Advanced Configuration and Power
Interface (ACPI) Specification

UEFI Forum, Inc.

Version 6.4

January, 2021

Table of Contents

1 Introduction

1.1 Principal Goals e e e e e e e e e
1.2 Power Management Rationale
1.3 Legacy Support o o e e e e e e e e e e e e e
1.4 OEM Implementation Strategy v v v v v v v e e e e e e e e e e e e e e e e
1.5 Powerand Sleep Buttons e e e e e
1.6 ACPI Specification and the Structure of ACPL.
1.7 OS and Platform Compliance e e e e e
1.7.1 Platform Implementations of ACPI-defined Interfaces
1.7.1.1 Recommended Features and Interface Descriptions for Design Guides

1.7.1.2 Terminology Examples for Design Guides

1.7.2 OSPM Implementations ittt

1.7.3 OSRequirements e e

1.8 Target Audience o i i e e e e e
1.9 Document Organization ot vttt e e e e e e e e e e
1.9.1 ACPIIntroductionand Overview ittt

1.9.2 Programming Models e e e e

1.9.3 Implementation Details L

1.9.4 Technical Reference e

1.9.5 Revsion Numbers e e

1.10 Related Documents i i e e e e

2 Definition of Terms

2.1 General ACPI Terminology i e
2.2 Global System State Definitions e e e e e e e e e
2.3 Device Power State Definitions e e e

2.3.1 Device Performance States e e e e e
2.4 Sleeping and Soft-off State Definitions L
2.5 Processor Power State Definitions
2.6 Device and Processor Performance State Definitions

3 ACPI Concepts

3.1 System Power Management Lo e e e
32 Power Stateso e e e
321 PowerButton

3.2.2 Platform Power Management Characteristics
3221 Mobile PC e

3222 DesktopPCs L e

3.2.2.3 Multiprocessor and Server PCs o

3.3 Device Power Management it e e e e e e e e e

43
43
44
45
45
46
46
48
48
48
50
52
53
53
53
54
54
54
55
55
56

57
57
63
64
66
66
67
67

68
69
69
70
71
71
71
71
72

3.3.1 Device Power Management Model o 72

3.3.2 Power Management Standards e e 73

3.3.3 Device Power States L e 73

3.3.4 Device Power State Definitions L e 73

34 Controlling Device Power e 74
34.1 Getting Device Power Capabilities 74

3.4.2 Setting Device Power States e e e 74

343 Getting Device Power Status e e 75

344 Wakingthe System L e e e e e e e e 75

3.4.5 Example: Modem Device Power Management 76
3.4.5.1 Obtaining the Modem Capabilities 77

3.4.5.2 Setting the Modem Power State 77

3.4.5.3 Obtaining the Modem Power Status 77

3454 Waking the System L. e e e e e 78

3.5 Processor Power Management Lo e 78
3.6 Device and Processor Performance States oL 78
3.7 Configuration and “Plug and Play” 79
3.7.1 Device Configuration Example: Configuring the Modem 79

372 NUMANOES oo e e 79

3.8 SystemEvents e 79
3.9 Battery Management L. Lo e e 80
3.9.1 Battery Communicationsottt e e e e e e e e 80

3.9.2 Battery Capacity e e e e e e e e e e e e e e e e e e 81

3.93 Battery Gas Gauge e e e e e e e e e e e e 81

394 LowBattery Levels e 82
39.4.1 Emergency Shutdown o 83

3.9.5 Battery Calibration e e e 83

39.6 Battery Charge Limiting L e 84

3.10 Thermal Management CONCEPLS . . .« v v v v v v v v v e e e e e e e e e e e e e e e e 85
3.10.1 Active and Passive Cooling Modes e 85
3.10.2 Performance vs. Energy Conservation 86
3.10.3 Acoustics (NOIS€) o o v i e e e e e e e 86
3.10.4 Multiple Thermal Zones e e 86

3.11 Flexible Platform Architecture Support o i e e e 86
3.11.1 Hardware-reduced ACPL e 87
3.11.1.1 Interrupt-based Wake Events 87

3.11.2 Low-PowerIdle o e 87
3.11.2.1 Low Power SO Idle Capable Flag 87

3.11.3 Connection Resources e e 88
3.11.3.1 Supported Platforms e 88

ACPI Hardware Specification 90
4.1 Hardware-Reduced ACPL e 90
4.1.1 Hardware-Reduced Events 91
4.1.1.1 GPIO-Signaled Events or Interrupt Signaled Events 91

4.1.1.2 Interrupt-based Wake Events o oL 91

4.2 Fixed Hardware Programming Model 91
4.3 Generic Hardware Programming Model 92
44 DiagramLegend e e e e e e 94
4.5 Register Bit Notation L e 94
4.6 The ACPI Hardware Model i e e et 95
4.6.1 Hardware Reserved Bits 98

4.6.2 HardwareIgnored Bits e 98

4.6.3 Hardware Write-Only Bits e 98

4.6.4 Cross Device Dependencies e 99

4.6.4.1 Example I: Related Device Interference 99
4.6.4.2 Example 2: Unrelated Device Interference 99

477 ACPIHardware Features e 99
4.8 ACPIRegister Model e 101
4.8.1 ACPIRegister SUmMmaryo v v v vt ittt e e e e e e e 103
4.8.1.1 PMI1 EventRegisters e e e e 104
4.8.1.2 PMI Control Registers i v v ittt e e e 105
4.8.1.3 PM2Control Register 105
4.8.1.4 PMTimerRegister 105
4.8.1.5 Processor Control Block (P_BLK) 105
4.8.1.6 General-Purpose Event Registers 106

4.8.2 Fixed Hardware Features 106
4.8.3 Power Management Timer e 106
4.83.1 ConsoleButtons 107
4.8.3.2 Sleeping/Wake Control 112
4833 RealTime Clock Alarm i e 113
4.8.3.4 Legacy/ACPI Select and the SCI Interrupt 114
4.83.5 Processor Control 115

4.8.4 Fixed Hardware Registers o 116
4.8.4.1 PMI1 Event Groupingo it e e e e e 116
4.8.4.2 PMI Control Grouping v i vttt e e e e 119
4.8.4.3 Power Management Timer (PM_TMR) 121
4844 PM2Control (PM2_CNT). et 121
4.8.4.5 Processor Register Block (P_BLK) 122
4.8.4.6 ResetRegister L e 123
4.8.4.7 Sleep Control and Status Registers 124

4.8.5 Generic Hardware Registers e 125
4.8.5.1 General-Purpose Event Register Blocks 127
4.8.5.2 Example Generic Devices L e 129

5 ACPI Software Programming Model 132
5.1 Overview of the System Description Table Architecture 132
5.1.1 Address Space Translation e 135
5.2 ACPI System Description Tables 135
52.1 ReservedBitsand Fields 136
5.2.1.1 Reserved Bits and Software Components 136
5.2.1.2 Reserved Values and Software Components 136
5.2.1.3 Reserved Hardware Bits and Software Components 136
5.2.1.4 Ignored Hardware Bits and Software Components 137

52.2 Compatibility L e 137
523 Address Format L 137
5.2.3.1 Functional Fixed Hardware 137
5.2.3.2 Generic Address Structureo e e e 138

5.24 Universally Unique Identifiers (UUIDs) 140
5.2.5 Root System Description Pointer (RSDP) 140
5.2.5.1 Finding the RSDP on IA-PC Systems 140
5.2.5.2 Finding the RSDP on UEFI Enabled Systems 140
5.2.5.3 Root System Description Pointer (RSDP) Structure 141

5.2.6 System Description Table Header 141
5.2.7 Root System Description Table (RSDT) 145
5.2.8 Extended System Description Table (XSDT) 146
5.2.9 Fixed ACPI Description Table (FADT) 147
5.2.9.1 Preferred PM Profile System Types 160

