 sleeping state, then the platform boot firmware needs to
store the pre-sleeping state or initial boot state configuration in a non-volatile memory area (as with RTC
CMOS RAM) to enable it to restore the values during the waking process.

When OSPM re-enumerates buses coming out of the S3 sleeping state, it will discover any devices that
have been inserted or removed, and configure devices as they are turned on.

16.1.4 S4 Sleeping State

The S4 sleeping state is the lowest-power, longest wake-latency sleeping state supported by ACPI. In
order to reduce power to a minimum, it is assumed that the hardware platform has powered off all
devices. Because this is a sleeping state, the platform context is maintained. Depending on how the
transition into the S4 sleeping state occurs, the responsibility for maintaining system context changes. S4
supports two entry mechanisms: OS initiated and platform runtime firmware-initiated. The OSPM-
initiated mechanism is similar to the entry into the S1-S3 sleeping states; OSPM driver writes the
SLP_TYPx fields and sets the SLP_EN bit, or writes the HW-reduced ACPI Sleep Type value for S3 and the
SLP_EN bit to the Sleep Control Register. The platform runtime firmware-initiated mechanism occurs by
UEFI Forum, Inc. January 2019 Page 818

ACPI Specification, Version 6.3 Waking and Sleeping
OSPM transferring control to the platform runtime firmware by writing the S4BIOS_REQ value to the
SMI_CMD port, and is not supported on HW-reduced ACPI platforms.

In OSPM-initiated S4 sleeping state, OSPM is responsible for saving all system context. Before entering
the S4 state, OSPM will save context of all memory as specified in Section 15. See Section 15, "System
Address Map Interfaces” for more information.

Upon waking, OSPM shall then restore the system context. When OSPM re-enumerates buses coming out
of the S4 sleeping state, it will discover any devices that have come and gone, and configure devices as
they are turned on.

In the platform runtime firmware-initiated S4 sleeping state, OSPM is responsible for the same system
context as described in the S3 sleeping state (platform runtime firmware restores the memory and some
chip set context). The S4BIOS transition transfers control to the platform runtime firmware, allowing it to
save context to non-volatile memory (such as a disk partition).

16.1.4.1 Operating System-Initiated S4 Transition

If OSPM supports OSPM-initiated S4 transition, it will not generate a platform firmware-initiated S4
transition. Platforms that support the platform firmware-initiated S4 transition also support OSPM-
initiated S4 transition.

OSPM-initiated S4 transition is initiated by OSPM by saving system context, writing the appropriate
values to the SLP_TYPx register(s), and setting the SLP_EN bit, or writes the HW-reduced ACPI Sleep Type
value for S4 and the SLP_EN bit to the Sleep Control Register. Upon exiting the S4 sleeping state, the
platform boot firmware restores the chipset to its POST condition, updates the hardware signature
(described later in this section), and passes control to OSPM through a normal boot process.

When the platform boot firmware builds the ACPI tables, it generates a hardware signature for the
system. If the hardware configuration has changed during an OS-initiated S4 transition, the platform boot
firmware updates the hardware signature in the FACS table. A change in hardware configuration is
defined to be any change in the platform hardware that would cause the platform to fail when trying to
restore the S4 context; this hardware is normally limited to boot devices. For example, changing the
graphics adapter or hard disk controller while in the S4 state should cause the hardware signature to
change. On the other hand, removing or adding a PC Card device from a PC Card slot should not cause the
hardware signature to change.

16.1.4.2 The S4BIOS Transition

This transition is not supported on HW-reduced ACPI platforms. On other systems, the platform runtime
firmware-initiated S4 transition begins with OSPM writing the S4BIOS_REQ value into the SMI_CMD port
(as specified in the FADT). Once gaining control, the platform runtime firmware then saves the
appropriate memory and chip set context, and then places the platform into the S4 state (power off to all
devices).

In the FACS memory table, there is the S4BIOS_F bit that indicates hardware support for the platform
runtime firmware-initiated S4 transition. If the hardware platform supports the S4BIOS state, it sets the
S4BIOS_F flag within the FACS memory structure prior to booting the OS. If the S4BIOS_F flag in the FACS
table is set, this indicates that OSPM can request the platform runtime firmware to transition the
platform into the S4BIOS sleeping state by writing the S4BIOS_REQ value (found in the FADT) to the
SMI_CMD port (identified by the SMI_CMD value in the FADT).
UEFI Forum, Inc. January 2019 Page 819

ACPI Specification, Version 6.3 Waking and Sleeping
Upon waking the platform boot firmware restores memory context and jumps to the waking vector
(similar to wake from an S3 state). Coming out of the S4BIOS state, the platform boot firmware must only
configure boot devices (so it can read the disk partition where it saved system context). When OSPM re-
enumerates buses coming out of the S4BIOS state, it will discover any devices that have come and gone,
and configure devices as they are turned on.

16.1.5 S5 Soft Off State

OSPM places the platform in the S5 soft off state to achieve a logical off. Notice that the S5 state is not a
sleeping state (it is a G2 state) and no context is saved by OSPM or hardware but power may still be
applied to parts of the platform in this state and as such, it is not safe to disassemble. Also notice that
from a hardware perspective, the S4 and S5 states are nearly identical. When initiated, the hardware will
sequence the system to a state similar to the off state. The hardware has no responsibility for
maintaining any system context (memory or I/O); however, it does allow a transition to the S0 state due
to a power button press or a Remote Start. Upon start-up, the platform boot firmware performs a normal
power-on reset, loads the boot sector, and executes (but not the waking vector, as all ACPI table context
is lost when entering the S5 soft off state).

The _TTS control method allows the platform runtime firmware a mechanism for performing some
housekeeping, such as storing the targeted sleep state in a “global” variable that is accessible by other
control methods (such as _PS3 and _DSW).

16.1.6 Transitioning from the Working to the Sleeping State

On a transition of the system from the working to the sleeping state, the following occurs:

1. OSPM decides (through a policy scheme) to place the system into the sleeping state.

2. OSPM invokes the _TTS method to indicate the deepest possible system state the system will
transition to (1, 2, 3, or 4 representing S1, S2, S3, and S4).

3. OSPM examines all devices enabled to wake the system and determines the deepest possible
sleeping state the system can enter to support the enabled wake functions. The _PRW named
object under each device is examined, as well as the power resource object it points to.

4. OSPM places all device drivers into their respective Dx state. If the device is enabled for wake,
it enters the Dx state associated with the wake capability. If the device is not enabled to wake
the system, it enters the D3 state.

5. OSPM executes the _PTS control method, passing an argument that indicates the desired
sleeping state (1, 2, 3, or 4 representing S1, S2, S3, and S4).

6. OSPM saves any other processor’s context (other than the local processor) to memory.

7. OSPM writes the waking vector into the FACS table in memory.

Note: Compatibility Note: The _GTS method is deprecated in ACPI 5.0A. For earlier versions, OSPM
executes the _GTS control method, passing an argument that indicates the sleeping state to be
entered (1, 2, 3, or 4 representing S1, S2, S3, and S4).

8. If not a HW-reduced ACPI platform, OSPM clears the WAK_STS in the PM1a_STS and PM1b_STS
registers. On HW-reduced ACPI platforms, OSPM clears the WAK_STS bit in the Sleep Status
Register.

9. OSPM saves the local processor’s context to memory.

10. OSPM flushes caches (only if entering S1, S2 or S3).
UEFI Forum, Inc. January 2019 Page 820

ACPI Specification, Version 6.3 Waking and Sleeping
11. OSPM sets GPE enable registers or enables wake-capable interrupts to ensure that all
appropriate wake signals are armed

12. If entering an S4 state using the S4BIOS mechanism, OSPM writes the S4BIOS_REQ value (from
the FADT) to the SMI_CMD port. This passes control to the platform runtime firmware, which
then transitions the platform into the S4BIOS state.

13. If not entering an S4BIOS state, and not a HW-reduced ACPI platform, then OSPM writes
SLP_TYPa (from the associated sleeping object) with the SLP_ENa bit set to the PM1a_CNT
register.

14. OSPM writes SLP_TYPb with the SLP_EN bit set to the PM1b_CNT register, or writes the HW-
reduced ACPI Sleep Type value and the SLP_EN bit to the Sleep Control Register.

15. On systems containing processors without a hardware mechanism to place the processor in a
low-power state, OSPM executes appropriate native instructions to place the processor in a
low-power state.

16. OSPM loops on the WAK_STS bit, either in both the PM1a_CNT and PM1b_CNT registers, or in
the SLEEP_STATUS_REG, in the case of HW-reduced ACPI platforms

17. The system enters the specified sleeping state.

Note: This is accomplished after step 14 or 15 above.

16.1.7 Transitioning from the Working to the Soft Off State

On a transition of the system from the working to the soft off state, the following occurs:

1. OSPM executes the _PTS control method, passing the argument 5.

2. OSPM prepares its components to shut down (flushing disk caches).

Note: Compatibility Note: The _GTS method is deprecated in ACPI 5.0A. For earlier versions, OSPM
executes the _GTS control method, passing the argument 5.

3. If not a HW-reduced ACPI platform, OSPM writes SLP_TYPa (from the _S5 object) with the
SLP_ENa bit set to the PM1a_CNT register.

4. OSPM writes SLP_TYPb (from the _S5 object) with the SLP_ENb bit set to the PM1b_CNT
register, or writes the HW-reduced ACPI Sleep Type value for S5 and the SLP_EN bit to the
Sleep Control Register.

5. The system enters the Soft Off state.

16.2 Flushing Caches

Before entering the S1, S2 or S3 sleeping states, OSPM is responsible for flushing the system caches. ACPI
provides a number of mechanisms to flush system caches. These include:

• Using a native instruction (for example, the IA-32 architecture WBINVD instruction) to flush
and invalidate platform caches.
WBINVD_FLUSH flag set (1) in the FADT indicates the system provides this support level.

• Using the IA-32 instruction WBINVD to flush but not invalidate the platform caches.
WBINVD flag set (1) in the FADT indicates the system provides this support level.

The manual flush mechanism has two caveats:

• Largest cache is 1 MB in size (FLUSH_SIZE is a maximum value of 2 MB).
UEFI Forum, Inc. January 2019 Page 821

ACPI Specification, Version 6.3 Waking and Sleeping
• No victim caches (for which the manual flush algorithm is unreliable).

Processors with built-in victim caches will not support the manual flush mechanism and are therefore
required to support the WBINVD mechanism to use the S2 or S3 state.

The manual cache-flushing mechanism relies on the two FADT fields:

• FLUSH_SIZE. Indicates twice the size of the largest cache in bytes.
• FLUSH_STRIDE. Indicates the smallest line size of the caches in bytes.

The cache flush size value is typically twice the size of the largest cache size, and the cache flush stride
value is typically the size of the smallest cache line size in the platform. OSPM will flush the system caches
by reading a contiguous block of memory indicated by the cache flush size.

16.3 Initialization

This section covers the initialization sequences for an ACPI platform. After a reset or wake from an S2, S3,
or S4 sleeping state (as defined by the ACPI sleeping state definitions), the CPU will start execution from
its boot vector. At this point, the initialization software has many options, depending on what the
hardware platform supports. This section describes at a high level what should be done for these
different options. Figure 16-75 illustrates the flow of the boot-up software.
UEFI Forum, Inc. January 2019 Page 822

ACPI Specification, Version 6.3 Waking and Sleeping
Boot Vector

SLP_TYP=S2
?

SLP_TYP=S3
?

Jump To
 Waking Vector

No

No

Yes

Yes

Initialize Memory
Image
 * System
 * Reserved
 * ACPI NVS
 * ACPI Reclaim
 * ACPI Tables
 * MPS Tables
 * ...

Boot OS Loader

POST

Initialize CPU
Init Memory Controller
Enable Memory
Configure Caches
Enable Caches
Initialize Chipset

Initialize CPU
Enable Memory
Configure Caches

SLP_TYP=
S4BIOS

?

No

Restore memory
Image

Yes

Figure 16-75 Platform Firmware Initialization

The processor will start executing at its power-on reset vector when waking from an S2, S3, or S4 sleeping
state, during a power-on sequence, or as a result of a hard or soft reset.

When executing from the power-on reset vector as a result of a power-on sequence, a hard or soft reset,
or waking from an S4 sleep state, the platform firmware performs complete hardware initialization;
UEFI Forum, Inc. January 2019 Page 823

ACPI Specification, Version 6.3 Waking and Sleeping
placing the system in a boot configuration. The firmware then passes control to the operating system
boot loader.

When executing from the power-on reset vector as a result of waking from an S2 or S3 sleep state, the
platform firmware performs only the hardware initialization required to restore the system to either the
state the platform was in prior to the initial operating system boot, or to the pre-sleep configuration
state. In multiprocessor systems, non-boot processors should be placed in the same state as prior to the
initial operating system boot. The platform firmware then passes control back to OSPM system by
jumping to either the Firmware_Waking_Vector or the X_Firmware_Waking_Vector in the FACS (see
Table 5-37 for more information). The contents of operating system memory contents may not be
changed during the S2 or S3 sleep state.

First, the platform runtime firmware determines whether this is a wake from S2 or S3 by examining the
SLP_TYP register value, which is preserved between sleeping sessions. If this is an S2 or S3 wake, then the
platform runtime firmware restores minimum context of the system before jumping to the waking
vector. This includes:

• CPU configuration. Platform runtime firmware restores the pre-sleep configuration or initial
boot configuration of each CPU (MSR, MTRR, firmware update, SMBase, and so on). Interrupts
must be disabled (for IA-32 processors, disabled by CLI instruction).

• Memory controller configuration. If the configuration is lost during the sleeping state, the
platform runtime firmware initializes the memory controller to its pre-sleep configuration or
initial boot configuration.

• Cache memory configuration. If the configuration is lost during the sleeping state, the
platform runtime firmware initializes the cache controller to its pre-sleep configuration or
initial boot configuration.

• Functional device configuration. The platform runtime firmware doesn’t need to configure/
restore context of functional devices such as a network interface (even if it is physically
included in chipset) or interrupt controller. OSPM is responsible for restoring all context of
these devices. The only requirement for the hardware and platform runtime firmware is to
ensure that interrupts are not asserted by devices when the control is passed to OS.

• ACPI registers. SCI_EN bit must be set on non-HW-reduced ACPI platforms, and all event
status/enable bits (PM1x_STS, PM1x_EN, GPEx_STS and GPEx_EN) must not be changed by
platform runtime firmware.

Note: The platform runtime firmware may reconfigure the CPU, memory controller and cache memory
controller to either the pre-sleeping configuration or the initial boot configuration. OSPM must
accommodate both configurations.

When waking from an S4BIOS sleeping state, the platform boot firmware initializes a minimum number
of devices such as CPU, memory, cache, chipset and boot devices. After initializing these devices, the
platform boot firmware restores memory context from non-volatile memory such as hard disk, and
jumps to waking vector.

As mentioned previously, waking from an S4 state is treated the same as a cold boot: the platform boot
firmware runs POST and then initializes memory to contain the ACPI system description tables. After it
has finished this, it can call OSPM loader, and control is passed to OSPM.
UEFI Forum, Inc. January 2019 Page 824

ACPI Specification, Version 6.3 Waking and Sleeping
When waking from S4 (either S4OS or S4BIOS), the platform boot firmware may optionally set SCI_EN bit
before passing control to OSPM. In this case, interrupts must be disabled (for IA-32 processors, disabled
CLI instruction) until the control is passed to OSPM and the chipset must be configured in ACPI mode.

16.3.1 Placing the System in ACPI Mode

When a platform initializes from a cold boot (mechanical off or from an S4 or S5 state), the hardware
platform may be configured in a legacy configuration, if not a HW-reduced ACPI platform. From these
states, the platform boot firmware software initializes the computer as it would for a legacy operating
system. When control is passed to the operating system, OSPM will check the SCI_EN bit and if it is not
set will then enable ACPI mode by first finding the ACPI tables, and then by generating a write of the
ACPI_ENABLE value to the SMI_CMD port (as described in the FADT). The hardware platform will set the
SCI_EN bit to indicate to OSPM that the hardware platform is now configured for ACPI.

Note: Before SCI is enabled, no SCI interrupt can occur. Nor can any SCI interrupt occur immediately
after ACPI is on. The SCI interrupt can only be signaled after OSPM has enabled one of the GPE/
PM1 enable bits.

When the platform is waking from an S1, S2 or S3 state, and from S4 and S5 on HW-reduced ACPI
platforms, OSPM assumes the hardware is already in the ACPI mode and will not issue an ACPI_ENABLE
command to the SMI_CMD port

16.3.2 Platform Boot Firmware Initialization of Memory

During a power-on reset, an exit from an S4 sleeping state, or an exit from an S5 soft-off state, the
platform boot firmware needs to initialize memory. This section explains how the platform boot firmware
should configure memory for use by a number of features including:

• ACPI tables.
• Platform firmware memory that wants to be saved across S4 sleeping sessions and should be

cached.
• Platform firmware memory that does not require saving and should be cached.

For example, the configuration of the platform’s cache controller requires an area of memory to store the
configuration data. During the wake sequence, the platform boot firmware will re-enable the memory
controller and can then use its configuration data to reconfigure the cache controllers. To support these
three items, IA-PC-based systems contain system address map reporting interfaces that return the
following memory range types:

• ACPI Reclaim Memory. Memory identified by the platform boot firmware that contains the
ACPI tables. This memory can be any place above 8 MB and contains the ACPI tables. When
OSPM is finished using the ACPI tables, it is free to reclaim this memory for system software
use (application space).

• ACPI Non-Volatile-Sleeping Memory (NVS). Memory identified by the BIOS as being reserved
by the platform boot firmware for its use. OSPM is required to tag this memory as cacheable,
and to save and restore its image before entering an S4 state. Except as directed by control
methods, OSPM is not allowed to use this physical memory. OSPM will call the _PTS control
method some time before entering a sleeping state, to allow the platform’s AML code to
update this memory image before entering the sleeping state. After the system awakes from
UEFI Forum, Inc. January 2019 Page 825

ACPI Specification, Version 6.3 Waking and Sleeping
an S4 state, OSPM will restore this memory area and call the _WAK control method to enable
the platform boot firmware to reclaim its memory image.

Note: The memory information returned from the system address map reporting interfaces should be
the same before and after an S4 sleep.

When the system is first booting, OSPM will invoke E820 interfaces on IA-PC-based legacy systems or the
GetMemoryMap() interface on UEFI-enabled systems to obtain a system memory map (see Section 15,
“System Address Map Interfaces,” for more information). As an example, the following memory map
represents a typical IA-PC-based legacy platform’s physical memory map.

Figure 16-76 Example Physical Memory Map

The names and attributes of the different memory regions are listed below:

• 0–640 KB. Compatibility Memory. Application executable memory for an 8086 system.
• 640 KB–1 MB. Compatibility Holes. Holes within memory space that allow accesses to be

directed to the PC-compatible frame buffer (A0000h-BFFFFh), to adapter ROM space (C0000h-
DFFFFh), and to system platform firmware space (E0000h-FFFFFh).

• 1 MB–8 MB. Contiguous RAM. An area of contiguous physical memory addresses. Operating
systems may require this memory to be contiguous in order for its loader to load the OS
properly on boot up. (No memory-mapped I/O devices should be mapped into this area.)

• 8 MB–Top of Memory1. This area contains memory to the “top of memory1” boundary. In this
area, memory-mapped I/O blocks are possible.

• Boot Base–4 GB. This area contains the bootstrap ROM.

The platform boot firmware should decide where the different memory structures belong, and then
configure the E820 handler to return the appropriate values.

Above 8 MB
RAM

Compatibility
Memory

0

640 KB

Compatibility
Holes

1 MB

Contiguous
RAM

8 MB

Top of Memory1

No Memory

Boot ROM
4 GB

Boot Base
UEFI Forum, Inc. January 2019 Page 826

ACPI Specification, Version 6.3 Waking and Sleeping
For this example, the platform boot firmware will report the system memory map by E820 as shown in
Figure 15-4. Notice that the memory range from 1 MB to top of memory is marked as system memory,
and then a small range is additionally marked as ACPI reclaim memory. A legacy OS that does not support
the E820 extensions will ignore the extended memory range calls and correctly mark that memory as
system memory.

Figure 16-77 Memory as Configured after Boot

Also, from the Top of Memory1 to the Top of Memory2, the platform boot firmware has set aside some
memory for its own use and has marked as reserved both ACPI NVS Memory and Reserved Memory. A
legacy OS will throw out the ACPI NVS Memory and correctly mark this as reserved memory (thus
preventing this memory range from being allocated to any add-in device).

OSPM will call the _PTS control method prior to initiating a sleep (by programming the sleep type,
followed by setting the SLP_EN bit). During a catastrophic failure (where the integrity of the AML code
interpreter or driver structure is questionable), if OSPM decides to shut the system off, it will not issue a
_PTS, but will immediately issue a SLP_TYP of "soft off" and then set the SLP_EN bit, or directly write the
HW-reduced ACPI Sleep Type value and the SLP_EN bit to the Sleep Control Register. Hence, the
hardware should not rely solely on the _PTS control method to sequence the system to the "soft off"
state. After waking from an S4 state, OSPM will restore the ACPI NVS memory image and then issue the
_WAK control method that informs platform runtime firmware that its memory image is back.

16.3.3 OS Loading

At this point, the platform boot firmware has passed control to OSPM, either by using OSPM boot loader
(a result of waking from an S4/S5 or boot condition) or OSPM waking vector (a result of waking from an
S2 or S3 state). For the Boot OS Loader path, OSPM will get the system address map via one of the
mechanisms describe in Section 15, “System Address Map Interfaces.” If OSPM is booting from an S4

Boot ROM

No Memory

Compatibility
Memory

Compatibility
Holes

Contiguous
RAM

- ACPI NVS Memory (E820)

NVS Memory

Reserved

Above 8 Mbyte
RAM

ACPI Tables
ACPI Reclaim
Memory

ACPI NVS
Memory

Reserved
Memory

System Memory

System Memory

Reserved
Memory

Reserved
Memory

Available
Address space

Available
Address space

0

640 KByte

1 MByte

Top of Memory1

Top of Memory2

8 MBytes - ACPI Reclaim Memory (E820)

- Reserved Memory (E820)

- System Memory (E820)
UEFI Forum, Inc. January 2019 Page 827

ACPI Specification, Version 6.3 Waking and Sleeping
state, it will then check the NVS image file’s hardware signature with the hardware signature within the
FACS table (built by platform boot firmware) to determine whether it has changed since entering the
sleeping state (indicating that the platforms fundamental hardware configuration has changed during the
current sleeping state). If the signature has changed, OSPM will not restore the system context and can
boot from scratch (from the S4 state). Next, for an S4 wake, OSPM will check the NVS file to see whether
it is valid. If valid, then OSPM will load the NVS image into system memory. Next, if not a HW-reduced
ACPI platform, OSPM will check the SCI_EN bit and if it is not set, will write the ACPI_ENABLE value to the
SMI_CMD register to switch into the system into ACPI mode and will then reload the memory image from
the NVS file.

Figure 16-78 OS Initialization

Boot OS Loader OS
Waking Vector

Get Memory Map
(E820)
 * ACPI NVS
 * ACPI Reclaim
 * Reserved
 * System
 * Reserved

Memory Copy

NVS File
?

Yes

Load OS Images

Execute _WAK

No

Continue

Sanity Check
Compare memory and

volume SSN

Yes

No

SCI_EN set?

Execute _BFS

Turn on ACPI

No

Yes
UEFI Forum, Inc. January 2019 Page 828

ACPI Specification, Version 6.3 Waking and Sleeping
If an NVS image file did not exist, then OSPM loader will load OSPM from scratch. At this point, OSPM will
generate a _WAK call that indicates to the platform runtime firmware that its ACPI NVS memory image
has been successfully and completely updated.

16.3.4 Exiting ACPI Mode

For machines that do not boot in ACPI mode, ACPI provides a mechanism that enables the OS to disable
ACPI. The following occurs:

1. OSPM unloads all ACPI drivers (including the ACPI driver).

2. OSPM disables all ACPI events.

3. OSPM finishes using all ACPI registers.

4. OSPM issues an I/O access to the port at the address contained in the SMI_CMD field (in the
FADT) with the value contained in the ACPI_DISABLE field (in the FADT).

5. Platform runtime firmware then remaps all SCI events to legacy events and resets the SCI_EN
bit.

6. Upon seeing the SCI_EN bit cleared, the ACPI OS enters the legacy OS mode.

When and if the legacy OS returns control to the ACPI OS, if the legacy OS has not maintained the ACPI
tables (in reserved memory and ACPI NVS memory), the ACPI OS will reboot the system to allow the
platform runtime firmware to re-initialize the tables.
UEFI Forum, Inc. January 2019 Page 829

ACPI Specification, Version 6.3 Non-Uniform Memory Access (NUMA) Architecture
Platforms
17 Non-Uniform Memory Access (NUMA)
Architecture Platforms

Systems employing a Non Uniform Memory Access (NUMA) architecture contain collections of hardware
resources including processors, memory, and I/O buses, that comprise what is commonly known as a
“NUMA node”. Two or more NUMA nodes are linked to each other via a high-speed interconnect.
Processor accesses to memory or I/O resources within the local NUMA node are generally faster than
processor accesses to memory or I/O resources outside of the local NUMA node, accessed via the node
interconnect. ACPI defines interfaces that allow the platform to convey NUMA node topology
information to OSPM both statically at boot time and dynamically at run time as resources are added or
removed from the system.

17.1 NUMA Node

A conceptual model for a node in a NUMA configuration may contain one or more of the following
components:

• Processor
• Memory
• I/O Resources
• Networking, Storage
• Chipset

The components defined as part of the model are intended to represent all possible components of a
NUMA node. A specific node in an implementation of a NUMA platform may not provide all of these
components. At a minimum, each node must have a chipset with an interface to the interconnect
between nodes.

The defining characteristic of a NUMA system is a coherent global memory and / or I/O address space
that can be accessed by all of the processors. Hence, at least one node must have memory, at least one
node must have I/O resources and at least one node must have processors. Other than the chipset, which
must have components present on every node, each is implementation dependent. In the ACPI
namespace, NUMA nodes are described as module devices. See Section 9.12,”Module Device”.

17.2 System Locality

A collection of components that are presented to OSPM as a Symmetrical Multi-Processing (SMP) unit
belong to the same System Locality, also known as a Proximity Domain. The granularity of a System
Locality is typically at the NUMA Node level although the granularity can also be at the sub-NUMA node
level or the processor, memory and host bridge level.

A System Locality is reported to the OSPM using Proximity Domain entries in the System Resource Affinity
Table (SRAT), or using _PXM methods in the ACPI namespace. If OSPM only needs to know a near/far
distinction among the System Localities, comparing Proximity Domain values is sufficient. See
Section 5.2.16, “System Resource Affinity Table (SRAT)”, and Section 6.2.14, “_PXM (Proximity)” for more
information.
UEFI Forum, Inc. January 2019 Page 830

ACPI Specification, Version 6.3 Non-Uniform Memory Access (NUMA) Architecture
Platforms
OSPM makes no assumptions about the proximity or nearness of different proximity domains. The
difference between two integers representing separate proximity domains does not imply distance
between the proximity domains (in other words, proximity domain 1 is not assumed to be closer to
proximity domain 0 than proximity domain 6).

17.2.1 System Resource Affinity Table Definition

This optional System Resource Affinity Table (SRAT) provides the boot time description of the processor
and memory ranges belonging to a system locality. OSPM will consume the SRAT only at boot time. For
any devices not in the SRAT, OSPM should use _PXM for them or their ancestors that are hot-added into
the system after boot up.

The SRAT describes the system locality that all processors and memory present in a system belong to at
system boot. This includes memory that can be hot-added (that is memory that can be added to the
system while it is running, without requiring a reboot). OSPM can use this information to optimize the
performance of NUMA architecture systems. For example, OSPM could utilize this information to
optimize allocation of memory resources and the scheduling of software threads.

17.2.2 System Resource Affinity Update

Dynamic migration of the devices may cause the relative system resource affinity information (if the
optional SRAT is present) to change. If this occurs, The System Resource Affinity Update notification
(Notify event of type 0x0D) may be generated by the platform to a device at a point on the device tree
that represents a System Resource Affinity. This indicates to OSPM to invoke the _PXM object of the
notified device to update the resource affinity.

17.3 System Locality Distance Information

Optionally, OSPM may further optimize a NUMA architecture system using information about the relative
memory latency distances among the System Localities. This may be useful if the distance between
multiple system localities is significantly different. In this case, a simple near/far distinction may be
insufficient. This information is contained in the optional System Locality Information Table (SLIT) and is
returned from the evaluation of the _SLI object.

The SLIT is a matrix that describes the relative distances between all System Localities. To include devices
that are not in the System Resource Affinity Table (SRAT), support for the _PXM object is required. The
Proximity Domain values from SRAT, or the values returned by the _PXM objects are used as the row and
column indices of the matrix.

Implementation Note: The size of the SLIT is determined by the largest Proximity Domain value used in
the system. Hence, to minimize the size of the SLIT, the Proximity Domain values assigned by the system
firmware should be in the range 0, …, N-1, where N is the number of System Localities. If Proximity
Domain values are not packed into this range, the SLIT will still work, but more memory will have to be
allocated to store the “Entries” portion of the SLIT for the matrix.

The static SLIT table provides the boot time description of the relative distances among all System
Localities. For hot-added devices and dynamic reconfiguration of the system localities, the _SLI object
must be used for runtime update.
UEFI Forum, Inc. January 2019 Page 831

ACPI Specification, Version 6.3 Non-Uniform Memory Access (NUMA) Architecture
Platforms
The _SLI method is an optional object that provides the runtime update of the relative distances from the
System Locality i to all other System Localities in the system. Since _SLI method is providing additional
relative distance information among System Localities, if implemented, it is provided alongside with the
_PXM method.

17.3.1 Online Hot Plug

In the case of online devide addition, the Bus Check notification (0x0) is performed on a device object to
indicate to OSPM that it needs to perform the Plug and Play re-enumeration operation on the device tree
starting from the point where it has been notified. OSPM needs to evaluate all _PXM objects associated
with the added devices, or _SLI objects if the SLIT is present.

In the case of online device removal, OSPM needs to perform the Plug and Play ejection operation when
it receives the Eject Request notification (0x03). OSPM needs to remove the relative distance information
from its internal dta structure for the removed devices.

17.3.2 Impact to Existing Localities

Dynamic reconfiguration of the system may cause the relative distance information (if the optional SLIT is
present) to become stale. If this occurs, the System Locality Information Update notification (Notify event
of type 0xB) may be generated by the platform to a device at a point on the device tree that represents a
System Locality. This indicates to OSPM that it needs to invoke the _SLI objects associated with the
System Localities on the device tree starting from the point where it has been notified.

17.4 Heterogeneous Memory Attributes Information

Optionally, OSPM may further optimize a NUMA architecture system using the Heterogeneous Memory
Attributes. This may be useful if the memory latency and bandwidth attributes between system localities
is significantly different. In this case, the information is contained in the optional Heterogeneous Memory
Attributes (HMAT) and is returned from the evaluation of the _HMA object.

The HMAT structure describes the latency and bandwidth information between memory access Initiator
and memory Target System Localities. System Locality proximity domain identifiers, as defined by
Proximity Domain entries in the System Resource Affinity Table (SRAT), or as returned by _PXM object,
are used in the HMAT structure.

Implementation Note: The size of the HMAT table is determined by number of memory initiator System
Localities and the memory target System Localities. The static HMAT table provides the boot time
description of the memory latency and bandwidth among all memory access Initiator and memory Target
System Localities. For hot-added devices and dynamic reconfiguration of the system localities, the _HMA
object must be used for runtime update.

The _HMA method is an optional object that provides the runtime update of the latency and bandwidth
from the memory access Initiator System Locality “i" to all other memory Target System Localities “j” in
the system.

Since _HMA method is providing additional memory latency and bandwidth information among System
Localities, if implemented, it is provided alongside with the _PXM method.
UEFI Forum, Inc. January 2019 Page 832

ACPI Specification, Version 6.3 Non-Uniform Memory Access (NUMA) Architecture
Platforms
17.4.1 Online Hot Plug

In the case of online device addition, the Bus Check notification (0x0) is performed on a device object to
indicate to OSPM that it needs to perform the Plug and Play re-enumeration operation on the device tree
starting from the point where it has been notified. OSPM needs to evaluate all _PXM objects associated
with the added devices, or _HMA objects if the HMAT is present.

In the case of online device removal, OSPM needs to perform the Plug and Play ejection operation when
it receives the Eject Request notification (0x03). OSPM needs to remove the ejected System Localities
related information from its internal data structure for the removed devices.

17.4.2 Impact to Existing Localities

Dynamic reconfiguration of the system may cause the memory latency and bandwidth information (if the
optional HMAT is present) to become stale. If this occurs, the Heterogeneous Memory Attributes Update
notification (Notify event of type 0xE) may be generated by the platform to a device at a point on the
device tree that represents a System Locality. This indicates to OSPM that it needs to invoke the _HMA
objects associated with the System Localities on the device tree starting from the point where it has been
notified.
UEFI Forum, Inc. January 2019 Page 833

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18 ACPI Platform Error Interfaces (APEI)

This section describes the ACPI Platform Error Interfaces (APEI), which provide a means for the platform
to convey error information to OSPM. APEI extends existing hardware error reporting mechanisms and
brings them together as components of a coherent hardware error infrastructure. APEI takes advantage
of the additional hardware error information available in today’s hardware devices and integrates much
more closely with the system firmware.

As a result, APEI provides the following benefits:

• Allows for more extensive error data to be made available in a standard error record format for
determining the root cause of hardware errors.

• Is extensible, so that as hardware vendors add new and better hardware error reporting
mechanisms to their devices, APEI allows the platform and the OSPM to gracefully
accommodate the new mechanisms.

This provides information to help system designers understand basic issues about hardware errors, the
relationship between the firmware and OSPM, and information about error handling and the APEI
architecture components.

APEI consists of four separate tables:

• Error Record Serialization Table (ERST)
• Boot Error Record Table (BERT)
• Hardware Error Source Table (HEST)
• Error Injection Table (EINJ)

18.1 Hardware Errors and Error Sources

A hardware error is a recorded event related to a malfunction of a hardware component in a computer
platform. The hardware components contain error detection mechanisms that detect when a hardware
error condition exists. Hardware errors can be classified as either corrected errors or uncorrected errors
as follows:

• A corrected error is a hardware error condition that has been corrected by the hardware or by
the firmware by the time the OSPM is notified about the existence of the error condition.

• An uncorrected error is a hardware error condition that cannot be corrected by the hardware
or by the firmware. Uncorrected errors are either fatal or non-fatal.

— A fatal hardware error is an uncorrected or uncontained error condition that is determined
to be unrecoverable by the hardware. When a fatal uncorrected error occurs, the system is
restarted to prevent propagation of the error.

— A non-fatal hardware error is an uncorrected error condition from which OSPM can
attempt recovery by trying to correct the error. These are also referred to as correctable or
recoverable errors.

Central to APEI is the concept of a hardware error source. A hardware error source is any hardware unit
that alerts OSPM to the presence of an error condition. Examples of hardware error sources include the
following:

• Processor machine check exception (for example, MC#)
UEFI Forum, Inc. January 2019 Page 834

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
• Chipset error message signals (for example, SCI, SMI, SERR#, MCERR#)
• I/O bus error reporting (for example, PCI Express root port error interrupt)
• I/O device errors

A single hardware error source might handle aggregate error reporting for more than one type of
hardware error condition. For example, a processor’s machine check exception typically reports
processor errors, cache and memory errors, and system bus errors.

A hardware error source is typically represented by the following:

• One or more hardware error status registers.
• One or more hardware error configuration or control registers.
• A signaling mechanism to alert OSPM to the existence of an error condition.

In some situations, there is not an explicit signaling mechanism and OSPM must poll the error status
registers to test for an error condition. However, polling can only be used for corrected error conditions
since uncorrected errors require immediate attention by OSPM.

18.2 Relationship between OSPM and System Firmware

Both OSPM and system firmware play important roles in hardware error handling. APEI improves the
methods by which both of these can contribute to the task of hardware error handling in a
complementary fashion. APEI allows the hardware platform vendor to determine whether the firmware
or OSPM will own key hardware error resources. APEI also allows the firmware to pass control of
hardware error resources to OSPM when appropriate.

18.3 Error Source Discovery

Platforms enumerate error sources to OSPM via a set of tables that describe the error sources. OSPM
may also support non-ACPI enumerated error sources such as: Machine Check Exception, Corrected
Machine Check, NMI, PCI Express AER, and on Itanium™ Processor Family (IPF) platforms the INIT error
source. Non-ACPI error sources are not described by this specification.

During initialization, OSPM examines the tables and uses this information to establish the necessary error
handlers that are responsible for processing error notifications from the platform.

18.3.1 Boot Error Source

Under normal circumstances, when a hardware error occurs, the error handler receives control and
processes the error. This gives OSPM a chance to process the error condition, report it, and optionally
attempt recovery. In some cases, the system is unable to process an error. For example, system firmware
or a management controller may choose to reset the system or the system might experience an
uncontrolled crash or reset.

The boot error source is used to report unhandled errors that occurred in a previous boot. This
mechanism is described in the BERT table. The boot error source is reported as a ‘one-time polled’ type
error source. OSPM queries the boot error source during boot for any existing boot error records. The
platform will report the error condition to OSPM via a Common Platform Error Record (CPER) compliant
error record. The CPER format is described in the appendices of the UEFI Specification.

The Boot Error Record Table (BERT) format is shown in Table 18-381.
UEFI Forum, Inc. January 2019 Page 835

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
Table 18-381 Boot Error Record Table (BERT) Table

Field
Byte
length

Byte
offset

Description

Header Signature 4 0 ‘BERT’. Signature for the Boot Error Record Table.

Length 4 4 Length, in bytes, of BERT.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 The manufacturer model ID.

OEM Revision 4 24 OEM revision of the BERT for the supplied OEM table ID.

Creator ID 4 28 Vendor ID of the utility that created the table.

Creator Revision 4 32 Revision of the utility that created the table.

Boot Error Region Length 4 36 The length in bytes of the boot error region.

Boot Error Region 8 40 64-bit physical address of the Boot Error Region.

The Boot Error Region is a range of addressable memory OSPM can access during initialization to
determine if an unhandled error condition occurred. System firmware must report this memory range as
firmware reserved. The format of the Boot Error Region follow that of an Error Status Block, this is
defined in Section 18.3.2.7. The format of the error status block is described by Table 18-391.

For details of some of the fields defined in Table 18-392, please refer to the definition of Section
Descriptors provided in the appendices of the UEFI Specification under the description of the Common
Platform Error Record.

18.3.2 ACPI Error Source

The hardware error source describes a standardized mechanism platforms may use to describe their
error sources. Use of this interface is the preferred way for platforms to describe their error sources as it
is platform and processor-architecture independent and allows the platform to describe the operational
parameters associated with error sources.

This mechanism allows for the platform to describe error sources in detail; communicating operational
parameters (i.e. severity levels, masking bits, and threshold values) to OSPM as necessary. It also allows
the platform to report error sources for which OSPM would typically not implement support (for
example, chipset-specific error registers).

The Hardware Error Source Table provides the platform firmware a way to describe a system’s hardware
error sources to OSPM. The format of the Hardware Error Source Table is shown in Table 18-382.
UEFI Forum, Inc. January 2019 Page 836

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
Table 18-382 Hardware Error Source Table (HEST)

Field
Byte
length

Byte
offset

Description

Header Signature 4 0 “HEST”. Signature for the Hardware Error Source Table.

Length 4 4 Length, in bytes, of entire HEST. Entire table must be
contiguous.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 The manufacturer model ID.

OEM Revision 4 24 OEM revision of the HEST for the supplied OEM table ID.

Creator ID 4 28 Vendor ID of the utility that created the table.

Creator Revision 4 32 Revision of the utility that created the table.

Error Source Count 4 36 The number of error source descriptors.

Error Source Structure[n] - 40 A series of Error Source Descriptor Entries.

The following sections detail each of the specific error source descriptors.

Note: Error source types 3, 4, and 5 are reserved for legacy reasons and must not be used.

18.3.2.1 IA-32 Architecture Machine Check Exception

Processors implementing the IA-32 Instruction Set Architecture employ a machine check exception
mechanism to alert OSPM to the presence of an uncorrected hardware error condition. The information
in this table is used by OSPM to configure the machine check exception mechanism for each processor in
the system.

Only one entry of this type is permitted in the HEST. OSPM applies the information specified in this entry
to all processors.

Table 18-383 IA-32 Architecture Machine Check Exception Structure

Field
Byte
Length

Byte
Offset

Description

Type 2 0 0 – IA-32 Architecture Machine Check Exception Structure.

Source Id 2 2 This value serves to uniquely identify this error source against
other error sources reported by the platform.

Reserved 2 4 Reserved.
UEFI Forum, Inc. January 2019 Page 837

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.3.2.1.1 IA-32 Architecture Machine Check Bank Structure

This table describes the attributes of a specific IA-32 architecture machine check hardware error bank.

Table 18-384 IA-32 Architecture Machine Check Error Bank Structure

Flags 1 6 Bit [0] - FIRMWARE_FIRST: If set, this bit indicates to the OSPM
that system firmware will handle errors from this source first.

Bit [2] - GHES_ASSIST: If set, this bit indicates that although
OSPM is responsible for directly handling the error (as expected
when FIRMWARE_FIRST is not set), system firmware reports
additional information in the context of an exception generated
by the error. The additional information is reported in a Generic
Hardware Error Source structure with a matching Related Source
Id.

NOTE: If FIRMWARE_FIRST is set, this bit is reserved.

All other bits are reserved.

Enabled 1 7 Specifies whether MCE is to be enabled. If set to 1, this field
indicates this error source is to be enabled. If set to 0, this field
indicates that the error source is not to be enabled.

Number of Records To
Pre-allocate

4 8 Indicates the number of error records to pre-allocate for this
error source.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source.

Global Capability Init
Data

8 16 Indicates the value of the machine check global capability
register.

Global Control Init Data 8 24 Indicates the value to be written to the machine check global
control register.

Number Of Hardware
Banks

1 32 Indicates the number of hardware error reporting banks.

Reserved 7 33 Reserved.

Machine Check Bank
Structure[n]

- 40 A list of Machine Check Bank structures defined in
Section 18.3.2.1.1

Field Byte
Length

Byte
Offset

Description

Bank Number 1 0 Zero-based index identifies the machine check error bank.

Clear Status On
Initialization

1 1 If set, indicates the status information in this machine check
bank is to be cleared during system initialization as follows:

0 – Clear

1 – Don’t clear

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 838

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.3.2.2 IA-32 Architecture Corrected Machine Check

Processors implementing the IA-32 Instruction Set Architecture may report corrected processor errors to
OSPM. The information in this table allows platform firmware to communicate key parameters of the
corrected processor error reporting mechanism to OSPM, including whether CMC processing should be
enabled.

Only one entry of this type is permitted in the HEST. OSPM applies the information specified in this entry
to all processors.

Table 18-385 IA-32 Architecture Corrected Machine Check Structure

Status Data Format 1 2 Identifies the format of the data in the status register:

0 – IA-32 MCA

1 – Intel® 64 MCA

2 – AMD64MCA

All other values are reserved

Reserved 1 3 Reserved.

Control Register
MSR Address

4 4 Address of the hardware bank’s control MSR. Ignored if zero.

Control Init Data 8 8 This is the value the OSPM will program into the machine check
bank’s control register.

Status Register MSR
Address

4 16 Address of the hardware bank’s MCi_STAT MSR. Ignored if
zero.

Address Register

MSR Address

4 20 Address of the hardware bank’s MCi_ADDR MSR. Ignored if
zero.

Misc Register

MSR Address

4 24 Address of the hardware bank’s MCi_MISC MSR. Ignored if
zero.

Field Byte
Length

Byte
Offset

Description

Type 2 0 1 – IA-32 Architecture Corrected Machine Check Structure.

Source Id 2 2 Uniquely identifies the error source.

Reserved 2 4 Reserved

Field Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 839

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.3.2.3 IA-32 Architecture Non-Maskable Interrupt

Uncorrected platform errors are typically reported using the Non-Maskable Interrupt (NMI) vector (for
example, INT 2). This table allows platform firmware to communicate parameters regarding the
configuration and handling of NMI error conditions.

Only one entry of this type is permitted in the HEST.

Table 18-386 IA-32 Architecture NMI Error Structure

Flags 1 6 Bit [0] - FIRMWARE_FIRST: If set, this bit indicates that system
firmware will handle errors from this source first.

Bit [2] - GHES_ASSIST: If set, this bit indicates that although
OSPM is responsible for directly handling the error (as expected
when FIRMWARE_FIRST is not set), system firmware reports
additional information in the context of an interrupt generated
by the error. The additional information is reported in a Generic
Hardware Error Source structure with a matching Related Source
Id.

NOTE: If FIRMWARE_FIRST is set, this bit is reserved.

All other bits must be set to zero.

Enabled 1 7 If the field value is 1, indicates this error source is to be enabled.
If the field value is 0, indicates that the error source is not to be
enabled.

If FIRMWARE_FIRST is set in the flags field, the Enabled field is
ignored by OSPM.

Number of
Records To Pre-
allocate

4 8 Indicates the number of error records to pre-allocate for this
error source. Must be >= 1.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Notification
Structure

28 16 Hardware Error Notification Structure as defined in Table 18-394

Number Of
Hardware Banks

1 44 The number of hardware error reporting banks.

Reserved 3 45 Reserved.

Machine Check
Bank Structure[n]

- 48 A list of Machine Check Bank structures defined in
Section 18.3.2.1.1.

Field
Byte
Length

Byte
Offset

Description

Type 2 0 2 – IA-32 Architecture NMI Structure.

Field Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 840

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.3.2.4 PCI Express Root Port AER Structure

PCI Express (PCIe) root ports may implement PCIe Advanced Error Reporting (AER) support. This table
contains information platform firmware supplies to OSPM for configuring AER support on a given root
port.

The HEST may contain one entry of this type for each PCI Express root port if none of the entries has the
GLOBAL flag set. If the GLOBAL flag is set, there may only be one entry of this type and the information
contained in that entry is applied to all PCIe root ports.

Table 18-387 PCI Express Root Port AER Structure

Source Id 2 2 Uniquely identifies this error source.

Reserved 4 4 Must be zero.

Number of Records
To Pre-allocate

4 8 Indicates number of error records to pre-allocate for this error
source. Must be >= 1.

Max Sections Per
Record

4 12 Indicates maximum number of error sections included in an
error record created as a result of an error reported by this
error source. Must be >= 1.

Max Raw Data
Length

4 16 The size in bytes of the NMI error data.

Field
Byte
Length

Byte
Offset

Description

Type 2 0 6 – AER Root Port.

Source Id 2 2 Uniquely identifies the error source.

Reserved 2 4 Reserved.

Flags 1 6 Bit [0] - FIRMWARE_FIRST: If set, this bit indicates to the OSPM that
system firmware will handle errors from this source first.

Bit [1] - GLOBAL: If set, indicates that the settings contained in this
structure apply globally to all PCI Express Devices.

All other bits must be set to zero.

Enabled 1 7 If the field value is 1, indicates this error source is to be enabled. If
the field value is 0, indicates that the error source is not to be
enabled.

If FIRMWARE_FIRST is set in the flags field, the Enabled field is
ignored by the OSPM.

Number of Records
To Pre-allocate

4 8 Indicates the number error records to pre-allocate for this error
source. Must be >= 1.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 841

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.3.2.5 PCI Express Device AER Structure

PCI Express devices may implement AER support. This table contains information platform firmware
supplies to OSPM for configuring AER support on a given PCI Express device.

The HEST may contain one entry of this type for each PCI Express endpoint device if none of the entries
has the GLOBAL flag set. If the GLOBAL flag is set, there may only be one entry of this type and the
information contained in that entry will be applied to all PCI Express endpoint devices.

Table 18-388 PCI Express Device AER Structure

Bus 4 16 Identifies the PCI Bus and Segment of the root port. The Bus is
encoded in bits [7:0]. For systems that expose multiple PCI segment
groups, the segment number is encoded in bits [23:8] and bits [31-
24] must be zero. For systems that do not expose multiple PCI
segment groups, bits [31:8] must be zero. If the GLOBAL flag is
specified, this field is ignored.

Device 2 20 Identifies the PCI Device Number of the root port.

If the GLOBAL flag is specified, this field is ignored.

Function 2 22 Identifies the PCI Function number of the root port.

If the GLOBAL flag is specified, this field is ignored.

Device Control 2 24 Device control bits with which to initialize the device.

Reserved 2 26 Must be zero.

Uncorrectable Error
Mask

4 28 Value to write to the root port’s Uncorrectable Error Mask register.

Uncorrectable Error
Severity

4 32 Value to write to the root port’s Uncorrectable Error Severity
register.

Correctable Error
Mask

4 36 Value to write to the root port’s Correctable Error Mask register.

Advanced Error
Capabilities and
Control

4 40 Value to write to the root port’s Advanced Error Capabilities and
Control Register.

Root Error Command 4 44 Value to write to the root port’s Root Error Command Register.

Field
Byte
Length

Byte
Offset

Description

Type 2 0 7 – AER Endpoint.

Source Id 2 2 Uniquely identifies the error source.

Reserved 2 4 Reserved.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 842

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.3.2.6 PCI Express/PCI-X Bridge AER Structure

PCI Express/PCI-X bridges that implement AER support implement fields that control the behavior how
errors are reported across the bridge.

Flags 1 6 Bit [0] - FIRMWARE_FIRST: If set, indicates that system firmware
will handle errors from this source first.

Bit [1] – GLOBAL: If set, indicates that the settings contained in this
structure apply globally to all PCI Express Devices.

All other bits must be set to zero.

Enabled 1 7 If the field value is 1, indicates this error source is to be enabled. If
the field value is 0, indicates that the error source is not to be
enabled.

If FIRMWARE_FIRST is set in the flags field, the Enabled field is
ignored by the OSPM.

Number of Records
To Pre-allocate

4 8 Indicates the number of error records to pre-allocate for this error
source. Must be >= 1.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Bus 4 16 Identifies the PCI Bus and Segment of the device. The Bus is
encoded in bits [7:0]. For systems that expose multiple PCI segment
groups, the segment number is encoded in bits [23:8] and bits
[31:24] must be zero. For systems that do not expose multiple PCI
segment groups, bits 8-31 must be zero. If the GLOBAL flag is
specified, this field is ignored.

Device 2 20 Identifies the PCI Device Number of the device.

If the GLOBAL flag is specified, this field is ignored.

Function 2 22 Identifies the PCI Function Number of the device.

If the GLOBAL flag is specified, this field is ignored.

Device Control 2 24 Device control bits with which to initialize the device.

Reserved 2 26 Must be zero.

Uncorrectable Error
Mask

4 28 Value to write to the root port’s Uncorrectable Error Mask register.

Uncorrectable Error
Severity

4 32 Value to write to the root port’s Uncorrectable Error Severity
register.

Correctable Error
Mask

4 36 Value to write to the root port’s Correctable Error Mask register.

Advanced Error
Capabilities and
Control

4 40 Value to write to the root port’s Advanced Error Capabilities and
Control Register.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 843

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
The HEST may contain one entry of this type for each PCI Express/PCI-X bridges if none of the entries has
the GLOBAL flag set. If the GLOBAL flag is set, there may only be one entry of this type and the
information contained in that entry will be applied to all PCI Express/ PCI-X bridges.

Table 18-389 PCI Express Bridge AER Structure

Field
Byte
Length

Byte
Offset

Description

Type 2 0 8 – AER Bridge.

Source Id 2 2 Uniquely identifies the error source.

Reserved 2 4 Reserved.

Flags 1 6 Bit [0] - FIRMWARE_FIRST: If set, indicates that system firmware
will handle errors from this source first.

Bit [1] – GLOBAL: If set, indicates that the settings contained in this
structure apply globally to all PCI Express Bridges.

All other bits must be set to zero.

Enabled 1 7 If the field value is 1, indicates this error source is to be enabled. If
the field value is 0, indicates that the error source is not to be
enabled.

If FIRMWARE_FIRST is set in the flags field, the Enabled field is
ignored by the OSPM.

Number of Records
To Pre-allocate

4 8 Indicates the number of error records to pre-allocate for this error
source. Must be >= 1.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Bus 4 16 Identifies the PCI Bus and Segment of the bridge. The Bus is
encoded in bits [7:0]. For systems that expose multiple PCI segment
groups, the segment number is encoded in bits [23:8] and bits
[31:24] must be zero. For systems that do not expose multiple PCI
segment groups, bits 8-31 must be zero. If the GLOBAL flag is
specified, this field is ignored.

Device 2 20 Identifies the PCI device number of the bridge.

If the GLOBAL flag is specified, this field is ignored.

Function 2 22 Identifies the PCI function number of the bridge.

If the GLOBAL flag is specified, this field is ignored.

Device Control 2 24 Device control bits with which to initialize the device.

Reserved 2 26 This value must be zero.

Uncorrectable Error
Mask

4 28 Value to write to the bridge’s Uncorrectable Error Mask register.

Uncorrectable Error
Severity

4 32 Value to write to the bridge’s Uncorrectable Error Severity register.
UEFI Forum, Inc. January 2019 Page 844

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.3.2.7 Generic Hardware Error Source

The platform may describe a generic hardware error source to OSPM using the Generic Hardware Error
Source structure. A generic hardware error source is an error source that either notifies OSPM of the
presence of an error using a non-standard notification mechanism or reports error information that is
encoded in a non-standard format.

Using the information in a Generic Hardware Error Source structure, OSPM configures an error handler to
read the error data from an error status block – a range of memory set aside by the platform for
recording error status information.

As the generic hardware error source is non-standard, OSPM does not implement built-in support for
configuration and control operations. The error source must be configured by system firmware during
boot.

Some platforms may describe multiple Generic Hardware Error Source structures with different
notification types, as defined in Table 18-390. For example, a platform may describe one error source for
the handling of synchronous errors (e.g. MCE or SEA), and a second source for handling asynchronous
errors (e.g. SCI or External Interrupt).

Table 18-390 Generic Hardware Error Source Structure

Correctable Error
Mask

4 36 Value to write to the bridge’s Correctable Error Mask register.

Advanced Error
Capabilities and
Control

4 40 Value to write to the bridge’s Advanced Error Capabilities and
Control Register.

Secondary
Uncorrectable Error
Mask

4 44 Value to write to the bridge’s secondary uncorrectable error mask
register.

Secondary
Uncorrectable Error
Severity

4 48 Value to write to the bridge’s secondary uncorrectable error
severity register.

Secondary Advanced
Capabilities and
Control

4 52 Value to write to the bridge’s secondary advanced capabilities and
control register.

Field Byte
Length

Byte Off-
set

Description

Type 2 0 9 – Generic Hardware Error Source Structure.

Source Id 2 2 Uniquely identify the error source.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 845

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
The Error Status Address field specifies the location of an 8-byte memory-mapped register that holds the
physical address of the error status block. This error status block must reside in a range of memory
reported to OSPM as firmware reserved. OSPM maps the error status buffer into system address space in
order to read the error data.

18.3.2.7.1 Generic Error Data

The Error Status Block contains the error status information for a given generic error source. OSPM
provides an error handler that formats one or more of these blocks as necessary for the specific
operating system.

Related Source Id 2 4 This field represents the Source Id of an alternate error source for
which the platform:

(a) Requires Firmware-First handling (FIMWARE_FIRST flag is set on
alternate error source). See Section 18.4, “Firmware First Error
Handling”.

(b) Provides additional information in the context of a generated
exception or interrupt (GHES_ASSIST flag is set on alternate error
source).

If this generic error source does not represent an alternate source,
this field must be set to 0xFFFF.

Flags 1 6 Reserved.

Enabled 1 7 If the field value is 1, indicates this error source is to be enabled. If
the field value is 0, indicates that the error source is not to be
enabled.

Number of Records
To Pre-allocate

4 8 Indicates the number of error records to pre-allocate for this error
source. Must be >= 1.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Max Raw Data Length 4 16 Indicates the size in bytes of the error data recorded by this error
source.

Error Status Address 12 20 Generic Address Structure as defined in Section 5.2.3.2.

This field specifies the location of a register that contains the
physical address of a block of memory that holds the error status
data for this error source. This range of memory must reside in
firmware reserved memory. OSPM maps this range into system
address space and reads the error status information from the
mapped address.

Notification Structure 28 32 Hardware Error Notification Structure as defined in Table 18-394.
This structure specifies how this error source notifies OSPM that an
error has occurred.

Error Status Block
Length

4 60 Identifies the length in bytes of the error status data block.

Field Byte
Length

Byte Off-
set

Description
UEFI Forum, Inc. January 2019 Page 846

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
The generic error status block includes two levels of information. The top level is a Generic Error Status
Block structure and is defined in Table 18-391. Following the Generic Error Status Block structure are one
or more Generic Error Data Entry structures, defined in Table 18-392.

Table 18-391 Generic Error Status Block

Field Byte
Length

Byte Off-
set

Description

Block Status 4 0 Indicates the type of error information reported in the error packet.

Bit [0] - Uncorrectable Error Valid: If set to one, indicates that an
uncorrectable error condition exists.

Bit [1] - Correctable Error Valid: If set to one, indicates that a
correctable error condition exists.

Bit [2] - Multiple Uncorrectable Errors: If set to one, indicates that
more than one uncorrectable errors have been detected.

Bit [3] - Multiple Correctable Errors: If set to one, indicates that more
than one correctable errors have been detected.

Bit [13:4] - Error Data Entry Count: This value indicates the number
of Error Data Entries found in the Data section.

Bit [31:14] - Reserved

Raw Data Offset 4 4 Offset in bytes from the beginning of the Error Status Block to raw
error data. The raw data must follow any Generic Error Data Entries.

Raw Data Length 4 8 Length in bytes of the raw data.

Data Length 4 12 Length in bytes of the generic error data.

Error Severity 4 16 Identifies the error severity of the reported error:

0 – Recoverable
1 – Fatal
2 – Corrected
3 – None

Note: This is the error severity of the entire event. Each Generic
Error Data Entry also includes its own Error Severity field.

Generic Error Data
Entries

Data
Length

20 The information contained in this field is a collection of zero or more
Generic Error Data Entries (see Table 18-392).

One or more Generic Error Data Entry structures may be recorded in the Generic Error Data Entries field
of the Generic Error Status Block structure. This allows the platform to accumulate information for
multiple hardware components related to a given error event. For example, if the generic error source
represents an error that occurs on a device on the secondary side of a PCI Express / PCI-X Bridge, it is
useful to record error information from the PCI Express Bridge and from the PCI-X device. Utilizing two
Generic Error Data Entry structures enables this. Table 18-392 defines the layout of a Generic Error Data
Entry.

For details of some of the fields defined in Table 18-392. Please refer to the definition of Section
Descriptors provided in the appendices of the UEFI Specification under the description of the Common
Platform Error Record.
UEFI Forum, Inc. January 2019 Page 847

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
Table 18-392 Generic Error Data Entry

Field
Byte
Length

Byte
Offset

Description

Section Type 16 0 Identifies the type of error data in this entry.

See the Section Type field of the Section Descriptor in the UEFI
Specification.

Error Severity 4 16 Identifies the severity of the reported error.

0 – Recoverable
1 – Fatal
2 – Corrected
3 – None

Revision 2 20 The revision number is 0x300.

See the Revision field of the Section Descriptor in the UEFI
Specification.

Validation Bits 1 22 Identifies whether certain fields are populated with valid data.

This field indicates the validity of the following fields:

Bit 0 - If 1, the FRUId field contains valid information.

Bit 1 - If 1, the FRUString FRU Text field contains valid
information.

Bit 2 - If 1, the TimeStamp field contains valid information.

Bit 7:3 - Reserved, must be zero..

Flags 1 23 Flags describing the error data.

See the Flags field of the Section Descriptor in the UEFI
Specification appendix titled "Common Platform Error Record”.

Error Data Length 4 24 Length in bytes of the generic error data.

It is valid to have a Data Length of zero. This would be used for
instance in firmware-first error handling where the platform
reports errors to the OSPM using NMI.

FRU Id 16 28 Identifies the Field Replaceable Unit.

See the FRU Id field of the Section Descriptor in the UEFI
Specification appendix titled "Common Platform Error Record”.

FRU Text 20 44 Text field describing the Field Replaceable Unit.

See the FRU Text field of the Section Descriptor in the UEFI
Specification appendix titled "Common Platform Error Record”.
UEFI Forum, Inc. January 2019 Page 848

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.3.2.7.2 Event Notification For Generic Error Sources

An event notification is recommended for corrected errors where latency in processing error reports is
not critical to proper system operation. The implementation of Event notification requires the platform
to define a device with PNP ID PNP0C33 in the ACPI namespace, referred to as the error device. This
device is used to notify the OSPM that a generic error source is reporting an error. Since multiple generic
error sources can use event notification, it is the responsibility of the OSPM to scan the list of these
generic error sources and check the block status field (Table 18-391) to identify the source that reported
the error.

The platform is responsible for providing a control method that issues a NOTIFY on the error device
(PNP0C33), with a notification code of type 0x80.

For traditional ACPI platforms the event signaling follows the model described in Section 5.6.4.1.1. The
platform implements a general purpose event (GPE) for the error notification, and the GPE has an
associated control method.

An example of a GPE control method for error notification is the following:

 Method (_GPE._L08) { // GPE 8 level error notification
 Notify (error_device, 0x80)
 }
For HW-reduced ACPI platforms, the event signaling follows the model described in
Section 5.6.5 and Section 5.6.9. The platform implements a notification of error
events via interrupts or a GPIO pin. In both cases these are associated with an _EVT
control method.
An example of an _EVT control method for GPIO-based error notification is the
following:
 Method (_EVT) { // GPIO pin 300 error notification
 Switch (Arg1) {
 Case (300) {
 Notify (error_device, 0x80)
 }
 }
 }

Timestamp 8 64 If marked valid per the validation bits field, this field
correlates to the time when the error information was
collected by the system software and may not necessarily
represent the time of the error event. The timestamp
contains the local time in BCD format.

See the Timestamp field of the Error Record Header section in the
EFI Specification appendix titled "Common Platform Error Record
”.

Data Error
Data
Length

64 Generic error data.

The information contained in this field must match one of the
error record section types defined in the UEFI Specification
appendix, “Common Platform Error Record”.
UEFI Forum, Inc. January 2019 Page 849

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
The overall flow when the platform uses the event notification is:

• The platform enumerates the error source with event as the notification method using the
format in Table 18-390 and Table 18-391

• The platform surfaces an error device, PNP ID PNP0C33, to the OSPM
• When the platform is ready to report an error, the platform populates the error status block

including the block status field (Table 18-391)

Traditional ACPI platforms signal the error using an SCI, on the appropriate GPE:

• The OSPM evaluates the GPE control method associated with this event as indicated on
Section 5.6.4.1.1

• OSPM responds to this notification by checking the error status block of all generic error
sources with the SCI Generic notification type to identify the source reporting the error

HW-reduced ACPI platforms signal the error using a GPIO interrupt or another interrupt declared under a
generic event device (Section 5.6.9). In the case of GPIO-signaled events, an _AEI object lists the
appropriate GPIO pin, while for Interrupt-signaled events a _CRS object is used to list the interrupt:

• The OSPM evaluates the control method associated with this event as indicated in
Section 5.6.5.3 and Section 5.6.9.3.

• OSPM responds to this notification by checking the error status block of all generic error
sources with the GPIO-Signal notification or Interrupt-signaled notification types to identify the
source reporting the error.

18.3.2.8 Generic Hardware Error Source version 2 (GHESv2 - Type 10)

This is an extension to the Generic Hardware Error source structure (Section 18.3.2.7) for hardware-
reduced platforms that rely on RAS controllers for generation of generic error records. A RAS controller
may be a hardware or firmware entity that may execute in parallel with OS execution (e.g., a RAS
controller may be firmware running on an independent microcontroller, or it could be in the form of
platform firmware that runs on one of the application processors). Platforms with RAS controllers must
prevent concurrent accesses to the Error Status Block (i.e., the RAS controller must not overwrite the
Error Status Block before the OS has completed reading it). Figure 18-79 provides a high level example of
how the RAS controller might interact with the OS.

Error Resource (e.g.
Memory, Bus, Cache)

(1) Error IRQ

Generic Error
Status Block

(2) Generate
Record

RAS firmwareOS
(3) Error Event
(if not polled)

(4) Copy
Record

(6) Ack Error

(5) Clear
Block Status
UEFI Forum, Inc. January 2019 Page 850

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
Figure 18-79 APEI error flow example with external RAS controller

For GHESv2 error sources, the OSPM must acknowledge the consumption of the Error Status Block by
writing to the “Read Ack Register” listed in the GHESv2 structure (described in Table 18-393).

For platforms that describe multiple Generic Hardware Error Sources: The platform must provide a
unique memory region for the Error Status Block of each error source.

Table 18-393 Generic Hardware Error Source version 2 (GHESv2) Structure

Name

Byte
Length

Byte
Offset

Description

Type 2 0 10 – Generic Hardware Error Source (version 2) structure

Equivalent fields in
Table 18-390
(Generic Hardware
Error Source
Structure)

62 2 Same format as fields in Table 18-390 (Generic Hardware
Error Source Structure) starting from Source Id and ending in
Error Status Block Length inclusive

Read Ack Register 12 64 Generic Address Structure as defined in Section 5.2.3.2 . This
field specifies the location of the Read Ack Register used to
notify the RAS controller that OSPM has processed the Error
Status Block. The OSPM writes the bit(s) specified in Read
Ack Write, while preserving the bit(s) specified in Read Ack
Preserve.

Read Ack Preserve 8 76 Contains a mask of bits to preserve when writing the Read
Ack register.

Read Ack Write 8 84 Contains a mask of bits to set when writing the Read Ack
register.

These are the steps the OS must take once detecting an error from a particular GHESv2 error source:

• OSPM detects error (via interrupt/exception or polling the block status)
• OSPM copies the error status block
• OSPM clears the block status field of the error status block
• OSPM acknowledges the error via Read Ack register. For example:

— OSPM reads the Read Ack register  X

— OSPM writes  ((X & ReadAckPreserve) | ReadAckWrite)

18.3.2.9 Hardware Error Notification

This table describes the notification mechanism associated with a hardware error source.
UEFI Forum, Inc. January 2019 Page 851

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
Table 18-394 Hardware Error Notification Structure

Field
Byte
Length

Byte
Offset

Description

Type 1 0 Identifies the notification type:

0 – Polled

1 – External Interrupt

2 – Local Interrupt

3 – SCI

4 – NMI

5 - CMCI

6 - MCE

7 - GPIO-Signal

8 - ARMv8 SEA

9 - ARMv8 SEI

10 - External Interrupt - GSIV

11 - Software Delegated Exception – See Links to ACPI-Related
Documents (http://uefi.org/acpi) under the heading, “SDEI
Specification.”

All other values are reserved

Length 1 1 Total length of the structure in bytes.

Configuration
Write Enable

2 2 This field indicates whether configuration parameters may be
modified by OSPM. If the bit for the associated parameter is set,
the parameter is writeable by OSPM:

Bit [0]: Type

Bit [1]: Poll Interval

Bit [2]: Switch To Polling Threshold Value

Bit [3]: Switch To Polling Threshold Window

Bit [4]: Error Threshold Value

Bit [5]: Error Threshold Window

All other bits are reserved.

Poll Interval 4 4 Indicates the poll interval in milliseconds OSPM should use to
periodically check the error source for the presence of an error
condition.

Vector 4 8 Interrupt vector. For type 10 “External Interrupt – GSIV”, this
field specifies the GSIV triggered by the error source.

Switch To Polling
Threshold Value

4 12 The number of error interrupts that must occur within Switch To
Polling Threshold Interval before OSPM switches the error
source to polled mode.

Switch To Polling
Threshold Window

4 16 Indicates the time interval in milliseconds that Switch To Polling
Threshold Value interrupts must occur within before OSPM
switches the error source to polled mode.
UEFI Forum, Inc. January 2019 Page 852

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.3.2.10 IA-32 Architecture Deferred Machine Check

Processors implementing the IA-32 Instruction Set Architecture may report Deferred errors to OSPM.
These errors indicate that data has been corrupted but not consumed. The information in this table
allows platform firmware to communicate key parameters of the deferred processor error reporting
mechanism to OSPM, including whether Deferred Machine Check (DMC) processing should be enabled.

Only one entry of this type is permitted in the HEST. OSPM applies the information specified in this entry
to all processors.

Table 18-395 Architecture Deferred Machine Check Structure

Error Threshold
Value

4 20 Indicates the number of error events that must occur within
Error Threshold Interval before OSPM processes the event as an
error condition.

Error Threshold
Window

4 24 Indicates the time interval in milliseconds that Error Threshold
Value errors must occur within before OSPM processes the
event as an error condition.

Field Byte
Length

Byte Off-
set

Description

Type 2 0 11 – IA-32 Architecture Deferred Machine Check Structure.

Source Id 2 2 This value serves to uniquely identify this error source against
other error sources reported by the platform.

Reserved 2 4 Reserved.

Flags 1 6 Bit [0] - FIRMWARE_FIRST: If set, this bit indicates to the OSPM
that system firmware will handle errors from this source first.

Bit [2] - GHES_ASSIST: If set, this bit indicates that although
OSPM is responsible for directly handling the error (as
expected when FIRMWARE_FIRST is not set), system firmware
reports additional information in the context of an interrupt
generated by the error. The additional information is reported
in a Generic Hardware Error Source structure with a matching
Related Source Id.

NOTE: If FIRMWARE_FIRST is set, this bit is reserved.

All other bits must be set to zero.

Enabled 1 7 If the field value is 1, indicates this error source is to be
enabled. If the field value is 0, indicates that the error source is
not to be enabled. If FIRMWARE_FIRST is set in the flags field,
the Enabled field is ignored by OSPM.

Number of Records
To Pre-allocate

4 8 Indicates the number of error records to pre-allocate for this
error source. Must be >= 1.

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 853

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.4 Firmware First Error Handling

It may be necessary for the platform to process certain classes of errors in firmware before relinquishing
control to OSPM for further error handling. Errata management and error containment are two examples
where firmware-first error handling is beneficial. Generic hardware error sources support this model
through the related source ID.

The platform reports the original error source to OSPM via the hardware error source table (HEST) and
sets the FIRMWAREFIRST flag for this error source. In addition, the platform must report a generic error
source with a related source ID set to the original source ID. This generic error source is used to notify
OSPM of the errors on the original source and their status after the firmware first handling.

There are different notification strategies that can be used in firmware first handling; the following
options are available to the platform:

• Traditional ACPI platforms may use NMI to notify the OSPM of both corrected and uncorrected
errors for a given error source

• Traditional ACPI platforms may use NMI to report uncorrected errors and the SCI to report
corrected errors

• Traditional ACPI platforms may use NMI to report uncorrected errors and polling to notify the
OSPM of corrected errors

• HW-reduced ACPI platforms may use GPIO-signaled events, Interrupt-signaled events, or
polling to report corrected errors.

18.4.1 Example: Firmware First Handling Using NMI Notification

If the platform chooses to use NMI to report errors, which is the recommended method for uncorrected
errors, the platform follows these steps:

1. System firmware configures the platform to trigger a firmware handler when the error occurs

2. System firmware identifies the error source for which it will handle errors via the error source
enumeration interface by setting the FIRMWARE_FIRST flag

3. System firmware describes the generic error source, and the associated error status block, as
described in Section 18.3.2.7. System firmware identifies the relation between the generic
error source and the original error source by using the original source ID in the related source
ID of Table 18-390.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in
an error record created as a result of an error reported by this
error source. Must be >= 1.

Notification
Structure

28 16 Hardware Error Notification Structure as defined in Table 18-
345

Number Of
Hardware Banks

1 44 Indicates the number of hardware error reporting banks.

Reserved 3 45 Reserved.

Machine Check Bank
Structure[n]

- 48 A list of Machine Check Bank structures defined in

Section 18.3.2.1.1.

Field Byte
Length

Byte Off-
set

Description
UEFI Forum, Inc. January 2019 Page 854

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
4. When a hardware error reported by the error source occurs, system firmware gains control
and handles the error condition as required. Upon completion system firmware should do the
following:

a Extract the error information from the error source and fill in the error information in the
data block of the generic error source it identified as an alternate in step 3. The error
information format follows the specification in Section 18.3.2.7.1

b Set the appropriate bit in the block status field (Table 18-391) to indicate to the OSPM that a
valid error condition is present.

c Clears error state from the hardware.

d Generates an NMI.

At this point, the OSPM NMI handler scans the list of generic error sources to find the error source that
reported the error and processes the error report

18.5 Error Serialization

• The error record serialization feature is used to save and retrieve hardware error information
to and from a persistent store. OSPM interacts with the platform through a platform interface.
If the Error record Serialization Table (ERST) defined in Section 18-396 is present, OSPM uses
the ACPI solution described below. Otherwise, OSPM uses the UEFI runtime variable services to
carry out error record persistence operations on UEFI based platforms.

• For error persistence across boots, the platform must implement some form of non-volatile
store to save error records. The amount of space required depends on the platform’s processor
architecture. Typically, this store will be flash memory or some other form of non-volatile RAM.

• Serialized errors are encoded according to the Common Platform Error Record (CPER) format,
which is described in the appendices of the UEFI Specification. These entries are referred to as
error records.

• The Error Record Serialization Interface is designed to be sufficiently abstract to allow
hardware vendors flexibility in how they implement their error record serialization hardware.
The platform provides details necessary to communicate with its serialization hardware by
populating the ERST with a set of Serialization Instruction Entries. One or more serialization
instruction entries comprise a Serialization Action. OSPM carries out serialization operations by
executing a series of Serialization Actions. Serialization Actions and Serialization Instructions
are described in detail in the following sections.

Table 18-396 details the layout of the ERST which system firmware is responsible for building.
UEFI Forum, Inc. January 2019 Page 855

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
Table 18-396 Error Record Serialization Table (ERST)

Field
Byte
Length

Byte
Offset

Description

ACPI Standard Header

Header Signature 4 0 “ERST”. Signature for the Error Record Serialization
Table.

Length 4 4 Length, in bytes, of entire ERST. Entire table must
be contiguous.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 The manufacturer model ID.

OEM Revision 4 24 OEM revision of the ERST for the supplied OEM
table ID.

Creator ID 4 28 Vendor ID of the utility that created the table.

Creator Revision 4 32 Revision of the utility that created the table.

Serialization Header

Serialization Header Size 4 36 Length in bytes of the serialization header.

Reserved 4 40 Must be zero.

Instruction Entry Count 4 44 The number of Serialization Instruction Entries in
the Serialization Action Table.

Serialization Action Table

Serialization Instruction Entries 48 A series of error logging instruction entries.

18.5.1 Serialization Action Table

A Serialization Action is defined as a series of Serialization Instructions on registers that result in a well
known action. A Serialization Instruction is a Serialization Action primitive and consists of either reading
or writing an abstracted hardware register. The Serialization Action Table contains Serialization
Instruction Entries for all the Serialization Actions the platform supports.

In most cases, a Serialization Action comprises only one Serialization Instruction, but it is conceivable that
a more complex device will require more than one Serialization Instruction. When an action does
comprise more than one instruction, the instructions must be listed consecutively and they will
consequently be performed sequentially, according to their placement in the Serialization Action Table.

18.5.1.1 Serialization Actions

This section identifies the Serialization Actions that comprise the Error Record Serialization interface.
Table 18-397 identifies the supported error record Serialization Actions.
UEFI Forum, Inc. January 2019 Page 856

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
Table 18-397 Error Record Serialization Actions

Value Name Description

0x0 BEGIN_WRITE_OPERATION Indicates to the platform that an error record write operation is
beginning. This allows the platform to set its operational context.

0x1 BEGIN_READ_OPERATION Indicates to the platform that an error record read operation is
beginning. This allows the platform to set its operational context.

0x2 BEGIN_CLEAR_OPERATION Indicates to the platform that an error record clear operation is
beginning. This allows the platform to set its operation context.

0x3 END_OPERATION Indicates to the platform that the current error record operation
has ended. This allows the platform to clear its operational
context.

0x4 SET_RECORD_OFFSET Sets the offset from the base of the Error Log Address Range to or
from which the platform is to transfer an error record.

0x5 EXECUTE_OPERATION Instructs the platform to carry out the current operation based on
the current operational context.

0x6 CHECK_BUSY_STATUS Returns the state of the current operation. Once an operation has
been executed through the EXECUTE_OPERATION action, the
platform is required to return an indication that the operation is in
progress until the operation completes. This allows the OS to poll
for completion by repeatedly executing the CHECK_BUSY_STATUS
action until the platform indicates that the operation not busy.

0x7 GET_COMMAND_STATUS Returns the status of the current operation. The platform is
expected to maintain a status code for each operation. See
Section 18-398 for a list of valid command status codes.

0x8 GET_RECORD_IDENTIFIER Returns the record identifier of an existing error record on the
persistent store. The error record identifier is a 64-bit unsigned
value as defined in the appendices of the UEFI Specification. If the
record store is empty, this action must return 0xFFFFFFFFFFFFFFFF.

0x9 SET_RECORD_IDENTIFIER Sets the record identifier. The error record identifier is a 64-bit
unsigned value as defined in the appendices of the UEFI
Specification.

0xA GET_RECORD_COUNT Retrieves the number of error records currently stored on the
platforms persistent store. The platform is expected to maintain a
count of the number of error records resident in its persistent
store.

0xB BEGIN_DUMMY_WRITE_OPERATI
ON

Indicates to the platform that a dummy error record write
operation is beginning. This allows the platform to set its
operational context. A dummy error record write operation
performs no actual transfer of information from the Error Log
Address Range to the persistent store.

0xC RESERVED Reserved.

0xD GET_ERROR_LOG_ADDRESS_RAN
GE

Returns the 64-bit physical address OSPM uses as the buffer for
reading/writing error records.
UEFI Forum, Inc. January 2019 Page 857

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
Table 18-398 below defines the serialization action status codes returned from
GET_COMMAND_STATUS.

Table 18-398 Command Status Definition

Value Description

0x00 Success

0x01 Not Enough Space

0x02 Hardware Not Available

0x03 Failed

0x04 Record Store Empty

0x05 Record Not Found

18.5.1.2 Serialization Instruction Entries

Each Serialization Action consists of a series of one or more Serialization Instructions. A Serialization
Instruction represents a primitive operation on an abstracted hardware register represented by the
register region as defined in a Serialization Instruction Entry.

A Serialization Instruction Entry describes a region in a serialization hardware register and the
serialization instruction to be performed on that region. Table 18-399 details the layout of a Serialization
Instruction Entry.

0xE GET_ERROR_LOG_ADDRESS_RAN
GE_LENGTH

Returns the length in bytes of the Error Log Address Range

0xF GET_ERROR_LOG_ADDRESS_RAN
GE_ATTRIBUTES

Returns attributes that describe the behavior of the error log
address range.

Bit [0] (0x1) – Reserved.

Bit [1] (0x2) – Non-Volatile: Indicates that the error log address
range is in non-volatile RAM.

Bit [2] (0x4) – Slow: Indicates that the memory in which the error
log address range is locates has slow access times.

All other bits reserved.

0x10 GET_EXECUTE_OPERATION_TIMI
NGS

Returns an encoded QWORD : [63:32] value in microseconds that
the platform expects would be the maximum amount of time it will
take to process and complete an EXECUTE_OPERATION. [31:0]
value in microseconds that the platform expects would be the
nominal amount of time it will take to process and complete an
EXECUTE_OPERATION.

Value Name Description
UEFI Forum, Inc. January 2019 Page 858

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
Table 18-399 Serialization Instruction Entry

Field
Byte
Length

Byte
Offset

Description

Serialization
Action

1 N+0 The serialization action that this serialization instruction is a part
of.

Instruction 1 N+1 Identifies the instruction to execute. See Table 18-400 for a list of
valid serialization instructions.

Flags 1 N+2 Flags that qualify the instruction.

Reserved 1 N+3 Must be zero.

Register
Region

12 N+4 Generic Address Structure as defined in Section 5.2.3.2 to describe
the address and bit.

Value 8 N+16 Value used with READ_REGISTER_VALUE and
WRITE_REGISTER_VALUE instructions.

Mask 8 N+24 The bit mask required to obtain the bits corresponding to the
serialization instruction in a given bit range defined by the register
region.

Register Region is described as a generic address structure. This structure describes the physical address
of a register as well as the bit range that corresponds to a desired region of the register. The bit range is
defined as the smallest set of consecutive bits that contains every bit in the register that is associated
with the Serialization Instruction. If bits [6:5] and bits [3:2] all correspond to a Serialization Instruction,
the bit range for that instruction would be [6:2].

Because a bit range could contain bits that do not pertain to a particular Serialization Instruction (i.e. bit 4
in the example above), a bit mask is required to distinguish all the bits in the region that correspond to
the instruction. The Mask field is defined to be this bit mask with a bit set to ‘1’ for each bit in the bit
range (defined by the register region) corresponding to the Serialization Instruction. Note that bit 0 of
the bit mask corresponds to the lowest bit in the bit range. In the example used above, the mask would
be 11011b or 0x1B.

The Instruction field identifies the operation to be performed on the register region by the instruction
entry. Table 18-400 identifies the instructions that are supported.

Table 18-400 Serialization Instructions

Value Name Description

0x00 READ_REGISTER A READ_REGISTER instruction reads the designated information
from the specified Register Region.

0x01 READ_REGISTER_VALUE A READ_REGISTER_VALUE instruction reads the designated
information from the specified Register Region and compares the
results with the contents of the Value field. If the information read
matches the contents of the Value field, TRUE is returned, else
FALSE is returned.

0x02 WRITE_REGISTER A WRITE_REGISTER instruction writes a value to the specified
Register Region. The Value field is ignored.
UEFI Forum, Inc. January 2019 Page 859

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
The Flags field allows qualifying flags to be associated with the instruction. Table 18-401 identifies the
flags that can be associated with Serialization Instructions.

Table 18-401 Instruction Flags

Value Name Description

0x01 PRESERVE_REGISTER For WRITE_REGISTER and WRITE_REGISTER_VALUE instructions,
this flag indicates that bits within the register that are not being
written must be preserved rather than destroyed.

For READ_REGISTER instructions, this flag is ignored.

0x03 WRITE_REGISTER_VALUE A WRITE_REGISTER_VALUE instruction writes the contents of the
Value field to the specified Register Region.

0x04 NOOP This instruction is a NOOP.

0x05 LOAD_VAR1 Loads the VAR1 variable from the register region.

0x06 LOAD_VAR2 Loads the VAR2 variable from the register region.

0x07 STORE_VAR1 Stores the value in VAR1 to the indicate register region.

0x08 ADD Adds VAR1 and VAR2 and stores the result in VAR1.

0x09 SUBTRACT Subtracts VAR1 from VAR2 and stores the result in VAR1.

0x0A ADD_VALUE Adds the contents of the specified register region to Value and
stores the result in the register region.

0x0B SUBTRACT_VALUE Subtracts Value from the contents of the specified register region
and stores the result in the register region.

0x0C STALL Stall for the number of microseconds specified in Value.

0x0D STALL_WHILE_TRUE OSPM continually compares the contents of the specified register
region to Value until the values are not equal. OSPM stalls between
each successive comparison. The amount of time to stall is
specified by VAR1 and is expressed in microseconds.

0x0E SKIP_NEXT_INSTRUCTION_IF_TR
UE

This is a control instruction which compares the contents of the
register region with Value. If the values match, OSPM skips the next
instruction in the sequence for the current action.

0x0F GOTO OSPM will go to the instruction specified by Value. The instruction
is specified as the zero-based index. Each instruction for a given
action has an index based on its relative position in the array of
instructions for the action.

0x10 SET_SRC_ADDRESS_BASE Sets the SRC_BASE variable used by the MOVE_DATA instruction to
the contents of the register region.

0x11 SET_DST_ADDRESS_BASE Sets the DST_BASE variable used by the MOVE_DATA instruction to
the contents of the register region.

0x12 MOVE_DATA Moves VAR2 bytes of data from SRC_BASE + Offset to DST_BASE +
Offset, where Offset is the contents of the register region.

Value Name Description
UEFI Forum, Inc. January 2019 Page 860

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.5.1.2.1 READ_REGISTER_VALUE

A read register value instruction reads the register region and compares the result with the specified
value. If the values are not equal, the instruction failed. This can be described in pseudo code as follows:

X = Read(register)
X = X >> Bit Offset described in Register Region
X = X & Mask
If (X != Value) FAIL
SUCCEED

18.5.1.2.2 READ_REGISTER

A read register instruction reads the register region. The result is a generic value and should not be
compared with Value. Value will be ignored. This can be described in pseudo code as follows:

X = Read(register)
X = X >> Bit Offset described in Register Region
X = X & Mask
Return X

18.5.1.2.3 WRITE_REGISTER_VALUE

A write register value instruction writes the specified value to the register region. If PRESERVE_REGISTER
is set in Instruction Flags, then the bits not corresponding to the write value instruction are preserved. If
the register is preserved, the write value instruction requires a read of the register. This can be described
in pseudo code as follows:

X = Value & Mask
X = X << Bit Offset described in Register Region
If (Preserve Register)

Y = Read(register)
Y = Y & ~(Mask << Bit Offset)
X = X | Y

Write(X, Register)

18.5.1.2.4 WRITE_REGISTER

A write register instruction writes a value to the register region. Value will be ignored. If
PRESERVE_REGISTER is set in Instruction Flags, then the bits not corresponding to the write instruction
are preserved. If the register is preserved, the write value instruction requires a read of the register. This
can be described in pseudo code as follows:

X = supplied value
X = X & Mask
X = X << Bit Offset described in Register Region
If (Preserve Register)
UEFI Forum, Inc. January 2019 Page 861

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
Y = Read(register)
Y = Y & ~(Mask << Bit Offset)
X = X | Y

Write(X, Register)

18.5.1.3 Error Record Serialization Information

The APEI error record includes an 8 byte field called OSPM Reserved. Table 18-402 defines the layout of
this field. The error record serialization information is a small buffer the platform can use for serialization
bookkeeping. The platform is free to use the 48 bits starting at bit offset 16 for its own purposes. It may
use these bits to indicate the busy/free status of an error record, to record an internal identifier, etc.

Table 18-402 Error Record Serialization Info

Field
Bit
Length

Bit Offset Description

Signature 16 0 16-bit signature (‘ER’) identifying the start of the error
record serialization data.

Platform Serialization Data 48 16 Platform private error record serialization
information.

18.5.2 Operations

The error record serialization interface comprises three operations: Write, Read, and Clear. OSPM uses
the Write operation to write a single error record to the persistent store. The Read operation is used to
retrieve a single error record previously recorded to the persistent store using the write operation. The
Clear operation allows OSPM to notify the platform that a given error record has been fully processed
and is no longer needed, allowing the platform to recover the storage associated with a cleared error
record.

Where the Error Log Address Range is NVRAM, significant optimizations are possible since transfer from
the Error Log Address Range to a separate storage device is unnecessary. The platform may still,
however, copy the record from NVRAM to another device, should it choose to. This allows, for example,
the platform to copy error records to private log files. In order to give the platform the opportunity to do
this, OSPM must use the Write operation to persist error records even when the Error Log Address Range
is NVRAM. The Read and Clear operations, however, are unnecessary in this case as OSPM is capable of
reading and clearing error records without assistance from the platform.

18.5.2.1 Writing

To write a single HW error record, OSPM executes the following steps:

1. Initializes the error record’s serialization info. OSPM must fill in the Signature.

2. Writes the error record to be persisted into the Error Log Address Range.

3. Executes the BEGIN_WRITE_OPERATION action to notify the platform that a record write
operation is beginning.

4. Executes the SET_RECORD_OFFSET action to inform the platform where in the

5. Error Log Address Range the error record resides.
UEFI Forum, Inc. January 2019 Page 862

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
6. Executes the EXECUTE_OPERATION action to instruct the platform to begin the write
operation.

7. Busy waits by continually executing CHECK_BUSY_STATUS action until FALSE is returned.

8. Executes a GET_COMMAND_STATUS action to determine the status of the write operation. If
an error is indicated, the OS

9. PM may retry the operation.

10. Executes an END_OPERATION action to notify the platform that the record write operation is
complete.

When OSPM performs the EXECUTE_OPERATION action in the context of a record write operation, the
platform attempts to transfer the error record from the designated offset in the Error Log Address Range
to a persistent store of its choice. If the Error Log Address Range is non-volatile RAM, no transfer is
required.

Where the platform is required to transfer the error record from the Error Log Address Range to a
persistent store, it performs the following steps in response to receiving a write command:

1. Sets some internal state to indicate that it is busy. OSPM polls by executing a
CHECK_BUSY_STATUS action until the operation is completed.

2. Reads the error record’s

3. Record ID field to determine where on the storage medium the supplied error record is to be
written. The platform attempts to locate the specified error record on the persistent store.

a If the specified error record does not exist, the platform attempts to write a new record to the
persistent store.

b If the specified error record does exists, then if the existing error record is large enough to be
overwritten by the supplied error record, the platform can do an in-place replacement. If the
existing record is not large enough to be overwritten, the platform must attempt to locate
space in which to write the new record. It may mark the existing record as Free and coalesce
adjacent free records in order to create the necessary space.

4. Transfers the error record to the selected location on the persistent store.

5. Updates an internal

6. Record Count if a new record was written.

7. Records the status of the operation so OSPM can retrieve the status by executing a
GET_COMMAND_STATUS action.

8. Modifies internal busy state as necessary so when OS

9. PM executes CHECK_BUSY_STATUS, the result indicates that the operation is complete.

If the Error Log Address Range resides in NVRAM, the minimum steps required of the platform are:

1. Sets some internal state to indication that it is busy. OSPM polls by executing a
CHECK_BUSY_STATUS action until the operation is completed.

2. Records the status of the o

3. peration so OSPM can retrieve the status by executing a GET_COMMAND_STATUS action.

4. Clear internal busy state so when OS

5. PM executes CHECK_BUSY_STATUS, the result indicates that the operation is complete.
UEFI Forum, Inc. January 2019 Page 863

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.5.2.2 Reading

During boot, OSPM attempts to retrieve all serialized error records from the persistent store. If the Error
Log Address Range does not reside in NVRAM, the following steps are executed by OSPM to retrieve all
error records:

1. Executes the BEGIN_ READ_OPERATION action to notify the platform that a record read
operation is beginning.

2. Executes the SET_ RECORD_OFFSET action to inform the platform at what offset in the Error
Log Address Range the error record is to be transferred.

3. Executes the SET_RECORD_IDENTIFER action to inform the platform which error record is to be
read from its persistent store.

4. Executes the EXECUTE_OPERATION action to instruct the platform to begin the read operation.

5. Busy waits by continually executing CHECK_BUSY_STATUS action until FALSE is returned.

6. Executes a GET_COMMAND_STATUS action to determine the status of the read operation.

a If the status is Record Store Empty (0x04), continue to step 7.

b If an error occurred reading a valid error record, the status will be Failed (0x03), continue to
step 7.

c If the status is Record Not Found (0x05), indicating that the specified error record does not
exist, OSPM retrieves a valid identifier by executing a GET_RECORD_IDENTIFIER
action. The platform will return a valid record identifier.

d If the status is Success, OSPM transfers the retrieved record from the Error Log Address
Range to a private buffer and then executes the GET_RECORD_IDENTIFIER action to
determine the identifier of the next record in the persistent store.

7. Execute an END_OPERATION to notify the platform that the record read operation is complete.

The steps performed by the platform to carry out a read request are as follows:

1. Sets some internal state to indicate that it is busy. OSPM polls by executing a
CHECK_BUSY_STATUS action until the operation is completed.

2. Using the record identifier supplied by OSPM through the SET_RECORD_IDENTIFIER operation,
determine which error record to read:

a If the identifier is 0x0 (unspecified), the platform reads the ‘first’ error record from its
persistent store. First, in this is implementation specific.

b If the identifier is non-zero, the platform attempts to locate the specified error record on the
persistent store.

c If the specified error record does not exist, set the status register’s

d Status to Record Not Found (0x05), and update the status register’s Identifier field with the
identifier of the ‘first’ error record.

3. Transfer the record from the persistent store to the offset specified by OSPM from the base of
the Error Log Address Range.

4. Record the Identifier of the ‘next’ valid error record that resides on the persistent store. This
allows OSPM to retrieve a valid record identifier by executing a GET_RECORD_IDENTIFIER
operation.
UEFI Forum, Inc. January 2019 Page 864

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
5. Record the status of the operation so OSPM can retrieve the status by executing a
GET_COMMAND_STATUS action.

6. Clear internal busy state so when OSPM executes CHECK_BUSY_STATUS, the result indicates
that the operation is complete.

Where the Error Log Address Range does reside in NVRAM, OSPM requires no platform support to read
persisted error records. OSPM can scan the Error Log Address Range on its own and retrieve the error
records it previously persisted.

18.5.2.3 Clearing

After OSPM has finished processing an error record, it will notify the platform by clearing the record. This
allows the platform to delete the record from the persistent store or mark it such that the space is free
and can be reused. The following steps are executed by OSPM to clear an error record:

1. Executes a BEGIN_ CLEAR_OPERATION action to notify the platform that a record clear
operation is beginning.

2. Executes a SET_RECORD_IDENTIFER action to inform the platform which error record is to be
cleared. This value must not be set to 0x0 (unspecified).

3. Executes an EXECUTE_OPERATION action to instruct the platform to begin the clear operation.

4. Busy waits by continually executing CHECK_BUSY_STATUS action until FALSE is returned.

5. Executes a GET_COMMAND_STATUS action to determine the status of the clear operation.

6. Execute an END_OPERATION to notify the platform that the record read operation is complete.

The platform carries out a clear request by performing the following steps:

1. Sets some internal state to indication that it is busy. OSPM polls by executing a
CHECK_BUSY_STATUS action until the operation is completed.

2. Using the record identifier supplied by OSPM through the SET_RECORD_IDENTIFIER operation,
determine which error record to clear. This value may not be 0x0 (unspecified).

3. Locate the specified error record on the persistent store.

4. Mark the record as free by updating the Attributes in its serialization header.

5. Update internal record count.

6. Clear internal busy state so when OS

7. PM executes CHECK_BUSY_STATUS, the result indicates that the operation is complete.

When the Error Log Address Range resides in NVRAM, the OS requires no platform support to Clear error
records.

18.5.2.4 Usage

This section describes several possible ways the error record serialization mechanism might be
implemented.

18.5.2.4.1 Error Log Address Range Resides in NVRAM

If the Error Log Address Range resides in NVRAM, then when OSPM writes a record into the logging
range, the record is automatically persistent and the busy bit can be cleared immediately. On a
UEFI Forum, Inc. January 2019 Page 865

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
subsequent boot, OSPM can read any persisted error records directly from the persistent store
range. The size of the persistent store, in this case, is expected to be enough for several error records.

18.5.2.4.2 Error Log Address Range Resides in (volatile) RAM

In this implementation, the Error Log Address Range describes an intermediate location for error
records. To persist a record, OSPM copies the record into the Error Log Address Range and sets the
Execute, at which time the platform runs necessary code (SMM code on non-UEFI based systems and
UEFI runtime code on UEFI-enabled systems) to transfer the error record from main memory to some
persistent store. To read a record, OSPM asks the platform to copy a record from the persistent store to a
specified offset within the Error Log Address Range. The size of the Error Log Address Range is at least
large enough for one error record.

18.5.2.4.3 Error Log Address Range Resides on Service Processor

In this type of implementation, the Error Log Address Range is really MMIO. When OSPM writes an error
record to the Error Log Address Range, it is really writing to memory on a service processor. When the
OSPM sets the Execute control bit, the platform knows that the OSPM is done writing the record and can
do something with it, like move it into a permanent location (i.e. hard disk) on the service processor. The
size of the persistent store in this type of implementation is typically large enough for one error record.

18.5.2.4.4 Error Log Address Range is Copied Across Network

In this type of implementation, the Error Log Address Range is an intermediate cache for error records.
To persist an error record, OSPM copies the record into the Error Log Address Range and set the Execute
control bit, and the platform runs code to transmit this error record over the wire. The size of the Error
Log Address Range in this type of implementation is typically large enough for one error record.

18.6 Error Injection

This section outlines an ACPI table mechanism, called EINJ, which allows for a generic interface
mechanism through which OSPM can inject hardware errors to the platform without requiring platform
specific OSPM level software. The primary goal of this mechanism is to support testing of OSPM error
handling stack by enabling the injection of hardware errors. Through this capability OSPM is able to
implement a simple interface for diagnostic and validation of errors handling on the system.

18.6.1 Error Injection Table (EINJ)

The Error Injection Table provides a generic interface mechanism through which OSPM can inject
hardware errors to the platform without requiring platform specific OSPM software. System firmware is
responsible for building this table, which is made up of Injection Instruction entries. Table 18-403 details
the layout of the table.

Table 18-403 Error Injection Table (EINJ)

Field
Byte
length

Byte
offset

Description

ACPI Standard Header

Header Signature 4 0 EINJ. Signature for the Error Record Injection Table.
UEFI Forum, Inc. January 2019 Page 866

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
Table 18-404 identifies the supported error injection actions.

Table 18-404 Error Injection Actions

Length 4 4 Length, in bytes, of entire EINJ. Entire table must be
contiguous.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 The manufacturer model ID.

OEM Revision 4 24 OEM revision of EINJ.

Creator ID 4 28 Vendor ID of the utility that created the table.

Creator Revision 4 32 Revision of the utility that created the table.

Injection Header

Injection Header Size 4 36 Length in bytes of the Injection Interface header.

Injection Flags 1 40 Reserved. Must be zero

Reserved 3 41 Must be zero.

Injection Entry Count 4 44 The number of Instruction Entries in the Injection Action
Table

Injection Action Table

Injection Instruction
Entries

48 A series of error injection instruction entries

Value Name Description

0x0 BEGIN_INJECTION_OPERATION Indicates to the platform that an error injection is beginning. This
allows the platform to set its operational context.

0x1 GET_TRIGGER_ERROR_ACTION_T
ABLE

Returns a 64-bit physical memory pointer to the TRIGGER_ERROR
action table.

The TRIGGER_ERROR action instructions when executed by software
trigger the error that was injected by the immediately prior
SET_ERROR_TYPE action.

0x2 SET_ERROR_TYPE Type of error to Inject. Only one ERROR_TYPE can be injected at any
given time. If there is request for multiple injections at the same
time, then the platform will return an error condition.

0x3 GET_ERROR_TYPE Returns the error injection capabilities of the platform.

0x4 END_OPERATION Indicates to the platform that the current injection operation has
ended. This allows the platform to clear its operational context.

Field
Byte
length

Byte
offset

Description
UEFI Forum, Inc. January 2019 Page 867

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
0x5 EXECUTE_OPERATION Instructs the platform to carry out the current operation based on
the current operational context.

0x6 CHECK_BUSY_STATUS Returns the state of the current operation.

Once an operation has been executed through the
EXECUTE_OPERATION action, the platform is required to return an
indication that the operation is busy until the operation is
completed. This allows software to poll for completion by repeatedly
executing the CHECK_BUSY_STATUS action until the platform
indicates that the operation is complete by setting not busy.

The lower most bit (bit0) of the returned value indicates the busy
status by setting it to 1 and not busy status by setting it to 0.

0x7 GET_COMMAND_STATUS Returns the status of the current operation.

The platform is expected to maintain a status code for each
operation. Bits [8:1] of the returned value indicate the command
status. See Table 18-408 for a list of valid command status codes.

0x8 SET_ERROR_TYPE_WITH_ADDRE
SS

Type of error to Inject, and the address to inject. Only one Error type
can be injected at any given time. If there is request for multiple
injections at the same time, then the platform will return an error
condition.

Both this Action and the SET_ERROR_TYPE action will be present as
part of this EINJ action table. OSPM is free to choose either of these
two actions to inject an error. The platform will give precedence to
SET_ERROR_TYPE_WITH_ADDRESS. In other words, if a non-zero
value is set using SET_ERROR_TYPE_WITH_ADDRESS, then any error
type value set by SET_ERROR_TYPE will be ignored. If, on the other
hand, if no error type is specified using
SET_ERROR_TYPE_WITH_ADDRESS, then the platform will use
SET_ERROR_TYPE to identify the error type to inject.

The RegisterRegion field (SeeTable 18-405) in
SET_ERROR_TYPE_WITH_ADDRESS points to a data structure whose
format is defined in Table 18-410.

Note that calling set error type with address without specifying
address has the same behavior as calling SET_ERROR_TYPE.

0x9 GET_EXECUTE_OPERATION_TIMI
NGS

Returns an encoded QWORD : [63:32] value in microseconds that the
platform expects would be the maximum amount of time it will take
to process and complete an EXECUTE_OPERATION. [31:0] value in
microseconds that the platform expects would be the nominal
amount of time it will take to process and complete an
EXECUTE_OPERATION.

0xFF TRIGGER_ERROR This is not a true error injection action. In response to error injection,
the platform returns a trigger error action table.

This table consists of a series of injection instruction entries where
the injection action is set to TRIGGER_ERROR to distinguish such
entries.

Value Name Description
UEFI Forum, Inc. January 2019 Page 868

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.6.2 Injection Instruction Entries

An Injection action consists of a series of one or more Injection Instructions. An Injection Instruction
represents a primitive operation on an abstracted hardware register, represented by the register region
as defined in an Injection Instruction Entry.

An Injection Instruction Entry describes a region in an injection hardware register and the injection
instruction to be performed on that region.

Table 18-405 details the layout of an Injection Instruction Entry.

Table 18-405 Injection Instruction Entry

Field
Byte
length

Byte
offset

Description

Injection
Action

1 N+0 The injection action that this instruction is a part of. See Table 18-404
for supported injection actions.

Instruction 1 N+1 Identifies the instruction to execute. 
See Table 18-407 for a list of valid instructions.

Flags 1 N+2 Flags that qualify the instruction.

Reserved 1 N+3 Must be zero.

Register
Region

12 N+4 Generic Address Structure as defined in Section 5.2.3.2 to describe the
address and bit.

Address_Space_ID must be 0 (System Memory) or 1 (System IO). This
constraint is an attempt to ensure that the registers are accessible in
the presence of hardware error conditions.

Value 8 N+16 This is the value field that is used by the instruction READ or
WRITE_REGISTER_VALUE.

Mask 8 N+24 The bit mask required to obtain the bits corresponding to the injection
instruction in a given bit range defined by the register region.

Register Region is described as a generic address structure. This structure describes the physical address
of a register as well as the bit range that corresponds to a desired region of the register. The bit range is
defined as the smallest set of consecutive bits that contains every bit in the register that is associated
with the injection Instruction. If bits [6:5] and bits [3:2] all correspond to an Injection Instruction, the bit
range for that instruction would be [6:2].

Because a bit range could contain bits that do not pertain to a particular injection Instruction (i.e. bit 4 in
the example above), a bit mask is required to distinguish all the bits in the region that correspond to the
instruction. The Mask field is defined to be this bit mask with a bit set to a ‘1’ for each bit in the bit range
(defined by the register region) corresponding to the Injection Instruction. Note that bit 0 of the bit mask
corresponds to the lowest bit in the bit range. In the example used above, the mask would be 11011b or
0x1B.

Table 18-406 Instruction Flags

Value Name Description
UEFI Forum, Inc. January 2019 Page 869

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.6.3 Injection Instructions

Table 18-407 lists the supported Injection Instructions for Injection Instruction Entries.

Table 18-407 Injection Instructions

Opcode Instruction name Description

0x00 READ_REGISTER A READ_REGISTER instruction reads the value from the
specified register region.

0x01 READ_REGISTER_VALUE A READ_REGISTER_VALUE instruction reads the designated
information from the specified Register Region and compares
the results with the contents of the Value field.

If the information read matches the contents of the Value
field, TRUE is returned, else FALSE is returned.

0x02 WRITE_REGISTER A WRITE_REGISTER instruction writes a value to the specified
Register Region. The Value field is ignored.

0x03 WRITE_REGISTER_VALUE A WRITE_REGISTER_VALUE instruction writes the contents of
the Value field to the specified Register Region.

0x04 NOOP No operation.

Table 18-408 below defines the error injection status codes returned from GET_COMMAND_STATUS.

Table 18-408 Command Status Definition

Value Description

0x0 Success

0x1 Unknown Failure

0x2 Invalid Access

Table 18-409 below defines the error type codes returned from GET_ERROR_TYPE.

Table 18-409 Error Type Definition

0x01 PRESERVE_REGISTER For WRITE_REGISTER and WRITE_REGISTER_VALUE
instructions, this flag indicates that bits within the register
that are not being written must be preserved rather than
destroyed.

For READ_REGISTER instructions, this flag is ignored.

Bit Description

 0 Processor Correctable

 1 Processor Uncorrectable non-fatal

 2 Processor Uncorrectable fatal

 3 Memory Correctable

 4 Memory Uncorrectable non-fatal
UEFI Forum, Inc. January 2019 Page 870

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
Table 18-410 SET_ERROR_TYPE_WITH_ADDRESS Data Structure

 5 Memory Uncorrectable fatal

 6 PCI Express Correctable

 7 PCI Express Uncorrectable non-fatal

 8 PCI Express Uncorrectable fatal

 9 Platform Correctable

 10 Platform Uncorrectable non-fatal

 11 Platform Uncorrectable fatal

 12:30 RESERVED

 31 Vendor Defined Error Type. If this bit is set, then the Error types and related data
structures are defined by the Vendor, as shown in Table 18-411.

Field
Byte
Length

Byte
Offset

Description

Error Type 4 0x0 Bit map of error types to inject. Refer Table 18-409. This
field is cleared by the platform once it is consumed.

Vendor Error Type
Extension Structure
Offset

4 4 Specifies the offset from the beginning of the table to the
vendor error type extension structure. If no vendor error
type extension is present, bit31 in error type must be clear
and this field must be set to 0.

Flags 4 0x8 Bit [0] – Processor Identification Field Valid

Bit [1]– Memory Address and Memory address Mask Field
Valid

Bit [2] – PCIe SBDF field valid

Bit [31:3] – RESERVED

This field is cleared by the platform once it is consumed.

Processor Error

Processor
Identification

4 0x0C Optional field: on non-ARM architectures, this is the
physical APIC ID or the X2APIC ID of the processor which is
a target for the injection; on ARM systems, this is the ACPI
Processor UID value as used in the MADT.

Memory Error

Bit Description
UEFI Forum, Inc. January 2019 Page 871

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
Table 18-411 Vendor Error Type Extension Structure

Memory Address 8 0x10 Optional field which specifies the physical address of the
memory which is the target for the injection. Valid if Bit [1]
of the Flags field is set.

Memory Address
Range

8 0x18 Optional field which provided a range mask for the address
field. Valid if Bit [1] of the Flags field is set. If the OSPM
doesn’t want to provide a range of address, then this field
should be zero.

PCIe SBDF 4 0x20 Byte 3 – PCIe Segment

Byte 2 – Bus Number

Byte 1 – Device Number [Bits 7:3], Function Number Bits
[2:0]

Byte 0 – RESERVED

Field
Byte
Length

Byte
Offset

Attribute Description

Length 4 0x0 Set by software. RO for
Platform

SBDF 4 0x04 Set by Platform. RO for
Software

This provides a PCIe Segment, Bus, Device
and Function number which can be used to
read the Vendor ID, Device ID and Rev ID, so
that software can identify the system for
error injection purposes.

The platform sets this field and is RO for
Software

Vendor ID 2 0x08 Set by Platform. RO for
Software

Vendor ID which identifies the device
manufacturer. This is same as the PCI SIG
defined Vendor ID

The platform sets this field and is RO for
Software

Device ID 2 0x0A Set by Platform. RO for
Software

This 16-bit ID is assigned by the
manufacturer that identifies this device.

The platform sets this field and is RO for
Software

Rev ID 1 0x0C Set by Platform. RO for
Software

This 8-bit value is assigned by the
manufacturer and identifies the revision
number of the device.

The platform sets this field and is RO for
Software

Reserved 3 0x0D Set by Platform. RO for
Software

Reserved

Field
Byte
Length

Byte
Offset

Description
UEFI Forum, Inc. January 2019 Page 872

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
18.6.4 Trigger Action Table

Error injection operation is a two-step process where the error is injected into the platform and
subsequently triggered. After software injects an error into the platform using SET_ERROR_TYPE
action, it needs to trigger the error. In order to trigger the error, the software invokes
GET_TRIGGER_ERROR_ACTION_TABLE action which returns a pointer to a Trigger Error Action
table. The format of the table is as shown in Table 18-412. Software executes the instruction entries
specified in the Trigger Error Action Table in order to trigger the injected error.

Table 18-412 Trigger Error Action

TRIGGER_ERROR
Header

Byte
Length

Byte
Offset

Description

Header Size 4 0 Length in bytes of this header.

Revision 4 4

Table Size 4 8 Size in Bytes of the entire table.

Entry Count 4 12 The number of Instruction Entries in the TRIGGER_ERROR
Action Sequence (See Note 1)

Action Table

TRIGGER_ERROR
Instruction Entries (See
Note 2)

16 A series of error injection instruction entries as defined in
Table 18-405.

Note: If the “Entry Count” field above is ZERO, then there are no action structures in the
TRIGGER_ERROR action table. The platform may make this field ZERO in situations where there is
no need for a TRIGGER_ERROR action (for example, in cases where the error injection action
seeds as well as consumes the error).

Note: The format of TRIGGER_ERROR Instructions Entries is the same as Injection Instruction entries as
described in Table 18-407.

18.6.5 Error Injection Operation

Before OSPM can use this mechanism to inject errors, it must discover the error injection capabilities of
the platform by executing a GET_ERROR_TYPE. See Table 18-409 for definition of error types.

After discovering the error injection capabilities, OSPM can inject and trigger an error according to the
sequence described below.

Note that injecting an error into the platform does not automatically consume the error. In response to
an error injection, the platform returns a trigger error action table. The software that injected the error
must execute the actions in the trigger error action table in order to consume the error. If a specific error
type is such that it is automatically consumed on injection, the platform will return a trigger error action
table consisting of NO_OP.

OEM Defined
structure

N 0x10 The rest of the fields are defined by the
OEM.
UEFI Forum, Inc. January 2019 Page 873

ACPI Specification, Version 6.3 ACPI Platform Error Interfaces (APEI)
1. Executes a BEGIN_ INJECTION_OPERATION action to notify the platform that an error injection
operation is beginning.

2. Executes a GET_ERROR_TYPE action to determine the error injection capabilities of the system.
This action returns a DWORD bit map of the error types supported by the platform. See
Table 18-409 for definition of error types.

3. If GET_ERROR_TYPE returns the DWORD with Bit [31] set, it means that vendor defined error
types are present, apart from the standard error types defined in Table 18-409.

4. OSPM chooses the type of error to inject.

a If the OSPM chooses to inject one of the supported standard error types, then it sets the
corresponding bit in the “Error Type” field (see Table 18-410), by executing a
SET_ERROR_TYPE_WITH_ADDRESS command. For example, if OSPM chooses to
inject “Memory Correctable” error, then the OSPM executes
SET_ERROR_TYPE_WITH_ADDRESS with an “Error Type” value of 0x0000_0080.

• Optionally, the OSPM can choose the target of the injection, such as a memory range, PCIe
Segment/Device/Function or Processor APIC ID, depending on the type of error. The OSPM
does this by filling in the appropriate fields of the “SET_ERROR_TYPE_WITH_ADDRESS Data
structure”. See Table 18-410 for details.

b If the OSPM chooses to inject one of the vendor defined error types, then it executes
SET_ERROR_TYPE_WITH_ADDRESS with Bit[3]1 of “Error Type” field set.

• OSPM gets of the location of the “Vendor Error Type Extension Structure”, by reading the
“Vendor Error Type Extension Structure Offset” (see Table 18-411).

— OSPM reads the Vendor ID, Device ID and Rev ID from the PCI config space whose path
(PCIe Segment/Device/Function) is provided in the “SBDF” field of the Vendor Error Type
Extension Structure.

— If the Vendor ID/Device ID and Rev IDs match, then the OSPM can identify the platform it is
running on and would know the Vendor error types that are supported by this platform

— The OSPM writes the vendor error type to inject in the “OEM Defined Structure” field. (see
Table 18-411)

• Optionally, the OSPM can choose the target of the injection, such as a memory range, PCIe
Segment/Device/Function or Processor APIC ID, depending on the type of error. The OSPM
does this by filling in the appropriate fields of the “SET_ERROR_TYPE_WITH_ADDRESS Data
structure”. See Table 18-410 for details

5. Executes an EXECUTE_OPERATION action to instruct the platform to begin the injection
operation.

6. Busy waits by continually executing CHECK_BUSY_STATUS action until the platform indicates
that the operation is complete by clearing the abstracted Busy bit.

7. Executes a GET_COMMAND_STATUS action to determine the status of the read operation.

8. If the status indicates that the platform cannot inject errors, stop.

9. Executes a GET_TRIGGER_ERROR_ACTION_TABLE operation to get the physical pointer to the
TRIGGER_ERROR action table. This provides the flexibility in systems where injecting an error is
a two (or more) step process.

10. Executes the actions specified in the TRIGGER_ERROR action table.

11. Execute an END_OPERATION to notify the platform that the error injection operation is
complete.
UEFI Forum, Inc. January 2019 Page 874

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19 ACPI Source Language (ASL) Reference

This section formally defines the ACPI Source Language (ASL). ASL is a source language for defining ACPI
objects including writing ACPI control methods. OEMs and platform firmware developers define objects
and write control methods in ASL and then use a translator tool (compiler) to generate ACPI Machine
Language (AML) versions of the control methods. For a formal definition of AML, see the ACPI Machine
Language (AML) Specification chapter.

AML and ASL are different languages though they are closely related.

Every ACPI-compatible OS must support AML. A given user can define some arbitrary source language (to
replace ASL) and write a tool to translate it to AML.

An OEM or platform firmware vendor needs to write ASL and be able to single-step AML for debugging.
(Debuggers and similar tools are expected to be AML-level tools, not source-level tools.) An ASL
translator implementer must understand how to read ASL and generate AML. An AML interpreter author
must understand how to execute AML.

This section has two parts:

• The ASL grammar, which is the formal ASL specification and also serves as a quick reference.
• A full ASL reference, which includes for each ASL operator: the operator invocation syntax, the

type of each argument, and a description of the action and use of the operator.

19.1 ASL 2.0 Symbolic Operators and Expressions

For the math and logical operations, ASL supports standard symbolic operators and expressions that are
similar to the C language. Compound assignment operators are also supported. The AML code that is
generated from the symbolic operators and expressions is identical to the AML code generated for the
equivalent legacy ASL operators.

The table below summarizes the ASL 2.0 support for symbolic operators.

ASL 2.0 Syntax Legacy ASL Equivalent

 // Math operators

 Z = X + Y Add (X, Y, Z)
 Z = X / Y Divide (X, Y, , Z)
 Z = X % Y Mod (X, Y, Z)
 Z = X * Y Multiply (X, Y, Z)
 Z = X - Y Subtract (X, Y, Z)

 Z = X << Y ShiftLeft (X, Y, Z)
 Z = X >> Y ShiftRight (X, Y, Z)

 Z = X & Y And (X, Y, Z)
 Z = X | Y Or (X, Y, Z)
 Z = X ^ Y Xor (X, Y, Z)
 Z = ~X Not (X, Z)
UEFI Forum, Inc. January 2019 Page 875

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 X++ Increment (X)
 X--Decrement (X)

 // Logical operators

 (X == Y) LEqual (X, Y)
 (X != Y) LNotEqual (X, Y)
 (X < Y) LLess (X, Y)
 (X > Y) LGreater (X, Y)
 (X <= Y) LLessEqual (X, Y)
 (X >= Y) LGreaterEqual (X, Y)
 (X && Y) LAnd (X, Y)
 (X || Y) LOr (X, Y)

 !X LNot (X)

 // Assignment and Compound Assignment operations

 X = Y Store (Y, X)

 X += Y Add (X, Y, X)
 X /= Y Divide (X, Y, , X)
 X %= Y Mod (X, Y, X)
 X *= Y Multiply (X, Y, X)
 X -= Y Subtract (X, Y, X)

 X <<= Y ShiftLeft (X, Y, X)
 X >>= Y ShiftRight (X, Y, X)

 X &= Y And (X, Y, X)
 X |= Y Or (X, Y, X)
 X ^= Y Xor (X, Y, X)

 // Miscellaneous

 Z = X[Y] Index (X, Y, Z)

19.2 ASL Language Grammar

The purpose of this section is to state unambiguously the grammar rules used by the syntax checker of an
ASL compiler.

ASL statements declare objects. Each object has three parts, two of which might not be present.

Object := ObjectType FixedList VariableList

FixedList refers to a list, of known length, that supplies data that all instances of a given ObjectType must
have. A fixed list is written as (a , b , c , …) where the number of arguments depends on the specific
ObjectType, and some elements can be nested objects, that is (a, b, (q, r, s, t), d). Arguments to a
FixedList can have default values, in which case they can be skipped. Thus, (a,,c) will cause the default
value for the second argument to be used. Some ObjectTypes can have a null FixedList, which is simply
UEFI Forum, Inc. January 2019 Page 876

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
omitted. Trailing arguments of some object types can be left out of a fixed list, in which case the default
value is used.

VariableList refers to a list, not of predetermined length, of child objects that help define the parent. It is
written as { x, y, z, aa, bb, cc } where any argument can be a nested object. ObjectType determines what
terms are legal elements of the VariableList. Some ObjectTypes may have a null variable list, which is
simply omitted.

Other rules for writing ASL statements are the following:

• Multiple blanks are the same as one. Blank, (,), ‘,’ and newline are all token separators.
• // marks the beginning of a comment, which continues from the // to the end of the line.
• /* marks the beginning of a comment, which continues from the /* to the next */.
• “” (quotes) surround an ASCII string.
• Numeric constants can be written in three ways: ordinary decimal, octal (using 0ddd) or

hexadecimal, using the notation 0xdd.
• Nothing indicates an empty item. For example, { Nothing } is equivalent to {}.

19.2.1 ASL Grammar Notation

The notation used to express the ASL grammar is specified in the following table.

Table 19-413 ASL Grammar Notation

Notation Convention Description Example

Term := Term Term … The term to the left of := can be
expanded into the sequence of
terms on the right.

aterm := bterm cterm means that aterm can be
expanded into the two-term sequence of bterm
followed by cterm.

Angle brackets (< >) Used to group items. <a b> | <c d> means either

a b or c d.

Arrow (=>) Indicates required run-time
reduction of an ASL argument to
an AML data type. Means
“reduces to” or “evaluates to” at
run-time.

“TermArg => Integer” means that the argument
must be an ASL TermArg that must resolve to an
Integer data type when it is evaluated by an AML
interpreter.

Bar symbol (|) Separates alternatives. aterm := bterm | <cterm dterm> means the
following constructs are possible:

• bterm

• cterm dterm

aterm := <bterm | cterm> dterm means the
following constructs are possible:

• bterm dterm

• cterm dterm

Term Term Term Terms separated from each
other by spaces form an ordered
list.

N/A
UEFI Forum, Inc. January 2019 Page 877

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.2.2 ASL Name and Pathname Terms

// Name and path characters supported

LeadNameChar :=
 ‘A’-‘Z’ | ‘a’-‘z’ | ‘_’
DigitChar :=
 ‘0’-‘9’
NameChar :=
 DigitChar | LeadNameChar
RootChar :=
 ‘\’
ParentPrefixChar :=
 ‘^’
PathSeparatorChar :=
 ‘.’
CommaChar :=
 ‘,’
SemicolonDelimiter :=
Nothing | ‘;’

// Names and paths

NameSeg :=
 <LeadNameChar> |
 <LeadNameChar NameChar> |
 <LeadNameChar NameChar NameChar> |
 <LeadNameChar NameChar NameChar NameChar>

Word in bold Denotes the name of a term in
the ASL grammar, representing
any instance of such a term. ASL
terms are not case-sensitive.

In the following ASL term definition:

ThermalZone (ZoneName) {TermList}

the item in bold is the name of the term.

Word in italics Names of arguments to objects
that are replaced for a given
instance.

In the following ASL term definition:

ThermalZone (ZoneName) {TermList}

the italicized item is an argument. The item that is
not bolded or italicized is defined elsewhere in the
ASL grammar.

Single quotes (‘ ’) Indicate constant characters. ‘A’

0xdd Refers to a byte value expressed
as two hexadecimal digits.

0x21 means a value of hexadecimal 21, or decimal
37. Notice that a value expressed in hexadecimal
must start with a leading zero (0).

Dash character (-) Indicates a range. 1-9 means a single digit in the range 1 to 9 inclusive.

Notation Convention Description Example
UEFI Forum, Inc. January 2019 Page 878

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
NameString :=
 <RootChar NamePath> | <ParentPrefixChar PrefixPath NamePath> | NonEmptyNamePath
NamePath :=
 Nothing | <NameSeg NamePathTail>
NamePathTail :=
 Nothing | <PathSeparatorChar NameSeg NamePathTail>
NonEmptyNamePath :=
 NameSeg | <NameSeg NamePathTail>
PrefixPath :=
 Nothing | <ParentPrefixChar PrefixPath>

19.2.3 ASL Root and Secondary Terms
// Root Term

ASLCode := 
 DefinitionBlockList
DefinitionBlockList :=
 DefinitionBlockTerm | <DefinitionBlockTerm DefinitionBlockList>

// Major Terms

SuperName :=
 NameString | ArgTerm | LocalTerm | DebugTerm | Type6Opcode | MethodInvocationTerm
Target :=
 Nothing | SuperName
TermArg :=
 Type2Opcode | DataObject | ArgTerm | LocalTerm | NameString | SymbolicExpression
MethodInvocationTerm :=
 NameString(// NameString => Method
 ArgList
) => Nothing | DataRefObject

// List Terms

ArgList :=
 Nothing | <TermArg ArgListTail>
ArgListTail :=
 Nothing | <CommaChar TermArg ArgListTail>

ByteList :=
 Nothing | <ByteConstExpr ByteListTail>
ByteListTail :=
 Nothing | <CommaChar ByteConstExpr ByteListTail>

DWordList :=
 Nothing | <DWordConstExpr DWordListTail>
DWordListTail :=
 Nothing | <CommaChar DWordConstExpr DWordListTail>
UEFI Forum, Inc. January 2019 Page 879

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
ExtendedAccessAttribTerm :=
 ExtendedAccessAttribKeyword (
 AccessLength //ByteConst
)

FieldUnitList :=
 Nothing | <FieldUnit FieldUnitListTail>
FieldUnitListTail :=
 Nothing | <CommaChar FieldUnit FieldUnitListTail>
FieldUnit :=
 FieldUnitEntry | OffsetTerm | AccessAsTerm | ConnectionTerm
FieldUnitEntry :=
 <Nothing | NameSeg> CommaChar Integer

PackageList :=
 Nothing | <PackageElement PackageListTail>
PackageListTail :=
 Nothing | <CommaChar PackageElement PackageListTail>
PackageElement :=
 DataObject | NameString

ParameterTypePackage :=
 ObjectTypeKeyword | {Nothing | ParameterTypePackageList}
ParameterTypePackageList :=
 ObjectTypeKeyword | <ObjectTypeKeyword CommaChar ParameterTypePackageList>

ParameterTypesPackage :=
 ObjectTypeKeyword | {Nothing | ParameterTypesPackageList}
ParameterTypesPackageList :=
 ParameterTypePackage | <ParameterTypePackage CommaChar ParameterTypesPackageList>

TermList :=
 Nothing | <Term SemicolonDelimiter TermList>
Term :=
 Object | Type1Opcode | Type2Opcode | SymbolicExpression
Object :=
CompilerDirective | NamedObject | NameSpaceModifier

// Conditional Execution List Terms

CaseTermList :=
 Nothing | CaseTerm | DefaultTerm DefaultTermList | CaseTerm CaseTermList
DefaultTermList :=
 Nothing | CaseTerm | CaseTerm DefaultTermList
IfElseTerm :=
 IfTerm ElseTerm

19.2.4 ASL Data and Constant Terms

// Numeric Value Terms
UEFI Forum, Inc. January 2019 Page 880

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
LeadDigitChar :=
 ‘1’-‘9’
HexDigitChar :=
 DigitChar | ‘A’-‘F’ | ‘a’-‘f’
OctalDigitChar :=
 ‘0’-‘7’
NullChar :=
 0x00

// Data Terms

DataObject :=
 BufferData | PackageData | IntegerData | StringData
DataRefObject :=
 DataObject | ObjectReference | DDBHandle

ComputationalData :=
 BufferData | IntegerData | StringData
BufferData :=
 Type5Opcode | BufferTerm
IntegerData :=
 Type3Opcode | Integer | ConstTerm
PackageData :=
 PackageTerm
StringData :=
 Type4Opcode | String

// Integer Terms

Integer :=
 DecimalConst | OctalConst | HexConst
DecimalConst :=
 LeadDigitChar | <DecimalConst DigitChar>
OctalConst :=
 ‘0’ | <OctalConst OctalDigitChar>
HexConst :=
 <0x HexDigitChar> | <0X HexDigitChar> | <HexConst HexDigitChar>
ByteConst :=
 Integer => 0x00-0xFF
WordConst :=
 Integer => 0x0000-0xFFFF
DWordConst :=
 Integer => 0x00000000-0xFFFFFFFF
QWordConst :=
 Integer => 0x0000000000000000-0xFFFFFFFFFFFFFFFF

ByteConstExpr :=
 <Type3Opcode | ConstExprTerm | Integer> => ByteConst
WordConstExpr :=
 <Type3Opcode | ConstExprTerm | Integer> => WordConst
UEFI Forum, Inc. January 2019 Page 881

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
DWordConstExpr :=
 <Type3Opcode | ConstExprTerm | Integer> => DWordConst
QWordConstExpr :=
 <Type3Opcode | ConstExprTerm | Integer> => QWordConst

ConstTerm :=
 ConstExprTerm | Revision
ConstExprTerm :=
 Zero | One | Ones

// String Terms

String :=
 ‘”’ Utf8CharList ‘”’
Utf8CharList :=
 Nothing | <EscapeSequence Utf8CharList> | <Utf8Char Utf8CharList>
Utf8Char :=
 0x01-0x21 | 
 0x23-0x5B | 
 0x5D-0x7F |
 0xC2-0xDF 0x80-0xBF |
 0xE0 0xA0-0xBF 0x80-0xBF |
 0xE1-0xEC 0x80-0xBF 0x80-0xBF |
 0xED 0x80-0x9F 0x80-0xBF |
 0xEE-0xEF 0x80-0xBF 0x80-0xBF |
 0xF0 0x90-0xBF 0x80-0xBF 0x80-0xBF |
 0xF1-0xF3 0x80-0xBF 0x80-0xBF 0x80-0xBF

// Escape sequences

EscapeSequence :=
 SimpleEscapeSequence | OctalEscapeSequence | HexEscapeSequence
HexEscapeSequence :=
 \x HexDigitChar |
 \x HexDigitChar HexDigitChar
SimpleEscapeSequence :=
 \' | \" | \a | \b | \f | \n | \r | \t | \v | \\
OctalEscapeSequence :=
 \ OctalDigitChar |
 \ OctalDigitChar OctalDigitChar |
 \ OctalDigitChar OctalDigitChar OctalDigitChar

// Miscellaneous Data Type Terms

DDBHandle :=
 Integer
ObjectReference :=
 Integer
Boolean :=
 True | False
UEFI Forum, Inc. January 2019 Page 882

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
True :=
 Ones
False :=
 Zero
 // Symbolic Operator terms
Operators :=
 '+' | '-' | '*' | '/' | '%' | '&' | '|' | '^' | '~' | '<' | '>' | '!' | '='
CompoundOperators :=
 "<<" | ">>" | "++" | "-" | "==" | "!=" | "<=" | ">=" | "&&" | "||" | "+=" | "-="
| "*=" |
 "/=" | "%=" | "<<=" | ">>=" | "&=" | "|=" | "^="

19.2.5 ASL Opcode Terms
CompilerDirective :=
 IncludeTerm | ExternalTerm

NamedObject :=
 BankFieldTerm | CreateBitFieldTerm | CreateByteFieldTerm | CreateDWordFieldTerm |
 CreateFieldTerm | CreateQWordFieldTerm | CreateWordFieldTerm | DataRegionTerm |
 DeviceTerm | EventTerm | FieldTerm | FunctionTerm | IndexFieldTerm | MethodTerm |
 MutexTerm | OpRegionTerm | PowerResTerm | ProcessorTerm | ThermalZoneTerm

NameSpaceModifier :=
 AliasTerm | NameTerm | ScopeTerm

SymbolicExpressionTerm :=
 (TermArg) |
 AddSymbolicTerm | AndSymbolicTerm | DecSymbolicTerm | DivideSymbolicTerm |
IncSymbolicTerm |
 LAndSymbolicTerm | LEqualSymbolicTerm | LGreaterEqualSymbolicTerm |
LGreaterSymbolicTerm |
 LLessEqualSymbolicTerm | LLessSymbolicTerm | LNotEqualSymbolicTerm |
LNotSymbolicTerm |
 LOrSymbolicTerm | ModSymbolicTerm | MultiplySymbolicTerm | NotSymbolicTerm |
 OrSymbolicTerm | ShiftLeftSymbolicTerm | ShiftRightSymbolicTerm |
SubtractSymbolicTerm |
 XorSymbolicTerm

SymbolicAssignmentTerm :=
 StoreSymbolicTerm | AddCompoundTerm | AndCompoundTerm | DivideCompoundTerm |
 ModCompoundTerm | MultiplyCompoundTerm | OrCompoundTerm | ShiftLeftCompoundTerm |
 ShiftRightCompoundTerm | SubtractCompoundTerm | XorCompoundTerm

Type1Opcode :=
BreakTerm | BreakPointTerm | ContinueTerm | FatalTerm | ForTerm | IfElseTerm |
LoadTerm |
 NoOpTerm | NotifyTerm | ReleaseTerm | ResetTerm | ReturnTerm | SignalTerm |
 SleepTerm | StallTerm | SwitchTerm | UnloadTerm | WhileTerm
UEFI Forum, Inc. January 2019 Page 883

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
A Type 1 opcode term does not return a value and can only be used standalone on a line
of ASL code. Since these opcodes do not return a value they cannot be used as a term
in an expression.

Type2Opcode :=
 AcquireTerm | AddTerm | AndTerm | ConcatTerm | ConcatResTerm | CondRefOfTerm |
 CopyObjectTerm | DecTerm | DerefOfTerm | DivideTerm |FindSetLeftBitTerm |
 FindSetRightBitTerm | FprintfTerm | FromBCDTerm | IncTerm | IndexTerm | LAndTerm |
 LEqualTerm | LGreaterTerm | LGreaterEqualTerm | LLessTerm | LLessEqualTerm |
LNotTerm |
 LNotEqualTerm | LoadTableTerm | LOrTerm | MatchTerm | MidTerm |ModTerm |
MultiplyTerm |
 NAndTerm | NOrTerm | NotTerm | ObjectTypeTerm | OrTerm | PrintfTerm |RefOfTerm |
 ShiftLeftTerm | ShiftRightTerm | SizeOfTerm | StoreTerm | SubtractTerm | TimerTerm
|
 ToBCDTerm | ToBufferTerm | ToDecimalStringTerm | ToHexStringTerm | ToIntegerTerm |
 ToStringTerm | WaitTerm | XorTerm | MethodInvocationTerm | SymbolicExpressionTerm
|
 SymbolicAssignmentTerm

A Type 2 opcode returns a value and can be used in an expression.

Type3Opcode :=
 AddTerm | AndTerm | DecTerm | DerefOfTerm | DivideTerm | EISAIDTerm |
 FindSetLeftBitTerm | FindSetRightBitTerm | FromBCDTerm | IncTerm | LAndTerm |
 LEqualTerm | LGreaterTerm | LGreaterEqualTerm | LLessTerm | LLessEqualTerm |
LNotTerm |
 LNotEqualTerm | LOrTerm | MatchTerm | ModTerm | MultiplyTerm | NAndTerm | NOrTerm
|
 NotTerm | OrTerm | ShiftLeftTerm | ShiftRightTerm | SubtractTerm | ToBCDTerm |
 ToIntegerTerm | XorTerm | SymbolicExpressionTerm

The Type 3 opcodes are a subset of Type 2 opcodes that return an Integer value and can
be used in an expression that evaluates to a constant. These opcodes may be evaluated
at ASL compile-time. To ensure that these opcodes will evaluate to a constant, the
following rules apply: The term cannot have a destination (target) operand, and must
have either a Type3Opcode, Type4Opcode, Type5Opcode, ConstExprTerm, Integer,
BufferTerm, Package, or String for all arguments.

Type4Opcode :=
 ConcatTerm | DerefOfTerm | FprintfTerm | MidTerm | PrintfTerm |
ToDecimalStringTerm |
 ToHexStringTerm | ToStringTerm

The Type 4 opcodes are a subset of Type 2 opcodes that return a String value and can
be used in an expression that evaluates to a constant. These opcodes may be evaluated
at ASL compile-time. To ensure that these opcodes will evaluate to a constant, the
following rules apply: The term cannot have a destination (target) operand, and must
have either a Type3Opcode, Type4Opcode, Type5Opcode, ConstExprTerm, Integer,
BufferTerm, Package, or String for all arguments.
UEFI Forum, Inc. January 2019 Page 884

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Type5Opcode :=
 ConcatTerm | ConcatResTerm | DerefOfTerm | MidTerm | ResourceTemplateTerm |
 ToBufferTerm | ToPLDTerm | ToUUIDTerm | UnicodeTerm

The Type 5 opcodes are a subset of Type 2 opcodes that return a Buffer value and can
be used in an expression that evaluates to a constant. These opcodes may be evaluated
at ASL compile-time. To ensure that these opcodes will evaluate to a constant, the
following rules apply: The term cannot have a destination (target) operand, and must
have either a Type3Opcode, Type4Opcode, Type5Opcode, ConstExprTerm, Integer,
BufferTerm, Package, or String for all arguments.

Type6Opcode :=
 RefOfTerm | DerefOfTerm | IndexTerm | IndexSymbolicTerm | UserTermObj

The Type 6 opcodes are a subset of Type 2 opcodes that return a Reference value and
can be used in an expression. They cannot be evaluated at compile time. Type 6 also
includes the UserTerm, which is a control method invocation.

19.2.6 ASL Primary (Terminal) Terms
AccessAsTerm :=
 AccessAs (
 AccessType, // AccessTypeKeyword
 AccessAttribute // Nothing | ByteConstExpr |
 // AccessAttribKeyword | ExtendedAccessAttribTerm
)
AcquireTerm :=
 Acquire (
 SyncObject, // SuperName => Mutex
 TimeoutValue // WordConstExpr
) => Boolean // True means the operation timed out and the Mutex was not
acquired

AddCompoundTerm :=
 Addend1-Result // TermArg => Integer => Target
 +=
 Addend2 // TermArg => Integer
 => Integer

AddSymbolicTerm :=
 Addend1 // TermArg => Integer
 +
 Addend2 // TermArg => Integer
 => Integer
AddTerm :=
 Add (
 Addend1, // TermArg => Integer
 Addend2, // TermArg => Integer
 Result // Target
) => Integer
UEFI Forum, Inc. January 2019 Page 885

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
AliasTerm :=
 Alias (
 SourceObject, // NameString
 AliasObject // NameString
)

AndCompoundTerm :=
 Source1-Result // TermArg => Integer => Target
 &=
 Source2 // TermArg => Integer
 => Integer

AndSymbolicTerm :=
 Source1 // TermArg => Integer
 &
 Source2 // TermArg => Integer
 => Integer

AndTerm :=
 And (
 Source1, // TermArg => Integer
 Source2, // TermArg => Integer
 Result // Target
) => Integer

ArgTerm :=
 Arg0 | Arg1 | Arg2 | Arg3 | Arg4 | Arg5 | Arg6

BankFieldTerm :=
 BankField (
 RegionName, // NameString => OperationRegion
 BankName, // NameString => FieldUnit
 BankValue, // TermArg => Integer
 AccessType, // AccessTypeKeyword
 LockRule, // LockRuleKeyword
 UpdateRule // UpdateRuleKeyword
) {FieldUnitList}

BreakPointTerm :=
 BreakPoint

BreakTerm :=
 Break

BufferTerm :=
 Buffer (
 BuffSize // Nothing | TermArg => Integer
) {StringData | ByteList} => Buffer
UEFI Forum, Inc. January 2019 Page 886

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
CaseTerm :=
 Case (
 Value // DataObject
) {TermList}

ConcatResTerm :=
 ConcatenateResTemplate (
 Source1, // TermArg => Buffer
 Source2, // TermArg => Buffer
 Result // Target
) => Buffer

ConcatTerm :=
 Concatenate (
 Source1, // TermArg => SuperName
 Source2, // TermArg => SuperName
 Result // Target
) => Buffer | String

ConnectionTerm :=
 Connection (
 ConnectionResource // NameString | ResourceMacroTerm
)

CondRefOfTerm :=
 CondRefOf (
 Source // NameString | ArgTerm | LocalTerm | DerefOfTerm
 Destination // Target
) => Boolean

ContinueTerm :=
 Continue

CopyObjectTerm :=
 CopyObject (
 Source, // TermArg => DataRefObject
 Result, // NameString | LocalTerm | ArgTerm
) => DataRefObject

CreateBitFieldTerm :=
 CreateBitField (
 SourceBuffer, // TermArg => Buffer
 BitIndex, // TermArg => Integer
 BitFieldName // NameString
)

CreateByteFieldTerm :=
 CreateByteField (
 SourceBuffer, // TermArg => Buffer
 ByteIndex, // TermArg => Integer
UEFI Forum, Inc. January 2019 Page 887

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 ByteFieldName // NameString
)

CreateDWordFieldTerm :=
 CreateDWordField (
 SourceBuffer, // TermArg => Buffer
 ByteIndex, // TermArg => Integer
 DWordFieldName // NameString
)

CreateFieldTerm :=
 CreateField (
 SourceBuffer, // TermArg => Buffer
 BitIndex, // TermArg => Integer
 NumBits, // TermArg => Integer
 FieldName // NameString
)

CreateQWordFieldTerm :=
 CreateQWordField (
 SourceBuffer, // TermArg => Buffer
 ByteIndex, // TermArg => Integer
 QWordFieldName // NameString
)

CreateWordFieldTerm :=
 CreateWordField (
 SourceBuffer, // TermArg => Buffer
 ByteIndex, // TermArg => Integer
 WordFieldName // NameString
)

DataRegionTerm :=
 DataTableRegion (
 RegionName, // NameString
 SignatureString, // TermArg => String
 OemIDString, // TermArg => String
 OemTableIDString // TermArg => String
)

DebugTerm :=
 Debug

DecSymbolicTerm :=
 Minuend // SuperName => Integer
 --
 => Integer

DecTerm :=
 Decrement (
UEFI Forum, Inc. January 2019 Page 888

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 Minuend // SuperName
) => Integer

DefaultTerm :=
 Default {TermList}

DefinitionBlockTerm :=
 DefinitionBlock (
 AMLFileName, // String
 TableSignature, // String
 ComplianceRevision, // ByteConst
 OEMID, // String
 TableID, // String
 OEMRevision // DWordConst
) {TermList}

DerefOfTerm :=
 DerefOf (
 Source // NameString | ArgTerm | LocalTerm | RefOfTerm | CondRefOfTerm
 // IndexTerm | MethodInvocationTerm
) => DataRefObject

DeviceTerm :=
 Device (
 DeviceName // NameString
) {TermList}

DivideCompoundTerm :=
 Dividend-Result // TermArg => Integer => Target
 /=
 Divisor // TermArg => Integer
 => Integer

DivideSymbolicTerm :=
 Dividend // TermArg => Integer
 /
 Divisor // TermArg => Integer
 => Integer

DivideTerm :=
 Divide (
 Dividend, // TermArg => Integer
 Divisor, // TermArg => Integer
 Remainder, // Target
 Result // Target
) => Integer // Returns Result

EISAIDTerm :=
 EISAID (
 EisaIdString // StringData
) => DWordConst
UEFI Forum, Inc. January 2019 Page 889

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
ElseIfTerm :=
 ElseIf (
 Predicate // TermArg => Integer
) {TermList} ElseTerm

ElseTerm :=
 Else {TermList} | ElseIfTerm | Nothing

EventTerm :=
 Event (
 EventName // NameString
)

ExternalTerm :=
 External (
 ObjName, // NameString
 ObjType, // Nothing | ObjectTypeKeyword
 ResultType, // Nothing | ParameterTypePackage
 ParameterTypes // Nothing | ParameterTypesPackage
)

FatalTerm :=
 Fatal (
 Type, // ByteConstExpr
 Code, // DWordConstExpr
 Arg // TermArg => Integer
)

FieldTerm :=
 Field (
 RegionName, // NameString => OperationRegion
 AccessType, // AccessTypeKeyword
 LockRule, // LockRuleKeyword
 UpdateRule // UpdateRuleKeyword
) {FieldUnitList}

FindSetLeftBitTerm :=
 FindSetLeftBit (
 Source, // TermArg => Integer
 Result // Target
) => Integer

FindSetRightBitTerm :=
 FindSetRightBit (
 Source, // TermArg => Integer
 Result // Target
) => Integer

ForTerm :=
For (
UEFI Forum, Inc. January 2019 Page 890

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Initialize,// Nothing | TermArg => ComputationalData
Predicate,// Nothing | TermArg => ComputationalData
Update // Nothing | TermArg => ComputationalData

) {TermList}

FprintfTerm :=
 Fprintf (
 TermArg,
 String,
 PrintfArgList
) => String

FromBCDTerm :=
 FromBCD (
 BCDValue, // TermArg => Integer
 Result // Target
) => Integer

FunctionTerm :=
 Function (
 FunctionName, // NameString
 ReturnType, // Nothing | ParameterTypePackage
 ParameterTypes // Nothing | ParameterTypesPackage
) {TermList}

IfTerm :=
 If (
 Predicate // TermArg => Integer
) {TermList}

IncludeTerm :=
 Include (
 FilePathName // StringData
)

IncSymbolicTerm :=
 Addend // SuperName => Integer
 ++
 => Integer

IncTerm := 
 Increment (
 Addend // SuperName
) => Integer

IndexFieldTerm :=
 IndexField (
 IndexName, // NameString => FieldUnit
 DataName, // NameString => FieldUnit
 AccessType, // AccessTypeKeyword
 LockRule, // LockRuleKeyword
UEFI Forum, Inc. January 2019 Page 891

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 UpdateRule // UpdateRuleKeyword
) {FieldUnitList}

IndexSymbolicTerm :=
 Source // TermArg => <String | Buffer | PackageTerm>
 [Index] // TermArg => Integer
 => ObjectReference

IndexTerm :=
 Index (
 Source, // TermArg => <String | Buffer | PackageTerm>
 Index, // TermArg => Integer
 Destination // Target
) => ObjectReference

LAndSymbolicTerm :=
 Source1 // TermArg => Integer
 &&
 Source2 // TermArg => Integer
 => Boolean

LAndTerm :=
 LAnd (
 Source1, // TermArg => Integer
 Source2 // TermArg => Integer
) => Boolean

LEqualSymbolicTerm :=
 Source1 // TermArg => ComputationalData
 ==
 Source2 // TermArg => ComputationalData
 => Boolean

LEqualTerm :=
 LEqual (
 Source1, // TermArg => ComputationalData
 Source2 // TermArg => ComputationalData
) => Boolean

LGreaterEqualSymbolicTerm :=
 Source1 // TermArg => ComputationalData
 >=
 Source2 // TermArg => ComputationalData
 => Boolean

LGreaterEqualTerm :=
 LGreaterEqual (
 Source1, // TermArg => ComputationalData
 Source2 // TermArg => ComputationalData
) => Boolean
UEFI Forum, Inc. January 2019 Page 892

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
LGreaterSymbolicTerm :=
 Source1 // TermArg => ComputationalData
 >
 Source2 // TermArg => ComputationalData
 => Boolean
 LGreaterTerm :=
 LGreater (
 Source1, // TermArg => ComputationalData
 Source2 // TermArg => ComputationalData
) => Boolean

LLessEqualSymbolicTerm :=
 Source1 // TermArg => ComputationalData
 <=
 Source2 // TermArg => ComputationalData
 => Boolean

LLessEqualTerm :=
 LLessEqual (
 Source1, // TermArg => ComputationalData
 Source2 // TermArg => ComputationalData
) => Boolean

LLessSymbolicTerm :=
 Source1 // TermArg => ComputationalData
 <
 Source2 // TermArg => ComputationalData
 => Boolean

LLessTerm :=
 LLess (
 Source1, // TermArg => ComputationalData
 Source2 // TermArg => ComputationalData
) => Boolean

LNotEqualTerm :=
 LNotEqual (
 Source1, // TermArg => ComputationalData
 Source2 // TermArg => ComputationalData
) => Boolean

LNotEqualSymbolicTerm :=
 Source1 // TermArg => ComputationalData
 !=
 Source2 // TermArg => ComputationalData
 => Boolean

LNotSymbolicTerm :=
 !
 Source // TermArg => Integer
UEFI Forum, Inc. January 2019 Page 893

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 => Boolean

LNotTerm :=
 LNot (
 Source, // TermArg => Integer
) => Boolean

LOrSymbolicTerm :=
 Source1 // TermArg => Integer
 ||
 Source2 // TermArg => Integer
 => Boolean

LoadTableTerm :=
 LoadTable (
 SignatureString, // TermArg => String
 OemIDString, // TermArg => String
 OemTableIDString, // TermArg => String
 RootPathString, // Nothing | TermArg => String
 ParameterPathString, // Nothing | TermArg => String
 ParameterData // Nothing | TermArg => DataRefObject
) => DDBHandle

LoadTerm :=
 Load (
 Object, // NameString
 DDBHandle // SuperName
)

LocalTerm :=
 Local0 | Local1 | Local2 | Local3 | Local4 | Local5 | Local6 | Local7

LOrTerm :=
 LOr (
 Source1, // TermArg => Integer
 Source2 // TermArg => Integer
) => Boolean

MatchTerm :=
 Match (
 SearchPackage, // TermArg => Package
 Op1, // MatchOpKeyword
 MatchObject1, // TermArg => ComputationalData
 Op2, // MatchOpKeyword
 MatchObject2, // TermArg => ComputationalData
 StartIndex // TermArg => Integer
) => <Ones | Integer>

MethodTerm :=
 Method (
 MethodName, // NameString
UEFI Forum, Inc. January 2019 Page 894

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 NumArgs, // Nothing | ByteConstExpr
 SerializeRule, // Nothing | SerializeRuleKeyword
 SyncLevel, // Nothing | ByteConstExpr
 ReturnType, // Nothing | ParameterTypePackage
 ParameterTypes // Nothing | ParameterTypesPackage
) {TermList}

MidTerm :=
 Mid (
 Source, // TermArg => <Buffer | String>
 Index, // TermArg => Integer
 Length, // TermArg => Integer
 Result // Target
) => <Buffer | String>

ModCompoundTerm :=
 Dividend-Result // TermArg => Integer => Target
 %=
 Divisor // TermArg => Integer
 => Integer

ModSymbolicTerm :=
 Dividend // TermArg => Integer
 %
 Divisor // TermArg => Integer
 => Integer

ModTerm :=
 Mod (
 Dividend, // TermArg => Integer
 Divisor, // TermArg => Integer
 Result // Target
) => Integer // Returns Result

MultiplyCompoundTerm :=
 Multiplicand-Result // TermArg => Integer => Target
 *=
 Multiplier // TermArg => Integer
 => Integer

MultiplySymbolicTerm :=
 Multiplicand // TermArg => Integer
 *
 Multiplier // TermArg => Integer
 => Integer

MultiplyTerm :=
 Multiply (
 Multiplicand, // TermArg => Integer
 Multiplier, // TermArg => Integer
UEFI Forum, Inc. January 2019 Page 895

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 Result // Target
) => Integer

MutexTerm :=
 Mutex (
 MutexName, // NameString
 SyncLevel // ByteConstExpr
)

NameTerm :=
 Name (
 ObjectName, // NameString
 Object // DataObject
)

NAndTerm :=
 NAnd (
 Source1, // TermArg => Integer
 Source2, // TermArg => Integer
 Result // Target
) => Integer

NoOpTerm :=
 NoOp

NOrTerm :=
 NOr (
 Source1, // TermArg => Integer
 Source2, // TermArg => Integer
 Result // Target
) => Integer

NotifyTerm :=
 Notify (
 Object, // SuperName => <ThermalZone | Processor | Device>
 NotificationValue // TermArg => Integer
)

NotSymbolicTerm :=
 ~
 Source // TermArg => Integer
 => Integer

NotTerm :=
 Not (
 Source, // TermArg => Integer
 Result // Target
) => Integer
UEFI Forum, Inc. January 2019 Page 896

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
ObjectTypeTerm :=
 ObjectType (
 Object // NameString | ArgTerm | LocalTerm | DebugTerm |
 // RefOfTerm | DerefOfTerm | IndexTerm
) => Integer

OffsetTerm :=
 Offset (
 ByteOffset // IntegerData
)

OpRegionTerm :=
 OperationRegion (
 RegionName, // NameString
 RegionSpace, // RegionSpaceKeyword
 Offset, // TermArg => Integer
 Length // TermArg => Integer
)

OrCompoundTerm :=
 Source1-Result // TermArg => Integer => Target
 |=
 Source2 // TermArg => Integer
 => Integer

OrSymbolicTerm :=
 Source1 // TermArg => Integer
 |
 Source2 // TermArg => Integer
 => Integer

OrTerm :=
 Or (
 Source1, // TermArg => Integer
 Source2, // TermArg => Integer
 Result // Target
) => Integer

PackageTerm :=
 Package (
 NumElements // Nothing | ByteConstExpr | TermArg => Integer
) {PackageList} => Package

PLDKeyword :=
 PLD_Revision | PLD_IgnoreColor | PLD_Red | PLD_Green | PLD_Blue |
 PLD_Width | PLD_Height | PLD_UserVisible | PLD_Dock | PLD_Lid | PLD_Panel |
 PLD_VerticalPosition | PLD_HorizontalPosition | PLD_Shape |
 PLD_GroupOrientation | PLD_GroupToken | PLD_GroupPosition | PLD_Bay
 PLD_Ejectable | PLD_EjectRequired | PLD_CabinetNumber
UEFI Forum, Inc. January 2019 Page 897

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
PLDKeywordList :=
 PLDKeyword = StringData | PLDKeyword = IntegerData |
 PLDKeyword = StringData, PLDKeywordList, PLDKeyword = IntegerData, PLDKeywordList

PowerResTerm :=
 PowerResource (
 ResourceName, // NameString
 SystemLevel, // ByteConstExpr
 ResourceOrder // WordConstExpr
) {TermList}

PrintfArgList :=
 TermArg | TermArg , PrintfArgList

PrintfTerm :=
 Printf (
 String,
 PrintfArgList
) => String

ProcessorTerm :=
 Processor (
 ProcessorName, // NameString
 ProcessorID, // ByteConstExpr
 PBlockAddress, // DWordConstExpr | Nothing (=0)
 PblockLength // ByteConstExpr | Nothing (=0)
) {TermList}

RawDataBufferTerm :=
 RawDataBuffer (
 BuffSize // Nothing | WordConst
) { ByteList} => RawDataBuffer

RefOfTerm :=
 RefOf (
 Source // NameString | ArgTerm | LocalTerm | DerefOfTerm
) => ObjectReference

ReleaseTerm :=
 Release (
 SyncObject // SuperName
)

ResetTerm :=
 Reset (
 SyncObject // SuperName
)

ReturnTerm :=
 Return (
UEFI Forum, Inc. January 2019 Page 898

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 Arg // Nothing | TermArg => DataRefObject
)

ScopeTerm :=
 Scope (
 Location // NameString
) {TermList}

ShiftLeftCompoundTerm :=
 Source-Result // TermArg => Integer => Target
 <<=
 ShiftCount // TermArg => Integer
 => Integer

ShiftLeftSymbolicTerm :=
 Source // TermArg => Integer
 <<
 ShiftCount // TermArg => Integer
 => Integer

ShiftLeftTerm :=
 ShiftLeft (
 Source, // TermArg => Integer
 ShiftCount, // TermArg => Integer
 Result // Target
) => Integer

ShiftRightCompoundTerm :=
 Source-Result // TermArg => Integer => Target
 >>=
 ShiftCount // TermArg => Integer
 => Integer

ShiftRightSymbolicTerm :=
 Source // TermArg => Integer
 >>
 ShiftCount // TermArg => Integer
 => Integer

ShiftRightTerm :=
 ShiftRight (
 Source, // TermArg => Integer
 ShiftCount, // TermArg => Integer
 Result // Target
) => Integer

SignalTerm :=
 Signal (
 SyncObject // SuperName
)
UEFI Forum, Inc. January 2019 Page 899

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
SizeOfTerm :=
 SizeOf (
 DataObject // SuperName => <String | Buffer | Package>
) => Integer

SleepTerm :=
 Sleep (
 MilliSeconds // TermArg => Integer
)

StallTerm :=
 Stall (
 MicroSeconds // TermArg => Integer
)

StoreSymbolicTerm :=
 Destination // SuperName
 =
 Source // TermArg => DataRefObject
 => DataRefObject

StoreTerm :=
 Store (
 Source, // TermArg => DataRefObject
 Destination // SuperName
) => DataRefObject

SubtractCompoundTerm :=
 Minuend-Result // TermArg => Integer => Target
 -=
 Subtrahend // TermArg => Integer
 => Integer

SubtractSymbolicTerm :=
 Minuend // TermArg => Integer
 -
 Subtrahend // TermArg => Integer
 => Integer

SubtractTerm :=
 Subtract (
 Minuend, // TermArg => Integer
 Subtrahend, // TermArg => Integer
 Result // Target
) => Integer

SwitchTerm :=
 Switch (
 Predicate // TermArg => ComputationalData
) {CaseTermList}
UEFI Forum, Inc. January 2019 Page 900

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
ThermalZoneTerm :=
 ThermalZone (
 ThermalZoneName // NameString
) {TermList}

TimerTerm :=
 Timer => Integer

ToBCDTerm :=
 ToBCD (
 Value, // TermArg => Integer
 Result // Target
) => Integer

ToBufferTerm :=
 ToBuffer (
 Data, // TermArg => ComputationalData
 Result // Target
) => ComputationalData

ToDecimalStringTerm :=
 ToDecimalString (
 Data, // TermArg => ComputationalData
 Result // Target
) => String

ToHexStringTerm :=
 ToHexString (
 Data, // TermArg => ComputationalData
 Result // Target
) => String

ToIntegerTerm :=
 ToInteger (
 Data, // TermArg => ComputationalData
 Result // Target
) => Integer

ToPLDTerm :=
 ToPLD (
 PLDKeywordList
) => Buffer

ToStringTerm :=
 ToString (
 Source, // TermArg => Buffer
 Length, // Nothing | TermArg => Integer
 Result // Target
) => String
UEFI Forum, Inc. January 2019 Page 901

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
ToUUIDTerm :=
 ToUUID (
 String // StringData
) => Buffer

UnicodeTerm :=
 Unicode (
 String // StringData
) => Buffer

UnloadTerm :=
 Unload (
 DDBHandle // SuperName
)

WaitTerm :=
 Wait (
 SyncObject, // SuperName => Event
 TimeoutValue // TermArg => Integer
) => Boolean // True means timed-out

WhileTerm :=
 While (
 Predicate // TermArg => Integer
) {TermList}

XorCompoundTerm :=
 Source1-Result // TermArg => Integer => Target
 ^=
 Source2 // TermArg => Integer
 => Integer

XorSymbolicTerm :=
 Source1 // TermArg => Integer
 ^
 Source2 // TermArg => Integer
 => Integer

XOrTerm :=
 XOr (
 Source1, // TermArg => Integer
 Source2, // TermArg => Integer
 Result // Target
) => Integer
UEFI Forum, Inc. January 2019 Page 902

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.2.7 ASL Parameter Keyword Terms
AccessAttribKeyword :=
 AttribQuick | AttribSendReceive | AttribByte | AttribBytes (n) | AttribRawBytes
(n) |
 AttribRawProcessBytes (n) | AttribWord | AttribBlock |AttribProcessCall |
 AttribBlockProcessCall // Note: Used for SMBus and GenericSerialBus BufferAcc
only |
AccessTypeKeyword :=
 AnyAcc | ByteAcc | WordAcc | DWordAcc | QWordAcc | BufferAcc
AddressKeyword :=
 AddressRangeMemory | AddressRangeReserved | AddressRangeNVS | AddressRangeACPI
AddressSpaceKeyword :=

RegionSpaceKeyword | FFixedHW
AddressingModeKeyword :=
 AddressingMode7Bit | AddressingMode10Bit
ByteLengthKeyword :=
 DataBitsFive | DataBitsSix | DataBitsSeven | DataBitsEight | DataBitsNine
BusMasterKeyword :=
 BusMaster | NotBusMaster
ClockPhaseKeyword :=
 ClockPhaseFirst | ClockPhaseSecond
ClockPolarityKeyword :=
 ClockPolarityLow | ClockPolarityHigh
DecodeKeyword :=
 SubDecode | PosDecode
EndianKeyword :=
 BigEndianing | LittleEndian
ExtendedAccessAttribKeyword :=
 AttribBytes | AttribRawBytes | AttribRawProcessBytes
 // Note: Used for GenericSerialBus BufferAcc only.
FlowControlKeyword :=
 FlowControlNone | FlowControlXon | FlowControlHardware
InterruptTypeKeyword :=
 Edge | Level
InterruptLevel :=
 ActiveHigh | ActiveLow
InterruptLevelKeyword :=
 ActiveHigh | ActiveLow | ActiveBoth
IODecodeKeyword :=
 Decode16 | Decode10
IoRestrictionKeyword :=
 IoRestrictionNone | IoRestrictionInputOnly | IoRestrictionOutputOnly |
 IoRestrictionNoneAndPreserve
LockRuleKeyword :=
 Lock | NoLock
MatchOpKeyword :=
 MTR | MEQ | MLE | MLT | MGE | MGT
MaxKeyword :=
 MaxFixed | MaxNotFixed
MemTypeKeyword :=
 Cacheable | WriteCombining | Prefetchable | NonCacheable
UEFI Forum, Inc. January 2019 Page 903

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
MinKeyword :=
 MinFixed | MinNotFixed
ObjectTypeKeyword :=
 UnknownObj | IntObj | StrObj | BuffObj | PkgObj | FieldUnitObj | DeviceObj |
 EventObj | MethodObj | MutexObj | OpRegionObj | PowerResObj | ProcessorObj |
 ThermalZoneObj | BuffFieldObj | DDBHandleObj
ParityKeyword :=
 ParityTypeNone | ParityTypeSpace | ParityTypeMark | ParityTypeOdd | ParityTypeEven
PinConfigKeyword :=
 PullDefault | PullUp | PullDown | PullNone
PolarityKeyword :=
 PolarityHigh | PolarityLow
RangeTypeKeyword :=
 ISAOnlyRanges | NonISAOnlyRanges | EntireRange
ReadWriteKeyword :=
 ReadWrite | ReadOnly
RegionSpaceKeyword :=
 SystemIO | SystemMemory | PCI_Config | EmbeddedControl | SMBus | SystemCMOS | 
 PciBarTarget | IPMI | GeneralPurposeIO | GenericSerialBus |
 PCC
ResourceTypeKeyword :=
 ResourceConsumer | ResourceProducer
SerializeRuleKeyword :=
 Serialized | NotSerialized
ShareTypeKeyword :=
 Shared | Exclusive | SharedAndWake | ExclusiveAndWake
SlaveModeKeyword :=
 ControllerInitiated | DeviceInitiated
StopBitsKeyword :=
 StopBitsZero | StopBitsOne | StopBitsOnePlusHalf | StopBitsTwo
TransferWidthKeyword :=
 Width8Bit | Width16Bit | Width32Bit | Width64Bit | Width128Bit | Width256Bit
TranslationKeyword :=
 SparseTranslation | DenseTranslation
TypeKeyword :=
 TypeTranslation | TypeStatic
UpdateRuleKeyword :=
 Preserve | WriteAsOnes | WriteAsZeros
UserDefRegionSpace :=
 IntegerData => 0x80 - 0xFF
XferTypeKeyword :=
 Transfer8 | Transfer16 | Transfer8_16
WireModeKeyword :=
 ThreeWireMode | FourWireMode
UEFI Forum, Inc. January 2019 Page 904

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.2.8 ASL Resource Template Terms

ResourceMacroList :=
 Nothing | <ResourceMacroTerm ResourceMacroList>

ResourceMacroTerm := DMATerm | DWordIOTerm | DWordMemoryTerm | DWordSpaceTerm |
EndDependentFnTerm | ExtendedIOTerm | ExtendedMemoryTerm | ExtendedSpaceTerm |
FixedDMATerm | FixedIOTerm | GpioIntTerm | GpioIOTerm | I2CSerialBusTerm |
InterruptTerm | IOTerm | IRQNoFlagsTerm | IRQTerm | Memory24Term | Memory32FixedTerm |
Memory32Term | PinConfigTerm | PinFunctionTerm | PinGroupTerm | PinGroupConfigTerm |
PinGroupFunctionTerm | QWordIOTerm | QWordMemoryTerm | QWordSpaceTerm | RegisterTerm |
SPISerialBusTerm | StartDependentFnTerm | StartDependentFnNoPriTerm |
UARTSerialBusTerm | VendorLongTerm | VendorShortTerm | WordBusNumberTerm | WordIOTerm
| WordSpaceTerm

DMATerm :=
 DMA (
 DMAType, // DMATypeKeyword (_TYP)
 BusMaster, // BusMasterKeyword (_BM)
 XferType, // XferTypeKeyword (_SIZ)
 DescriptorName // Nothing | NameString
) {ByteList} // List of channels (0-7 bytes)

DWordIOTerm :=
 DWordIO (
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 RangeType, // Nothing (EntireRange) | RangeTypeKeyword
(_RNG)
 AddressGranularity, // DWordConstExpr (_GRA)
 MinAddress, // DWordConstExpr (_MIN)
 MaxAddress, // DWordConstExpr (_MAX)
 AddressTranslation, // DWordConstExpr (_TRA)
 AddressLength, // DWordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName, // Nothing | NameString
 TranslationType, // Nothing | TypeKeyword (_TTP)
 TranslationDensity // Nothing | TranslationKeyword (_TRS)
)