5.2.9.2 System Type Attributes e 161

5.2.9.3 TA-PC Boot Architecture Flags, 161
5.294 ARM Architecture BootFlags o oo 162
5.2.10 Firmware ACPI Control Structure (FACS), 163
5.2.10.1 GlobalLock e 166
5.2.11 Definition Blocks L 168
5.2.11.1 Differentiated System Description Table (DSDT) 169
5.2.11.2 Secondary System Description Table (SSDT). 169
5.2.11.3 Persistent System Description Table (PSDT) 170
5.2.12 Multiple APIC Description Table MADT) 170
5.2.12.1 MADT Processor Local APIC / SAPIC Structure Entry Order 172
5.2.12.2 Processor Local APIC Structure oo 172
5.2.123 T/OAPIC Structure v vt it s e e e e e e 173
5.2.12.4 Platforms with APIC and Dual 8259 Support 174
5.2.12.5 Interrupt Source Override Structureo 174
5.2.12.6 Non-Maskable Interrupt (NMI) Source Structure 175
5.2.1277 Local APIC NMI Structureo 0 v ittt e e et 176
5.2.12.8 Local APIC Address Override Structure 176
5.2.129 T/OSAPIC Structure o ot i ittt et e e 177
5.2.12.10 Local SAPIC Structure o i e e e 177
5.2.12.11 Platform Interrupt Source Structure L 178
5.2.12.12 Processor Local x2APIC Structure 179
5.2.12.13 Local x2APIC NMI Structure oo v i vt et ettt 180
5.2.12.14 GIC CPU Interface (GICC) Structure v v v v v i it i o 181
5.2.12.15 GIC Distributor (GICD) Structure o v it it et e 183
5.2.12.16 GIC MSI Frame Structure v v i it et e et e e e 183
5.2.12.17 GIC Redistributor (GICR) Structure 184
5.2.12.18 GIC Interrupt Translation Service (ITS) Structure 184
5.2.12.19 Multiprocessor Wakeup Structure Lo e 185
5.2.13 Global System Interrupts e e e e e e e e 186
5.2.14 Smart Battery Table (SBST) o 188
5.2.15 Embedded Controller Boot Resources Table (ECDT) 189
5.2.16 System Resource Affinity Table (SRAT) 191
5.2.16.1 Processor Local APIC/SAPIC Affinity Structure 192
5.2.16.2 Memory Affinity Structure oL e e 192
5.2.16.3 Processor Local x2APIC Affinity Structure 193
5.2.16.4 GICC Affinity Structure oo vttt e e 194
5.2.16.5 GIC Interrupt Translation Service (ITS) Affinity Structure 194
5.2.16.6 Generic Initiator Affinity Structure o 195
5.2.17 System Locality Information Table (SLIT) 196
5.2.18 Corrected Platform Error Polling Table (CPEP) 197
5.2.18.1 Corrected Platform Error Polling Processor Structure 198
5.2.19 Maximum System Characteristics Table MSCT) 199
5.2.19.1 Maximum Proximity Domain Information Structure 200
5.2.20 ACPIRAS Feature Table (RASF) s 201
5.2.20.1 RASF PCC Sub Channel Identifier 202
5.2.20.2 Using PCCregisters i it 202
5.2.20.3 RASF Communication Channel 202
5.2.20.4 Platform RAS Capabilities 203
5.2.20.5 Parameter Block 204
5.2.21 Memory Power State Table (MPST) i i 205
52.21.1 MPSTPCCSubChannel 0.... 207
5.2.21.2 Memory Power Stateo o 210
52213 Action SEqUeNCe v v v vt e e e e e e e 211

5.2.21.4 Memory Power Node 212

5.2.21.5 Memory Power State Structure e e 214
5.2.21.6 Memory Power State Characteristics structure 214
5.2.21.7 Autonomous Memory Power Management 215
5.2.21.8 Handling BIOS Reserved Memory 216
5.2.21.9 Interaction with NUMA processor and memory affinity tables 216
5.2.21.10 Interaction with Memory HotPlug 216
5.2.21.11 OS Memory Allocation Considerations 217
5.2.21.12 Platform Memory Topology Table (PMTT) 217
5.2.22 Boot Graphics Resource Table (BGRT), 220
52221 Version v vt i e e e e e e 222
52222 Status e e e e e e e 222
5.2.22.3 Tmage Type o v v i e e e e e e e e e e 222
5.2.22.4 Tmage Address e e e e e e 222
5.222.5 TImage Offset o . e e 222
5.2.23 Firmware Performance Data Table (FPDT) 223
5.2.23.1 Performance Record Format. 224
5.2.23.2 FPDT Performance Record Types 225
5.2.23.3 Runtime Performance Record Types 225
5.2.23.4 Firmware Basic Boot Performance Table Pointer Record 225
5.2.23.5 S3 Performance Table Pointer Record 226
5.2.23.6 Firmware Basic Boot Performance Table 226
5.2.23.7 Firmware Basic Boot Performance DataRecord 227
5.2.23.8 S3Performance Table 227
5.2.24 Generic Timer Description Table (GTDT) 228
5.224.1 GTBlock Structure o 0 e e e e e e 231
5.2.24.2 Arm Generic Watchdog Structure oL oo 233
5.2.25 NVDIMM Firmware Interface Table (NFIT) 234
52251 OVEIVIEW . . o v v it e e e e e e e e e 234
5.2.25.2 System Physical Address (SPA) Range Structure 236
5.2.25.3 NVDIMM Region Mapping Structure 238
5.2.25.4 Interleave Structurel e e e e 241
5.2.25.5 SMBIOS Management Information Structure 242
5.2.25.6 NVDIMM Control Region Structure 242
5.2.25.7 NVDIMM Block Data Window Region Structure 245
5.2.25.8 Flush Hint Address Structure it 245
5.2.25.9 Platform Capabilities Structure o 246
5.2.25.10 NVDIMM Representation Format 247
5.2.26 Secure Devices (SDEV)ACPITable v . 248
5.2.26.1 Secure Device Structuresot it e e e e e 249
5.2.27 Heterogeneous Memory Attribute Table (HMAT) 253
5.227.1 HMAT OVEIVIEW o v i ittt et e e e e e e e e e e e 253
5.2.27.2 Memory Side Cache Overview vt 254
5.2.27.3 Memory Proximity Domain Attributes Structure 254
5.2.27.4 System Locality Latency and Bandwidth Information Structure 255
5.2.27.5 Memory Side Cache Information Structure 259
5.2.28 Platform Debug Trigger Table (PDTT) 261
5.2.28.1 PDTTPCC Sub Channel 262
5.2.282 PDTTPCC Trigger Order o o i ittt e et 264
5.2.28.3 Example: OS Invoking Multiple Debug Triggers 264
5.2.29 Processor Properties Topology Table (PPTT), 266
5.2.29.1 Processor hierarchy node structure (Type 0) 267
5.2.29.2 Cache Type Structure - Type 1 oo 269
5.2.30 Platform Health Assessment Table (PHAT) 273

5.2.30.1 Platform Health Assessment Record Format 273

5.2.30.2 Platform Health Assessment Record Type Format 274

5.2.30.3 Firmware Version Data Record Structure 274

5.2.30.4 Firmware Health Data Record Structure 275

53 ACPINAMESPACE . . . o v v v i i e e e e e e e e e e e e e e e 276
5.3.1 Predefined Root Namespaces ittt 278

532 ODJECtS . . v ot e e e e 278

5.4 Definition Block Encoding e e 279
54.1 AMLEncoding e e e e e e e e e 279

542 Definition Block Loading 279

5.5 Control Methods and the ACPI Source Language (ASL) 281
55.1 ASL Statements oo it e e e e e e e e e e e e e e e e e 282

5.5.2 Control Method Execution e 282
5521 ArgUMENtSo e e e e e e e e e e e e e e e 282

5.5.2.2 Method Calling Convention 283

5.5.2.3 Local Variables and Locally Created Data Objects 283

5.5.24 AccesstoOperation Regions 284

5.6 ACPI Event Programming Model e 309
5.6.1 ACPI Event Programming Model Components 309

562 Typesof ACPIEvents. e 310

563 FixedEventHandling 310

5.6.4 General-Purpose EventHandling 311
5.6.4.1 _Exx, _Lxx, and _Qxx Methods for GPE Processing 312

5,642 GPEWakeEvents 314

5.6.5 GPIO-signaled ACPIEvents 315
5.6.5.1 Declaring GPIO Controller Devices 315

5.6.5.2 _AEFEI Object for GPIO-signaled Events 315

5.6.5.3 The Event (_EVT) Method for Handling GPIO-signaled Events 316

5.6.6 Device Object NotificationS v i v v i i et e e e e 317

5.6.7 Device Class-Specific Objects o o i i e e e e 322

5.6.8 Predefined ACPI Names for Objects, Methods, and Resources 324

5.6.9 Interrupt-signaled ACPIevents e 331
5.6.9.1 Declaring Generic Event Device 331

5.6.9.2 _CRS Object for Interrupt-signaled Events 331

5.6.9.3 The Event (_EVT) Method for Handling Interrupt-signaled Events 332

5,694 GEDWakeEvents L 333

5.6.10 Managing a Wake Event Using Device _PRW Objects 334

5.7 Predefined Objects L e e 334
5.7.1 _GL (Global Lock Mutex) i i i e e e e e e e e e 334

5.7.2 _OSI (Operating System Interfaces) it 334
5.7.2.1 _OSIExamples e 336

5773 _OS(OSName Object) i it e e e 337

574 _REV (Revision DataObject) it 338

5.75 _DLM (DeviceLock Mutex)t i i i i it e e e e e e e e 338

5.8 System Configuration Objects o o v i i e e e e e e e e e e e 340
5.8.1 N\ PICMethod e 340

6 Device Configuration 341
6.1 Device Identification Objects L e e 341
6.1.1 _ADR (AAAress) v i i i e e e e e e e e e e e e e 342