DWordMemoryTerm :=
 DWordMemory (
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
UEFI Forum, Inc. January 2019 Page 905

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 MemType, // Nothing (NonCacheable) | MemTypeKeyword
(_MEM)
 ReadWriteType, // ReadWriteKeyword (_RW)
 AddressGranularity, // DWordConstExpr (_GRA)
 MinAddress, // DWordConstExpr (_MIN)
 MaxAddress, // DWordConstExpr (_MAX)
 AddressTranslation, // DWordConstExpr (_TRA)
 AddressLength, // DWordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName, // Nothing | NameString
 MemoryRangeType, // Nothing | AddressKeyword (_MTP)
 TranslationType // Nothing | TypeKeyword (_TTP)
)

DWordSpaceTerm :=
 DWordSpace (
 ResourceType, // ByteConstExpr (_RT), 0xC0 – 0xFF
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 TypeSpecificFlags, // ByteConstExpr (_TSF)
 AddressGranularity, // DWordConstExpr (_GRA)
 MinAddress, // DWordConstExpr (_MIN)
 MaxAddress, // DWordConstExpr (_MAX)
 AddressTranslation, // DWordConstExpr (_TRA)
 AddressLength, // DWordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName // Nothing | NameString
)

EndDependentFnTerm :=
 EndDependentFn ()

ExtendedIOTerm :=
 ExtendedIO (
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 RangeType, // Nothing (EntireRange) | RangeTypeKeyword
(_RNG)
 AddressGranularity, // QWordConstExpr (_GRA)
 MinAddress, // QWordConstExpr (_MIN)
 MaxAddress, // QWordConstExpr (_MAX)
 AddressTranslation, // QWordConstExpr (_TRA)
 AddressLength, // QWordConstExpr (_LEN)
UEFI Forum, Inc. January 2019 Page 906

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 TypeSpecificAttributes, // Nothing | QWordConstExpr
 DescriptorName, // Nothing | NameString
 TranslationType, // Nothing | TypeKeyword (_TTP)
 TranslationDensity // Nothing | TranslationKeyword (_TRS)
)

ExtendedMemoryTerm :=
 ExtendedMemory (
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 MemType, // Nothing (NonCacheable) | MemTypeKeyword
(_MEM)
 ReadWriteType, // ReadWriteKeyword (_RW)
 AddressGranularity, // QWordConstExpr (_GRA)
 MinAddress, // QWordConstExpr (_MIN)
 MaxAddress, // QWordConstExpr (_MAX)
 AddressTranslation, // QWordConstExpr (_TRA)
 AddressLength, // QWordConstExpr (_LEN)
 TypeSpecificAttributes, // Nothing | QWordConstExpr
 DescriptorName, // Nothing | NameString
 MemoryRangeType, // Nothing | AddressKeyword (_MTP)
 TranslationType // Nothing | TypeKeyword (_TTP)
)

ExtendedSpaceTerm :=
 ExtendedSpace (
 ResourceType, // ByteConstExpr (_RT), 0xC0 – 0xFF
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 TypeSpecificFlags, // ByteConstExpr (_TSF)
 AddressGranularity, // QWordConstExpr (_GRA)
 MinAddress, // QWordConstExpr (_MIN)
 MaxAddress, // QWordConstExpr (_MAX)
 AddressTranslation, // QWordConstExpr (_TRA)
 AddressLength, // QWordConstExpr (_LEN)
 TypeSpecificAttributes, // Nothing | QWordConstExpr (_ATT)
 DescriptorName // Nothing | NameString
)
UEFI Forum, Inc. January 2019 Page 907

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
FixedDMATerm :=
 FixedDMA (
 DMAReq, //WordConstExpr (_DMA)
 Channel, //WordConstExpr (_TYP)
 XferWidth, //Nothing (Width32Bit) | TransferWidthKeyword
(_SIZ)
 DescriptorName, //Nothing | NameString
)

FixedIOTerm :=
 FixedIO (
 AddressBase, // WordConstExpr (_BAS)
 RangeLength, // ByteConstExpr (_LEN)
 DescriptorName // Nothing | NameString
)

GpioIntTerm :=
 GpioInt(
 InterruptType, // InterruptTypeKeyword (_MOD)
 InterruptLevel, // InterruptLevelKeyword (_POL)
 ShareType, // Nothing (Exclusive) | ShareTypeKeyword (_SHR)
 PinConfig, // PinConfigKeyword | ByteConstExpr (_PPI)
 DeBounceTime // Nothing | WordConstExpr (_DBT)
 ResourceSource, // StringData
 ResourceSourceIndex, // Nothing (0) | ByteConstExpr
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
 VendorData // Nothing | RawDataBuffer (_VEN)
) {DWordList} // List of GPIO pins (_PIN)

GpioIOTerm :=
 GpioIO (
 ShareType, // Nothing (Exclusive) | ShareTypeKeyword (_SHR)
 PinConfig, // PinConfigKeyword | ByteConstExpr (_PPIC)
 DeBounceTime // Nothing | WordConstExpr (_DBT)
 DriveStrength // Nothing | WordConstExpr (_DRS)
 IORestriction // Nothing (None) | IORestrictionKeyword (_IOR)
 ResourceSource, // StringData
 ResourceSourceIndex, // Nothing (0) | ByteConstExpr
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
 VendorData // Nothing | RawDataBuffer (_VEN)
) {DWordList} // List of GPIO pins (_PIN)
UEFI Forum, Inc. January 2019 Page 908

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
I2CSerialBusTerm :=
 I2CSerialBusV2 (
 SlaveAddress, // WordConstExpr (_ADR)
 SlaveMode, // Nothing (ControllerInitiated) |
SlaveModeKeyword (_SLV)
 ConnectionSpeed, // DWordConstExpr (_SPE)
 AddressingMode, // Nothing (AddressingMode7Bit) |
AddressModeKeyword (_MOD)
 ResourceSource, // StringData
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
 ShareType, // Nothing (Exclusive) | ShareTypeKeyword (_SHR)
 VendorData // Nothing | RawDataBuffer (_VEN)
)

InterruptTerm :=
 Interrupt (
 ResourceType, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 InterruptType, // InterruptTypeKeyword (_LL, _HE)
 InterruptLevel, // InterruptLevelKeyword (_LL, _HE)
 ShareType, // Nothing (Exclusive) ShareTypeKeyword (_SHR)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName // Nothing | NameString
) {DWordList} // list of interrupts (_INT)

IOTerm :=
 IO (
 IODecode, // IODecodeKeyword (_DEC)
 MinAddress, // WordConstExpr (_MIN)
 MaxAddress, // WordConstExpr (_MAX)
 Alignment, // ByteConstExpr (_ALN)
 RangeLength, // ByteConstExpr (_LEN)
 DescriptorName // Nothing | NameString
)

IRQNoFlagsTerm :=
 IRQNoFlags (
 DescriptorName // Nothing | NameString
) {ByteList} // list of interrupts (0-15 bytes)
UEFI Forum, Inc. January 2019 Page 909

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
IRQTerm :=
 IRQ (
 InterruptType, // InterruptTypeKeyword (_LL, _HE)
 InterruptLevel, // InterruptLevelKeyword (_LL, _HE)
 ShareType, // Nothing (Exclusive) | ShareTypeKeyword
(_SHR)
 DescriptorName // Nothing | NameString
) {ByteList} // list of interrupts (0-15 bytes)

Memory24Term :=
 Memory24 (
 ReadWriteType, // ReadWriteKeyword (_RW)
 MinAddress[23:8], // WordConstExpr (_MIN)
 MaxAddress[23:8], // WordConstExpr (_MAX)
 Alignment, // WordConstExpr (_ALN)
 RangeLength, // WordConstExpr (_LEN)
 DescriptorName // Nothing | NameString
)

Memory32FixedTerm :=
 Memory32Fixed (
 ReadWriteType, // ReadWriteKeyword (_RW)
 AddressBase, // DWordConstExpr (_BAS)
 RangeLength, // DWordConstExpr (_LEN)
 DescriptorName // Nothing | NameString
)

Memory32Term :=
 Memory32 (
 ReadWriteType, // ReadWriteKeyword (_RW)
 MinAddress, // DWordConstExpr (_MIN)
 MaxAddress, // DWordConstExpr (_MAX)
 Alignment, // DWordConstExpr (_ALN)
 RangeLength, // DWordConstExpr (_LEN)
 DescriptorName // Nothing | NameString
)

PinConfigTerm :=
 PinConfig (
 ShareType, // Nothing (Exclusive) | ShareTypeKeyword (_SHR)
 PinConfigType, // ByteData (_TYP)
 PinConfigValue, // ByteData (_VAL)
 ResourceSource, // StringData
 ResourceSourceIndex, // Nothing (0) | ByteConstExpr
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
 VendorData // Nothing | RawDataBuffer (_VEN)
) {DWordList} (_PIN)
UEFI Forum, Inc. January 2019 Page 910

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
PinFunctionTerm :=
 PinFunction (
 ShareType, // Nothing (Exclusive) | ShareTypeKeyword (_SHR)
 PinPullConfiguration, // PinConfigKeyword | ByteConstExpr (_PPI)
 FunctionNumber, // WordData
 ResourceSource, // StringData
 ResourceSourceIndex, // Nothing (0) | ByteConstExpr
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
 VendorData // Nothing | RawDataBuffer (_VEN)
) {DWordList} (_PIN)

PinGroupTerm :=
 PinGroup (
 ResourceLabel, // StringData
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
 VendorData // Nothing | RawDataBuffer (_VEN)
) {DWordList} (_PIN)

PinGroupConfigTerm :=
 PinGroupConfig (
 ShareType, // Nothing (Exclusive) | ShareTypeKeyword (_SHR)
 PinConfigType, // ByteData (_TYP)
 PinConfigValue, // ByteData (_VAL)
 ResourceSource, // StringData
 ResourceSourceIndex, // Nothing (0) | ByteConstExpr
 ResourceSourceLabel, // StringData
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
 VendorData // Nothing | RawDataBuffer (_VEN)

PinGroupFunctionTerm :=
 PinGroupFunction (
 ShareType, // Nothing (Exclusive) | ShareTypeKeyword (_SHR)
 FunctionNumber, // WordData (_FUN)
 ResourceSource, // StringData
 ResourceSourceIndex, // Nothing (0) | ByteConstExpr
 ResourceSourceLabel, // StringData
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
 VendorData // Nothing | RawDataBuffer (_VEN)
UEFI Forum, Inc. January 2019 Page 911

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
QWordIOTerm :=
 QWordIO (
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 RangeType, // Nothing (EntireRange) | RangeTypeKeyword
(_RNG)
 AddressGranularity, // QWordConstExpr (_GRA)
 MinAddress, // QWordConstExpr (_MIN)
 MaxAddress, // QWordConstExpr (_MAX)
 AddressTranslation, // QWordConstExpr (_TRA)
 AddressLength, // QWordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName, // Nothing | NameString
 TranslationType, // Nothing | TypeKeyword (_TTP)
 TranslationDensity // Nothing | TranslationKeyword (_TRS)
)

QWordMemoryTerm :=
 QWordMemory (
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 MemType, // Nothing (NonCacheable) | MemTypeKeyword
(_MEM)
 ReadWriteType, // ReadWriteKeyword (_RW)
 AddressGranularity, // QWordConstExpr (_GRA)
 MinAddress, // QWordConstExpr (_MIN)
 MaxAddress, // QWordConstExpr (_MAX)
 AddressTranslation, // QWordConstExpr (_TRA)
 AddressLength, // QWordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName, // Nothing | NameString
 MemoryRangeType, // Nothing | AddressKeyword (_MTP)
 TranslationType // Nothing | TypeKeyword (_TTP)
)
UEFI Forum, Inc. January 2019 Page 912

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
QWordSpaceTerm :=
 QWordSpace (
 ResourceType, // ByteConstExpr (_RT), 0xC0 – 0xFF
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 TypeSpecificFlags, // ByteConstExpr (_TSF)
 AddressGranularity, // QWordConstExpr (_GRA)
 MinAddress, // QWordConstExpr (_MIN)
 MaxAddress, // QWordConstExpr (_MAX)
 AddressTranslation, // QWordConstExpr (_TRA)
 AddressLength, // QWordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName // Nothing | NameString
)

RawDataBufferTerm :=
 RawDataBuffer (
 (BuffSize) // Nothing | Integer
) {ByteList} => ByteList

RegisterTerm :=
 Register (
 AddressSpaceID, // AddressSpaceKeyword (_ASI)
 RegisterBitWidth, // ByteConstExpr (_RBW)
 RegisterOffset, // ByteConstExpr (_RBO)
 RegisterAddress, // QWordConstExpr (_ADR)
 AccessSize, // ByteConstExpr (_ASZ)
 DescriptorName // Nothing | NameString
)

SPISerialBusTerm :=
 SPISerialBusV2 (
 DeviceSelection, // WordConstExpr (_ADR)
 DeviceSelectionPolarity, // Nothing (PolarityLow) | DevicePolarityKeyword
(_DPL)
 WireMode, // Nothing (FourWireMode) | WireModeKeyword (_MOD)
 DataBitLength, // ByteConstExpr (_LEN)
 SlaveMode, // Nothing (ControllerInitiated) |
SlaveModeKeyword (_SLV)
 ConnectionSpeed, // DWordConstExpr (_SPE)
 ClockPolarity, // ClockPolarityKeyword (_POL)
 ClockPhase, // ClockPhaseKeyword (_PHA)
 ResourceSource, // StringData
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
UEFI Forum, Inc. January 2019 Page 913

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 ShareType, // Nothing (Exclusive) | ShareTypeKeyword (_SHR)
 VendorData // Nothing | RawDataBuffer (_VEN)
)

StartDependentFnNoPriTerm :=
 StartDependentFnNoPri () {ResourceMacroList}

StartDependentFnTerm :=
 StartDependentFn (
 CompatPriority, // ByteConstExpr (0-2)
 PerfRobustPriority // ByteConstExpr (0-2)
) {ResourceMacroList}

UARTSerialBusTerm :=
 UARTSerialBusV2(
 Initial BaudRate, // DwordConstExpr (_SPE)
 BitsPerByte, // Nothing (DataBitsEight) | DataBitsKeyword
(_LEN)
 StopBits, // Nothing (StopBitsOne) | StopBitsKeyword (_STB)
 LinesInUse, // ByteConstExpr (_LIN)
 IsBigEndian, // Nothing (LittleEndian) | EndianessKeyword
(_END)
 Parity, // Nothing (ParityTypeNone) | ParityTypeKeyword
(_PAR)
 FlowControl, // Nothing (FlowControlNone) | FlowControlKeyword
(_FLC)
 ReceiveBufferSize, // WordConstExpr (_RXL)
 TransmitBufferSize, // WordConstExpr (_TXL)
 ResourceSource, // StringData
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
 ShareType, // Nothing (Exclusive) | ShareTypeKeyword (_SHR)
 VendorData // Nothing | Object (_VEN)
)

VendorLongTerm :=
 VendorLong (
 DescriptorName // Nothing | NameString
) {ByteList}

VendorShortTerm :=
 VendorShort (
 DescriptorName // Nothing | NameString
) {ByteList} // Up to 7 bytes
UEFI Forum, Inc. January 2019 Page 914

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
WordBusNumberTerm :=
 WordBusNumber (
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 AddressGranularity, // WordConstExpr (_GRA)
 MinAddress, // WordConstExpr (_MIN)
 MaxAddress, // WordConstExpr (_MAX)
 AddressTranslation, // WordConstExpr (_TRA)
 AddressLength, // WordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName // Nothing | NameString
)

WordIOTerm :=
 WordIO (
 ResourceUsage, // Nothing (ResourceConsumer)|
ResourceTypeKeyword
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 RangeType, // Nothing (EntireRange) | RangeTypeKeyword (_RNG)
 AddressGranularity, // WordConstExpr (_GRA)
 MinAddress, // WordConstExpr (_MIN)
 MaxAddress, // WordConstExpr (_MAX)
 AddressTranslation, // WordConstExpr (_TRA)
 AddressLength, // WordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName, // Nothing | NameString
 TranslationType, // Nothing | TypeKeyword (_TTP)
 TranslationDensity // Nothing | TranslationKeyword (_TRS)
)
UEFI Forum, Inc. January 2019 Page 915

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
WordSpaceTerm :=
 WordSpace (
 ResourceType, // ByteConstExpr (_RT), 0xC0 – 0xFF
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 TypeSpecificFlags, // ByteConstExpr (_TSF)
 AddressGranularity, // WordConstExpr (_GRA)
 MinAddress, // WordConstExpr (_MIN)
 MaxAddress, // WordConstExpr (_MAX)
 AddressTranslation, // WordConstExpr (_TRA)
 AddressLength, // WordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName // Nothing | NameString
)

19.3 ASL Concepts

This reference section is for developers who are writing ASL code while developing definition blocks for
platforms.

19.3.1 ASL Names

This section describes how to encode object names using ASL.

The following table lists the characters legal in any position in an ASL object name. ASL names are not
case-sensitive and will be converted to upper case.

Table 19-414 Named Object Reference Encodings

Value Description Title

0x41-0x5A, 0x5F, 0x61-0x7A Lead character of name

(‘A’–‘Z’, ‘_’ , ‘a’–‘z’)

LeadNameChar

0x30-0x39, 0x41-0x5A, 0x5F, 0x61-
0x7A

Non-lead (trailing) character of name (‘A’–
‘Z’, ‘_’, ‘a’–‘z’, ‘0’–‘9’)

NameChar

The following table lists the name modifiers that can be prefixed to an ASL name.

Table 19-415 Definition Block Name Modifier Encodings

Value Description NamePrefix := Followed by …

0x5C Namespace root (‘\’) RootPrefix Name

0x5E Parent namespace (‘^’) ParentPrefix ParentPrefix or Name
UEFI Forum, Inc. January 2019 Page 916

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.3.1.1 _T_x Reserved Object Names

The ACPI specification reserves object names with the prefix _T_ for internal use by the ASL compiler. The
ASL compiler may, for example, use these objects to store temporary values when implementing
translation of complicated control structures into AML. The ASL compiler must declare _T_x objects
normally (using Name) and must not define them more than once within the same scope.

19.3.2 ASL Literal Constants

This section describes how to encode integer and string constants using ASL.

19.3.2.1 Integers

DigitChar := ‘0’-‘9’
LeadDigitChar := ‘1’-‘9’
OctalDigitChar := ‘0’-‘7’
HexDigitChar := DigitChar | ‘A’-‘F’ | ‘a’-‘f’

Integer := DecimalConst | OctalConst | HexConst
DecimalConst := LeadDigitChar | <DecimalConst DigitChar>
OctalConst := ‘0’ | <OctalConst OctalDigitChar>
HexConst := <0x HexDigitChar> | <0X HexDigitChar> | <HexConst HexDigitChar>
ByteConst := Integer => 0x00-0xFF
WordConst := Integer => 0x0000-0xFFFF
DWordConst := Integer => 0x00000000-0xFFFFFFFF
QWordConst := Integer => 0x0000000000000000-0xFFFFFFFFFFFFFFFF

Numeric constants can be specified in decimal, octal, or hexadecimal. Octal constants are preceded by a
leading zero (0), and hexadecimal constants are preceded by a leading zero and either a lower or upper
case ‘x’. In some cases, the grammar specifies that the number must evaluate to an integer within a
limited range, such as 0x00–0xFF, and so on.

19.3.2.2 Strings

 String := ‘”’ Utf8CharList ‘”’
Utf8CharList := Nothing | <EscapeSequence Utf8CharList> | <Utf8Char Utf8CharList>
Utf8Char := 0x01-0x21 |
 0x23-0x5B |
 0x5D-0x7F |
 0xC2-0xDF 0x80-0xBF |
 0xE0 0xA0-0xBF 0x80-0xBF |
 0xE1-0xEC 0x80-0xBF 0x80-0xBF |
 0xED 0x80-0x9F 0x80-0xBF |
 0xEE-0xEF 0x80-0xBF 0x80-0xBF |
 0xF0 0x90-0xBF 0x80-0xBF 0x80-0xBF |
 0xF1-0xF3 0x80-0xBF 0x80-0xBF 0x80-0xBF |
 0xF4 0x80-0x8F 0x80-0xBF 0x80-0xBF
EscapeSeq := SimpleEscapeSeq | OctalEscapeSeq | HexEscapeSeq
SimpleEscapeSeq := \' | \" | \a | \b | \f | \n | \r | \t | \v | \\
OctalEscapeSeq := \ OctalDigitChar |
 \ OctalDigitChar OctalDigitChar |
UEFI Forum, Inc. January 2019 Page 917

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 \ OctalDigitChar OctalDigitChar OctalDigitChar
HexEscapeSeq := \x HexDigitChar |
 \x HexDigitChar HexDigitChar
NullChar := 0x00

String literals consist of zero or more ASCII characters surrounded by double quotation marks ("). A string
literal represents a sequence of characters that, taken together, form a null-terminated string. After all
adjacent strings in the constant have been concatenated, a null character is appended.

Strings in the source file may be encoded using the UTF-8 encoding scheme as defined in the Unicode 4.0
specification. UTF-8 is a byte-oriented encoding scheme, where some characters take a single byte and
others take multiple bytes. The ASCII character values 0x01-0x7F take up exactly one byte.

However, only one operator currently supports UTF-8 strings: Unicode. Since string literals are defined to
contain only non-null character values, both Hex and Octal escape sequence values must be non-null
values in the ASCII range 0x01 through 0xFF. For arbitrary byte data (outside the range of ASCII values),
the Buffer object should be used instead.

Since the backslash is used as the escape character and also the namespace root prefix, any string literals
that are to contain a fully qualified namepath from the root of the namespace must use the double
backslash to indicate this:

 Name (_EJD, ”_SB.PCI0.DOCK1”)

The double backslash is only required within quoted string literals.

Since double quotation marks are used close a string, a special escape sequence (\") is used to allow
quotation marks within strings. Other escape sequences are listed in the table below:

Table 19-416 ASL Escape Sequences

Escape Sequence ASCII Character

\a 0x07 (BEL)

\b 0x08 (BS)

\f 0x0C (FF)

\n 0x0A (LF)

\r 0x0D (CR)

\t 0x09 (TAB)

\v 0x0B (VT)

\" 0x22 (")

\' 0x27 (')

\\ 0x5C (\)

Since literal strings are read-only constants, the following ASL statement (for example) is not supported:

Store (“ABC”, ”DEF”)
UEFI Forum, Inc. January 2019 Page 918

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
However, the following sequence of statements is supported:

Name (STR, ”DEF”)
...

Store (“ABC”, STR)

19.3.3 ASL Resource Templates

ASL includes some macros for creating resource descriptors. The ResourceTemplate macro creates a
Buffer in which resource descriptor macros can be listed. The ResourceTemplate macro automatically
generates an End descriptor and calculates the checksum for the resource template. The format for the
ResourceTemplate macro is as follows:

ResourceTemplate ()
 {
 // List of resource macros
 }

The following is an example of how these macros can be used to create a resource template that can be
returned from a _PRS control method:

 Name (PRS0, ResourceTemplate ()
 {
 StartDependentFn (1, 1)
 {
 IRQ (Level, ActiveLow, Shared) {10, 11}
 DMA (TypeF, NotBusMaster, Transfer16) {4}
 IO (Decode16, 0x1000, 0x2000, 0, 0x100)
 IO (Decode16, 0x5000, 0x6000, 0, 0x100, IO1)
 }
 StartDependentFn (1, 1)
 {
 IRQ (Level, ActiveLow, Shared) {}
 DMA (TypeF, NotBusMaster, Transfer16){5}
 IO (Decode16, 0x3000, 0x4000, 0, 0x100)
 IO (Decode16, 0x5000, 0x6000, 0, 0x100, IO2)
 }
 EndDependentFn ()
 })

Occasionally, it is necessary to change a parameter of a descriptor in an existing resource template at
run-time (i.e., during a method execution.) To facilitate this, the descriptor macros optionally include a
name declaration that can be used later to refer to the descriptor. When a name is declared with a
descriptor, the ASL compiler will automatically create field names under the given name to refer to
individual fields in the descriptor.

The offset returned by a reference to a resource descriptor field name is either in units of bytes (for 8-,
16-, 32-, and 64-bit field widths) or in bits (for all other field widths). In all cases, the returned offset is the
UEFI Forum, Inc. January 2019 Page 919

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
integer offset (in either bytes or bits) of the name from the first byte (offset 0) of the parent resource
template.

For example, given the above resource template, the following code changes the minimum and
maximum addresses for the I/O descriptor named IO2:

 CreateWordField (PRS0, IO2._MIN, IMIN)
 Store (0xA000, IMIN)

 CreateWordField (PRS0, IO2._MAX, IMAX)
 Store (0xB000, IMAX)

The resource template macros for each of the resource descriptors are listed below, after the table that
defines the resource descriptor. The resource template macros are formally defined in Section 6.4.1,
“ASL Macros for Resource Descriptors.”

The reserved names (such as _MIN and _MAX) for the fields of each resource descriptor are defined in
the appropriate table entry of the table that defines that resource descriptor.

19.3.4 ASL Macros

ASL compilers support built in macros to assist in various ASL coding operations. These macros do not
have a corresponding AML opcode, but are instead fully processed by the compiler itself, and may result
in the generation of AML opcodes for other ASL/AML operators. The following table lists some of the
supported directives and an explanation of their function.

The ASL language provides a wide variety of data types and operators that manipulate data. It also
provides mechanisms for both explicit and implicit conversion between the data types when used with
ASL operators.

Each of the available ASL macros are described below.

EISAID (TextID)

Converts and compresses the 7-character text argument into its corresponding 4-byte numeric
EISA ID encoding (Integer). This can be used when declaring IDs for devices that are EISA IDs.

For (Initialize, Predicate, Update) {TermList}

Converts a format string to a series of string Concatenate operations and stores the result to a
Named Object (Target).

Fprintf (Target, FormatString, FormatArgs)

Implements a standard For() loop by converting the For() arguments and TermList into an AML
While loop.

Printf (FormatString, FormatArgs)

Converts a format string to a series of string Concatenate operations and automatically stores the
result to the Debug Object.

ResourceTemplate ()

Used to supply Plug and Play resource descriptor information in human readable form, which is
then translated into the appropriate binary Plug and Play resource descriptor encodings in a
UEFI Forum, Inc. January 2019 Page 920

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Resource Template Buffer object. For more information about resource descriptor encodings,
see Section 6.4, "Resource Data Types for ACPI."

ToPLD (PLDKeywordList)

Converts a PLD (Physical Location of Device) Keyword List into a _PLD Buffer object.

ToUUID (AsciiString)

Converts an ASCII UUID or GUID string to an encoded 128-bit Buffer object.

Unicode (StringData)

Converts a standard ASCII string to a Unicode string returned in a Buffer object.

19.3.5 ASL Data Types

ASL provides a wide variety of data types and operators that manipulate data. It also provides
mechanisms for both explicit and implicit conversion between the data types when used with ASL
operators.

The table below describes each of the available data types.

Table 19-417 Summary of ASL Data Types

ASL Data Type Description

[Uninitialized] No assigned type or value. This is the type of all control method LocalX variables and
unused ArgX variables at the beginning of method execution, as well as all uninitialized
Package elements. Uninitialized objects must be initialized (via Store or CopyObject)
before they may be used as source operands in ASL expressions.

Buffer An array of bytes. Uninitialized elements are zero by default.

Buffer Field Portion of a buffer created using CreateBitField, CreateByteField, CreateWordField,
CreateQWordField, CreateField, or returned by the Index operator.

DDB Handle Definition block handle returned by the Load operator

Debug Object Debug output object. Formats an object and prints it to the system debug port. Has no
effect if debugging is not active.

Device Device or bus object

Event Event synchronization object

Field Unit (within an
Operation Region)

Portion of an address space, bit-aligned and of one-bit granularity. Created using Field,
BankField, or IndexField.

Integer An n-bit little-endian unsigned integer. In ACPI 1.0 this was 32 bits. In ACPI 2.0 and
later, this is 64 bits. The Integer (DWORD) designation indicates that only the lower 32
bits have meaning and the upper 32 bits of 64-bit integers must be zero (masking of
upper bits is not required).

Integer Constant Created by the ASL terms “Zero”, “One”, “Ones”, and “Revision”.

Method Control Method (Executable AML function)

Mutex Mutex synchronization object
UEFI Forum, Inc. January 2019 Page 921

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Note: (Compatibility Note) The ability to store and manipulate object references was first introduced in
ACPI 2.0. In ACPI 1.0 references could not be stored in variables, passed as parameters or returned
from functions.

19.3.5.1 Data Type Conversion Overview

ASL provides two mechanisms to convert objects from one data type to another data type at run-time
(during execution of the AML interpreter). The first mechanism, Explicit Data Type Conversion, allows
the use of explicit ASL operators to convert an object to a different data type. The second mechanism,
Implicit Data Type Conversion, is invoked by the AML interpreter when it is necessary to convert a data
object to an expected data type before it is used or stored.

The following general rules apply to data type conversions:

• Input parameters are always subject to implicit data type conversion (also known as implicit
source operand conversion) whenever the operand type does not match the expected input
type.

• Output (target) parameters for all operators except the explicit data conversion operators are
subject to implicit data type conversion (also known as implicit result object conversion)
whenever the target is an existing named object or named field that is of a different type than
the object to be stored.

• Output parameters for the explicit data conversion operators, as well as output parameters
that refer to a method local or argument (LocalX or ArgX) are not subject to implicit type
conversion.

Both of these mechanisms (explicit and implicit conversion) are described in detail in the sections that
follow.

19.3.5.2 Explicit Data Type Conversions

The following ASL operators are provided to explicitly convert an object from one data type to another:

ToBuffer

Convert an Integer, String, or Buffer to an object of type Buffer

Object Reference Reference to an object created using the RefOf, Index, or CondRefOf operators

Operation Region Operation Region (A region within an Address Space)

Package Collection of ASL objects with a fixed number of elements (up to 255).

Power Resource Power Resource description object

Processor Processor description object

RawDataBuffer An array of bytes. Uninitialized elements are zero by default. RawDataBuffer does not
contain any AML encoding bytes, only the raw bytes.

String Null-terminated ASCII string.

Thermal Zone Thermal Zone description object

ASL Data Type Description
UEFI Forum, Inc. January 2019 Page 922

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
ToDecimalString

Convert an Integer, String, or Buffer to an object of type String. The string contains the ASCII
representation of the decimal value of the source operand.

ToHexString

Convert an Integer, String, or Buffer to an object of type String. The string contains the ASCII
representation of the hexadecimal value of the source operand.

ToInteger

Convert an Integer, String, or Buffer to an object of type Integer.

ToString

Copy directly and convert a Buffer to an object of type String.

The following ASL operator is provided to copy and transfer objects with an explicit result conversion of
the type of the target to match the type of the source object:

CopyObject

Explicitly store a copy of the operand object to the target name. No implicit type conversion is
performed. (This operator is used to avoid the implicit conversion inherent in the ASL Store
operator.)

19.3.5.3 Implicit Data Type Conversions

Automatic or Implicit type conversions can take place at two different times during the execution of an
ASL operator. First, it may be necessary to convert one or more of the source operands to the data
type(s) expected by the ASL operator. Second, the result of the operation may require conversion before
it is stored into the destination. (Many of the ASL operators can store their result optionally into an object
specified by the last parameter. In these operators, if the destination is specified, the action is exactly as
if a Store operator had been used to place the result in the destination.)

Such data conversions are performed by an AML interpreter during execution of AML code and are
known collectively as Implicit Operand Conversions. As described briefly above, there are two different
types of implicit operand conversion:

1. Conversion of a source operand from a mismatched data type to the correct data type required
by an ASL operator, called Implicit Source Conversion. This conversion occurs when a source
operand must be converted to the operand type expected by the operator. Any or all of the
source operands may be converted in this manner before the execution of the ASL operator
can proceed.

2. Conversion of the result of an operation to the existing type of a target operand before it is
stored into the target operand, called Implicit Result Conversion. This conversion occurs when
the target is a fixed type such as a named object or a field. When storing to a method Local or
Arg, no conversion is performed or required because these data types are of variable type (the
store simply overwrites any existing object and the existing type).

The following ASL operator is provided to copy and transfer objects with an implicit result conversion to
the existing type of the target object:
UEFI Forum, Inc. January 2019 Page 923

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Store

Store a copy of the operand object to the target name. Implicit result conversion is performed if
the target name is of a fixed data type (see above). However, Stores to method locals and
arguments do not perform implicit conversion and are therefore the same as using CopyObject.

19.3.5.4 Implicit Source Operand Conversion

During the execution of an ASL operator, each source operand is processed by the AML interpreter as fol-
lows:

• If the operand is of the type expected by the operator, no conversion is necessary.
• If the operand type is incorrect, attempt to convert it to the proper type.
• For the Concatenate operator and logical operators (LEqual, LGreater, LGreaterEqual, LLess,

LLessEqual, and LNotEqual), the data type of the first operand dictates the required type of the
second operand, and for Concatenate only, the type of the result object. (The second operator
is implicitly converted, if necessary, to match the type of the first operand.)

• If conversion is impossible, abort the running control method and issue a fatal error.

An implicit source conversion will be attempted anytime a source operand contains a data type that is
different that the type expected by the operator. For example:

Store (“5678”, Local1)
Add (0x1234, Local1, BUF1)

In the Add statement above, Local1 contains a String object and must undergo conversion to an Integer
object before the Add operation can proceed.

In some cases, the operator may take more than one type of operand (such as Integer and String). In this
case, depending on the type of the operand, the highest priority conversion is applied. The table below
describes the source operand conversions available. For example:

Store (Buffer (1) {}, Local0)
Name (ABCD, Buffer (10) {1, 2, 3, 4, 5, 6, 7, 8, 9, 0})
CreateDWordField (ABCD, 2, XYZ)
Name (MNOP, ”1234”)
Concatenate (XYZ, MNOP, Local0)

The Concatenate operator can take an Integer, Buffer or String for its first two parameters and the type
of the first parameter determines how the second parameter will be converted. In this example, the first
parameter is of type Buffer Field (from the CreateDWordField operator). What should it be converted to:
Integer, Buffer or String? According to Table 19-419, the highest priority conversion is to Integer.
Therefore, both of the following objects will be converted to Integers:

XYZ (0x05040302)
MNOP (0x31, 0x32, 0x33, 0x34)

And will then be joined together and the resulting type and value will be:
UEFI Forum, Inc. January 2019 Page 924

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Buffer (0x02, 0x03, 0x04, 0x05, 0x31, 0x32, 0x33, 0x34)

19.3.5.5 Implicit Result Object Conversion

For all ASL operators that generate and store a result value (including the Store operator), the result
object is processed and stored by the AML interpreter as follows:

• If the ASL operator is one of the explicit conversion operators (ToString, ToInteger, etc., and the
CopyObject operator), no conversion is performed. (In other words, the result object is stored
directly to the target and completely overwrites any existing object already stored at the
target.)

• If the target is a method local or argument (LocalX or ArgX), no conversion is performed and
the result is stored directly to the target.

• If the target is a fixed type such as a named object or field object, an attempt is made to
convert the source to the existing target type before storing.

• If conversion is impossible, abort the running control method and issue a fatal error.

An implicit result conversion can occur anytime the result of an operator is stored into an object that is of
a fixed type. For example:

Name (BUF1, Buffer (10))
Add (0x1234, 0x789A, BUF1)

Since BUF1 is a named object of fixed type Buffer, the Integer result of the Add operation must be
converted to a Buffer before it is stored into BUF1.

19.3.5.6 Data Types and Type Conversions

The following table lists the available ASL data types and the available data type conversions (if any) for
each. The entry for each data type is fully cross-referenced, showing both the types to which the object
may be converted as well as all other types that may be converted to the data type.

The allowable conversions apply to both explicit and implicit conversions.

Table 19-418 Data Types and Type Conversions

ASL Data Type Can be implicitly or explicitly converted
to these Data Types: (In priority order)

Can be implicitly or explicitly
converted from these Data Types:

[Uninitialized] None. Causes a fatal error when used as
a source operand in any ASL statement.

Integer, String, Buffer, Package, DDB
Handle, Object Reference

Buffer Integer, String, Debug Object Integer, String

Buffer Field Integer, Buffer, String, Debug Object Integer, Buffer, String

DDB Handle Integer, Debug Object Integer

Debug Object None. Causes a fatal error when used as
a source operand in any ASL statement.

Integer, String, Buffer, Package, Field
Unit, Buffer Field, DDB Handle

Device None None
UEFI Forum, Inc. January 2019 Page 925

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.3.5.7 Data Type Conversion Rules

The following table presents the detailed data conversion rules for each of the allowable data type
conversions. These conversion rules are implemented by the AML Interpreter and apply to all conversion
types — explicit conversions, implicit source conversions, and implicit result conversions.

Event None None

Field Unit (within an
Operation Region)

Integer, Buffer, String, Debug Object Integer, Buffer, String

Integer Buffer, Buffer Field, DDB Handle, Field
Unit, String, Debug Object

Buffer, String

Integer Constant Integer, Debug Object None. Also, storing any object to a
constant is a no-op, not an error.

Method None None

Mutex None None

Object Reference None None

Operation Region None None

Package Debug Object None

String Integer, Buffer, Debug Object Integer, Buffer

Power Resource None None

Processor None None

RawDataBuffer None None

Thermal Zone None None
UEFI Forum, Inc. January 2019 Page 926

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Table 19-419 Object Conversion Rules

To convert
from an object
of this Data
Type

To an object of
this Data Type This action is performed by the AML Interpreter:

Buffer Buffer Field The contents of the buffer are copied to the Buffer Field. If the buffer is
smaller than the size of the buffer field, it is zero extended. If the buffer is
larger than the size of the buffer field, the upper bits are truncated.

Compatibility Note: This conversion was first introduced in ACPI 2.0. The
behavior in ACPI 1.0 was undefined.

Debug Object Each buffer byte is displayed as a hexadecimal integer, delimited by spaces
and/or commas.

Field Unit The entire contents of the buffer are copied to the Field Unit. If the buffer is
larger (in bits) than the size of the Field Unit, it is broken into pieces and
completely written to the Field Unit, lower chunks first. If the buffer (or the
last piece of the buffer, if broken up) is smaller than the size of the Field Unit,
it is zero extended before being written.

Integer If no integer object exists, a new integer is created. The contents of the buffer
are copied to the Integer, starting with the least-significant bit and continuing
until the buffer has been completely copied — up to the maximum number of
bits in an Integer. The size of an Integer is indicated by the Definition Block
table header’s Revision field. A Revision field value less than 2 indicates that
the size of an Integer is 32 bits. A value greater than or equal to 2 signifies that
the size of an Integer is 64 bits. If the buffer is smaller than the size of an
integer, it is zero extended. If the buffer is larger than the size of an integer, it
is truncated. Conversion of a zero-length buffer to an integer is not allowed.

String If no string object exists, a new string is created. If the string already exists, it is
completely overwritten and truncated or extended to accommodate the
converted buffer exactly.The entire contents of the buffer are converted to a
string of two-character hexadecimal numbers, each separated by a space. A
zero-length buffer will be converted to a null (zero-length) string.

Buffer Field [See the
Integer and
Buffer Rules]

If the Buffer Field is smaller than or equal to the size of an Integer (in bits), it
will be treated as an Integer. Otherwise, it will be treated as a Buffer. The size
of an Integer is indicated by the Definition Block table header’s Revision field.
A Revision field value less than 2 indicates that the size of an Integer is 32 bits.
A value greater than or equal to 2 signifies that the size of an Integer is 64 bits.
(See the conversion rules for the Integer and Buffer data types.)

DDB Handle [See the
Integer Rule]

The object is treated as an Integer (See conversion rules for the Integer data
type.)

Field Unit [See the
Integer and
Buffer Rules]

If the Field Unit is smaller than or equal to the size of an Integer (in bits), it will
be treated as an Integer. If the Field Unit is larger than the size of an Integer, it
will be treated as a Buffer. The size of an Integer is indicated by the Definition
Block table header’s Revision field. A Revision field value less than 2 indicates
that the size of an Integer is 32 bits. A value greater than or equal to 2 signifies
that the size of an Integer is 64 bits. (See the conversion rules for the Integer
and Buffer data types.)
UEFI Forum, Inc. January 2019 Page 927

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Integer Buffer If no buffer object exists, a new buffer object is created based on the size of
the integer (4 bytes for 32-bit integers and 8 bytes for 64-bit integers). If a
buffer object already exists, the Integer overwrites the entire Buffer object. If
the integer requires more bits than the size of the Buffer, then the integer is
truncated before being copied to the Buffer. If the integer contains fewer bits
than the size of the buffer, the Integer is zero-extended to fill the entire
buffer.

Buffer Field The Integer overwrites the entire Buffer Field. If the integer is smaller than the
size of the buffer field, it is zero-extended. If the integer is larger than the size
of the buffer field, the upper bits are truncated.

Compatibility Note: This conversion was first introduced in ACPI 2.0. The
behavior in ACPI 1.0 was undefined.

Debug Object The integer is displayed as a hexadecimal value.

Field Unit The Integer overwrites the entire Field Unit. If the integer is smaller than the
size of the buffer field, it is zero-extended. If the integer is larger than the size
of the buffer field, the upper bits are truncated.

String If no string object exists, a new string object is created based on the size of the
integer (8 characters for 32-bit integers and 16 characters for 64-bit integers).
If the string already exists, it is completely overwritten and truncated or
extended to accommodate the converted integer exactly. In either case, the
entire integer is converted to a string of hexadecimal ASCII characters.

Package Package If no package object exists, a new package object is created. If the package
already exists, it is completely overwritten and truncated or extended to
accommodate the source package exactly. Any and all existing valid (non-null)
package elements of the target package are deleted, and the entire contents
of the source package are copied into the target package.

Debug Object Each element of the package is displayed based on its type.

To convert
from an object
of this Data
Type

To an object of
this Data Type This action is performed by the AML Interpreter:
UEFI Forum, Inc. January 2019 Page 928

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.3.5.8 Rules for Storing and Copying Objects

The table below lists the actions performed when storing objects to different types of named targets. ASL
provides the following types of “store” operations:

• The Store operator is used to explicitly store an object to a location, with implicit conversion
support of the source object.

• Many of the ASL operators can store their result optionally into an object specified by the last
parameter. In these operators, if the destination is specified, the action is exactly as if a Store
operator had been used to place the result in the destination.

• The CopyObject operator is used to explicitly store a copy of an object to a location, with no
implicit conversion support.

String Buffer If no buffer object exists, a new buffer object is created. If a buffer object
already exists, it is completely overwritten. If the string is longer than the
buffer, the string is truncated before copying. If the string is shorter than the
buffer, the remaining buffer bytes are set to zero. In either case, the string is
treated as a buffer, with each ASCII string character copied to one buffer byte,
including the null terminator. A null (zero-length) string will be converted to a
zero-length buffer.

Buffer Field The string is treated as a buffer. If this buffer is smaller than the size of the
buffer field, it is zero extended. If the buffer is larger than the size of the buffer
field, the upper bits are truncated.

Compatibility Note: This conversion was first introduced in ACPI 2.0. The
behavior in ACPI 1.0 was undefined.

Debug Object Each string character is displayed as an ASCII character.

Field Unit Each character of the string is written, starting with the first, to the Field Unit.
If the Field Unit is less than eight bits, then the upper bits of each character are
lost. If the Field Unit is greater than eight bits, then the additional bits are
zeroed.

Integer If no integer object exists, a new integer is created. The integer is initialized to
the value zero and the ASCII string is interpreted as a hexadecimal constant.
Each string character is interpreted as a hexadecimal value (‘0’-‘9’, ‘A’-‘F’, ‘a’-
‘f’), starting with the first character as the most significant digit, and ending
with the first non-hexadecimal character, end-of-string, or when the size of an
integer is reached (8 characters for 32-bit integers and 16 characters for 64-bit
integers). Note: the first non-hex character terminates the conversion without
error, and a “0x” prefix is not allowed. Conversion of a null (zero-length) string
to an integer is not allowed.

To convert
from an object
of this Data
Type

To an object of
this Data Type This action is performed by the AML Interpreter:
UEFI Forum, Inc. January 2019 Page 929

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Table 19-420 Object Storing and Copying Rules

When Storing an
object of any data
type to this type of
Target location

This action is performed by the Store
operator or any ASL operator with a
Target operand:

This action is performed by the
CopyObject operator:

Method ArgX
variable

The object is copied to the destination with no conversion applied, with one
exception. If the ArgX contains an Object Reference, an automatic de-reference
occurs and the object is copied to the target of the Object Reference instead of
overwriting the contents of ArgX

Method LocalX
variable

The object is copied to the destination with no conversion applied. Even if LocalX
contains an Object Reference, it is overwritten.

Field Unit or Buffer
Field

The object is copied to the destination
after implicit result conversion is
applied

Fields permanently retain their type and
cannot be changed. Therefore,
CopyObject can only be used to copy an
object of type Integer or Buffer to fields.

 Named data object The object is copied to the destination
after implicit result conversion is
applied to match the existing type of
the named location

The object and type are copied to the
named location.

19.3.5.9 Rules for Reading and Writing Objects

In the descriptions below, read operations always return the actual object, not a copy of the object in
order that constructs of the form:

 Add (Local1, Local2, Local3)

do not create unnecessary copies of Local1 or Local2. Also, this behavior enables the call-by-reference
semantics of control method invocation.

19.3.5.9.1 ArgX Objects

1. Read from ArgX parameters

• ObjectReference - Automatic dereference, return the target of the reference. Use of
DeRefOf returns the same.

• Buffer – Return the Buffer. Can create an Index, Field, or Reference to the buffer.

• Package – Return the Package. Can create an Index or Reference to the package.

• All other object types – Return the object.

Example method invocation for the table below:

 MTHD (RefOf (Obj), Buf, Pkg, Obj)
UEFI Forum, Inc. January 2019 Page 930

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Table 19-421 Reading from ArgX Objects

Parameter MTHD ArgX Type Read operation on ArgX Result of read

RefOf (Obj), Reference to object Obj Store (Arg0, …)

CopyObject (Arg0, …)

DeRefOf (Arg0)

Obj

Obj

Obj

Buf, Buffer Store (Arg1, …)

CopyObject (Arg1, …)

Index (Arg1, …)

Field (Arg1, …)

Buf

Buf

Index (Buf)

Field (Buf)

Pkg Package Store (Arg2, …)

CopyObject (Arg2, …)

Index (Arg2, …)

Pkg

Pkg

Index (Pkg)

Obj All other object types Store (Arg3, …)

CopyObject (Arg3, …)

Obj

Obj

2. Store to ArgX parameters

• ObjectReference objects - Automatic dereference, copy the object and overwrite the final
target.

• All other object types- Copy the object and overwrite the ArgX variable. (Direct writes to
buffer or package ArgX parameters will also simply overwrite ArgX)

Table 19-422 Writing to ArgX Objects

Current type of ArgX
Object to be
written

Write operation on ArgX Result of write (in ArgX)

RefOf (OldObj) Obj

(Any type)

Store (…, ArgX)

CopyObject (…, ArgX)

RefOf (copy of Obj)

RefOf (copy of Obj)

All other object types Obj

(Any type)

Store (…, ArgX)

CopyObject (…, ArgX)

Copy of Obj

Copy of Obj

Note: RefOf (ArgX) returns a reference to ArgX.

19.3.5.9.2 LocalX Objects

1. Read from LocalX variables

• ObjectReference - If performing a DeRefOf return the target of the reference. Otherwise,
return the reference.

• All other object types - Return a the object
UEFI Forum, Inc. January 2019 Page 931

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Table 19-423 Reading from LocalX Objects

Current LocalX Type Read operation on LocalX Result of read

RefOf (Obj) Store (LocalX, …)

CopyObject (LocalX, …)

DeRefOf (LocalX)

RefOf (Obj)

RefOf (Obj)

Obj

Obj (All other types) Store (LocalX, …)

CopyObject (LocalX, …)

Obj

Obj

2. Store to LocalX variables

• All object types - Delete any existing object in LocalX first, then store a copy of the object.

Table 19-424 Writing to LocalX Objects

Current LocalX Type
Object to be
written

Write operation on LocalX
Result of write (in
LocalX)

All object types Obj

(Any type)

Store (…, LocalX)

CopyObject (…, LocalX)

Copy of Obj

Copy of Obj

19.3.5.9.3 Named Objects

1. Read from Named object

• ObjectReference - If performing a DeRefOf return the target of the reference. Otherwise,
return the reference.

• All other object types - Return the object

Table 19-425 Reading from Named Objects

Current NAME Type Read operation on NAME Result of read

RefOf (Obj) Store (NAME, …)

CopyObject (NAME, …)

DeRefOf (NAME)

RefOf (Obj)

RefOf (Obj)

Obj

Obj (All other types) Store (NAME, …)

CopyObject (NAME, …)

Obj

Obj

2. Store to Named object

• All object types - Delete any existing object in NAME first, then store a copy of the object.
The Store operator will perform an implicit conversion to the existing type in NAME.
CopyObject does not perform an implicit store.
UEFI Forum, Inc. January 2019 Page 932

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Table 19-426 Writing to Named Objects

Current NAME
Type

Object to be
written

Write operation on NAME Result of write (in NAME)

Any

(Any Type)

Obj

(Any type)

Store (…, NAME)

CopyObject (…, NAME)

Copy of Obj (converted to match existing
type of NAME)

Copy of Obj (No conversion)

19.4 ASL Operator Summary

Operator Name Location Description

AccessAs page 942 Change Field Access

Acquire page 943 Acquire a mutex

Add page 943 Integer Add

Alias page 943 Define a name alias

And page 944 Integer Bitwise And

ArgX page 944 Method argument data objects

BankField page 944 Declare fields in a banked configuration object

Break page 946 Continue following the innermost enclosing While

BreakPoint page 946 Used for debugging, stops execution in the debugger

Buffer page 946 Declare Buffer object

Case page 948 Expression for conditional execution

Concatenate page 948 Concatenate two strings, integers or buffers

ConcatenateResTemplate page 950 Concatenate two resource templates

CondRefOf page 950 Conditional reference to an object

Connection page 951 Declare Field Connection Attributes

Continue page 952 Continue innermost enclosing While loop

CopyObject page 952 Copy and existing object

CreateBitField page 952 Declare a bit field object of a buffer object

CreateByteField page 952 Declare a byte field object of a buffer object

CreateDWordField page 953 Declare a DWord field object of a buffer object

CreateField page 953 Declare an arbitrary length bit field of a buffer object

CreateQWordField page 953 Declare a QWord field object of a buffer object

CreateWordField page 954 Declare a Word field object of a buffer object

DataTableRegion page 954 Declare a Data Table Region

Debug page 954 Debugger output

Decrement page 955 Decrement an Integer
UEFI Forum, Inc. January 2019 Page 933

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Default page 955 Default execution path in Switch()

DefinitionBlock page 956 Declare a Definition Block

DerefOf page 956 Dereference an object reference

Device page 957 Declare a bus/device object

Divide page 958 Integer Divide

DMA page 958 DMA Resource Descriptor macro

DWordIO page 959 DWord IO Resource Descriptor macro

DWordMemory page 961 DWord Memory Resource Descriptor macro

DWordSpace page 963 DWord Space Resource Descriptor macro

EisaId page 964 EISA ID String to Integer conversion macro

Else page 964 Alternate conditional execution

ElseIf page 965 Conditional execution

EndDependentFn page 966 End Dependent Function

Event page 966 Resource Descriptor macro

ExtendedIO page 967 Declare an event synchronization object

ExtendedMemory page 968 Extended IO Resource Descriptor macro

ExtendedSpace page 970 Extended Space Resource Descriptor macro

External page 971 Declare external objects

Fatal page 972 Fatal error check

Field page 972 Declare fields of an operation region object

FindSetLeftBit page 975 Index of first least significant bit set

FindSetRightBit page 975 Index of first most significant bit set

FixedDMA page 980 Fixed DMA Resource Descriptor macro

FixedIO page 976 Fixed I/O Resource Descriptor macro

Fprintf page 978 Stores formatted string to a Named Object

FromBCD page 978 Convert from BCD to numeric

Function page 978 Declare control method

GpioInt page 980 GPIO Interrupt Connection Resource Descriptor macro

GpioIo page 981 GPIO I0 Connection Resource Descriptor macro

I2CSerialBusV2 page 982 I2C Serialbus Connection Resource Descriptor (Version 2) macro

If page 983 Conditional execution

Include page 983 Include another ASL file

Increment page 984 Increment a Integer

Operator Name Location Description
UEFI Forum, Inc. January 2019 Page 934

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Index page 986 Indexed Reference to member object

IndexField page 987 Declare Index/Data Fields

Interrupt page 987 Interrupt Resource Descriptor macro

IO page 989 IO Resource Descriptor macro

IRQ page 990 Interrupt Resource Descriptor macro

IRQNoFlags page 990 Short Interrupt Resource Descriptor macro

LAnd page 990 Logical And

LEqual page 991 Logical Equal

LGreater page 991 Logical Greater

LGreaterEqual page 991 Logical Not less

LLess page 992 Logical Less

LLessEqual page 992 Logical Not greater

LNot page 993 Logical Not

LNotEqual page 993 Logical Not equal

Load page 993 Load differentiating definition block

LoadTable page 994 Load Table from RSDT/XSDT

LocalX page 995 Method local data objects

LOr page 995 Logical Or

Match page 995 Search for match in package array

Memory24 page 996 Memory Resource Descriptor macro

Memory32 page 997 Memory Resource Descriptor macro

Memory32Fixed page 998 Memory Resource Descriptor macro

Method page 999 Declare a control method

Mid page 1000 Return a portion of buffer or string

Mod page 1001 Integer Modulo

Multiply page 1001 Integer Multiply

Mutex page 1001 Declare a mutex synchronization object

Name page 1002 Declare a Named object

NAnd page 1003 Integer Bitwise Nand

NoOp page 1003 No operation

NOr page 1003 Integer Bitwise Nor

Not page 1003 Integer Bitwise Not

Notify page 1004 Notify Object of event

Operator Name Location Description
UEFI Forum, Inc. January 2019 Page 935

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
ObjectType page 1004 Type of object

Offset page 1004 Set Field Offset within operation range

One page 1005 Constant One Object (1)

Ones page 1005 Constant Ones Object (-1)

OperationRegion page 1006 Declare an operational region

Or page 1007 Integer Bitwise Or

Package page 1007 Declare a package object

PowerResource page 1023 Declare a power resource object

Printf page 1023 Stores formatted string to Debug Object

Processor page 1024 Declare a processor package

QWordIO page 1025 QWord IO Resource Descriptor macro

QWordMemory page 1027 QWord Memory Resource Descriptor macro

QWordSpace page 1028 Qword Space Resource Descriptor macro

RawDataBuffer page 1030 Declare a RawDataBuffer

RefOf page 1030 Create Reference to an object

Register page 1031 Generic register Resource Descriptor macro

Release page 1032 Release a synchronization object

Reset page 1032 Reset a synchronization object

ResourceTemplate page 1033 Resource to buffer conversion macro

Return page 1033 Return from method execution

Revision page 1032 Constant revision object

Scope page 1033 Open named scope

ShiftLeft page 1035 Integer shift value left

ShiftRight page 1035 Integer shift value right

Signal page 1035 Signal a synchronization object

SizeOf page 1036 Get the size of a buffer, string, or package

Sleep page 1036 Sleep n milliseconds (yields the processor)

SPISerialbusV2 page 1036 SPI Serialbus Connection Resource Descritor (Version 2) macro

Stall page 1037 Delay n microseconds (does not yield the processor)

StartDependentFn page 1038 Start Dependent Function Resource Descriptor macro

StartDependentFnNoPri page 1038 Start Dependent Function Resource Descriptor macro

Store page 1039 Store object Integer

Subtract page 1039 Subtract

Operator Name Location Description
UEFI Forum, Inc. January 2019 Page 936

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.5 ASL Operator Summary by Type

Switch page 1040 Select code to execute based on expression value

ThermalZone page 1042 Declare a thermal zone package.

Timer page 1042 Get 64-bit timer value

ToBCD page 1043 Convert Integer to BCD

ToBuffer page 1043 Convert data type to buffer

ToDecimalString page 1044 Convert data type to decimal string

ToHexString page 1044 Convert data type to hexadecimal string

ToInteger page 1043 Convert data type to integer

ToPLD page 1045 Converts a PLD Keyword List into a _PLD buffer

ToString page 1047 Copy ASCII string from buffer

ToUUID page 1047 Convert ASCII string to UUID

Unicode page 1050 String to Unicode conversion macro

UARTSerialBusV2 page 1048 UART SerialBus Connection Resource Descriptor (version2) macro

VendorLong page 1050 Vendor Resource Descriptor

VendorShort page 1051 Vendor Resource Descriptor

Wait page 1051 Wait on an Event

While page 1052 Conditional loop

WordBusNumber page 1052 Word Bus number Resource Descriptor macro

WordIO page 1053 Word IO Resource Descriptor macro

WordSpace page 1055 Word Space Resource Descriptor macro

 Xor page 1057 Integer Bitwise Xor

Zero page 1057 Constant Zero object 0

// ASL compiler controls

External

Include

page 971
page 983

Declare external objects

Include another ASL file

// ACPI table management

DefinitionBlock page 956 Declare a Definition Block

Load page 994 Load definition block

LoadTable page 995 Load Table from RSDT/XSDT

// Miscellaneous named object creation

Operator Name Location Description
UEFI Forum, Inc. January 2019 Page 937

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Alias

Buffer

Device

Function

Method

Name

Package

PowerResource

Processor

RawDataBuffer

Scope

ThermalZone

page 944

page 946

page 957

page 978p
age 999pa
ge 1002

page 1007

page 1023
page 1024

page 1030

page 1033
page 1042

Define a name alias

Declare Buffer object

Declare a bus/device object

Declare a control method

Declare a control method

Declare a Named object

Declare a package object

Declare a power resource object

Declare a processor package

Declare a RawDataBuffer

Open named scope

Declare a thermal zone package.

// Operation Regions and Fields

AccessAs

BankField

Connection

DataTableRegion

Field

IndexField

Offset

OperationRegion

page 942

page 945

page 951

page 954p
age 972pa
ge 986

page 1004

page 1006

Change Field Access

Declare fields in a banked configuration object

Declare Field Connection Attributes

Declare a Data Table Region

Declare fields of an operation region object

Declare Index/Data Fields

Set Field offset within operation region

Declare an operational region

// Buffer Fields

CreateBitField
CreateByteField
CreateDWordField
CreateField
CreateQWordField
CreateWordField

page 952

page 952p
age 953
page 953p
age 953pa
ge 954

Declare a bit field object of a buffer object

Declare a byte field object of a buffer object

Declare a DWord field object of a buffer object

Declare an arbitrary length bit field of a buffer object

Declare a QWord field object of a buffer object

Declare a Word field object of a buffer object

// Synchronization

Acquire

Event

Mutex

Notify

Release

Reset

Signal

Wait

page 943p
age 966
page 1001
page 1004
page 1032
page 1032
page 1035
page 1051

Acquire a mutex

Declare an event synchronization object

Declare a mutex synchronization object

Notify Object of event

Release a synchronization object

Reset a synchronization object

Signal a synchronization object

Wait on an Event

// Object references
UEFI Forum, Inc. January 2019 Page 938

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
CondRefOf

DerefOf

RefOf

page 950
page 956p
age 1030

Conditional reference to an object

Dereference an object reference

Create Reference to an ob ect

// Integer arithmetic

Add

And

Decrement

Divide

FindSetLeftBit

FindSetRightBit

Increment

Mod

Multiply

NAnd

NOr

Not

Or

ShiftLeft

ShiftRight

Subtract

 Xor

page 943
page 944
page 955
page 958
page 975
page 975
page 984
page 1001
page 1001
page 1003
page 1003
page 1003
page 1007
page 1035
page 1035
page 1039
page 1057

Integer Add

Integer Bitwise And

Decrement an Integer

Integer Divide

Index of first least significant bit set

Index of first most significant bit set

Increment a Integer

Integer Modulo

Integer Multiply

Integer Bitwise Nand

Integer Bitwise Nor

Integer Bitwise Not

Integer Bitwise Or

Integer shift value left

Integer shift value right I

Integer Subtract

Integer Bitwise Xor

// Logical operators

LAnd

LEqual

LGreater

LGreaterEqual

LLess

LLessEqual

LNot

LNotEqual

LOr

page 990
page 991
page 991
page 991
page 992
page 992
page 993
page 993

page 995

Logical And

Logical Equal

Logical Greater

Logical Not less

Logical Less

Logical Not greater

Logical Not

Logical Not equal

Logical Or

// Method execution control
UEFI Forum, Inc. January 2019 Page 939

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Break

BreakPoint

Case

Continue

Default

Else

ElseIf

Fatal

If

NoOp

Return

Sleep

Stall

Switch

While

page 946
page 946
page 948
page 952
page 955
page 964
page 965
page 972

page 983
page 1003
page 1033
page 1036
page 1037
page 1040
page 1052

Continue following the innermost enclosingWhile

Used for debugging, stops execution in the debugger

Expression for conditional execution

Continue innermost enclosing While loop

Default execution path in Switch()

Alternate conditional execution

Conditional execution

Fatal error check

Conditional execution

No operation

Return from method execution

Sleep n milliseconds (yields the processor)

Delay in microseconds (does not yield the processor)

Select code to execute based on expression value

Conditional loop

// Data type conversion and manipulation

Concatenate

CopyObject

Debug

EisaId

Fprintf

FromBCD

page 948p
age 952pa
ge 954pag
e 964

page 978

page 978

Concatenate two strings,integers or buffers

Copy and existing object

Debugger output

EISA ID String to Integer conversion macro

Stores formatted string to a Named Object

Convert from BCD to numeric

Index

Match

Mid

ObjectType

Printf

SizeOf

Store

Timer

page 986p
age 995pa
ge 1000pa
ge 1004

page 1023

page 1036
page 1039

page 1042

Indexed Reference to member object

Search for match in package array

Return a portion of buffer or string

Type of object

Stores formatted string to Debug Object

Get the size of a buffer, string, or package

Store object

Get 64-bit timer value

ToBCD

ToBuffer

ToDecimalString
ToHexString

ToInteger

ToPLD

ToString

ToUUID

Unicode

page 1043
page 1043
page 1044
page 1044
page 1043

page 1045

page 1047
page 1047
page 1050

Convert Integer to BCD

Convert data type to buffer

Convert data type to decimal string

Convert data type to hexadecimal string

Convert data type to integer

Converts a PLD Keyword List into a _PLD buffer

Copy ASCII string from buffer

Convert ASCII string to UUID

String to Unicode conversion macro
UEFI Forum, Inc. January 2019 Page 940

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
// Resource Descriptor macros

ConcatenateResTemplate

DMA

DWordIO

DWordMemory

DWordSpace

EndDependentFn

ExtendedIO

ExtendedMemory
ExtendedSpace

FixedDMA

FixedIO

GpioInt

GpioIO

I2CSerialBusV2

Interrupt

IO

IRQ

IRQNoFlags

Memory24

Memory32

Memory32Fixed

QWordIO

QWordMemory

QWordSpace

Register

ResourceTemplate

SPISerialBusV2

StartDependentFn
StartDependentFnNoPri

UARTSerialBusV2

VendorLong

VendorShort

WordBusNumber

WordIO

WordSpace

page 950
page 958
page 959
page 961
page 963
page 966
page 967
page 968
page 970

page 980

page 976

page 980

page 981

page 982
page 987
page 989
page 990
page 990
page 996
page 997
page 998
page 1025
page 1027
page 1028
page 1031
page 1033

page 1036
page 1038
page 1038

page 1048

page 1050
page 1051
page 1052
page 1053
page 1055

Concatenate two resource templates

DMA Resource Descriptor macro

DWord IO Resource Descriptor macro

DWord Memory Resource Descriptor macro

DWord Space Resource Descriptor macro

End Dependent Function Resource Descriptor macro Extended I/O
Resource Descriptor macro

Extended Memory Resource Descriptor macro

Extended Space Resource Descriptor macro

Fixed DMA resource Descriptor macro

Fixed I/O Resource Descriptor macro

GPIO Interrupt Connection Resource Descriptor macro

GPIO IO Connection Resource Descriptor macro

I2C SerialBus Connection Resource Descriptor (Version 2) macro

Interrupt Resource Descriptor macro

IO Resource Descriptor macro

Interrupt Resource Descriptor macro

Short Interrupt Resource Descriptor macro

Memory Resource Descriptor macro

Memory Resource Descriptor macro

Memory Resource Descriptor macro

QWord IO Resource Descriptor macro

QWord Memory Resource Descriptor macro

Qword Space Resource Descriptor macro

Generic register Resource Descriptor macro

Resource to buffer conversion macro

SPI SerialBus Connection Resource Descriptor (Version 2) macro

Start Dependent Function Resource Descriptor macro

Start Dependent Function Resource Descriptor macro

UART SerialBus Connection Resource Descriptor (Version 2) macro

Vendor Resource Descriptor

Vendor Resource Descriptor

Word Bus number Resource Descriptor macro

Word IO Resource Descriptor macro

Word Space Resource Descriptor macro

// Constants
UEFI Forum, Inc. January 2019 Page 941

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6 ASL Operator Reference

This section describes each of the ASL operators. The syntax for each operator is given, with a description
of each argument and an overall description of the operator behavior. Example ASL code is provided for
the more complex operators.

ASL operators can be categorized as follows:

• Named Object creation
• Method execution control (If, Else, While, etc.)
• Integer math
• Logical operators
• Resource Descriptor macros
• Object conversion
• Utility/Miscellaneous

19.6.1 AccessAs (Change Field Unit Access)

Syntax
AccessAs (AccessType, AccessAttribute)

AccessAs (AccessType, AccessAttribute (AccessLength))

Arguments

AccessType is an AccessTypeKeyword that specifies the type of access desired (ByteAcc, WordAcc, etc.).
AccessAttribute is an optional argument of type AccessAttributeKeyword that specifies additional
protocols to be used, such as AttribQuick, AttribSendReceive, etc. AccessLength is a required argument
for some of the Access Attributes.

Description
The AccessAs operator is used within a FieldList to specify the Access Type, Access Attributes, and Access
Length for the remaining FieldUnits within the list (or until another AccessAs operator is encountered.) It
allows FieldUnits to have different access types within a single Field definition.

Supported AccessTypes:

• AnyAcc
• ByteAcc
• WordAcc
• DwordAcc

One

Ones

Revision

Zero

page 1005
page 1005
page 1032
page 1057

Constant One Object (1)

Constant Ones Object (-1)

Constant revision object

 Constant Zero object (0)

// Control method objects

ArgX

LocalX

page 944

page 995

Method argument data objects

Method local data ob ects
UEFI Forum, Inc. January 2019 Page 942

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
• QWordAcc
• BufferAcc

Supported simple AccessAttributes (with SMBus synonyms):

• AttribQuick (SMBQuick)
• AttribSendReceive (SMBSendReceive)
• AttribByte (SMBByte)
• AttribWord (SMBWord)
• AttribBlock (SMBBlock)
• AttribProcessCall (SMBProcessCall)
• AttribBlockProcessCall (SMBBlockProcessCall)

Access Attributes that require an AccessLength argument:

• AttribBytes (AccessLength)
• AttribRawBytes (AccessLength)
• AttribRawProcessBytes (AccessLength)

19.6.2 Acquire (Acquire a Mutex)

Syntax
Acquire (SyncObject, TimeoutValue) => Boolean

Arguments

SynchObject must be a mutex synchronization object. TimeoutValue is evaluated as an Integer.

Description
Ownership of the Mutex is obtained. If the Mutex is already owned by a different invocation, the current
execution thread is suspended until the owner of the Mutex releases it or until at least TimeoutValue
milliseconds have elapsed. A Mutex can be acquired more than once by the same invocation.

Note: For Mutex objects referenced by a _DLM object, the host OS may also contend for ownership.

This operation returns True if a timeout occurred and the mutex ownership was not acquired. A
TimeoutValue of 0xFFFF (or greater) indicates that there is no timeout and the operation will wait
indefinitely.

19.6.3 Add (Integer Add)

Syntax
Add (Addend1, Addend2, Result) => Integer

Result = Addend1 + Addend2 => Integer

Result += Addend => Integer

Arguments

Addend1 and Addend2 are evaluated as Integers.
UEFI Forum, Inc. January 2019 Page 943

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
The operands are added and the result is optionally stored into Result. Overflow conditions are ignored
and the result of overflows simply loses the most significant bits.

19.6.4 Alias (Declare Name Alias)

Syntax
Alias (SourceObject, AliasObject)

Arguments

SourceObject is any named object. AliasObject is a NameString.

Description
Creates a new object named AliasObject that refers to and acts exactly the same as SourceObject.

AliasObject is created as an alias of SourceObject in the namespace. The SourceObject name must already
exist in the namespace. If the alias is to a name within the same definition block, the SourceObject name
must be logically ahead of this definition in the block.

Example
The following example shows the use of an Alias term:

Alias (\SUS.SET.EVEN, SSE)

19.6.5 And (Integer Bitwise And)

Syntax
And (Source1, Source2, Result) => Integer

Result = Source1 & Source2 => Integer

Result &= Source => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description
A bitwise AND is performed and the result is optionally stored into Result.

19.6.6 Argx (Method Argument Data Objects)

Syntax
Arg0 | Arg1 | Arg2 | Arg3 | Arg4 | Arg5 | Arg6
UEFI Forum, Inc. January 2019 Page 944

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
Up to 7 argument-object references can be passed to a control method. On entry to a control method,
only the argument objects that are passed are usable.

19.6.7 BankField (Declare Bank/Data Field)

Syntax
BankField (RegionName, BankName, BankValue, AccessType, LockRule, UpdateRule) {FieldUnitList}

Arguments

RegionName is evaluated as a Namestring, and is the name of the host Operation Region.

BankName is evaluated as a Namestring, and is the name of the bank selection register.

BankValue is the bank selection ID (Integer) that is written to the BankName register before the
FieldUnitList is accessed.

The AccessType, LockRule, UpdateRule, and FieldUnitList are the same format as the Field operator.

Description
Accessing the contents of a banked field data object will occur automatically through the proper bank
setting, with synchronization occurring on the operation region that contains the BankName data
variable, and on the Global Lock if specified by the LockRule.

This operator creates data field objects. The contents of the created objects are obtained by a reference
to a bank selection register.

This encoding is used to define named data field objects whose data values are fields within a larger
object selected by a bank-selected register.

Example
The following is a block of ASL sample code using BankField:

• Creates a 4-bit bank-selected register in system I/O space.
• Creates overlapping fields in the same system I/O space that are selected via the bank register.

//
// Define a 256-byte operational region in SystemIO space
// and name it GIO0

OperationRegion (GIO0, SystemIO, 0x125, 0x100)

// Create some fields in GIO including a 4-bit bank select register

Field (GIO0, ByteAcc, NoLock, Preserve) {
 GLB1, 1,
 GLB2, 1,
 Offset (1), // Move to offset for byte 1
 BNK1, 4
}

UEFI Forum, Inc. January 2019 Page 945

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
// Create FET0 & FET1 in bank 0 at byte offset 0x30

BankField (GIO0, BNK1, 0, ByteAcc, NoLock, Preserve) {
 Offset (0x30),
 FET0, 1,
 FET1, 1
}

 // Create BLVL & BAC in bank 1 at the same offset

BankField (GIO0, BNK1, 1, ByteAcc, NoLock, Preserve) {
 Offset (0x30),
 BLVL, 7,
 BAC, 1
}

19.6.8 Break (Break from While)

Syntax
Break

Description
Break causes execution to continue immediately following the innermost enclosing While or Switch
scope, in the current Method. If there is no enclosing While or Switch within the current Method, a fatal
error is generated.

Compatibility Note: In ACPI 1.0, the Break operator continued immediately following the innermost
“code package.” Starting in ACPI 2.0, the Break operator was changed to exit the innermost “While” or
“Switch” package. This should have no impact on existing code, since the ACPI 1.0 definition was, in
practice, useless.

19.6.9 BreakPoint (Execution Break Point)

Syntax
BreakPoint

Description
Used for debugging, the Breakpoint opcode stops the execution and enters the AML debugger. In the
non-debug version of the AML interpreter, BreakPoint is equivalent to Noop.

19.6.10 Buffer (Declare Buffer Object)

Syntax
Buffer (BufferSize) {Initializer} => Buffer
UEFI Forum, Inc. January 2019 Page 946

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Arguments

Declares a Buffer of optional size BufferSize and an optional initial value of Initializer. The Initializer is
must be either a ByteList or a String.

Description

The optional BufferSize argument specifies the size of the buffer and an optional initial value of the
buffer is specified via the Initializer. The initial value can be either an ASCII String or a list of byte
values separated by commas. Strings are automatically null terminated with a single zero byte.

The relationship between the BufferSize and the Initializer is summarized by the rules below.

In the typical case, the BufferSize is identical to the length of the Initializer:

 Name (BUF0, Buffer(4) {0x01,0x02,0x03,0x04}) // Length = 4

If the BufferSize is not specified, the length of the Initializer is used as the buffer size:

 Name (BUF1, Buffer() {0,1,2,3,4,5})// Length = 6
 Name (BUF2, Buffer() {"abcde"}) // Length = 6

If the BufferSize is larger than the length of the Initializer, the BufferSize is used as the final buffer
size. At runtime, the AML interpreter will automatically pad zeros to the Initializer to match the
BufferSize:

 Name (BUF3, Buffer(1024) {4,5,6,7,8})// Length = 1024
 Name (BUF4, Buffer(1024) {"abcde"})// Length = 1024

If the BufferSize is smaller than the length of the Initializer, the length of the Initializer is used as the
buffer size:

 Name (BUF5, Buffer(1) {5,4,3,2,1}) // Length = 5

If the Initializer is not specified, the AML interpreter creates a buffer containing all zeros, the length
of which matches the BufferSize:

 Name (BUF6, Buffer(32} {}) // Length = 32

If neither the BufferSize nor the Initializer are specified, a buffer of zero length is created:

 Name (BUF7, Buffer() {}) // Length = 0
UEFI Forum, Inc. January 2019 Page 947

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.11 Case (Expression for Conditional Execution)

Syntax
Case (Value) {TermList}

Arguments

Value specifies an Integer, Buffer, String or Package object. TermList is a sequence of executable ASL
expressions.

Description
Execute code based upon the value of a Switch statement.

If the Case Value is an Integer, Buffer or String, then control passes to the statement that matches the
value of the enclosing Switch (Value). If the Case value is a Package, then control passes if any member of
the package matches the Switch (Value). The Switch CaseTermList can include any number of Case
instances, but no two Case Values (or members of a Value, if Value is a Package) within the same Switch
statement can contain the same value.

Execution of the statement body begins at the start of the TermList and proceeds until the end of the
TermList body or until a Break or Continue operator transfers control out of the body.

19.6.12 Concatenate (Concatenate Data)

Syntax
Concatenate (Source1, Source2, Result) => Buffer or String

Arguments

Source1 and Source2 must each evaluate to any valid ACPI object. For the basic data object types
(Integer, String, or Buffer), the value of the object is used in the concatenation. For all other object types
(see table 19-378 below), a string object is created that contains the name (type) of the object. This string
object is then concatenated according to the rules in Table 19-427.

The data type of Source1 dictates the required type of Source2 and the type of the result object. Source2
is implicitly converted if necessary (and possible) to match the type of Source1.

Description
Source2 is concatenated to Source1 and the result data is optionally stored into Result.

Table 19-427 Concatenate Data Types

Source1 Data Type Source2 Data Type ( Converted Type) Result Data Type

Integer Integer/String/Buffer  Integer Buffer

String Integer/String/Buffer/All other types  String String

Buffer Integer/String/Buffer/All other types  Buffer Buffer

All other types String Integer/String/Buffer/All other types  String String
UEFI Forum, Inc. January 2019 Page 948

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
For the Source1/Integer case, a String or Buffer that cannot be implicitly converted to an Integer will
generate a fatal error.

Table 19-428 Concatenate Object Types

Data Object Type Name Resolved to Value

1 Integer Integer value of the object

2 String String value of the object

3 Buffer Buffer value of the object

Other Object Types Name Resolved to String

0 Uninitialized "[Uninitialized Object]"

4 Package "[Package]"

5 Field Unit "[Field]"

6 Device "[Device]"

7 Event "[Event]"

8 Control Method "[Control Method]"

9 Mutex "[Mutex]"

10 Operation Region "[Operation Region]"

11 Power Resource "[Power Resource]"

12 Processor "[Processor]"

13 Thermal Zone "[Thermal Zone]"

14 Buffer Field "[Buffer Field]"

15 DDB Handle "[DDB Handle]"

16 Debug Object "[Debug Object]"
UEFI Forum, Inc. January 2019 Page 949

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Examples
Device (DEVX) {}
Name (PKGX, Package () {1,2,3,"Battery1"})

Method (MTHX, 2)
{
 Concatenate ("My Object: ", DEVX, Debug) // MyObject: Device

 Printf ("PKGX %o contains %o elements\n", PKGX, SizeOf
(PKGX))

 Printf ("Arg0: %o\n", Arg0)
}

19.6.13 ConcatenateResTemplate (Concatenate Resource Templates)

Syntax
ConcatenateResTemplate (Source1, Source2, Result) => Buffer

Arguments

Source1 and Source2 are evaluated as Resource Template buffers.

Description
The resource descriptors from Source2 are appended to the resource descriptors from Source1. Then a
new end tag and checksum are appended and the result is stored in Result, if specified. If either Source1
or Source2 is exactly 1 byte in length, a run-time error occurs. An empty buffer is treated as a resource
template with only an end tag.

19.6.14 CondRefOf (Create Object Reference Conditionally)

Syntax
CondRefOf (Source, Result) => Boolean

Arguments

Attempts to create a reference to the Source object. The Source of this operation can be any object type
(for example, data package, device object, and so on), and the result data is optionally stored into Result.

Description
On success, the Destination object is set to refer to Source and the execution result of this operation is
the value True. On failure, Destination is unchanged and the execution result of this operation is the
value False. This can be used to reference items in the namespace that may appear dynamically (for
example, from a dynamically loaded definition block).

CondRefOf is equivalent to RefOf except that if the Source object does not exist, it is fatal for RefOf but
not for CondRefOf.
UEFI Forum, Inc. January 2019 Page 950

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.15 Connection (Declare Field Connection Attributes)

Syntax
Connection (ConnectionResourceObj)

Arguments

ConnectionResourceObj is a GPIO or Serial Bus Connection Descriptor depending on the Operation Region
type, or a named object containing the Descriptor

See Section 6.4.3.8.2, "Connection Resource Descriptors" and Section 19.6.46 "Field (Declare Field
Objects)" for more information.

Examples
OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100)// GenericSerialBus device at
command value offset zero

Name (I2C, ResourceTemplate(){
 I2CSerialBusV2(0x5a,,100000,, "_SB.I2C",,,,,RawDataBuffer(){1,6})
})

Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2C) // Specify connection resource
information
 AccessAs(BufferAcc, AttribWord) // Use the GenericSerialBus
 // Read/Write Word protocol
 FLD0, 8, // Virtual register at command value
0.
 FLD1, 8, // Virtual register at command value
1.

Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBusV2(0x5b,,100000,, "_SB.I2C",,,,,RawDataBuffer(){3,9}))
 AccessAs(BufferAcc, AttribBytes (16))
 FLD2, 8 // Virtual register at command value
0.
}

 // Create the GenericSerialBus data buffer
Name(BUFF, Buffer(34){}) // Create GenericSerialBus data
buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

Description
The Connection macro declares the connection attributes for subsequent fields defined within the Field
declaration.
UEFI Forum, Inc. January 2019 Page 951

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.16 Continue (Continue Innermost Enclosing While)

Syntax
Continue

Description
Continue causes execution to continue at the start of the innermost enclosing While scope, in the
currently executing Control Method, at the point where the condition is evaluated. If there is no
enclosing While within the current Method, a fatal error is generated.

19.6.17 CopyObject (Copy and Store Object)

Syntax
CopyObject (Source, Destination) => DataRefObject

Arguments

Converts the contents of the Source to a DataRefObject using the conversion rules in 18.2.5 and then
copies the results without conversion to the object referred to by Destination.

Description
If Destination is already an initialized object of type DataRefObject, the original contents of Destination
are discarded and replaced with Source. Otherwise, a fatal error is generated.

Note: (Compatibility Note) The CopyObject operator was first introduced new in ACPI 2.0.

19.6.18 CreateBitField (Create 1-Bit Buffer Field)

Syntax
CreateBitField (SourceBuffer, BitIndex, BitFieldName)

Arguments

SourceBuffer is evaluated as a buffer. BitIndex is evaluated as an integer. BitFieldName is a NameString.

Description
A new buffer field object named BitFieldName is created for the bit of SourceBuffer at the bit index of
BitIndex. The bit-defined field within SourceBuffer must exist.BitFieldName is created for the bit of
SourceBuffer at the bit index of BitIndex. The bit-defined field within SourceBuffer must exist.

19.6.19 CreateByteField (Create 8-Bit Buffer Field)

Syntax
CreateByteField (SourceBuffer, ByteIndex, ByteFieldName)
UEFI Forum, Inc. January 2019 Page 952

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. ByteFieldName is a
NameString.

Description
A new buffer field object named ByteFieldName is created for the byte of SourceBuffer at the byte index
of ByteIndex. The byte-defined field within SourceBuffer must exist.

19.6.20 CreateDWordField (Create 32-Bit Buffer Field)

Syntax
CreateDWordField (SourceBuffer, ByteIndex, DWordFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. DWordFieldName is a
NameString.

Description
A new buffer field object named DWordFieldName is created for the DWord of SourceBuffer at the byte
index of ByteIndex. The DWord-defined field within SourceBuffer must exist.

19.6.21 CreateField (Create Arbitrary Length Buffer Field)

Syntax
CreateField (SourceBuffer, BitIndex, NumBits, FieldName)

Arguments

SourceBuffer is evaluated as a buffer. BitIndex and NumBits are evaluated as integers. FieldName is a
NameString.

Description
A new buffer field object named FieldName is created for the bits of SourceBuffer at BitIndex for NumBits.
The entire bit range of the defined field within SourceBuffer must exist. If NumBits evaluates to zero, a
fatal exception is generated.

19.6.22 CreateQWordField (Create 64-Bit Buffer Field)

Syntax
CreateQWordField (SourceBuffer, ByteIndex, QWordFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. QWordFieldName is a
NameString.
UEFI Forum, Inc. January 2019 Page 953

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
A new buffer field object named QWordFieldName is created for the QWord of SourceBuffer at the byte
index of ByteIndex. The QWord-defined field within SourceBuffer must exist.

19.6.23 CreateWordField (Create 16-Bit Buffer Field)

Syntax
CreateWordField (SourceBuffer, ByteIndex, WordFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. WordFieldName is a
NameString.

Description
A new bufferfield object named WordFieldName is created for the word of SourceBuffer at the byte index
of ByteIndex. The word-defined field within SourceBuffer must exist.

19.6.24 DataTableRegion (Create Data Table Operation Region)

Syntax
DataTableRegion (RegionName, SignatureString, OemIDString, OemTableIDString)

Arguments

Creates a new region named RegionName. SignatureString, OemIDString and OemTableIDString are
evaluated as strings.

Description
A Data Table Region is a special Operation Region whose RegionSpace is SystemMemory. Any table
referenced by a Data Table Region must be in memory marked by AddressRangeReserved or
AddressRangeNVS.

The memory referred to by the Data Table Region is the memory that is occupied by the table referenced
in XSDT that is identified by SignatureString, OemIDString and OemTableIDString. Any Field object can
reference RegionName

The base address of a Data Table region is the address of the first byte of the header of the table
identified by SignatureString, OemIDString and OemTableIDString. The length of the region is the length
of the table.

19.6.25 Debug (Debugger Output)

Syntax
Debug
UEFI Forum, Inc. January 2019 Page 954

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
The debug data object is a virtual data object. Writes to this object provide debugging information. On at
least debug versions of the interpreter, any writes into this object are appropriately displayed on the
system’s native kernel debugger. All writes to the debug object are otherwise benign. If the system is in
use without a kernel debugger, then writes to the debug object are ignored. The following table relates
the ASL term types that can be written to the Debug object to the format of the information on the kernel
debugger display.

Table 19-429 Debug Object Display Formats

ASL Term Type Display Format

Numeric data object All digits displayed in hexadecimal format.

String data object String is displayed.

Object reference Information about the object is displayed (for example, object type and object
name), but the object is not evaluated.

The Debug object is a write-only object; attempting to read from the debug object is not supported.

19.6.26 Decrement (Integer Decrement)

Syntax
Decrement (Minuend) => Integer

Minuend-- => Integer

Arguments

Minuend is evaluated as an Integer.

Description
This operation decrements the Minuend by one and the result is stored back to Minuend. Equivalent to
Subtract (Minuend, 1, Minuend). Underflow conditions are ignored and the result is Ones.

19.6.27 Default (Default Execution Path in Switch)

Syntax
Default {TermList}

Arguments

TermList is a sequence of executable ASL expressions.

Description
Within the body of a Switch (page 1040) statement, the statements specified by TermList will be
executed if no Case (page 948) statement value matches the Switch statement value. If Default is
omitted and no Case match is found, none of the statements in the Switch body are executed. There can
be at most one Default statement in the immediate scope of the parent Switch statement. The Default
statement can appear anywhere in the body of the Switch statement.
UEFI Forum, Inc. January 2019 Page 955

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.28 DefinitionBlock (Declare Definition Block)

Syntax
DefinitionBlock (AMLFileName, TableSignature, ComplianceRevision, OEMID, TableID, OEMRevision)
{TermList}

Arguments

AMLFileName is a string that specifies the desired name of the translated output AML file. If the
AMLFileName is a NULL (zero length) string, the ASL compiler will automatically create the filename
(typically generated from the input filename/pathname).TableSignature is a string that contains the 4-
character ACPI signature. ComplianceRevision is an 8-bit value. OEMID is a 6-character string, TableId is
an 8-character string, and OEMRevision is a 32-bit value. TermList is a sequence of executable ASL
expressions.

If multiple DefinitionBlocks are defined in the same ASL file, the first DefinitionBlock defines the output
AMLFileName as per the rule above.

Description
The DefinitionBlock term specifies the unit of data and/or AML code that the OS will load as part of the
Differentiated Definition Block or as part of an additional Definition Block.

This unit of data and/or AML code describes either the base system or some large extension (such as a
docking station). The entire DefinitionBlock will be loaded and compiled by the OS as a single unit.

System software loads a definition block by referencing the objects in the TermList package in order. The
object list is encoded as TermList, so that rather than describing a static object list, it is possible to
describe a dynamic object list according to the system settings. See "Section 5.4.2, Definition Block
Loading."

Note: For compatibility with ACPI versions before ACPI 2.0, the bit width of Integer objects is dependent
on the ComplianceRevision of the DSDT. If the ComplianceRevision is less than 2, all integers are restricted
to 32 bits. Otherwise, full 64-bit integers are used. The version of the DSDT sets the global integer width
for all integers, including integers in SSDTs.

19.6.29 DerefOf (Dereference an Object Reference)

Syntax
DerefOf (Source) => Object

Arguments

Returns the object referred by the Source object reference.

Description
If the Source evaluates to an object reference, the actual contents of the object referred to are returned.
If the Source evaluates to a string, the string is evaluated as an ASL name (relative to the current scope)
and the contents of that object are returned. If the object specified by Source does not exist then a fatal
error is generated. If the object specified is a reference generated by the Index() operator and refers to
an uninitialized package element, then a fatal error is generated.
UEFI Forum, Inc. January 2019 Page 956

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Note: (Compatibility Note) The use of a String with DerefOf was first introduced in ACPI 2.0.

19.6.30 Device (Declare Device Package)

Syntax
Device (DeviceName) {TermList}

Arguments

Creates a Device object of name DeviceName, which represents a processor, a bus or a device, or any
other similar hardware. Device opens a name scope.

Description
A Device Package is one of the basic ways the Differentiated Definition Block describes the hardware
devices in the system to the operating software. Each Device Package is defined somewhere in the
hierarchical namespace corresponding to that device’s location in the system. Within the namespace of
the device are other names that provide information and control of the device, along with any sub-
devices that in turn describe sub-devices, and so on.

For any device, the platform runtime firmware provides only information that is added to the device in a
non-hardware standard manner. This type of value-added function is expressible in the ACPI Definition
Block such that operating software can use the function.

The platform runtime firmware supplies Device Objects only for devices that are obtaining some system-
added function outside the device’s normal capabilities and for any Device Object required to fill in the
tree for such a device. For example, if the system includes a PCI device (integrated or otherwise) with no
additional functions such as power management, the platform runtime firmware would not report such a
device; however, if the system included an integrated ISA device below the integrated PCI device (device
is an IS bridge), then the system would include a Device Package for the ISA device with the minimum
feature being added being the ISA device’s ID and configuration information and the parent PCI device,
because it is required to get the ISA Device Package placement in the namespace correct.

The device object list is encoded as TermList, so that rather than describing a static device object list, it is
possible to describe a dynamic device object list according to the system settings. See "Section 5.4.2,
Definition Block Loading."

Example
The following block of ASL sample code shows a nested use of Device objects to describe an IDE
controller connected to the root PCI bus.

 Device (IDE0) { // primary controller
 Name (_ADR, 0) // put PCI Address (device/function) here

 // define region for IDE mode register

 OperationRegion (PCIC, PCI_Config, 0x50, 0x10)
 Field (PCIC, AnyAcc, NoLock, Preserve) {
 …
 }
UEFI Forum, Inc. January 2019 Page 957

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 Device (PRIM) { // Primary adapter
 Name (_ADR, 0) // Primary adapter = 0
 …
 Method (_STM, 2) {
 …
 }
 Method (_GTM) {
 …
 }
 Device (MSTR) { // master channel
 Name (_ADR, 0)
 Name (_PR0, Package () {0, PIDE})

 Name (_GTF) {
 …
 }
 }
 Device (SLAV) {
 Name (_ADR, 1)
 Name (_PR0, Package () {0, PIDE})
 Name (_GTF) {
 …
 }
 }
 }
 }

19.6.31 Divide (Integer Divide)

Syntax
Divide (Dividend, Divisor, Remainder, Result) => Integer

Result = Dividend / Divisor => Integer

Result /= Divisor => Integer

Arguments

Dividend and Divisor are evaluated as Integers.

Description
Dividend is divided by Divisor, then the resulting remainder is optionally stored into Remainder and the
resulting quotient is optionally stored into Result. Divide-by-zero exceptions are fatal.

The function return value is the Result (quotient).

19.6.32 DMA (DMA Resource Descriptor Macro)

Syntax
DMA (DmaType, IsBusMaster, DmaTransferSize, DescriptorName) {DmaChannelList} => Buffer
UEFI Forum, Inc. January 2019 Page 958

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Arguments

DmaType specifies the type of DMA cycle: ISA compatible (Compatibility), EISA Type A (TypeA), EISA Type
B (TypeB) or EISA Type F (TypeF). The 2-bit field DescriptorName._TYP is automatically created to refer to
this portion of the resource descriptor, where ‘0’ is Compatibility, ‘1’ is TypeA, ‘2’ is TypeB and ‘3’ is
TypeF.

IsBusMaster specifies whether this device can generate DMA bus master cycles (BusMaster) or not
(NotBusMaster). If nothing is specified, then BusMaster is assumed. The 1-bit field DescriptorName._BM
is automatically created to refer to this portion of the resource descriptor, where ‘0’ is NotBusMaster and
‘1’ is BusMaster.

DmaTransferSize specifies the size of DMA cycles the device is capable of generating: 8-bit (Transfer8),
16-bit (Transfer16) or both 8 and 16-bit (Transfer8_16). The 2-bit field DescriptorName._SIZ is
automatically created to refer to this portion of the resource descriptor, where ‘0’ is Transfer8, ‘1’ is
Transfer8_16 and ‘2’ is Transfer16.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

DmaChannelList is a comma-delimited list of integers in the range 0 through 7 that specify the DMA
channels used by the device. There may be no duplicates in the list.

Description
The DMA macro evaluates to a buffer which contains a DMA resource descriptor. The format of the DMA
resource descriptor can be found in “DMA Descriptor” (page 420). The macro is designed to be used
inside of a ResourceTemplate (page 1033).

19.6.33 DWordIO (DWord IO Resource Descriptor Macro)

Syntax
DWordIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges, AddressGranularity,
AddressMinimum, AddressMaximum, AddressTranslation, RangeLength, ResourceSourceIndex,
ResourceSource, DescriptorName, TranslationType, TranslationDensity)

Arguments

ResourceUsage specifies whether the I/O range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName._MIF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
UEFI Forum, Inc. January 2019 Page 959

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
DescriptorName._MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly), valid
non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation (EntireRange). The 2-
bit field DescriptorName._RNG is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 32-bit integer that specifies the power-of-two boundary (- 1) on which
the I/O range must be aligned. The 32-bit field DescriptorName._GRA is automatically created to refer to
this portion of the resource descriptor.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 32-bit integer that specifies the offset to be added to a secondary bus
I/O address which results in the corresponding primary bus I/O address. For all non-bridge devices or
bridges which do not perform translation, this must be ‘0’. The 32-bit field DescriptorName._TRA is
automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the I/O
range. The 32-bit field DescriptorName._LEN is automatically created to refer to this portion of the
resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but
the ResourceSourceIndex argument is not specified, a value of zero is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

TranslationType is an optional argument that specifies whether the resource type on the secondary side
of the bus is different (TypeTranslation) from that on the primary side of the bus or the same
(TypeStatic). If TypeTranslation is specified, then the primary side of the bus is Memory. If TypeStatic is
specified, then the primary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The
UEFI Forum, Inc. January 2019 Page 960

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
1-bit field DescriptorName._TTP is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 443) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the primary
to secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only used when
TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is assumed. The 1-bit
field DescriptorName._TRS is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS (page 444) for more information.

Description
The DWordIO macro evaluates to a buffer which contains a 32-bit I/O range resource descriptor. The
format of the 32-bit I/O range resource descriptor can be found in “DWord Address Space Descriptor ”
(page 435). The macro is designed to be used inside of a ResourceTemplate (page 1033).

19.6.34 DWordMemory (DWord Memory Resource Descriptor Macro)

Syntax
DWordMemory (ResourceUsage, Decode, IsMinFixed, IsMaxFixed, Cacheable, ReadAndWrite,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation, RangeLength,
ResourceSourceIndex, ResourceSource, DescriptorName, MemoryRangeType, TranslationType)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName._MIF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName._MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Cacheable specifies whether or not the memory region is cacheable (Cacheable), cacheable and write-
combining (WriteCombining), cacheable and prefetchable (Prefetchable) or uncacheable
(NonCacheable). If nothing is specified, then NonCacheable is assumed. The 2-bit field
DescriptorName._MEM is automatically created to refer to this portion of the resource descriptor, where
‘1’ is Cacheable, ‘2’ is WriteCombining, ‘3’ is Prefetchable and ‘0’ is NonCacheable.

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
UEFI Forum, Inc. January 2019 Page 961

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressGranularity evaluates to a 32-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 32-bit field DescriptorName._GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit
field DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit
field DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 32-bit integer that specifies the offset to be added to a secondary bus
I/O address which results in the corresponding primary bus I/O address. For all non-bridge devices or
bridges which do not perform translation, this must be ‘0’. The 32-bit field DescriptorName._TRA is
automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the
Memory range. The 32-bit field DescriptorName._LEN is automatically created to refer to this portion of
the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this Memory range is allocated. If this argument is specified,
but the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

MemoryRangeType is an optional argument that specifies the memory usage. The memory can be
marked as normal (AddressRangeMemory), used as ACPI NVS space (AddressRangeNVS), used as ACPI
reclaimable space (AddressRangeACPI) or as system reserved (AddressRangeReserved). If nothing is
specified, then AddressRangeMemory is assumed. The 2-bit field DescriptorName._MTP is automatically
created in order to refer to this portion of the resource descriptor, where ‘0’ is AddressRangeMemory, ‘1’
is AddressRangeReserved, ‘2’ is AddressRangeACPI and ‘3’ is AddressRangeNVS.

TranslationType is an optional argument that specifies whether the resource type on the secondary side
of the bus is different (TypeTranslation) from that on the primary side of the bus or the same
(TypeStatic). If TypeTranslation is specified, then the primary side of the bus is I/O. If TypeStatic is
specified, then the primary side of the bus is Memory. If nothing is specified, then TypeStatic is assumed.
The 1-bit field DescriptorName._TTP is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 443) for more information.
UEFI Forum, Inc. January 2019 Page 962

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
The DWordMemory macro evaluates to a buffer which contains a 32-bit memory resource descriptor.
The format of the 32-bit memory resource descriptor can be found in “DWord Address Space Descriptor ”
(page 435). The macro is designed to be used inside of a ResourceTemplate (page 1033).

19.6.35 DWordSpace (DWord Space Resource Descriptor Macro)

Syntax
DWordSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed, TypeSpecificFlags,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation, RangeLength,
ResourceSourceIndex, ResourceSource, DescriptorName)

Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values are
0xC0 through 0xFF.

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName._MIF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName._MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.

AddressGranularity evaluates to a 32-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 32-bit field DescriptorName._GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit
field DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit
field DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.
UEFI Forum, Inc. January 2019 Page 963

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
AddressTranslation evaluates to a 32-bit integer that specifies the offset to be added to a secondary bus
I/O address which results in the corresponding primary bus I/O address. For all non-bridge devices or
bridges which do not perform translation, this must be ‘0’. The 32-bit field DescriptorName._TRA is
automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the
Memory range. The 32-bit field DescriptorName._LEN is automatically created to refer to this portion of
the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this Memory range is allocated. If this argument is specified,
but the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The DWordSpace macro evaluates to a buffer which contains a 32-bit Address Space resource descriptor.
The format of the 32-bit Address Space resource descriptor can be found in “DWord Address Space
Descriptor ” (page 435). The macro is designed to be used inside of a ResourceTemplate (page 1033).

19.6.36 EISAID (EISA ID String To Integer Conversion Macro)

Syntax
EISAID (EisaIdString) => DWordConst

Arguments

The EisaIdString must be a String object of the form “UUUNNNN”, where “U” is an uppercase letter and
“N” is a hexadecimal digit. No asterisks or other characters are allowed in the string.

Description
Converts EisaIdString, a 7-character text string argument, into its corresponding 4-byte numeric EISA ID
encoding. It can be used when declaring IDs for devices that have EISA IDs.

Example
 EISAID (“PNP0C09”) // This is a valid invocation of the macro.

19.6.37 Else (Alternate Execution)

Syntax
Else {TermList}
UEFI Forum, Inc. January 2019 Page 964

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Arguments

TermList is a sequence of executable ASL statements.

Description
If Predicate evaluates to 0 in an If statement, then control is transferred to the Else portion, which can
consist of zero or more ElseIf statements followed by zero or one Else statements. If the Predicate of any
ElseIf statement evaluates to non-zero, the statements in its term list are executed and then control is
transferred past the end of the final Else term. If no Predicate evaluates to non-zero, then the statements
in the Else term list are executed.

Example
The following example checks Local0 to be zero or non-zero. On non-zero, CNT is incremented;
otherwise, CNT is decremented.

If (LGreater (Local0, 5)
{
 Increment (CNT)
} Else If (Local0) {
 Add (CNT, 5, CNT)
}
Else
{
 Decrement (CNT)
}

19.6.38 ElseIf (Alternate/Conditional Execution)

Syntax
ElseIf (Predicate) {TermList}

Arguments

Predicate is evaluated as an Integer.

Description
If the Predicate of any ElseIf statement evaluates to non-zero, the statements in its term list are executed
and then control is transferred past the end of the final Else. If no Predicate evaluates to non-zero, then
the statements in the Else term list are executed.

Note: (Compatibility Note) The ElseIf operator was first introduced in ACPI 2.0, but is backward
compatible with the ACPI 1.0 specification. An ACPI 2.0 and later ASL compiler must synthesize
ElseIf from the If. and Else opcodes available in 1.0. For example:

If (predicate1)
{
 …statements1…
}
ElseIf (predicate2)
UEFI Forum, Inc. January 2019 Page 965

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
{
 …statements2…
}
Else
{
 …statements3…
}

is translated to the following:

If (predicate1)
{
 …statements1…
}
Else
{
 If (predicate2)
 {
 …statements2…
 }
 Else
 {
 …statements3…
 }
}

19.6.39 EndDependentFn (End Dependent Function Resource Descriptor Macro)

Syntax
EndDependentFn () => Buffer

Description
The EndDependentFn macro generates an end-of-dependent-function resource descriptor buffer inside
of an ResourceTemplate (page 1033). It must be matched with a StartDependentFn (page 1038) or
StartDependentFnNoPri (page 1038) macro.

19.6.40 Event (Declare Event Synchronization Object)

Syntax
Event (EventName)

Arguments

Creates an event synchronization object named EventName.

Description
For more information about the uses of an event synchronization object, see the ASL definitions for the
Wait, Signal, and Reset function operators.
UEFI Forum, Inc. January 2019 Page 966

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.41 ExtendedIO (Extended IO Resource Descriptor Macro)

Syntax
ExtendedIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges, AddressGranularity,
AddressMinimum, AddressMaximum, AddressTranslation, RangeLength, TypeSpecificAttributes,
DescriptorName, TranslationType, TranslationDensity)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName._MIF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName._MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly), valid
non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation (EntireRange). The 2-
bit field DescriptorName._RNG is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the I/O range must be aligned. The 64-bit field DescriptorName._GRA is automatically created to refer to
this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus
I/O address which results in the corresponding primary bus I/O address. For all non-bridge devices or
bridges which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is
automatically created to refer to this portion of the resource descriptor.
UEFI Forum, Inc. January 2019 Page 967

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the I/O
range. The 64-bit field DescriptorName._LEN is automatically created to refer to this portion of the
resource descriptor.

TypeSpecificAttributes is an optional argument that specifies attributes specific to this resource type. See
Section 6.4.3.5.4.1,”Type Specific Attributes”.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operatorsDescription

The ExtendedIO macro evaluates to a buffer which contains a 64-bit I/O resource descriptor, which
describes a range of I/O addresses. The format of the 64-bit I/O resource descriptor can be found in
“Extended Address Space Descriptor” (page 425). The macro is designed to be used inside of a
ResourceTemplate (page 1033).

TranslationType is an optional argument that specifies whether the resource type on the secondary side
of the bus is different (TypeTranslation) from that on the primary side of the bus or the same
(TypeStatic). If TypeTranslation is specified, then the primary side of the bus is Memory. If TypeStatic is
specified, then the primary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The
1-bit field DescriptorName. _TTP is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 443) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the primary
to secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only used when
TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is assumed. The 1-bit
field DescriptorName._TRS is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS (page 444) for more information.

19.6.42 ExtendedMemory (Extended Memory Resource Descriptor Macro)

Syntax
ExtendedMemory (ResourceUsage, Decode, IsMinFixed, IsMaxFixed, Cacheable, ReadAndWrite,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation, RangeLength,
TypeSpecificAttributes, DescriptorName, MemoryRangeType, TranslationType)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
UEFI Forum, Inc. January 2019 Page 968

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Cacheable specifies whether or not the memory region is cacheable (Cacheable), cacheable and write-
combining (WriteCombining), cacheable and prefetchable (Prefetchable) or uncacheable
(NonCacheable). If nothing is specified, then NonCacheable is assumed. The 2-bit field
DescriptorName._MEM is automatically created to refer to this portion of the resource descriptor, where
‘1’ is Cacheable, ‘2’ is WriteCombining, ‘3’ is Prefetchable and ‘0’ is NonCacheable.

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 64-bit field DescriptorName._GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit
field DescriptorName ._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit
field DescriptorName ._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus
I/O address which results in the corresponding primary bus I/O address. For all non-bridge devices or
bridges which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName. _TRA is
automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the
Memory range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of
the resource descriptor.

TypeSpecificAttributes is an optional argument that specifies attributes specific to this resource type. See
Section 6.4.3.5.4.1,”Type Specific Attributes”.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

MemoryRangeType is an optional argument that specifies the memory usage. The memory can be
marked as normal (AddressRangeMemory), used as ACPI NVS space (AddressRangeNVS), used as ACPI
reclaimable space (AddressRangeACPI) or as system reserved (AddressRangeReserved). If nothing is
UEFI Forum, Inc. January 2019 Page 969

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
specified, then AddressRangeMemory is assumed. The 2-bit field DescriptorName. _MTP is automatically
created in order to refer to this portion of the resource descriptor, where ‘0’ is AddressRangeMemory, ‘1’
is AddressRangeReserved, ‘2’ is AddressRangeACPI and ‘3’ is AddressRangeNVS.

TranslationType is an optional argument that specifies whether the resource type on the secondary side
of the bus is different (TypeTranslation) from that on the primary side of the bus or the same
(TypeStatic). If TypeTranslation is specified, then the primary side of the bus is I/O. If TypeStatic is
specified, then the primary side of the bus is Memory. If nothing is specified, then TypeStatic is assumed.
The 1-bit field DescriptorName. _TTP is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 443) for more information.

Description
The ExtendedMemory macro evaluates to a buffer which contains a 64-bit memory resource descriptor,
which describes a range of memory addresses. The format of the 64-bit memory resource descriptor can
be found in “Extended Address Space Descriptor” (page 439). The macro is designed to be used inside of
a ResourceTemplate (page 1033).

19.6.43 ExtendedSpace (Extended Address Space Resource Descriptor Macro)

Syntax
ExtendedSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed, TypeSpecificFlags,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation, RangeLength,
TypeSpecificAttributes, DescriptorName)

Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values are
0xC0 through 0xFF.

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.
UEFI Forum, Inc. January 2019 Page 970

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 64-bit field DescriptorName. _GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit
field DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit
field DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus
I/O address which results in the corresponding primary bus I/O address. For all non-bridge devices or
bridges which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is
automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the
Memory range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of
the resource descriptor.

TypeSpecificAttributes is an optional argument that specifies attributes specific to this resource type. See
Section 6.4.3.5.4.1,”Type Specific Attributes”.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The ExtendedSpace macro evaluates to a buffer which contains a 64-bit Address Space resource
descriptor, which describes a range of addresses. The format of the 64-bit AddressSpace descriptor can
be found in “Extended Address Space Descriptor” (page 439). The macro is designed to be used inside of
a ResourceTemplate (page 1033).

19.6.44 External (Declare External Objects)

Syntax
External (ObjectName, ObjectType, ReturnType, ParameterTypes)

Arguments

ObjectName is a NameString.

ObjectType is an optional ObjectTypeKeyword (e.g. IntObj, PkgObj, etc.). If not specified, “UnknownObj”
type is assumed.

ReturnType is optional. If the specified ObjectType is MethodObj, then this specifies the type or types of
object returned by the method. If the method does not return an object, then nothing is specified or
UnknownObj is specified. To specify a single return type, simply use the ObjectTypeKeyword. To specify
UEFI Forum, Inc. January 2019 Page 971

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
multiple possible return types, enclose the comma-separated ObjectTypeKeywords with braces. For
example: {IntObj, BuffObj}.

ParameterTypes is optional. If the specified ObjectType is MethodObj, this specifies both the number and
type of the method parameters. It is a comma-separated, variable-length list of the expected object type
or types for each of the method parameters, enclosed in braces. For each parameter, the parameter type
consists of either an ObjectTypeKeyword or a comma-separated sub-list of ObjectTypeKeywords enclosed
in braces. There can be no more than seven parameters in total.Description

The External directive informs the ASL compiler that the object is declared external to this table so that
no errors will be generated for an undeclared object. The ASL compiler will create the external object at
the specified place in the namespace (if a full path of the object is specified), or the object will be created
at the current scope of the External term.

For external control methods, the ASL compiler can emit an External AML opcode that contains the name
of the method and the number of required arguments. This information may be used by AML
disassemblers to properly disassemble the AML to the correct ASL code.

External is especially useful for use in secondary SSDTs, when the required scopes and objects are
declared in the main DSDT.

Example
This example shows the use of External in conjunction with Scope within an SSDT:

DefinitionBlock ("ssdt.aml", "SSDT", 2, "X", "Y", 0x00000001)
{
 External (_SB.PCI0, DeviceObj)

 Scope (_SB.PCI0)
 {
 }
}

19.6.45 Fatal (Fatal Error Check)

Syntax
Fatal (Type, Code, Arg)

Arguments

This operation is used to inform the OS that there has been an OEM-defined fatal error.

Description
In response, the OS must log the fatal event and perform a controlled OS shutdown in a timely fashion.

19.6.46 Field (Declare Field Objects)

Syntax
Field (RegionName, AccessType, LockRule, UpdateRule) {FieldUnitList}
UEFI Forum, Inc. January 2019 Page 972

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Arguments

RegionName is evaluated as a Namestring that refers to the host operation region.

AccessType is optional and defines the default access width of the field definition and is any one of the
following: AnyAcc, ByteAcc, WordAcc, DWordAcc, or QWordAcc. In general, accesses within the parent
object are performed naturally aligned. If desired, AccessType set to a value other than AnyAcc can be
used to force minimum access width. Notice that the parent object must be able to accommodate the
AccessType width. For example, an access type of WordAcc cannot read the last byte of an odd-length
operation region. The exceptions to natural alignment are the access types used for a non-linear SMBus
device. These will be discussed in detail below. Not all access types are meaningful for every type of
operational region. If not specified, the default is AnyAcc.

LockRule is optional and indicates whether the Global Lock is to be used when accessing this field and is
one of the following: Lock or NoLock. If LockRule is set to Lock, accesses to modify the component data
objects will acquire and release the Global Lock. If both types of locking occur, the Global Lock is acquired
after the parent object Mutex. On Hardware-reduced ACPI platforms, Lock is not supported. If not
specified, the default is NoLock.

UpdateRule is optional and specifieas how the unmodified bits of a field are treated, and can be any one
of the following: Preserve, WriteAsOnes, or WriteAsZeros. For example, if a field defines a component
data object of 4 bits in the middle of a WordAcc region, when those 4 bits are modified the UpdateRule
specifies how the other 12 bits are treated. If not specified, the default is Preserve.

FieldUnitList is a variable-length list of individual field unit definitions, separated by commas. Each entry
in the field unit list is one of the following:

Table 19-430

FieldUnitName, BitLength

Offset (ByteOffset)

AccessAs (AccessType, AccessAttribute)

Connection (ConnectionResourceObj)

Field Unit list entires

FieldUnitName is the ACPI name for the field unit (1 to 4 characters), and BitLength is the length of the
field unit in bits. Offset is used to specify the byte offset of the next defined field unit. This can be used
instead of defining the bit lengths that need to be skipped. AccessAs is used to define the access type and
attributes for the remaining field units within the list. Connection is used to identify the connection
resource of the field access. This is necessary for GenericSerialBus and GeneralPurposeIO operation
region address spaces only.

Description
Declares a series of named data objects whose data values are fields within a larger object. The fields are
parts of the object named by RegionName, but their names appear in the same scope as the Field term.

For example, the field operator allows a larger operation region that represents a hardware register to be
broken down into individual bit fields that can then be accessed by the bit field names. Extracting and
combining the component field from its parent is done automatically when the field is accessed.
UEFI Forum, Inc. January 2019 Page 973

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
When reading from a FieldUnit, returned values are normalized (shifted and masked to the proper
length.) The data type of an individual FieldUnit can be either a Buffer or an Integer, depending on the bit
length of the FieldUnit. If the FieldUnit is smaller than or equal to the size of an Integer (in bits), it will be
treated as an Integer. If the FieldUnit is larger than the size of an Integer, it will be treated as a Buffer. The
size of an Integer is indicated by the DSDT header’s Revision field. A revision less than 2 indicates that the
size of an Integer is 32 bits. A value greater than or equal to 2 signifies that the size of an Integer is 64 bits.
For more information about data types and FieldUnit type conversion rules, see Section 19.3.5.7, “Data
Type Conversion Rules”.

Accessing the contents of a field data object provides access to the corresponding field within the parent
object. If the parent object supports Mutex synchronization, accesses to modify the component data
objects will acquire and release ownership of the parent object around the modification.

The following table relates region types declared with an OperationRegion term to the different access
types supported for each region.

Table 19-431 OperationRegion Address Spaces and Access Types

Address Space Permitted Access Type(s) Description

SystemMemory ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

SystemIO ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

PCI_Config ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

EmbeddedControl ByteAcc Byte access only

SMBus BufferAcc Reads and writes to this operation region
involve the use of a region specific data buffer.
(See below.)

SystemCMOS ByteAcc Byte access only

PciBarTarget ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

IPMI BufferAcc Reads and writes to this operation region
involve the use of a region specific data buffer.
(See below.)

GeneralPurposeIO ByteAcc Byte access only

GenericSerialBus BufferAcc Reads and writes to this operation region
involve the use of a region-specific data buffer.
(See below.)

PCC ByteAcc Reads and writes to this operation region are
performed in units of bytes.

The named FieldUnit data objects are provided in the FieldList as a series of names and bit widths. Bits
assigned no name (or NULL) are skipped. The ASL compiler supports the Offset (ByteOffset) macro within
UEFI Forum, Inc. January 2019 Page 974

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
a FieldList to skip to the bit position of the supplied byte offset, and the AccessAs macro to change access
within the field list.

GenericSerialBus, SMBus and IPMI regions are inherently non-linear, where each offset within the
respective address space represents a variable sized (0 to 32 bytes) field. Given this uniqueness, these
operation regions include restrictions on their field definitions and require the use of a region-specific
data buffer when initiating transactions. For more information on the SMBus data buffer format, see
Section 13, “ACPI System Management Bus Interface Specification,”. For more information on the IPMI
data buffer format, see Section 5.5.2.4.4, “Declaring IPMI Operation Regions". For more information on
the Generic Serial Bus data buffer format, see Section 5.5.2.4.6 "Declaring Generic Serial Bus Operation
Regions."

For restrictions on the use of Fields with GeneralPurposeIO OpRegions, see Section 5.5.2.4.5, "Declaring
General PurposeIO Operation Regions".

Example
OperationRegion (MIOC, PCI_Config, Zero, 0xFF)
Field (MIOC, AnyAcc, NoLock, Preserve)
{
 Offset (0x58), 
 HXGB, 32, 
 HXGT, 32, 
 GAPE, 8, 
 MR0A, 4, 
 MR0B, 4
}

19.6.47 FindSetLeftBit (Find First Set Left Bit)

Syntax
FindSetLeftBit (Source, Result) => Integer

Arguments

Source is evaluated as an Integer.

Description
The one-based bit location of the first MSb (most significant set bit) is optionally stored into Result. The
result of 0 means no bit was set, 1 means the left-most bit set is the first bit, 2 means the left-most bit set
is the second bit, and so on.

19.6.48 FindSetRightBit (Find First Set Right Bit)

Syntax
FindSetRightBit (Source, Result) => Integer

Arguments

Source is evaluated as an Integer.
UEFI Forum, Inc. January 2019 Page 975

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
The one-based bit location of the most LSb (least significant set bit) is optionally stored in Result. The
result of 0 means no bit was set, 32 means the first bit set is the thirty-second bit, 31 means the first bit
set is the thirty-first bit, and so on.

19.6.49 FixedDMA (DMA Resource Descriptor Macro)

Syntax
FixedDMA (DmaRequestLine, Channel, DmaTransferWidth, DescriptorName) => Buffer

Arguments

DmaRequestLine is a system-relative number uniquely identifying the request line statically assigned to
the device.. The bit field name _DMA is automatically created to refer to this portion of the resource
descriptor.

Channel is a controller-relative number uniquely identifying the channel statically assigned to this
DMARequestLine. Channels can be shared by reusing Channel numbers across descriptors. The bit field
name _TYP is automatically created to refer to this portion of the resource descriptor.

DmaTransferWidth is an optional argument specifying the width of data transfer for which the device is
configured. Valid values are Width8Bit, Width16Bit, Width32Bit,Width64Bit, Width 128Bit or
Width256Bit. If not specified, Width32Bit is assumed. The bit field name _SIZ is automatically created to
refer to this portion of the resource descriptor.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The FixedDMA macro evaluates to a buffer that contains a Fixed DMA Descriptor (Section 6.4.3).

19.6.50 FixedIO (Fixed IO Resource Descriptor Macro)

Syntax
FixedIO (AddressBase, RangeLength, DescriptorName) => Buffer

Arguments

AddressBase evaluates to a 16-bit integer. It describes the starting address of the fixed I/O range. The
field DescriptorName. _BAS is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to an 8-bit integer. It describes the length of the fixed I/O range. The field
DescriptorName. _LEN is automatically created to refer to this portion of the resource descriptor.

DescriptorName evaluates to a name string which refers to the entire resource descriptor.
UEFI Forum, Inc. January 2019 Page 976

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
The FixedIO macro evaluates to a buffer which contains a fixed I/O resource descriptor. The format of the
fixed I/O resource descriptor can be found in “Fixed Location I/O Port Descriptor ” (page 423). The macro
is designed to be used inside of a ResourceTemplate (page 1033).

19.6.51 For (Conditional Loop)

Syntax
For (Initialize, Predicate, Update) {TermList}

Arguments

Initialize. This optional expression is evaluated once before the loop is entered. If not specified, no
initialization takes place.

Predicate. The list of terms within the TermList are executed until the predicate evaluates to zero
(FALSE). If this argument is not specified, the For macro is equivalent to While(1).

Update. This optional expression is evaluated once per execution of the loop, after all other terms
within the TermList have been executed.

Description

For is a macro that creates a loop by converting the input arguments to the equivalent ASL While loop.

Note: Creation of a named object more than once in a given scope is not allowed. As such,
unconditionally creating named objects within a For loop must be avoided. A fatal error will be generated
on the second iteration of the loop, during the attempt to create the same named object a second time.

Example

The following example shows the use of the For macro to create a loop, followed by the equivalent
While loop that is actually emitted by the ASL compiler:

 for (local0 = 0, local0 < 8, local0++)

 {

 }

 Local0 = 0

 While (Local0 < 8)

 {

 Local0++

 }
UEFI Forum, Inc. January 2019 Page 977

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.52 Fprintf (Create and Store formatted string)

Syntax
Fprintf (Destination, FormatString, FormatArgs) => String

Arguments

Fprintf is a macro that converts the evaluated FormatString into a series of string Concatenate
operations, storing the result in Destination.

FormatString is a string literal which may contain one or more uses of the format specifier, %o, to
indicate locations in the string where an object may be inserted. %o is the only format specifier
supported since the resulting object is a string and type conversion is handled automatically by
Concatenate.

FormatArgs is a comma separated list of Named Objects, Locals, or Args that can be evaluated to a string.
Each argument is added to the FormatString using the Concatenate operation at the location specified by
%o in order of appearance.

Description
Fprintf is a macro that converts the evaluated FormatString into a series of string Concatenate
operations, storing the result in Destination

Example
The following ASL example uses Fprintf to write a formatted string of Arg0 and Arg1 to the Named Object
STR1.

 Fprintf (STR1, "%o: %o Successful", Arg1, Arg0)

This Fprintf macro expression evaluates to the following ASL operation.

 Store (Concatenate (Concatenate (Concatenate (Concatenate
 ("", Arg1), ": "), Arg0), " Successful"), STR1)

19.6.53 FromBCD (Convert BCD To Integer)

Syntax
FromBCD (BCDValue, Result) => Integer

Arguments

BCDValue is evaluated as an Integer in Binary Coded Decimal format.

Description
The FromBCD operation converts BCDValue to a numeric format, and optionally stores the numeric value
into Result.
UEFI Forum, Inc. January 2019 Page 978

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.54 Function (Declare Control Method)

Syntax
Function (FunctionName, ReturnType, ParameterTypes) {TermList}

Arguments

ReturnType is optional and specifies the type(s) of the object(s) returned by the method. If the method
does not return an object, then nothing is specified or UnknownObj is specified. To specify a single return
type, simply use the ObjectTypeKeyword (e.g. IntObj, PkgObj, etc.). To specify multiple possible return
types, enclose the comma-separated ObjectTypeKeywords with braces. For example: {IntObj,
BuffObj}.

ParameterTypes is optional and specifies both the number and type of the method parameters. It is a
comma-separated, variable-length list of the expected object type or types for each of the method
parameters, enclosed in braces. For each parameter, the parameter type consists of either an
ObjectTypeKeyword or a comma-separated sub-list of ObjectTypeKeywords enclosed in braces. There can
be no more than seven parameters in total.

Description
Function declares a named package containing a series of terms that collectively represent a control
method. A control method is a procedure that can be invoked to perform computation. Function opens a
name scope.

System software executes a control method by executing the terms in the package in order. For more
information on method execution, see Section 5.5.2, “Control Method Execution.”

The current namespace location used during name creation is adjusted to be the current location on the
namespace tree. Any names created within this scope are “below” the name of this package. The current
namespace location is assigned to the method package, and all namespace references that occur during
control method execution for this package are relative to that location.

Functions are equivalent to a Method that specifies NotSerialized. As such, a function should not create
any named objects, since a second thread that might re-enter the function will cause a fatal error if an
attempt is made to create the same named object twice.

Note: (Compatibility Note) New for ACPI 3.0

Example
The following block of ASL sample code shows the use of Function for defining a control method:

Function (EXAM, IntObj, {StrObj, {IntObj, StrObj}})
{
 Name (Temp,””)
 Store (Arg0, Temp) // could have used Arg1
 Return (SizeOf (Concatenate (Arg1, Temp)))
}

UEFI Forum, Inc. January 2019 Page 979

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
This declaration is equivalent to:

Method (EXAM, 2, NotSerialized, 0, IntObj, {StrObj, {IntObj, StrObj}})
{
…
}

19.6.55 GpioInt (GPIO Interrupt Connection Resource Descriptor Macro)

GpioInt (EdgeLevel, ActiveLevel, Shared, PinConfig, DebounceTimeout, ResourceSource,
ResourceSourceIndex, ResourceUsage, DescriptorName, VendorData) {PinList}

Arguments

EdgeLevel can be either Edge or Level. The bit field name _MOD is automatically created to refer to this
portion of the resource descriptor.

ActiveLevel can be one of ActiveHigh, ActiveLow or ActiveBoth. ActiveBoth can be specified only if
EdgeLevel is Edge. The bit field name _POL is automatically created to refer to this portion of the resource
descriptor.

Shared is an optional argument and can be one of Shared, Exclusive, SharedAndWake or
ExclusiveAndWake. If not specified, Exclusive is assumed. The "Wake" designation indicates that the
interrupt is capable of waking the system from a low-power idle state or a system sleep state. The bit
field name _SHR is automatically created to refer to this portion of the resource descriptor.

PinConfig can be one of PullDefault, PullUp, PullDown, PullNone or a vendor-supplied value in the range
128-255. The bit field name _PPI is automatically created to refer to this portion of the resource
descriptor.

DebounceTimeout is an optional argument specifying the debounce wait time, in hundredths of
milliseconds. The bit field name _DBT is automatically created to refer to this portion of the resource
descriptor.

ResourceSource is a string which uniquely identifies the GPIO controller referred to by this descriptor.
ResourceSource can be a fully-qualified name, a relative name or a name segment that utilizes the
namespace search rules.

ResourceSourceIndex is an optional argument and is assumed to be 0 for this revision.

ResourceUsage is an optional argument and is assumed to be ResourceConsumer for this revision.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

VendorData is an optional argument that specifies a RawDataBuffer containing vendor-defined byte data
to be decoded by the OS driver. The bit field name _VEN is automatically created to refer to this portion
of the resource descriptor.

PinList is a list of (zero-based) pin numbers on the ResourceSource that are described by this descriptor.
For interrupt pin descriptors, only one pin is allowed. The bit field name _PIN is automatically created to
refer to this portion of the resource descriptor.
UEFI Forum, Inc. January 2019 Page 980

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description

The GpioInt macro evaluates to a buffer that contains a GPIO Interrupt Connection resource descriptor.
The format of the GPIO Interrupt Connection resource descriptor can be found in "GPIO Connection
Descriptor" (Section 6.4.3.8.1). The macro is designed to be used inside of a Resource Template
(Section 19.3.3).

19.6.56 GpioIo (GPIO Connection IO Resource Descriptor Macro)

GpioIo (Shared, PinConfig, DebounceTimeout, DriveStrength, IORestriction, ResourceSource,
ResourceSourceIndex, ResourceUsage, DescriptorName, VendorData) {PinList}

Arguments

Shared is an optional argument and can be either Shared or Exclusive. If not specified, Exclusive is
assumed. The bit field name _SHR is automatically created to refer to this portion of the resource
descriptor.

PinConfig can be one of PullDefault, PullUp, PullDown, PullNone or a vendor-supplied value in the range
128-255. The bit field name _PPI is automatically created to refer to this portion of the resource
descriptor.

DebounceTimeout is an optional argument specifying the hardware debounce wait time, in hundredths
of milliseconds. The bit field name _DBT is automatically created to refer to this portion of the resource
descriptor.

DriveStrength is an optional argument specifying the output drive capability of the pin, in hundredths of
milliamperes. The bit field name _DRS is automatically created to refer to this portion of the resource
descriptor.

IORestriction is an optional argument and can be IoRestrictionInputOnly, IoRestrictionOutputOnly,
IoRestrictionNone, or IORestrictionNoneAndPreserve. IORestrictions limit the mode in which the pin
can be accessed (Input or Output). They also ensure that the pin configuration is preserved during
periods when the driver is unloaded or the resource has been disconnected by the driver. If not specified,
IoRestrictionNone is assumed. The bit field name _IOR is automatically created to refer to this portion of
the resource descriptor.

ResourceSource is a string which uniquely identifies the GPIO controller referred to by this descriptor.
ResourceSource can be a fully-qualified name, a relative name or a name segment that utilizes the
namespace search rules.

ResourceSourceIndex is an optional argument and is always 0 for this revision.

ResourceUsage is an optional argument and is always ResourceConsumer for this revision.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

VendorData is an optional argument that specifies a RawDataBuffer containing vendor-defined byte data
to be decoded by the OS driver. The bit field name _VEN is automatically created to refer to this portion
of the resource descriptor.
UEFI Forum, Inc. January 2019 Page 981

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
PinList is a list of pin numbers on the ResourceSource that are described by this descriptor. The bit field
name _PIN is automatically created to refer to this portion of the resource descriptor.

Description
The GpioIo macro evaluates to a buffer that contains a GPIO IO Connection resource descriptor. The
format of the GPIO IO Connection resource descriptor can be found in "GPIO Connection Descriptor"
(Section 6.4.3.8.1). The macro is designed to be used inside of a Resource Template (Section 19.3.3).

19.6.57 I2CSerialBusV2 (I2C Serial Bus Connection Resource Descriptor (Version
2) Macro)

Syntax

I2CSerialBusV2 (SlaveAddress, SlaveMode, ConnectionSpeed, AddressingMode, ResourceSource,
ResourceSourceIndex, ResourceUsage, DescriptorName, Shared, VendorData)

Arguments

SlaveAddress is the I2C bus address for this connection. The bit field name _ADR is automatically created
to refer to this portion of the resource descriptor.

SlaveMode is an optional argument and can be either ControllerInitiated or DeviceInitiated.
ControllerInitiated is the default. The bit field name _SLV is automatically created to refer to this portion
of the resource descriptor.

ConnectionSpeed is the maximum connection speed supported by this connection, in hertz. The bit field
name _SPE is automatically created to refer to this portion of the resource descriptor.

AddressingMode is an optional argument and can be either AddressingMode7Bit or
AddressingMode10Bit. AddressingMode7Bit is the default. The bit field name _MOD is automatically
created to refer to this portion of the resource descriptor.

ResourceSource is a string which uniquely identifies the I2C bus controller referred to by this descriptor.
ResourceSource can be a fully-qualified name, a relative name or a name segment that utilizes the
namespace search rules.

ResourceSourceIndex is an optional argument and is assumed to be 0 for this revision.

ResourceUsage is an optional argument and is assumed to be ResourceConsumer for this revision.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Shared is an optional argument and can be either Shared or Exclusive. If not specified, Exclusive is
assumed. The bit field name _SHR is automatically created to refer to this portion of the resource
descriptor.

VendorData is an optional argument that specifies an object to be decoded by the OS driver. It is a
RawDataBuffer. The bit field name _VEN is automatically created to refer to this portion of the resource
descriptor.
UEFI Forum, Inc. January 2019 Page 982

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
The I2CSerialBusV2 macro evaluates to a buffer that contains an I2C Serial Bus resource descriptor
(Version 2). The macro is designed to be used inside of a ResourceTemplate (see Section 19.3.3).

19.6.58 If (Conditional Execution)

Syntax
If (Predicate) {TermList}

Arguments

Predicate is evaluated as an Integer.

Description
If the Predicate is non-zero, the term list of the If term is executed.

Example
The following examples all check for bit 3 in Local0 being set, and clear it if set.

// example 1

If (And (Local0, 4))
{
 XOr (Local0, 4, Local0)
}

// example 2

Store (4, Local2)
If (And (Local0, Local2))
{
 XOr (Local0, Local2, Local0)
}

19.6.59 Include (Include Additional ASL File)

Syntax
Include (FilePathName)

Arguments

FilePathname is a StringData data type that contains the full OS file system path.

Description
Include another file that contains ASL terms to be inserted in the current file of ASL terms. The file must
contain elements that are grammatically correct in the current scope.

Example

UEFI Forum, Inc. January 2019 Page 983

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 Include ("dataobj.asl")

19.6.60 Increment (Integer Increment)

Syntax
Increment (Addend) => Integer

Destination = Source [Index] => ObjectReference

Addend++ => Integer

Arguments

Addend is evaluated as an Integer.

Description
Add one to the Addend and place the result back in Addend. Equivalent to Add (Addend, 1, Addend).
Overflow conditions are ignored and the result of an overflow is zero.

19.6.61 Index (Indexed Reference To Member Object)

Syntax
Index (Source, Index, Destination) => ObjectReference

Destination = Source [Index] => ObjectReference

Arguments

Source is evaluated to a buffer, string, or package data type. Index is evaluated to an integer. The
reference to the nth object (where n = Index) within Source is optionally stored as a reference into
Destination.

Description
When Source evaluates to a Buffer, Index returns a reference to a Buffer Field containing the nth byte in
the buffer. When Source evaluates to a String, Index returns a reference to a Buffer Field containing the
nth character in the string. When Source evaluates to a Package, Index returns a reference to the nth
object in the package.

19.6.61.1 Index with Packages

The following example ASL code shows a way to use the Index term to store into a local variable the sixth
element of the first package of a set of nested packages:

 Name (IO0D, Package () {
 Package () {
 0x01, 0x03F8, 0x03F8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xFE, 0x00, 0x00
 },
 Package () {
 0x01, 0x02F8, 0x02F8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xBE, 0x00, 0x00
 },
 Package () {
 0x01, 0x03E8, 0x03E8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xFA, 0x00, 0x00
UEFI Forum, Inc. January 2019 Page 984

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 },
 Package () {
 x01, 0x02E8, 0x02E8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xBA, 0x00, 0x00
 },
 Package() {
 0x01, 0x0100, 0x03F8, 0x08, 0x08, 0x02, 0x25, 0x20, 0x7F, 0x00, 0x00
 }
 })

 // Get the 6th element of the first package

 Store (DeRefOf (Index (DeRefOf (Index (IO0D, 0)), 5)), Local0)

Note: DeRefOf is necessary in the first operand of the Store operator in order to get the actual object,
rather than just a reference to the object. If DeRefOf were not used, then Local0 would contain an
object reference to the sixth element in the first package rather than the number 1.

19.6.61.2 Index with Buffers

The following example ASL code shows a way to store into the third byte of a buffer:

 Name (BUFF, Buffer () {0x01, 0x02, 0x03, 0x04, 0x05})

 // Store 0x55 into the third byte of the buffer

 Store (0x55, Index (BUFF, 2))

The Index operator returns a reference to an 8-bit Buffer Field (similar to that created using
CreateByteField).

If Source is evaluated to a buffer data type, the ObjectReference refers to the byte at Index within Source.
If Source is evaluated to a buffer data type, a Store operation will only change the byte at Index within
Source.

The following example ASL code shows the results of a series of Store operations:

Name (SRCB, Buffer () {0x10, 0x20, 0x30, 0x40})
 Name (BUFF, Buffer () {0x1, 0x2, 0x3, 0x4})

The following will store 0x78 into the 3rd byte of the destination buffer:

Store (0x12345678, Index (BUFF, 2))

The following will store 0x10 into the 2nd byte of the destination buffer:

Store (SRCB, Index (BUFF, 1))

The following will store 0x41 (an ‘A’) into the 4th byte of the destination buffer:

Store (“ABCDEFGH”, Index (BUFF, 3))
UEFI Forum, Inc. January 2019 Page 985

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Note: (Compatibility Note) First introduced in ACPI 2.0. In ACPI 1.0, the behavior of storing data larger
than 8-bits into a buffer using Index was undefined.

19.6.61.3 Index with Strings

The following example ASL code shows a way to store into the 3rd character in a string:

 Name (STR, “ABCDEFGHIJKL”)

 // Store ‘H’ (0x48) into the third character to the string

 Store (“H”, Index (STR, 2))

The Index operator returns a reference to an 8-bit Buffer Field (similar to that created using
CreateByteField).

Note: (Compatibility Note) First introduced in ACPI 2.0.

19.6.62 IndexField (Declare Index/Data Fields)

Syntax
IndexField (IndexName, DataName, AccessType, LockRule, UpdateRule) {FieldUnitList}

Arguments

IndexName is evaluated as a Namestring and refers to a Field Unit object.

DataName is evaluated as a Namestring and refers to a Field Unit object.

AccessType, LockRule, UpdateRule, and FieldList are the same format as the Field term.

Description
Creates a series of named data objects whose data values are fields within a larger object accessed by an
index/data-style reference to IndexName and DataName.

This encoding is used to define named data objects whose data values are fields within an index/data
register pair. This provides a simple way to declare register variables that occur behind a typical index
and data register pair.

Accessing the contents of an indexed field data object will automatically occur through the DataName
object by using an IndexName object aligned on an AccessType boundary, with synchronization occurring
on the operation region that contains the index data variable, and on the Global Lock if specified by
LockRule.

The value written to the IndexName register is defined to be a byte offset that is aligned on an
AccessType boundary. For example, if AccessType is DWordAcc, valid index values are 0, 4, 8, etc. This
value is always a byte offset and is independent of the width or access type of the DataName register.

Example
The following is a block of ASL sample code using IndexField:

Creates an index/data register in system I/O space made up of 8-bit registers.
UEFI Forum, Inc. January 2019 Page 986

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
• Creates a FET0 field within the indexed range.

Method (EX1) {
 // Define a 256-byte operational region in SystemIO space
 // and name it GIO0

 OperationRegion (GIO0, 1, 0x125, 0x100)

 // Create a field named Preserve structured as a sequence
 // of index and data bytes

 Field (GIO0, ByteAcc, NoLock, WriteAsZeros) {
 IDX0, 8,
 DAT0, 8,
 .
 .
 .
 }
 // Create an IndexField within IDX0 & DAT0 which has
 // FETs in the first two bits of indexed offset 0,
 // and another 2 FETs in the high bit on indexed
 // 2F and the low bit of indexed offset 30

 IndexField (IDX0, DAT0, ByteAcc, NoLock, Preserve) {
 FET0, 1,
 FET1, 1,
 Offset (0x2f), // skip to byte offset 2f
 , 7, // skip another 7 bits
 FET3, 1,
 FET4, 1
 }

 // Clear FET3 (index 2F, bit 7)

 Store (Zero, FET3)

} // End EX1

19.6.63 Interrupt (Interrupt Resource Descriptor Macro)

Syntax
Interrupt (ResourceUsage, EdgeLevel, ActiveLevel, Shared, ResourceSourceIndex, ResourceSource,
DescriptorName) {InterruptList} => Buffer

Arguments

ResourceUsage describes whether the device consumes the specified interrupt (ResourceConsumer) or
produces it for use by a child device (ResourceProducer). If nothing is specified, then ResourceConsumer
is assumed.
UEFI Forum, Inc. January 2019 Page 987

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
EdgeLevel describes whether the interrupt is edge triggered (Edge) or level triggered (Level). The field
DescriptorName. _HE is automatically created to refer to this portion of the resource descriptor, where
‘1’ is Edge and ‘0’ is Level.

ActiveLevel describes whether the interrupt is active-high (ActiveHigh) or active-low (ActiveLow). The
field DescriptorName. _LL is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is ActiveHigh and ‘0’ is ActiveLow.

Shared describes whether the interrupt can be shared with other devices (Shared) or not (Exclusive), and
whether it is capable of waking the system from a low-power idle or system sleep state (SharedAndWake
or ExclusiveAndWake). The field DescriptorName. _SHR is automatically created to refer to this portion
of the resource descriptor, where ‘1’ is Shared and ‘0’ is Exclusive. If nothing is specified, then Exclusive is
assumed.

ResourceSourceIndex evaluates to an integer between 0x00 and 0xFF and describes the resource source
index. If it is not specified, then it is not generated. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource evaluates to a string which uniquely identifies the resource source. If it is not specified, it
is not generated. If this argument is specified, but the ResourceSourceIndex argument is not specified, a
zero value is assumed.

DescriptorName evaluates to a name string which refers to the entire resource descriptor.

InterruptList is a comma-delimited list on integers, at least one value is required. Each integer represents
a 32-bit interrupt number. At least one interrupt must be defined, and there may be no duplicates in the
list. The field “DescriptorName. _INT” is automatically created to refer to this portion of the resource
descriptor.

Description
The Interrupt macro evaluates to a buffer that contains an interrupt resource descriptor. The format of
the interrupt resource descriptor can be found in Section 6.4.3.6, Extended Interrupt Descriptor. The
macro is designed to be used inside of a ResourceTemplate (page 1033).

19.6.64 IO (IO Resource Descriptor Macro)

Syntax
IO (Decode, AddressMin, AddressMax, AddressAlignment, RangeLength, DescriptorName) => Buffer

Argument
Decode describes whether the I/O range uses 10-bit decode (Decode10) or 16-bit decode (Decode16).
The field DescriptorName. _DEC is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is Decode16 and ‘0’ is Decode10.

AddressMin evaluates to a 16-bit integer that specifies the minimum acceptable starting address for the
I/O range. It must be an even multiple of AddressAlignment. The field DescriptorName._MIN is
automatically created to refer to this portion of the resource descriptor.
UEFI Forum, Inc. January 2019 Page 988

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
AddressMax evaluates to a 16-bit integer that specifies the maximum acceptable starting address for the
I/O range. It must be an even multiple of AddressAlignment. The field DescriptorName._MAX is
automatically created to refer to this portion of the resource descriptor.

AddressAlignment evaluates to an 8-bit integer that specifies the alignment granularity for the I/O
address assigned. The field DescriptorName. _ALN is automatically created to refer to this portion of the
resource descriptor.

RangeLength evaluates to an 8-bit integer that specifies the number of bytes in the I/O range. The field
DescriptorName. _LEN is automatically created to refer to this portion of the resource descriptor.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The IO macro evaluates to a buffer which contains an IO resource descriptor. The format of the IO
descriptor can be found in “I/O Port Descriptor” (page 419). The macro is designed to be used inside of a
ResourceTemplate (page 1033).

19.6.65 IRQ (Interrupt Resource Descriptor Macro)

Syntax
IRQ (EdgeLevel, ActiveLevel, Shared, DescriptorName) {InterruptList} => Buffer

Arguments

EdgeLevel describes whether the interrupt is edge triggered (Edge) or level triggered (Level). The field
DescriptorName. _HE is automatically created to refer to this portion of the resource descriptor, where
‘1’ is Edge and ActiveHigh and ‘0’ is Level and ActiveLow.

ActiveLevel describes whether the interrupt is active-high (ActiveHigh) or active-low (ActiveLow). The
field DescriptorName. _LL is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is Edge and ActiveHigh and ‘0’ is Level and ActiveLow.

Shared describes whether the interrupt can be shared with other devices (Shared) or not (Exclusive), and
whether it is capable of waking the system from a low-power idle or system sleep state (SharedAndWake
or ExclusiveAndWake). The field DescriptorName. _SHR is automatically created to refer to this portion
of the resource descriptor, where ‘1’ is Shared and ‘0’ is Exclusive. If nothing is specified, then Exclusive is
assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

InterruptList is a comma-delimited list of integers in the range 0 through 15, at least one value is required.
There may be no duplicates in the list.
UEFI Forum, Inc. January 2019 Page 989

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
The IRQ macro evaluates to a buffer that contains an IRQ resource descriptor. The format of the IRQ
descriptor can be found in “IRQ Descriptor” ((page 419). The macro produces the three-byte form of the
descriptor. The macro is designed to be used inside of a ResourceTemplate (page 1033).

19.6.66 IRQNoFlags (Interrupt Resource Descriptor Macro)

Syntax
IRQNoFlags (DescriptorName) {InterruptList} => Buffer

Arguments

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer.

InterruptList is a comma-delimited list of integers in the range 0 through 15, at least one value is required.
There may be no duplicates in the list Description

The IRQNoFlags macro evaluates to a buffer which contains an active-high, edge-triggered IRQ resource
descriptor. The format of the IRQ descriptor can be found in IRQ Descriptor (page 419). The macro
produces the two-byte form of the descriptor. The macro is designed to be used inside of a
ResourceTemplate (page 1033).

19.6.67 LAnd (Logical And)

Syntax
LAnd (Source1, Source2) => Boolean

Source1 && Source2 => Boolean

Arguments

Source1 and Source2 are evaluated as integers.

Description
If both values are non-zero, True is returned: otherwise, False is returned.

19.6.68 LEqual (Logical Equal)

Syntax
LEqual (Source1, Source2) => Boolean

Source1 == Source2 => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.
UEFI Forum, Inc. January 2019 Page 990

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
If the values are equal, True is returned; otherwise, False is returned. For integers, a numeric compare is
performed. For strings and buffers, True is returned only if both lengths are the same and the result of a
byte-wise compare indicates exact equality.

19.6.69 LGreater (Logical Greater)

Syntax
LGreater (Source1, Source2) => Boolean

Source1 > Source2 => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description
If Source1 is greater than Source2, True is returned; otherwise, False is returned. For integers, a numeric
comparison is performed. For strings and buffers, a lexicographic comparison is performed. True is
returned if a byte-wise (unsigned) compare discovers at least one byte in Source1 that is numerically
greater than the corresponding byte in Source2. False is returned if at least one byte in Source1 is
numerically less than the corresponding byte in Source2. In the case of byte-wise equality, True is
returned if the length of Source1 is greater than Source2, False is returned if the length of Source1 is less
than or equal to Source2.

19.6.70 LGreaterEqual (Logical Greater Than Or Equal)

Syntax
LGreaterEqual (Source1, Source2) => Boolean

Source1 >= Source2 => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description
If Source1 is greater than or equal to Source2, True is returned; otherwise, False is returned. Equivalent to
LNot(LLess()). See the description of the LLess operator.

19.6.71 LLess (Logical Less)

Syntax
LLess (Source1, Source2) => Boolean
UEFI Forum, Inc. January 2019 Page 991

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Source1 < Source2 => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description
If Source1 is less than Source2, True is returned; otherwise, False is returned. For integers, a numeric
comparison is performed. For strings and buffers, a lexicographic comparison is performed. True is
returned if a byte-wise (unsigned) compare discovers at least one byte in Source1 that is numerically less
than the corresponding byte in Source2. False is returned if at least one byte in Source1 is numerically
greater than the corresponding byte in Source2. In the case of byte-wise equality, True is returned if the
length of Source1 is less than Source2, False is returned if the length of Source1 is greater than or equal to
Source2.

19.6.72 LLessEqual (Logical Less Than Or Equal)

Syntax
LLessEqual (Source1, Source2) => Boolean

Source1 <= Source2 => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description
If Source1 is less than or equal to Source2, True is returned; otherwise False is returned. Equivalent to
LNot(LGreater()). See the description of the LGreater operator.

19.6.73 LNot (Logical Not)

Syntax
LNot (Source) => Boolean

!Source => Boolean

Arguments

Source is evaluated as an integer.

Description
If the value is zero True is returned; otherwise, False is returned.
UEFI Forum, Inc. January 2019 Page 992

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.74 LNotEqual (Logical Not Equal))

Syntax
LNotEqual (Source1, Source2) => Boolean

Source1 != Source2 => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description
If Source1 is not equal to Source2, True is returned; otherwise False is returned. Equivalent to
LNot(LEqual()).See the description of the LEqual operator.

19.6.75 Load (Load Definition Block)

Syntax
Load (Object, DDBHandle)

Arguments

The Object parameter can refer to one of the following object types:

1. An operation region field

2. An operation region directly

3. An ASL Buffer object

If the object is an operation region, the operation region must be in SystemMemory space. The Definition
Block should contain an ACPI DESCRIPTION_HEADER of type SSDT.

The Definition Block must be totally contained within the supplied operation region, operation region
field, or Buffer object. OSPM reads this table into memory, the checksum is verified, and then it is loaded
into the ACPI namespace.

Description
Performs a run-time load of a Definition Block. Any table loaded via an operation region must be in
memory marked as AddressRangeReserved or AddressRangeNVS. The OS can also check the OEM Table
ID and Revision ID against a database for a newer revision Definition Block of the same OEM Table ID and
load it instead.

The default namespace location to load the Definition Block is relative to the root of the namespace. The
new Definition Block can override this by specifying absolute names or by adjusting the namespace
location using the Scope operator.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition
Block has been loaded. The control methods defined in the Definition Block are not executed during load
time.
UEFI Forum, Inc. January 2019 Page 993

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.76 LoadTable (Load Definition Block From XSDT)

Syntax
LoadTable (SignatureString, OEMIDString, OEMTableIDString, RootPathString, ParameterPathString,
ParameterData) => DDBHandle

Arguments

The XSDT is searched for a table where the Signature field matches SignatureString, the OEM ID field
matches OEMIDString, and the OEM Table ID matches OEMTableIDString. All comparisons are case
sensitive. If the SignatureString is greater than four characters, the OEMIDString is greater than six
characters, or the OEMTableID is greater than eight characters, a run-time error is generated. The OS can
also check the OEM Table ID and Revision ID against a database for a newer revision Definition Block of
the same OEM Table ID and load it instead.

The RootPathString specifies the root of the Definition Block. It is evaluated using normal scoping rules,
assuming that the scope of the LoadTable instruction is the current scope. The new Definition Block can
override this by specifying absolute names or by adjusting the namespace location using the Scope
operator. If RootPathString is not specified, “\” is assumed

If ParameterPathString and ParameterData are specified, the data object specified by ParameterData is
stored into the object specified by ParameterPathString after the table has been added into the
namespace. If the first character of ParameterPathString is a backslash (‘\’) or caret (‘^’) character, then
the path of the object is ParameterPathString. Otherwise, it is RootPathString.ParameterPathString. If
the specified object does not exist, a run-time error is generated.

The handle of the loaded table is returned. If no table matches the specified signature, then 0 is returned.

Description
Performs a run-time load of a Definition Block from the XSDT. Any table referenced by LoadTable must be
in memory marked by AddressRangeReserved or AddressRangeNVS.

Note: OSPM loads the DSDT and all SSDTs during initialization. As such, Definition Blocks to be
conditionally loaded via LoadTable must contain signatures other than “SSDT”.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition
Block has been loaded. The control methods defined in the Definition Block are not executed during load
time.

Example
 Store (LoadTable (“OEM1”, ”MYOEM”, ”TABLE1”, ”_SB.PCI0”,”MYD”,
 Package () {0,”_SB.PCI0”}), Local0)

This operation would search through the RSDT or XSDT for a table with the signature “OEM1,” the OEM
ID of “MYOEM,” and the table ID of “TABLE1.” If not found, it would store Zero in Local0. Otherwise, it
will store a package containing 0 and “_SB.PCI0” into the variable at _SB.PCI0.MYD.
UEFI Forum, Inc. January 2019 Page 994

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.77 Localx (Method Local Data Objects)

Syntax
Local0 | Local1 | Local2 | Local3 | Local4 | Local5 | Local6 | Local7

Description
Up to 8 local objects can be referenced in a control method. On entry to a control method, these objects
are uninitialized and cannot be used until some value or reference is stored into the object. Once
initialized, these objects are preserved in the scope of execution for that control method.

19.6.78 LOr (Logical Or)

Syntax
LOr (Source1, Source2) => Boolean

Source1 || Source2 => Boolean

Arguments

Source1 and Source2 are evaluated as integers.

Description
If either value is non-zero, True is returned; otherwise, False is returned.

19.6.79 Match (Find Object Match)

Syntax
Match (SearchPackage, Op1, MatchObject1, Op2, MatchObject2, StartIndex) => Ones | Integer

Arguments

SearchPackage is evaluated to a package object and is treated as a one-dimension array. Each package
element must evaluate to either an integer, a string, or a buffer. Uninitialized package elements and
elements that do not evaluate to integers, strings, or buffers are ignored. Op1 and Op2 are match
operators. MatchObject1 and MatchObject2 are the objects to be matched and must each evaluate to
either an integer, a string, or a buffer. StartIndex is the starting index within the SearchPackage.

Description
A comparison is performed for each element of the package, starting with the index value indicated by
StartIndex (0 is the first element). If the element of SearchPackage being compared against is called P[i],
then the comparison is:

If (P[i] Op1 MatchObject1) and (P[i] Op2 MatchObject2) then Match => i is returned.

If the comparison succeeds, the index of the element that succeeded is returned; otherwise, the constant
object Ones is returned. The data type of the MatchObject dictates the required type of the package
element. If necessary, the package element is implicitly converted to match the type of the MatchObject.
If the implicit conversion fails for any reason, the package element is ignored (no match.)
UEFI Forum, Inc. January 2019 Page 995

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Op1 and Op2 have the values and meanings listed in the following table.

Table 19-432 Match Term Operator Meanings

Operator Encoding Macro

TRUE – A don’t care, always returns TRUE 0 MTR

EQ – Returns TRUE if P[i] == MatchObject 1 MEQ

LE – Returns TRUE if P[i] <= MatchObject 2 MLE

LT – Returns TRUE if P[i] < MatchObject 3 MLT

GE – Returns TRUE if P[i] >= MatchObject 4 MGE

GT – Returns TRUE if P[i] > MatchObject 5 MGT

Example
Following are some example uses of Match:

Name (P1,
 Package () {1981, 1983, 1985, 1987, 1989, 1990, 1991, 1993, 1995, 1997, 1999,
2001}
)

// match 1993 == P1[i]
Match (P1, MEQ, 1993, MTR, 0, 0) // -> 7, since P1[7] == 1993

// match 1984 == P1[i]
Match (P1, MEQ, 1984, MTR, 0, 0) // -> ONES (not found)

// match P1[i] > 1984 and P1[i] <= 2000
Match (P1, MGT, 1984, MLE, 2000, 0) // -> 2, since P1[2]>1984 and P1[2]<=2000

// match P1[i] > 1984 and P1[i] <= 2000, starting with 3rd element
Match (P1, MGT, 1984, MLE, 2000, 3) // -> 3, first match at or past Start

19.6.80 Memory24 (Memory Resource Descriptor Macro)

Syntax
Memory24 (ReadAndWrite, AddressMinimum, AddressMaximum, AddressAlignment, RangeLength,
DescriptorName)

Arguments

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.
UEFI Forum, Inc. January 2019 Page 996

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
AddressMinimum evaluates to a 16-bit integer that specifies bits [8:23] of the lowest possible base
address of the memory range. All other bits are assumed to be zero. The value must be an even multiple
of AddressAlignment. The 16-bit field DescriptorName._MIN is automatically created to refer to this
portion of the resource descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies bits [8:23] of the highest possible base
address of the memory range. All other bits are assumed to be zero. The value must be an even multiple
of AddressAlignment. The 16-bit field DescriptorName._MAX is automatically created to refer to this
portion of the resource descriptor.

AddressAlignment evaluates to a 16-bit integer that specifies bits [0:15] of the required alignment for the
memory range. All other bits are assumed to be zero. The address selected must be an even multiple of
this value. The 16-bit field DescriptorName. _ALN is automatically created to refer to this portion of the
resource descriptor.

RangeLength evaluates to a 16-bit integer that specifies the total number of bytes decoded in the
memory range. The 16-bit field DescriptorName. _LEN is automatically created to refer to this portion of
the resource descriptor. The range length provides the length of the memory range in 256 byte blocks.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The Memory24 macro evaluates to a buffer which contains an 24-bit memory descriptor. The format of
the 24-bit memory descriptor can be found in “24-Bit Memory Range Descriptor ” (page 426). The macro
is designed to be used inside of a ResourceTemplate (page 1033).

Note: The use of Memory24 is deprecated and should not be used in new designs.

19.6.81 Memory32 (Memory Resource Descriptor Macro)

Syntax
Memory32 (ReadAndWrite, AddressMinimum, AddressMaximum, AddressAlignment, RangeLength,
DescriptorName)

Arguments

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the
memory range. The value must be an even multiple of AddressAlignment. The 32-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the
memory range. The value must be an even multiple of AddressAlignment. The 32-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.
UEFI Forum, Inc. January 2019 Page 997

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
AddressAlignment evaluates to a 32-bit integer that specifies the required alignment for the memory
range. The address selected must be an even multiple of this value. The 32-bit field DescriptorName.
_ALN is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the
memory range. The 32-bit field DescriptorName. _LEN is automatically created to refer to this portion of
the resource descriptor. The range length provides the length of the memory range in 1 byte blocks.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The Memory32 macro evaluates to a buffer which contains a 32-bit memory descriptor, which describes
a memory range with a minimum, a maximum and an alignment. The format of the 32-bit memory
descriptor can be found in “32-Bit Memory Range Descriptor ” (page 427). The macro is designed to be
used inside of a ResourceTemplate (page 1033).

19.6.82 Memory32Fixed (Memory Resource Descriptor Macro)

Syntax
Memory32Fixed (ReadAndWrite, AddressBase, RangeLength, DescriptorName)

Arguments

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressBase evaluates to a 32-bit integer that specifies the base address of the memory range. The 32-
bit field DescriptorName. _BAS is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the
memory range. The 32-bit field DescriptorName. _LEN is automatically created to refer to this portion of
the resource descriptor.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The Memory32Fixed macro evaluates to a buffer which contains a 32-bit memory descriptor, which
describes a fixed range of memory addresses. The format of the fixed 32-bit memory descriptor can be
found in 32-Bit Fixed Memory Range Descriptor (page 429). The macro is designed to be used inside of a
ResourceTemplate (page 1033).
UEFI Forum, Inc. January 2019 Page 998

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.83 Method (Declare Control Method)

Syntax
Method (MethodName, NumArgs, SerializeRule, SyncLevel, ReturnType, ParameterTypes) {TermList}

Arguments

MethodName is evaluated as a Namestring data type.

NumArgs is optional and is the required number of arguments to be passed to the method, evaluated as
an Integer data type. If not specified, the default value is zero arguments. Up to 7 arguments may be
passed to a method. These arguments may be referenced from within the method as Arg0 through Arg6.

SerializeRule is optional and is a flag that defines whether the method is serialized or not and is one of the
following: Serialized or NotSerialized. A method that is serialized cannot be reentered by additional
threads. If not specified, the default is NotSerialized.

SyncLevel is optional and specifies the synchronization level for the method (0 – 15). If not specified, the
default sync level is zero.

ReturnType is optional and specifies the type(s) of the object(s) returned by the method. If the method
does not return an object, then nothing is specified or UnknownObj is specified. To specify a single return
type, simply use the ObjectTypeKeyword (e.g. IntObj, PkgObj, etc.). To specify multiple possible return
types, enclose the comma-separated ObjectTypeKeywords with braces. For example: {IntObj,
BuffObj}.

ParameterTypes is optional and specifies the type of the method parameters. It is a comma-separated,
variable-length list of the expected object type or types for each of the method parameters, enclosed in
braces. For each parameter, the parameter type consists of either an ObjectTypeKeyword or a comma-
separated sub-list of ObjectTypeKeywords enclosed in braces. If ParameterTypes is specified, the number
of parameters must match NumArgs.

TermList is a variable-length list of executable ASL statements representing the body of the control
method.

Description
Creates a new control method of name MethodName. This is a named package containing a series of
object references that collectively represent a control method, which is a procedure that can be invoked
to perform computation. Method opens a name scope.

System software executes a control method by referencing the objects in the package in order. For more
information on method execution, see Section 5.5.2, “Control Method Execution.”

The current namespace location used during name creation is adjusted to be the current location on the
namespace tree. Any names created within this scope are “below” the name of this package. The current
namespace location is assigned to the method package, and all namespace references that occur during
control method execution for this package are relative to that location.

If a method is declared as Serialized, an implicit mutex associated with the method object is acquired at
the specified SyncLevel. If no SyncLevel is specified, SyncLevel 0 is assumed. The serialize rule can be used
to prevent reentering of a method. This is especially useful if the method creates namespace objects.
UEFI Forum, Inc. January 2019 Page 999

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Without the serialize rule, the reentering of a method will fail when it attempts to create the same
namespace object.

There are eight local variables automatically available for each method, referenced as Local0 through
Local7. These locals may be used to store any type of ASL object.

Also notice that all namespace objects created by a method have temporary lifetime. When method
execution exits, the created objects will be destroyed.

Examples
The following block of ASL sample code shows a use of Method for defining a control method that turns
on a power resource.

Method (_ON) {
 Store (One, GIO.IDEP) // assert power
 Sleep (10) // wait 10ms
 Store (One, GIO.IDER) // de-assert reset#
 Stall (10) // wait 10us
 Store (Zero, GIO.IDEI) // de-assert isolation
}

This method is an implementation of _SRS (Set Resources). It shows the use of a method argument and
two method locals.

Method (_SRS, 1, NotSerialized)
{
 CreateWordField (Arg0, One, IRQW)
 Store (_SB.PCI0.PID1.IENA, Local1)
 Or (IRQW, Local1, Local1)
 Store (Local1, _SB.PCI0.PID1.IENA)
 FindSetRightBit (IRQW, Local0)
 If (Local0)
 {
 Decrement (Local0)
 Store (Local0, _SB.PCI0.PID1.IN01)
 }
}

19.6.84 Mid (Extract Portion of Buffer or String)

Syntax
Mid (Source, Index, Length, Result) => Buffer or String

Arguments

Source is evaluated as either a Buffer or String. Index and Length are evaluated as Integers.
UEFI Forum, Inc. January 2019 Page 1000

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
If Source is a buffer, then Length bytes, starting with the Indexth byte (zero-based) are optionally copied
into Result. If Index is greater than or equal to the length of the buffer, then the result is an empty buffer.
Otherwise, if Index + Length is greater than or equal to the length of the buffer, then only bytes up to and
including the last byte are included in the result.

If Source is a string, then Length characters, starting with the Indexth character (zero-based) are
optionally copied into Result. If Index is greater than or equal to the length of the buffer, then the result is
an empty string. Otherwise, if Index + Length is greater than or equal to the length of the string, then only
bytes up to an including the last character are included in the result.

19.6.85 Mod (Integer Modulo)

Syntax
Mod (Dividend, Divisor, Result) => Integer

Result = Dividend % Divisor => Integer

Result %= Divisor => Integer

Arguments

Dividend and Divisor are evaluated as Integers.

Description
The Dividend is divided by Divisor, and then the resulting remainder is optionally stored into Result. If
Divisor evaluates to zero, a fatal exception is generated.

19.6.86 Multiply (Integer Multiply)

Syntax
Multiply (Multiplicand, Multiplier, Result) => Integer

Result = Multiplicand * Multiplier => Integer

Result *= Multiplier => Integer

Arguments

Multiplicand and Multiplier are evaluated as Integers.

Description
The Multiplicand is multiplied by Multiplier and the result is optionally stored into Result. Overflow
conditions are ignored and results are undefined.

19.6.87 Mutex (Declare Synchronization/Mutex Object)

Syntax
Mutex (MutexName, SyncLevel)
UEFI Forum, Inc. January 2019 Page 1001

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Arguments

The MutexName is evaluated as a Namestring data type.

The SyncLevel is optional and specifies the logical nesting level of the Mutex synchronization object. The
current sync level is maintained internally for a thread, and represents the greatest SyncLevel among
mutex objects that are currently acquired by the thread. The SyncLevel of a thread, before acquiring any
mutexes, is zero. The SyncLevel of the Global Lock (_GL) is zero. If not specified, the default sync level
value is zero.

Description

Creates a data mutex synchronization object named MutexName, with a synchronization level from 0 to
15 as specified by the Integer SyncLevel.

A mutex synchronization object provides a control method with a mechanism for waiting for certain
events. To prevent deadlocks, wherever more than one synchronization object must be owned, the
synchronization objects must always be released in the order opposite the order in which they were
acquired.

The SyncLevel parameter declares the logical nesting level of the synchronization object. The current sync
level is maintained internally for a thread, and represents the greatest SyncLevel among mutex objects
that are currently acquired by the thread. The SyncLevel of a thread before acquiring any mutexes is zero.
The SyncLevel of the Global Lock (_GL) is zero.

All Acquire terms must refer to a synchronization object with a SyncLevel that is equal or greater than the
current level, and all Release terms must refer to a synchronization object with a SyncLevel that is equal
to the current level.

Mutex synchronization provides the means for mutually exclusive ownership. Ownership is acquired
using an Acquire term and is released using a Release term. Ownership of a Mutex must be relinquished
before completion of any invocation. For example, the top-level control method cannot exit while still
holding ownership of a Mutex. Acquiring ownership of a Mutex can be nested (can be acquired multiple
times by the same thread).

19.6.88 Name (Declare Named Object)

Syntax
Name (ObjectName, Object)

Arguments
Creates a new object named ObjectName. Attaches Object to ObjectName in the Global ACPI namespace.

Description
Creates ObjectName in the namespace, which references the Object.

Example
The following example creates the name PTTX in the root of the namespace that references a package.

Name (\PTTX, // Port to Port Translate Table
UEFI Forum, Inc. January 2019 Page 1002

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 Package () {Package () {0x43, 0x59}, Package) {0x90, 0xFF}}
)

The following example creates the name CNT in the root of the namespace that references an integer
data object with the value 5.

Name (\CNT, 5)

19.6.89 NAnd (Integer Bitwise Nand)

Syntax
NAnd (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description
A bitwise NAND is performed and the result is optionally stored in Result.