6.1.2 _CID (Compatible ID) e 343

6.1.3 _CLS(Class Code) v i i i e e e e e e e e e e e e e 344

6.1.4 _DDN (DOS Device Name) v v v i i i e e e e e e e e e e e e e 345

6.1.5 _HID (Hardware ID) e e e e 345

vi

6.2

6.3

6.4

6.1.6 _HRV (Hardware Revision) ittt it e e 346

6.1.7 _MLS (Multiple Language String) o 0 i i e e e 346
6.1.8 _PLD (Physical Location of Device) 347
6.1.9 _SUB (Subsystem ID) e 355
6.1.10 _STR(String) o o it e e 355
6.1.11 _SUN (Slot User Number) i it ettt e 355
6.1.12 _UID (Unique ID) e e 356
Device Configuration Objects o o i e e e e e e 356
6.2.1 _CDM (Clock Domain) i i e e e e e e e e e e e e e 357
6.2.2 _CRS (Current Resource Settings) o o ittt 358
623 _DIS(Disable) 358
6.2.4 _DMA (Direct MEMOTY ACCESS) . « v v v v vt i e e e e e e e e e e e e e e e e 358
6.2.5 _DSD (Device Specific Data) e e 360
6.2.6 _FIX (Fixed Register Resource Provider) 362
6.2.7 _GSB (Global System Interrupt Base) oo oo 364
6.2.8 _HPP (Hot Plug Parameters) i 365
6.2.9 _HPX (Hot Plug Parameter Extensions) 367
6.2.9.1 PCI Setting Record (Type 0) i e e et 368
6.2.9.2 PCI-X Setting Record (Type 1) i 369
6.2.9.3 PCI Express Setting Record (Type2) 369
6.2.9.4 PCI Express Descriptor Setting Record (Type 3) 371
6.29.5 _HPXExample 376
6.2.10 _MAT (Multiple APIC Table Entry) i ittt e e 378
6.2.11 _OSC (Operating System Capabilities) oot v i i vttt 379
6.2.11.1 Rules for Evaluating _OSC 381
6.2.11.2 Platform-Wide OSPM Capabilities 381
6.2.11.3 Operating System Capabilities (_OSC)forUSB 383
6.2.12 _PRS (Possible Resource Settings) L o 384
6.2.13 _PRT (PCIRouting Table) e e e e e e e 385
6.2.13.1 Example: Using _PRT to Describe PCIIRQ Routing 386
6.2.14 _PXM (Proximity) o i e e e e e e 387
6.2.15 _SLI (System Locality Information) 387
6.2.16 _SRS (Set Resource Settings)« o ot i e e e 390
6.2.17 _CCA (Cache Coherency Attribute) o o v i it i e e e e e e e 390
6.2.17.1 _CCA Example ASL: e e e 391
6.2.18 _HMA(Heterogeneous Memory Attributes) 392
Device Insertion, Removal, and Status Objects, 392
6.3.1 _EDL (EjectDevice List) o e 394
6.3.2 _EJD (Ejection Dependent Device) o it e e e 394
6.3.3 _EIX(Eject) o e e e e e e 396
6.34 _LCK(Lock) e 396
6.3.5 _OST (OSPM Status Indication) i i it ittt ittt e e 397
6.3.5.1 Processing Sequence for Graceful Shutdown Request: 398
6.3.5.2 Processing Sequence for Error Disconnect Recover 402
6.3.6 _RMV (Remove) e e e e 402
6.3.7 _STA (Device Status) v i v i i e e e e e e e e e e e e e e 403
Resource Data Types for ACPL. 404
6.4.1 ASL Macros for Resource Descriptors 404
6.4.2 Small Resource Data Type o o o i i 404
6.4.2.1 TRQDesCriptor o v i i e e e e e e e e e e 404
6.422 DMADESCHPIOr v v o i e e e e e e e e e e 405
6.4.2.3 Start Dependent Functions Descriptor. 406
6.4.2.4 End Dependent Functions Descriptor 407
6.4.2.5 T/OPort Descriptor e 407

vii

6.4.2.6 Fixed Location I/O Port Descriptor 408

6.4.2.7 Fixed DMA DesCriptor v v v v it e e e e e e e e e 409
6.4.2.8 Vendor-Defined Descriptor, Type O 409
6429 EndTag e 409

6.43 Large Resource Data Type e 410
6.4.3.1 24-Bit Memory Range Descriptor 411
6.4.3.2 Vendor-Defined Descriptor, Type 1 412
6.4.3.3 32-Bit Memory Range Descriptor 412
6.4.3.4 32-Bit Fixed Memory Range Descriptor 414
6.4.3.5 Address Space Resource Descriptors 415
6.4.3.6 Extended Interrupt Descriptor o 427
6.4.3.7 Generic Register Descriptor e 429
6.4.3.8 Connection Descriptors i e e e e e e e 430
6.4.3.9 PinFunction Descriptor e e 441
6.4.3.10 Pin Configuration Descriptor oL 443
6.4.3.11 Pin Group Descriptor e e 445
6.4.3.12 Pin Group Function Descriptor 0. 447
6.4.3.13 Pin Group Configuration Descriptor 448

6.5 Other Objects and Control Methods i e 450
6.5.1 _INI(Init) o e e 450
6.5.2 _DCK(Dock) o e e 451
6.53 _BDN (BIOSDockName) e 452
6.54 _REG (Region) i i i e e e e e e e e e e 452
6.5.5 _BBN (Base BusNumber) e 454
6.5.6 _SEG(Segment) e e e e e e e 454
6.5.7 _GLK(GlobalLock) e 455
6.5.8 _DEP (Operation Region Dependencies) 456
6.5.9 _FIT (Firmware Interface Table) ..., 456
6.5.10 NVDIMM Label Methods i e 457
6.5.10.1 _LSI (Label Storage Information) 457
6.5.10.2 _LSR (Label StorageRead) 458
6.5.10.3 _LSW (Label Storage Write) i 459

6.5.11 _CBR (CXL Host Bridge RegisterInfo) 460
7 Power and Performance Management 462
7.1 Power Resource Objects and the Power Management Models 462
7.2 Declaring a Power Resource Object e 464
7.2.1 Defined Methods for a Power Resource 465
722 _OFF . . o e 465
723 _ON o o 466
724 _STA (Power Resource Status) i i i it e e 466
7.2.5 Passive Power Resources 466
7.3 Device Power Management Objects o v i i i e e e e e e e e e e e 467
73.1 _DSW (Device Sleep Wake) o o i e e e 468
732 _PSO(PowerState 0) e e e e e 469
733 _PS1(PowerState 1) e e e e e e e e e e 469
734 _PS2(Power State 2) i e e e e e e e e e e e e e e e 469
735 _PS3(PowerState 3) e e e e e e e e e e e 469
7.3.6 _PSC (Power State Current) v v v v v i e e e e e e e e e 470
7.3.7 _PSE (Power State for Enumeration) e 470
7.3.8 _PRO (Power Resources forDO) 470
7.3.9 _PRI (Power Resources forD1) e 471
7.3.10 _PR2 (Power Resources forD2) 471
7.3.11 _PR3 (Power Resources for D3hot) e 472

7.3.12 _PRE (Power Resources for Enumeration) 472

7.3.13 _PRW (Power Resources for Wake) 473
7.3.14 _PSW (Power State Wake) e e 474
7.3.15 _IRC(InRushCurrent) e e e e e e e e e e 475
7.3.16 _SID(S1DeviceState) e e 475
7.3.17 _S2D (S2 Device State) e e e e e e e e e 476
7.3.18 _S3D(S3 Device State) e e e e e e e e e 476
7.3.19 _S4D (S4 Device State) o o e e e e e e e 477
7.3.20 _SOW (SO Device Wake State) o . i i i i e e e e e e 477
7321 _SIW (S1 Device Wake State) o i i e e e e e e e 478
7.3.22 _S2W (S2 Device Wake State) e e e e 478
7.3.23 _S3W (S3 Device Wake State) e e e e e e e 478
7.3.24 _S4W (84 Device Wake State) e e e e e e 479
7.3.25 _RST (Device Reset) e e e e e e e e e 479
7.3.26 _PRR (Power Resource forReset), 479