19.6.90 NoOp Code (No Operation)

Syntax
NoOp

Description
This operation has no effect.

19.6.91 NOr (Integer Bitwise Nor)

Syntax
NOr (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description
A bitwise NOR is performed and the result is optionally stored in Result.

19.6.92 Not (Integer Bitwise Not)

Syntax
Not (Source, Result) => Integer

Result = ~Source => Integer

Arguments

Source is evaluated as an integer data type.
UEFI Forum, Inc. January 2019 Page 1003

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
A bitwise NOT is performed and the result is optionally stored in Result.

19.6.93 Notify (Notify Object of Event)

Syntax
Notify (Object, NotificationValue)

Arguments

Notifies the OS that the NotificationValue for the Object has occurred. Object must be a reference to a
device, processor, or thermal zone object.

Description
Object type determines the notification values. For example, the notification values for a thermal zone
object are different from the notification values used for a device object. Undefined notification values
are treated as reserved and are ignored by the OS.

For lists of defined Notification values, see Section 5.6.6, “Device Object Notifications.”

19.6.94 Offset (Change Current Field Unit Offset)

Syntax
Offset (ByteOffset)

Arguments

ByteOffset is the new offset (in bytes) for the next FieldUnit within a FieldList.

Description
The Offset operator is used within a FieldList to specify the byteOffset of the next defined field within its
parent operation region. This can be used instead of defining the bit lengths that need to be skipped. All
offsets are defined starting from zero, based at the starting address of the parent region.

19.6.95 ObjectType (Get Object Type)

Syntax
ObjectType (Object) => Integer

Arguments

Object is any valid object.

Description
The execution result of this operation is an integer that has the numeric value of the object type for
Object.

The object type codes are listed in Table 18-20. Notice that if this operation is performed on an object
reference such as one produced by the Alias, Index, or RefOf statements, the object type of the base
UEFI Forum, Inc. January 2019 Page 1004

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
object is returned. For typeless objects such as predefined scope names (in other words, _SB, _GPE,
etc.), the type value 0 (Uninitialized) is returned.

Table 19-433 TValues Returned By the ObjectType Operator

Value Object

0 Uninitialized

1 Integer

2 String

3 Buffer

4 Package

5 Field Unit

6 Device

7 Event

8 Method

9 Mutex

10 Operation Region

11 Power Resource

12 Processor

13 Thermal Zone

14 Buffer Field

15 DDB Handle

16 Debug Object

>16 Reserved

19.6.96 One (Constant One Integer)

Syntax
One=> Integer

Description
The One operator returns an Integer with the value 1. Writes to this object are not allowed. The use of
this operator can reduce AML code size, since it is represented by a one-byte AML opcode.

19.6.97 Ones (Constant Ones Integer)

Syntax
Ones=> Integer
UEFI Forum, Inc. January 2019 Page 1005

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
The Ones operator returns an Integer with all bits set to 1. Writes to this object are not allowed. The use
of this operator can reduce AML code size, since it is represented by a one-byte AML opcode.

Note: The actual value of the integer returned by the Ones operator depends on the integer width of the
DSDT. If the revision of the DSDT is 1 or less, the integer width is 32 bits and Ones returns
0xFFFFFFFF. If the revision of the DSDT is 2 or greater, the integer width is 64 bits and Ones
returns 0xFFFFFFFFFFFFFFFF. This difference must be considered when performing comparisons
against the Ones Integer.

19.6.98 OperationRegion (Declare Operation Region)

Syntax
OperationRegion (RegionName, RegionSpace, Offset, Length)

Arguments

Declares an operation region named RegionName. Offset is the offset within the selected RegionSpace at
which the region starts (byte-granular), and Length is the length of the region in bytes.

Description
An Operation Region is a type of data object where read or write operations to the data object are
performed in some hardware space. For example, the Definition Block can define an Operation Region
within a bus, or system I/O space. Any reads or writes to the named object will result in accesses to the I/
O space.

Operation regions are regions in some space that contain hardware registers for exclusive use by ACPI
control methods. In general, no hardware register (at least byte-granular) within the operation region
accessed by an ACPI control method can be shared with any accesses from any other source, with the
exception of using the Global Lock to share a region with the firmware. The entire Operation Region can
be allocated for exclusive use to the ACPI subsystem in the host OS.

Operation Regions that are defined within the scope of a method are the exception to this rule. These
Operation Regions are known as “Dynamic” since the OS has no idea that they exist or what registers
they use until the control method is executed. Using a Dynamic SystemIO or SystemMemory Operation
Region is not recommended since the OS cannot guarantee exclusive access. All other types of Operation
Regions may be Dynamic.

Operation Regions define the overall base address and length of a hardware region, but they cannot be
accessed directly by AML code. A Field object containing one or more FieldUnits is used to overlay the
Operation Region in order to access individual areas of the Region. An individual FieldUnit within an
Operation Region may be as small as one bit, or as large as the length of the entire Region. FieldUnit
values are normalized (shifted and masked to the proper length.) The data type of a FieldUnit can be
either a Buffer or an Integer, depending on the bit length of the FieldUnit. If the FieldUnit is smaller than
or equal to the size of an Integer (in bits), it will be treated as an Integer. If the FieldUnit is larger than the
size of an Integer, it will be treated as a Buffer. The size of an Integer is indicated by the DSDT header’s
Revision field. A revision less than 2 indicates that the size of an Integer is 32 bits. A value greater than or
equal to 2 signifies that the size of an Integer is 64 bits. For more information about data types and
FieldUnit type conversion rules, see Section 19.3.5.7, “Data Type Conversion Rules”.
UEFI Forum, Inc. January 2019 Page 1006

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
An Operation Region object implicitly supports Mutex synchronization. Updates to the object, or a Field
data object for the region, will automatically synchronize on the Operation Region object; however, a
control method may also explicitly synchronize to a region to prevent other accesses to the region (from
other control methods). Notice that according to the control method execution model, control method
execution is non-preemptive. Because of this, explicit synchronization to an Operation Region needs to
be done only in cases where a control method blocks or yields execution and where the type of register
usage requires such synchronization.

The predefined Operation Region types specified in ACPI are shown in the Table 5-160 on page 275.

Example
The following example ASL code shows the use of OperationRegion combined with Field to describe IDE
0 and 1 controlled through general I/O space, using one FET.

OperationRegion (GIO, SystemIO, 0x125, 0x1)
Field (GIO, ByteAcc, NoLock, Preserve) {
 IDEI, 1, // IDEISO_EN - isolation buffer
 IDEP, 1, // IDE_PWR_EN - power
 IDER, 1 // IDERST#_EN - reset#
}

19.6.99 Or (Integer Bitwise Or)

Syntax
Or (Source1, Source2, Result) => Integer

Result = Source1 | Source2 => Integer

Result |= Source1 => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description
A bitwise OR is performed and the result is optionally stored in Result.

19.6.100 Package (Declare Package Object)

Syntax
Package (NumElements) {PackageList} => Package

Arguments

NumElements is evaluated as an Integer. PackageList is an initializer list of objects.
UEFI Forum, Inc. January 2019 Page 1007

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
Declares an unnamed aggregation of named data items, constants, and/or references to non-data
namespace objects. The size of the package is NumElements. The PackageList contains the data items,
constants, and/or object references used to initialize the package.

If NumElements is absent, it is automatically set by the ASL compiler to match the number of elements in
the PackageList. If NumElements is present and greater than the number of elements in the PackageList,
the default entry of type Uninitialized (see ObjectType) is used to initialize the package elements beyond
those initialized from the PackageList.

There are three types of package elements allowed in the PackageList: ConstantData Objects(Integers,
Strings, Buffers, and Packages), named references that resolve to Data Objects (Integers, Strings, Buffers,
and Packages), and named references to objects other than Data Objects.

These constant terms are resolved at ASL compile time:

• Integer Constant
• String Constant
• Buffer Constant
• Package Constant

These Named References to Data Objects are resolved to actual data by the AML Interpreter at runtime:

• Integer reference
• String reference
• Buffer reference
• Buffer Field reference
• Field Unit reference
• Package reference

These Named References to non-Data Objects cannot be resolved to values. They are instead returned in
the package as references:

• Device reference
• Event reference
• Method reference
• Mutex reference
• Operation Region reference
• Power Resource reference
• Processor reference
• Thermal Zone reference

Note: For Package elements of type Package (defining a subpackage), individual elements of the
subpackage are resolved according to the rules above, both compile-time and runtime.

Evaluating an uninitialized element will yield a runtime error, but elements can be assigned values at
runtime to define them (via the Index operator). It is a compile time error for NumElements to be less
than the number of elements defined in the PackageList.
UEFI Forum, Inc. January 2019 Page 1008

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
The ASL compiler can emit two different AML opcodes for a Package declaration, either PackageOp or
VarPackageOp. For small, fixed-length packages, the PackageOp is used and this opcode is compatible
with ACPI 1.0. A VarPackageOp will be emitted if any of the following conditions are true:

• The NumElements argument is a TermArg that can only be resolved at runtime.
• At compile time, NumElements resolves to a constant that is larger than 255.
• The PackageList contains more than 255 initializer elements.

Example
Name (INT1, 0x1234)
Processor (CPU0, 0, 0x1010, 6) {}
PowerResource (PWR1, 0, 0) {}

Name (PKG1, Package () {
 0x3400, // Integer Constant, resolved at compile time
 "Processor" // String Constant, resolved at compile time
 \INT1 // Integer Reference, resolved to value at
 // runtime
 \CPU0 // Object Reference, returned as a reference
 // object
 Package () { // Package Constant. Elements are resolved at
 // both compile time and runtime
 0x4321, // Integer Constant, resolved at compile time
 \INT1, // Integer Reference, resolved to value at
 // runtime
 \PWR1
 })

The runtime values of the parent package and subpackages are:

Package [Contains 0x05 Elements]
 (00) Integer 0x0000000000003400
 (01) String [0x09] "Processor"
 (02) Integer 0x0000000000001234
 (03) Reference [Named Object] [CPU0] Processor
 (04) Package [Contains 0x03 Elements]
 (00) Integer 0x0000000000004321
 (01) Integer 0x0000000000001234
 (02) Reference [Named Object] [PWR1] Power
}

19.6.101 Pin Configuration

Syntax
Macro:

PinConfig (Shared/Exclusive, PinConfigType, PinConfigValue, ResourceSource,

ResourceSourceIndex, ResourceUsage, DescriptorName, VendorData) {Pin List}
UEFI Forum, Inc. January 2019 Page 1009

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Arguments

• Shared is an optional argument and can be either Shared or Exclusive. If not specified, Exclusive
is assumed. The bit field name _SHR is automatically created to refer to this portion of the
resource descriptor.

• PinConfigType can be one of the configuration types described below in Table 19-434. The bit
field _TYP is automatically created to refer to this portion of the resource descriptor.

• PinConfigValue is one of the configurations values described below in Table 19-434. The bit
field _VAL is automatically created to refer to this portion of the resource descriptor.

• ResourceSource is a string which uniquely identifies the pin controller referred to by this
descriptor. ResourceSource can be a fully-qualified name, a relative name or a name segment
that utilizes the namespace search rules.

• ResourceSourceIndex is an optional argument and is assumed to be 0 for this revision.
• ResourceUsage is an optional argument and is assumed to be ResourceConsumer for this

revision.
• DescriptorName is an optional argument that specifies a name for an integer constant that will

be created in the current scope that contains the offset of this resource descriptor within the
current resource template buffer. The predefined descriptor field names may be appended to
this name to access individual fields within the descriptor via the Buffer Field operators.

• VendorData is an optional argument that specifies a RawDataBuffer containing vendor-defined
byte data to be decoded by the OS driver. The bit field name _VEN is automatically created to
refer to this portion of the resource descriptor.

• PinList is a list of pin numbers on the ResourceSource that are described by this descriptor. The
bit field name _PIN is automatically created to refer to this portion of the resource descriptor.

Table 19-434 Pin Configuration Types and Values

Pin Configuration Type Pin Configuration Value Description

0x00 = Default N/A Default configuration. No configuration is applied.

0x01 = Bias Pull-Up Pull up resistance, in
Ohms.

This means the pin is pulled up with a certain
number of Ohms to an implicitly supplied VDD rail.

0x02 = Bias Pull-down Pull down
resistance, in Ohms.

This means the pin is pulled down with a certain
number of Ohms, toward the GND rail.

0x03 = Bias Default N/A If the silicon has a default biasing mode, reset the
pin to this mode.

0x04 = Bias Disable N/A Any software-selectable bias settings on the pin
will be disabled.

0x05 = Bias High Impedance N/A This means that the pin is configured into a high
impedance mode and essentially shut off from the
outside world. It will not influence the signal state
if a rail is connected to the pin, hence a good
default mode.

0x06 = Bias Bus Hold N/A This will make the pin in a weak latch state where
it weakly drives the last value on a tristate bus.

0x07 = Drive Open Drain N/A This will configure the pin into open drain (open
collector) state.
UEFI Forum, Inc. January 2019 Page 1010

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
The PinConfig macro evaluates to a buffer that contains a Pin Configuration resource descriptor. The
format of the Pin Configuration resource descriptor can be found in “Pin Configuration Descriptor” on
page 462. The macro is designed to be used inside of an ASL Resource Template (Section 19.3.3).

Note: There is some overlap between the properties set by GpioIo/GpioInt/ PinFunction and PinConfig
descriptors. For example, both are setting properties such as pull-ups. If the same property is specified
by multiple descriptors for the same pins, the order in which these properties are applied is
undetermined. To avoid any conflicts, GpioInt/GpioIo/PinFunction should provide a default value for
these properties when PinConfig is used. If PinConfig is used to set pin bias, PullDefault should be used
for GpioIo/GpioInt/ PinFunction. If PinConfig is used to set debounce timeout, 0 should be used for
GpioIo/GpioInt. If PinConfig is used to set drive strength, 0 should be used for GpioIo.

0x08 = Drive Open Source N/A This will configure the pin into open source (open
emitter) state.

0x09 = Drive Push Pull N/A This will configure the pin into explicit push-pull
state. This is useful if the power-on default state is
e.g. open drain or high impedance state.

0x0A = Drive Strength Drive strength in
milliamperes

This will set the output driver of the pin to supply
a certain number of milliamperes, usually by
activating several driver stages.

0x0B = Slew Rate Custom format This controls the slew rate of the pin, affecting
speed but also sharpness of edges and thus
noisiness on the board. The hardware-specific
argument tells what slew rate to configure

0x0C = Input Debounce Debounce time in
microseconds.

This will enable debouncing (for e.g. key inputs) of
the pin signal.

0x0D = Input Schmitt Trigger Enabled = 1,
Disabled = 0

This will enable Schmitt trigger support for the
line.

0x0E – 0x7F = Reserved Reserved Reserved

0x80 – 0xFF = Vendor defined
values

Custom base From this point, vendor and Hardware-specific
configurations are listed.

Pin Configuration Type Pin Configuration Value Description
UEFI Forum, Inc. January 2019 Page 1011

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Example
//
// Description: GPIO
//
Device (GPI0)
{
 Name (_HID, "PNPFFFE")
 Name (_UID, 0x0)
 Method (_STA)
 {
 Return(0xf)
 }
 Method (_CRS, 0x0, NotSerialized)
 {
 Name (RBUF, ResourceTemplate()
 {
 Memory32Fixed(ReadWrite, 0x4FE00000, 0x20)
 Interrupt(ResourceConsumer, Level, ActiveHigh,
Shared) {0x54}
 })
 Return(RBUF)
}
}

//
// Description: I2C controller 1
//
Device (I2C1)
{
 Name (_HID, "PNPFFFF")
 Name (_UID, 0x0)
 Method (_STA)
 {
 Return(0xf)
 }
 Method (_CRS, 0x0, NotSerialized)
 {
 Name (RBUF, ResourceTemplate()
 {
 Memory32Fixed(ReadWrite, 0x4F800000, 0x20)
 Interrupt(ResourceConsumer, Level, ActiveHigh,
Shared) {0x55}
 PinFunction(Exclusive, PullDefault, 0x5,
"_SB.GPI0", 0, ResourceConsumer,) {2, 3}

 // Configure 10k Pull up for I2C SDA/SCL pins
 PinConfig(Exclusive, 0x01, 10000, "_SB.GPI0", 0,

ResourceConsumer,) {2, 3}
UEFI Forum, Inc. January 2019 Page 1012

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 })
 Return(RBUF)
 }
}

//
// Description: Physical display panel
//

Device (SDIO)
{
 Name (_HID, "PNPFFFD")
 Name (_UID, 0x0)
 Method (_STA)
 {
 Return(0xf)
 }
 Method (_CRS, 0x0, NotSerialized)
 {
 Name (RBUF, ResourceTemplate()
 {
 Memory32Fixed(ReadWrite, 0x4F900000, 0x20)
 Interrupt(ResourceConsumer, Level, ActiveHigh,
Shared) {0x57}
 GpioIo(Shared, PullDefault, 0, 0, IoRestrictionNone,
"_SB.GPI0",) {2, 3}

 // Configure 20k Pull down
 PinConfig(Exclusive, 0x02, 20000, "_SB.GPI0", 0,

ResourceConsumer,) {2, 3}
 // Enable Schmitt-trigger
 PinConfig(Exclusive, 0x0D, 1, "_SB.GPI0", 0,

ResourceConsumer,) {2, 3}
 // Set slew rate to custom value 3
 PinConfig(Exclusive, 0x0B, 3, "_SB.GPI0", 0,

ResourceConsumer,) {2, 3}
 })
 Return(RBUF)
}
}

19.6.102 Pin Function

Syntax
Macro:

PinFunction(Shared/Exclusive, PinPullConfiguration, FunctionNumber, ResourceSource,
ResourceSourceIndex, ResourceUsage, DescriptorName, VendorData) {Pin List}
UEFI Forum, Inc. January 2019 Page 1013

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Arguments

• Shared is an optional argument and can be one of Shared, Exclusive. If not specified, Exclusive
is assumed. The bit field name _SHR is automatically created to refer to this portion of the
resource descriptor.

• PinPullConfiguration can be one of PullDefault, PullUp, PullDown, PullNone or a vendor-
supplied value in the range 128-255.

• FunctionNumber is a provider-specific integer that designates which function is being
described.

• ResourceSource is a string which uniquely identifies the GPIO controller referred to by this
descriptor. ResourceSource can be a fully-qualified name, a relative name or a name segment
that utilizes the namespace search rules.

• ResourceSourceIndex is an optional argument and is assumed to be 0 for this revision.
• ResourceUsage is an optional argument and is assumed to be ResourceConsumer for this

revision.
• DescriptorName is an optional argument that specifies a name for an integer constant that will

be created in the current scope that contains the offset of this resource descriptor within the
current resource template buffer. The predefined descriptor field names may be appended to
this name to access individual fields within the descriptor via the Buffer Field operators.

• VendorData is an optional argument that specifies a RawDataBuffer containing vendor-defined
byte data to be decoded by the OS driver. The bit field name _VEN is automatically created to
refer to this portion of the resource descriptor.

• PinList is a non-empty list of (zero-based) pin numbers on the ResourceSource that are
described by this descriptor. The bit field name _PIN is automatically created to refer to this
portion of the resource descriptor.

Description
The PinFunction macro evaluates to a buffer that contains a Pin Function resource descriptor, as
described in this section. The macro is designed to be used inside of a Resource Template
(Section 19.3.3).

Note: PinFunction macro allows for maximum flexibility to define the desired function of each pin
individually. It is the responsibility of the firmware writer to take into account any platform-level
restrictions where pin function must be applied at a coarser granularity. Thus, if the platform design
requires the functions for a set of pins to be configured as group, the firmware writer must ensure this is
done in the corresponding PinFunction description by specifying all relevant pins in a single PinFunction.
In the multi-pin scenario, the OSPM must honor the PinFunction requirements for all of the specified pins
on an “all-or-nothing” basis.

Note: The Pin Function descriptor is intended for scenarios where non-GPIO functions are desired. For
GPIO-based functionalities, the firmware should always specify the appropriate GpioIo or Gpioint
descriptor.

Example:
UEFI Forum, Inc. January 2019 Page 1014

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
//
// Description: GPIO
//

Device (GPI0)
{
 Name (_HID, "PNPFFFE")
 Name (_UID, 0x0)
 Method (_STA)
 {
 Return(0xf)
 }
 Method (_CRS, 0x0, NotSerialized)
 {
 Name (RBUF, ResourceTemplate()
 {
 Memory32Fixed(ReadWrite, 0x4FE00000, 0x20)
 Interrupt(ResourceConsumer, Level, ActiveHigh,
Shared) {0x54}
 })
 Return(RBUF)
}

//
// Description: I2C controller 1
//

Device (I2C1)
{
 Name (_HID, "PNPFFFF")
 Name (_UID, 0x0)
 Method (_STA)
 {
 Return(0xf)
 }
 Method (_CRS, 0x0, NotSerialized)
 {
 Name (RBUF, ResourceTemplate()
 {
 Memory32Fixed(ReadWrite, 0x4F800000, 0x20)
 Interrupt(ResourceConsumer, Level, ActiveHigh,
Shared) {0x55}
 PinFunction(Exclusive, PullUp, 0x5, "_SB.GPI0", 0,
ResourceConsumer,) {2, 3}
 })
 Return(RBUF)
 }
UEFI Forum, Inc. January 2019 Page 1015

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
}

//
// Description: I2C controller 2
//

Device (I2C2)
{
 Name (_HID, "PNPFFFF")
 Name (_UID, 0x1)
 Method (_STA)
 {
 Return(0xf)
 }
 Method (_CRS, 0x0, NotSerialized)
 {
 Name (RBUF, ResourceTemplate()
 {
 Memory32Fixed(ReadWrite, 0x4F900000, 0x20)
 Interrupt(ResourceConsumer, Level, ActiveHigh,
Shared) {0x56}
 PinFunction(Exclusive, PullUp, 0x0, 0x4,
"_SB.GPI0", 0, ResourceConsumer,) {2, 3}
 })
 Return(RBUF)
}
}

//
// Description: Physical display panel
//

Device (DISP)
{
 Name (_HID, "PNPFFFD")
 Name (_UID, 0x0)
 Method (_STA)
 {
 Return(0xf)
 }
 Method (_CRS, 0x0, NotSerialized)
 {
 Name (RBUF, ResourceTemplate()
 {
 Memory32Fixed(ReadWrite, 0x4F900000, 0x20)
 Interrupt(ResourceConsumer, Level, ActiveHigh,
Shared) {0x57}
UEFI Forum, Inc. January 2019 Page 1016

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 GpioIo(Shared, PullDefault, 0, 0, IoRestrictionNone,
"_SB.GPI0",) {2, 3}
 })
 Return(RBUF)
}
}

19.6.103 Pin Group

Syntax
Macro:

PinGroup (ResourceLabel, ResourceUsage, DescriptorName, VendorData) { Pin List }

Arguments

• ResourceUsage is an optional argument and is assumed to be ResourceProducer for this
revision.

• ResourceLabel is an arbitrary, non-empty string that uniquely identifies this particular
PinGroup resource from others within a resource template buffer. This label is used by
resource consumers to refer to this resource.

• DescriptorName is an optional argument that specifies a name for an integer constant that will
be created in the current scope that contains the offset of this resource descriptor within the
current resource template buffer. The predefined descriptor field names may be appended to
this name to access individual fields within the descriptor via the Buffer Field operators.

• VendorData is an optional argument that specifies a RawDataBuffer containing vendor-defined
byte data to be decoded by the OS driver. The bit field name _VEN is automatically created to
refer to this portion of the resource descriptor.

• PinList is a non-empty list of (zero-based) pin numbers on the ResourceSource that are
described by this descriptor. The bit field name _PIN is automatically created to refer to this
portion of the resource descriptor.

Description
The PinGroup macro evaluates to a buffer that contains a Pin Group resource descriptor. The format of
the Pin Group resource descriptor can be found in "Pin Group Descriptor" (Section 6.4.3.11). The macro is
designed to be used inside of a Resource Template (Section 19.3.3).

PinGroup resource descriptors must be declared within the scope of the pin controller device to which
the pins belong.

19.6.104 Pin Group Configuration

Syntax
Macro:

PinGroupConfig (Shared/Exclusive, PinConfigType, PinConfigValue, ResourceSource,

ResourceSourceIndex, ResourceSourceLabel, ResourceUsage, DesriptorName, VendorData)

Arguments:
UEFI Forum, Inc. January 2019 Page 1017

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
• Shared is an optional argument and can be either Shared or Exclusive. If not specified, Exclusive
is assumed. The bit field name _SHR is automatically created to refer to this portion of the
resource descriptor.

• PinConfigType can be one of the configuration types described below in Table 19-435. The bit
field name _TYP is automatically created to refer to this portion of the resource descriptor.

• PinConfigValue is one of the configurations values described below in Table 19-435. The bit
field name _VAL is automatically created to refer to this portion of the resource descriptor.

• ResourceSource is a string that uniquely identifies the GPIO controller which includes the
PinGroup resource referenced by this descriptor. ResourceSource can be a fully-qualified
name, a relative name or a name segment that utilizes the namespace search rules.

• ResourceSourceLabel is a non-empty string argument that matches ResourceLabel of the
PinGroup resource in the current resource template buffer of the GPIO controller referenced in
ResourceSource.

• DescriptorName is an optional argument that specifies a name for an integer constant that will
be created in the current scope that contains the offset of this resource descriptor within the
current resource template buffer. The predefined descriptor field names may be appended to
this name to access individual fields within the descriptor via the Buffer Field operators.

• ResourceSourceIndex is an optional argument and is assumed to be 0 for this revision.
• ResourceUsage is an optional argument and is assumed to be ResourceConsumer for this

revision.
• VendorData is an optional argument that specifies a RawDataBuffer containing vendor-defined

byte data to be decoded by the OS driver. The bit field name _VEN is automatically created to
refer to this portion of the resource descriptor.

Table 19-435 Pin Group Configuration Types and Values

Pin Configuration Type Pin Configuration
Value

Description

0x00 = Default N/A Default configuration. No configuration is
applied).

0x01 = Bias Pull-Up Pull up resistance, in
Ohms.

This means the pin is pulled up with a certain
number of Ohms to an implicitly supplied
VDD rail.

0x02 = Bias Pull-down Pull down resistance,
in Ohms.

This means the pin is pulled down with a
certain number of Ohms, toward the GND
rail.

0x03 = Bias Default N/A If the silicon has a default biasing mode, reset
the pin to this mode.

0x04 = Bias Disable N/A Any software-selectable bias settings on the
pin will be disabled.

0x05 = Bias High Impedance N/A This means that the pin is configured into a
high impedance mode and essentially shut
off from the outside world. It will not
influence the signal state if a rail is connected
to the pin, hence a good default mode.
UEFI Forum, Inc. January 2019 Page 1018

file:///_SB.GPI0
file:///_SB.GPI0
file:///_SB.GPI0
file:///_SB.GPI0

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
The PinGroupConfig macro evaluates to a buffer that contains a Pin Group Configuration resource
descriptor. The format of the Pin Group Configuration resource descriptor can be found in "Pin Group
Configuration Descriptor" (Section 6.4.3.13). The macro is designed to be used inside of a Resource
Template (Section 19.3.3).

Example
//
// Description: GPIO
//

Device (GPI0)
{
 Name (_HID, "PNPFFFE")

0x06 = Bias Bus Hold N/A This will make the pin in a weak latch state
where it weakly drives the last value on a
tristate bus.

0x07 = Drive Open Drain N/A This will configure the pin into open drain
(open collector) state.

0x08 = Drive Open Source N/A This will configure the pin into open source
(open emitter) state.

0x09 = Drive Push Pull N/A This will configure the pin into explicit push-
pull state. This is useful if the power-on
default state is e.g. open drain or high
impedance state.

0x0A = Drive Strength Drive strength in
milliamperes

This will set the output driver of the pin to
supply a certain number of milliamperes,
usually by activating several driver stages.

0x0B = Slew Rate Custom format This controls the slew rate of the pin,
affecting speed but also sharpness of edges
and thus noisiness on the board. The
hardware-specific argument tells what slew
rate to configure

0x0C = Input Debounce Debounce time in
microseconds.

This will enable debouncing (for e.g. key
inputs) of the pin signal.

0x0D = Input Schmitt Trigger Enabled = 1, Disabled
= 0

This will enable Schmitt trigger support for
the line.

0x0E – 0x7F = Reserved Reserved Reserved

0x80 – 0xFF = Vendor defined
values

Custom base From this point, vendor and Hardware-
specific configurations are listed.

Pin Configuration Type Pin Configuration
Value

Description
UEFI Forum, Inc. January 2019 Page 1019

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 Name (_UID, 0x0)
 Method (_STA)
 {
 Return(0xf)
 }
 Method (_CRS, 0x0, NotSerialized)
 {
 Name (RBUF, ResourceTemplate()
 {
 Memory32Fixed(ReadWrite, 0x4FE00000, 0x20)
 Interrupt(ResourceConsumer, Level, ActiveHigh,
Shared) {0x54}
 PinGroup(“group1”, ResourceProducer) {2, 3}
 })
 Return(RBUF)
}

//
// Description: I2C controller 1
//

Device (I2C1)
{
 Name (_HID, "PNPFFFF")
 Name (_UID, 0x0)
 Method (_STA)
 {
 Return(0xf)
 }
 Method (_CRS, 0x0, NotSerialized)
 {
 Name (RBUF, ResourceTemplate()
 {
 Memory32Fixed(ReadWrite, 0x4F800000, 0x20)
 Interrupt(ResourceConsumer, Level, ActiveHigh,
Shared) {0x55}
 // Set function I2C1 for SDA/SCL pins
 PinGroupFunction(Exclusive, 0x5, "_SB.GPI0, 0,
“group1”, ResourceConsumer,)
 // Configure 10k Pull up for SDA/SCL pins
 PinGroupConfig(Exclusive, 0x01, 10000, "_SB.GPI0 ",
0, “group1”, ResourceConsumer,)
 })
 Return(RBUF)
 }
}

UEFI Forum, Inc. January 2019 Page 1020

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
//
// Description: I2C controller 2
//

Device (I2C2)
{
 Name (_HID, "PNPFFFF")
 Name (_UID, 0x1)
 Method (_STA)
 {
 Return(0xf)
 }
 Method (_CRS, 0x0, NotSerialized)
 {
 Name (RBUF, ResourceTemplate()
 {
 Memory32Fixed(ReadWrite, 0x4F900000, 0x20)
 Interrupt(ResourceConsumer, Level, ActiveHigh,
Shared) {0x56}
 // Set function I2C2 for SDA/SCL pins
 PinGroupFunction(Exclusive, 0x4, "_SB.GPI0 ", 0,
“group1”, ResourceConsumer,)
 // Configure 10k Pull up for SDA/SCL pins
 PinGroupConfig(Exclusive, 0x01, 10000, "_SB.GPI0 ",
0, “group1”, ResourceConsumer,)
 })
 Return(RBUF)
}
}

//
// Description: Physical display panel
//

Device (DISP)
{
 Name (_HID, "PNPFFFD")
 Name (_UID, 0x0)
 Method (_STA)
 {
 Return(0xf)
 }
 Method (_CRS, 0x0, NotSerialized)
 {
 Name (RBUF, ResourceTemplate()
 {
 Memory32Fixed(ReadWrite, 0x4F900000, 0x20)
UEFI Forum, Inc. January 2019 Page 1021

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 Interrupt(ResourceConsumer, Level, ActiveHigh,
Shared) {0x57}
 // Set function GPIO for pin group group1
 PinGroupFunction(Exclusive, 0x1, "_SB.GPI0 ", 0,
“group1”, ResourceConsumer,)
 // Configure 20k Pull down
 PinGroupConfig (Exclusive, 0x02, 20000, "_SB.GPI0
", 0, “group1”, ResourceConsumer,)
 //Enable Schmitt-trigger
 PinGroupConfig (Exclusive, 0x0D, 1, "_SB.GPI0 ", 0,
“group1”, ResourceConsumer,)
 //Set slew rate to custom value 3
 PinGroupConfig (Exclusive, 0x0B, 3, "_SB.GPI0 ", 0,
“group1”, ResourceConsumer,)
 })
 Return(RBUF)}
}
}

19.6.105 Pin Group Function

Syntax
Macro:

PinGroupFunction (Shared/Exclusive, FunctionNumber, ResourceSource, ResourceSourceIndex,
ResourceSourceLabel, ResourceUsage, DescriptorName, VendorData)

Arguments

• Shared is an optional argument and can be one of Shared, Exclusive. If not specified, Exclusive
is assumed. The bit field name _SHR is automatically created to refer to this portion of the
resource descriptor.

• FunctionNumber is a provider-specific integer which designates which function is being
described. The bit field name _FUN is automatically created to refere to this portion of the
resource descriptor.

• ResourceSource is a string that uniquely identifies the GPIO controller which includes the
PinGroup resource referenced by this descriptor. ResourceSource can be a fully-qualified
name, a relative name or a name segment that utilizes the namespace search rules.

• ResourceSourceLabel is a non-empty string argument that matches ResourceLabel of a
PinGroup resource in the current resource template buffer of the GPIO controller referenced in
ResourceSource.

• DescriptorName is an optional argument that specifies a name for an integer constant that will
be created in the current scope that contains the offset of this resource descriptor within the
current resource template buffer. The predefined descriptor field names may be appended to
this name to access individual fields within the descriptor via the Buffer Field operators.

• ResourceSourceIndex is an optional argument and is assumed to be 0 for this revision.
• ResourceUsage is an optional argument and is assumed to be ResourceConsumer for this

revision.
UEFI Forum, Inc. January 2019 Page 1022

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
• VendorData is an optional argument that specifies a RawDataBuffer containing vendor-defined
byte data to be decoded by the OS driver. The bit field name _VEN is automatically created to
refer to this portion of the resource descriptor.

Description
The PinGroupFunction macro evaluates to a buffer that contains a Pin Function resource descriptor. The
format of the Pin Function resource descriptor can be found in “Pin Function Descriptor” on page 460.
The macro is designed to be used inside of an ASL Resource Template (Section 19.3.3).

19.6.106 PowerResource (Declare Power Resource)

Syntax
PowerResource (ResourceName, SystemLevel, ResourceOrder) {TermList}

Arguments

Declares a power resource named ResourceName. PowerResource opens a name scope.

Description
For a definition of the PowerResource term, see Section 7.2, “Declaring a Power Resource Object.”

The power management object list is encoded as TermList, so that rather than describing a static power
management object list, it is possible to describe a dynamic power management object list according to
the system settings. See "Section 5.4.2, Definition Block Loading."

19.6.107 Printf (Create and Store formatted string)

Syntax
Printf (FormatString, FormatArgs) => String

Arguments

Printf is a macro that converts the evaluated FormatString into a series of string Concatenate operations,
storing the result in the Debug object.

FormatString is a string literal which may contain one or more uses of the format specifier, %o, to
indicate locations in the string where an object may be inserted. %o is the only format specifier
supported since the resulting object is a string and type conversion is handled automatically by
Concatenate.

FormatArgs is a comma separated list of Named Objects, Locals, or Args that can be evaluated to a string.
Each argument is added to the FormatString using the Concatenate operation at the location specified by
%o in order of appearance.

Description
The Printf macro converts a format string into a series of cascading string Concatenate operations, and
stores the result in the Debug object
UEFI Forum, Inc. January 2019 Page 1023

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Example
The following ASL example uses Printf to write a formatted string with the values of Arg0, Arg1, Arg2, and
Arg3 to the Debug Object.

 Printf ("%o: Unexpected value for %o, %o at line %o",
 Arg0, Arg1, Arg2, Arg3)

This Printf macro expression evaluates to the following ASL operation.

 Store (Concatenate (Concatenate (Concatenate (Concatenate
 (Concatenate (Concatenate (Concatenate ("", Arg0),
 ": Unexpected value for "), Arg1), ", "), Arg2),
 " at line "), Arg3), Debug)

19.6.108 Processor (Declare Processor)

This Operator is deprecated.

Declare Processors using the Device operator. See Section 19.6.30, "Device (Declare Device Package)".

Note that this Operator may be required for compatibility with some legacy OSes, and can be used for
that purpose.

Syntax
Processor (ProcessorName, ProcessorID, PBlockAddress, PblockLength) {TermList}

Arguments

Declares a named processor object named ProcessorName. Processor opens a name scope. Each
processor is required to have a unique ProcessorID value that is unique from any other ProcessorID value.

For each processor in the system, the ACPI system firmware declares one processor object in the
namespace anywhere within the _SB scope. For compatibility with operating systems implementing
ACPI 1.0, the processor object may also be declared under the _PR scope. An ACPI-compatible
namespace may define Processor objects in either the _SB or _PR scope but not both.

PBlockAddress provides the system I/O address for the processors register block. Each processor can
supply a different such address. PBlockLength is the length of the processor register block, in bytes and is
either 0 (for no P_BLK) or 6. With one exception, all processors are required to have the same
PBlockLength. The exception is that the boot processor can have a non-zero PBlockLength when all other
processors have a zero PBlockLength. It is valid for every processor to have a PBlockLength of 0.

Description
The following block of ASL sample code shows a use of the Processor term.

 Processor (
 _PR.CPU0, // Namespace name
 1,
 0x120, // PBlk system IO address
 6 // PBlkLen
UEFI Forum, Inc. January 2019 Page 1024

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
) {ObjectList}

The TermList is an optional list that may contain an arbitrary number of ASL Objects. Processor-specific
objects that may be included in the TermList include _PTC, _CST, _PCT, _PSS, _PPC, _PSD, _TSD, _CSD,
_PDC, _TPC, _TSS, and _OSC. These processor-specific objects can only be specified when the processor
object is declared within the _SB scope. For a full definition of these objects, see Section 8, “Processor
Configuration and Control.”

The optional processor object list is encoded as TermList, so that rather than describing a static processor
object list, it is possible to describe a dynamic processor object list according to the system settings. See
"Section 5.4.2, Definition Block Loading."

19.6.109 QWordIO (QWord IO Resource Descriptor Macro)

Syntax
QWordIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges, AddressGranularity,
AddressMinimum, AddressMaximum, AddressTranslation, RangeLength, ResourceSourceIndex,
ResourceSource, DescriptorName, TranslationType, TranslationDensity)

Arguments

ResourceUsage specifies whether the I/O range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly), valid
non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation (EntireRange). The 2-
bit field DescriptorName._RNG is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the I/O range must be aligned. The 64-bit field DescriptorName. _GRA is automatically created to refer to
this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
UEFI Forum, Inc. January 2019 Page 1025

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus
I/O address which results in the corresponding primary bus I/O address. For all non-bridge devices or
bridges which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is
automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the I/O
range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but
the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

TranslationType is an optional argument that specifies whether the resource type on the secondary side
of the bus is different (TypeTranslation) from that on the primary side of the bus or the same
(TypeStatic). If TypeTranslation is specified, then the primary side of the bus is Memory. If TypeStatic is
specified, then the primary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The
1-bit field DescriptorName. _TTP is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 443) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the primary
to secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only used when
TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is assumed. The 1-bit
field DescriptorName. _TRS is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS (page 444) for more information.

Description
The QWordIO macro evaluates to a buffer which contains a 64-bit I/O resource descriptor, which
describes a range of I/O addresses. The format of the 64-bit I/O resource descriptor can be found in
QWord Address Space Descriptor (page 431). The macro is designed to be used inside of a
ResourceTemplate (page 1033).
UEFI Forum, Inc. January 2019 Page 1026

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.110 QWordMemory (QWord Memory Resource Descriptor Macro)

Syntax
QWordMemory (ResourceUsage, Decode, IsMinFixed, IsMaxFixed, Cacheable, ReadAndWrite,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation, RangeLength,
ResourceSourceIndex, ResourceSource, DescriptorName, MemoryRangeType, TranslationType)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Cacheable specifies whether or not the memory region is cacheable (Cacheable), cacheable and write-
combining (WriteCombining), cacheable and prefetchable (Prefetchable) or uncacheable
(NonCacheable). If nothing is specified, then NonCacheable is assumed. The 2-bit field DescriptorName.
_MEM is automatically created to refer to this portion of the resource descriptor, where ‘1’ is Cacheable,
‘2’ is WriteCombining, ‘3’ is Prefetchable and ‘0’ is NonCacheable.

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 64-bit field DescriptorName. _GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit
field DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit
field DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.
UEFI Forum, Inc. January 2019 Page 1027

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus
I/O address which results in the corresponding primary bus I/O address. For all non-bridge devices or
bridges which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is
automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the
Memory range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of
the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this Memory range is allocated. If this argument is specified,
but the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

MemoryRangeType is an optional argument that specifies the memory usage. The memory can be
marked as normal (AddressRangeMemory), used as ACPI NVS space (AddressRangeNVS), used as ACPI
reclaimable space (AddressRangeACPI) or as system reserved (AddressRangeReserved). If nothing is
specified, then AddressRangeMemory is assumed. The 2-bit field DescriptorName. _MTP is automatically
created in order to refer to this portion of the resource descriptor, where ‘0’ is AddressRangeMemory, ‘1’
is AddressRangeReserved, ‘2’ is AddressRangeACPI and ‘3’ is AddressRangeNVS.

TranslationType is an optional argument that specifies whether the resource type on the secondary side
of the bus is different (TypeTranslation) from that on the primary side of the bus or the same
(TypeStatic). If TypeTranslation is specified, then the primary side of the bus is I/O. If TypeStatic is
specified, then the primary side of the bus is Memory. If nothing is specified, then TypeStatic is assumed.
The 1-bit field DescriptorName. _TTP is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 443) for more information.

Description
The QWordMemory macro evaluates to a buffer which contains a 64-bit memory resource descriptor,
which describes a range of memory addresses. The format of the 64-bit memory resource descriptor can
be found in “QWord Address Space Descriptor ” (page 431). The macro is designed to be used inside of a
ResourceTemplate (page 1033).

19.6.111 QWordSpace (QWord Space Resource Descriptor Macro)

Syntax
QWordSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed, TypeSpecificFlags,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation, RangeLength,
ResourceSourceIndex, ResourceSource, DescriptorName)
UEFI Forum, Inc. January 2019 Page 1028

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values are
0xC0 through 0xFF.

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 64-bit field DescriptorName. _GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit
field DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit
field DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus
I/O address which results in the corresponding primary bus I/O address. For all non-bridge devices or
bridges which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is
automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the
Memory range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of
the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.
UEFI Forum, Inc. January 2019 Page 1029

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this Memory range is allocated. If this argument is specified,
but the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The QWordSpace macro evaluates to a buffer which contains a 64-bit Address Space resource descriptor,
which describes a range of addresses. The format of the 64-bit AddressSpace descriptor can be found in
“QWord Address Space Descriptor ” (page 431). The macro is designed to be used inside of a
ResourceTemplate (page 1033).

19.6.112 RawDataBuffer

Syntax
RawDataBuffer (RDBufferSize) {ByteList} => RawDataBuffer

Arguments

Declares a RawDataBuffer of size RDBufferSize and optional initial value of ByteList.

Description
The optional RDBufferSize parameter specifies the size of the buffer and must be a word constant. The
initial value is specified in Initializer ByteList. If RDBufferSize is not specified, it defaults to the size of
initializer. If the count is too small to hold the value specified by initializer, the initializer size is used.

Note that a RawDataBuffer is not encoded as a Buffer (Opcode, Package length bytes, etc), but rather
contains only the raw bytes specified.

19.6.113 RefOf (Create Object Reference)

Syntax
RefOf (Object) => ObjectReference

Arguments

Object can be any object type (for example, a package, a device object, and so on).

Description
Returns an object reference to Object. If the Object does not exist, the result of a RefOf operation is fatal.
Use the CondRefOf term in cases where the Object might not exist.

The primary purpose of RefOf() is to allow an object to be passed to a method as an argument to the
method without the object being evaluated at the time the method was loaded.
UEFI Forum, Inc. January 2019 Page 1030

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.114 Register (Generic Register Resource Descriptor Macro)

Syntax
Register (AddressSpaceKeyword, RegisterBitWidth, RegisterBitOffset, RegisterAddress, AccessSize,
DescriptorName)

Arguments

AddressSpaceKeyword specifies the address space where the register exists. The register can be one of
the following:

• I/O space (SystemIO)
• System Memory (SystemMemory)
• PCI configuration space (PCI_Config)
• Embedded controller space (EmbeddedControl)
• SMBus (SMBus)
• CMOS (SystemCMOS)
• PCI Bar target (PciBarTarget)
• IPMI (IPMI)
• General purpose I/O (GeneralPurposeIO)
• Generic serial bus (GenericSerialBus)
• Platform Communications Channel (PCC)
• Fixed-feature hardware (FFixedHW)

The 8-bit field DescriptorName. _ASI is automatically created in order to refer to this portion of the
resource descriptor. See the Address Space ID definition in Table 6-238 for more information, including a
list of valid values and their meanings.

RegisterBitWidth evaluates to an 8-bit integer that specifies the number of bits in the register. The 8-bit
field DescriptorName. _RBW is automatically created in order to refer to this portion of the resource
descriptor. See the _RBW definition in Table 6-238 for more information.

RegisterBitOffset evaluates to an 8-bit integer that specifies the offset in bits from the start of the register
indicated by RegisterAddress. The 8-bit field DescriptorName. _RBO is automatically created in order to
refer to this portion of the resource descriptor. See the _RBO definition in Table 6-238 for more
information.

RegisterAddress evaluates to a 64-bit integer that specifies the register address. The 64-bit field
DescriptorName. _ADR is automatically created in order to refer to this portion of the resource
descriptor. See the _ADR definition in Table 6-238 for more information.

AccessSize evaluates to an 8-bit integer that specifies the size of data values used when accessing the
address space as follows:

0 - Undefined (legacy)

1 - Byte access

2 - Word access

3 - DWord access

4 - QWord access
UEFI Forum, Inc. January 2019 Page 1031

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
The 8-bit field DescriptorName. _ASZ is automatically created in order to refer to this portion of the
resource descriptor. See the _ASZ definition in Table 6-238 for more information. For backwards
compatibility, the AccesSize parameter is optional when invoking the Register macro. If the AccessSize
parameter is not supplied then the AccessSize field will be set to zero. In this case, OSPM will assume the
access size.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The Register macro evaluates to a buffer that contains a generic register resource descriptor. The format
of the generic register resource descriptor can be found in Table 6-238. The macro is designed to be used
inside of the ResourceTemplate (Section 19.6.117).

19.6.115 Release (Release a Mutex Synchronization Object)

Syntax
Release (SyncObject)

Arguments

SynchObject must be a mutex synchronization object.

Description
If the mutex object is owned by the current invocation, ownership for the Mutex is released once. It is
fatal to release ownership on a Mutex unless it is currently owned. A Mutex must be totally released
before an invocation completes.

19.6.116 Reset (Reset an Event Synchronization Object)

Syntax
Reset (SyncObject)

Arguments

SynchObject must be an Event synchronization object.

Description
This operator is used to reset an event synchronization object to a non-signaled state. See also the Wait
and Signal function operator definitions.
UEFI Forum, Inc. January 2019 Page 1032

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.117 ResourceTemplate (Resource To Buffer Conversion Macro)

Syntax
ResourceTemplate () {ResourceMacroList} => Buffer

Description
For a full definition of the ResourceTemplateTerm macro, see Section 19.3.3, “ASL Resource Templates”.

19.6.118 Return (Return from Method Execution)

Syntax
Return

Return ()

Return (Arg)

Arguments

Arg is optional and can be any valid object or reference.

Description
Returns control to the invoking control method, optionally returning a copy of the object named in Arg. If
no Arg object is specified, a Return(Zero) is generated by the ASL compiler.

Note: In the absence of an explicit Return () statement, the return value to the caller is undefined.

19.6.119 Revision (Constant Revision Integer)

Syntax
Revision => Integer

Description
The Revision operator returns an Integer containing the current revision of the AML interpreter. Writes
to this object are not allowed.

19.6.120 Scope (Open Named Scope)

Syntax
Scope (Location) {ObjectList}

Arguments

Opens and assigns a base namespace scope to a collection of objects. All object names defined within the
scope are created relative to Location. Note that Location does not have to be below the surrounding
scope, but can refer to any location within the namespace. The Scope term itself does not create objects,
but only locates objects within the namespace; the actual objects are created by other ASL terms.
UEFI Forum, Inc. January 2019 Page 1033

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
The object referred to by Location must already exist in the namespace and be one of the following
object types that has a namespace scope associated with it:

• A predefined scope such as: \ (root), _SB, \GPE, _PR, _TZ, etc.
• Device
• Processor
• Thermal Zone
• Power Resource

The Scope term alters the current namespace location to the existing Location. This causes the defined
objects within TermList to be created relative to this new location in the namespace.

The object list is encoded as TermList, so that rather than describing a static object list, it is possible to
describe a dynamic object list according to the system settings. See "Section 5.4.2, Definition Block
Loading."

Note: When creating secondary SSDTs, it is often required to use the Scope operator to change the
namespace location in order create objects within some part of the namespace that has been defined by
the main DSDT. Use the External operator to declare the scope location so that the ASL compiler will not
issue an error for an undefined Location.

Examples
The following example ASL code uses the Scope operator and creates several objects:

Scope (\PCI0)
{
 Name (X, 3)
 Scope (\)
 {
 Method (RQ) {Return (0)}
 }
 Name (^Y, 4)
}

The created objects are placed in the ACPI namespace as shown:

\PCI0.X
\RQ
\Y

This example shows the use of External in conjunction with Scope within an SSDT:

DefinitionBlock ("ssdt.aml", "SSDT", 2, "X", "Y", 0x00000001)
{
 External (_SB.PCI0, DeviceObj)
UEFI Forum, Inc. January 2019 Page 1034

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 Scope (_SB.PCI0)
 {
 }
}

19.6.121 ShiftLeft (Integer Shift Left)

Syntax
ShiftLeft (Source, ShiftCount, Result) => Integer

Result = Source << ShiftCount => Integer

Result <<= ShiftCount => Integer

Arguments

Source and ShiftCount are evaluated as Integers.

Description
Source is shifted left with the least significant bit zeroed ShiftCount times. The result is optionally stored
into Result.

19.6.122 ShiftRight (Integer Shift Right)

Syntax
ShiftRight (Source, ShiftCount, Result) => Integer

Result = Source >> ShiftCount => Integer

Result >>= ShiftCount => Integer

Arguments

Source and ShiftCount are evaluated as Integers.

Description
Source is shifted right with the most significant bit zeroed ShiftCount times. The result is optionally stored
into Result.

19.6.123 Signal (Signal a Synchronization Event)

Syntax
Signal (SyncObject)

Arguments

SynchObject must be an Event synchronization object.

Description
The Event object is signaled once, allowing one invocation to acquire the event.
UEFI Forum, Inc. January 2019 Page 1035

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.124 SizeOf (Get Data Object Size)

Syntax
SizeOf (ObjectName) => Integer

Arguments

ObjectName must be a buffer, string or package object.

Description
Returns the size of a buffer, string, or package data object.

For a buffer, it returns the size in bytes of the data. For a string, it returns the size in bytes of the string,
not counting the trailing NULL. For a package, it returns the number of elements. For an object reference,
the size of the referenced object is returned. Other data types cause a fatal run-time error.

19.6.125 Sleep (Milliseconds Sleep)

Syntax
Sleep (MilliSeconds)

Arguments

The Sleep term is used to implement long-term timing requirements. Execution is delayed for at least the
required number of milliseconds.

Description
The implementation of Sleep is to round the request up to the closest sleep time supported by the OS
and relinquish the processor.

19.6.126 SPISerialBusV2 (SPI Serial Bus Connection Resource Descriptor (Version
2) Macro)

Syntax
SPISerialBusV2 (DeviceSelection, DeviceSelectionPolarity, WireMode, DataBitLength, SlaveMode,
ConnectionSpeed, ClockPolarity, ClockPhase, ResourceSource, ResourceSourceIndex, ResourceUsage,
DescriptorName, Shared, VendorData)

Arguments

DeviceSelection is the device selection value. This value may refer to a chip-select line, GPIO line or other
line selection mechanism. _ADR is automatically created to refer to this portion of the resource
descriptor.

DeviceSelectionPolarity is an optional argument and can be either PolarityHigh or PolarityLow to indicate
that the device is active. PolarityLow is the default. The bit field _DPL is automatically created to refer to
this portion of the resource descriptor.
UEFI Forum, Inc. January 2019 Page 1036

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
WireMode is an optional argument and can be either ThreeWireMode or FourWireMode. FourWireMode
is the default. The bit field name _MOD is automatically created to refer to this portion of the resource
descriptor.

DataBitLength is the size, in bits, of the smallest transfer unit for this connection. _LEN is automatically
created to refer to this portion of the resource descriptor.

SlaveMode is an optional argument and can be either ControllerInitiated or DeviceInitiated.
ControllerInitiated is the default. The bit field name _SLV is automatically created to refer to this portion
of the resource descriptor.

ConnectionSpeed is the maximum connection speed supported by this connection, in hertz. The bit field
name _SPE is automatically created to refer to this portion of the resource descriptor.

ClockPolarity can be either ClockPolarityLow or ClockPolarityHigh. _POL is automatically created to refer
to this portion of the resource descriptor.

ClockPhase can be either ClockPhaseFirst or ClockPhaseSecond. _PHA is automatically created to refer to
this portion of the resource descriptor.

ResourceSource is a string which uniquely identifies the SPI bus controller referred to by this descriptor.
ResourceSource can be a fully-qualified name, a relative name or a name segment that utilizes the
namespace search rules.

ResourceSourceIndex is an optional argument and is assumed to be 0 for this revision.

ResourceUsage is an optional argument and is assumed to be ResourceConsumer for this
revision.DescriptorName is an optional argument that specifies a name for an integer constant that will
be created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Shared is an optional argument and can be either Shared or Exclusive. If not specified, Exclusive is
assumed. The bit field name _SHR is automatically created to refer to this portion of the resource
descriptor.

VendorData is an optional argument that specifies an object to be decoded by the OS driver. It is a
RawDataBuffer. The bit field name _VEN is automatically created to refer to this portion of the resource
descriptor.

Description
The SPISerialBusV2 macro evaluates to a buffer that contains a SPI Serial Bus resource descriptor
(Version 2). The macro is designed to be used inside of a ResourceTemplate (see Section 19.3.3).

19.6.127 Stall (Stall for a Short Time)

Syntax
Stall (MicroSeconds)

Arguments

The Stall term is used to implement short-term timing requirements. Execution is delayed for at least the
required number of microseconds.
UEFI Forum, Inc. January 2019 Page 1037

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Description
The implementation of Stall is OS-specific, but must not relinquish control of the processor. Because of
this, delays longer than 100 microseconds must use Sleep instead of Stall.

19.6.128 StartDependentFn (Start Dependent Function Resource Descriptor
Macro)

Syntax
StartDependentFn (CompatibilityPriority, PerformancePriority) {ResourceList}

Arguments

CompatibilityPriority indicates the relative compatibility of the configuration specified by ResourceList
relative to the PC/AT. 0 = Good, 1 = Acceptable, 2 = Sub-optimal.

PerformancePriority indicates the relative performance of the configuration specified by ResourceList
relative to the other configurations. 0 = Good, 1 = Acceptable, 2 = Sub-optimal.

ResourceList is a list of resources descriptors which must be selected together for this configuration.

Description
The StartDependentFn macro evaluates to a buffer which contains a start dependent function resource
descriptor, which describes a group of resources which must be selected together. Each subsequent
StartDependentFn or StartDependentFnNoPri resource descriptor introduces a new choice of resources
for configuring the device, with the last choice terminated with an EndDependentFn resource descriptor.
The format of the start dependent function resource descriptor can be found in “Start Dependent
Functions Descriptor” (page 420). This macro generates the two-byte form of the resource descriptor.
The macro is designed to be used inside of a ResourceTemplate (page 1033).

19.6.129 StartDependentFnNoPri (Start Dependent Function Resource Descriptor
Macro)

Syntax
StartDependentFnNoPri () {ResourceList}

Description
The StartDependentFnNoPri macro evaluates to a buffer which contains a start dependent function
resource descriptor, which describes a group of resources which must be selected together. Each
subsequent StartDependentFn or StartDependentFnNoPri resource descriptor introduces a new choice
of resources for configuring the device, with the last choice terminated with an EndDependentFn
resource descriptor. The format of the start dependent function resource descriptor can be found in
“Start Dependent Functions Descriptor” (page 421). This macro generates the one-byte form of the
resource descriptor. The macro is designed to be used inside of a ResourceTemplate (page 1033).

This is similar to StartDependentFn (page 1038) with both CompatibilityPriority and PerformancePriority
set to 1, but is one byte shorter.
UEFI Forum, Inc. January 2019 Page 1038

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.130 Store (Store an Object)

Syntax
Store (Source, Destination) => DataRefObject

Destination = Source => DataRefObject

Arguments

This operation evaluates Source, converts it to the data type of Destination, and writes the result into
Destination. For information on automatic data-type conversion, see Section 19.3.5, “ASL Data Types.”

Description
Stores to OperationRegion Field data types may relinquish the processor depending on the address
space.

All stores (of any type) to the constant Zero, constant One, or constant Ones object are not allowed.
Stores to read-only objects are fatal. The execution result of the operation depends on the type of
Destination. For any type other than an operation region field, the execution result is the same as the
data written to Destination. For operation region fields with an AccessType of ByteAcc, WordAcc,
DWordAcc, QWordAcc or AnyAcc, the execution result is the same as the data written to Destination as
in the normal case, but when the AccessType is BufferAcc, the operation region handler may modify the
data when it is written to the Destination so that the execution result contains modified data.

Example
The following example creates the name CNT that references an integer data object with the value 5 and
then stores CNT to Local0. After the Store operation, Local0 is an integer object with the value 5.

Name (CNT, 5)
Store (CNT, Local0)

19.6.131 Subtract (Integer Subtract)

Syntax
Subtract (Minuend, Subtrahend, Result) => Integer

Result = Minuend - Subtrahend => Integer

Result -= Subtrahend => Integer

Arguments

Minuend and Subtrahend are evaluated as Integers.

Description
Subtrahend is subtracted from Minuend, and the result is optionally stored into Result. Underflow
conditions are ignored and the result simply loses the most significant bits.
UEFI Forum, Inc. January 2019 Page 1039

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.132 Switch (Select Code To Execute Based On Expression)

Syntax
Switch (Expression) {CaseTermList}

Arguments

Expression is an ASL expression that evaluates to an Integer, String or Buffer.

Description
The Switch, Case and Default statements help simplify the creation of conditional and branching code.
The Switch statement transfers control to a statement within the enclosed body of executable ASL code

If the Case Value is an Integer, Buffer or String, then control passes to the statement that matches the
value of Switch (Expression). If the Case value is a Package, then control passes if any member of the
package matches the Switch (Value) The Switch CaseTermList can include any number of Case instances,
but no two Case Values (or members of a Value, if Value is a Package) within the same Switch statement
can have the same value.

Execution of the statement body begins at the selected TermList and proceeds until the TermList end of
body or until a Break or Continue statement transfers control out of the body.

The Default statement is executed if no Case Value matches the value of Switch (expression). If the
Default statement is omitted, and no Case match is found, none of the statements in the Switch body are
executed. There can be at most one Default statement. The Default statement can appear anywhere in
the body of the Switch statement.

A Case or Default term can only appear inside a Switch statement. Switch statements can be nested.
(Compatibility Note) The Switch, Case, and Default terms were first introduced in ACPI 2.0. However,
their implementation is backward compatible with ACPI 1.0 AML interpreters.

Example
Use of the Switch statement usually looks something like this:

Switch (expression)
{
 Case (value) {
 Statements executed if Lequal (expression, value)
 }
 Case (Package () {value, value, value}) {
 Statements executed if Lequal (expression, any value in package)
 }
 Default {
 Statements executed if expression does not equal
 any case constant-expression
}
}

UEFI Forum, Inc. January 2019 Page 1040

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Note: (Compiler Note) The following example demonstrates how the Switch statement should be
translated into ACPI 1.0-compatible AML:

Switch (Add (ABCD(),1)
{
 Case (1) {
 …statements1…
 }
 Case (Package () {4,5,6}) {
 …statements2…
 }
 Default {
 …statements3…
 }
}

is translated as:

Name (_T_I, 0) // Create Integer temporary variable for result
While (One)
{
 Store (Add (ABCD (), 1), _T_I)
 If (LEqual (_T_I, 1)) {
 …statements1…
 }
 Else {
 If (LNotEqual (Match (Package () {4, 5, 6}, MEQ, _T_I, MTR, 0, 0), Ones)) {
 …statements2…
 }
 Else {
 …statements3…
 }
 Break
}

The While (One) is emitted to enable the use of Break and Continue within the Switch statement.
Temporary names emitted by the ASL compiler should appear at the top level of the method, since the
Switch statement could appear within a loop and thus attempt to create the name more than once.

Note: If the ASL compiler is unable to determine the type of the expression, then it will generate a
warning and assume a type of Integer. The warning will indicate that the code should use one of the type
conversion operators (Such as ToInteger, ToBuffer, ToDecimalString or ToHexString). Caution: Some of
these operators are defined starting with ACPI 2.0 and as such may not be supported by ACPI 1.0b
compatible interpreters.

For example:

Switch (ABCD ()) // Cannot determine the type because methods can return anything.
{
 …case statements…
UEFI Forum, Inc. January 2019 Page 1041

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
}

will generate a warning and the following code:

Name (_T_I, 0)
Store (ABCD (), _T_I)

To remove the warning, the code should be:

Switch (ToInteger (ABCD ()))
{
 …case statements…
}

19.6.133 ThermalZone (Declare Thermal Zone)

Syntax
ThermalZone (ThermalZoneName) {TermList}

Arguments

Declares a Thermal Zone object named ThermalZoneName. ThermalZone opens a name scope.

Each use of a ThermalZone term declares one thermal zone in the system. Each thermal zone in a system
is required to have a unique ThermalZoneName.

Description
A thermal zone may be declared in the namespace anywhere within the _SB scope. For compatibility
with operating systems implementing ACPI 1.0, a thermal zone may also be declared under the _TZ
scope. An ACPI-compatible namespace may define Thermal Zone objects in either the _SB or _TZ scope
but not both.

For example ASL code that uses a ThermalZone statement, see Section 11, “Thermal Management.”

The thermal object list is encoded as TermList, so that rather than describing a static thermal object list, it
is possible to describe a dynamic thermal object list according to the system settings. See "Section 5.4.2,
Definition Block Loading."

19.6.134 Timer (Get 64-Bit Timer Value)

Syntax
Timer => Integer

Description
The timer opcode returns a monotonically increasing value that can be used by ACPI methods to measure
time passing, this enables speed optimization by allowing AML code to mark the passage of time
independent of OS ACPI interpreter implementation.

The Sleep opcode can only indicate waiting for longer than the time specified.
UEFI Forum, Inc. January 2019 Page 1042

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
The value resulting from this opcode is 64 bits. It is monotonically increasing, but it is not guaranteed that
every result will be unique, i.e. two subsequent instructions may return the same value. The only
guarantee is that each subsequent evaluation will be greater-than or equal to the previous ones.

The period of this timer is 100 nanoseconds. While the underlying hardware may not support this
granularity, the interpreter will do the conversion from the actual timer hardware frequency into 100
nanosecond units.

Users of this opcode should realize that a value returned only represents the time at which the opcode
itself executed. There is no guarantee that the next opcode in the instruction stream will execute in any
particular time bound.

The OSPM can implement this using the ACPI Timer and keep track of overrun. Other implementations
are possible. This provides abstraction away from chipset differences

Note: (Compatibility Note) New for ACPI 3.0

19.6.135 ToBCD (Convert Integer to BCD)

Syntax
ToBCD (Value, Result) => Integer

Arguments

Value is evaluated as an integer

Description
The ToBCD operator is used to convert Value from a numeric (Integer) format to a BCD format and
optionally store the numeric value into Result.

19.6.136 ToBuffer (Convert Data to Buffer)

Syntax
ToBuffer (Data, Result) => Buffer

Arguments

Data must be an Integer, String, or Buffer data type.

Description
Data is converted to buffer type and the result is optionally stored into Result. If Data is an integer, it is
converted into n bytes of buffer (where n is 4 if the definition block has defined integers as 32 bits or 8 if
the definition block has defined integers as 64 bits as indicated by the Definition Block table header’s
Revision field), taking the least significant byte of integer as the first byte of buffer. If Data is a buffer, no
conversion is performed. If Data is a string, each ASCII string character is copied to one buffer byte,
including the string null terminator. A null (zero-length) string will be converted to a zero-length buffer.
UEFI Forum, Inc. January 2019 Page 1043

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.137 ToDecimalString (Convert Data to Decimal String)

Syntax
ToDecimalString (Data, Result) => String

Arguments

Data must be an Integer, String, or Buffer data type.

Description
Data is converted to a decimal string, and the result is optionally stored into Result. If Data is already a
string, no action is performed. If Data is a buffer, it is converted to a string of decimal values separated by
commas. (Each byte of the buffer is converted to a single decimal value.) A zero-length buffer will be
converted to a null (zero-length) string.

19.6.138 ToHexString (Convert Data to Hexadecimal String)

Syntax
ToHexString (Data, Result) => String

Arguments

Data must be an Integer, String, or Buffer data type.

Description
Data is converted to a hexadecimal string, and the result is optionally stored into Result. If Data is already
a string, no action is performed. If Data is a buffer, it is converted to a string of hexadecimal values
separated by commas. A zero-length buffer will be converted to a null (zero-length) string.

19.6.139 ToInteger (Convert Data to Integer)

Syntax
ToInteger (Data, Result) => Integer

Arguments

Data must be an Integer, String, or Buffer data type.

Description
Data is converted to integer type and the result is optionally stored into Result. If Data is a string, it must
be either a decimal or hexadecimal numeric string (in other words, prefixed by “0x”) and the value must
not exceed the maximum of an integer value. If the value is exceeding the maximum, the result of the
conversion is unpredictable. A null (zero-length) string is illegal. If Data is a Buffer, the first 8 bytes of the
buffer are converted to an integer, taking the first byte as the least significant byte of the integer. A zero-
length buffer is illegal. If Data is an integer, no action is performed.
UEFI Forum, Inc. January 2019 Page 1044

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.140 ToPLD (Creates a _PLD Buffer Object)

Syntax
ToPLD (PLDKeywordList) => _PLD Buffer Object

Arguments
PLDKeywordList is a list of PLDKeyword types that describe elements of a Physical Layer Description
(_PLD) buffer that can be assigned values. The table below shows the available PLDKeyword types and
their assignable types. Refer to the _PLD section for a description of the _PLD method object.

Table 19-436 PLD Keywords and Assignment Types

PLDKeyword Assignment Type

PLD_Revision Integer

PLD_IgnoreColor Integer

PLD_Red Integer

PLD_Green Integer

PLD_Blue Integer

PLD_Width Integer

PLD_Height Integer

PLD_UserVisible Integer

PLD_Dock Integer

PLD_Lid Integer

PLD_Panel Integer or String

PLD_VerticalPosition Integer or String

PLD_HorizontalPosition Integer or String

PLD_Shape Integer or String

PLD_GroupOrientation Integer

PLD_GroupToken Integer

PLD_GroupPosition Integer

PLD_Bay Integer

PLD_Ejectable Integer

PLD_EjectRequired Integer

PLD_CabinetNumber Integer

PLD_CardCageNumber Integer

PLD_Reference Integer

PLD_Rotation Integer
UEFI Forum, Inc. January 2019 Page 1045

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
A subset of PLDKeyword types can be assigned string values for improved readability. Those types and
their assignable values are shown in the table below.

Table 19-437 PLD Keywords and assignable String Values

PLDKeyword Assignable String Values

PLD_Panel “TOP”, “BOTTOM”,”LEFT”, “RIGHT”,”FRONT”,”BACK”,”UNKNOWN”

PLD_VerticalPosition “UPPER”,”CENTER”,”LOWER”

PLD_HorizontalPosition “LEFT”,”CENTER”,”RIGHT”

PLD_Shape “ROUND”,”OVAL”,”SQUARE”,

“VERTICALRECTANGLE”,

“HORIZONTALRECTANGLE”,

“VERTICALTRAPEZOID”,

“HORIZONTALTRAPEZOID”,

“UNKNOWN”

Description
The ToPLD macro converts a list of PLDKeyword types into a _PLD buffer object.

Example
The following ASL shows an example using ToPLDto construct a _PLD buffer/package object.

Name (_PLD, Package (0x01) // _PLD: Physical Location of Device
 {
 ToPLD (
 PLD_Revision = 0x2,
 PLD_IgnoreColor = 0x1,
 PLD_Red = 0x37,
 PLD_Green = 0x44,
 PLD_Blue = 0xFF,
 PLD_Width = 0x4,
 PLD_Height = 0x19,
 PLD_UserVisible = 0x1,
 PLD_Dock = 0x0,
 PLD_Lid = 0x1,
 PLD_Panel = "TOP",
 PLD_VerticalPosition = "CENTER",
 PLD_HorizontalPosition = "RIGHT",
 PLD_Shape = "VERTICALRECTANGLE",
 PLD_GroupOrientation = 0x1,

PLD_Order Integer

PLD_VeriticalOffset Integer

PLD_HorizontalOffset Integer

PLDKeyword Assignment Type
UEFI Forum, Inc. January 2019 Page 1046

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
 PLD_GroupToken = 0xA,
 PLD_GroupPosition = 0x21,
 PLD_Bay = 0x1,
 PLD_Ejectable = 0x0,
 PLD_EjectRequired = 0x1,
 PLD_CabinetNumber = 0x1E,
 PLD_CardCageNumber = 0x17,
 PLD_Reference = 0x0,
 PLD_Rotation = 0x7,
 PLD_Order = 0x3,
 PLD_VerticalOffset = 0x141,
 PLD_HorizontalOffset = 0x2C)
 })

19.6.141 ToString (Convert Buffer To String)

Syntax
ToString (Source, Length, Result) => String

Arguments

Source is evaluated as a buffer. Length is evaluated as an integer data type.

Description
Starting with the first byte, the contents of the buffer are copied into the string until the number of
characters specified by Length is reached or a null (0) character is found. If Length is not specified or is
Ones, then the contents of the buffer are copied until a null (0) character is found. If the source buffer
has a length of zero, a zero length (null terminator only) string will be created. The result is copied into
the Result.

19.6.142 ToUUID (Convert String to UUID Macro)

Syntax
ToUUID (AsciiString) => Buffer

Arguments

AsciiString is evaluated as a String data type.

Description
This macro will convert an ASCII string to a 128-bit buffer. The string must have the following format:

aabbccdd-eeff-gghh-iijj-kkllmmnnoopp

where aa – pp are one byte hexadecimal numbers, made up of hexadecimal digits. The resulting buffer
has the following format:
UEFI Forum, Inc. January 2019 Page 1047

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Table 19-438 UUID Buffer Format

String Offset In Buffer

aa 3

bb 2

cc 1

dd 0

ee 5

ff 4

gg 7

hh 6

ii 8

jj 9

kk 10

ll 11

mm 12

nn 13

oo 14

pp 15

Note: (Compatibility Note) New for ACPI 3.0

19.6.143 UARTSerialBusV2 (UART Serial Bus Connection Resource Descriptor
(Version 2) Macro)

Syntax
UARTSerialBusV2 (InitialBaudRate, BitsPerByte, StopBits, LinesInUse, IsBigEndian, Parity, FlowControl,
ReceiveBufferSize, TransmitBufferSize, ResourceSource, ResourceSourceIndex, ResourceUsage,
DescriptorName, Shared, VendorData)

Arguments

InitialBaudRate evaluates to a 32-bit integer that specifies the default or initial connection speed in bytes
per second that the device supports. The bit field _SPE is automatically created to refer to this portion of
the resource descriptor.

BitsPerByte is an optional argument that specifies whether five bits (DataBitsFive), six bits (DataBitsSix),
seven bits (DataBitsSeven), eight bits (DataBitsEight) or nine bits (DataBitsNine) contain data during
transfer of a single packet or character. DataBitsEight is the default. The bit field DescriptorName._LEN is
automatically created to refer to this portion of the resource descriptor.

StopBits is an optional argument that specifies whether there are two bits (StopBitsTwo), one and a half
bits (StopBitsOnePlusHalf), one bit (StopBitsOne) or no bits (StopBitsZero) used to signal the end of a
UEFI Forum, Inc. January 2019 Page 1048

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
packet or character. StopBitsOne is the default. The bit field _STB is automatically created to refer to this
portion of the resource descriptor.

LinesInUse evaluates to an integer representing 8 1-bit flags representing the presence (‘1’) or absence
(‘0’) of a particular line. The bit field _LIN is automatically created to refer to this portion of the resource
descriptor.

Bit Mask UART Line

Bit 7 (0x80) Request To Send (RTS)

Bit 6 (0x40) Clear To Send (CTS)

Bit 5 (0x20) Data Terminal Ready (DTR)

Bit 4 (0x10) Data Set Ready (DSR)

Bit 3 (0x08) Ring Indicator (RI)

Bit 2 (0x04) Data Carrier Detect (DTD)

Bit 1 (0x02) Reserved. Must be 0.

Bit 0 (0x01) Reserved. Must be 0.

IsBigEndian is an optional argument that specifies whether the device is expecting big endian (BigEndian)
or little endian (LittleEndian) data formats. LittleEndian is the default. The bit field _END is automatically
created to refer to this portion of the resource descriptor.

Parity is an optional argument that specifies whether the type of parity bits included after the data in a
packet are to be interpreted as space parity (ParityTypeSpace), mark parity (ParityTypeMark), odd parity
(ParityTypeOdd), even parity (ParityTypeEven) or no parity (ParityTypeNone). ParityTypeNone is the
default. The bit field PAR is automatically created to refer to this portion of the resource descriptor.

FlowControl is an optional argument that specifies whether there is hardware-based flow control
(FlowControlHardware), software-based flow control (FlowControlXON) or no flow control
(FlowControlNone) used when communicating with the device. FlowControlNone is the default. The bit
field_FLC is automatically created to refer to this portion of the resource descriptor.

ReceiveBufferSize evaluates to a 16-bit integer that specifies the upper limit in bytes of the receive buffer
that can be optimally utilized while communicating with this device. The bit field_RXL is automatically
created to refer to this portion of the resource descriptor.

TransmitBufferSize evaluates to a 16-bit integer that specifies the upper limit in bytes of the transmit
buffer that can be optimally utilized while communicating with this device. The bit field _TXL is
automatically created to refer to this portion of the resource descriptor.

ResourceSource is a string which uniquely identifies the UART bus controller referred to by this
descriptor. ResourceSource can be a fully-qualified name, a relative name or a name segment that utilizes
the namespace search rules.

ResourceSourceIndex is an optional argument and is assumed to be 0 for this revision.

ResourceUsage is an optional argument and is assumed to be ResourceConsumer for this revision.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
UEFI Forum, Inc. January 2019 Page 1049

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Shared is an optional argument and can be either Shared or Exclusive. If not specified, Exclusive is
assumed. The bit field name _SHR is automatically created to refer to this portion of the resource
descriptor.

VendorData is an optional argument that specifies an object to be decoded by the OS driver. It is a
RawDataBuffer. The bit field name _VEN is automatically created to refer to this portion of the resource
descriptor.

Description
The UARTSerialBusV2 macro evaluates to a buffer that contains a UART Serial Bus resource descriptor
(Version 2). The macro is designed to be used inside of a ResourceTemplate (seeSection 19.3.3).

19.6.144 Unicode (String To Unicode Conversion Macro)

Syntax
Unicode (String) => Buffer

Arguments

This macro will convert a string to a Unicode (UTF-16) string contained in a buffer. The format of the
Unicode string is 16 bits per character, with a 16-bit null terminator.

19.6.145 VendorLong (Long Vendor Resource Descriptor)

Syntax
VendorLong (DescriptorName) {VendorByteList}

Arguments

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer.

VendorByteList evaluates to a comma-separated list of 8-bit integer constants, where each byte is added
verbatim to the body of the VendorLong resource descriptor. A maximum of n bytes can be specified.
UUID and UUID specific descriptor subtype are part of the VendorByteList.

Description
The VendorLong macro evaluates to a buffer which contains a vendor-defined resource descriptor. The
format of the long form of the vendor-defined resource descriptor can be found in Vendor-Defined
Descriptor (page 424). The macro is designed to be used inside of a ResourceTemplate (page 1033).

This is similar to VendorShort (page 1051), except that the number of allowed bytes in VendorByteList is
65,533 (instead of 7).
UEFI Forum, Inc. January 2019 Page 1050

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.146 {deprec ated} Unload (Unload Definition Block)

Syntax

Unload (Handle)

Arguments

Handle is evaluated as a DDBHandle data type.

Description

Performs a run-time unload of a Definition Block that was loaded using a Load term or LoadTable term.
Loading or unloading a Definition Block is a synchronous operation, and no control method execution
occurs during the function. On completion of the Unload operation, the Definition Block has been
unloaded (all the namespace objects created as a result of the corresponding Load operation will be
removed from the namespace).

19.6.147 VendorShort (Short Vendor Resource Descriptor)

Syntax
VendorShort (DescriptorName) {VendorByteList}

Arguments

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer.

Description
The VendorShort macro evaluates to a buffer which contains a vendor-defined resource descriptor. The
format of the short form of the vendor-defined resource descriptor can be found in “Vendor-Defined
Descriptor” (page 424). The macro is designed to be used inside of a ResourceTemplate (page 1033).

This is similar to VendorLong (page 1050), except that the number of allowed bytes in VendorByteList is 7
(instead of 65,533).

19.6.148 Wait (Wait for a Synchronization Event)

Syntax
Wait (SyncObject, TimeoutValue) => Boolean

Arguments

SynchObject must be an event synchronization object. TimeoutValue is evaluated as an Integer. The
calling method blocks while waiting for the event to be signaled.

Description
The pending signal count is decremented. If there is no pending signal count, the processor is
relinquished until a signal count is posted to the Event or until at least TimeoutValue milliseconds have
elapsed.
UEFI Forum, Inc. January 2019 Page 1051

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
This operation returns a non-zero value if a timeout occurred and a signal was not acquired. A
TimeoutValue of 0xFFFF (or greater) indicates that there is no time out and the operation will wait
indefinitely.

19.6.149 While (Conditional Loop)

Syntax
While (Predicate) {TermList}

Arguments

Predicate is evaluated as an integer.

Description
If the Predicate is non-zero, the list of terms in TermList is executed. The operation repeats until the
Predicate evaluates to zero.

Note: Creation of a named object more than once in a given scope is not allowed. As such,
unconditionally creating named objects within a While loop must be avoided. A fatal error will be
generated on the second iteration of the loop, during the attempt to create the same named
object a second time.

19.6.150 WordBusNumber (Word Bus Number Resource Descriptor Macro)

Syntax
WordBusNumber (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, AddressGranularity,
AddressMinimum, AddressMaximum, AddressTranslation, RangeLength, ResourceSourceIndex,
ResourceSource, DescriptorName)

Arguments

ResourceUsage specifies whether the bus range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this bus number range is fixed (MinFixed) or can
be changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this bus number range is fixed (MaxFixed) or can
be changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the bus number range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.
UEFI Forum, Inc. January 2019 Page 1052

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
AddressGranularity evaluates to a 16-bit integer that specifies the power-of-two boundary (- 1) on which
the bus number range must be aligned. The 16-bit field DescriptorName. _GRA is automatically created
to refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 16-bit integer that specifies the lowest possible bus number for the bus
number range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’.
For bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies the highest possible bus number for the bus
number range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’.
For bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 16-bit integer that specifies the offset to be added to a secondary bus
bus number which results in the corresponding primary bus bus number. For all non-bridge devices or
bridges which do not perform translation, this must be ‘0’. The 16-bit field DescriptorName._TRA is
automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 16-bit integer that specifies the total number of bus numbers decoded in the
bus number range. The 16-bit field DescriptorName. _LEN is automatically created to refer to this portion
of the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but
the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The WordBusNumber macro evaluates to a buffer which contains a 16-bit bus-number resource
descriptor. The format of the 16-bit bus number resource descriptor can be found in “Word Address
Space Descriptor ” (page 437). The macro is designed to be used inside of a ResourceTemplate
(page 1033).

19.6.151 WordIO (Word IO Resource Descriptor Macro)

Syntax
WordIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges, AddressGranularity,
AddressMinimum, AddressMaximum, AddressTranslation, RangeLength, ResourceSourceIndex,
ResourceSource, DescriptorName, TranslationType, TranslationDensity)
UEFI Forum, Inc. January 2019 Page 1053

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
Arguments

ResourceUsage specifies whether the I/O range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly), valid
non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation (EntireRange). The 2-
bit field DescriptorName._RNG is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 16-bit integer that specifies the power-of-two boundary (- 1) on which
the I/O range must be aligned. The 16-bit field DescriptorName. _GRA is automatically created to refer to
this portion of the resource descriptor.

AddressMinimum evaluates to a 16-bit integer that specifies the lowest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies the highest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 16-bit integer that specifies the offset to be added to a secondary bus
I/O address which results in the corresponding primary bus I/O address. For all non-bridge devices or
bridges which do not perform translation, this must be ‘0’. The 16-bit field DescriptorName._TRA is
automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 16-bit integer that specifies the total number of bytes decoded in the I/O
range. The 16-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.
UEFI Forum, Inc. January 2019 Page 1054

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but
the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

TranslationType is an optional argument that specifies whether the resource type on the secondary side
of the bus is different (TypeTranslation) from that on the primary side of the bus or the same
(TypeStatic). If TypeTranslation is specified, then the primary side of the bus is Memory. If TypeStatic is
specified, then the primary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The
1-bit field DescriptorName. _TTP is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 444) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the primary
to secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only used when
TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is assumed. The 1-bit
field DescriptorName. _TRS is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS (page 444) for more information.

Description
The WordIO macro evaluates to a buffer which contains a 16-bit I/O range resource descriptor. The
format of the 16-bit I/O range resource descriptor can be found in “Word Address Space Descriptor ”
(page 437). The macro is designed to be used inside of a ResourceTemplate (page 1033).

19.6.152 WordSpace (Word Space Resource Descriptor Macro))

Syntax
WordSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed, TypeSpecificFlags,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation, RangeLength,
ResourceSourceIndex, ResourceSource, DescriptorName)

Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values are
0xC0 through 0xFF.

ResourceUsage specifies whether the bus range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the bus number range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this bus number range is fixed (MinFixed) or can
be changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
UEFI Forum, Inc. January 2019 Page 1055

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this bus number range is fixed (MaxFixed) or can
be changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.

AddressGranularity evaluates to a 16-bit integer that specifies the power-of-two boundary (- 1) on which
the bus number range must be aligned. The 16-bit field DescriptorName. _GRA is automatically created
to refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 16-bit integer that specifies the lowest possible bus number for the bus
number range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’.
For bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies the highest possible bus number for the bus
number range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’.
For bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 16-bit integer that specifies the offset to be added to a secondary bus
bus number which results in the corresponding primary bus bus number. For all non-bridge devices or
bridges which do not perform translation, this must be ‘0’. The 16-bit field DescriptorName._TRA is
automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 16-bit integer that specifies the total number of bus numbers decoded in the
bus number range. The 16-bit field DescriptorName. _LEN is automatically created to refer to this portion
of the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but
the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The WordSpace macro evaluates to a buffer which contains a 16-bit Address Space resource descriptor.
The format of the 16-bit Address Space resource descriptor can be found in “Word Address Space
Descriptor ” (page 437). The macro is designed to be used inside of a ResourceTemplate (page 1033).
UEFI Forum, Inc. January 2019 Page 1056

ACPI Specification, Version 6.3 ACPI Source Language (ASL) Reference
19.6.153 XOr (Integer Bitwise Xor)

Syntax
XOr (Source1, Source2, Result) => Integer

Result = Source1 ^ Source2 => Integer

Result ^= Source => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description
A bitwise XOR is performed and the result is optionally stored into Result.

19.6.154 Zero (Constant Zero Integer)

Syntax
Zero => Integer

Description
The Zero operator returns an Integer with the value 0. Writes to this object are not allowed. The use of
this operator can reduce AML code size, since it is represented by a one-byte AML opcode.
UEFI Forum, Inc. January 2019 Page 1057

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
20 ACPI Machine Language (AML) Specification

This section formally defines the ACPI Control Method Machine Language (AML) language. AML is the
ACPI Control Method virtual machine language, machine code for a virtual machine that is supported by
an ACPI-compatible OS. ACPI control methods can be written in AML, but humans ordinarily write control
methods in ASL.

AML is the language processed by the ACPI AML interpreter. It is primarily a declarative language. It’s
best not to think of it as a stream of code, but rather as a set of declarations that the ACPI AML
interpreter will compile into the ACPI Namespace at definition block load time. For example, notice that
DefByte allocates an anonymous integer variable with a byte-size initial value in ACPI namespace, and
passes in an initial value. The byte in the AML stream that defines the initial value is not the address of
the variable’s storage location.

An OEM or platform firmware vendor needs to write ASL and be able to single-step AML for debugging.
(Debuggers and other ACPI control method language tools are expected to be AML-level tools, not
source-level tools.) An ASL translator implementer must understand how to read ASL and generate AML.
An AML interpreter author must understand how to execute AML.

AML and ASL are different languages, though they are closely related.

All ACPI-compatible operating systems must support AML. A given user can define some arbitrary source
language (to replace ASL) and write a tool to translate it to AML. However, the ACPI group will support a
single translator for a single language, ASL.

20.1 Notation Conventions

The notation conventions in the table below help the reader to interpret the AML formal grammar.

Table 20-439 AML Grammar Notation Conventions

Notation Convention Description Example

0xdd Refers to a byte value expressed as
2 hexadecimal digits.

0x21

Number in bold. Denotes the encoding of the AML
term.

Term => Evaluated Type Shows the resulting type of the
evaluation of Term.

Single quotes (‘ ’) Indicate constant characters. ‘A’ => 0x41

Term := Term Term … The term to the left of := can be
expanded into the sequence of
terms on the right.

aterm := bterm cterm means that aterm
can be expanded into the two-term
sequence of bterm followed by cterm.

Term Term Term … Terms separated from each other
by spaces form an ordered list.

Angle brackets (< >) Used to group items. <a b> | <c d> means either a b or c d.
UEFI Forum, Inc. January 2019 Page 1058

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
20.2 AML Grammar Definition

This section defines the byte values that make up an AML byte stream.

The AML encoding can be categorized in the following groups:

• Table and Table Header encoding
• Name objects encoding
• Data objects encoding
• Package length encoding
• Term objects encoding
• Miscellaneous objects encoding

20.2.1 Table and Table Header Encoding

AMLCode := DefBlockHeader TermList

DefBlockHeader := TableSignature TableLength SpecCompliance CheckSum OemID
 OemTableID OemRevision CreatorID CreatorRevision

TableSignature := DWordData // As defined in section 5.2.3.
TableLength := DWordData // Length of the table in bytes including
 // the block header.
SpecCompliance := ByteData // The revision of the structure.
CheckSum := ByteData // Byte checksum of the entire table.
OemID := ByteData(6) // OEM ID of up to 6 characters. If the OEM
 // ID is shorter than 6 characters, it
 // can be terminated with a NULL
 // character.
OemTableID := ByteData(8) // OEM Table ID of up to 8 characters. If
 // the OEM Table ID is shorter than 8
 // characters, it can be terminated with
 // a NULL character.
OemRevision := DWordData // OEM Table Revision.
CreatorID := DWordData // Vendor ID of the ASL compiler.
CreatorRevision := DWordData // Revision of the ASL compiler.

Bar symbol (|) Separates alternatives. aterm := bterm | [cterm dterm] means
the following constructs are possible:

 bterm
 cterm dterm

aterm := [bterm | cterm] dterm means
the following constructs are possible:

 bterm dterm
 cterm dterm

Dash character (-) Indicates a range. 1-9 means a single digit in the range 1 to
9 inclusive.

Parenthesized term
following another term.

The parenthesized term is the
repeat count of the previous term.

aterm(3) means aterm aterm aterm.

bterm(n) means n number of bterms.

Notation Convention Description Example
UEFI Forum, Inc. January 2019 Page 1059

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
20.2.2 Name Objects Encoding

LeadNameChar := ‘A’-‘Z’ | ‘_’
DigitChar := ‘0’-‘9’
NameChar := DigitChar | LeadNameChar
RootChar := ‘\’
ParentPrefixChar := ‘^’

‘A’-‘Z’ := 0x41 - 0x5A
‘_’ := 0x5F
‘0’-‘9’ := 0x30 - 0x39
‘\’ := 0x5C
‘^’ := 0x5E

NameSeg := <LeadNameChar NameChar NameChar NameChar>
 // Notice that NameSegs shorter than 4 characters are filled with
 // trailing underscores (‘_’s).
NameString := <RootChar NamePath> | <PrefixPath NamePath>
PrefixPath := Nothing | <‘^’ PrefixPath>
NamePath := NameSeg | DualNamePath | MultiNamePath | NullName

DualNamePath := DualNamePrefix NameSeg NameSeg
DualNamePrefix := 0x2E
MultiNamePath := MultiNamePrefix SegCount NameSeg(SegCount)
MultiNamePrefix := 0x2F

SegCount := ByteData

Note: SegCount can be from 1 to 255. For example: MultiNamePrefix(35) is encoded as 0x2f 0x23 and
followed by 35 NameSegs. So, the total encoding length will be 1 + 1 + 35*4 = 142. Notice that:
DualNamePrefix NameSeg NameSeg has a smaller encoding than the encoding of:
MultiNamePrefix(2) NameSeg NameSeg

SimpleName := NameString | ArgObj | LocalObj
SuperName := SimpleName | DebugObj | Type6Opcode
NullName := 0x00
Target := SuperName | NullName

20.2.3 Data Objects Encoding

ComputationalData := ByteConst | WordConst | DWordConst | QWordConst | String |
 ConstObj | RevisionOp | DefBuffer
DataObject := ComputationalData | DefPackage | DefVarPackage
DataRefObject := DataObject | ObjectReference | DDBHandle

ByteConst := BytePrefix ByteData
BytePrefix := 0x0A
WordConst := WordPrefix WordData
WordPrefix := 0x0B
DWordConst := DWordPrefix DWordData
DWordPrefix := 0x0C
QWordConst := QWordPrefix QWordData
QWordPrefix := 0x0E
String := StringPrefix AsciiCharList NullChar
StringPrefix := 0x0D
UEFI Forum, Inc. January 2019 Page 1060

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
ConstObj := ZeroOp | OneOp | OnesOp
ByteList := Nothing | <ByteData ByteList>
ByteData := 0x00 - 0xFF
WordData := ByteData[0:7] ByteData[8:15]
 // 0x0000-0xFFFF
DWordData := WordData[0:15] WordData[16:31]
 // 0x00000000-0xFFFFFFFF
QWordData := DWordData[0:31] DWordData[32:63]
 // 0x0000000000000000-0xFFFFFFFFFFFFFFFF
AsciiCharList := Nothing | <AsciiChar AsciiCharList>
AsciiChar := 0x01 - 0x7F
NullChar := 0x00
ZeroOp := 0x00
OneOp := 0x01
OnesOp := 0xFF
RevisionOp := ExtOpPrefix 0x30
ExtOpPrefix := 0x5B

20.2.4 Package Length Encoding

PkgLength := PkgLeadByte |
 <PkgLeadByte ByteData> |
 <PkgLeadByte ByteData ByteData> |
 <PkgLeadByte ByteData ByteData ByteData>

PkgLeadByte := <bit 7-6: ByteData count that follows (0-3)>
 <bit 5-4: Only used if PkgLength < 63>
 <bit 3-0: Least significant package length nybble>

Note: The high 2 bits of the first byte reveal how many follow bytes are in the PkgLength. If the
PkgLength has only one byte, bit 0 through 5 are used to encode the package length (in other
words, values 0-63). If the package length value is more than 63, more than one byte must be
used for the encoding in which case bit 4 and 5 of the PkgLeadByte are reserved and must be zero.
If the multiple bytes encoding is used, bits 0-3 of the PkgLeadByte become the least significant 4
bits of the resulting package length value. The next ByteData will become the next least
significant 8 bits of the resulting value and so on, up to 3 ByteData bytes. Thus, the maximum
package length is 2**28.

20.2.5 Term Objects Encoding
Object := NameSpaceModifierObj | NamedObj
TermObj := Object | Type1Opcode | Type2Opcode
TermList := Nothing | <TermObj TermList>

TermArg := Type2Opcode | DataObject | ArgObj | LocalObj
MethodInvocation := NameString TermArgList
TermArgList := Nothing | <TermArg TermArgList>

20.2.5.1 Namespace Modifier Objects Encoding

NameSpaceModifierObj := DefAlias | DefName | DefScope
UEFI Forum, Inc. January 2019 Page 1061

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
DefAlias := AliasOp NameString NameString
AliasOp := 0x06

DefName := NameOp NameString DataRefObject
NameOp := 0x08

DefScope := ScopeOp PkgLength NameString TermList
ScopeOp := 0x10

20.2.5.2 Named Objects Encoding

NamedObj := DefBankField | DefCreateBitField | DefCreateByteField | DefCreateDWordField |
 DefCreateField | DefCreateQWordField |DefCreateWordField | DefDataRegion |
 DefExternal | DefOpRegion | DefPowerRes | DefProcessor | DefThermalZone

DefBankField := BankFieldOp PkgLength NameString NameString BankValue FieldFlags FieldList
BankFieldOp := ExtOpPrefix 0x87
BankValue := TermArg => Integer
FieldFlags := ByteData // bit 0-3: AccessType
 // 0 AnyAcc
 // 1 ByteAcc
 // 2 WordAcc
 // 3 DWordAcc
 // 4 QWordAcc
 // 5 BufferAcc
 // 6 Reserved
 // 7-15 Reserved
 // bit 4: LockRule
 // 0 NoLock
 // 1 Lock
 // bit 5-6: UpdateRule
 // 0 Preserve
 // 1 WriteAsOnes 
 // 2 WriteAsZeros
 // bit 7: Reserved (must be 0)

FieldList := Nothing | <FieldElement FieldList>
NamedField := NameSeg PkgLength
ReservedField := 0x00 PkgLength
AccessField := 0x01 AccessType AccessAttrib
AccessType := ByteData // Bits 0:3 - Same as AccessType bits of FieldFlags.
 // Bits 4:5 - Reserved
 // Bits 7:6 - 0 = AccessAttrib = Normal Access Attributes
 // 1 = AccessAttrib = AttribBytes (x)
 // 2 = AccessAttrib = AttribRawBytes (x)
 // 3 = AccessAttrib = AttribRawProcessBytes (x)
 //
 // x' is encoded as bits 0:7 of the AccessAttrib byte.

AccessAttrib := ByteData // If AccessType is BufferAcc for the SMB or
 // GPIO OpRegions, AccessAttrib can be one of 
 // the following values:
 // 0x02 AttribQuick
 // 0x04 AttribSendReceive
 // 0x06 AttribByte
UEFI Forum, Inc. January 2019 Page 1062

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
 // 0x08 AttribWord
 // 0x0A AttribBlock
 // 0x0C AttribProcessCall
 // 0x0D AttribBlockProcessCall

ConnectField := <0x02 NameString> | <0x02 BufferData>

DefCreateBitField := CreateBitFieldOp SourceBuff BitIndex NameString
CreateBitFieldOp := 0x8D
SourceBuff := TermArg => Buffer
BitIndex := TermArg => Integer

DefCreateByteField := CreateByteFieldOp SourceBuff ByteIndex NameString
CreateByteFieldOp := 0x8C
ByteIndex := TermArg => Integer

DefCreateDWordField := CreateDWordFieldOp SourceBuff ByteIndex NameString
CreateDWordFieldOp := 0x8A

DefCreateField := CreateFieldOp SourceBuff BitIndex NumBits NameString
CreateFieldOp := ExtOpPrefix 0x13
NumBits := TermArg => Integer

DefCreateQWordField := CreateQWordFieldOp SourceBuff ByteIndex NameString
CreateQWordFieldOp := 0x8F

DefCreateWordField := CreateWordFieldOp SourceBuff ByteIndex NameString
CreateWordFieldOp := 0x8B

DefDataRegion := DataRegionOp NameString TermArg TermArg TermArg
DataRegionOp := ExOpPrefix 0x88

DefDevice := DeviceOp PkgLength NameString TermList
DeviceOp := ExtOpPrefix 0x82

DefEvent := EventOp NameString
EventOp := ExtOpPrefix 0x02

DefExternal := ExternalOp NameString ObjectType ArgumentCount
ExternalOp := 0x15
ObjectType := ByteData
ArgumentCount := ByteData (0 – 7)

DefField := FieldOp PkgLength NameString FieldFlags FieldList
FieldOp := ExtOpPrefix 0x81

DefIndexField := IndexFieldOp PkgLength NameString NameString FieldFlags FieldList
IndexFieldOp := ExtOpPrefix 0x86

DefMethod := MethodOp PkgLength NameString MethodFlags TermList
MethodOp := 0x14
MethodFlags := ByteData // bit 0-2: ArgCount (0-7)
 // bit 3: SerializeFlag
 // 0 NotSerialized
UEFI Forum, Inc. January 2019 Page 1063

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
 // 1 Serialized
 // bit 4-7: SyncLevel (0x00-0x0f)

DefMutex := MutexOp NameString SyncFlags
MutexOp := ExtOpPrefix 0x01
SyncFlags := ByteData // bit 0-3: SyncLevel (0x00-0x0f)
 // bit 4-7: Reserved (must be 0)

DefOpRegion := OpRegionOp NameString RegionSpace RegionOffset RegionLen
OpRegionOp := ExtOpPrefix 0x80
RegionSpace := ByteData // 0x00 SystemMemory
 // 0x01 SystemIO
 // 0x02 PCI_Config
 // 0x03 EmbeddedControl
 // 0x04 SMBus
 // 0x05 SystemCMOS
 // 0x06 PciBarTarget
 // 0x07 IPMI
 // 0x08 GeneralPurposeIO
 // 0x09 GenericSerialBus
 // 0x0A PCC
 // 0x80-0xFF: OEM Defined
RegionOffset := TermArg => Integer
RegionLen := TermArg => Integer

DefPowerRes := PowerResOp PkgLength NameString SystemLevel ResourceOrder TermList
PowerResOp := ExtOpPrefix 0x84
SystemLevel := ByteData
ResourceOrder := WordData

DefProcessor := ProcessorOp PkgLength NameString ProcID PblkAddr PblkLen TermList
ProcessorOp := ExtOpPrefix 0x83
ProcID := ByteData
PblkAddr := DWordData
PblkLen := ByteData

DefThermalZone := ThermalZoneOp PkgLength NameString TermList
ThermalZoneOp := ExtOpPrefix 0x85

ExtendedAccessField := 0x03 AccessType ExtendedAccessAttrib AccessLength

ExtendedAccessAttrib := ByteData // 0x0B AttribBytes
 // 0x0E AttribRawBytes
 // 0x0F AttribRawProcess

FieldElement := NamedField | ReservedField | AccessField | ExtendedAccessField |
 ConnectField
UEFI Forum, Inc. January 2019 Page 1064

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
20.2.5.3 Type 1 Opcodes Encoding

Type1Opcode := DefBreak | DefBreakPoint | DefContinue | DefFatal | DefIfElse |
 DefLoad | DefNoop | DefNotify | DefRelease | DefReset | DefReturn |
 DefSignal | DefSleep | DefStall | DefWhile

DefBreak := BreakOp
BreakOp := 0xA5

DefBreakPoint := BreakPointOp
BreakPointOp := 0xCC

DefContinue := ContinueOp
ContinueOp := 0x9F

DefElse := Nothing | <ElseOp PkgLength TermList>
ElseOp := 0xA1

DefFatal := FatalOp FatalType FatalCode FatalArg
FatalOp := ExtOpPrefix 0x32
FatalType := ByteData
FatalCode := DWordData
FatalArg := TermArg => Integer

DefIfElse := IfOp PkgLength Predicate TermList DefElse
IfOp := 0xA0
Predicate := TermArg => Integer

DefLoad := LoadOp NameString DDBHandleObject
LoadOp := ExtOpPrefix 0x20
DDBHandleObject := SuperName

DefNoop := NoopOp
NoopOp := 0xA3

DefNotify := NotifyOp NotifyObject NotifyValue
NotifyOp := 0x86
NotifyObject := SuperName => ThermalZone | Processor | Device
NotifyValue := TermArg => Integer

DefRelease := ReleaseOp MutexObject
ReleaseOp := ExtOpPrefix 0x27
MutexObject := SuperName

DefReset := ResetOp EventObject
ResetOp := ExtOpPrefix 0x26
EventObject := SuperName

DefReturn := ReturnOp ArgObject
ReturnOp := 0xA4
ArgObject := TermArg => DataRefObject

DefSignal := SignalOp EventObject
SignalOp := ExtOpPrefix 0x24

DefSleep := SleepOp MsecTime
UEFI Forum, Inc. January 2019 Page 1065

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
SleepOp := ExtOpPrefix 0x22
MsecTime := TermArg => Integer

DefStall := StallOp UsecTime
StallOp := ExtOpPrefix 0x21
UsecTime := TermArg => ByteData

DefWhile := WhileOp PkgLength Predicate TermList
WhileOp := 0xA2

20.2.5.4 Type 2 Opcodes Encoding

Type2Opcode := DefAcquire | DefAdd | DefAnd | DefBuffer | DefConcat |
 DefConcatRes | DefCondRefOf | DefCopyObject | DefDecrement |
 DefDerefOf | DefDivide | DefFindSetLeftBit | DefFindSetRightBit |
 DefFromBCD | DefIncrement | DefIndex | DefLAnd | DefLEqual |
 DefLGreater | DefLGreaterEqual | DefLLess | DefLLessEqual | DefMid |
 DefLNot | DefLNotEqual | DefLoadTable | DefLOr | DefMatch | DefMod |
 DefMultiply | DefNAnd | DefNOr | DefNot | DefObjectType | DefOr |
 DefPackage | DefVarPackage | DefRefOf | DefShiftLeft | DefShiftRight |
 DefSizeOf | DefStore | DefSubtract | DefTimer | DefToBCD | DefToBuffer |
 DefToDecimalString | DefToHexString | DefToInteger | DefToString |
 DefWait | DefXOr | MethodInvocation

Type6Opcode := DefRefOf | DefDerefOf | DefIndex | UserTermObj

DefAcquire := AcquireOp MutexObject Timeout
AcquireOp := ExtOpPrefix 0x23
Timeout := WordData

DefAdd := AddOp Operand Operand Target
AddOp := 0x72
Operand := TermArg => Integer

DefAnd := AndOp Operand Operand Target
AndOp := 0x7B

DefBuffer := BufferOp PkgLength BufferSize ByteList
BufferOp := 0x11
BufferSize := TermArg => Integer

DefConcat := ConcatOp Data Data Target
ConcatOp := 0x73
Data := TermArg => ComputationalData

DefConcatRes := ConcatResOp BufData BufData Target
ConcatResOp := 0x84
BufData := TermArg => Buffer

DefCondRefOf := CondRefOfOp SuperName Target
CondRefOfOp := ExtOpPrefix 0x12

DefCopyObject := CopyObjectOp TermArg SimpleName
CopyObjectOp := 0x9D

DefDecrement := DecrementOp SuperName
UEFI Forum, Inc. January 2019 Page 1066

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
DecrementOp := 0x76

DefDerefOf := DerefOfOp ObjReference
DerefOfOp := 0x83
ObjReference := TermArg => ObjectReference | String

DefDivide := DivideOp Dividend Divisor Remainder Quotient
DivideOp := 0x78
Dividend := TermArg => Integer
Divisor := TermArg => Integer
Remainder := Target
Quotient := Target

DefFindSetLeftBit := FindSetLeftBitOp Operand Target
FindSetLeftBitOp := 0x81

DefFindSetRightBit := FindSetRightBitOp Operand Target
FindSetRightBitOp := 0x82

DefFromBCD := FromBCDOp BCDValue Target
FromBCDOp := ExtOpPrefix 0x28
BCDValue := TermArg => Integer

DefIncrement := IncrementOp SuperName
IncrementOp := 0x75

DefIndex := IndexOp BuffPkgStrObj IndexValue Target
IndexOp := 0x88
BuffPkgStrObj := TermArg => Buffer, Package or String
IndexValue := TermArg => Integer

DefLAnd := LandOp Operand Operand
LandOp := 0x90

DefLEqual := LequalOp Operand Operand
LequalOp := 0x93

DefLGreater := LgreaterOp Operand Operand
LgreaterOp := 0x94

DefLGreaterEqual := LgreaterEqualOp Operand Operand
LgreaterEqualOp := LnotOp LlessOp

DefLLess := LlessOp Operand Operand
LlessOp := 0x95

DefLLessEqual := LlessEqualOp Operand Operand
LlessEqualOp := LnotOp LgreaterOp

DefLNot := LnotOp Operand
LnotOp := 0x92

DefLNotEqual := LnotEqualOp Operand Operand
LnotEqualOp := LnotOp LequalOp
UEFI Forum, Inc. January 2019 Page 1067

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
DefLoadTable := LoadTableOp TermArg TermArg TermArg TermArg TermArg TermArg
LoadTableOp := ExtOpPrefix 0x1F

DefLOr := LorOp Operand Operand
LorOp := 0x91

DefMatch := MatchOp SearchPkg MatchOpcode Operand MatchOpcode Operand StartIndex
MatchOp := 0x89
SearchPkg := TermArg => Package
MatchOpcode := ByteData // 0 MTR
 // 1 MEQ
 // 2 MLE
 // 3 MLT
 // 4 MGE
 // 5 MGT

StartIndex := TermArg => Integer

DefMid := MidOp MidObj TermArg TermArg Target
MidOp := 0x9E
MidObj := TermArg => Buffer | String

DefMod := ModOp Dividend Divisor Target
ModOp := 0x85

DefMultiply := MultiplyOp Operand Operand Target
MultiplyOp := 0x77

DefNAnd := NandOp Operand Operand Target
NandOp := 0x7C

DefNOr := NorOp Operand Operand Target
NorOp := 0x7E

DefNot := NotOp Operand Target
NotOp := 0x80

DefObjectType := ObjectTypeOp <SimpleName | DebugObj |
 DefRefOf | DefDerefOf | DefIndex>
ObjectTypeOp := 0x8E

DefOr := OrOp Operand Operand Target
OrOp := 0x7D

DefPackage := PackageOp PkgLength NumElements PackageElementList
PackageOp := 0x12
DefVarPackage := VarPackageOp PkgLength VarNumElements PackageElementList
VarPackageOp := 0x13
NumElements := ByteData
VarNumElements := TermArg => Integer
PackageElementList := Nothing | <PackageElement PackageElementList>
PackageElement := DataRefObject | NameString

DefRefOf := RefOfOp SuperName
RefOfOp := 0x71
UEFI Forum, Inc. January 2019 Page 1068

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
DefShiftLeft := ShiftLeftOp Operand ShiftCount Target
ShiftLeftOp := 0x79
ShiftCount := TermArg => Integer

DefShiftRight := ShiftRightOp Operand ShiftCount Target
ShiftRightOp := 0x7A

DefSizeOf := SizeOfOp SuperName
SizeOfOp := 0x87

DefStore := StoreOp TermArg SuperName
StoreOp := 0x70

DefSubtract := SubtractOp Operand Operand Target
SubtractOp := 0x74

DefTimer := TimerOp
TimerOp := 0x5B 0x33

DefToBCD := ToBCDOp Operand Target
ToBCDOp := ExtOpPrefix 0x29

DefToBuffer := ToBufferOp Operand Target
ToBufferOp := 0x96

DefToDecimalString := ToDecimalStringOp Operand Target
ToDecimalStringOp := 0x97

DefToHexString := ToHexStringOp Operand Target
ToHexStringOp := 0x98

DefToInteger := ToIntegerOp Operand Target
ToIntegerOp := 0x99

DefToString := ToStringOp TermArg LengthArg Target
LengthArg := TermArg => Integer
ToStringOp := 0x9C

DefWait := WaitOp EventObject Operand
WaitOp := ExtOpPrefix 0x25

DefXOr := XorOp Operand Operand Target
XorOp := 0x7F

20.2.6 Miscellaneous Objects Encoding

Miscellaneous objects include:

• Arg objects
• Local objects
• Debug objects
UEFI Forum, Inc. January 2019 Page 1069

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
20.2.6.1 Arg Objects Encoding

ArgObj := Arg0Op | Arg1Op | Arg2Op | Arg3Op | Arg4Op | Arg5Op | Arg6Op
Arg0Op := 0x68
Arg1Op := 0x69
Arg2Op := 0x6A
Arg3Op := 0x6B
Arg4Op := 0x6C
Arg5Op := 0x6D
Arg6Op := 0x6E

20.2.6.2 Local Objects Encoding

LocalObj := Local0Op | Local1Op | Local2Op | Local3Op | Local4Op | Local5Op | Local6Op |
Local7Op
Local0Op := 0x60
Local1Op := 0x61
Local2Op := 0x62
Local3Op := 0x63
Local4Op := 0x64
Local5Op := 0x65
Local6Op := 0x66
Local7Op := 0x67

20.2.6.3 Debug Objects Encoding

DebugObj := DebugOp
DebugOp := ExtOpPrefix 0x31

20.3 AML Byte Stream Byte Values

The following table lists all the byte values that can be found in an AML byte stream and the meaning of
each byte value. This table is useful for debugging AML code.

Table 20-440 AML Byte Stream Byte Values

Encoding
Value

Encoding Name Encoding Group Fixed List
Arguments

Variable List Arguments

0x00 ZeroOp Data Object — —

0x01 OneOp Data Object — —

0x02-0x05 — — — —

0x06 AliasOp Term Object NameString
NameString

—

0x07 — — — —

0x08 NameOp Term Object NameString
DataRefObject

—

0x09 — — — —

0x0A BytePrefix Data Object ByteData —

0x0B WordPrefix Data Object WordData —
UEFI Forum, Inc. January 2019 Page 1070

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
0x0C DWordPrefix Data Object DWordData —

0x0D StringPrefix Data Object AsciiCharList
NullChar

—

0x0E QWordPrefix Data Object QWordData —

0x0F — — — —

0x10 ScopeOp Term Object NameString TermList

0x11 BufferOp Term Object TermArg ByteList

0x12 PackageOp Term Object ByteData Package TermList

0x13 VarPackageOp Term Object TermArg Package TermList

0x14 MethodOp Term Object NameString
ByteData

TermList

0x15 ExternalOp Name Object NameString
ByteData ByteData

—

0x16-0x2D — — — —

0x2E (‘.’) DualNamePrefix Name Object NameSeg NameSeg —

0x2F (‘/’) MultiNamePrefix Name Object ByteData
NameSeg(N)

—

0x30-0x39 ('0'-
'9')

DigitChar— Name Object— — —

0x3A-0x40 — — — —

0x41-0x5A
(‘A’-‘Z’)

NameChar Name Object — —

0x5B (‘[’) ExtOpPrefix — ByteData —

0x5B 0x00 — — — —

0x5B 0x01 MutexOp Term Object NameString
ByteData

—

0x5B 0x02 EventOp Term Object NameString —

0x5B 0x12 CondRefOfOp Term Object SuperName
SuperName

—

0x5B 0x13 CreateFieldOp Term Object TermArg TermArg
TermArg
NameString

—

0x5B 0x1F LoadTableOp Term Object TermArg TermArg
TermArg TermArg
TermArg TermArg

—

Encoding
Value

Encoding Name Encoding Group Fixed List
Arguments

Variable List Arguments
UEFI Forum, Inc. January 2019 Page 1071

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
0x5B 0x20 LoadOp Term Object NameString
SuperName

—

0x5B 0x21 StallOp Term Object TermArg —

0x5B 0x22 SleepOp Term Object TermArg —

0x5B 0x23 AcquireOp Term Object SuperName
WordData

—

0x5B 0x24 SignalOp Term Object SuperName —

0x5B 0x25 WaitOp Term Object SuperName
TermArg

—

0x5B 0x26 ResetOp Term Object SuperName —

0x5B 0x27 ReleaseOp Term Object SuperName —

0x5B 0x28 FromBCDOp Term Object TermArg Target —

0x5B 0x29 ToBCD Term Object TermArg Target —

0x5B 0x2A Reserved — — —

0x5B 0x30 RevisionOp Data Object — —

0x5B 0x31 DebugOp Debug Object — —

0x5B 0x32 FatalOp Term Object ByteData
DWordData
TermArg

—

0x5B 0x33 TimerOp Term Object — —

0x5B 0x80 OpRegionOp Term Object NameString
ByteData TermArg
TermArg

—

0x5B 0x81 FieldOp Term Object NameString
ByteData

FieldList

0x5B 0x82 DeviceOp Term Object NameString TermList

0x5B 0x83 ProcessorOp Term Object NameString
ByteData
DWordData
ByteData

TermList

0x5B 0x84 PowerResOp Term Object NameString
ByteData
WordData

TermList

0x5B 0x85 ThermalZoneOp Term Object NameString TermList

0x5B 0x86 IndexFieldOp Term Object NameString
NameString
ByteData

FieldList

Encoding
Value

Encoding Name Encoding Group Fixed List
Arguments

Variable List Arguments
UEFI Forum, Inc. January 2019 Page 1072

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
0x5B 0x87 BankFieldOp Term Object NameString
NameString
TermArg ByteData

FieldList

0x5B 0x88 DataRegionOp Term Object NameString
TermArg TermArg
TermArg

—

0x5B 0x80 -
0x5B 0xFF

— — — —

0x5C (‘\’) RootChar Name Object — —

0x5D — — — —

0x5E (‘^’) ParentPrefixChar Name Object — —

0x5F(‘_’) NameChar— Name Object — —

0x60 (‘`’) Local0Op Local Object — —

0x61 (‘a’) Local1Op Local Object — —

0x62 (‘b’) Local2Op Local Object — —

0x63 (‘c’) Local3Op Local Object — —

0x64 (‘d’) Local4Op Local Object — —

0x65 (‘e’) Local5Op Local Object — —

0x66 (‘f’) Local6Op Local Object — —

0x67 (‘g’) Local7Op Local Object — —

0x68 (‘h’) Arg0Op Arg Object — —

0x69 (‘i’) Arg1Op Arg Object — —

0x6A (‘j’) Arg2Op Arg Object — —

0x6B (‘k’) Arg3Op Arg Object — —

0x6C (‘l’) Arg4Op Arg Object — —

0x6D (‘m’) Arg5Op Arg Object — —

0x6E (‘n’) Arg6Op Arg Object — —

0x6F — — — —

0x70 StoreOp Term Object TermArg
SuperName

—

0x71 RefOfOp Term Object SuperName —

0x72 AddOp Term Object TermArg TermArg
Target

—

0x73 ConcatOp Term Object TermArg TermArg
Target

—

Encoding
Value

Encoding Name Encoding Group Fixed List
Arguments

Variable List Arguments
UEFI Forum, Inc. January 2019 Page 1073

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
0x74 SubtractOp Term Object TermArg TermArg
Target

—

0x75 IncrementOp Term Object SuperName —

0x76 DecrementOp Term Object SuperName —

0x77 MultiplyOp Term Object TermArg TermArg
Target

—

0x78 DivideOp Term Object TermArg TermArg
Target Target

—

0x79 ShiftLeftOp Term Object TermArg TermArg
Target

—

0x7A ShiftRightOp Term Object TermArg TermArg
Target

—

0x7B AndOp Term Object TermArg TermArg
Target

—

0x7C NandOp Term Object TermArg TermArg
Target

—

0x7D OrOp Term Object TermArg TermArg
Target

—

0x7E NorOp Term Object TermArg TermArg
Target

—

0x7F XorOp Term Object TermArg TermArg
Target

—

0x80 NotOp Term Object TermArg Target —

0x81 FindSetLeftBitOp Term Object TermArg Target —

0x82 FindSetRightBitOp Term Object TermArg Target —

0x83 DerefOfOp Term Object TermArg —

0x84 ConcatResOp Term Object TermArg TermArg
Target

—

0x85 ModOp Term Object TermArg TermArg
Target

—

0x86 NotifyOp Term Object SuperName
TermArg

—

0x87 SizeOfOp Term Object SuperName —

0x88 IndexOp Term Object TermArg TermArg
Target

—

Encoding
Value

Encoding Name Encoding Group Fixed List
Arguments

Variable List Arguments
UEFI Forum, Inc. January 2019 Page 1074

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
0x89 MatchOp Term Object TermArg ByteData
TermArg ByteData
TermArg TermArg

—

0x8A CreateDWordFieldOp Term Object TermArg TermArg
NameString

—

0x8B CreateWordFieldOp Term Object TermArg TermArg
NameString

—

0x8C CreateByteFieldOp Term Object TermArg TermArg
NameString

—

0x8D CreateBitFieldOp Term Object TermArg TermArg
NameString

—

0x8E ObjectTypeOp Term Object SuperName —

0x8F CreateQWordFieldOp Term Object TermArg TermArg
NameString

—

0x90 LandOp Term Object TermArg TermArg —

0x91 LorOp Term Object TermArg TermArg —

0x92 LnotOp Term Object TermArg —

0x92 0x93 LNotEqualOp Term Object TermArg TermArg —

0x92 0x94 LLessEqualOp Term Object TermArg TermArg —

0x92 0x95 LGreaterEqualOp Term Object TermArg TermArg —

0x93 LEqualOp Term Object TermArg TermArg —

0x94 LGreaterOp Term Object TermArg TermArg —

0x95 LLessOp Term Object TermArg TermArg —

0x96 ToBufferOp Term Object TermArg Target —

0x97 ToDecimalStringOp Term Object TermArg Target —

0x98 ToHexStringOp Term Object TermArg Target —

0x99 ToIntegerOp Term Object TermArg Target —

0x9A-0x9B — — — —

0x9C ToStringOp Term Object TermArg TermArg
Target

—

0x9D CopyObjectOp Term Object TermArg
SimpleName

—

0x9E MidOp Term Object TermArg TermArg
TermArg Target

—

0x9F ContinueOp Term Object — —

Encoding
Value

Encoding Name Encoding Group Fixed List
Arguments

Variable List Arguments
UEFI Forum, Inc. January 2019 Page 1075

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
20.4 AML Encoding of Names in the Namespace

Assume the following namespace exists:

 \
 S0
 MEM
 SET
 GET
 S1
 MEM
 SET
 GET
 CPU
 SET
 GET

Assume further that a definition block is loaded that creates a node \S0.CPU.SET, and loads a block using
it as a root. Assume the loaded block contains the following names:

 STP1
 ^GET
 ^^PCI0
 ^^PCI0.SBS
 \S2
 \S2.ISA.COM1
 ^^^S3
 ^^^S2.MEM
 ^^^S2.MEM.SET
 Scope(\S0.CPU.SET.STP1) {
 XYZ
 ^ABC
 ^ABC.DEF
 }

0xA0 IfOp Term Object TermArg TermList

0xA1 ElseOp Term Object — TermList

0xA2 WhileOp Term Object TermArg TermList

0xA3 NoopOp Term Object — —

0xA4 ReturnOp Term Object TermArg —

0xA5 BreakOp Term Object — —

0xA6-0xCB — — — —

0xCC BreakPointOp Term Object — —

0xCD-0xFE — — — —

0xFF OnesOp Data Object — —

Encoding
Value

Encoding Name Encoding Group Fixed List
Arguments

Variable List Arguments
UEFI Forum, Inc. January 2019 Page 1076

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
This will be encoded in AML as:

'STP1'
ParentPrefixChar 'GET_'
ParentPrefixChar ParentPrefixChar 'PCI0'
ParentPrefixChar ParentPrefixChar DualNamePrefix 'PCI0' 'SBS_'
RootChar 'S2__'
RootChar MultiNamePrefix 3 'S2__' 'ISA_' 'COM1'
ParentPrefixChar ParentPrefixChar ParentPrefixChar 'S3__'
ParentPrefixChar ParentPrefixChar ParentPrefixChar DualNamePrefix 'S2__' 'MEM_'
ParentPrefixChar ParentPrefixChar ParentPrefixChar MultiNamePrefix 3 'S2__' 'MEM_' 'SET_'
UEFI Forum, Inc. January 2019 Page 1077

ACPI Specification, Version 6.3 ACPI Machine Language (AML) Specification
After the block is loaded, the namespace will look like this (names added to the namespace by the
loading operation are shown in bold):

 \
 S0
 MEM
 SET
 GET
 CPU
 SET
 STP1
 XYZ
 ABC
 DEF
 GET
 PCI0
 SBS
 S1
 MEM
 SET
 GET
 CPU
 SET
 GET
 S2
 ISA
 COM1
 MEM
 SET
 S3
UEFI Forum, Inc. January 2019 Page 1078

ACPI Specification, Version 6.3 ACPI Data Tables and Table Definition Language
21 ACPI Data Tables and Table Definition Language

There are two fundamental types of ACPI tables:

• Tables that contain AML code produced from the ACPI Source Language (ASL). These include
the DSDT, any SSDTs, and sometimes OEM-specific tables (OEMx).

• Tables that contain simple data and no AML byte code. These types of tables are known as ACPI
Data Tables. They include tables such as the FADT, MADT, ECDT, SRAT, etc. - essentially any
table other than a DSDT or SSDT.

• The first type of table is generated using an ASL compiler and this language is specified in
section 18.

The second type of table, the ACPI Data Table, is addressed by this section.

This section describes a simple language (the Table Definition Language or TDL) that can be used to
generate any ACPI data table. It simplifies the table generation for platform firmware vendors and can
automatically generate fields such as table lengths, subtable lengths, checksums, flag fields, etc.

21.1 Types of ACPI Data Tables

In the context of a compiler for the Table Definition Language (TDL), there are two types of ACPI Data
Tables:

• ACPI tables that are "known" to the compiler. These would typically include all of the basic
ACPI tables defined in the ACPI specification such as the FADT, MADT, ECDT, etc. Since these
tables are fully specified (usually via the ACPI specification, but from other sources as well), the
TDL compiler knows all details of these tables -- including all required data types, optional or
required sub-tables, etc.

• ACPI tables that are unknown to the compiler. These may include tables that are not defined in
the ACPI specification such as MCFG, DBGP, etc., or simply new ACPI tables that have not yet
been implemented in the compiler.

One of the goals of the ACPI Table Definition Language is to support both cases above. Most ACPI tables
will be known to the compiler (and will be the easiest to specify in TDL), but the language is general
enough to allow the definition of new ACPI tables that are unknown or unimplemented in the compiler.

An additional goal of TDL is to support the output of a disassembler that formats an existing table into
TDL. This enables disassembler/change/compile operations.

21.2 ACPI Table Definition Language Specification

The following section defines the ACPI Table Definition Language (TDL). The grammar notation follows
the same rules as the ASL source language (See Section 19.2.1, ASL Grammar Notation.) Full definition of
the various data types follows the grammar specification.
UEFI Forum, Inc. January 2019 Page 1079

ACPI Specification, Version 6.3 ACPI Data Tables and Table Definition Language
21.2.1 Overview of the Table Definition Language (TDL)

Most ACPI tables share the following structure (all except FACS):

• A common, 36 byte header containing the table signature, length, checksum, revision, and
other data.

• A table body which contains the specific table data.

The Table Definition Language allows the definition of an ACPI table via a collection of fields. Each line of
TDL source code is a field, and corresponds to a single data item in the definition of the table.

For example, the C definition of the common ACPI table header is as follows:

typedef struct acpi_table_header
{
 char Signature[4];
 UINT32 Length;
 UINT8 Revision;
 UINT8 Checksum;
 char OemId[6];
 char OemTableId[8];
 UINT32 OemRevision;
 char AslCompilerId[4];
 UINT32 AslCompilerRevision;

} ACPI_TABLE_HEADER;

In the Table Definition Language, an ACPI table header can be described as follows:

 : "ECDT"
 : 00000000
 : 01
 : 00
 : "OEM "
 : "MACHINE1"
 : 00000001
 : ""
 : 00000000

Additionally and optionally, it can also be described with accompanying field names:

 Signature : "ECDT" [Embedded Controller Boot Resources Table]
 Table Length : 00000000
 Revision : 01
 Checksum : 00
 Oem ID : "OEM "
 Oem Table ID : "MACHINE1"
 Oem Revision : 00000001
 Asl Compiler ID : ""
 Asl Compiler Revision : 00000000
UEFI Forum, Inc. January 2019 Page 1080

ACPI Specification, Version 6.3 ACPI Data Tables and Table Definition Language
Note: In the ACPI table header, the TableLength, Checksum, AslCompilerId, and the AslCompilerRevision
fields are all output fields that are filled in automatically by the compiler during table generation.
Also, the field names are output by a disassembler that formats existing tables into TDL code.

21.2.2 TDL Grammar Specification
//
// Root Term
//
DataTable :=
FieldList

//
// Field Terms
//
FieldList :=
 Field |
 <Field FieldList>

Field :=
 <FieldDefinition OptionalFieldComment> |
 CommentField

FieldDefinition :=

 // Fields for predefined (known) ACPI tables

 <OptionalFieldName ':' FieldValue> |

 // Generic data types (used for custom or undefined ACPI tables)

 <'UINT8' ':' IntegerExpression> | // 8-bit unsigned integer
 <'UINT16' ':' IntegerExpression> | // 16-bit unsigned integer
 <'UINT24' ':' IntegerExpression> | // 24-bit unsigned integer
 <'UINT32' ':' IntegerExpression> | // 32-bit unsigned integer
 <'UINT40' ':' IntegerExpression> | // 40-bit unsigned integer
 <'UINT48' ':' IntegerExpression> | // 48-bit unsigned integer
 <'UINT56' ':' IntegerExpression> | // 56-bit unsigned integer
 <'UINT64' ':' IntegerExpression> | // 64-bit unsigned integer
 <'String' ':' String> | // Quoted ASCII string
 <'Unicode' ':' String> | // Quoted ASCII string -> Unicode string
 <'Buffer' ':' ByteConstList> | // Raw buffer of 8-bit unsigned integers
 <'GUID' ':' Guid> | // In GUID format
 <'Label' ':' Label> // ASCII label - unquoted string

OptionalFieldName :=
 Nothing |
 AsciiCharList // Optional field name/description

FieldValue :=
 IntegerExpression | String | Buffer | Flags | Label
UEFI Forum, Inc. January 2019 Page 1081

ACPI Specification, Version 6.3 ACPI Data Tables and Table Definition Language
OptionalFieldComment :=
 Nothing |
 <'[' AsciiCharList ']'>

CommentField :=
 <'//' AsciiCharList NewLine> |
 <'/*' AsciiCharList '*/'> |
 <'[' AsciiCharList ']'>

//
// Data Expressions
//
IntegerExpression :=
 Integer |
 <IntegerExpression IntegerOperator IntegerExpression> |
 <'(' IntegerExpression ')'>

//
// Operators below are shown in precedence order. The precedence rules
// are the same as the C language. Parentheses have precedence over
// all operators.
//
IntegerOperator :=
 '!' | '~' | '*' | '/' | '%' | '+' | '-' | '<<' | '>>' |
 '<' | '>' | '<=' | '>=' | '==' | '!=' | '&' | '^' | '|' |
 '&&' |'||' |

//
// Data Types
//
String :=
 <'"' AsciiCharList '"'>
Buffer :=
 ByteConstList
Guid :=
 <DWordConst '-' WordConst '-' WordConst '-' WordConst '-' Const48>
Label :=
 AsciiCharList

//
// Data Terms
//
Integer :=
 ByteConst | WordConst | Const24 | DWordConst | Const40 | Const48 | Const56 |
 QWordConst | LabelReference

LabelReference :=
 <'$' Label>
UEFI Forum, Inc. January 2019 Page 1082

ACPI Specification, Version 6.3 ACPI Data Tables and Table Definition Language
Flags :=
 OneBit | TwoBits

ByteConstList :=
 ByteConst |
 <Byte Const ' ' ByteConstList>

AsciiCharList :=
 Nothing |
 PrintableAsciiChar |
 <PrintableAsciiChar AsciiCharList>

//
// Terminals
//
ByteConst :=
 0x00-0xFF
WordConst :=
 0x0000 - 0xFFFF
Const24 :=
 0x000000 - 0xFFFFFF
DWordConst :=
 0x00000000 - 0xFFFFFFFF
Const40 :=
 0x0000000000 - 0xFFFFFFFFFF
Const48 :=
 0x000000000000 - 0xFFFFFFFFFFFF
Const56 :=
 0x00000000000000 - 0xFFFFFFFFFFFFFF
QWordConst :-
 0x0000000000000000 - 0xFFFFFFFFFFFFFFFF

OneBit :=
 0 - 1
TwoBits :=
 0 - 3

PrintableAsciiChar :=
 0x20 - 0x7E
NewLine :=
 '\n'

21.2.3 Data Types

21.2.3.1 Integers

All integers in ACPI are unsigned. Four major types of unsigned integers are supported by the compiler:
Bytes, Words, DWords and QWords. In addition, for special cases, there are some odd sized integers such
as 24-bit and 56-bit. The actual required width of an integer is defined by the ACPI table. If an integer is
specified that is numerically larger than the width of the target field within the input source, an error is
UEFI Forum, Inc. January 2019 Page 1083

ACPI Specification, Version 6.3 ACPI Data Tables and Table Definition Language
issued by the compiler. Integers are expected by the data table compiler to be entered in hexadecimal
with no "hex" prefix.

Examples:
[001] Revision : 04// Byte (8-bit)
[002] C2 Latency : 0000// Word (16-bit)
[004] DSDT Address : 00000001// DWord (32-bit)
[008] Address : 0000000000000001// QWord (64-bit)

Length of non-power-of-two examples:

[003] Reserved : 000000// 24 bits
[007] Capabilities : 00000000000000 // 56 bits

21.2.3.2 Integer Expressions

Expressions are supported in all fields that require an integer value.

Supported operators (Standard C meanings, in precedence order):

() Parentheses

! Logical NOT

~ Bitwise ones compliment (NOT)

* Multiply

/ Divide

% Modulo

+ Add

- Subtract

<< Shift left

>> Shift right

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

== Equal

!= Not Equal

& Bitwise AND

^ bitwise Exclusive OR

| Bitwise OR

&& Logical AND

|| Logical OR
UEFI Forum, Inc. January 2019 Page 1084

ACPI Specification, Version 6.3 ACPI Data Tables and Table Definition Language
Examples:
[001] Revision : 04 * (4 + 7)// Byte (8-bit)
[002] C2 Latency : 0032 + 8// Word (16-bit)

21.2.3.3 Flags

Many ACPI tables contain flag fields. For these fields, only the individual flag bits need to be specified to
the compiler. The individual bits are aggregated into a single integer of the proper size by the compiler.

Examples:
[002] Flags (decoded below) : 0005
 Polarity : 1
 Trigger Mode : 1

In this example, only the Polarity and Trigger Mode fields need to be specified to the compiler (as either
zero or one). The compiler then creates the final 16-bit Flags field for the ACPI table.

21.2.3.4 Strings

Strings must always be surrounded by quotes. The actual string that is generated by the compiler may or
may not be null-terminated, depending on the table definition in the ACPI specification. For example, the
OEM ID and OEM Table ID in the common ACPI table header (shown above) are fixed at six and eight
characters, respectively. They are not necessarily null terminated. Most other strings, however, are of
variable-length and are automatically null terminated by the compiler. If a string is specified that is too
long for a fixed-length string field, an error is issued. String lengths are specified in the definition for each
relevant ACPI table.

Escape sequences within a quoted string are not allowed. The backslash character '\' refers to the root of
the ACPI namespace.

Examples:
[008] Oem Table ID : "TEMPLATE" // Fixed length
[006] Processor UID String : "\CPU0"// Variable length

21.2.3.5 Buffers

A buffer is typically used whenever the required binary data is larger than a QWord, or the data does not
fit exactly into one of the standard integer widths. Examples include UUIDs and byte data defined by the
SLIT table.

Examples:
// SLIT entry

[032] Locality 0 : 0A 10 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 \
 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33

// DMAR entry

[002] PCI Path : 1F 07
UEFI Forum, Inc. January 2019 Page 1085

ACPI Specification, Version 6.3 ACPI Data Tables and Table Definition Language
Each hexadecimal byte should be entered separately, separated by a space. The continuation character
(backslash) may be used to continue the buffer data to more than one line.

21.2.4 Fields Set Automatically by the Compiler

There are several types of ACPI table fields that are set automatically by the compiler. This simplifies the
process of ACPI table development by relieving the programmer from these tasks.

Checksums: All ACPI table checksums are computed and inserted
automatically. This includes the main checksum that appears in
the standard ACPI table header, as well as any additional
checksum fields such as the extended checksum that appears in
the ACPI 2.0 RSDP.

Table and Subtable Lengths: All ACPI table lengths are computed and inserted automatically.
This includes the master table length that appears in the common
ACPI table header, and the length of any internal subtables as
applicable.

Examples:
[004] Table Length : 000000F4

[001] Subtable Type : 08 <Platform Interrupt Sources>
[001] Length : 10

[001] Subtable Type : 01 <Memory Affinity>
[001] Length : 28

Flags: As described in the previous section, individual flags are
aggregated automatically by the compiler and inserted into the
ACPI table as the correctly sized and valued integer.

Compiler IDs: The data table compiler automatically inserts the ID and current
revision for iASL into the common ACPI table header for each
table during compilation.

21.2.5 Special Fields
Reserved Fields: All fields that are declared as Reserved by the table definition

within the ACPI (or other) specification should be set to zero.

Table Revision: This field in the common ACPI table header is often very
important and defines the structure of the remaining table. The
developer should take care to ensure that this value is correct and
current. This field is not set automatically by the compiler. It is
instead used to indicate which version of the table is being
compiled.

Table Signature: There are several table signatures within ACPI that are either
different from the table name, or have unusual length:

FADT - signature is "FACP".

MADT - signature is "APIC".
UEFI Forum, Inc. January 2019 Page 1086

ACPI Specification, Version 6.3 ACPI Data Tables and Table Definition Language
RSDP - signature is "RSD PTR " (with trailing space)

21.2.6 TDL Generic Data Types

These data types are used to construct ACPI tables that are not predefined (known) by the TDL compiler.

UINT8 Generates an 8-bit unsigned integer

UINT16 Generates a 16-bit unsigned integer

UINT24 Generates a 24-bit unsigned integer

UINT32 Generates a 32-bit unsigned integer

UINT40 Generates a 40-bit unsigned integer

UINT48 Generates a 48-bit unsigned integer

UINT56 Generates a 56-bit unsigned integer

UINT64 Generates a 64-bit unsigned integer

String Generates a null-terminated ASCII string (ASCIIZ)

Unicode Generates a null terminated Unicode (UTF-16) string

Buffer Generates a buffer of 8-bit unsigned integers

GUID Generates an encoded GUID in a 16-byte buffer

Label Generates a Label at the current location (offset) within the table.

This label can be referenced within integer expressions by prepending 
the label with a '$' sign.

21.2.7 Defining a Known ACPI Table in TDL

It is expected that most ACPI tables that will be created via the TDL compiler are ACPI tables that are
known to the compiler. This means that the compiler contains the required structure and definition of
the table, as per the ACPI specification or other specification for that table.

For these known ACPI tables, specifying the data for the table involves simply defining the value for each
field in the table. The compiler automatically types the data, performs range and any value checks, and
generates the appropriate output.

The starting point for any of the known ACPI tables is the document that specifies the format of the table
(usually the ACPI specification), or a table template file generated by an ASL compiler, or even the output
of an AML disassembler. Writing the TDL code involves implementing one line of code for each data item
specified in the table definition itself.

For example, the table header for an ACPI table can be defined as simply a sequence of strings and
integers. The TDL compiler will format these data items into a 36-byte ACPI header.

 : "ECDT"
 : 00000000
 : 01
 : 00
 : "OEM "
UEFI Forum, Inc. January 2019 Page 1087

ACPI Specification, Version 6.3 ACPI Data Tables and Table Definition Language
 : "MACHINE1"
 : 00000001
 : ""
 : 00000000

21.2.8 Defining an Unknown or New ACPI table in TDL

For ACPI tables that are new or whose formats are otherwise unknown to the compiler, "generic" data
types are introduced to allow the definition of these tables using explicit data types.

Examples of Generic Data Types:
 Label : StartRecord
 UINT8 : 11
 UINT16 : $EndRecord - $StartRecord // Record length
 UINT24 : 112233
 UINT32 : 11223344
 UINT56 : 11223344556677
 UINT64 : 1122334455667788

 String : "This is a string"
 DevicePath : "\PciRoot(0)\Pci(0x1f,1)\Usb(0,0)"
 Unicode : "This string will be encoded to Unicode"

 Buffer : AA 01 32 4C 77
 GUID : 11223344-5566-7788-99aa-bbccddeeff00
 Label : EndRecord

21.2.9 Table Definition Language Examples

21.2.9.1 ECDT Disassembler Output

The output of the iASL disassembler may be used as direct input to the TDL compiler:

[000h 0000 4] Signature : "ECDT" [Embedded Controller Data Table]
[004h 0004 4] Table Length : 0000004E
[008h 0008 1] Revision : 01
[009h 0009 1] Checksum : F4
[00Ah 0010 6] Oem ID : "INTEL "
[010h 0016 8] Oem Table ID : "TEMPLATE"
[018h 0024 4] Oem Revision : 00000001
[01Ch 0028 4] Asl Compiler ID : "INTL"
[020h 0032 4] Asl Compiler Revision : 20110316

[024h 0036 12] Command/Status Register : [Generic Address Structure]
[024h 0036 1] Space ID : 01 [SystemIO]
[025h 0037 1] Bit Width : 08
[026h 0038 1] Bit Offset : 00
[027h 0039 1] Encoded Access Width : 00 [Undefined/Legacy]
[028h 0040 8] Address : 0000000000000066

[030h 0048 12] Data Register : [Generic Address Structure]
UEFI Forum, Inc. January 2019 Page 1088

ACPI Specification, Version 6.3 ACPI Data Tables and Table Definition Language
[030h 0048 1] Space ID : 01 [SystemIO]
[031h 0049 1] Bit Width : 08
[032h 0050 1] Bit Offset : 00
[033h 0051 1] Encoded Access Width : 00 [Undefined/Legacy]
[034h 0052 8] Address : 0000000000000062

[03Ch 0060 4] UID : 00000000
[040h 0064 1] GPE Number : 09
[041h 0065 13] Namepath : "_SB.PCI0.EC"

Raw Table Data: Length 78 (0x4E)

 0000: 45 43 44 54 4E 00 00 00 01 F4 49 4E 54 45 4C 20 ECDTN.....INTEL
 0010: 54 45 4D 50 4C 41 54 45 01 00 00 00 49 4E 54 4C TEMPLATE....INTL
 0020: 16 03 11 20 01 08 00 00 66 00 00 00 00 00 00 00 f.......
 0030: 01 08 00 00 62 00 00 00 00 00 00 00 00 00 00 00 b...........
 0040: 09 5C 5F 53 42 2E 50 43 49 30 2E 45 43 00 ._SB.PCI0.EC.

21.2.9.2 ECDT Definition with Field Comments

Similar to the disassembler output but simpler:

 Signature : "ECDT" [Embedded Controller Data Table]
 Table Length : 0000004E
 Revision : 01
 Checksum : F4
 Oem ID : "INTEL "
 Oem Table ID : "TEMPLATE"
 Oem Revision : 00000001
 Asl Compiler ID : "INTL"
 Asl Compiler Revision : 20110316

 Command/Status Register : [Generic Address Structure]
 Space ID : 01 [SystemIO]
 Bit Width : 08
 Bit Offset : 00
 Encoded Access Width : 00 [Undefined/Legacy]
 Address : 0000000000000066

 Data Register : [Generic Address Structure]
 Space ID : 01 [SystemIO]
 Bit Width : 08
 Bit Offset : 00
 Encoded Access Width : 00 [Undefined/Legacy]
 Address : 0000000000000062

 UID : 00000000
 GPE Number : 09
 Namepath : "_SB.PCI0.EC"
UEFI Forum, Inc. January 2019 Page 1089

ACPI Specification, Version 6.3 ACPI Data Tables and Table Definition Language
21.2.10 Minimal ECDT Definition

An example of a minimal ECDT definition with no Field Names:

 : "ECDT" [Embedded Controller Boot Resources Table]
 : 0000004E
 : 01
 : F4
 : "INTEL "
 : "TEMPLATE"
 : 00000001
 : "INTL"
 : 20110316

 : [Generic Address Structure]
 : 01 [SystemIO]
 : 08
 : 00
 : 00 [Undefined/Legacy]
 : 0000000000000066

 : [Generic Address Structure]
 : 01 [SystemIO]
 : 08
 : 00
 : 00 [Undefined/Legacy]
 : 0000000000000062

 : 00000000
 : 09
 : "_SB.PCI0.EC"
UEFI Forum, Inc. January 2019 Page 1090

ACPI Specification, Version 6.3 ACPI Data Tables and Table Definition Language
21.2.10.1 Generic ACPI Table Definition

Tables that are not known to the TDL compiler can be defined by using the generic data types. All ACPI
tables are assumed to have the common ACPI header, however:

Signature : "OEMZ"
Table Length : 00000052
Revision : 01
Checksum : 6C
Oem ID : "TEST"
Oem Table ID : "CUSTOM "
Oem Revision : 00000001
Asl Compiler ID : "INTL
Asl Compiler Revision : 00000001

 UINT8 : 01
 UINT8 : 08
 UINT8 : 00
 UINT8 : 00
 UINT64 : 0000000000000066
 UINT32 : 00000000
 UINT8 : 12
 String : "Hello World!"
UEFI Forum, Inc. January 2019 Page 1091

Appendix A: Device Class Specifications

This section defines the behavior of devices as that behavior relates to power management and,
specifically, to the four device power states defined by ACPI. The goal is enabling device vendors to
design power-manageable products that meet the basic needs of OSPM and can be utilized by any ACPI-
compatible operating system.

A.1 Overview

The power management of individual devices is the responsibility of a policy owner in the operating
system. This software element will implement a power management policy that is appropriate for the
type (or class) of device being managed. Device power management policy typically operates in
conjunction with a global system power policy implemented in the operating system.

In general, the device-class power management policy strives to reduce power consumption while the
system is working by transitioning among various available power states according to device usage. The
challenge facing policy owners is to minimize power consumption without adversely impacting the
system’s usability. This balanced approach provides the user with both power savings and good
performance.

Because the policy owner has very specific knowledge about when a device is in use or potentially in use,
there is no need for hardware timers or such to determine when to make these transitions. Similarly, this
level of understanding of device usage makes it possible to use fewer device power states. Generally,
intermediate states attempt to draw a compromise between latency and consumption because of the
uncertainty of actual device usage. With the increased knowledge in the OS, good decisions can be made
about whether the device is needed at all. With this ability to turn devices off more frequently, the
benefit of having intermediate states diminishes.

The policy owner also determines what class-specific events can cause the system to transition from
sleeping to working states, and enables this functionality based on application or user requests. Notice
that the definition of the wake events that each class supports will influence the system’s global power
policy in terms of the level of power management a system sleeping state can attain while still meeting
wake latency requirements set by applications or the user.

A.2 Device Power States

The following definitions apply to devices of all classes:

• D0. State in which device is on and running. It is receiving full power from the system and is
delivering full functionality to the user.

• D1. Class-specific low-power state (defined in the following section) in which device context
may or may not be lost. Buses in D1 cannot do anything to the bus that would force devices on
that bus to lose context.

• D2. Class-specific low-power state (defined in the following section) in which device context
may or may not be lost. Attains greater power savings than D1. Buses in D2 can cause devices
on that bus to lose some context (for example, the bus reduces power supplied to the bus).
Devices in D2 must be prepared for the bus to be in D2 or higher.
UEFI Forum, Inc. January 2019 Page 1092

ACPI Specification, Version 6.3 Device Class Specifications
• D3. State in which device is off and not running. Device context is lost. Power can be removed
from the device.

Device power-state transitions are typically invoked through bus-specific mechanisms (for example, ATA
Standby, USB Suspend, and so on). In some cases, bus-specific mechanisms are not available and device-
specific mechanisms must be used. Notice that the explicit command for entering the D3 state might be
the removal of power.

It is the responsibility of the policy owner (or other software) to restore any lost device context when
returning to the D0 state.

A.2.1 Bus Power Management

Policy owners for bus devices (for example, PCI, USB, Small Computer System Interface [SCSI]) have the
additional responsibility of tracking the power states of all devices on the bus and for transitioning the
bus itself to only those power states that are consistent with those of its devices. This means that the bus
state can be no lower than the highest state of one of its devices. However, enabled wake events can
affect this as well. For example, if a particular device is in the D2 state and set to wake the system and the
bus can only forward wake requests while in the D1 state, then the bus must remain in the D1 state even
if all devices are in a lower state.

Below are summaries of relevant bus power management specifications with references to the sources.

A.2.2 Display Power Management

Refer to the Display Power Management Signaling Specification (DPMS), available from:

Video Electronics Standards Association (VESA)
2150 North First Street
Suite 440
San Jose, CA 95131-2029

A DPMS-compliant video controller and DPMS-compliant monitor use the horizontal and vertical sync
signals to control the power mode of the monitor. There are 4 modes of operation: normal, standby,
suspend and off. DPMS-compliant video controllers toggle the sync lines on or off to select the power
mode.

A.2.3 PCMCIA/PCCARD/CardBus Power Management

PCMCIA and PCCARD devices do not have device power states defined. The only power states available
are on and off, controlled by the host bus controller. The CardBus specification is a superset of the
PCCARD specification, incorporating the power management specification for PCI bus. Power
management capabilities query, state transition commands and wake event reporting are identical.

A.2.4 PCI Power Management

Refer to the PCI Special Interest Group (PCISIG) Web site, at “Links to ACPI-Related Documents” (http://
uefi.org/acpi) under the heading "PCI Sig".

• PCI Bus Power Management Capabilities Query. PCI Bus device capabilities are reported via
the optional Capabilities List registers, which are accessed via the Cap_Ptr.
UEFI Forum, Inc. January 2019 Page 1093

ACPI Specification, Version 6.3 Device Class Specifications
• PCI Bus Power Management State Transition Commands. PCI Bus device power states are
controlled and queried via the standard Power Management Status/Control Register (PMCSR).

• PCI Bus Wakeup Event Reporting. PCI wake events are reported on the optional PME# signal,
with setting of the Wake_Int bit in the PMCSR. Wake event reporting is controlled by the
Wake_En bit in the PMCSR register.

A.2.5 USB Power Management

Refer to the Universal Serial Bus Implementers Forum (USB-IF) Web site, at “Links to ACPI-Related
Documents” (http://uefi.org/acpi) under the heading "Universal Serial Bus Power Management".

• USB Power Management Capabilities Query. USB device capabilities are reported to the USB
Host via the standard Power Descriptors. These address power consumption, latency time,
wake support, and battery support and status notification.

• USB Power Management State Transition Commands. USB device power states are controlled
by the USB Host via the standard SET_FEATURE command. USB device power states are
queried via the standard USB GET_STATUS command.

• USB Wakeup Event Reporting. USB wake event reporting is controlled using the SET_FEATURE
command, with value DEVICE_REMOTE_WAKEUP. USB wake events are reported by sending
remote wake resume signaling.

A.2.6 Device Classes

Below is a list of the class-specific device power management definitions available in this specification.
Notice that there exists a default device class definition that applies to all devices, even if there is a
separate, class-specific section that adds additional requirements.

• Audio Device Class. Applies to audio devices.
• COM Port Device Class. Applies to COM ports devices.
• Display Device Class. Applies to CRT monitors, LCD panels, and video controllers for those

devices.
• Input Device Class. Applies to standard types of input devices such as keyboards, keypads,

mice, pointing devices, joysticks, and game pads, plus new types of input devices such as virtual
reality devices.

• Modem Device Class. Applies to modem and modem-like (for example, ISDN terminal
adapters) devices.

• Network Device Class. Applies specifically to Ethernet and token ring adapters. ATM and ISDN
adapters are not supported by this specification.

• PC Card Controller Device Class. Applies to PC Card controllers and slots.
• Storage Device Class. Applies specifically to ATA hard disks, floppy disks, ATAPI and SCSI CD-

ROMs, and the IDE channel.

A.3 Default Device Class

The requirements expressed in this section apply to all devices, even if there is a separate, class-specific
power management definition that identifies additional requirements.
UEFI Forum, Inc. January 2019 Page 1094

ACPI Specification, Version 6.3 Device Class Specifications
Table A-1 Default Power State Definitions

State Definition

D0 Device is on and running. It is receiving full power from the system, and is delivering full
functionality to the user.

D1 This state is not defined and not used by the default device class.

D2 This state is not defined and not used by the default device class.

D3 Device is off and not running. Device context is assumed lost, and there is no need for any of it to
be preserved in hardware. This state should consume the minimum power possible. Its only
requirement is to recognize a bus-specific command to re-enter D0. Power can be removed from
the device while in D3. If power is removed, the device will receive a bus-specific hardware reset
upon reapplication of power, and should initialize itself as in a normal power on.

A.3.1 Default Power Management Policy

Present
State

Next State Cause

D0 D3 Device determined by the OS to not be needed by any applications or the user.

System enters a sleeping state.

D3 D0 Device determined by the OS to be needed by some application or the user.

A.3.2 Default Wake Events

There are no default wake events, because knowledge of the device is implicit in servicing such events.
Devices can expose wake capabilities to OSPM, and device-specific software can enable these, but there
is no generic application-level or OS-wide support for undefined wake events.

A.3.3 Minimum Power Capabilities

All devices must support the D0 and D3 states. Functionality available in D0 must be available after
returning to D0 from D3 without requiring a system reboot or any user intervention. This requirement
applies whether or not power is removed from the device during D3.

A.4 Audio Device Class

The requirements expressed in this section apply to audio devices
UEFI Forum, Inc. January 2019 Page 1095

ACPI Specification, Version 6.3 Device Class Specifications
A.4.1 Power State Definitions

State Status Definition

D0 Required Power is on. Device is operating.

D1 Optional Power consumption is less than D0 state. Device must be able to transition between
D0 and D1 states within 100 ms. No audio samples may be lost by entering and
leaving this state.

D2 Required Power consumption is less than D0 state. Device must be able to transition between
D0 and D2 states within 100 ms. Audio samples may be lost by entering and leaving
this state.

D3 Required The device is completely off or drawing minimal power. For example, a stereo will
be off, but a light-emitting diode (LED) may be on and the stereo may be listening to
IR commands.

If a device is in the D1 or D2 state it must resume within 100 ms. A device in the D3 state may take as long
as it needs to power up. It is the responsibility of the policy owner to advertise to the system how long a
device requires to power up.

All audio devices must be capable of D0, D2 and D3 states. It is desirable that an audio device be capable
of D1 state. The difference between D1 and D2 is that a device capable of D1 can maintain complete state
information in reduced power mode. The policy owner or other software must save all states for D2-
capable devices. Some audio samples may be lost in transitioning into and out of the D2 state.

Notice that the D1 state was added to allow digital signal processor (DSP)-equipped audio hardware to
exploit low-power modes in the DSP. For example, a DSP may be used to implement Dolby AC-3 Decode.
When paused it stops playing audio, but the DSP may contain thousands of bytes worth of state
information. If the DSP supports a low-power state, it can shut down and later resume from exactly the
audio sample where it paused without losing state information.

A.4.2 Power Management Policy

For the purpose of the following state transition policy, the following device-specific operational states
are defined:

• Playing. Audio is playing.
• Recording:
• Foreground. Normal application is recording. Recording is considered foreground unless

specifically designated low priority.
• Background. Speech recognition or speech activity detection is running. Recording may be

preempted by foreground recording or playing. Any audio recording may be designated as
background.

• Full Duplex. Device is simultaneously playing and recording.
• Paused. File handle is open. Only devices that are playing, foreground recording or in full

duplex operation may be paused. Background recording may not be paused. State is static and
never lost. The paused state assumes that a device must transition to the resumed state
rapidly. Playing or recording must be resumed within 100 ms. No audio samples may be lost
between the device is paused and later resumed.

• Closed. No file handle is open.
UEFI Forum, Inc. January 2019 Page 1096

ACPI Specification, Version 6.3 Device Class Specifications
When an audio device is in the D0 state it will refuse system requests to transition to D3 state unless it is
in background record mode. When an audio device is paused (D1 or D2) and it receives a request to
transition to the D3 state, it will save the state of the audio device and transition to the D3 state.

Since multimedia applications often open and close audio files in rapid succession, it is recommended
that an inactivity timer be employed by the policy owner to prevent needless shutdowns (D3 transitions)
of the audio hardware. For example, frequent power cycling may damage audio devices powered by
vacuum tubes.

A.4.3 Wake Events

An audio device may be a wake device. For example, a USB microphone designed for security applications
might use the USB wake mechanism to signal an alarm condition.

A.4.4 Minimum Power Capabilities

All audio devices must be capable of D0, D2 and D3 power states. If the device is capable of maintaining
context while in a low-power state it should advertise support for D1. Transitional latency for the D2 or
D3 states must be less than 100 ms. There are no latency restrictions for D3 transitions, but the policy
owner should advertise the amount of time required.

A.5 COM Port Device Class

The requirements expressed in this section apply to Universal Asynchronous Receiver/Transmitters
(UARTs) such as the common NS16550 buffered serial port and equivalents.

The two required states for any power-managed COM Port are full on (D0) and full off (D3). This in turn
requires that the COM port hardware be power-manageable by ACPI control methods for COM ports that
are on system boards, or by standard bus power management controls for COM ports that are on add-in
cards (for example, PCI). Because of this, ISA-based COM port add-in cards will not be able to meet this
requirement, and therefore cannot be compliant with this specification.

Present
State

Next
State

Cause

D3 D0 Audio device moves from closed to open state or paused when the device receives the
resume command.

D0 D1 Audio device receives pause command. If device is D1 capable, this state is preferred. If
not, the device driver will preserve context, and the device will be set to D2.

D2/D1 D0 Audio device receives a resume command.

D0 D2 Audio device is closed. Audio inactivity timer started.

D2 D3 Audio inactivity timer expires.

D0 D3 Audio device is in background record mode and receives power-down command.
UEFI Forum, Inc. January 2019 Page 1097

ACPI Specification, Version 6.3 Device Class Specifications
A.5.1 Power State Definitions

State Status Definition

D0 Required Line drivers are on. UART context is preserved.

D1 N/A This state is not defined for COM Ports. Use the D3 state instead.

D2 N/A This state is not defined for COM Ports. Use the D3 state instead.

D3 Required Line drivers are off (unpowered; outputs isolated from devices attached to the
port). UART context is lost. Latency to return to D0 is less than 1 second.

A.5.2 Power Management Policy

Present
State

Next
State

Cause

D3 D0 Power-on reset

COM port opened by an application

D0 D3 COM port closed

System enters sleeping state while wake is disabled on this device.

System enters sleeping state while wake is enabled on this device and the device is
capable of generating wake to the system from state D3.

A.5.3 Wake Events

If the COM port is capable of generating wake events, asserting the “ring indicator” line (V.24 circuit 125)
will cause the COM port to assert a wake event. There are two common mechanisms that may be
employed (either one or both) for performing machine wake using COM ports.

The first provides a solution that is capable of waking the PC whether the UART is powered (D0) or not
(D3). Here, the “ring indicator” line (from V.24 circuit 125) is commonly connected directly to the system
wake device in addition to being connected to the UART. While this implementation is normative for
COM ports located on system motherboards (see the ACPI specification), it could also be done by add-in
cards with COM ports that reside on buses supporting system wake from devices in D3 (for example,
PME# signal on PCI).

The second mechanism requires that the UART be powered (D0) to use the UART’s interrupt output pin
to generate the wake event instead. When using this method, the OS COM port policy owner or power
management control methods are expected to configure the UART. Although any UART interrupt source
(for example, ‘data ready’) could theoretically be used to wake the system, these methods are beyond
the scope of this document.

A.5.4 Minimum Power Capabilities

A COM port conforming to this specification must support the D0 and D3 states.

A.6 Display Device Class

The requirements expressed in this section apply to all devices engaged in the display of program
content, which includes full screen display devices, display controllers, and graphics adapters. This class
UEFI Forum, Inc. January 2019 Page 1098

ACPI Specification, Version 6.3 Device Class Specifications
does not include video capture devices unless they are children of the graphics adapter. This class does
not include edge displays or hardware indicators for device states.

While saving power from the display and adapter are primary goals of Display Device Class power
management definitions, the definitions are also intended to ensure that the user perceives the system
as "off" during system sleeping states, as required above. When the system enters a lower power state,
the screen must go black so the user knows the system is idle. This is important because devices that
cannot actually save power (standard televisions, for example) can still support the user notice of system
idle by going black.

A.6.1 Power State Definitions

A.6.1.1 CRT Monitors (not including other full screen displays)

State Status Definition

D0 Required This state is equivalent to the “On” state defined in the VESA DPMS specification (see
Related Documents) and is signaled to the display using the DPMS method.

Display is fully on

Video image is active

D1 Optional This state is equivalent to the “Standby” state defined in the VESA DPMS and is
signaled to the display using the DPMS method.

Display is functional but may be conserving energy

Video image is blank

Latency to return to D0 must be less than 5 seconds

D2 Required This state is equivalent to the “Suspend” state defined in the VESA DPMS
specification and is signaled to the display using the DPMS method.

Display is functional and conserving energy

Video image is blank

Latency to return to D0 is less than 10 seconds

D3 Required This state is equivalent to the “Off” state defined in the VESA DPMS specification and
is signaled to the display using the DPMS method.

Display is non-functional

Video image is blank

CRT Monitors are a special case in power management. On the one hand, they support a common
defined method (DPMS) for changing power states. On the other hand, that procedure and the CRT
support is extremely slow and out of keeping with other faster power control methods used by other
forms of display. This definition should not preclude the use of faster and more effective methods of
transitioning the CRT if they are available and known to the controller. DPMS is not recommended as
solution for new display devices in the future.
UEFI Forum, Inc. January 2019 Page 1099

ACPI Specification, Version 6.3 Device Class Specifications
A.6.1.2 Internal Flat Panel Devices

State Status Definition

D0 Required This state is equivalent to the “On” state for a DPMS device, but is signaled to the
panel by the correct application of power and/or controller specific signaling.

Display is fully on

Backlight (if present) is fully on(subject to performance state requirements – see
below)

Video image is active

D1 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state.

Display retains internal state but may be conserving energy

Backlight(if present) is fully off

Video image is blank

Latency to return to D0 must be less than 500 milliseconds

D2 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state.

Display retains state but is conserving energy

Backlight (if present) is fully off;

Video image is blank

Latency to return to D0 is less than 500 milliseconds

D3 Required This state is equivalent to the “Off” state defined in the VESA DPMS specification. It is
signaled by the removal of power or possibly by controller-specific signaling.

Display is non-functional

Backlight (if present) is fully off.

Video image is blank

Latency to return to D0 is less than 500 milliseconds

Internal flat panels (also known as local flat panels or sometimes as LCDs) do not normally support or
require DPMS signaling to change power states. Instead, controllers capable of managing such panels
tend to provide vendor-specific methods to control internal flat panels, often involving special
sequencing of power signals to the panel. Some may be managed only by the application or removal of
power.

Backlight control for power management states is likewise controller and even platform specific. Note
that on-off backlight control for power management states is often unrelated to backlight intensity or
brightness control that is used while in the D0 state.

The 500 milliseconds is only to allow some existing hardware to function . The target for new devices
should be 100 milliseconds.
UEFI Forum, Inc. January 2019 Page 1100

ACPI Specification, Version 6.3 Device Class Specifications
A.6.1.3 DVI Displays (Digital Flat Panels and DVI Monitors

State Status Definition

D0 Required This state is equivalent to the “On” state for a DPMS device, but is signaled to the
display by the correct application of power and/or controller specific signaling.

Display is fully on

Video image is active

D1 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state. It is signaled
by the removal of display output and time expiring. The physical state entered is no
different than D2.

Display retains internal state but may be conserving energy

Video image is blank

Latency to return to D0 must be less than 250 milliseconds

D2 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state. It is signaled
by the removal of display output and time expiring The physical state entered is no
different than D1.

Display retains state but is conserving energy

Video image is blank

Latency to return to D0 is less than 250 milliseconds

D3 Required This state is equivalent to the “Off” state defined in the VESA DPMS specification. It is
signaled by the removal of display output and time expiring

Display is non-functional

Video image is blank

Latency to return to D0 is less than 250 milliseconds

Although 250 milliseconds is shown here because not all devices in this group are fast now, the target
resume for a new device should be 100 milliseconds.

A.6.1.4 Standard TV Devices (and Analog HDTVs)

State Status Definition

D0 Required This state is equivalent to the “On” state for a DPMS device.

Display is fully on

Video image is active

D1 Optional Video image is blank

Latency to return to D0 must be less than 100 milliseconds

D2 Optional Video image is blank

Latency to return to D0 must be less than 100 milliseconds
UEFI Forum, Inc. January 2019 Page 1101

ACPI Specification, Version 6.3 Device Class Specifications
A.6.1.5 Other (new) Full Screen Devices

Some devices not specifically defined here already exist, such as projectors that emulate CRTs or HDTVs.
Others may be coming. It is important for any device used for full screen display to support power
transitions and power management states, but the primary requirement for the method should be low
overhead.

State Status Definition

D0 Required This state is equivalent to the “On” state for a DPMS device, but is signaled to the
panel by the correct application of power and/or device specific signaling known to
the controller.

Display is fully on

Video image is active

D1 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state. It is signaled
to the panel by the correct application of power and/or device specific signaling
known to the controller.

Display retains internal state but may be conserving energy

Video image is blank

Latency to return to D0 must be less than 100 milliseconds

D2 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state. It is signaled
to the panel by the correct application of power and/or device specific signaling
known to the controller.

Display retains state but is conserving energy

Video image is blank

Latency to return to D0 is less than 100 milliseconds

D3 Required This state is equivalent to the “Off” state defined in the VESA DPMS specification. It is
signaled by the removal of display output and/or device specific methods known to
the controller.

Display is non-functional

Video image is blank

Latency to return to D0 is less than 250 milliseconds

Although 250 milliseconds is shown here because not all devices in this group are fast now, the target
resume for a new device should be 100 milliseconds.

D3 Required This state is not equivalent to the “Off” state defined in the VESA DPMS specification
because not power is actually saved.