7.4 OEM-Supplied System-Level Control Methods 480
7.4.1 _PTS (Prepare To Sleep)« o o i i i i i e e e e 480

742 _SX(System States) v . i e e e e e e e e e e e e e e 481
7.4.2.1 System_SO State (Working) e 483

7.4.2.2 System _S1 State (Sleeping with Processor Context Maintained) 483

7423 System\ S2State e e 483

7424 System\ S3State 484

7425 System_S4State e e e e e e 484

7.4.2.6 System_S5 State (Soft Off) 485

743 _SWS (System Wake Source) 485

744 _TTS (Transition To State) et et e e et e e e e e 486

745 N\ WAK (SystemWake) e 486

7.5 OSPMusage of _PTS, _TTS,and _WAK 487
Processor Configuration and Control 489
8.1 Processor Power States e e e e e e e e e e e 489
8.1.1 Processor Power State CO e e e 491

8.1.2 Processor Power State C1 e e e 492

8.1.3 Processor Power State C2 e e e 493

8.14 Processor Power State C3 e e 494

8.1.5 Additional Processor Power States 494

8.2 Flushing Caches e e 495
8.3 Power, Performance, and Throttling State Dependencies 495
8.4 Declaring Processors e e e e e e e e e e 496
8.4.1 _PDC (Processor Driver Capabilities) v, 497

8.4.2 Processor Power State Control e 498
8.42.1 _CST(CStates) v o v i e e e e e e e e e e e e e e e e 498

8.4.2.2 _CSD (C-State Dependency) i v v it i v i 500

8.4.3 Processor Hierarchy e e 502
8.4.3.1 Processor Container Device i e 504

8.4.4 LowerPowerlIdle States 504
8.4.4.1 Hierarchical Idle States 505

8.4.4.2 Idle State Coordination i i i e e e e e 506

8.443 _LPI(LowPowerlIdle States) e 511

8.4.4.4 _RDI (Resource Dependencies forIdle) 523

8.4.45 Compatibility 526

8.4.5 Processor Throttling Controls 526
8.4.5.1 _PTC (Processor Throttling Control) 527

8.4.5.2 _TSS (Throttling Supported States)« o v v v i v e .. 528

9

8.4.5.3 _TPC (Throttling Present Capabilities) 529

8.4.54 _TSD (T-State Dependency) o v v i v v i i e i e e e e 530

8.4.5.5 _TDL (T-state Depth Limit) ittt 533

8.4.6 Processor Performance Control 533
8.4.6.1 _PCT (Performance Control) 534

8.4.6.2 _PSS (Performance Supported States) oL 535

8.4.6.3 _PPC (Performance Present Capabilities) 536

8.4.6.4 Processor Performance Control Example 536

8.4.6.5 _PSD (P-State Dependency) oo 538

8.4.6.6 _PDL (P-state Depth Limit) 540

8.4.7 Collaborative Processor Performance Control 540
8.4.7.1 _CPC (Continuous Performance Control) 541

8.4.8 _PPE (Polling for Platform Errors) 557

8.5 Processor Aggregator Device oL e 557
8.5.1 Logical Processor Idling 557
8.5.1.1 _PUR (Processor Utilization Request) 557

8.5.2 OSPM _OSTEvaluation ittt e e e et e e 558
ACPI-Defined Devices and Device-Specific Objects 559
9.1 Device Object Name ColliSion oo vttt ittt e e et e e 559
9.1.1 _DSM (Device Specific Method) 559

9.2 _SISystem Indicators i e e e e e e e e 562
9.2.1 _SST(System Status) v v i e e e e e 562

922 _MSG (MeSSAZE) . « « v v o e e e e e e e e e e e e e e 562

9.2.3 _BLT (Battery Level Threshold) 563

9.3 Ambient Light Sensor Device e 563
03,1 OVEIVIEW . . v v v i e e e e e e e e e e e e e e e e e e e 564

9.3.2 _ALI(Ambient Light [lluminance) 564

9.3.3 _ALT (Ambient Light Temperature) 565

9.3.4 _ALC (Ambient Light Color Chromaticity) 565

9.3.5 _ALR (Ambient Light Response) 565

9.3.6 _ALP (Ambient LightPolling) e 569

9.3.7 Ambient Light Sensor Events e 569

9.3.8 Relationship to Backlight Control Methods 570

9.4 BatteryDevice L e 570
9.5 Control Method Lid Device 0 i i e e e e e e e 570
9.5.1 _LID . . o e e e e e e e e e e 570

9.6 Control Method Power and Sleep Button Devices 571
9.7 Embedded Controller Device e e e e 571
9.8 Generic Container Device e e 571
9.9 ATA Controller Devices i i i i e e e e e e e e e e e e e e e 572
9.9.1 Objects for Both ATA and SATA Controllers 572
99.1.1 _GTF(GetTaskFile) e i e e 572

9.9.2 IDEController Device e e e e e 573
9.9.2.1 1IDE Controller-specific Objects 574

9.9.3 Serial ATA (SATA) Controller Device i i i it i i e 576
9.93.1 Definitions o . i e e e e e e e e e e e e 576

9.93.2 OVEIVIEW . . . v v i i e e e e e e e e e e e e e e e e e e 576

9.9.3.3 SATA controller-specific control methods 577

9.10 Floppy Controller Device Objects i e 577
9.10.1 _FDE (Floppy Disk Enumerate) 577
9.10.2 _FDI (Floppy Disk Information) 578
9.10.3 _FDM (Floppy Disk Drive Mode) e 579

9.11 GPEBlockDevice e e e e e e e 579

9.12
9.13

9.14

9.15

9.16

9.17
9.18

9.19

9.20

9.11.1 Matching Control Methods for Events in a GPE Block Device 580

Module Device o e e e e e e e e e e 581
Memory Devices o L e e e e e e e e 583
9.13.1 Address Decoding L e 584
9.13.2 Memory Bandwidth Monitoring and Reporting 584

9.13.2.1 _MBM (Memory Bandwidth Monitoring Data) 584

9.13.2.2 _MSM (Memory Set Monitoring) v v vt vt e e e e 585
9.13.3 _OSC Definition for Memory Device e 586
9.13.4 Example: Memory Device L e 586
_UPC (USB Port Capabilities) o . i e e e e e e 587
9.14.1 USB 2.0 Host Controllersand _UPCand _PLD 591
PC/AT RTC/CMOS DevICes o v v v o e i it e e e e e e e e e e e e e e s e e e e 593
9.15.1 PC/AT-compatible RTC/CMOS Devices (PNPOB0O) 593
9.15.2 Intel PIIX4-compatible RTC/CMOS Devices (PNPOBO1) 593
9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNPOB02) 594
User Presence Detection Device o 0 i i i i e e e e e e e e e e e 594
9.16.1 _UPD (User Presence Detect) i v i it i et et 595
9.16.2 _UPP (User Presence Polling) 595
9.16.3 User Presence Sensor Events e 596
VO APICDevice ot i e e e e e e e e e 596
Time and Alarm Device o e e e e e e e e e e e 596
Q8.1 OVEIVIEW . . . v v e 597
9.18.2 _GCP (Get Capability) e e e e e e e e e e e 599
9.18.3 _GRT (GetReal Time) 0 i i e e e e e e e e e 600
9.184 _SRT (SetReal Time) o e e e e e e e 600
9.18.5 _GWS (Get Wake alarm status) i e e e e e e e e e 601
9.18.6 _CWS (Clear Wake alarm Status)« o v it i et e e e e e e e e e 602
9.18.7 _STP (Set Expired Timer Wake Policy) 602
9.18.8 _STV (Set Timer Value) e e e e 603
9.18.9 _TIP (Expired Timer Wake Policy) 603
9.18.10 _TIV (Timer Values) e e e e e e e e e e e e e 603
9.18.11 ACPI Wakeup Alarm Events 604
9.18.12 Relationship to Real Time Clock Alarm 604
9.18.13 Time and Alarm device as areplacementtothe RTC 604
9.18.14 Relationship to UEFI time source o ot vt i it e et 604
9.18.15 Example ASLcode e 604
Generic Buttons Device L e e e e e e e e e 608
9.19.1 Button Interrupts e e 608
9.19.2 Button Usages and Collections o v i i i ittt e 609
9.19.3 Generic Buttons Device Example e 610
NVDIMM DeVvices o o vt e e e e e e e e e e e e e e e e e e e 611
9.20.1 OVEIVIEW v o e 611
9.20.2 NVDIMM RootDevice e e e e e e e e e 612
9.20.3 NVDIMMDEVICE v vt e e et e e e e e e e e e e e e e e e e e 612
9.20.4 Example e e e e e e 612
9.20.5 Loading NVDIMMdrivers it ittt it e e e 613
9.20.6 HotPlug Support e 614
9.20.7 NVDIMM Root Device _DSMSs e e e e 615

9.20.7.1 InputParameters: e 615

9.20.7.2 Address Range Scrubbing (ARS) Overview 616

9.20.7.3 Address Range Scrub (ARS) Error Injection Overview 617

9.20.7.4 Function Index 1 - Query ARS Capabilities. 617

9.20.7.5 FunctionIndex 2 - Start ARS 619

9.20.7.6 Function Index 3 - Query ARS Status 620

xi

9.20.7.7 Function Index 4 - Clear Uncorrectable Error 622

9.20.7.8 Function Index 5 - Translate SPA 623
9.20.7.9 Function Index 7 - ARS ErrorInject 625
9.20.7.10 Function Index 8 - ARS Error InjectClear 627
9.20.7.11 Function Index 9 - ARS Error Inject Status Query 627
9.20.7.12 Function Index OxA - Query ARS Error Inject Capabilities 628

9.20.8 NVDIMM Device Methods e 629
9.20.8.1 _NCH (Get NVDIMM Current Health Information) 630
9.20.8.2 _NBS (Get NVDIMM Boot Status) 632
9.20.8.3 _NIC (Get NVDIMM Health Error Injection Capabilities) 632
9.20.8.4 _NIH (NVDIMM Inject/Clear Health Errors) 633
9.20.8.5 _NIG (Get NVDIMM Inject Health Error Status) 635

10 Power Source and Power Meter Devices 637
10.1 Smart Battery Subsystems e e e 637
10.1.1 ACPI Smart Battery Status Change Notification Requirements 639
10.1.1.1 Smart Battery Charger e e 639
10.1.1.2 Smart Battery Charger with optional System Manager or Selector 640
10.1.1.3 Smart Battery System Manager 640
10.1.1.4 Smart Battery Selector 640

10.1.2 Smart Battery Objects e e e e e 640
10.1.3 _SBS (Smart Battery Subsystem) e e e e 641
10.1.3.1 Example: Single Smart Battery Subsystem 641
10.1.3.2 Multiple Smart Battery Subsystem: Example 642

10.2 Control Method Batteries e e e e e e e e e e 644
10.2.1 Battery Events e e 644
10.2.2 Battery Control Methods e e e 645
10.2.2.1 _BCT (Battery Charge Time) v it 646
10.2.2.2 _BIF (Battery Information) 646
10.2.2.3 _BIX (Battery Information Extended), 648
10.2.2.4 _BMA (Battery Measurement Averaging Interval) 651
10.2.2.5 _BMC (Battery Maintenance Control) 652
10.2.2.6 _BMD (Battery Maintenance Data) oo 653
10.2.2.7 _BMS (Battery Measurement Sampling Time) 656
10.2.2.8 _BPC (Battery Power Characteristics) 656
10.2.2.9 _BPS (Battery Power State) 657
10.2.2.10 _BPT (Battery Power Threshold) 658
10.2.2.11 _BST (Battery Status) v v v v i e e e e e e e e e e e e e e e 659
10.2.2.12 _BTH (Battery Throttle Limit) 661
10.2.2.13 _BTM (Battery Time) 0 662
10.2.2.14 _BTP (Battery Trip Point) 662
10.2.2.15 _OSC Definition for Control Method Battery 663

10.3 AC Adapters and Power Source Objects v v v v it e e e e e 663
10.3.1 _PSR (Power Source) i i i e e e e e e e e 664
10.3.2 _PCL (Power Consumer List) i it et it et e 664
10.3.3 _PIF (Power Source Information) 664
10.3.4 _PRL (Power Source Redundancy List) 665
104 Power MEErs v v v e e e e e e e e e e e e e e e e e 666
10.4.1 _PMC (Power Meter Capabilities) o o v v i et e e e e 666
10.4.2 _PTP (Power Trip Points) o e 668
10.4.3 _PMM (Power Meter Measurement) v v v v v v v i e e e e 669
10.4.4 _PAI (Power Averaging Interval) L 669
10.4.5 _GAI(Get Averaging Interval) e 669
10.4.6 _SHL (Set Hardware Limit) o i v it it e e e e e e 670

xii

10.4.7 _GHL (Get Hardware Limit) it it et
10.4.8 _PMD (Power Metered Devices) v v v v v i i e e e e e e e e e e

10.5 Wireless Power Controllers e e e e e e
10.5.1 Wireless Power Calibration Device
10.5.2 Wireless Power Calibration (WPC)
10.5.3 Wireless Power Polling (WPP)

10.6 Wireless Power Calibration Event e
10.7 Example: Power Source and Power Meter Namespace

11 Thermal Management

11.1 Thermal Control e e e e e e e e e e
11.1.1 Active, Passive, and Critical Policies
11.1.2 Dynamically Changing Cooling Temperature Trip Points
11.1.2.1 OSPM Change of Cooling Policy

11.1.2.2 Resetting Cooling Temperatures to Adjust to Bay Device Insertion or Removal . . .

11.1.2.3 Resetting Cooling Temperatures to Implement Hysteresis

11.1.3 Detecting Temperature Changes o i i i vttt et e e
11.1.3.1 Temperature Change Notifications

11.1.3.2 Polling e e

11.1.4 Active Cooling e e
11.1.5 Passive Cooling L . e e e
11.1.5.1 Processor Clock Throttling

11.1.6 Critical Shutdown 0 L e e e e e e e e

11.2 Cooling Preferences o . o e e e e e
11.2.1 Evaluating Thermal Device Lists i
11.2.2 Evaluating Device Thermal Relationship Information
11.2.3 Fan Device Notifications i i i et e e e e e e e e

I11.3 FanDevice o o o o e e e e e e e e e e e
11.3.1 Fan Objects o o o i e e e e e e e e e e e e e e e
11.3.1.1 _FIF (Fan Information)

11.3.1.2 _FPS (Fan Performance States)

11.3.1.3 _FSL (Fan SetLevel) i it ettt

11.3.1.4 _FST (Fan Status) o o i i e e e e e e e e e e e e e e

11.4 Thermal ObJects o it e e e e e e e e e e e e e e e e e
11.4.1 _ACXx (Active Cooling) o o v i e e e e e e e e
1142 _ALx (Active List) e e e e e
11.43 _ART (Active Cooling Relationship Table)
11.4.4 _CRT (Critical Temperature) v v v v v vt e e e e e e e e e e e e e e e e
11.4.5 _CR3 (Warm/Standby Temperature) o v v v vt vt e i e e e e e
11.4.6 _DTI (Device Temperature Indication) o i v i
11.47 _HOT (Hot Temperature) o v i ittt e e e e e e e e e e e e e e
11.4.8 _MTL (Minimum Throttle Limit)
11.4.9 _NTT (Notification Temperature Threshold)
11.4.10 _PSL (Passive List) o o e e e e e e e e e e e e e e e
11.4.11 _PSV (Passive) o e e e e e e e e e e e e e e e e e e e
11.4.12 _RTV (Relative Temperature Values) 0.
11.4.13 _SCP (Set Cooling Policy) e
11.4.14 _STR(String) o o o i e e e e e e e e e e e e
11.4.15 _TCI1 (Thermal Constant 1) i e e e e e e e e
11.4.16 _TC2 (Thermal Constant 2) o v i e e e e e e e e e e e e e e e e e e e
11.4.17 _TFP (Thermal fast Sampling Period),
11.4.18 _TMP (Temperature) o v v v v v e it e e e e e e e e e e e e e e e e e
11.4.19 _TPT (Trip Point Temperature) o v i vt i et et e e e e
11.4.20 _TRT (Thermal Relationship Table)

11.4.21 _TSN (Thermal Sensor Device) i i i ittt it ettt 700

11.4.22 _TSP (Thermal Sampling Period) i 701
11.4.23 _TST (Temperature Sensor Threshold) 701
11.4.24 _TZD (Thermal Zone Devices) o v i v i e e e e e e e e e e e e e 701
11.4.25 _TZM (Thermal Zone Member) i i i i it i i i e 702
11.4.26 _TZP (Thermal Zone Polling) i 702