Video image is blank

Latency to return to D0 is less than 100 milliseconds
UEFI Forum, Inc. January 2019 Page 1102

ACPI Specification, Version 6.3 Device Class Specifications
A.6.1.6 Video Controllers (Graphics Adapters)

State Status Definition

D0 Required Back-end is on

Video controller context is preserved

Video memory contents are preserved

D1 Optional Back-end is off, except for CRT control signaling (DPMS)

Video controller context is preserved

Video memory contents is preserved

Latency to return to D0 is less than 100 milliseconds

D2 Optional Back-end is off, except for CRT control signaling (DPMS)

Video controller context is lost

Video memory contents is lost

Latency to return to D0 is less than 200 milliseconds

D3 Required Back-end is off

Video controller context is lost (power removed)

Video memory contents is lost (power removed)

Latency to return to D0 is less than 200 milliseconds

A.6.1.7 Display Codecs

Like the displays they control, display codecs are children of the adapter and cannot be in a higher state
than the adapter or a lower state than the displays they control . It is generally not helpful to deal with
codecs entirely separately from the adapter or the displays they control. While it may vary from device to
device, a codec will either be safely powered down when its display is powered down or it may require
power as long as the adapter receives power.

A.6.2 Power Management Policy for the Display Class

Present
State

Next
State

Cause

D0 D1 User inactivity for a period of time (T1)

D1 D2 User inactivity for a period of time (T2 > T1)

D2 D3 User inactivity for a period of time (T3 > T2)

D1/D2/D3 D0 User activity or application UI change (for example, dialog pop-up)

These state transition definitions apply to both the full screen display and the video controller. However,
the control of the two devices is independent, except that a video controller will never be put into a
lower power state than its full screen display. Also, while full screen displays can transition directly from
D1 to D3 or from D2 to D3, the adapters require a transition to D0 from D1 or D2 before entering D3.

Transitions for the video controller are commanded via the bus-specific control mechanism for device
states. Monitor/LCD transitions are commanded by signaling from the video controller and are only
generated as a result of explicit commands from the policy-owner. Full screen display power control is
UEFI Forum, Inc. January 2019 Page 1103

ACPI Specification, Version 6.3 Device Class Specifications
functionally independent from any other interface the monitor may provide (such as USB). For instance,
Hubs and HID devices in the monitor enclosure may be power-managed by their driver over the USB bus,
but the Monitor/LCD device itself may not; it must be power-managed from the video controller using
the methods above.

A.6.3 Wake Events

Display devices incorporating a system power switch should generate a wake event when the switch is
pressed while the system is sleeping.

A.6.4 Minimum Power Capabilities

A CRT monitor conforming to this specification must support the D0, D2, and D3 states. Other full screen
displays only need to support D0 and D3. Support for the D1 state is optional in all cases. Transitional
latencies for the D1 or D2 state must meet the requirements above.

A video controller conforming to this specification must support the D0 and D3 states. Support for the D1
and D2 states is optional. Transitional latencies for the D1 must be less than 100 milliseconds while D2
and D3 must transition to D0 in less than 200 milliseconds.

A.6.5 Performance States for Display Class Devices

Performance states for display devices and adapters have one clear difference from defined power
management states. There is no display in any power management state higher than D0. However,
performance states are all applied within D0, which means they save power while continuing to display.
Not all display class devices will support performance states, but in all cases, they must allow continued
display where they exist.

A.6.5.1 Common Requirements for Display Class Performance States

The definition of each state (up the line toward the OSPM) must include maximum latency information
on transitions into the state and transitions out of the state. (For states other than DPS1, it may be
necessary to indicate whether the latency is the time from DPS0 to DPSx or only from DPSx-1 to DPSx.)

Each state has to have a relative weight indicator or a relative power savings indicator (i.e., it can make a
difference in OSPM policies whether DPS1 saves 2% power and DPS2 save 75% power even if latency is
longer.)

While ASL NameSpace structures may provide some of this information, it is recommended that display
class performance states be entered and exited by driver and not by control method wherever possible.

A.6.5.2 Performance states for Full Screen Displays

A.6.5.2.1 CRT Performance States

Some CRTs (in theory) have the capability for "reduced on" -- a mode which displays but uses less power
than full performance. Even without this capability, a CRT may be able to use reduced refresh or other
methods to reduce the total power of displaying.
UEFI Forum, Inc. January 2019 Page 1104

ACPI Specification, Version 6.3 Device Class Specifications
A.6.5.2.2 Internal Flat Panel

In general, panels consume a fixed amount of power. However, some panels are also capable of
supporting reduced refresh. More important, the amount of backlight brightness is a major factor in
system power. This clearly needs to be coordinated with direct ASL control methods for brightness and
with ambient light sensing when present. However, a performance state may be achieved by offsetting
the brightness value computed by other methods, either by a fixed amount or a fixed percentage.

A.6.5.2.3 DVI Full Screen Devices

DVI Devices are normally capable of frequency control and may be able to benefit by frequency control.
However, because of sensitivity to signal loss, DVI devices may have limitations on other types of
performance control.

A.6.5.2.4 Standard TV and Analog HDTVs

Standard TV and Analog HDTVs do not appear capable of performance states. Codecs controlling them
may be capable of power saving, however.

A.6.5.2.5 New Devices

The ability to reduce power while continuing to display will be increasingly important.

A.6.5.3 Performance States for Video Controllers/Display Adapters

Adapters are somewhat limited during performance states because they have to continue to support
display on one or more full screen devices. However, they can still do a number of things to support
performance states, including

• Changes to basic display and render capabilities, including speed or frequency range
supported.

• Feature/Capability/Quality Control – limiting specific hardware features, limiting refresh rates,
limiting resolutions.

The limiting factor on what can be supported may sometimes be in the OSPM. If the OSPM support
dynamic changes in these features during a performance state change (even if no other time), more
opportunities arise.

Once again, the latency on transitions and the power saved by specific states have to be made available
to the OSPM in order to use these options effectively.

A.7 Input Device Class

The requirements expressed in this section apply to standard types of input devices such as keyboards,
keypads, mice, pointing devices, joysticks, game pads, to devices that combine these kinds of input
functionality (composite devices, and so on), and to new types of input devices such as virtual reality
devices, simulation devices, and so on.
UEFI Forum, Inc. January 2019 Page 1105

ACPI Specification, Version 6.3 Device Class Specifications
A.7.1 Power State Definitions

State Status Definition

D0 Required Device is receiving full power from its power source, delivering full functionality to the
user, and preserving applicable context and state information.

D1 Optional Input device power consumption is greatly reduced. In general, device is in a power
management state and is not delivering any functionality to the user except wake
functionality if applicable. Device status, state, or other information indicators (for
example, LEDs, LCD displays, and so on) are turned off to save power.

The following device context and state information should be preserved by the policy
owner or other software:

Keyboard. Num, caps, scroll lock states (and Compose and Kana states if applicable) and
associated LED/indicator states, repeat delay, and repeat rate.

Joystick. Forced feedback effects (if applicable).

Any input device. All context and state information that cannot be preserved by the
device when it’s conserving power.

D2 N/A This state is not defined for input devices, use D1 as the power management state
instead.

D3 Required Input device is off and not running. In general, the device is not delivering any
functionality to the user except wake functionality if applicable. Device context and state
information is lost.

A.7.2 Power Management Policy

Present
State

Next State Cause

D3 D0 Requested by the system

D0 D1/D3* Requested by the system (for example, system goes to sleep with wake enabled)

D0/D1 D3 Requested by the system (for example, system goes to sleep with wake disabled)

Power is removed

D1/D3 D0 Device with enabled wake capability requests transition by generating a wake event

Requested by the system

Note: *Depends on capability of device (if it features D1 or D3 wake capability or not); device will be put
in state with the lowest possible power consumption.

A.7.3 Wake Events

It is recommended, but not required, that input devices implement and support bus-specific wake
mechanisms if these are defined for their bus type. This is recommended because a user typically uses an
input device of some kind to wake the system when it is in a power management state (for example,
when the system is sleeping).

The actual input data (particular button or key pressed) that’s associated with a wake event should never
be discarded by the device itself, but should always be passed along to the policy owner or other
UEFI Forum, Inc. January 2019 Page 1106

ACPI Specification, Version 6.3 Device Class Specifications
software for further interpretation. This software implements a policy for how this input data should be
interpreted, and decides what should be passed along to higher-level software, and so on.

It is recommended that the device button(s) or key(s) used for power management purposes are clearly
labeled with text and/or icons. This is recommended for keyboards and other input devices on which all
buttons or keys are typically labeled with text and/or icons that identify their usage.

For example, a keyboard could include a special-purpose power management button (for example,
“Power”) that, when pressed during a system sleeping state, generates a wake event. Alternatively, the
button(s) on mice and other pointing devices could be used to trigger a wake event.

Examples of more advanced wake events include keyboard wake signaling when any key is pressed,
mouse wake signaling on detection of X/Y motion, joystick wake signaling on X/Y motion, and so on.
However, in order to avoid accidental or unintentional wake of the system, and to give the user some
control over which input events will result in a system wake, it’s suggested that more advanced types of
wake events are implemented as features that can be turned on or off by the user (for example, as part of
the OSPM user interface).

A.7.4 Minimum Power Capabilities

An input device conforming to this specification must support the D0 and D3 states. Support for the D1
state is optional.

A.8 Modem Device Class
• The requirements expressed in this section apply to modems and similar devices, such as USB

controlled ISDN Terminal Adapters (“digital modems”) and computer-connected telephone
devices ("CT phones"). This specification will refer to these devices as “modems; the same
considerations apply to digital modems and CT phones unless explicitly stated otherwise.

• The scope of this section is further restricted to modems that support power management
using methods defined by the relevant PC-modem connection bus. These include PCI, USB,
PCCARD (PCMCIA), CardBus, and modems on the system motherboard described by ACPI
system firmware control methods. The scope does not include bus-specific means for devices
to alert the host PC (for example, how to deliver a ”ringing”’ message), nor does it address how
those alerting operations are controlled.

A.8.1 Technology Overview

Modems are traditionally serial devices, but today modems may be attached to a PC by many different
means. Further, many new modems expose a software serial interface, where the modem controller
function is implemented in software. This specification addresses three different connection types:

• Traditional connections without power-managed connections (for example, COM, LPT, ISA)
• Power managed connections (for example, PCCARD, CardBus, PCI, USB)
• Motherboard modems

For some of the above modem connection types mentioned, there are three different modem
architectures possible:

• Traditional modem (DAA, DSP, and controller in hardware)
• Controller-less design (DAA and DSP in hardware)
UEFI Forum, Inc. January 2019 Page 1107

ACPI Specification, Version 6.3 Device Class Specifications
• "Soft modem" design (DAA and CODEC only in hardware)

The hardware components of the modem shall be controlled by the relevant bus commands, where
applicable (USB, PCI, CardBus). The software components are dependent on the power state of the CPU.

A.8.1.1 Traditional Connections

In older methods (COM, LPT, ISA) the modem is controlled primarily by serialized ASCII command strings
(for example, V.25ter) and traditional V.24 (RS-232) out-of-band leads. In these legacy devices, there are
no common means for power management other than the power switch for the device, or the entire
system unit.

An external modem connected to a COM port or LPT port typically has its own power supply. An LPT port
modem might run from the current on the LPT port +5V supply. For COM or LPT port modems, power is
typically controlled by a user switch.

The most common modem type is an ISA card with an embedded COM port. From a software standpoint,
they are logically identical to external modems, but the modems are powered by the PC system unit.
Power is drawn from the ISA bus without independent power switching.

A.8.1.2 Power-Managed Connections

PCMCIA, PCCARD and CardBus slots are powered and power-managed by the system, using means
defined in the relevant bus specifications. For PCMCIA and PCCARD devices, only D0 and D3 states are
available, via Socket Services in the OS and/or ACPI system firmware. CardBus adds intermediate states,
using the same mechanisms defined for PCI Bus.

PCI bus slots are powered and power-managed by the system, using means defined in the PCI
specification.

USB devices may be powered by the USB itself (100mA or 500mA), or have their own external power
supply. All USB devices are power-managed by the USB bus master, using means defined in the USB
specification.

A.8.1.3 Motherboard Modems

A modem embedded in the motherboard is powered by controls on the motherboard. It should be
power-managed by using control methods exposed via ACPI system firmware tables.
UEFI Forum, Inc. January 2019 Page 1108

ACPI Specification, Version 6.3 Device Class Specifications
A.8.2 Power State Definitions

State Status Definition

D0 Required Phone interface is on (may be on or off hook)

Speaker is on

Controller Context is preserved

D1 N/A Not defined (do not use)

D2 Optional Phone interface is not powered by the host (on hook)

Speaker is off

Controller context is preserved

2 seconds maximum restore time

D3 Required Phone interface is not powered by host (on hook)

Speaker is off

Controller context may be lost

5 seconds maximum restore time

A.8.3 Power Management Policy

Present
State

Next State Cause

D2/D3 D0 System issues a bus command to enter the D0 state (for example, an
application is answering or originating a call).

D0 D2 System issues a bus command to enter the D2 state. (for example, an
application is listening for an incoming call).

D0 D3 System issues a bus command to enter the D3 state (for example, all
applications have closed the Modem device).

A.8.4 Wake Events

For any type of modem device, wake events (if supported and enabled) are only generated in response to
detected “ringing” from an incoming call. All other events associated with modems (V.8bis messages, and
so on) require that the PC be in the “working” state to capture them. The methods and signals used to
generate the wake may vary as a function of the modem connection (bus) type and modem architecture.

Machine wake is allowed from any modem power state (D0, D2, and D3), and is accomplished by
methods described in the appropriate bus power management specification (PCI, USB, PCCARD), or by
ACPI system board control methods (for Modem on Motherboard implementations).

If the specific modem implementation or connection type does not enable it to assert system wake
signaling, these modems will not be able to wake the machine. The OS modem policy owner will have to
retain the PC in the “working” state to perform all types of event detection (including ringing).
UEFI Forum, Inc. January 2019 Page 1109

ACPI Specification, Version 6.3 Device Class Specifications
A.8.5 Minimum Power Capabilities

A modem or similar device conforming to this specification must support the D0 and D3 states. Support
of the D2 state is optional.

A.9 Network Device Class

The requirements expressed in this section apply to Ethernet and token ring adapters. ATM and ISDN
adapters are not supported by this specification.

A.9.1 Power State Definitions

For the purpose of the following state definitions “no bus transmission” means that transmit requests
from the host processor are not honored, and “no bus reception” means that received data are not
transferred to host memory.

State Status Definition

D0 Required Device is on and running and is delivering full functionality and performance to the
user

Device is fully compliant with the requirements of the attached network

D1 Optional No bus transmission allowed

No bus reception allowed

No interrupts can occur

Device context may be lost

D2 Optional No bus transmission allowed

No bus reception allowed

No interrupts can occur

Device context may be lost

D3 Required Device context is assumed to be lost

No bus transmission allowed

No bus reception allowed

No interrupts can occur

This document does not specify maximum power and maximum latency requirements for the sleeping
states because these numbers are very different for different network technologies. The device must
meet the requirements of the bus that it attaches to.

Although the descriptions of states D1 and D2 are the same, the choice of whether to implement D1 or
D2 or both may depend on bus services required, power requirements, or time required to restore the
physical layer. For example, a device designed for a particular bus might include state D1 because it
needs a bus service such as a bus clock to support Magic Packet™ wake, and that service is available in
the bus device’s D1 power state but not in D2. Also, a device might include both state D1 and state D2 to
provide a choice between lower power and lower latency.
UEFI Forum, Inc. January 2019 Page 1110

ACPI Specification, Version 6.3 Device Class Specifications
A.9.2 Power Management Policy

Present
State

Next
State

Cause

D0 Dx System enters sleep state. If wake is enabled, Dx is the lowest power state (for
example, D1, D2, D3) from which the network device supports system wake.

An appropriate time-out has elapsed after a “link down” condition was detected. Dx is
the lowest power state in which the network device can detect “link up.”

D0 D3 System initiated network shutdown.

System enters sleep state and wake is either not enabled or the network device is
capable of waking from D3.

D1/D2/D3 D0 System wake (transition to S0), including a wake caused by a network wake event.

A.9.3 Wake Events

Network wake events are generally the result of either a change in the link status or the reception of a
wake frame from the network.

A.9.3.1 Link Status Events

Link status wake events are useful to indicate a change in the network’s availability, particularly when
this change may impact the level at which the system should re-enter the sleeping state. For example, a
transition from “link off” to “link on” may trigger the system to re-enter sleep at a higher level (for
example, S2 versus S3) so that wake frames can be detected. Conversely, a transition from “link on” to
“link off” may trigger the system to re-enter sleep at a deeper level (for example, S3 versus S2) since the
network is not currently available. The network device should implement an internal delay to avoid
unnecessary transitions when the link status toggles on or off momentarily.

A.9.3.2 Wake Frame Events

Wake frame events are used to wake the system whenever meaningful data is presented to the system
over the network. Examples of meaningful data include the reception of a Magic Packet™, a management
request from a remote administrator, or simply network traffic directly targeted to the local system. In all
of these cases the network device was pre-programmed by the policy owner or other software with
information on how to identify wake frames from other network traffic. The details of how this
information is passed between software and network device depend on the OS and therefore are not
described in this specification.

A.9.4 Minimum Power Capabilities

A network device conforming to this specification must support the D0 and D3 states. Support for the D1
and D2 states is optional.
UEFI Forum, Inc. January 2019 Page 1111

ACPI Specification, Version 6.3 Device Class Specifications
A.10 PC Card Controller Device Class

The requirements expressed in this section apply to PC Card controller devices and the PC Card slots.

Power management of PC Cards is not defined by this specification. PC Card power management is
defined by the relevant power management specification for the card’s device class (for example,
network, modem, and so on), in conjunction with the PC Card standard (for 16-bit cards) or the PCI Power
Management Specification (for CardBus cards).

A.10.1 Power State Definitions

State Status Definition

D0 Required Card status change interrupts are fully functional.

Card functional interrupts are fully functional.

Controller context (for example, memory, I/O windows) is fully functional.

Controller interface is fully functional (processor can access cards).

Power to cards (slots) is available (may be on or off under software control).

The controller is at its highest power consumption level.

Bus command response time is at its fastest level.

PC Cards can be in any Dx power state (D0-D3).

Note: In D0 state, CSTSCHG interrupts can be passed to a system from a powered down
PC Card (for more detail, refer to section 5.2.11.2 of PC Card Standard, Electrical
Specification).

D1 Optional Card status change interrupts are disabled. CSTSCHG interrupt events are still detectable
by the controller and cause the bus-specific wake signal to be asserted if wake is enabled
on the controller.

Card functional interrupts are disabled.

Controller context is preserved (all register contents must be maintained but memory
and I/O windows need not be functional).

Controller interface is non-functional (processor cannot access cards).

Power to cards (slots) is available (may be on or off; retains power setting it had at time
of entry to D1).

Power-level consumption for the controller is high but less than D0.

The time required to restore the function from the D1 state to the D0 state is quicker
than resumption from D3.

Bus command response time is equal to or slower than in D0.

PC Cards can be in the D1, D2, or D3 power states (not D0).

Note: In D1 state, CSTSCHG interrupts can be passed to a system from a powered-down
PC Card (for more detail, refer to section 5.2.11.2 of PC Card Standard, Electrical
Specification).

D2 Optional Functionally the same as D1 (may be implemented instead of D1 in order to allow bus
and/or system to enter a lower-power state).
UEFI Forum, Inc. January 2019 Page 1112

ACPI Specification, Version 6.3 Device Class Specifications
A.10.2 Power Management Policy

The PC Card controller is a bus controller. As such, its power state is dependent on the devices plugged
into the bus (child devices). OSPM will track the state of all devices on the bus and will put the bus into
the best possible power state based on the current device requirements on that bus. For example, if the
PC Card cards are all in the D1 state, OSPM will put the PC Card controller in the D1 state.

Present
State

Next
State

Cause

D2/D3 D0 Any card in any slot needing to transition to state D0 due to a wake event or because
of system usage.

D0 D1 No card in any slot is in state D0.

D0 D2 No card in any slot is in state D0 or D1.

D0 D3 All cards in all slots are in state D3.

A.10.3 Wake Events

A wake event is any event that would normally assert the controller’s status change interrupt (for
example, card insertion, card battery state change, card ReqAttn event, and so on) or ring-indicate signal.

A.10.4 Minimum Power Capabilities

A PC Card controller device conforming to this specification must support the D0 and D3 states. Support
for the D1 or D2 states is optional.

A.11 Storage Device Class

The requirements expressed in this section apply to ATA hard disks, floppy disks, ATAPI and SCSI CD-
ROMs, and the IDE channel.

D3 Required Card status change interrupt: Disabled and need not be detected.

Card functional interrupt: Disabled and need not be detected.

Controller context (for example, memory, I/O windows): Lost.

Controller interface: Non-functional (processor can not access cards).

Clock to controller: Off.

Power to cards (slots): Off (card context lost).

Note: If Vcc is removed (for example, PCI Bus B3) while the device is in the D3 state, a
bus-specific reset (for example, PCI RST#) must be asserted when power is restored and
functions will then return to the D0 state with a full power-on reset sequence. Whenever
the transition from D3 to D0 is initiated through assertion of a bus-specific reset, the
power-on defaults will be restored to the function by hardware just as at initial power
up. The function must then be fully initialized and reconfigured by software.

State Status Definition
UEFI Forum, Inc. January 2019 Page 1113

ACPI Specification, Version 6.3 Device Class Specifications
A.11.1 Power State Definitions

A.11.1.1 Hard Disk, CD-ROM and IDE/ATAPI Removable Storage Devices

State Status Definition

D0 Required Drive controller (for example, interface and control electronics) is functional.

Interface mode context (for example, communications timings) is programmed.

D1 Optional Drive controller (for example, interface and control electronics) is functional.

Interface mode context (for example, communications timings) is preserved.

Drive motor (for example, spindle) is stopped, with fast-start mode enabled, if
available.

Laser (if any) is off.

Recommended latency to return to D0 is less than 5 seconds.

Power consumption in D1 should be no more than 80% of power consumed in D0.

Note: For ATA devices, this state is invoked by the Standby Immediate command.

D2 N/A This state is not defined for storage devices.

D3 Required Drive controller (for example, interface and control electronics) is not functional;
context is lost.

Interface mode (for example, communications timings) is not preserved.

Drive motor (for example, spindle) is stopped.

Laser (if any) is off.

Power consumption in D3 is no more than 10% of power consumed in D0.

Note: For ATA devices, this state is invoked by the “sleep” command.

A.11.1.2 Floppy Disk Devices

State Status Definition

D0 Required Drive controller (for example, interface and control electronics) is functional.

Drive motor (for example, spindle) is turning.

D1 N/A This state is not defined for floppy disk drives.

D2 N/A This state is not defined for floppy disk drives.

D3 Required Drive controller (for example, interface and control electronics) is not functional;
context is lost.

Drive motor (for example, spindle) is stopped.

A.11.1.3 IDE Channel Devices

State Status Definition

D0 Required Adapter is functional.

Adapter interface mode (for example, communications timings) is programmed.

Power is applied to the bus (and all devices connected to it).
UEFI Forum, Inc. January 2019 Page 1114

ACPI Specification, Version 6.3 Device Class Specifications
A.11.2 Power Management Policy

A.11.2.1 Hard Disk, Floppy Disk, CD-ROM and IDE/ATAPI Removable
Storage Devices

Present
State

Next
State

Cause

D3 D0 Device usage (high-priority I/O).

D0 D1* Device inactivity (no high-priority I/O) for some period of time (T1).

D0 D3 Device inactivity (no high-priority I/O) for a period of time (T2=>T1).

System enters sleeping state.

D1* D0 Device usage (High-priority I/O).

Note: * If supported.

Note: For ATA, the D3-to-D0 transition requires a reset of the IDE channel. This means that both devices
on a channel must be placed into D3 at the same time.

A.11.2.2 IDE Channel Devices

Present
State

Next
State

Cause

D3 D0 Any device on the channel needing to transition to a state other than state D3.

D0 D3 All devices on the channel in state D3.

A.11.3 Wake Events

Storage devices with removable media can, optionally, signal wake upon insertion of media using their
bus-specific notification mechanism. There are no other wake events defined for Storage devices.

A.11.4 Minimum Power Capabilities

A hard disk, CD-ROM or IDE/ATAPI removable storage device conforming to this specification must
support the D0 and D3 states. Support for the D1 state is optional.

A floppy disk and IDE channel device conforming to this specification must support the D0 and D3 states.

D1 N/A This state is not defined for the IDE Channel.

D2 N/A This state is not defined for the IDE Channel.

D3 Required Adapter is non-functional.

Adapter interface mode (for example, communications timings) is not preserved.

Power to the bus (and all devices connected to it) may be off.
UEFI Forum, Inc. January 2019 Page 1115

Appendix A: Video Extensions

A.1 ACPI Extensions for Display Adapters: Introduction

This section of the document describes a number of specialized ACPI methods to support motherboard
graphics devices.

In many cases, system manufacturers need to add special support to handle multiple output devices such
as panels and TV-out capabilities, as well as special power management features. This is particularly true
for notebook manufacturers. The methods described here have been designed to enable interaction
between the platform firmware, video driver, and OS to smoothly support these features.

Systems containing a built-in display adapter are required to implement the ACPI Extensions for Display
Adapters.

Table B-1 Video Extension Object Requirements

Method Description Requirement

_DOS Enable/Disable output switching Required if system supports display switching
or LCD brightness levels

_DOD Enumerate all devices attached to display
adapter

Required if integrated controller supports
output switching

_ROM Get ROM Data Required if ROM image is stored in proprietary
format

_GPD Get POST Device Required if _VPO is implemented

_SPD Set POST Device Required if _VPO is implemented

_VPO Video POST Options Required if system supports changing post
VGA device

_ADR Return the unique ID for this device Required

_BCL Query list of brightness control levels
supported

Required if embedded LCD supports
brightness control

_BCM Set the brightness level Required if _BCL is implemented

_DDC Return the EDID for this device Required if embedded LCD does not support
return of EDID via standard interface

_DCS Return status of output device Required if the system supports display
switching (via hotkey)

_DGS Query graphics state Required if the system supports display
switching (via hotkey

_DSS Device state set Required if the system supports display
switching (via hotkey).
UEFI Forum, Inc. January 2019 Page 1116

ACPI Specification, Version 6.3
A.2 Definitions
• Built-in display adapter. This is a graphics chip that is built into the motherboard and cannot

be replaced. ACPI information is valid for such built-in devices.
•
• Add-in display adapter. This is a graphics chip or board that can be added to or removed from

the computer. Because the platform firmware cannot have specific knowledge of add-in
boards, ACPI information is not available for add-in devices.

•
• Boot-up display adapter. This is the display adapter programmed by the platform boot

firmware during machine power-on self-test (POST). It is the device upon which the machine
will show the initial operating system boot screen, as well as any platform boot firmware
messages.

• The system can change the boot-up display adapter, and it can switch between the built-in
adapter and the add-in adapter.

• Display device. This is a synonym for the term display adapter discussed above.
• Output device. This is a device, which is a recipient of the output of a display device. For

example, a CRT or a TV is an output device.

A.3 ACPI Namespace

This is an example of the display-related namespace on an ACPI system:

GPE // ACPI General-purpose HW event
 _L0x // Notify(VGA, 0x80) to tell OSPM of the event, when user
presses
// the hot key to switch the output status of the monitor.
// Notify(VGA, 0x81) to tell the event to OSPM, when there are any
// changes on the sub-devices for the VGA controller

SB
|- PCI
 |- VGA // Define the VGA controller in the namespace
 |- _PS0 / PR0
 |- _PS1 / PR1
 |- _PS3
 |- _DOS // Method to control display output switching
 |- _DOD // Method to retrieve information about child output devices
 |- _ROM // Method to retrieve the ROM image for this device
 |- _GPD // Method for determining which VGA device will post
 |- _SPD // Method for controlling which VGA device will post
 |- _VPO // Method for determining the post options
 |- CRT // Child device CRT
 |- _ADR // Hardware ID for this device
 |- _DDC // Get EDID information from the monitor device
 |- _DCS // Get current hardware status
 |- _DGS // Query desired hardware active \ inactive state
 |- _DSS // Set hardware active \ inactive state
 |- _PS0 \
UEFI Forum, Inc. January 2019 Page 1117

ACPI Specification, Version 6.3
 |- _PS1 - Power methods
 |- _PS2 - for the output device
 |- _PS3 /
 |- LCD // Child device LCD
 |- _ADR // Hardware ID for this device
 |- _DDC // Get EDID information from the monitor device
 |- _DCS // Get current hardware status
 |- _DGS // Query desired hardware active \ inactive state
 |- _DSS // Set hardware active \ inactive state
 |- _BCL // Brightness control levels
 |- _BCM // Brightness control method
 |- _BQC // Brightness Query Current Level
 |- _PS0 \
 |- _PS1 - Power methods
 |- _PS2 - for the output device
 |- _PS3 /
 |- TV // Child Device TV
 |- _ADR // Hardware ID for this device
 |- _DDC // Get EDID information from the monitor device
 |- _DCS // Get current hardware status
 |- _DGS // Query desired hardware active \ inactive state
 |- _DSS // Set hardware active \ inactive state

The LCD device represents the built-in output device. Mobile PCs will always have a built-in LCD display,
but desktop systems that have a built-in graphics adapter generally don’t have a built-in output device.

B.4Display-specific Methods

The methods described in this section are all associated with specific display devices. This device-specific
association is represented in the namespace example in the previous section by the positioning of these
methods in a device tree.

A.3.1 _DOS (Enable/Disable Output Switching)

Many ACPI machines currently reprogram the active display output automatically when the user presses
the display toggle switch on the keyboard. This is done because most video device drivers are currently
not capable of being notified synchronously of such state changes. However, this behavior violates the
ACPI specification, because the system modifies some graphics device registers.

The existence of the _DOS method indicates that the platform runtime firmware is capable of
automatically switching the active display output or controlling the brightness of the LCD. If it exists at all,
the _DOS method must be present for all display output devices. This method is required if the system
supports display switching or LCD brightness control.

Arguments: (1)

Arg0 – An Integer containing the encoded switching controls (see below)

Return Value:

None
UEFI Forum, Inc. January 2019 Page 1118

ACPI Specification, Version 6.3
Additional Argument Information:
Bits [1:0]

0 – The platform runtime firmware should not automatically switch (toggle) the active display
output, but instead just save the desired state change for the display output devices in variables
associated with each display output, and generate the display switch event. OSPM can query
these state changes by calling the _DGS method.

1 – The platform runtime firmware should automatically switch (toggle) the active display output,
with no interaction required on the OS part. The display switch event should not be generated
in this case.

2 – The _DGS values should be locked. It’s highly recommended that the platform runtime
firmware do nothing when hotkey pressed. No switch, no notification.

3 – The platform runtime firmware should not automatically switch (toggle) the active display
output, but instead generate the display switch event notify codes 0x82, 0x83, or 0x84. OSPM
will determine what display output state should be set, and change the display output state
without further involvement from the platform runtime firmware.

Bit [2]

0 – The platform runtime firmware should automatically control the brightness level of the LCD
when the power changes from AC to DC.

1 – The platform runtime firmware should not automatically control the brightness level of the
LCD when the power changes from AC to DC.

The _DOS method controls this automatic switching behavior. This method should do so by saving the
parameter passed to this method in a global variable somewhere in the platform runtime firmware data
segment. The platform runtime firmware then checks the value of this variable when doing display
switching. This method is also used to control the generation of the display switching Notify(VGA, 0x80/
0x81).

The platform runtime firmware, when doing switching of the active display, must verify the state of the
variable set by the _DOS method. The default value of this variable must be 1.

A.3.2 _DOD (Enumerate All Devices Attached to the Display Adapter)

This method is used to enumerate devices attached to the display adapter. This method is required if
integrated controller supports output switching.

On many laptops today, a number of devices can be connected to the graphics adapter in the machine.
These devices are on the motherboard and generally are not directly enumerable by the video driver; for
this reason, all motherboard VGA attached devices are listed in the ACPI namespace.

These devices fall into two categories:

• Video output devices. For example, a machine with a single display device on the motherboard
can have three possible output devices attached to it, such as a TV, a CRT, or a panel.

• Non-video output devices. For example, TV Tuner, DVD decoder, Video Capture. They just
attach to VGA and their power management closely relates to VGA.

Both ACPI and the video driver have the ability to program and configure output devices. This means that
both ACPI and the video driver must enumerate the devices using the same IDs. To solve this problem,
the _DOD method returns a list of devices attached to the graphics adapter, along with device-specific
UEFI Forum, Inc. January 2019 Page 1119

ACPI Specification, Version 6.3
configuration information. This information will allow the cooperation between ACPI components and
the video driver.

Every child device enumerated in the ACPI namespace under the graphics adapter must be specified in
this list of devices. Each display device must have its own ID, which is unique with respect to any other
attachable devices enumerated.

Arguments:

None

Return Value:

A Package containing a variable-length list of Integers, each of which contains the 32-bit device attribute
of a child device (See Table B-2)

Example:

Method (_DOD, 0) {
 Return (
 Package()
 {
 0x00000110, // Primary LCD panel, not detectable by firmware
 0x80000100, // CRT type display, not detectable by firmware
 0x80000220, // TV type display, not detectable by the firmware
 0x80000411, // Secondary LCD panel, not detectable by firmware
 }
)
}

UEFI Forum, Inc. January 2019 Page 1120

ACPI Specification, Version 6.3
Table B-2 Video Output Device Attributes

Bits Definition

15:0 Device ID. The device ID must match the ID’s specified by Video Chip Vendors. They must also be
unique under VGA namespace.

Bit [3:0] Display Index

A zero-based instance of the Display, when multiple displays of the same type are
attached, regardless of where it is associated. Starting from the first adapter and its
first display of the type on the first integrated internal device and then
incrementing per device-function according to its relative port number.

Bit [7:4] Display Port Attachment

This field differentiates displays of the same type attached at different points of one
adapter. The zero-based number scheme is specific to each Video Chip Vendors’
implementation.

Bit [11:8] Display Type

Describes the specific type of Display Technology in use.

0 – Other

1 – VGA* CRT or VESA* Compatible Analog Monitor

2 – TV/HDTV or other Analog-Video Monitor

3 – External Digital Monitor (See Note 1.)

4 – Internal/Integrated Digital Flat Panel (See Note 2.)

5~15 – Reserved for future use

Bit [15:12] Chipset Vendor Specific.

16 Platform boot firmware can detect the device.

17 Non-VGA output device whose power is related to the VGA device. This can be used when
specifying devices like TV Tuner, DVD decoder, Video Capture … etc.

20:18 For VGA multiple-head devices, this specifies head or pipe ID e.g. for Dual-Pipe*, Dual-Display*,
Duo-View*, TwinView*, Triple-View* … etc, beginning with 0 for head 0 or single-head device and
increasing for each additional head.

30:21 Reserved (must be 0)

31 Device ID Scheme

1 – Uses the bit-field definitions above (bits 15:0)

0 – Other scheme, contact the Video Chip Vendor

As mentioned in the above table, a “Pipe” or “Head” refers to a unique display content stream e.g. at a
particular color-depth, resolution, and refresh-rate. The “Port” refers to the display output device
attachment and may include a DAC, encoder or other mechanism required to support a given display
end-point. The “Display Type” describes the generalized class of display output technology, and the
means of integration. The “Display Index” is then an index that assists in creating a unique identifier
display end-points in scenarios where other attributes are the same.
UEFI Forum, Inc. January 2019 Page 1121

ACPI Specification, Version 6.3
Figure B-1 Example Display Architecture

Table B-3 Example Device Ids

Bits Definition

0x000xyyyy Bit [31] = 0. Other proprietary scheme - 0x110 Device ID is an exception. (See Note 3)

0x00000110 Integrated LCD Panel #1 using a common, backwards compatible ID

0x80000100 Integrated VGA CRT or VESA compatible Monitor #1 on Port0

0x80000240 Integrated TV #1 on Port4

0x80000410 Integrated Internal LCD Panel #1 on Port1

0x80000421 LVDS Panel #2 Dual-Link using Port2 & 3. (See Note 4)

0x80000131 VGA CRT or VESA compatible Monitor #2 on Port3

0x80000121 Dual-Link VGA CRT or VESA compatible Monitor #2 using Port2 & 3. (See Note 4.)

0x80000320 DVI Monitor #1 on Port2 (shares Port2 with a Dual-Function DVI/TV Encoder). (See Note 5)

0x80000331 DVI Monitor #2 on Port3

 Pipe 0Primary Desktop

Secondary
Desktop

= 1

 = 4

 = 3

 = 2

= 1

Port 1

 Pipe 1

Port 0

Port 2

Port 3

Port 4

Dual-Port

Dual - Link

0 = 1st CRT

0 = 1st LCD

0 = 1st DVI

Pipe / Head Ports Display Types Display Index
UEFI Forum, Inc. January 2019 Page 1122

ACPI Specification, Version 6.3
Note: An “External Digital Monitor” is an external display device attachable via a user-accessible
connector standard (e.g. DFP* or DVI* Compatible Monitors).

Note: An “Internal Flat Panel” is a non-detachable fixed pixel display device, including a backlight, and is
internally associated, without user-accessible connectors, to the Video Chip (e.g. TFT LCD via
TMDS*, LVDS* interface).

Note: When Bit [31] is 0, no assumptions can be made on which ID will be used for any particular display
type. Contact the Video Chip vendor for details of the ID scheme employed.

Note: In certain cases multiple Displays Ports may be combined to increase bandwidth for a particular
Display in higher-resolution modes. In this situation, the Display Type and Port Number should
remain the same in order to retain a consistent ID for the same device, regardless of the selected
display mode.

Note: In certain cases, more than one type of display (and connector) may be supportable on a single
Port (e.g. DVI + TV + CRT on a single Display Encoder device), while only one display is selectable
at any time. In this case the Port Number field of the ID may be the same as other Display ID’s
however the other fields (e.g. Display Type) provide uniqueness.

A.3.3 _ROM (Get ROM Data)

This method is used to get a copy of the display devices’ ROM data. This method is required when the
ROM image is stored in a proprietary format such as stored in the platform firmware ROM. This method
is not necessary if the ROM image can be read through a standard PCI interface (using ROM BAR). If
_ROM is present, it is preferred over the image read through the standard PCI interface, in order to allow
platform runtime firmware to provide re-configured ROM data via the method.

The video driver can use the data returned by this method to program the device. The format of the data
returned by this function is a large linear buffer limited to 4 KB. The content of the buffer is defined by
the graphics independent hardware vendor (IHV) that builds this device. The format of this ROM data will
traditionally be compatible with the ROM format of the normal PCI video card, which will allow the video
driver to program its device, independently of motherboard versus add-in card issues.

The data returned by the _ROM method is implementation-specific data that the video driver needs to
program the device. This method is defined to provide this data as motherboard devices typically don’t
have a dedicated option ROM. This method will allow a video driver to get the key implementation
specific data it needs so that it can fully control and program the device without platform runtime
firmware support.

Arguments: (2)

Arg0 – An Integer containing the offset of the display device ROM data

Arg1 – An Integer containing the size of the buffer to fill in (up to 4K).

Return Value:

A Buffer containing the requested ROM data

0x80000330 Dual-Link DVI Monitor #1 using Port2 & 3

0x80000231 TV #2 on Port2 (shares Port2 with a Dual-Function DVI/TV Encoder). (See Note 5)

Bits Definition
UEFI Forum, Inc. January 2019 Page 1123

ACPI Specification, Version 6.3
A.3.4 _GPD (Get POST Device)

This method is required if the _VPO method is implemented.

This method is used as a mechanism for the OS to query a CMOS value that determines which VGA device
will be posted at boot. A zero return value indicates the motherboard VGA will be posted on the next
boot, a 1 indicates a PCI VGA device will be posted, and a 2 indicates an AGP VGA device will be posted.

Arguments:

None

Return Value:

An Integer containing encoded post information (32 bits valid)

Bits [1:0]

00 – Post the motherboard VGA device

01 – Post an add-in PCI VGA device

10 – Post an add-in AGP VGA device

11 – Post an add-in PCI-Express VGA device

Bits [31:2] – Reserved (must be 0)

A.3.5 _SPD (Set POST Device)

This method is required if the _VPO method is implemented.

This method is used as a mechanism for the OS to update a CMOS value that determines which video
device will be posted at boot. A zero argument will cause the “motherboard” to be posted on the next
boot, a 1 will cause an add-in PCI device to be posted, and a 2 will cause an add-in AGP device to be
posted.

Arguments: (1)

Arg0 – An Integer containing encode post information (32 bits valid)

Bits [1:0]

00 – Post the motherboard VGA device

01 – Post an add-in PCI VGA device

10 – Post an add-in AGP VGA device

11 – Post an add-in PCI-Express VGA device

Bits [31:2] – Reserved (must be 0)

Return Value:

An Integer containing the status of the operation

0 – Operation was successful

Non-zero –Operation failed
UEFI Forum, Inc. January 2019 Page 1124

ACPI Specification, Version 6.3
Example

Method (_SPD, 1){ // Make the motherboard device the device to post }

A.3.6 _VPO (Video POST Options)

This method is required for systems with video devices built onto the motherboard and support changing
post-VGA device.

This method is used as a mechanism for the OS to determine what options are implemented. This
method will be used in conjunction with _GPD and _SPD

Arguments:
None

Return Value:

An Integer containing the options that are implemented and available

Bit [0] – Posting the motherboard VGA device is an option. (Bit [0] should always be set)

Bit [1] – Posting a PCI VGA device is an option.

Bit [2] – Posting an AGP VGA device is an option.

Bit [3] – Posting a PCI-Express VGA device is an option.

Bits [31:4] – Reserved (must be zero)

A.4 Notifications for Display Devices

Display devices may need to know about external, asynchronous events. In order to accommodate that,
the following notifications are defined.

The event number is standardized because the event will be handled by the OS directly under certain
circumstances (see _DOS method in this specification).

These notifications are valid for Display Devices

Table B-4 Notifications for Display Devices.

Value Description

0x80 Cycle Output Device. Used to notify OSPM whenever the state of one of the output devices
attached to the VGA controller has been switched or toggled. This event will, for example, be
generated when the user presses a hotkey to switch the active display output from the LCD panel
to the CRT.

0x81 Output Device Status Change. Used to notify OSPM whenever the state of any output devices
attached to the VGA controller has been changed. This event will, for example, be generated
when the user plugs-in or remove a CRT from the VGA port. In this case, OSPM will re-enumerate
all devices attached to VGA

0x82 Cycle Display Output Hotkey Pressed. Used to notify OSPM whenever the user has pressed the
Cycle display hotkey.
UEFI Forum, Inc. January 2019 Page 1125

ACPI Specification, Version 6.3
A.5 Output Device-specific Methods

The methods in this section are methods associated with the display output device.

A.5.1 _ADR (Return the Unique ID for this Device)

This method returns a unique ID representing the display output device. All output devices must have a
unique hardware ID. This method is required for all The IDs returned by this method will appear in the list
of hardware IDs returned by the _DOD method.

Arguments:

None

Return Value:

An Integer containing the device ID (32 bits)

Example:

 Method (_ADR, 0) {
 return(0x0100) // device ID for this CRT
 }

This method is required for all output display devices.

A.5.2 _BCL (Query List of Brightness Control Levels Supported)

This method allows the OS to query a list of brightness level supported by built-in display output devices.
(This method in not allowed for externally connected displays.) This method is required if an integrated
LCD is present and supports brightness levels.

Each brightness level is represented by a number between 0 and 100, and can be thought of as a
percentage. For example, 50 can be 50% power consumption or 50% brightness, as defined by the OEM.

The OEM may define the number 0 as "Zero brightness" that can mean to turn off the lighting (e.g. LCD
panel backlight) in the device. This may be useful in the case of an output device that can still be viewed
using only ambient light, for example, a transflective LCD. If Notify(Output Device, 0x85) for “Zero
brightness” is issued, OSPM may be able to turn off the lighting by calling _BCM(0).

Arguments:

None

0x83 Next Display Output Hotkey Pressed. Used to notify OSPM whenever the user has pressed the
Next display hotkey.

0x84 Previous Display Output Hotkey Pressed. Used to notify OSPM whenever the user has pressed
the Previous display hotkey.

Value Description
UEFI Forum, Inc. January 2019 Page 1126

ACPI Specification, Version 6.3
Return Value:

A variable-length Package containing a list of Integers representing the the supported brightness levels.
Each integer has 8 bits of significant data.

Example:
 Method (_BCL, 0) {
 // List of supported brightness levels
 Return (Package(7){
 80, // level when machine has full power
 50, // level when machine is on batteries
 // other supported levels:
 20, 40, 60, 80, 100}
 }

The first number in the package is the level of the panel when full power is connected to the machine.
The second number in the package is the level of the panel when the machine is on batteries. All other
numbers are treated as a list of levels OSPM will cycle through when the user toggles (via a keystroke) the
brightness level of the display.

These levels will be set using the _BCM method described in the following section.

A.5.3 _BCM (Set the Brightness Level)

This method allows OSPM to set the brightness level of a built-in display output device.

The OS will only set levels that were reported via the _BCL method. This method is required if _BCL is
implemented.

Arguments: (1)

Arg0 – An Integer containing the new brightness level

Return Value:

None

Example:

 Method (_BCM, 1) { // Set the requested level }

The method will be called in response to a power source change or at the specific request of the end user,
for example, when the user presses a function key that represents brightness control.

A.5.4 _BQC (Brightness Query Current level)

This optional method returns the current brightness level of a built-in display output device. If present, it
must be set by the platform for initial brightness.

Arguments:

None
UEFI Forum, Inc. January 2019 Page 1127

ACPI Specification, Version 6.3
Return Value:

An Integer containing the current brightness level (must be one of the values returned from the _BCL
method)

A.5.5 _DDC (Return the EDID for this Device)

This method returns an EDID (Extended Display Identification Data) structure that represents the display
output device. This method is required for integrated LCDs that do not have another standard
mechanism for returning EDID data.

Arguments:

Arg0 – An Integer containing a code for the return data length:

1 – Return 128 bytes of data

2 – Return 256 bytes of data

Return Value:

Either a Buffer containing the requested data (of the length specified in Arg0), or an Integer (value 0) if
Arg0 was invalid

Example:

Method (_DDC, 2) {
 If (LEqual (Arg0, 1)) { Return (Buffer(128){ ,,,, }) }
 If (LEqual (Arg0, 2)) { Return (Buffer(256){ ,,,, }) }
 Return (0)
}

The buffer will later be interpreted as an EDID data block. The format of this data is defined by the VESA
EDID specification.

A.5.6 _DCS (Return the Status of Output Device)

This method is required if hotkey display switching is supported.

Arguments:

None

Return Value:

An Integer containing the device status (32 bits) (See Table B-5)

Table B-5 Device Status

Bits Definition

0 Output connector exists in the system now

1 Output is activated

2 Output is ready to switch
UEFI Forum, Inc. January 2019 Page 1128

ACPI Specification, Version 6.3
Example:
• If the output signal is activated by _DSS, _DCS returns 0x1F or 0x0F.
• If the output signal is inactivated by _DSS, _DCS returns 0x1D or 0x0D.
• If the device is not attached or cannot be detected, _DCS returns 0x0xxxx and should return

0x1xxxx if it is attached.
• If the output signal cannot be activated, _ DCS returns 0x1B or 0x0B.
• If the output connector does not exist (when undocked), _DCS returns 0x00.

A.5.7 _DGS (Query Graphics State)

This method is used to query the state (active or inactive) of the output device. This method is required if
hotkey display switching is supported.

Arguments:

None

Return Value:

An Integer containing the device state (32 bits) (See Table B-6)

Table B-6 Device State for _DGS

Bits Definition

0 0 – Next desired state is inactive

1 – Next desired state is active

31:1 Reserved (must be zero)

The desired state represents what the user wants to activate or deactivate, based on the special function
keys the user pressed. OSPM will query the desired state when it receives the display toggle event
(described earlier).

A.5.8 _DSS (Device Set State)

OSPM will call this method when it determines the outputs can be activated or deactivated. OSPM will
manage this to avoid flickering as much as possible. This method is required if hotkey display switching is
supported.

Arguments: (1)

Arg0 – An Integer containing the new device state (32 bits) (See Table B-7)

Return Value:

None

3 Output is not defective (it is functioning properly)

4 Device is attached (this is optional)

31:5 Reserved (must be zero)

Bits Definition
UEFI Forum, Inc. January 2019 Page 1129

ACPI Specification, Version 6.3
Table B-7 Device State for _DSS

Bits Definition

0 0 – Set output device to inactive state

1 – Set output device to active state

30 0 – Do whatever Bit [31] requires

1 – Don’t do actual switching, but need to change _DGS to next state

31 0 – Don’t do actual switching, just cache the change

1 – If Bit [30] = 0, commit actual switching, including any _DSS with MSB=0 called before

 If Bit [30] = 1, don’t do actual switching, change _DGS to next state

29:1 Reserved (must be zero)

Example Usage:
OS may call in such an order to turn off CRT, and turn on LCD

CRT._DSS(0);
LCD._DSS(80000001L);

or

LCD._DSS(1);
CRT._DSS(80000000L);

OS may call in such an order to force platform runtime firmware to make _DGS jump to next state
without actual CRT, LCD switching

CRT._DSS(40000000L);
LCD._DSS(C0000001L);

A.6 Notifications Specific to Output Devices

Output devices may need to know about external, asynchronous events. In order, each of these events
corresponds to accommodate that, pressing a key or button on the following machine. Using these
notifications is not appropriate if no physical device exists that is associated with them. OSPM may ignore
any of these notifications if, for example the current user does not have permission to change the state of
the output device.

These notifications are only valid for Output Devices.

Table B-8 Notification Values for Output Devices

Value Description

0x85 Cycle Brightness. Used to notify OSPM that the output device brightness should be increased by one
level. Used to notify OSPM that the user pressed a button or key that is associated with cycling
brightness. A useful response by OSPM would be to increase output device brightness by one or more
levels. (Levels are defined in _BCL.) If the brightness level is currently at the maximum value, it should
be set to the minimum level.
UEFI Forum, Inc. January 2019 Page 1130

ACPI Specification, Version 6.3
A.7 Notes on State Changes

It is possible to have any number of simultaneous active output devices. It is possible to have 0, 1, 2 ...
and so on active output devices. For example, it is possible for both the LCD device and the CRT device to
be active simultaneously. It is also possible for all display outputs devices to be inactive (this could
happen in a system where multiple graphics cards are present).

The state of the output device is separate from the power state of the device. The “active” state
represents whether the image being generated by the graphics adapter would be sent to this particular
output device. A device can be powered off or in a low-power mode but still be the active output device.
A device can also be in an off state but still be powered on.

Example of the display-switching mechanism:

The laptop has three output devices on the VGA adapter. At this moment in time, the panel and the TV
are both active, while the CRT is inactive. The automatic display-switching capability has been disabled by
OSPM by calling _DOS(0), represented by global variable display_switching = 0.

The platform runtime firmware, in order to track the state of these devices, will have three global
variable to track the state of these devices. There are currently initialized to:

 crt_active – 0
 panel_active – 1
 tv_active – 1

The user now presses the display toggle switch, which would switch the TV output to the CRT.

The platform runtime firmware first updates three temporary variables representing the desired state of
output devices:

0x86 Increase Brightness. Used to notify OSPM that the output device brightness should be increased by
one or more levels as defined by the _BCL object. Used to notify OSPM that the user pressed a button
or key that is associated with increasing brightness. If the brightness level is currently at the maximum
value, OSPM may should ignore the notification.

0x87 Decrease Brightness. Used to notify OSPM that the output device brightness should be decreased by
one or more levels as defined by the _BCL object. Used to notify OSPM that the user pressed a button
or key that is associated with decreasing device brightness. If the brightness level is currently at the
minimum value, OSPM may should ignore the notification.

0x88 Zero Brightness. Used to notify OSPM that the output device brightness should be zeroed, effectively
turning off any lighting that is associated with the device. Used to notify OSPM that the user pressed a
button or key associated with zeroing device brightness. This is not to be confused with putting the
device in a D3 state. While the brightness may be decreased to zero, the device may still be displaying,
using only ambient light.

0x89 Display Device Off. Used to notify OSPM that the device should be put in an off state, one that is not
active or visible to the user, usually D3, but possibly D1 or D2. Used to notify OSPM that the user
pressed a low power button or key associated with putting the device in an off state. There is no need
for a corresponding “device on” notification, for two reasons. First, OSPM may choose to toggle device
state when this event is pressed multiple times. Second, OSPM may (and probably will) choose to turn
the monitor on whenever the user types on the keyboard, moves the mouse, or otherwise indicates
that he or she is attempting to interact with the machine.

Value Description
UEFI Forum, Inc. January 2019 Page 1131

ACPI Specification, Version 6.3
 want_crt_active – 1
 want_panel_active – 1
 want_tv_active – 0

Then the platform runtime firmware checks the display_switching variable. Because this variable is set to
zero, the platform runtime firmware does not do any device reprogramming, but instead generates a
Notify(VGA, 0x80/0x81) event for the display. This event will be sent to OSPM.

OSPM will call the _DGS method for each enumerated output device to determine which devices should
now be active. OSPM will determine whether this is possible, and will reconfigure the internal data
structure of the OS to represent this state change. The graphics modes will be recomputed and reset.

Finally, OSPM will call the _DSS method for each output device it has reconfigured.

Note: OSPM may not have called the _DSS routines with the same values and the _DGS routines
returned, because the user may be overriding the default behavior of the hardware-switching
driver or operating system-provided UI. The data returned by the _DGS method (the want_XXX
values) are only a hint to the OS as to what should happen with the output devices.

If the display-switching variable is set to 1, then the platform runtime firmware would not send the
event, but instead would automatically reprogram the devices to switch outputs. Any legacy display
notification mechanism could also be performed at this time.
UEFI Forum, Inc. January 2019 Page 1132

Appendix C: Deprecated Content

C.1 Description

This section will display content (if any) that are planned to be deprecated from the ACPI specification.
The deprecation is highlighted in this appendix because the main specification contents haven't been
changed.

The deprecation items listed in this appendix serve as a warning that in the next released revision of the
specification, the corresponding contents will be removed from the main portion of the specification.

C.2 Deprecated Content

Device Identification Objects (Table 6-189):

Object Description

_PRD Object that evaluates to a package of device property subpackages.

 
==

19.6.146 Unload (Unload Definition Block)
Syntax

Unload (Handle)

Arguments

Handle is evaluated as a DDBHandle data type.

Description

Performs a run-time unload of a Definition Block that was loaded using a Load term or LoadTable term.
Loading or unloading a Definition Block is a synchronous operation, and no control method execution
occurs during the function. On completion of the Unload operation, the Definition Block has been
unloaded (all the namespace objects created as a result of the corresponding Load operation will be
removed from the namespace).

==

6.2.11.3 OSC Implementation Example for PCI Host Bridge Devices
The following section is an excerpt from the PCI Firmware Specification Revision 3.0 and is reproduced
with the permission of the PCI SIG.

Note: The PCI SIG owns the definition of _OSC behavior and parameter bit definitions for PCI devices. In
the event of a discrepancy between the following example and the PCI Firmware Specification,
the latter has precedence.

The _OSC interface defined in this section applies only to “Host Bridge” ACPI devices that originate PCI,
PCI-X or PCI Express hierarchies. These ACPI devices must have a _HID of (or _CID including) either
UEFI Forum, Inc. January 2019 Page 1133

ACPI Specification, Version 6.3
EISAID(“PNP0A03”) or EISAID(“PNP0A08”). For a host bridge device that originates a PCI Express
hierarchy, the _OSC interface defined in this section is required. For a host bridge device that originates a
PCI/PCI-X bus hierarchy, inclusion of an _OSC object is optional.

• The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is identified by the following UUID:

33DB4D5B-1FF7-401C-9657-7441C03DD766

A revision ID of 1 encompasses fields defined in this section of this revision of this specification,
comprised of 3 DWORDs, including the first DWORD described by the generic ACPI definition of _OSC.

The first DWORD in the _OSC Capabilities Buffer contain bits are generic to _OSC and include status and
error information.

The second DWORD in the _OSC capabilities buffer is the Support Field. Bits defined in the Support Field
provide information regarding OS supported features. Contents in the Support Field are passed one-way;
the OS will disregard any changes to this field when returned. See Table 6-196 for descriptions of
capabilities bits in this field passed as a parameter into the _OSC control method.

The third DWORD in the _OSC Capabilities Buffer is the Control Field. Bits defined in the Control Field are
used to submit request by the OS for control/handling of the associated feature, typically (but not
excluded to) those features that utilize native interrupts or events handled by an OS-level driver. See
Table 6-200 for descriptions of capabilities bits in this field passed as a parameter into the _OSC control
method. If any bits in the Control Field are returned cleared (masked to zero) by the _OSC control
method, the respective feature is designated unsupported by the platform and must not be enabled by
the OS. Some of these features may be controlled by platform firmware prior to OS boot or during
runtime for a legacy OS, while others may be disabled/inoperative until native OS support is available.
See the following table for descriptions of capabilities bits in this returned field.

If the _OSC control method is absent from the scope of a host bridge device, then the OS must not enable
or attempt to use any features defined in this section for the hierarchy originated by the host bridge.
Doing so could contend with platform firmware operations, or produce undesired results. It is
recommended that a machine with multiple host bridge devices should report the same capabilities for
all host bridges, and also negotiate control of the features described in the Control Field in the same way
for all host bridges.

Table: Interpretation of _OSC Support Field

Support Field bit
offset

Interpretation

0 Extended PCI Config operation regions supported

The OS sets this bit to 1 if it supports ASL accesses through PCI Config operation regions to
extended configuration space (offsets greater than 0xFF). Otherwise, the OS sets this bit to 0.

1 Active State Power Management supported

The OS sets this bit to 1 if it natively supports configuration of Active State Power Management
registers in PCI Express devices. Otherwise, the OS sets this bit to 0.
UEFI Forum, Inc. January 2019 Page 1134

ACPI Specification, Version 6.3
Table: Interpretation of _OSC Control Field, Passed in via Arg3

2 Clock Power Management Capability supported

The OS sets this bit to 1 if it supports the Clock Power Management Capability, and will enable
this feature during a native hot plug insertion event if supported by the newly added device.
Otherwise, the OS sets this bit to 0.

Note: The Clock Power Management Capability is defined in an errata to the PCI Express Base
Specification, 1.0.

3 PCI Segment Groups supported

The OS sets this bit to 1 if it supports PCI Segment Groups as defined by the _SEG object, and
access to the configuration space of devices in PCI Segment Groups as described by this
specification. Otherwise, the OS sets this bit to 0.

4 MSI supported

The OS sets this bit to 1 if it supports configuration of devices to generate message-signaled
interrupts, either through the MSI Capability or the MSI-X Capability. Otherwise, the OS sets
this bit to 0.

5-31 Reserved

Control Field
bit offset

Interpretation

0 PCI Express Native Hot Plug control

The OS sets this bit to 1 to request control over PCI Express native hot plug. If the OS successfully
receives control of this feature, it must track and update the status of hot plug slots and handle
hot plug events as described in the PCI Express Base Specification.

1 SHPC Native Hot Plug control

The OS sets this bit to 1 to request control over PCI/PCI-X Standard Hot-Plug Controller (SHPC)
hot plug. If the OS successfully receives control of this feature, it must track and update the
status of hot plug slots and handle hot plug events as described in the SHPC Specification.

2 PCI Express Native Power Management Events control

The OS sets this bit to 1 to request control over PCI Express native power management event
interrupts (PMEs). If the OS successfully receives control of this feature, it must handle power
management events as described in the PCI Express Base Specification.

3 PCI Express Advanced Error Reporting (AER) control

The OS sets this bit to 1 to request control over PCI Express AER. If the OS successfully receives
control of this feature, it must handle error reporting through the AER Capability as described in
the PCI Express Base Specification.

Support Field bit
offset

Interpretation
UEFI Forum, Inc. January 2019 Page 1135

ACPI Specification, Version 6.3
Table: Interpretation of _OSC Control Field, Returned Value

4 PCI Express Capability Structure control

The OS sets this bit to 1 to request control over the PCI Express Capability Structures (standard
and extended) defined in the PCI Express Base Specification version 1.1. These capability
structures are the PCI Express Capability, the virtual channel extended capability, the power
budgeting extended capability, the advanced error reporting extended capability, and the serial
number extended capability. If the OS successfully receives control of this feature, it is
responsible for configuring the registers in all PCI Express Capabilities in a manner that complies
with the PCI Express Base Specification. Additionally, the OS is responsible for saving and
restoring all PCI Express Capability register settings across power transitions when register
context may have been lost.

5-31 Reserved

Control Field
bit offset

Interpretation

0 PCI Express Native Hot Plug control

The firmware sets this bit to 1 to grant control over PCI Express native hot plug interrupts. If
firmware allows the OS control of this feature, then in the context of the _OSC method it must
ensure that all hot plug events are routed to device interrupts as described in the PCI Express
Base Specification. Additionally, after control is transferred to the OS, firmware must not
update the state of hot plug slots, including the state of the indicators and power controller. If
control of this feature was requested and denied or was not requested, firmware returns this
bit set to 0.

1 SHPC Native Hot Plug control

The firmware sets this bit to 1 to grant control over control over PCI/PCI-X Standard Hot-Plug
Controller (SHPC)hot plug. If firmware allows the OS control of this feature, then in the context
of the _OSC method it must ensure that all hot plug events are routed to device interrupts as
described in the SHPC Specification. Additionally, after control is transferred to the OS,
firmware must not update the state of hot plug slots, including the state of the indicators and
power controller. If control of this feature was requested and denied or was not requested,
firmware returns this bit set to 0.

2 PCI Express Native Power Management Events control

The firmware sets this bit to 1 to grant control over control over PCI Express native power
management event interrupts (PMEs). If firmware allows the OS control of this feature, then in
the context of the _OSC method it must ensure that all PMEs are routed to root port interrupts
as described in the PCI Express Base Specification. Additionally, after control is transferred to
the OS, firmware must not update the PME Status field in the Root Status register or the PME
Interrupt Enable field in the Root Control register. If control of this feature was requested and
denied or was not requested, firmware returns this bit set to 0.

Control Field
bit offset

Interpretation
UEFI Forum, Inc. January 2019 Page 1136

ACPI Specification, Version 6.3
6.2.11.4 ASL Example
A sample _OSC implementation for a mobile system incorporating a PCI Express hierarchy is shown
below:

Device(PCI0) // Root PCI bus
{
 Name(_HID,EISAID("PNP0A08")) // PCI Express Root Bridge
 Name(_CID,EISAID("PNP0A03")) // Compatible PCI Root Bridge
 Name(SUPP,0) // PCI _OSC Support Field value
 Name(CTRL,0) // PCI _OSC Control Field value

 Method(_OSC,4)
 { // Check for proper UUID
 If(LEqual(Arg0,ToUUID("33DB4D5B-1FF7-401C-9657-7441C03DD766")))
 {
 // Create DWord-adressable fields from the Capabilities Buffer
 CreateDWordField(Arg3,0,CDW1)
 CreateDWordField(Arg3,4,CDW2)
 CreateDWordField(Arg3,8,CDW3)

 // Save Capabilities DWord2 & 3
 Store(CDW2,SUPP)
 Store(CDW3,CTRL)

 // Only allow native hot plug control if OS supports:
 // * ASPM
 // * Clock PM
 // * MSI/MSI-X
 If(LNotEqual(And(SUPP, 0x16), 0x16))
 {
 And(CTRL,0x1E,CTRL) // Mask bit 0 (and undefined bits)

3 PCI Express Advanced Error Reporting control

The firmware sets this bit to 1 to grant control over PCI Express Advanced Error Reporting. If
firmware allows the OS control of this feature, then in the context of the _OSC method it must
ensure that error messages are routed to device interrupts as described in the PCI Express Base
Specification. Additionally, after control is transferred to the OS, firmware must not modify the
Advanced Error Reporting Capability. If control of this feature was requested and denied or was
not requested, firmware returns this bit set to 0.

4 PCI Express Capability Structure control

The firmware sets this bit to 1 to grant control over the PCI Express Capability. If the firmware
does not grant control of this feature, firmware must handle configuration of the PCI Express
Capability Structure.

If firmware grants the OS control of this feature, any firmware configuration of the PCI Express
Capability may be overwritten by an OS configuration, depending on OS policy.

5-31 Reserved

Control Field
bit offset

Interpretation
UEFI Forum, Inc. January 2019 Page 1137

ACPI Specification, Version 6.3
 }

 // Always allow native PME, AER (no dependencies)

 // Never allow SHPC (no SHPC controller in this system)
 And(CTRL,0x1D,CTRL)

 If(LNot(And(CDW1,1))) // Query flag clear?
 { // Disable GPEs for features granted native control.
 If(And(CTRL,0x01)) // Hot plug control granted?
 {
 Store(0,HPCE) // clear the hot plug SCI enable bit
 Store(1,HPCS) // clear the hot plug SCI status bit
 }
 If(And(CTRL,0x04)) // PME control granted?
 {
 Store(0,PMCE) // clear the PME SCI enable bit
 Store(1,PMCS) // clear the PME SCI status bit
 }
 If(And(CTRL,0x10)) // OS restoring PCIe cap structure?
 { // Set status to not restore PCIe cap structure
 // upon resume from S3
 Store(1,S3CR)
 }
 }

 If(LNotEqual(Arg1,One))
 { // Unknown revision
 Or(CDW1,0x08,CDW1)
 }

 If(LNotEqual(CDW3,CTRL))
 { // Capabilities bits were masked
 Or(CDW1,0x10,CDW1)
 }
 // Update DWORD3 in the buffer
 Store(CTRL,CDW3)
 Return(Arg3)
 } Else {
 Or(CDW1,4,CDW1) // Unrecognized UUID
 Return(Arg3)
 }
 } // End _OSC

} // End PCI0



UEFI Forum, Inc. January 2019 Page 1138

ACPI Specification, Version 6.3 Index
Index
Symbols
_EJx 409
??????????????????????????????????? 164
??? 164

A
AC adapter

device ID 319
power source objects 695

AC status notification 675
access, device 771
AccessAs term 286, 781
acoustics See noise
ACPI

definition 23
device ID 318, 336
goals 8

ACPI Hardware See hardware
ACPI Machine Language See AML
ACPI mode

entering 825
exiting 829

ACPI Namespace
AML encoding 1076
control method access 274
definition 23
display adapters 1117
embedded controller device definition 772
generic hardware registers 102
Modifier Objects encoding, AML 1061
naming conventions 265
root namespaces 268
SMBus host controller objects 777

ACPI Source Language See ASL
ACPI System Description tables See tables
ACPI-compatible hardware See hardware
Acquire (Acquire a Mutex) 943
Acquire terms 1002
active cooling

_ACx object 709, 722
control methods 712
definition 708
engaging 712
UEFI Forum, Inc. January 2019 Page 1139

ACPI Specification, Version 6.3 Index
preferences 60, 715
threshold values 715

active line printer (LPT) ports 51
Active List (_ALx) object 723
Add (Integer Add) 943
add-in display adapter, definition 1117
Address (_ADR) object 343
address register (SMB_ADDR) 763
Address Space Descriptors

DWORD resource descriptor format 434
Extended 439
QWORD resource descriptor format 431, 1026, 1028, 1030
resource specific flags 443
WORD resource descriptor format 437

Address Space Resource Descriptors
valid combinations 430

addresses
alarm fields 91
BARs (Base Address Registers) 275
blocking, BIOS 806
bus types 343, 348, 355, 401, 402
control methods 274
decoding 616
FACS 142
format 113
functional fixed hardware 114
Generic Address Structure (GAS) 115
generic hardware 66, 73
I/O (S)APIC 158, 471
map samples 810
mixed, preventing 158, 471
registers 80
reset register 100, 101
slave 674, 775
system description tables 110

Advanced Configuration and Power Interface See ACPI
Advanced Programmable Interrupt Controller See APIC
alarm address register (SMB_ALRM_ADDR) 764
alarm data register (SMB_ALRM_DATA) 764
alarm events 89
Alias (Declare Name Alias) 944
allocation, device resources 402
Ambient Light Sensor devices 319, 320
AML

Arg Objects encoding 1070
battery events 680
byte values 1070
UEFI Forum, Inc. January 2019 Page 1140

ACPI Specification, Version 6.3 Index
code event handler 68
compiling 66
Control Method Battery 681
data buffers, SMBus 287, 782
Data Objects encoding 1060
Debug Objects encoding 1070
definition 23
grammar 1059
Local Objects encoding 1070
Name Objects encoding 1059, 1060
Named Objects encoding 1062
Namespace encoding 1076
Namespace Modifier Objects encoding 1061
notation conventions 1058
Package Length encoding 1061
purpose of 66
sleep button code example 87
SMBus device access protocols 288, 783
Term Objects encoding 1061
Type 1 Opcodes encoding 1065
Type 2 Opcodes encoding 1066

And (Integer Bitwise And) 944
angle brackets

AML 1058
ASL notation 877

answering phones
modem example 50

APIC
_MAT (Multiple APIC Table Entry) 385
definition 23
I/O 28, 154
local 28
multiple description table (MADT) 29
NMI 157
Processor Local 153, 183
structure types 152
support 155

APM BIOS 40
appliance PCs 140
ARB_DIS 99
architecture, system description tables 109
Arg Objects encoding, AML 1070
arguments, control methods 273
Argx (Method Argument Data Objects) 944
arrow symbol

ASL notation 877
ASL
UEFI Forum, Inc. January 2019 Page 1141

ACPI Specification, Version 6.3 Index
_FIX usage example 366
_HPP example 369
case sensitivity 916
CMOS protocols 275
converting to AML 66
data and constant terms 880
data types 921
definition 24
Definition Block terms 956
EC-SMB-HC device code 773
embedded controller device code 772
grammar 876
grammar notation 877
index with buffers example code 985
IPMI data buffer code 279
IPMI devices 277
lid status code example 106
macros 920
modifiers 916
multiple Smart Battery subsystem code 679
name and pathname terms 878
nested packages sample code 984
object names 916
objects, declaring 272
opcode terms 883
opcodes 883
operator reference 942
operator summary 933
operator summary by type 937
parameter keyword terms 903
parameters 923
Power Resource statements 482
primary terms 885
reserved object names 917
resource template terms 905, 1048
root and secondary terms 879
SMBBlock code 292, 294, 295, 786
SMBBlockProcessCall code 293, 296, 788
SMBByte code 290, 785
SMBProcessCall code 293, 787
SMBQuick code 288, 783
SMBSendReceive code 289, 784
SMBus data buffer code 287, 782
SMBus devices 779
SMBWord code 291, 785
storing results 923
thermal zone examples 739
UEFI Forum, Inc. January 2019 Page 1142

ACPI Specification, Version 6.3 Index
virtual register code 279, 282, 283, 781
AT interrupt model 169
ATA hard disks See storage devices
audible output See noise
audio devices, power management 1094, 1095
aware device drivers 307

B
BankField (Declare Bank/Data Field) 945
bar symbol

AML notation 1059
ASL notation 877

BARs (Base Address Registers) 275
Base Bus Number (_BBN) object 474
batteries

Control Method Batteries 680
emergency shutdown 57
events 680
low-level warnings 56
management 54
multiple 54
remaining capacity 690
types supported 48

batteries See also Smart Batteries
Battery Charge Time (_BCT) object 692
Battery Information (_BIF) object 682
Battery Information Extended(_BIX) object 684
Battery Maintenance Control (_BMC) object 694
Battery Maintenance Data (_BMD) object 692
Battery Measurement Averaging Interval (_BMA) object 687
Battery Measurement Sampling Time (_BMS) object 688
Battery Status (_BST) object 688
Battery Time (_BTM) object 692
Battery Trip Point (_BTP) object 691
bay devices 710
BIOS

address range types 806
configuring boot devices 53
determining ACPI support 91
Device Objects 957
devices, switching 1131
Dock Name (_BDN) 472
initialization 823
legacy functions 40
legacy specifications 21
memory initialization 825
relation to ACPI 12
UEFI Forum, Inc. January 2019 Page 1143

ACPI Specification, Version 6.3 Index
resetting enable bits 104
bits

alarm 91
child 73, 102
child status 104
control 102
enable 77
general-purpose events 104
generic hardware registers 102
ignored 27, 74
interrupt status 73
lid status 106
parent 73, 102
PM timer 98
PM1 Control registers 97
PM1 Enable registers 96
PM1 Status registers 93, 581
PM2 Control register 99
processor control register 99
processor LVL2 100
processor LVL3 100
register notation 69
reserved 31, 74, 113
reset register 100, 101
SMBus protocol encoding 776
status 77, 102
system event signals 54
write-only 74

blanks 877
block count register (SMB_BCNT) 764
block devices, GPE 611
Block Write-Read Block Process Call (SMBBlockProcessCall) protocol 293, 788
blocking, control methods 272
blocks, register 78
BM_RLD 97
BM_STS 93
bold

AML notation 1058
ASL notation 878

boot architecture flags, IA-PC 141
boot devices 53
boot resources, embedded controller 170
bootstrap ROM 826
boot-up 822
brackets, angle

AML notation 1058
ASL notation 877
UEFI Forum, Inc. January 2019 Page 1144

ACPI Specification, Version 6.3 Index
Break (Break from While) 946
BreakPoint (Execution Break Point) 946
bridges

Base Bus Number (_BBN) 474
DWORD 436
flags 444
ISA bus device 602, 957
purpose 112
QWORD 433, 441
WORD 438

Brightness Control Levels Supported, Query List of (_BCL) 1126
brightness control, LCDs 1116
Brightness Level, Set (_BCM) 1127
Buffer (Declare Buffer Object) 946
Buffer field data type, ASL 921, 925
buffers, IPMI 279
buffers, SMBus 287, 782
built-in display adapter, definition 1117
Burst Disable Embedded Controller (BD_EC) 756
Burst Enable Embedded Controller (BE_EC) 756
Burst flags 755
burst mode 756
Bus/Device packages 957
buses

power management standards 1093
segment locations 474
setting power states 48

button control models 83
buttons See power button
byte values, AML 1070

C
C0 processor power state

definition 38
implementation 511

C1 processor power state
definition 38
implementation 513

C2 processor power state
definition 38
implementation 513

C3 processor power state
definition 38
implementation 513

cache controller configuration 824
caches, flushing 515, 821
capacity, battery
UEFI Forum, Inc. January 2019 Page 1145

ACPI Specification, Version 6.3 Index
calculating 55
low-level warnings 57
remaining 690
status information 48

CardBus mode 471
Case (Conditional Execution) 948
case sensitivity, ASL 916
category names 13
Celsius scale 711
centenary value, RTC alarm 90
Central Processing Unit See CPU
CENTURY 91
channels, DMA 420, 423
chemistry independence 675
child bits 73, 102
child objects, ASL statements 877
child status bits 104
CityplaceEnterprise servers 140
CLK_VAL 99
clock logic 511
CMOS protocols 275
cold boots 100, 101, 824
cold insertion and removal 406
COM port devices, power management 50, 1094, 1097
command protocols, SMBus 776
command register (SMB_CMD) 763
commands, embedded controller interface 755
comments, ASL 877
compatibility memory 826
compatibility, compiler 1040
Compatible ID (_CID) object 344
compiling, ASL to AML 66, 1040
composite battery 54
Concatenate (Concatenate Data) 948
ConcatenateResTemplate (Concatenate Resource Templates) 950
CondRefOf (Conditional Reference Of) 950
configuration objects, device 358
configuring

BIOS initialization 824
boot devices 53
modem example 53
Plug and Play devices 53

context, device 25
context, system

definition 32
during emergency shutdown 58
S4 sleeping state 819
UEFI Forum, Inc. January 2019 Page 1146

ACPI Specification, Version 6.3 Index
sleep states lost in 37
contiguous RAM 826
Continue (Continue Innermost Enclosing While) 952
control bits

functions 102
symbol 68

Control Method Battery 54
Control Method placeBattery 318, 319, 680
control methods

_ADR (Return the Unique ID for this Device) 1126
_BCL (Query List of Brightness Control Levels Supported) 1126
_BCM (Set the Brightness Level) 1127
_BDN (BIOS Dock Name) 472
_DCK (Dock) 471
_DCS (Return the Status of Output Device) 1128
_DDC (Return the EDID for this Device) 1128
_DDS (PlaceNameDevice PlaceNameSet PlaceTypeState)PlaceName 1129
_DGS (PlaceNameQuery PlaceNameGraphics PlaceTypeState)PlaceName 1129
_DOD (Enumerate All Devices Attached to the Display Adapter) 1119
_DOS (Enable/Disable Output Switching) 1118
_GPD (Get POST Device) 1124
_LID (lid device) 595, 596, 601, 628, 637, 638, 639
_MSG (Message) 592, 593
_OFF 484
_PS0 (PlaceNamePower PlaceTypeState 0) 488
_PS0 (Power State 0) 489
_PS1 (PlaceNamePower PlaceTypeState 1) 488
_PS2 (PlaceNamePower PlaceTypeState 2) 488
_PS3 (PlaceNamePower PlaceTypeState 3) 488
_PSC (PlaceNamePower PlaceTypeState Current) 489
_PSW 493
_PTS (Prepare To Sleep) 500
_REG (Region) 472
_ROM (Get Rom Data) 1123
_SCP (Set Cooling Policy) 729
_SPD (Set POST Device) 1124
_STM (Set Timing Mode) 607
_TMP (Temperature) 709, 734
_VPO (Video POST OPtions) 1125
_WAK (System Wake) 507
ASL, writing 875
battery 681
device identification 343
device removal 406
initialization (_INI) 470
lid device 586, 593, 601, 628
OEM-supplied 499
UEFI Forum, Inc. January 2019 Page 1147

ACPI Specification, Version 6.3 Index
overview 272
power button 85, 602
Power Resource objects 484
power source 696, 698
reserved names 320
resources 358
sleep button 87, 602
system indicators 592
thermal management 721
video extensions 1116

control methods See also objects
control registers 77
controllers, embedded

definition 25
interface 25

conversion, data types 921
cooling modes 59, 708
cooling preferences 60, 715
CopyObject (Copy an Object) 952
core logic, system events 54
CPU

boot configuration 824
boot-up 822
cache flushing 515
clock logic 511
definition 24
fixed hardware control 66, 114
multiple performance state control 559
non-symmetric power state support 511
passive cooling 713
performance states 38
processor power states 509
thermal management 59
throttling 511, 551
waking operations 48

crashed systems 84
CreateBitField (Create 1-Bit Buffer Field) 952
CreateByteField (Create 8-Bit Buffer Field) 952
CreateDWordField (Create 32-Bit Buffer Field) 953
CreateField (Create Arbitrary Length Buffer Field) 953
CreateQWordField (Create 64-Bit Buffer Field) 953
CreateWordField (Create 16-Bit Buffer Field) 954
Critical battery state 57
Critical Temperature (_CRT) object 714, 726
critical temperature shutdowns 708, 714
Cross Device Dependency 74
CRT monitors, power management 1098
UEFI Forum, Inc. January 2019 Page 1148

ACPI Specification, Version 6.3 Index
C-States (processor power) 514, 519
CT phones See modems
Current Resource Settings (_CRS) objects 360, 589

D
D0-Fully On

control method 488, 489
definition 36
In Rush Current (_IRC) object 494
power resource object 489
transitioning to 490

D1 Device State
definition 36
transitioning to 490

D1 PlaceNameDevice PlaceTypeState
control methods 488

D1 PlaceNameplaceDevice PlaceTypeState
power resource objects 490

D2 Device State
definition 36
transitioning to 491

D2 PlaceNameDevice PlaceTypeState
control methods 488

D2 PlaceNameplaceDevice PlaceTypeState
power resource objects 490, 491

D3-Off
control methods 488
definition 35

dash character
AML notation 1059
ASL notation 878

data buffers, IPMI 279
data buffers, SMBus 287, 782
Data Objects encoding, AML 1060
data objects, ASL

Buffer 946
Package 1007

data register array (SMB_DATA) 763
data types

ASL 921
concatenate 931, 932, 933, 948

data types, resource See resource data types
DataTableRegion (Create Data Table Operation Region) 954
day alarm 90
day mode 44
DAY_ALRM 91
DDB Handle data type, ASL 921, 925
UEFI Forum, Inc. January 2019 Page 1149

ACPI Specification, Version 6.3 Index
DDT, Plug and Play devices 53
Debug (Debugger Output) 954
Debug Object data type, ASL 921, 925
Debug Objects encoding, AML 1070
debugging

requirements for 875
decimals, notation 877
Decrement (Integer Decrement) 955
Default (Default Execution Path in Switch) 955
Definition Blocks

ASL code 916
encoding 268
loading 148
loading from XSDT 994

DefinitionBlock (Declare Definition Block) 956
definitions See terminology
degrees, Kelvin 711
dependencies, device 74, 420
DerefOf (Dereference an Object Reference) 956
description tables See tables
design guides 13
desktop PCs

profile system type 139
Device (Declare Bus/Device Package) 957
device and processor performance states 38, 52
Device Class Power Management specifications 47
Device data type, ASL 921, 925
device drivers, ACPI-Aware 307
Device Name (_DDN) object 346
device power

management 44
modem example 49
objects 485
requirements 1094
standards 46
states 35

devices
audio, power management 1095
class-specific objects 318
COM port, power management 1097
context, definition 25
definition 25
graphics 1116
identification objects 342
input, power management 1105
insertion and removal objects 405
interference 74
UEFI Forum, Inc. January 2019 Page 1150