11.5 Native OS Device Driver Thermal Interfaces 702
11.6 Thermal Zone Interface Requirements e 703
11.7 Thermal Zone Examples e 704
11.7.1 Example: The Basic Thermal Zone 704
11.7.2 Example: Multiple-Speed Fans 705
11.7.3 Example: Thermal Zone with Multiple Devices 707

12 ACPI Embedded Controller Interface Specification 712
12.1 Embedded Controller Interface Description oo 713
12.2 Embedded Controller Register Descriptions o v v v i i vt et e 715
12.2.1 Embedded Controller Status, EC_SC(R) 716
12.2.2 Embedded Controller Command, EC_SC (W) 717
12.2.3 Embedded Controller Data, EC_DATA (R/W) 717

12.3 Embedded Controller Command Set it e e 717
12.3.1 Read Embedded Controller, RD_EC (0x80) 717
12.3.2 Write Embedded Controller, WR_EC (0x81) 717
12.3.3 Burst Enable Embedded Controller, BE_ EC (0x82) 718
12.3.4 Burst Disable Embedded Controller, BD_EC (0x83) 718
12.3.5 Query Embedded Controller, QR_EC (0x84) 718

12.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT 719
12.5 Embedded Controller Firmware e e e 719
12.6 Interrupt Model e e e e e e 719
12.6.1 EventInterrupt Model o 720
12.6.2 Command Interrupt Model o Lo 720

12.7 Embedded Controller Interfacing Algorithms 721
12.8 Embedded Controller Description Information, 721
12.9 SMBus Host Controller Interface via Embedded Controller 722
12.9.1 Register Description oL e e e e 722
12.9.1.1 Status Register, SMB_STS o 722

12.9.1.2 Protocol Register, SMB_PRTCL 723

12.9.1.3 Address Register, SMB_ADDR 724

12.9.1.4 Command Register, SMB_CMD 724

12.9.1.5 Data Register Array, SMB_DATA[i],i=0-31 725

12.9.1.6 Block Count Register, SMB_BCNT 725

12.9.1.7 Alarm Address Register, SMB_ALRM_ADDR 725

12.9.1.8 Alarm Data Registers, SMB_ALRM_DATA[O], SMB_ALRM_DATA[1] 726

12.9.2 Protocol Description o i e e e e e e e e e e e e e 726
129.2.1 Write Quick o e e e e e 726

129.22 Read Quick e e e e e e e 726

12923 Send Byte e e 727

12924 Receive Byte L L 727

12925 Write Byte o . o e e e e e e e 727

129.2.6 Read Byte o e e e e e e 728

12.9.2.7 Write Word e e e e e e e e e e e e e e e 728

129.2.8 ReadWord e e e 728

129.2.9 Write Block e e e 729

129.2.10 Read Block e e e e 729

12.9.2.11 Process Call e e e e e e e e 729

xiv

12.9.2.12 Block Write-Block Read Process Call

12.9.2.13 SMBus Register Set e e e e e

12.10 SMBus Devices o oo e e e e
12.10.1 SMBus Device Access Restrictions o . oL e
12.10.2 SMBus Device Command Access Restriction

12.11 Defining an Embedded Controller Device in ACPI Namespace
12.11.1 Example: EC Definition ASL Code

12.12 Defining an EC SMBus Host Controller in ACPI Namespace
12.12.1 Example: EC SMBus Host Controller ASL-Code

13 ACPI System Management Bus Interface Specification
I3.1 SMBuUS OVEIVIEW o o ittt it e e e e e e e e e e e e e
13.1.1 SMBus Slave Addresses i i i e e e e e e e e
13.1.2 SMBus Protocols e e e e e e e e e
13.1.3 SMBus Status Codes i e e e e e e e e e e e
13.1.4 SMBusCommand Values e
13.2 Accessing the SMBus from ASL Code e
13.2.1 Declaring SMBus Host Controller Objects
13.2.2 Declaring SMBus Devices e
13.2.3 Declaring SMBus Operation Regions
13.2.4 Declaring SMBus Fields e
13.2.5 Declaring and Using an SMBus Data Buffer
13.3 Using the SMBus Protocols e e e e e
13.3.1 Read/Write Quick (SMBQuick) e e
13.3.2 Send/Receive Byte (SMBSendReceive) L.
13.3.3 Read/Write Byte (SMBByte) e
13.3.4 Read/Write Word (SMBWord) e
13.3.5 Read/Write Block (SMBBlock)
13.3.6 Word Process Call (SMBProcessCall)
13.3.7 Block Process Call (SMBBlockProcessCall)

14 Platform Communications Channel (PCC)

14.1 Platform Communications Channel Table
14.1.1 Platform Communications Channel Global Flags
14.1.2 Platform Communications Channel Subspace Structures
14.1.3 Generic Communications Subspace Structure (type 0)
14.1.4 HW-Reduced Communications Subspace Structure (type 1)
14.1.5 HW-Reduced Communications Subspace Structure (type 2)
14.1.6 Extended PCC subspaces (types3and4).
14.1.7 HW Registers based Communications Subspace Structure (Type 5)

14.2 Generic Communications Channel Shared Memory Region
14.2.1 Generic Communications Channel Command Field
14.2.2 Generic Communications Channel Status Field

14.3 Extended PCC Subspace Shared Memory Region

14.4 Reduced PCC Subspace Shared Memory Region

14.5 Doorbell Protocol

14.6 Platform Notification e
14.6.1 Platform Notification for Subspace Types 0, land2
14.6.2 Platform Notification for slave PCC subspaces (type4)

14.7 Referencing the PCC address space vttt it

15 System Address Map Interfaces
15.1 INT 15H, E820H - Query System Address Map i
15.2 ES820 Assumptions and Limitationso

735
735
735
736
736
737
737
737
738
738
739
741
743
743
743
744
745
745
746
747

748
748
749
749
750
750
752
753
756
757
757
758
758
759
760
762
762
762
764

765
766
768

XV

15.3 UEFI GetMemoryMap() Boot Services Function 769

15.4 UEFI Assumptions and Limitations 0 i i v ittt e 770
15.5 Example Address Map o e e e e e 770
15.6 Example: Operating System Usage o i it i ittt e e e e e 771
16 Waking and Sleeping 773
16.1 Sleeping States o i e e e e e e e e e e e e e e 774
16.1.1 ST Sleeping State o e e e 776
16.1.1.1 Example 1: S1 Sleeping State Implementation 776

16.1.1.2 Example 2: S1 Sleeping State Implementation 777

16.1.2 S2Sleeping State o v i e e e e e e e e e e e e e 777
16.1.2.1 Example: S2 Sleeping State Implementation 777

16.1.3 S3Sleeping Stateo e e e e 778
16.1.3.1 Example: S3 Sleeping State Implementation 778

16.1.4 S4Sleeping State e e e e e e e e 778
16.1.4.1 Operating System-Initiated S4 Transition 779

16.1.4.2 The S4BIOS Transition 779

16.1.5 S5SoftOff State e 780
16.1.6 Transitioning from the Working to the Sleeping State 780
16.1.7 Transitioning from the Working to the Soft Off State 781

16.2 Flushing Caches 781
16.3 Initialization e e e e e e e e 782
16.3.1 Placing the Systemin ACPIMode 784
16.3.2 Platform Boot Firmware Initializationof Memory 784

1633 OSLoading o o e e 787
16.3.4 Exiting ACPIMode e 787

17 Non-Uniform Memory Access (NUMA) Architecture Platforms 789
171 NUMANoOde o e e e e e 789
17.2 System Locality 790
17.2.1 System Resource Affinity Table Definition 790
17.2.2 System Resource Affinity Update 790

17.3 System Locality Distance Information L oo 790
17.3.1 OnlineHotPlug 791
17.3.2 Impact to Existing Localities 791

17.4 Heterogeneous Memory Attributes Information o . 791
17.4.1 Online HotPlug e e e e e e e 792
17.4.2 Impact to Existing Localities 792

18 ACPI Platform Error Interfaces (APEI) 793
18.1 Hardware Errors and Error Sources e 793
18.2 Relationship between OSPM and System Firmware 794
18.3 Error Source DIiSCOVETY o o vttt e e e e e e e e e e e e 794
18.3.1 BootErrorSource 794
18.3.2 ACPIError Source o v i i i it e e e e e e 795
18.3.2.1 TA-32 Architecture Machine Check Exception 796