ACPI Specification, Version 6.3 Index
modems, power management 1107
network, power management 1110
object notification 311
PC Card controllers, power management 1112
Plug and Play IDs 318
power states 35
resource allocation 402
resource control method 358
SMBus, declaring 778
storage, power management 1113
waking system 492

Devices Attached to the Display Adapter (_DOD) 1119
Differentiated Definition Block

Bus/Device packages 957
determining device power capabilities 47
modem example 51

Differentiated Description Block
isolation logic 51

Differentiated System Description Table See DSDT
digital modems See modems
Direct Memory Access (_DMA) object 361
Disable (_DIS) object 360
Disable Output Switching (_DOS) 1118
display adapters

ACPI Namespace 1117
control methods 1116
definitions 1117
switching devices 1131

display devices, power management 1094, 1098
Display Power Management Signaling Specification (DPMS) 1093
Divide (Integer Divide) 958
DMA resource descriptor format 420, 423
DMA Resource Descriptor Macro 958, 976
Dock (_DCK) control method 471
docking

control methods 405, 471
event signals 54
objects 407
query events 103

documentation
organization 18
supplemental 21

drain rates, battery 56
drivers

interference 74
restoration 36

DSDT
UEFI Forum, Inc. January 2019 Page 1151

ACPI Specification, Version 6.3 Index
definition 25, 149
purpose 111

dual 8259 155
dual-button model 83
duty cycle 511
DVD decoders 1119
DWORD 99
DWORD resource descriptor format 434
DWordIO (DWord IO Resource Descriptor Macro) 959
DWordMemory (DWord Memory Resource Descriptor Macro) 961
DWordSpace (DWord Space Resource Descriptor Macro) 963
dynamic insertion and removal 405
dynamic objects 274
dynamic Operation Regions 1006
dynamic transitioning 70

E
E_TMR_VAL 98
E820 mapping 806
EC_DATA (embedded controller data register) 755
EC_SC (R) (embedded controller status register) 753
EC_SC (W) (embedded controller command register) 755
ECDT 170
ECI See embedded controller interface
EC-SMB-HC 760, 773
EDID control methods (_DDC) 1128
EFI

GetMemoryMap interface 809
RSDP location 117

EISA ID 346
EISAID (EISA ID String To Integer Conversion Macro) 964
Eject (_EJx) object 409
Eject Device List (_EDL) object 407
Ejection Dependent Device (_EJD) object 408
ejection mechanisms 405
Else (Alternate Execution) 964
ElseIf (Alternate/Conditional Execution) 965
embedded controller

boot resources table 170
burst mode 756
device ID 318
device object 602
event control example 102
multiple 750
operations 107
queuing events 306, 307
region control method 473
UEFI Forum, Inc. January 2019 Page 1152

ACPI Specification, Version 6.3 Index
embedded controller interface
ACPI Namespace objects 772
algorithms 759
ASL code, device 772
bi-directional communications 751
Burst flag 755
command interrupt model 758
command register (EC_SC (W)) 755
command set 755
commands, restricted 771
configurations, additional 752
data register (EC_DATA) 755
definition 25
firmware requirements 757
Input Buffer Full (IBF) flag 754, 759
objects 772
OEM-definable values 759
Output Buffer Full (OBF) flag 754, 759
registers 753
shared 751, 753
SMBus host controller 760
SMBus notification header (OS_SMB_EVT) 757
SMBus protocol descriptions 764
SMBus registers 760
specifications 750

emergency shutdown 57
enable bits

corresponding status bits 104
resetting 104
symbol 68

enable register 54
Enable/Disable Output Switch (_DOS) 1118
encoding

AML 1059
Definition Blocks 268
object names, ASL 916
tables 113

End Dependent Functions resource descriptor format 422
end tag resource descriptor format 424
EndDependentFn End Dependent Functions Descriptor Macro) 966
energy conservation See power management
Enumerate All Devices Attached to the Display Adapter (_DOD) 1119
enumeration, enabling 778
errors, fatal 972
Ethernet adapters See network devices
Event (Declare Event Synchronization Object) 966
Event data type, ASL 921, 926
UEFI Forum, Inc. January 2019 Page 1153

ACPI Specification, Version 6.3 Index
events
alarm 89
AML code handler 68
battery 680
button 83
enable register 54
fixed feature 26
fixed handling 304
general model 54
general-purpose registers 27, 102
hardware 71
interrupt 71, 92
link status 1111
OS-transparent 72
power button 85
power button override 86
programming model 302
query 103
shared 73
status register 54
synchronization objects 1035
synchronization, waiting for 1051
user-initiated 83
wake frame 1111

exiting ACPI mode 829
extended I/O bus 318
Extended Interrupt resource descriptor format 445
Extended IO Resource Descriptor Macro 967
Extended Memory Resource Descriptor Macro 968
Extended resource descriptor format 439
Extended Root Systems Description Table See XSDT
Extended Space Resource Descriptor Macro 970
External (Declare External Objects) 971

F
FACS

definition 26
flags 146
Global Lock 146
table fields 142

FADT
alarm bits 90
cache flushing 515, 822
definition 26
flags 101
optional feature bits 93
Plug and Play IDs 366
UEFI Forum, Inc. January 2019 Page 1154

ACPI Specification, Version 6.3 Index
processor power states 510
reset register location 100, 101
SCI interrupt mapping 92

fans
active cooling 60
device operations 717
noise preferences 60
Plug and Play ID 108
thermal zone example 740

Fatal (Fatal Error Check) 972
fatal errors 972
features

fixed 26
generic 27
generic hardware 104

Field (Declare Field Objects) 972
fields

alarm 91
cache flushing 822
declaring objects 972
embedded controller boot resources 170
FACS 142
FADT 126, 366
I/O APIC 154
IPMI 277
MADT 151, 182, 209
NMI 157
Processor Local APIC 154, 161, 210, 212, 213, 214
reserved 113
RSDT 124
SBST 169
SMBus 281, 285, 780
Start Dependent Functions 420

FindSetLeftBit (Find First Set Left Bit) 975
FindSetRightBit (Find First Set Right Bit) 975
firmware

ACPI System 13
embedded controller requirements 757
OSPM controls 41
SMM functional fixed hardware implementation 114

Firmware ACPI Control Structure See FACS
Fixed ACPI Description Table See FADT
fixed event handling 304
fixed features

definition 26
events 26
registers 27
UEFI Forum, Inc. January 2019 Page 1155

ACPI Specification, Version 6.3 Index
fixed hardware
definition 64
feature control bits 97
feature enable bits 95
feature status bits 93
features 75
functional implementation 66
interfaces 114
power button 84
programming model 65
register blocks 78
registers 77, 93
sleep button 86

fixed location I/O port descriptor resource descriptor format 423
Fixed Register Resource Provider (_FIX) 365
fixed width registers 446
FixedIO (Fixed IO Resource Descriptor) 976
FixedList 877
flags

Burst 755
DWORD 435
FACS 146
FADT 101
I/O resource 444
IA-PC boot architecture 141
Input Buffer Full (IBF) 754, 759
interrupt vector 445
local APIC 154
MADT 152
memory resource 443
MPS INTI 156
Output Buffer Full (OBF) 754, 759
QWORD 432, 440
SMI event (SMI_EVT) 754
system type 140
WORD 438

floppy controller device objects 609
Floppy Disk Drive Mode (_FDM) control method 611
Floppy Disk Enumerate (_FDE) object 609
Floppy Disk Information (_FDI) object 610
floppy disks See storage devices
flushing caches 515, 821
frequency mismatch 312
FromBCD (Convert BCD To Integer) 978
Function (Declare Control Method) 979
functional device configuration 824
functions
UEFI Forum, Inc. January 2019 Page 1156

ACPI Specification, Version 6.3 Index
End Dependent 422
Start Dependent 420

G
G0 Working state

behavior during 814
definition 34
properties 34
transitioning to 69
transitioning to Sleeping state 820
transitioning to Soft-Off 821

G1 Sleeping state
definition 34
properties 35
transitioning to 814

G2 Soft Off
definition 33
properties 35
transitioning to 70

G3 Mechanical Off
definition 33
properties 35
transitioning from 69
transitioning to 43

game pads See input devices
GAS See Generic Address Structure
GBL_EN 96
GBL_RLS 97
GBL_STS 94
general event model 54
general-purpose event registers

addresses 81, 102
blocks 82, 104
definition 27
event 0 104
event 0 enable 105
event 0 status 105
event 1 105
event 1 enable 106
event 1 status 105
grouping 80

general-purpose events
_Exx, _Lxx, and _Qxx methods 305
handling 304, 309
wake 307

generic address space, SMBus 775
Generic Address Structure (GAS) 115
UEFI Forum, Inc. January 2019 Page 1157

ACPI Specification, Version 6.3 Index
generic events
example 103, 508
top-level 103

generic feature, definition 27
generic hardware

definition 64
features 75, 104
power button control 85
registers 66, 77, 102
sleep button control 87

generic ISA bus device 602
generic register resource descriptor format 446
Get POST Device (_GPD) 1124
Get ROM Data (_ROM) 1123
Get Task File (_GTF) control method 603
Get Timing Mode (_GTM) control method 606
GetMemoryMap 809
Global Lock 146
Global Lock (_GLK) object 476
Global Lock Mutex 335
Global Lock Structure 147
global standby timer 73
global system interrupts 155, 168
global system states

transitioning 42, 71, 349, 354, 1122
goals

ACPI 8
OSPM 8
power management 9

GPE
block devices 319, 611
control method 307

grammar
AML 1059
ASL 876

grammar notation
AML 1058
ASL 877

graphics devices, requirements for 1116
Green PCs, power management for 44
groupings, register See register groupings
guides, design 13

H
hardware

ACPI interfaces 11
definition 23
UEFI Forum, Inc. January 2019 Page 1158

ACPI Specification, Version 6.3 Index
events 71
features 75
fixed 65
ignored bits 74
interfaces 13
legacy 73
legacy vs. ACPI 10
OEM implementation 10
OS-independent 67, 114
OSPM model 69
register definitions 66
registers 77
reserved bits 74
value-added 66

hardware ID (_HID) object 345, 346, 347, 676
headers, long 124
headers, table 110
heat management See thermal management
hexadecimals, notation 877
holes, compatibility 826
home PCs, power management for 44
host controller objects, SMBus 777
hot insertion and removal 409
Hot Plug Parameters (_HPP) object 368, 372, 374
Hot Temperature (_HOT) object 727
hung systems 84
hysteresis 710

I
I/O APIC

_MAT (Multiple APIC Table Entry 385
definition 28
Global System Interrupts 169
mixed addresses, preventing 158, 471
structure 154

I/O port resource descriptor format 422
I/O resource flag 444
I/O SAPIC

definition 28
mixed addresses, preventing 158, 471
Platform Interrupt Source structure 159, 161
structure 158

I/O space 112
IA (Intel Architecture) specifications 21, 22
IA-32 systems 114
IA-PC

boot architecture flags 141
UEFI Forum, Inc. January 2019 Page 1159

ACPI Specification, Version 6.3 Index
definition 28
interrupt models 155
memory map system 806
RSDP location 117

ID, Compatible (_CID object) 344
IDE

controller device 604
drives 67

IDE devices See storage devices
identification objects, device 342
idle loops, CPU 52
idle timers, legacy 73
IDs, Plug and Play 318, 343
If (Conditional Execution) 983
ignored bits

definition 27, 74
PM1 Status register 94

implementation requirements
OEM 10
OS 17
OSPM 17

In Rush Current (_IRC) object 494
Include (Include Additional ASL File) 983
Increment (Integer Increment) 984
independence, OS

functional fixed hardware 114
generic hardware 67

Index (Indexed Reference To Member Object) 984
Index with Buffers 985
Index with Packages 984
Index with Strings 986
IndexField (Declare Index/Data Fields) 986
indicators, system 592
initialization

BIOS 823
boot-up 822
OS 828

initialization object (_INI) 470
Input Buffer Full (IBF) flag 754, 759
input devices, power management 1094, 1105
Input/Output See I/O
insertion and removal objects 405
insertion and removal, batteries 680
INT 15 mapping 806
Integer data type, ASL 921, 926
Integers 917
Intel Architecture specifications 21, 22
UEFI Forum, Inc. January 2019 Page 1160

ACPI Specification, Version 6.3 Index
Intel Architecture-Personal Computer See IA-PC
interdependent resources 420
interfaces

ACPI 11
battery 54
BIOS, legacy 40
Control Method Battery 681
design guides 13
EC-SMB-HC 760
embedded controller 25
fixed hardware 114
hardware 13
sharing protocols 753
SMBus 32, 775

interference, device 74
Interrupt (Extended Interrupt Descriptor Macro) 987
interrupt events

logic 71
SCI 92
shareable 92
SMI 92

Interrupt Source Overrides 155
interrupt sources, non-maskable (NMIs) 156
interrupt status bits 73
interrupts

Extended Interrupt resource descriptor format 445
models 151, 155, 168, 182, 216
Platform Interrupt Source structure 159
PMIs 159

invocation, control methods 274
IO (I/O Port Resource Descriptor Macro) 988
IPMI

data buffers 279
fields, declaring 277
operation regions 276

IRQ (Interrupt Resource Descriptor Macro 989
IRQNoFlags (Interrupt Resource Descriptor Macro) 990
IRQs

mapping 155, 156
PCI routing 398
resource descriptor format 419

ISA
bus device 318, 336, 602
Device Objects code 957
interrupt sources 155
old cards 422

ISDN Terminal Adapters See modems
UEFI Forum, Inc. January 2019 Page 1161

ACPI Specification, Version 6.3 Index
isolation logic 51
italics, ASL notation 878

J
joysticks See input devices

K
Kelvin scale 711
kernel 12
key, logic diagrams 68
keyboard controllers 750
keyboards See input devices

L
LAnd (Logical And) 990
large resource resource descriptor format 294, 297, 424
latency

acceptable 42, 349, 354, 1122
global power states 34
processor power states 509

LCD panels
brightness control 1116
power management 1098

legacy BIOS interfaces 40
legacy hardware

BIOS specification 21
boot flags 141
converting to fixed 65
definition 28
interrupt handlers 91
support 10

legacy OS, definition 28
legacy systems

definition 28
power button functions 43
power management 73
power state transitions 69
switching devices out of 471
transitioning to ACPI 92

LEqual (Logical Equal) 990
LGreater (Logical Greater) 991
LGreaterEqual (Logical Greater Than Or Equal) 991
lid device 319
lid status notification values 315, 316, 317
lid switch 106
life, battery 56
UEFI Forum, Inc. January 2019 Page 1162

ACPI Specification, Version 6.3 Index
link status events 1111
LINT 157
LLess (Logical Less) 991
LLessEqual (Logical Less Than Or Equal) 992
LNot (Logical Not) 992
LNotEqual (Logical Not Equal) 993
Load (Load Definition Block) 993
loading Definition Blocks 148, 994
LoadTable (Load Definition Block From XSDT) 994
local APIC, definition 28
Local Objects encoding, AML 1070
Localx (Method Local Data Objects) 995
Lock (_LCK) object 410
Lock, Global 146
logic

fixed power button 84
lid switch 106
sleep button 86
sleeping/wake control 88

LOr (Logical Or) 995
low-level warnings, battery 56
LPT ports 51

M
macros, ASL

24-bit Memory Resource Descriptor 996
32-bit Fixed Memory Resource Descriptor 998
32-bit Memory Resource Descriptor 997
coding 920
DMA Resource Descriptor 958, 976
DWordIO Resource Descriptor 959
DWordMemory Resource Descriptor 961
DWordSpace Resource Descriptor 963
EISAID Conversion 964
End Dependent Functions Resource Descriptor 966
Extended Interrupt Resource Descriptor 987
ExtendedIO Resource Descriptor 967
ExtendedMemory Resource Descriptor 968
ExtendedSpace Resource Descriptor 970
FixedIO Resource Descriptor 976
I/O Port Resource Descriptor 988
IRQ Interrupt Resource Descriptor 989
IRQNoFlags Interrupt Resource Descriptor 990
QWordIO Resource Descriptor 1025
QWordMemory Resource Descriptor 1027
QWordSpace Resource Descriptor 1028
Register Resource Descriptor 1031
UEFI Forum, Inc. January 2019 Page 1163

ACPI Specification, Version 6.3 Index
ResourceTemplate 1033
Start Dependent Function NoPri Resource Descriptor 1038
Start Dependent Function Resource Descriptor 1038
Unicode Conversion 1050
UUID Conversion 1047
VendorLong Resource Descriptor 1050
VendorShort Resource Descriptor 1051
WordBusNumber Resource Descriptor 1052
WordIO Resource Descripto 1053
WordSpace Resource Descriptor 1055

MADT
_MAT object 385
definition 29
flags 152
interrupt models 151, 182, 216
table fields 151, 182, 209

Magic Packet wake 1110
management See power management
mapping

E820 806
EFI GetMemoryMap 809
INT 15 806
IRQs 155, 156
Query System Address Map function 811
samples 810

Match (Find Object Match) 995
Mechanical Off

definition 33
properties 35
transitioning from 69
transitioning to 43

memory
BIOS initialization 825
controller configuration 824
descriptor macros 998
devices 616
map sample 810
NVS 826
resource flag 443

memory device 319
memory range descriptors

24-Bit 426
32-Bit 427
32-Bit Fixed Location 429
purpose 427

Memory24 (Memory Resource Descriptor Macro) 996
Memory32 (Memory Resource Descriptor Macro) 997
UEFI Forum, Inc. January 2019 Page 1164

ACPI Specification, Version 6.3 Index
Memory32Fixed (Memory Resource Descriptor Macro) 998
Message (_MSG) control method 592, 593
Method (Declare Control Method) 999
Method data type, ASL 921, 926
methods, control See control methods
mice See input devices
Microsoft Device Class Power Management specifications 47
Mid (Extract Portion of Buffer or String) 1000
mobile PCs

lid switch 106
power management 43
profile system type 139

Mod (Integer Modulo) 1001
modems

configuration example 53
power management 1094, 1107
power management example 49

modifiers
ASL names 916

Module Device 319, 613
MON-ALRM 91
monitors See display devices
month alarm 90
motherboard device configurations

ACPI goals 8
controlled by OSPM 40
modems 1108

MPS INTI flags 156
Multiple APIC Description Table See MADT
Multiple APIC Table Entry (_MAT) object 385
multiple Smart Battery Subsystem 679
Multiply (Integer Multiply) 1001
multiprocessor PCs

performance control 559
power management for 44

mutex
acquiring 943
Global Lock 335
release synchronization objects 1032

Mutex (Declare Synchronization/Mutex Object) 1001
Mutex data type, ASL 921, 926

N
Name (Declare Named Object) 1002
Name Objects encoding, AML 1059, 1060
name terms, ASL 878
Named Objects encoding, AML 1062
UEFI Forum, Inc. January 2019 Page 1165

ACPI Specification, Version 6.3 Index
names, object 29
Namespace See ACPI Namespace
naming conventions 265
NAnd (Integer Bitwise Nand) 1003
nested packages 984
network devices, power management 1094, 1110
NMIs 156, 157
noise, active cooling 60
non-linear address spaces 276, 775
Non-Maskable Interrupt Sources (NMIs) 156, 157
non-visible states, device power 35
Non-Volatile Sleeping memory (NVS) 826
NoOp Code (No Operation) 1003
NOr (Integer Bitwise Nor) 1003
Not (Integer Bitwise Not) 1003
notation

AML 1058
ASL 877
numeric constants 877
register bits 69

Nothing 877
notification

battery removal 680
power button control 85
Smart Battery status 675
temperature changes 711

Notification Temperature Threshold (_NTT) object 728
Notify (Notify Object of Event) 1004
numeric constants, notation 877
NVS files

checking validity 828
NVS memory 826

O
object name, definition 29
Object Reference data type, ASL 922, 926
objects

_ BMC (Battery Maintenance Control) 694
_ACx (Active Cooling) 709, 722
_ADR (Address) 343
_BBN (Base Bus Number) 474
_BCT (Battery Charge Time) 692
_BIF (Battery Information) 682
_BIX (Battery Information Extended) 684
_BMA (Battery Measurement Averaging Interval) 687
_BMD (Battery Maintenance Data) 692
_BMS (Battery Measurement Sampling Time) 688
UEFI Forum, Inc. January 2019 Page 1166

ACPI Specification, Version 6.3 Index
_BST (Battery Status) 688
_BTM (Battery Time) 692
_BTP (Battery Trip Point) 691
_CID (Compatible ID) 344
_CRS (Current Resource Settings) 360, 589
_CRT (Critical Temperature) 714, 726
_CST (C States) 519
_DDN (Device Name 346
_DIS (Disable) 360
_DMA (Direct Memory Access) 361
_EDL (Eject Device List) 407
_EJD (Ejection Dependent Device) 408
_EJx (Eject) 409
_FDE (Floppy Disk Enumerate) 609
_FIX (Fixed Register Resource Provider) 365
_GLK (Global Lock) 476
_HID (hardware ID) 345, 346, 347, 676
_HOT (Hot Temperature) 727
_HPP (Hot Plug Parameters) 368, 372, 374
_INI (Init) 470
_IRC (In Rush Current) 494
_LCK (Lock) 410
_MAT (Multiple APIC Table Entry) 385
_NTT (Notification Temperature Threshold) 728
_PCL (Power Consumer List) 696
_PCT (Performance Control) 559
_PPC (Performance Present Capabilities) 561
_PR0 (Power Resources for D0) 489
_PR1 (Power Resources for D1) 490
_PR2 (Power Resources for D2) 490, 491
_PRS (Possible Resource Settings) 396
_PRW (Power Resources for Wake) 308, 492
_PSL (Passive List) 728
_PSR (Power Source) 696
_PSS (Performance Supported States) 521, 555, 560, 564
_PSV (Passive) 709, 728
_PTC (Processor Throttling Control) 551
_RMV (Remove) 416
_S1D 494
_S2D 495
_S3D 496
_S4D 496
_SBS (Smart Battery Subsystem) 676
_SEG (Segment) 474
_SRS (Set Resource Settings) 402
_STA (Status) 485
_STR (String) 357
UEFI Forum, Inc. January 2019 Page 1167

ACPI Specification, Version 6.3 Index
_SUN (Slot User Number) 357
_TC1 (Thermal Constant 1) 733
_TC2 (Thermal Constant 2) 733
_TSP (Thermal Sampling Period) 735
_TZD (Thermal Zone Devices) 736
_TZP (Thermal Zone Polling) 600, 629, 637, 733, 737
_UID (Unique ID) 358
ASL encoding 916
ASL statements 877
ASL, declaring 272
control methods 272
definition 29
device identification 342
device insertion and removal 405
device power resource 489
dynamic 274
EC-SMB-HC 773
embedded controller interface 772
floppy controller 609
global scope 268
initialization 470
Module Device 613
names, reserved 917
Notify operator 311
OS-defined 335
Power Resource 482
processor 516
reserved and predefined 320
revision data 339
Smart Battery 676
SMBus host controller 777
static 274
thermal management 721
unnamed 269

objects See also control methods
ObjectType 877
ObjectType (Get Object Type) 1004
OEM implementation 10
OEM-supplied control methods 499
OFF 484
off See Mechanical Off
ON 484
One (Constant One Object) 1005
Ones (Constant Ones Object) 1005
opcodes

Type 1, AML 1065
Type 2, AML 1066
UEFI Forum, Inc. January 2019 Page 1168

ACPI Specification, Version 6.3 Index
Operating System See OS
Operation Region data type, ASL 922, 926
Operation Region Field Unit data type, ASL 921
operation regions

IPMI 276
SMBus 775

OperationRegion (Declare Operation Region) 274, 1006
operator reference, ASL 942
operator summary by type, ASL 937
operator summary, ASL 933
operators, ASL 921
Or (Integer Bitwise Or) 1007
organization, document 18
original equipment manufacturer See OEM
OS

AML support, required 875
boot flags 141
compatibility requirements 17
defined object names 335
device power management 47
drivers, embedded controller interface 750
functional fixed hardware implementation 114
independent generic hardware 67
legacy hardware interaction 10
loading 827
name object 338
policy owner, device power management 1092
power management 9
transparent events 72

OSPM
caches, flushing 821
cooling policy changes 709
cooling preferences 60
device insertion and removal 405
event handlers 73
exclusive controls 41
fixed hardware access 66
fixed hardware registers 93
functions 40
general-event register access 104
generic hardware model 67
goals 8
hardware model 69
implementation requirements 17
passive cooling 713
performance states 52
PlaceNameplaceSet PlaceNamePower PlaceTypeState operation 48
UEFI Forum, Inc. January 2019 Page 1169

ACPI Specification, Version 6.3 Index
power state control 42
Real Time Clock Alarm (RTC) 89
resetting system 100, 101
SMBus registration 778
thermal management 707
transitioning to sleeping states 815
transitioning working to sleeping states 820
transitioning working to soft-off state 821

Output Buffer Full (OBF) flag 754, 759
output devices

control methods 1128
definition 1117
switching 1131
types of 1119

override, power button 86

P
P_BLK 99
P_LVL2 100
P_LVL3 100
P0 performance state, definition 38
P1 performance state, definition 39
Package (Declare Package Object) 1007
Package data type, ASL 922, 926
packages

definition 29
length 269
length encoding, AML 1061
nested 984

packet error checking (PEC) 776
parameters, ASL 923
parent bits 73, 102
parent objects, ASL statements 877
parentheses, AML notation 1059
Passive (_PSV) object 709, 728
passive cooling

definition 59, 708
preferences 60, 715
processor clock throttling 713
threshold values 715

Passive List (_PSL) object 728
PC Card controllers, power management 1094, 1112
PC keyboard controllers 750
PCCARD 1093
PCI

BAR target operations 275
bus number 474
UEFI Forum, Inc. January 2019 Page 1170

ACPI Specification, Version 6.3 Index
buses, address space translation 112
Device Objects code 957
device power management 1093
interrupt pins 397
IRQ routing 398
power management 1093

PCI configuration space 66
PCI Interrupt Link device 319
PCISIG 1093
PCMCIA 1093
PEC (packet error checking) 762, 776
Performance Control (_PCT) object 559
Performance Present Capabilities (_PPC) object 561
performance states

definitions 38
device 52

Performance Supported States (_PSS) object 521, 555, 560, 564
performance, energy conservation vs. 60
Persistent System Description Table (PSDT) 151
phones, answering

modem example 50
PIC method 341
pins

general event model 54
GPE 104

PlaceNameAddress PlaceTypeRange types 805
PlaceNameDevice PlaceNameSet PlaceTypeState (_DSS) 1129
PlaceNameGraphics PlaceTypeState, Query (_DGS) 1129
PlaceNameSet PlaceNamePower PlaceTypeState 48
placeSOHO servers 140
platform

implementation 13
Platform Interrupt Source structure 159, 161
Platform Management Interrupts (PMIs) 159
Plug and Play devices

ACPI control 53
IDs 318, 343
large resource items 425
resource control method 358
small resource items 418
specifications 21

PM timer
bits 98
function 73
idle time, determining 52
operations 82
register address 80
UEFI Forum, Inc. January 2019 Page 1171

ACPI Specification, Version 6.3 Index
register blocks 82
PM1 Control registers

addresses 80
bits 97
blocks 81
grouping 79, 97

PM1 Enable registers 93
PM1 Event registers

addresses 80
blocks 81
grouping 79, 93

PM1 Status registers 93
PM2 Control registers

addresses 80
bits 98
blocks 81

PM2 Controller register grouping 79
PMIs 159
Pn performance state, definition 39
PNPBIOS 40
Polarity flags 156
policy owner 1092
port descriptors, I/O 422
Possible Resource Settings (_PRS) object 396
POST Device control methods 1124
power button

ASL code example 85
control methods 85, 602
definition 30
device ID 319
dual-button model 84
fixed hardware 84
functions 43
object notification values 314
override 86, 89
single-button model 84

Power Consumer List (_PCL) object 696
power consumption

device and processor performance states 38
global power states 34

power loss
Mechanical Off 69

power management
audio devices 1095
buses 1093
COM port devices 1097
cooling, relationship to 60
UEFI Forum, Inc. January 2019 Page 1172

ACPI Specification, Version 6.3 Index
definition 30
desktop PCs 43
device 44, 1094
device objects 485
display devices 1098
display standards 1093
goals 9
input devices 1105
legacy 73
mobile PCs 43
modem devices 1107
modem example 49
multiprocessor PCs 44
network devices 1110
PC Card controllers 1112
PCI 1093
PCMCIA 1093
performance states 52
performance vs. energy conservation 60
preferred system types 139
servers 44
setting device power states 48
storage devices 1113

power management (PM) timer
function 73
idle time, determining 52
operations 82
register address 80
register blocks 82

Power Resource data type, ASL 922, 926
power resources

battery management 673
child objects 484
definition 30
device objects 489
isolation logic 51
objects 482
shared 51
wake system object 492

Power Source (_PSR) object 696
power sources

AC adapter 695
definition 31
object notification values 314, 317

power states
control methods 488, 489
controlled by OSPM 42
UEFI Forum, Inc. January 2019 Page 1173

ACPI Specification, Version 6.3 Index
device 35
global 33
non-symmetric processor 511
objects 488, 489
processor 509
sleeping 37
transitioning 69

PowerResource (Declare Power Resource) 1023
predefined ACPI names 320
preferences, user

performance vs. energy conservation 60, 715
power button 43

preferred PM profile system 139
Prepare to Sleep (_PTS) control method 500
Process Call (SMBProcessCall) protocol 293, 787
Processor (Declare Processor) 1024
processor and device performance states 38
processor control block 82
processor control registers

addresses 80
bits 99

Processor data type, ASL 922, 926
processor device notification values 316
Processor devices 319
Processor Local APIC 153, 157, 183
Processor Local SAPIC 158
processor LVL2 register 99, 510
processor LVL3 register 100, 510
processor objects 516
processor See CPU
Processor Throttling Control (_PTC) object 551
programming models

events 302
feature summary 75
fixed 65
generic 66

protocol register (SMB_PRTCL) 762
protocols

BARs (Base Address Registers) 275
CMOS 275
SMBus 764, 776, 783

Proximity (_PXM) object 359, 399
PSDT 151
pseudocode language See AML
pulsed interrupts 758
PWRBTN_EN 96
PWRBTN_STS 94
UEFI Forum, Inc. January 2019 Page 1174

ACPI Specification, Version 6.3 Index
Q
Query Embedded Controller (QR_EC) 757
query events 103
query value, definition 68
quotes

AML notation 1058
ASL notation 878

QWord IO Resource Descriptor Macro 1025
QWord Memory Resource Descriptor Macro 1027
QWORD resource descriptor format 431, 1026, 1028, 1030
QWord Space Resource Descriptor Macro 1028

R
Read Embedded Controller (RD_EC) 755
Read/Write Block (SMBBlock) protocol 786
Read/Write Byte (SMBByte) protocol 290, 785
Read/Write Quick (SMBQuick) protocol 288, 783
Read/Write Word (SMBWord) protocol 291, 785
reclaim memory 825
RefOf (Create Object Reference) 1030
Region (_REG) control method 472
register bits, notation 69
register blocks 78
register definitions, hardware 114
Register Generic Register Descriptor Macro) 1031
register groupings

definition 31, 77
list of 79

registers
BARs (Base Address Registers) 275
control 77
EC-SMB-HC 760
embedded controller interface 753
enable 54
fixed feature 27
fixed hardware 93
general-purpose event 27
reset 100, 101
SMB-HC 769
status 54
virtual 279, 282, 283, 777, 781

related device interference 74
Release (Release a Mutex Synchronization Object) 1032
Release terms 1002
Remaining Battery Percentage 55, 690
removal objects 405
UEFI Forum, Inc. January 2019 Page 1175

ACPI Specification, Version 6.3 Index
removal, batteries 680
Remove (_RMV) object 416
requirements, implementation

OS 17
OSPM 17

reserved ACPI names 320
reserved bits

definition 31
hardware 74
PM1 Control registers 97
PM1 Enable registers 96
PM1 Status register 94
software requirements 113

reserved object names 917
reserved SMBus protocol values 776
Reset (Reset an Event Synchronization Object) 1032
reset register 100, 101
resource data types

Address Space Resource Descriptors 430
control methods 418
DMA 420, 423
End Dependent Functions 422
end tag 424
IRQ 419
large 294, 297, 424
large vendor defined 427
memory range descriptors 426
small 418
small vendor defined 424
Start Dependent Functions 420
vendor defined 427

resources
allocation 402
control method 358
interdependencies 420

resources, power See power resources
ResourceTemplate Resource To Buffer Conversion Macro) 1033
restoring system context 819
results, storing 923
Return (Return from Method Execution) 1033
Revision (Constant Revision Object) 1033
revision data object 339
RISC processors 430
RISC systems 43
ROM control methods 1123
Root System Description Pointer See RSDP
Root System Description Table See RSDT
UEFI Forum, Inc. January 2019 Page 1176

ACPI Specification, Version 6.3 Index
RSDP
definition 31
location 116
table structure 118

RSDT
definition 31
table fields 124

RTC_EN 96
RTC_STS 94
RTC/CMOS protocols 275

S
S0 State (Working) 502
S1 Sleeping state

_S1D object 494
behavior during 503
definition 37
implementation 816
transitioning 501
waking using RTC 89

S2 Sleeping state
_S2D object 495
behavior during 503
definition 37
implementation 817
transitioning 501
waking using RTC 89

S3 Sleeping state
_S3D object 496
behavior during 504
definition 37
implementation 817
transitioning 501
waking using RTC 89

S4 Sleeping state
_S4D object 496
behavior during 504
definition 37
implementation 818
low-level battery 57
waking using RTC 89

S5 Soft-Off
behavior during 820
definition 33, 37
properties 35
transitioning to 821

SAPIC
UEFI Forum, Inc. January 2019 Page 1177

ACPI Specification, Version 6.3 Index
definition 32
I/O 28, 158
local 28
NMI 156
Processor Local 158

SATA
controller device 608

saving system context
during emergency shutdown 58
S4 Non-Volatile Sleep state 819

SBST 169
SCI

definition 32
embedded controller events 758
interrupt handlers 71, 91

SCI_EN 91, 93, 97
Scope (Open Named Scope) 1033
SCSI, power management 1093
Secondary System Description Table See SSDT
Segment (_SEG) object 474
Send/Receive Byte (SMBSendReceive) protocol 289, 784
separators, ASL 877
Serialized methods 979, 1000
server machines, power management 44
Set Cooling Policy (SCP) control method 729
Set POST Device (_SPD) 1124
Set Resource Settings (_SRS) object 402
Set the Brightness Level (_BCM) 1127
Set Timing Mode (_STM) control method 607
settings, user

performance vs. energy conservation 60, 715
power button 43

shareable interrupts 92
shared interface, embedded controller 751, 753
ShiftLeft (Integer Shift Left) 1035
ShiftRight (Integer Shift Right) 1035
Short Vendor-Defined Resource Descriptor macro 1051
shutdown, emergency 57, 714
shutting down See Mechanical Off
Signal (Signal a Synchronization Event) 1035
signatures

collisions, avoiding 120, 122
interpreting 111, 124
values, storing 113

single quotes
AML notation 1058
ASL notation 878
UEFI Forum, Inc. January 2019 Page 1178

ACPI Specification, Version 6.3 Index
SizeOf (Get Data Object Size) 1036
slave addresses, SMBus 674, 775
Sleep (Milliseconds Sleep) 1036
sleep button

ASL code example 87
control methods 87, 602
definition 31
device ID 319
fixed hardware 86
object notification values 315
support 86

Sleeping states
behavior during 503
button logic 87
definitions 34, 37
entering 815
logic controlling 88
objects 495
power consumption 34
properties 35
transitioning 42, 349, 354, 501, 1122
user settings 43
waking using RTC 89

Slot User Number (_SUN) object 357
SLP_EN 98, 815
SLP_EN field 89
SLP_TYPx 98, 815
SLP_TYPx field 78, 89
SLPBTN_EN 96
SLPBTN_STS 94
small resource data type 418
Smart Batteries

(_SBS object 676
definition 31
device ID 319
multiple battery subsystem 679
single battery subsystem 678
SMBus data buffers 287, 782
SMBus devices 779
specifications 22
status notification 675
subsystem 54, 673
supported 48
table 32
table formats 169

Smart Battery Charger
functions 675
UEFI Forum, Inc. January 2019 Page 1179

ACPI Specification, Version 6.3 Index
status notification 675
Smart Battery Selector 676
Smart Battery System Manager

functions 674
status notification 676

SMB-HC 674, 679, 769
SMBus

address register (SMB_ADDR) 763
alarm address register (SMB_ALRM_ADDR) 764
block count register (SMB_BCNT) 764
Block Write-Read Block Process Call (SMBBlockProcessCall) protocol 293, 788
commands, restricted 771
data buffers 287, 782
data register array (SMB_DATA) 763
definition 32
device enumeration, enabling 778
device ID 319
embedded controller interface 760
encoding, bit 776
fields, declaring 281, 285, 780
host controller notification header (OS_SMB_EVT) 757
host controller objects, declaring 777
interface 32
operation regions 775, 778
PEC (packet error checking) 776
Process Call (SMBProcessCall) protocol 293, 787
protocol register (SMB_PRTCL) 762
protocols 764, 776, 783
Read/Write Block (SMBBlock) protocol 786
Read/Write Byte (SMBByte) protocol 290, 785
Read/Write Quick (SMBQuick) 288, 783
Read/Write Word (SMBWord) protocol 291, 785
Send/Receive Byte (SMBSendReceive) protocol 289, 784
slave addresses 674, 775
specifications 22
status codes 777
status register (SMB_STS) 760
transactions 777
virtual registers 777

SMBus devices 319
SMI

definition 32
embedded controller firmware 757
interrupt events 71, 92

SMM firmware 114
Soft-Off

behavior during 505, 820
UEFI Forum, Inc. January 2019 Page 1180

ACPI Specification, Version 6.3 Index
definition 33, 37
properties 35
transitioning crashed systems to 84
transitioning to 70, 821

sources, power See power sources
SSDT 31, 150
Stall (Stall for a Short Time) 1037
standards

device power states 46
Start Dependent functions resource descriptor format 420
StartDependentFn Start Dependent Function Resource Descriptor Macro) 1038
StartDependentFnNoPri Start Dependent Function Resource Descriptor Macro) 1038
statements

ElseIf 965
If 965
Power Resource 483
Processor 516

statements, ASL 877
states See power states
static objects 274
Status (_STA) 485
Status (_STA) object 417
status bits

corresponding enable bits 104
functions 102
symbol 68

status codes, SMBus 777
status notification, Smart Battery 675
status register 54
status register (SMB_STS) 760
sticky status bit, definition 68
storage devices, power management 1094, 1113
Store (Store an Object) 1039
storing results, ASL operators 923
Streamlined Advanced Programmable Interrupt Controller See SAPIC
String (_STR) object 357
String data type, ASL 922, 926
strings, ASL 917
Subtract (Integer Subtract) 1039
supplemental documentation 21
surprise-style removal 405, 416
Switch (Select Code To Execute Based On Expression) 1040
switching, output devices 1131
Sx states See Sleeping states
syntax

OperationRegion 277, 778
Power Resource statements 483
UEFI Forum, Inc. January 2019 Page 1181

ACPI Specification, Version 6.3 Index
syntax, ASL 876
system context

definition 32
during emergency shutdown 58
S4 Sleeping state 819
sleep states lost in 37

System Control Interrupt See SCI
system description tables See tables
system events, general model 54
system indicators 592
System Management Bus See SMBus
System Management Interrupt See SMI
System Management Mode See SMM
System Status (_SST) control method 592
System Wake (_WAK) control method 507

T
tables

address format 113
compatibility 113
DSDT 149
embedded controller boot resources 170
encoding format 113
FACS 142
headers 110, 118
MADT 151, 182, 209
overview 109
RSDP 118
RSDT 124
SBST (Smart Battery Description) 169
signatures 120, 122
SSDT 150

Temperature (_TMP) control method 709, 734
temperature changes, detecting 710
temperature management See thermal management
Term Objects encoding, AML 1061
terminology

design guides 13
device power states 35
general 23
performance states 38
sleeping states 37

terms
AML 1058
ASL notation 877

Thermal Constant 1 (_TC1) object 733
Thermal Constant 2 (_TC2) object 733
UEFI Forum, Inc. January 2019 Page 1182

ACPI Specification, Version 6.3 Index
thermal management
control methods 721
energy conservation, optimizing 60
notification of temperature changes 711
objects 721
OSPM controlled 707
performance, optimizing 60
polling 710, 712
temperature changes, detecting 710
threshold settings, dynamically changing 709
trip points 711

Thermal Sampling Period (_TSP) object 735
thermal states, definition 32
Thermal Zone data type, ASL 922, 926
Thermal Zone Devices (_TZD) object 736
Thermal Zone Polling (_TZP) object 600, 629, 637, 733, 737
thermal zones

basic configuration 738, 742
examples 738, 742
mobile PC example 59
multiple-speed fan example 740
object notification values 314
object requirements 738

ThermalZone (Declare Thermal Zone) 1042
thirty-two bit fixed location memory range resource descriptor format 429
thirty-two bit memory range resource descriptor format 427
throttling 511, 551
THT_EN 99
Timer (Get 64-Bit Timer Value) 1042
timers

global standby 73
idle 73
power management (PM) 73, 82

TMR- field 83
TMR_EN 96
TMR_STS 93, 581
TMR_VAL 98
ToBCD (Convert Integer to BCD) 1043
ToBuffer (Convert Data to Buffer) 1043
ToDecimalString (Convert Data to Decimal String) 1044
ToHexString (Convert Data to Hexadecimal String) 1044
ToInteger (Convert Data to Integer) 1044
token ring adapters See network devices
top of memory 826
ToString (Convert Buffer To String) 1047
transactions, SMBus

data buffers 287, 782
UEFI Forum, Inc. January 2019 Page 1183

ACPI Specification, Version 6.3 Index
status codes 777
transitioning

crashed systems 84
device power states 1093
Legacy mode to ACPI 92
power states 42, 69, 349, 354, 1122
working to sleeping states 820
working to soft-off states 821

transparent events 72
transparent switching, device power states 37, 578
trap monitors 73
Trigger Mode flags 156
trip points, thermal 711
turning off See Mechanical Off
TVs 1119
twenty-four bit memory range resource descriptor format 426
Type 1 Opcodes, AML encoding 1065
Type 2 Opcodes, AML encoding 1066

U
UARTs, power management 1097
Unicode (String To Unicode Conversion Macro) 1050
Uninitialzed data type, ASL 921, 925
Unique ID (_UID) object 358
unnamed objects 269
unrelated device interference 74
upper case, ASL names 916
USB, power management 1093, 1094
user preferences

performance vs. energy conservation 60, 715
power button 43

user-visible power states 42
UUID (Convert String to UUID Macro) 1047

V
value-added hardware

enabling OSPM 66
registers 102

Variable List 877
VCR-style ejection mechanism 405
vendor defined large resource descriptor format 427
vendor defined resource data types 427
vendor defined small resource descriptor format 424
VendorLong Long Vendor-Defined Descriptor macro) 1050
VendorShort Vendor Defined Resource Descriptor Macro) 1051
VESA specifications 1093
UEFI Forum, Inc. January 2019 Page 1184

ACPI Specification, Version 6.3 Index
VGA 1119, 1124
video controllers, power management 1098
Video Electronics Standards Associations (VESA) 1093
Video POST Options (_VPO) 1125
virtual data objects 954
virtual registers 279, 282, 283, 777, 781
visible states

global system 33

W
Wait (Wait for a Synchronization Event) 1051
WAK_STS (Wake Status) 89, 95
wake frame events 1111
waking

_WAK control method 507
audio devices 1097
COM ports 1098
device power resource object (_PRW) 492
devices 1095
disabling system-waking devices 493
display devices 1104
initialization 822
input devices 1106
latency time 42, 349, 354, 1122
lid switch 106
logic controlling 88
modem devices 1109
network devices 1111
OS operations 48
PC Card controllers 1113
Real Time Clock Alarm (RTC) 89
resetting lost enable bits 104
storage devices 1115

warm insertion and removal 409
warnings, battery 56
WBINVD 821
web sites

Intel Architecture 21, 22
Microsoft 21
PCISIG 1093
PCMCIA 1093
Smart Battery System 22
SMBus specification 775
USB-IF 1094

While (Conditional Loop) 1052
WORD resource descriptor format 437
WordBusNumber (Word Bus Number Resource Descriptor Macro) 1052
UEFI Forum, Inc. January 2019 Page 1185

ACPI Specification, Version 6.3 Index
WordIO (Word IO Resource Descriptor Macro) 1053
WordSpace (Word Space Resource Descriptor Macro) 1055
Working state

behavior during 814
definition 34
properties 34
transitioning to 69
transitioning to Sleeping state 820
transitioning to Soft-Off 821

workstations 140
Write Embedded Controller (WR_EC) 755
write-only bits

control 68
definition 74

X
XOr (Integer Bitwise Xor) 1057
XSDT

definition 33
loading Definition Block 994
location 110

Z
Zero (Constant Zero Object) 1057
Zero, One, Ones data type, ASL 921, 926
zones, thermal See thermal zones
UEFI Forum, Inc. January 2019 Page 1186

	Revision History
	Table of Contents
	List of Tables
	List of Figures
	Overview
	1 Introduction
	1.1 Principal Goals
	1.2 Power Management Rationale
	1.3 Legacy Support
	1.4 OEM Implementation Strategy
	1.5 Power and Sleep Buttons
	1.6 ACPI Specification and the Structure of ACPI
	1.7 OS and Platform Compliance
	1.7.1 Platform Implementations of ACPI-defined Interfaces
	1.7.2 OSPM Implementations
	1.7.3 OS Requirements

	1.8 Target Audience
	1.9 Document Organization
	1.9.1 ACPI Introduction and Overview
	1.9.2 Programming Models
	1.9.3 Implementation Details
	1.9.4 Technical Reference
	1.9.5 Revsion Numbers

	1.10 Related Documents

	2 Definition of Terms
	2.1 General ACPI Terminology
	2.2 Global System State Definitions
	2.3 Device Power State Definitions
	2.3.1 Device Performance States

	2.4 Sleeping and Soft-off State Definitions
	2.5 Processor Power State Definitions
	2.6 Device and Processor Performance State Definitions

	3 ACPI Concepts
	3.1 System Power Management
	3.2 Power States
	3.2.1 Power Button
	3.2.2 Platform Power Management Characteristics

	3.3 Device Power Management
	3.3.1 Device Power Management Model
	3.3.2 Power Management Standards
	3.3.3 Device Power States
	3.3.4 Device Power State Definitions

	3.4 Controlling Device Power
	3.4.1 Getting Device Power Capabilities
	3.4.2 Setting Device Power States
	3.4.3 Getting Device Power Status
	3.4.4 Waking the System
	3.4.5 Example: Modem Device Power Management

	3.5 Processor Power Management
	3.6 Device and Processor Performance States
	3.7 Configuration and “Plug and Play”
	3.7.1 Device Configuration Example: Configuring the Modem
	3.7.2 NUMA Nodes

	3.8 System Events
	3.9 Battery Management
	3.9.1 Battery Communications
	3.9.2 Battery Capacity
	3.9.3 Battery Gas Gauge
	3.9.4 Low Battery Levels
	3.9.5 Battery Calibration

	3.10 Thermal Management
	3.10.1 Active and Passive Cooling Modes
	3.10.2 Performance vs. Energy Conservation
	3.10.3 Acoustics (Noise)
	3.10.4 Multiple Thermal Zones

	3.11 Flexible Platform Architecture Support
	3.11.1 Hardware-reduced ACPI
	3.11.2 Low-Power Idle
	3.11.3 Connection Resources

	4 ACPI Hardware Specification
	4.1 Hardware-Reduced ACPI
	4.1.1 Hardware-Reduced Events

	4.2 Fixed Hardware Programming Model
	4.3 Generic Hardware Programming Model
	4.4 Diagram Legends
	4.5 Register Bit Notation
	4.6 The ACPI Hardware Model
	4.6.1 Hardware Reserved Bits
	4.6.2 Hardware Ignored Bits
	4.6.3 Hardware Write-Only Bits
	4.6.4 Cross Device Dependencies

	4.7 ACPI Hardware Features
	4.8 ACPI Register Model
	4.8.1 ACPI Register Summary
	4.8.2 Fixed Hardware Features
	4.8.3 Fixed Hardware Registers
	4.8.4 Generic Hardware Registers

	5 ACPI Software Programming Model
	5.1 Overview of the System Description Table Architecture
	5.1.1 Address Space Translation

	5.2 ACPI System Description Tables
	5.2.1 Reserved Bits and Fields
	5.2.2 Compatibility
	5.2.3 Address Format
	5.2.4 Universally Unique Identifiers (UUIDs)
	5.2.5 Root System Description Pointer (RSDP)
	5.2.6 System Description Table Header
	5.2.7 Root System Description Table (RSDT)
	5.2.8 Extended System Description Table (XSDT)
	5.2.9 Fixed ACPI Description Table (FADT)
	5.2.10 Firmware ACPI Control Structure (FACS)
	5.2.11 Definition Blocks
	5.2.12 Multiple APIC Description Table (MADT)
	5.2.13 Global System Interrupts
	5.2.14 Smart Battery Table (SBST)
	5.2.15 Embedded Controller Boot Resources Table (ECDT)
	5.2.16 System Resource Affinity Table (SRAT)
	5.2.17 System Locality Distance Information Table (SLIT)
	5.2.18 Corrected Platform Error Polling Table (CPEP)
	5.2.19 Maximum System Characteristics Table (MSCT)
	5.2.20 ACPI RAS Feature Table (RASF)
	5.2.21 Memory Power State Table (MPST)
	5.2.22 Boot Graphics Resource Table (BGRT)
	5.2.23 Firmware Performance Data Table (FPDT)
	5.2.24 Generic Timer Description Table (GTDT)
	5.2.25 NVDIMM Firmware Interface Table (NFIT)
	5.2.26 Secure Devices (SDEV) ACPI Table
	5.2.27 Heterogeneous Memory Attribute Table (HMAT)
	5.2.28 Platform Debug Trigger Table (PDTT)
	5.2.29 Processor Properties Topology Table (PPTT)

	5.3 ACPI Namespace
	5.3.1 Predefined Root Namespaces
	5.3.2 Objects

	5.4 Definition Block Encoding
	5.4.1 AML Encoding
	5.4.2 Definition Block Loading

	5.5 Control Methods and the ACPI Source Language (ASL)
	5.5.1 ASL Statements
	5.5.2 Control Method Execution

	5.6 ACPI Event Programming Model
	5.6.1 ACPI Event Programming Model Components
	5.6.2 Types of ACPI Events
	5.6.3 Fixed Event Handling
	5.6.4 General-Purpose Event Handling
	5.6.5 GPIO-signaled ACPI Events
	5.6.6 Device Object Notifications
	5.6.7 Device Class-Specific Objects
	5.6.8 Predefined ACPI Names for Objects, Methods, and Resources
	5.6.9 Interrupt-signaled ACPI events
	5.6.10 Managing a Wake Event Using Device _PRW Objects

	5.7 Predefined Objects
	5.7.1 _GL (Global Lock Mutex)
	5.7.2 _OSI (Operating System Interfaces)
	5.7.3 _OS (OS Name Object)
	5.7.4 _REV (Revision Data Object)
	5.7.5 _DLM (DeviceLock Mutex)

	5.8 System Configuration Objects
	5.8.1 _PIC Method

	6 Device Configuration
	6.1 Device Identification Objects
	6.1.1 _ADR (Address)
	6.1.2 _CID (Compatible ID)
	6.1.3 _CLS (Class Code)
	6.1.4 _DDN (DOS Device Name)
	6.1.5 _HID (Hardware ID)
	6.1.6 _HRV (Hardware Revision)
	6.1.7 _MLS (Multiple Language String)
	6.1.8 _PLD (Physical Location of Device)
	6.1.9 _SUB (Subsystem ID)
	6.1.10 _STR (String)
	6.1.11 _SUN (Slot User Number)
	6.1.12 _UID (Unique ID)

	6.2 Device Configuration Objects
	6.2.1 _CDM (Clock Domain)
	6.2.2 _CRS (Current Resource Settings)
	6.2.3 _DIS (Disable)
	6.2.4 _DMA (Direct Memory Access)
	6.2.5 _DSD (Device Specific Data)
	6.2.6 _FIX (Fixed Register Resource Provider)
	6.2.7 _GSB (Global System Interrupt Base)
	6.2.8 _HPP (Hot Plug Parameters)
	6.2.9 _HPX (Hot Plug Parameter Extensions)
	6.2.10 _MAT (Multiple APIC Table Entry)
	6.2.11 _OSC (Operating System Capabilities)
	6.2.12 _PRS (Possible Resource Settings)
	6.2.13 _PRT (PCI Routing Table)
	6.2.14 _PXM (Proximity)
	6.2.15 _SLI (System Locality Information)
	6.2.16 _SRS (Set Resource Settings)
	6.2.17 _CCA (Cache Coherency Attribute)
	6.2.18 _HMA(Heterogeneous Memory Attributes)

	6.3 Device Insertion, Removal, and Status Objects
	6.3.1 _EDL (Eject Device List)
	6.3.2 _EJD (Ejection Dependent Device)
	6.3.3 _EJx (Eject)
	6.3.4 _LCK (Lock)
	6.3.5 _OST (OSPM Status Indication)
	6.3.6 _RMV (Remove)
	6.3.7 _STA (Status)

	6.4 Resource Data Types for ACPI
	6.4.1 ASL Macros for Resource Descriptors
	6.4.2 Small Resource Data Type
	6.4.3 Large Resource Data Type

	6.5 Other Objects and Control Methods
	6.5.1 _INI (Init)
	6.5.2 _DCK (Dock)
	6.5.3 _BDN (BIOS Dock Name)
	6.5.4 _REG (Region)
	6.5.5 _BBN (Base Bus Number)
	6.5.6 _SEG (Segment)
	6.5.7 _GLK (Global Lock)
	6.5.8 _DEP (Operation Region Dependencies)
	6.5.9 _FIT (Firmware Interface Table)
	6.5.10 NVDIMM Label Methods

	7 Power and Performance Management
	7.1 Power Resource Objects and the Power Management Models
	7.2 Declaring a Power Resource Object
	7.2.1 Defined Methods for a Power Resource
	7.2.2 _OFF
	7.2.3 _ON
	7.2.4 _STA (Status)
	7.2.5 Passive Power Resources

	7.3 Device Power Management Objects
	7.3.1 _DSW (Device Sleep Wake)
	7.3.2 _PS0 (Power State 0)
	7.3.3 _PS1 (Power State 1)
	7.3.4 _PS2 (Power State 2)
	7.3.5 _PS3 (Power State 3)
	7.3.6 _PSC (Power State Current)
	7.3.7 _PSE (Power State for Enumeration)
	7.3.8 _PR0 (Power Resources for D0)
	7.3.9 _PR1 (Power Resources for D1)
	7.3.10 _PR2 (Power Resources for D2)
	7.3.11 _PR3 (Power Resources for D3hot)
	7.3.12 _PRE (Power Resources for Enumeration)
	7.3.13 _PRW (Power Resources for Wake)
	7.3.14 _PSW (Power State Wake)
	7.3.15 _IRC (In Rush Current)
	7.3.16 _S1D (S1 Device State)
	7.3.17 _S2D (S2 Device State)
	7.3.18 _S3D (S3 Device State)
	7.3.19 _S4D (S4 Device State)
	7.3.20 _S0W (S0 Device Wake State)
	7.3.21 _S1W (S1 Device Wake State)
	7.3.22 _S2W (S2 Device Wake State)
	7.3.23 _S3W (S3 Device Wake State)
	7.3.24 _S4W (S4 Device Wake State)
	7.3.25 _RST (Device Reset)
	7.3.26 _PRR (Power Resource for Reset)

	7.4 OEM-Supplied System-Level Control Methods
	7.4.1 _PTS (Prepare To Sleep)
	7.4.2 _Sx (System States)
	7.4.3 _SWS (System Wake Source)
	7.4.4 _TTS (Transition To State)
	7.4.5 _WAK (System Wake)

	7.5 OSPM usage of _PTS, _TTS, and _WAK

	8 Processor Configuration and Control
	8.1 Processor Power States
	8.1.1 Processor Power State C0
	8.1.2 Processor Power State C1
	8.1.3 Processor Power State C2
	8.1.4 Processor Power State C3
	8.1.5 Additional Processor Power States

	8.2 Flushing Caches
	8.3 Power, Performance, and Throttling State Dependencies
	8.4 Declaring Processors
	8.4.1 _PDC (Processor Driver Capabilities)
	8.4.2 Processor Power State Control
	8.4.3 Processor Hierarchy
	8.4.4 Lower Power Idle States
	8.4.5 Processor Throttling Controls
	8.4.6 Processor Performance Control
	8.4.7 Collaborative Processor Performance Control
	8.4.8 _PPE (Polling for Platform Errors)

	8.5 Processor Aggregator Device
	8.5.1 Logical Processor Idling
	8.5.2 OSPM _OST Evaluation

	9 ACPI-Defined Devices and Device-Specific Objects
	9.1 Device Object Name Collision
	9.1.1 _DSM (Device Specific Method)

	9.2 _SI System Indicators
	9.2.1 _SST (System Status)
	9.2.2 _MSG (Message)
	9.2.3 _BLT (Battery Level Threshold)

	9.3 Ambient Light Sensor Device
	9.3.1 Overview
	9.3.2 _ALI (Ambient Light Illuminance)
	9.3.3 _ALT (Ambient Light Temperature)
	9.3.4 _ALC (Ambient Light Color Chromaticity)
	9.3.5 _ALR (Ambient Light Response)
	9.3.6 _ALP (Ambient Light Polling)
	9.3.7 Ambient Light Sensor Events
	9.3.8 Relationship to Backlight Control Methods

	9.4 Battery Device
	9.5 Control Method Lid Device
	9.5.1 _LID

	9.6 Control Method Power and Sleep Button Devices
	9.7 Embedded Controller Device
	9.8 Generic Container Device
	9.9 ATA Controller Devices
	9.9.1 Objects for Both ATA and SATA Controllers
	9.9.2 IDE Controller Device
	9.9.3 Serial ATA (SATA) Controller Device

	9.10 Floppy Controller Device Objects
	9.10.1 _FDE (Floppy Disk Enumerate)
	9.10.2 _FDI (Floppy Disk Information)
	9.10.3 _FDM (Floppy Disk Drive Mode)

	9.11 GPE Block Device
	9.11.1 Matching Control Methods for Events in a GPE Block Device

	9.12 Module Device
	9.13 Memory Devices
	9.13.1 Address Decoding
	9.13.2 Memory Bandwidth Monitoring and Reporting
	9.13.3 _OSC Definition for Memory Device
	9.13.4 Example: Memory Device

	9.14 _UPC (USB Port Capabilities)
	9.14.1 USB 2.0 Host Controllers and _UPC and _PLD

	9.15 PC/AT RTC/CMOS Devices
	9.15.1 PC/AT-compatible RTC/CMOS Devices (PNP0B00)
	9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNP0B02)

	9.16 User Presence Detection Device
	9.16.1 _UPD (User Presence Detect)
	9.16.2 _UPP (User Presence Polling)
	9.16.3 User Presence Sensor Events

	9.17 I/O APIC Device
	9.18 Time and Alarm Device
	9.18.2 _GCP (Get Capability)
	9.18.3 _GRT (Get Real Time)
	9.18.4 _SRT (Set Real Time)
	9.18.5 _GWS (Get Wake alarm status)
	9.18.6 _CWS (Clear Wake alarm status)
	9.18.7 _STP (Set Expired Timer Wake Policy)
	9.18.8 _STV (Set Timer Value)
	9.18.9 _TIP (Expired Timer Wake Policy)
	9.18.10 _TIV (Timer Values)
	9.18.11 ACPI Wakeup Alarm Events
	9.18.12 Relationship to Real Time Clock Alarm
	9.18.13 Time and Alarm device as a replacement to the RTC
	9.18.14 Relationship to UEFI time source
	9.18.15 Example ASL code

	9.19 Generic Buttons Device
	9.19.1 Button Interrupts
	9.19.2 Button Usages and Collections
	9.19.3 Example

	9.20 NVDIMM Devices
	9.20.1 Overview
	9.20.2 NVDIMM Root Device
	9.20.3 NVDIMM Device
	9.20.4 Example
	9.20.5 Loading NVDIMM drivers
	9.20.6 Hot Plug Support
	9.20.7 NVDIMM Root Device _DSMs
	9.20.8 NVDIMM Device Methods

	10 Power Source and Power Meter Devices
	10.1 Smart Battery Subsystems
	10.1.1 ACPI Smart Battery Status Change Notification Requirements
	10.1.2 Smart Battery Objects
	10.1.3 _SBS (Smart Battery Subsystem)

	10.2 Control Method Batteries
	10.2.1 Battery Events
	10.2.2 Battery Control Methods

	10.3 AC Adapters and Power Source Objects
	10.3.1 _PSR (Power Source)
	10.3.2 _PCL (Power Consumer List)
	10.3.3 _PIF (Power Source Information)
	10.3.4 _PRL (Power Source Redundancy List)

	10.4 Power Meters
	10.4.1 _PMC (Power Meter Capabilities)
	10.4.2 _PTP (Power Trip Points)
	10.4.3 _PMM (Power Meter Measurement)
	10.4.4 _PAI (Power Averaging Interval)
	10.4.5 _GAI (Get Averaging Interval)
	10.4.6 _SHL (Set Hardware Limit)
	10.4.7 _GHL (Get Hardware Limit)
	10.4.8 _PMD (Power Metered Devices)

	10.5 Wireless Power Controllers
	10.5.1 Wireless Power Calibration Device
	10.5.2 Wireless Power Calibration (_WPC)
	10.5.3 Wireless Power Polling (_WPP)

	10.6 Wireless Power Calibration Event
	10.7 Example: Power Source and Power Meter Namespace

	11 Thermal Management
	11.1 Thermal Control
	11.1.1 Active, Passive, and Critical Policies
	11.1.2 Dynamically Changing Cooling Temperature Trip Points
	11.1.3 Detecting Temperature Changes
	11.1.4 Active Cooling
	11.1.5 Passive Cooling
	11.1.6 Critical Shutdown

	11.2 Cooling Preferences
	11.2.1 Evaluating Thermal Device Lists
	11.2.2 Evaluating Device Thermal Relationship Information

	11.3 Fan Device
	11.3.1 Fan Objects

	11.4 Thermal Objects
	11.4.1 _ACx (Active Cooling)
	11.4.2 _ALx (Active List)
	11.4.3 _ART (Active Cooling Relationship Table)
	11.4.4 _CRT (Critical Temperature)
	11.4.5 _CR3 (Warm/Standby Temperature)
	11.4.6 _DTI (Device Temperature Indication)
	11.4.7 _HOT (Hot Temperature)
	11.4.8 _MTL (Minimum Throttle Limit)
	11.4.9 _NTT (Notification Temperature Threshold)
	11.4.10 _PSL (Passive List)
	11.4.11 _PSV (Passive)
	11.4.12 _RTV (Relative Temperature Values)
	11.4.13 _SCP (Set Cooling Policy)
	11.4.14 _STR (String)
	11.4.15 _TC1 (Thermal Constant 1)
	11.4.16 _TC2 (Thermal Constant 2)
	11.4.17 _TFP (Thermal fast Sampling Period)
	11.4.18 _TMP (Temperature)
	11.4.19 _TPT (Trip Point Temperature)
	11.4.20 _TRT (Thermal Relationship Table)
	11.4.21 _TSN (Thermal Sensor Device)
	11.4.22 _TSP (Thermal Sampling Period)
	11.4.23 _TST (Temperature Sensor Threshold)
	11.4.24 _TZD (Thermal Zone Devices)
	11.4.25 _TZM (Thermal Zone Member)
	11.4.26 _TZP (Thermal Zone Polling)

	11.5 Native OS Device Driver Thermal Interfaces
	11.6 Thermal Zone Interface Requirements
	11.7 Thermal Zone Examples
	11.7.1 Example: The Basic Thermal Zone
	11.7.2 Example: Multiple-Speed Fans
	11.7.3 Example: Thermal Zone with Multiple Devices

	12 ACPI Embedded Controller Interface Specification
	12.1 Embedded Controller Interface Description
	12.2 Embedded Controller Register Descriptions
	12.2.1 Embedded Controller Status, EC_SC (R)
	12.2.2 Embedded Controller Command, EC_SC (W)
	12.2.3 Embedded Controller Data, EC_DATA (R/W)

	12.3 Embedded Controller Command Set
	12.3.1 Read Embedded Controller, RD_EC (0x80)
	12.3.2 Write Embedded Controller, WR_EC (0x81)
	12.3.3 Burst Enable Embedded Controller, BE_EC (0x82)
	12.3.4 Burst Disable Embedded Controller, BD_EC (0x83)
	12.3.5 Query Embedded Controller, QR_EC (0x84)

	12.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT
	12.5 Embedded Controller Firmware
	12.6 Interrupt Model
	12.6.1 Event Interrupt Model
	12.6.2 Command Interrupt Model

	12.7 Embedded Controller Interfacing Algorithms
	12.8 Embedded Controller Description Information
	12.9 SMBus Host Controller Interface via Embedded Controller
	12.9.1 Register Description
	12.9.2 Protocol Description

	12.10 SMBus Devices
	12.10.1 SMBus Device Access Restrictions
	12.10.2 SMBus Device Command Access Restriction

	12.11 Defining an Embedded Controller Device in ACPI Namespace
	12.11.1 Example: EC Definition ASL Code

	12.12 Defining an EC SMBus Host Controller in ACPI Namespace
	12.12.1 Example: EC SMBus Host Controller ASL-Code

	13 ACPI System Management Bus Interface Specification
	13.1 SMBus Overview
	13.1.1 SMBus Slave Addresses
	13.1.2 SMBus Protocols
	13.1.3 SMBus Status Codes
	13.1.4 SMBus Command Values

	13.2 Accessing the SMBus from ASL Code
	13.2.1 Declaring SMBus Host Controller Objects
	13.2.2 Declaring SMBus Devices
	13.2.3 Declaring SMBus Operation Regions
	13.2.4 Declaring SMBus Fields
	13.2.5 Declaring and Using an SMBus Data Buffer

	13.3 Using the SMBus Protocols
	13.3.1 Read/Write Quick (SMBQuick)
	13.3.2 Send/Receive Byte (SMBSendReceive)
	13.3.3 Read/Write Byte (SMBByte)
	13.3.4 Read/Write Word (SMBWord)
	13.3.5 Read/Write Block (SMBBlock)
	13.3.6 Word Process Call (SMBProcessCall)
	13.3.7 Block Process Call (SMBBlockProcessCall)

	14 Platform Communications Channel (PCC)
	14.1 Platform Communications Channel Table
	14.1.1 Platform Communications Channel Global Flags
	14.1.2 Platform Communications Channel Subspace Structures
	14.1.3 Generic Communications Subspace Structure (type 0)
	14.1.4 HW-Reduced Communications Subspace Structure (type 1)
	14.1.5 HW-Reduced Communications Subspace Structure (type 2)
	14.1.6 Extended PCC subspaces (types 3 and 4)

	14.2 Generic Communications Channel Shared Memory Region
	14.2.1 Generic Communications Channel Command Field
	14.2.2 Generic Communications Channel Status Field

	14.3 Extended PCC Subspace Shared Memory Region
	14.4 Doorbell Protocol
	14.5 Platform Notification
	14.5.1 Platform Notification for Subspace Types 0, 1 and 2
	14.5.2 Platform Notification for slave PCC subspaces (type 4)

	14.6 Referencing the PCC address space

	15 System Address Map Interfaces
	15.1 INT 15H, E820H - Query System Address Map
	15.2 E820 Assumptions and Limitations
	15.3 UEFI GetMemoryMap() Boot Services Function
	15.4 UEFI Assumptions and Limitations
	15.5 Example Address Map
	15.6 Example: Operating System Usage

	16 Waking and Sleeping
	16.1 Sleeping States
	16.1.1 S1 Sleeping State
	16.1.2 S2 Sleeping State
	16.1.3 S3 Sleeping State
	16.1.4 S4 Sleeping State
	16.1.5 S5 Soft Off State
	16.1.6 Transitioning from the Working to the Sleeping State
	16.1.7 Transitioning from the Working to the Soft Off State

	16.2 Flushing Caches
	16.3 Initialization
	16.3.1 Placing the System in ACPI Mode
	16.3.2 Platform Boot Firmware Initialization of Memory
	16.3.3 OS Loading
	16.3.4 Exiting ACPI Mode

	17 Non-Uniform Memory Access (NUMA) Architecture Platforms
	17.1 NUMA Node
	17.2 System Locality
	17.2.1 System Resource Affinity Table Definition
	17.2.2 System Resource Affinity Update

	17.3 System Locality Distance Information
	17.3.1 Online Hot Plug
	17.3.2 Impact to Existing Localities

	17.4 Heterogeneous Memory Attributes Information
	17.4.1 Online Hot Plug
	17.4.2 Impact to Existing Localities

	18 ACPI Platform Error Interfaces (APEI)
	18.1 Hardware Errors and Error Sources
	18.2 Relationship between OSPM and System Firmware
	18.3 Error Source Discovery
	18.3.1 Boot Error Source
	18.3.2 ACPI Error Source

	18.4 Firmware First Error Handling
	18.4.1 Example: Firmware First Handling Using NMI Notification

	18.5 Error Serialization
	18.5.1 Serialization Action Table
	18.5.2 Operations

	18.6 Error Injection
	18.6.1 Error Injection Table (EINJ)
	18.6.2 Injection Instruction Entries
	18.6.3 Injection Instructions
	18.6.4 Trigger Action Table
	18.6.5 Error Injection Operation

	19 ACPI Source Language (ASL) Reference
	19.1 ASL 2.0 Symbolic Operators and Expressions
	19.2 ASL Language Grammar
	19.2.1 ASL Grammar Notation
	19.2.2 ASL Name and Pathname Terms
	19.2.3 ASL Root and Secondary Terms
	19.2.4 ASL Data and Constant Terms
	19.2.5 ASL Opcode Terms
	19.2.6 ASL Primary (Terminal) Terms
	19.2.7 ASL Parameter Keyword Terms
	19.2.8 ASL Resource Template Terms

	19.3 ASL Concepts
	19.3.1 ASL Names
	19.3.2 ASL Literal Constants
	19.3.3 ASL Resource Templates
	19.3.4 ASL Macros
	19.3.5 ASL Data Types

	19.4 ASL Operator Summary
	19.5 ASL Operator Summary by Type
	19.6 ASL Operator Reference
	19.6.1 AccessAs (Change Field Unit Access)
	19.6.2 Acquire (Acquire a Mutex)
	19.6.3 Add (Integer Add)
	19.6.4 Alias (Declare Name Alias)
	19.6.5 And (Integer Bitwise And)
	19.6.6 Argx (Method Argument Data Objects)
	19.6.7 BankField (Declare Bank/Data Field)
	19.6.8 Break (Break from While)
	19.6.9 BreakPoint (Execution Break Point)
	19.6.10 Buffer (Declare Buffer Object)
	19.6.11 Case (Expression for Conditional Execution)
	19.6.12 Concatenate (Concatenate Data)
	19.6.13 ConcatenateResTemplate (Concatenate Resource Templates)
	19.6.14 CondRefOf (Create Object Reference Conditionally)
	19.6.15 Connection (Declare Field Connection Attributes)
	19.6.16 Continue (Continue Innermost Enclosing While)
	19.6.17 CopyObject (Copy and Store Object)
	19.6.18 CreateBitField (Create 1-Bit Buffer Field)
	19.6.19 CreateByteField (Create 8-Bit Buffer Field)
	19.6.20 CreateDWordField (Create 32-Bit Buffer Field)
	19.6.21 CreateField (Create Arbitrary Length Buffer Field)
	19.6.22 CreateQWordField (Create 64-Bit Buffer Field)
	19.6.23 CreateWordField (Create 16-Bit Buffer Field)
	19.6.24 DataTableRegion (Create Data Table Operation Region)
	19.6.25 Debug (Debugger Output)
	19.6.26 Decrement (Integer Decrement)
	19.6.27 Default (Default Execution Path in Switch)
	19.6.28 DefinitionBlock (Declare Definition Block)
	19.6.29 DerefOf (Dereference an Object Reference)
	19.6.30 Device (Declare Device Package)
	19.6.31 Divide (Integer Divide)
	19.6.32 DMA (DMA Resource Descriptor Macro)
	19.6.33 DWordIO (DWord IO Resource Descriptor Macro)
	19.6.34 DWordMemory (DWord Memory Resource Descriptor Macro)
	19.6.35 DWordSpace (DWord Space Resource Descriptor Macro)
	19.6.36 EISAID (EISA ID String To Integer Conversion Macro)
	19.6.37 Else (Alternate Execution)
	19.6.38 ElseIf (Alternate/Conditional Execution)
	19.6.39 EndDependentFn (End Dependent Function Resource Descriptor Macro)
	19.6.40 Event (Declare Event Synchronization Object)
	19.6.41 ExtendedIO (Extended IO Resource Descriptor Macro)
	19.6.42 ExtendedMemory (Extended Memory Resource Descriptor Macro)
	19.6.43 ExtendedSpace (Extended Address Space Resource Descriptor Macro)
	19.6.44 External (Declare External Objects)
	19.6.45 Fatal (Fatal Error Check)
	19.6.46 Field (Declare Field Objects)
	19.6.47 FindSetLeftBit (Find First Set Left Bit)
	19.6.48 FindSetRightBit (Find First Set Right Bit)
	19.6.49 FixedDMA (DMA Resource Descriptor Macro)
	19.6.50 FixedIO (Fixed IO Resource Descriptor Macro)
	19.6.51 For (Conditional Loop)
	19.6.52 Fprintf (Create and Store formatted string)
	19.6.53 FromBCD (Convert BCD To Integer)
	19.6.54 Function (Declare Control Method)
	19.6.55 GpioInt (GPIO Interrupt Connection Resource Descriptor Macro)
	19.6.56 GpioIo (GPIO Connection IO Resource Descriptor Macro)
	19.6.57 I2CSerialBusV2 (I2C Serial Bus Connection Resource Descriptor (Version 2) Macro)
	19.6.58 If (Conditional Execution)
	19.6.59 Include (Include Additional ASL File)
	19.6.60 Increment (Integer Increment)
	19.6.61 Index (Indexed Reference To Member Object)
	19.6.62 IndexField (Declare Index/Data Fields)
	19.6.63 Interrupt (Interrupt Resource Descriptor Macro)
	19.6.64 IO (IO Resource Descriptor Macro)
	19.6.65 IRQ (Interrupt Resource Descriptor Macro)
	19.6.66 IRQNoFlags (Interrupt Resource Descriptor Macro)
	19.6.67 LAnd (Logical And)
	19.6.68 LEqual (Logical Equal)
	19.6.69 LGreater (Logical Greater)
	19.6.70 LGreaterEqual (Logical Greater Than Or Equal)
	19.6.71 LLess (Logical Less)
	19.6.72 LLessEqual (Logical Less Than Or Equal)
	19.6.73 LNot (Logical Not)
	19.6.74 LNotEqual (Logical Not Equal))
	19.6.75 Load (Load Definition Block)
	19.6.76 LoadTable (Load Definition Block From XSDT)
	19.6.77 Localx (Method Local Data Objects)
	19.6.78 LOr (Logical Or)
	19.6.79 Match (Find Object Match)
	19.6.80 Memory24 (Memory Resource Descriptor Macro)
	19.6.81 Memory32 (Memory Resource Descriptor Macro)
	19.6.82 Memory32Fixed (Memory Resource Descriptor Macro)
	19.6.83 Method (Declare Control Method)
	19.6.84 Mid (Extract Portion of Buffer or String)
	19.6.85 Mod (Integer Modulo)
	19.6.86 Multiply (Integer Multiply)
	19.6.87 Mutex (Declare Synchronization/Mutex Object)
	19.6.88 Name (Declare Named Object)
	19.6.89 NAnd (Integer Bitwise Nand)
	19.6.90 NoOp Code (No Operation)
	19.6.91 NOr (Integer Bitwise Nor)
	19.6.92 Not (Integer Bitwise Not)
	19.6.93 Notify (Notify Object of Event)
	19.6.94 Offset (Change Current Field Unit Offset)
	19.6.95 ObjectType (Get Object Type)
	19.6.96 One (Constant One Integer)
	19.6.97 Ones (Constant Ones Integer)
	19.6.98 OperationRegion (Declare Operation Region)
	19.6.99 Or (Integer Bitwise Or)
	19.6.100 Package (Declare Package Object)
	19.6.101 Pin Configuration
	19.6.102 Pin Function
	19.6.103 Pin Group
	19.6.104 Pin Group Configuration
	19.6.105 Pin Group Function
	19.6.106 PowerResource (Declare Power Resource)
	19.6.107 Printf (Create and Store formatted string)
	19.6.108 Processor (Declare Processor)
	19.6.109 QWordIO (QWord IO Resource Descriptor Macro)
	19.6.110 QWordMemory (QWord Memory Resource Descriptor Macro)
	19.6.111 QWordSpace (QWord Space Resource Descriptor Macro)
	19.6.112 RawDataBuffer
	19.6.113 RefOf (Create Object Reference)
	19.6.114 Register (Generic Register Resource Descriptor Macro)
	19.6.115 Release (Release a Mutex Synchronization Object)
	19.6.116 Reset (Reset an Event Synchronization Object)
	19.6.117 ResourceTemplate (Resource To Buffer Conversion Macro)
	19.6.118 Return (Return from Method Execution)
	19.6.119 Revision (Constant Revision Integer)
	19.6.120 Scope (Open Named Scope)
	19.6.121 ShiftLeft (Integer Shift Left)
	19.6.122 ShiftRight (Integer Shift Right)
	19.6.123 Signal (Signal a Synchronization Event)
	19.6.124 SizeOf (Get Data Object Size)
	19.6.125 Sleep (Milliseconds Sleep)
	19.6.126 SPISerialBusV2 (SPI Serial Bus Connection Resource Descriptor (Version 2) Macro)
	19.6.127 Stall (Stall for a Short Time)
	19.6.128 StartDependentFn (Start Dependent Function Resource Descriptor Macro)
	19.6.129 StartDependentFnNoPri (Start Dependent Function Resource Descriptor Macro)
	19.6.130 Store (Store an Object)
	19.6.131 Subtract (Integer Subtract)
	19.6.132 Switch (Select Code To Execute Based On Expression)
	19.6.133 ThermalZone (Declare Thermal Zone)
	19.6.134 Timer (Get 64-Bit Timer Value)
	19.6.135 ToBCD (Convert Integer to BCD)
	19.6.136 ToBuffer (Convert Data to Buffer)
	19.6.137 ToDecimalString (Convert Data to Decimal String)
	19.6.138 ToHexString (Convert Data to Hexadecimal String)
	19.6.139 ToInteger (Convert Data to Integer)
	19.6.140 ToPLD (Creates a _PLD Buffer Object)
	19.6.141 ToString (Convert Buffer To String)
	19.6.142 ToUUID (Convert String to UUID Macro)
	19.6.143 UARTSerialBusV2 (UART Serial Bus Connection Resource Descriptor (Version 2) Macro)
	19.6.144 Unicode (String To Unicode Conversion Macro)
	19.6.145 VendorLong (Long Vendor Resource Descriptor)
	19.6.146 {deprec ated} Unload (Unload Definition Block)
	19.6.147 VendorShort (Short Vendor Resource Descriptor)
	19.6.148 Wait (Wait for a Synchronization Event)
	19.6.149 While (Conditional Loop)
	19.6.150 WordBusNumber (Word Bus Number Resource Descriptor Macro)
	19.6.151 WordIO (Word IO Resource Descriptor Macro)
	19.6.152 WordSpace (Word Space Resource Descriptor Macro))
	19.6.153 XOr (Integer Bitwise Xor)
	19.6.154 Zero (Constant Zero Integer)

	20 ACPI Machine Language (AML) Specification
	20.1 Notation Conventions
	20.2 AML Grammar Definition
	20.2.1 Table and Table Header Encoding
	20.2.2 Name Objects Encoding
	20.2.3 Data Objects Encoding
	20.2.4 Package Length Encoding
	20.2.5 Term Objects Encoding
	20.2.6 Miscellaneous Objects Encoding

	20.3 AML Byte Stream Byte Values
	20.4 AML Encoding of Names in the Namespace

	21 ACPI Data Tables and Table Definition Language
	21.1 Types of ACPI Data Tables
	21.2 ACPI Table Definition Language Specification
	21.2.1 Overview of the Table Definition Language (TDL)
	21.2.2 TDL Grammar Specification
	21.2.3 Data Types
	21.2.4 Fields Set Automatically by the Compiler
	21.2.5 Special Fields
	21.2.6 TDL Generic Data Types
	21.2.7 Defining a Known ACPI Table in TDL
	21.2.8 Defining an Unknown or New ACPI table in TDL
	21.2.9 Table Definition Language Examples
	21.2.10 Minimal ECDT Definition

	Appendix A: Device Class Specifications
	Appendix A: Video Extensions
	Appendix C: Deprecated Content