18.3.2.2 TA-32 Architecture Corrected Machine Check 798

18.3.2.3 TA-32 Architecture Non-Maskable Interrupt 799

18.3.2.4 PCI Express Root Port AER Structure 799

18.3.2.5 PCI Express Device AER Structure 801

18.3.2.6 PCI Express/PCI-X Bridge AER Structure 802

18.3.2.7 Generic Hardware Error Source 804

18.3.2.8 Generic Hardware Error Source version 2 (GHESv2 - Type 10) 808

18.3.2.9 Hardware Error Notification 809

XVi

18.3.2.10 TA-32 Architecture Deferred Machine Check 811

18.4 Firmware First Error Handling e 812
18.4.1 Example: Firmware First Handling Using NMI Notification 812

18.5 Error Serialization e e 813
18.5.1 Serialization Action Table L 814
18.5.1.1 Serialization ACtions 814

18.5.1.2 Serialization Instruction Entries o oL 816

18.5.1.3 Error Record Serialization Information 819

18.5.2 OperationS. o v v it e e e e e e e e e e e e e e e 819
18.5.2.1 WIItING o o o o e e e e e e e 820

18522 Reading o e 821

18523 Clearing o i i i e e e 822

18.5.2.4 UsSage . . . v v v v i e e e e e e e e e e e e 822

18.6 Error Injection L L e e e e e e e e e 823
18.6.1 Error Injection Table (EINJ) o 823
18.6.2 Injection Instruction Entries L 825
18.6.3 Injection InStructions e e e 826
18.6.4 Error TYPes o i i i e e e e e e e e e e e e 827

18.6.5 Trigger Action Table e e 829
18.6.6 Error Injection Operation e e 830

18.7 GHES_ASSIST Error Reportingo o i e 831
18.7.1 GHES_ASSIST on Machine Check Architecture 831

19 ACPI Source Language (ASL) Reference 832
19.1 ASL 2.0 Symbolic Operators and Expressions o 832
19.2 ASL Language Grammar vt v v vttt it e e e e e e e e e 834
19.2.1 ASL Grammar Notation oo v it e e e e e e e e 834
19.2.2 ASL Name and Pathname Terms 835

19.2.3 ASL Rootand Secondary Terms 836
19.24 ASL Dataand Constant Terms ot vt vttt e 837
1925 ASLOpcode Terms o v v vt it e e e e e e e e e e e 838
19.2.6 ASL Primary (Terminal) Terms 0o e et 840
19.2.7 ASL Parameter Keyword Terms o o v i i i e e e 857
19.2.8 ASL Resource Template Terms e 858

193 ASL Concepts i i i it s e e e e 868
193.1 ASLINAMES . . . o v oot i e e e e e e e 868
19.3.1.1 _T_xReservedObject Names, 869

19.3.2 ASL Literal Constants o ittt e e e e 869
19321 INteZErS . . . o v v i o e e e e e e e e e e e e e e e 869

19.3.2.2 SHNGS . . o o o o e e e e e e e e 869

19.3.3 ASL Resource Templates oo i e e 871
1934 ASLMACIOS . . .« v v v v i e e e e e e e e e e e e 872
1935 ASLDataTypes. . . v o v v i o e e e e e e e e e e e e e e e e e e 873
19.3.5.1 Data Type Conversion OVerview v vt v v v v v e e i oo e o 874

19.3.5.2 Explicit Data Type Conversions 874

19.3.5.3 TImplicit Data Type Conversions oo v v v v v v 875

19.3.5.4 TImplicit Source Operand Conversiono v v v v v v .. 875

19.3.5.5 TImplicit Result Object Conversion v v v v v v v v v .. 876

19.3.5.6 Data Types and Type Conversions o v v v v i v v v v oo u o 877

19.3.5.7 Data Type ConversionRules 877

19.3.5.8 Rules for Storing and Copying Objects 880

19.4 ASL Operators SUMMATY v v v vt v it e e e e e e e e e e e e e e e e 883
19.5 ASL Operator Summary by Type o e 886
19.6 ASL Operator Reference e e e e 890

19.6.1

19.6.2

19.6.3

19.6.4

19.6.5

19.6.6

19.6.7

19.6.8

19.6.9

19.6.10
19.6.11
19.6.12
19.6.13
19.6.14
19.6.15
19.6.16
19.6.17
19.6.18
19.6.19
19.6.20
19.6.21
19.6.22
19.6.23
19.6.24
19.6.25
19.6.26
19.6.27
19.6.28
19.6.29
19.6.30
19.6.31
19.6.32
19.6.33
19.6.34
19.6.35
19.6.36
19.6.37
19.6.38
19.6.39
19.6.40
19.6.41
19.6.42
19.6.43
19.6.44
19.6.45
19.6.46
19.6.47
19.6.48
19.6.49
19.6.50
19.6.51
19.6.52
19.6.53
19.6.54

AccessAs (Change Field Unit Access) oo i 891

Acquire (Acquire a MULEX) v v v vt e e e e e e e e e e e e e e e e e 892
Add (Integer Add) e e e e 892
Alias (Declare Name Alias) i e e e e e e e 892
And (Integer Bitwise And) 893
Argx (Method Argument Data Objects) 893
BankField (Declare Bank/Data Field) 893
Break (Break from While) e 894
BreakPoint (Execution Break Point) 895
Buffer (Declare Buffer Object) 895
Case (Expression for Conditional Execution) 896
Concatenate (Concatenate Data) 896
ConcatenateResTemplate (Concatenate Resource Templates) 897
CondRefOf (Create Object Reference Conditionally) 898
Connection (Declare Field Connection Attributes) 898
Continue (Continue Innermost Enclosing While) 899
CopyObject (Copy and Store Object) 899
CreateBitField (Create 1-Bit BufferField) 899
CreateByteField (Create 8-Bit Buffer Field) 900
CreateDWordField (Create 32-Bit BufferField) 900
CreateField (Create Arbitrary Length Buffer Field) 900
CreateQWordField (Create 64-Bit Buffer Field) 901
CreateWordField (Create 16-Bit Buffer Field) 901
CSI2Bus (CSI-2 Serial Bus Connection Resource Descriptor Macro) 901
DataTableRegion (Create Data Table Operation Region) 902
Debug (Debugger Output) L 902
Decrement (Integer Decrement) Lo e 903
Default (Default Execution Path in Switch) 903
DefinitionBlock (Declare Definition Block) 903
DerefOf (Dereference an Object Reference) 904
Device (Declare Device Package) 904
Divide (Integer Divide) e e 905
DMA (DMA Resource Descriptor Macro) oo i it 906
DWordIO (DWord 10 Resource Descriptor Macro) v v v v v v v v v v v v .. 906
DWordMemory (DWord Memory Resource Descriptor Macro) 908
DWordSpace (DWord Space Resource Descriptor Macro) 909
EISAID (EISA ID String To Integer Conversion Macro) 911
Else (Alternate Execution) i i i e e e e e 911
Elself (Alternate/Conditional Execution) 912
EndDependentFn (End Dependent Function Resource Descriptor Macro) 913
Event (Declare Event Synchronization Object) 913
ExtendedIO (Extended IO Resource Descriptor Macro) 913
ExtendedMemory (Extended Memory Resource Descriptor Macro) 914
ExtendedSpace (Extended Address Space Resource Descriptor Macro) 916
External (Declare External Objects) o it i it 917
Fatal (Fatal Error Check) e e e 918
Field (Declare Field Objects) 0 o i it e e e e e e 918
FindSetLeftBit (Find First Set Left Bit) 920
FindSetRightBit (Find First Set Right Bit) 920
FixedDMA (DMA Resource Descriptor Macro) oo v v v v v v .. 921
FixedIO (Fixed 10 Resource Descriptor Macro) v v v v, 921
For (Conditional Loop) o L o i e e e e 922
Fprintf (Create and Store formatted string) 922
FromBCD (Convert BCD To Integer) 923

19.6.55 Function (Declare Control Method), 923

19.6.56 Gpiolnt (GPIO Interrupt Connection Resource Descriptor Macro) 924
19.6.57 Gpiolo (GPIO Connection IO Resource Descriptor Macro) 925
19.6.58 12CSerialBusV2 (12C Serial Bus Connection Resource Descriptor (Version 2) Macro) 926
19.6.59 If (Conditional EXecution) i 0 i i i it e e e e e e e 927
19.6.60 Include (Include Additional ASL File) 927
19.6.61 Increment (Integer Increment) e e e 928
19.6.62 Index (Indexed Reference To Member Object) 928
19.6.62.1 Index with Packages 928
19.6.62.2 Index with Buffers 929
19.6.62.3 Index with Strings 930
19.6.63 IndexField (Declare Index/Data Fields) 930
19.6.64 Interrupt (Interrupt Resource Descriptor Macro) oo v v v oo 931
19.6.65 IO (IO Resource Descriptor Macro) oo v i ittt e e e e 933
19.6.66 IRQ (Interrupt Resource Descriptor Macro) 934
19.6.67 IRQNoFlags (Interrupt Resource Descriptor Macro) 934
19.6.68 LAnd (Logical And) e 935
19.6.69 LEqual (Logical Equal) e e e e e 935
19.6.70 LGreater (Logical Greater) v v v i i v it e e e e e e e e e e 935
19.6.71 LGreaterEqual (Logical Greater ThanOr Equal) 936
19.6.72 LLess (Logical Less) o o i i i e 936
19.6.73 LLessEqual (Logical Less ThanOrEqual), 936
19.6.74 LNot (Logical NOt) v v it e e et e e e e e e e e e e e e e e e 937
19.6.75 LNotEqual (Logical Not Equal) it 937
19.6.76 Load (Load Definition Block) e 937
19.6.77 LoadTable (Load Definition Block From XSDT) 938
19.6.78 Localx (Method Local Data Objects) it 939
19.6.79 LOr (Logical Or) o o o i e e e e e e e 939
19.6.80 Match (Find Object Match) o e e 939
19.6.81 Memory24 (Memory Resource Descriptor Macro) 940
19.6.82 Memory32 (Memory Resource Descriptor Macro) 941
19.6.83 Memory32Fixed (Memory Resource Descriptor Macro) 942
19.6.84 Method (Declare Control Method) e 942
19.6.85 Mid (Extract Portion of Bufferor String) 944
19.6.86 Mod (Integer Modulo) e e e e 944
19.6.87 Multiply (Integer Multiply) o o 944
19.6.88 Mutex (Declare Synchronization/Mutex Object) 945
19.6.89 Name (Declare Named Object) i i 945
19.6.90 NAnd (Integer Bitwise Nand) o o i it e e e 946
19.6.91 NoOp Code (No Operation) v v v i v v it e et e e e e e e e e e 946
19.6.92 NOr (Integer Bitwise NOr) o 0 . o o e e e e e 946
19.6.93 Not (Integer Bitwise Not) o o o 946
19.6.94 Notify (Notify Objectof Event) 947
19.6.95 Offset (Change Current Field UnitOffset) 947
19.6.96 ObjectType (Get Object TYPE) . . . v v v v v v i e e e e e e e e e e e e e e e e 947
19.6.97 One (Constant One Integer) o o o i i i it e e e e e e e 948
19.6.98 Ones (Constant Ones Integer) o o v i i ittt et e e e e 948
19.6.99 OperationRegion (Declare Operation Region) 949
19.6.100 Or (Integer Bitwise Or) o o o e e e 950
19.6.101 Package (Declare Package Object) i v it 950
19.6.102 PinConfig (Pin Configuration Descriptor Macro) 952
19.6.103 PinFunction (Pin Function Descriptor Macro) 955
19.6.104 PinGroup (Pin Group Descriptor Macro) 958
19.6.105 PinGroupConfig (Pin Group Configuration Descriptor Macro) 958

Xix

19.6.106 PinGroupFunction (Pin Group Function Configuration Descriptor Macro) 962

19.6.107 PowerResource (Declare Power Resource), 963
19.6.108 Printf (Create and Store formatted string) o 963
19.6.109 QWordIO (QWord 10 Resource Descriptor Macro) 964
19.6.110 QWordMemory (QWord Memory Resource Descriptor Macro) 965
19.6.111 QWordSpace (QWord Space Resource Descriptor Macro) 967
19.6.112 RawDataBuffer (Raw Data Buffer) 968
19.6.113 RefOf (Create Object Reference) it .. 968
19.6.114 Register (Generic Register Resource Descriptor Macro) 969
19.6.115 Release (Release a Mutex Synchronization Object) 970
19.6.116 Reset (Reset an Event Synchronization Object) 970
19.6.117 ResourceTemplate (Resource To Buffer Conversion Macro) 970
19.6.118 Return (Return from Method Execution) 971
19.6.119 Revision (Constant Revision Integer) 971
19.6.120 Scope (Open Named Scope) o i i e 971
19.6.121 ShiftLeft (Integer Shift Left) 972
19.6.122 ShiftRight (Integer Shift Right) 973
19.6.123 Signal (Signal a Synchronization Event) 973
19.6.124 SizeOf (Get Data Object Size) o 0 i i e e e e e 973
19.6.125 Sleep (Milliseconds Sleep) e 974
19.6.126 SPISerialBusV2 (SPI Serial Bus Connection Resource Descriptor (Version 2) Macro) 974
19.6.127 Stall (Stall for a Short Time) o o it e e e e e e e 975
19.6.128 StartDependentFn (Start Dependent Function Resource Descriptor Macro) 975
19.6.129 StartDependentFnNoPri (Start Dependent Function Resource Descriptor Macro) 976
19.6.130 Store (Store an Object) L 976
19.6.131 Subtract (Integer Subtract) L e e 977
19.6.132 Switch (Select Code To Execute Based On Expression) 977
19.6.133 ThermalZone (Declare Thermal Zone) 979
19.6.134 Timer (Get 64-Bit Timer Value) i i i i i 979
19.6.135 ToBCD (Convert Integer to BCD) 980
19.6.136 ToBuffer (Convert Datato Buffer) 980
19.6.137 ToDecimalString (Convert Data to Decimal String) 980
19.6.138 ToHexString (Convert Data to Hexadecimal String) 981
19.6.139 Tolnteger (Convert Data to Integer) o o i i i vt i it 981
19.6.140 ToPLD (Creates a _PLD Buffer Object) 981
19.6.141 ToString (Convert Buffer To String) 983
19.6.142 ToUUID (Convert String to UUID Macro) oo 983
19.6.143 UARTSerialBusV2 (UART Serial Bus Connection Resource Descriptor Version 2 Macro) . . 984
19.6.144 Unicode (String To Unicode Conversion Macro) 986
19.6.145 VendorLong (Long Vendor Resource Descriptor) 986
19.6.146 VendorShort (Short Vendor Resource Descriptor) 986
19.6.147 Wait (Wait for a Synchronization Event) 987
19.6.148 While (Conditional Loop) e 987
19.6.149 WordBusNumber (Word Bus Number Resource Descriptor Macro) 987
19.6.150 WordIO (Word IO Resource Descriptor Macro) v v v v v vt v v v v .. 988
19.6.151 WordSpace (Word Space Resource Descriptor Macro) 990
19.6.152 XOr (Integer Bitwise XOr) o o i v i e e e e e e e 991
19.6.153 Zero (Constant Zero Integer) e 991
20 ACPI Machine Language (AML) Specification 992
20.1 Notation CONVENLONS v v v v v v e e e e e e e e e e e e e e e e e e e 992
20.2 AML Grammar Definition e e e e e e e e 993
20.2.1 Table and Table Header Encoding 993
20.2.2 Name Objects Encoding e e e 994

XX

20.2.3 DataObjects Encoding e e e e e e
20.2.4 Package Length Encoding e
20.2.5 Term Objects Encoding e
20.2.5.1 Namespace Modifier Objects Encoding
20.2.5.2 Named Objects Encoding
20.2.5.3 Statement Opcodes Encoding L.
20.2.5.4 Expression Opcodes Encoding,
20.2.6 Miscellaneous Objects Encoding e
20.2.6.1 ArgObjectsEncoding
20.2.6.2 Local Objects Encoding e
20.2.6.3 Debug Objects Encoding

20.3 AML Byte Stream Byte Values e e e e e
20.4 AML Encoding of Names in the Namespace v i,

21 ACPI Data Tables and Table Definition Language

21.1

Types of ACPI Data Tables ettt e e

21.2 ACPI Table Definition Language Specification

21.2.1 Overview of the Table Definition Language (TDL)
21.2.2 TDL Grammar Specification e
2123 DataTypes o v o i e e e e e e e e
21.2.3.1 INEEZEIS . . v v vt o e e e e e e e e e e e e e e e e e e e
21.2.3.2 Integer EXpressions o e e e e e e e
21.2.33 Flags o o e e e e e e e e
21.2.3.4 SUIINGS oo e e e e e e e e e e
21.23.5 Buffers
21.2.4 Fields Set Automatically by the Compiler
21.2.5 Special Fields o e e e e e e e e e e
21.2.6 TDL Generic Data Types o o v o v i i e e e e e e e e e
21.277 Defininga Known ACPI TableinTDL
21.2.8 Defining an Unknown or New ACPItablein TDL
21.2.9 Table Definition Language Examples
21.2.9.1 ECDT Disassembler Output i v v v ittt e et
21.2.9.2 ECDT Definition with Field Comments
21.2.10 Minimal ECDT Definition e
21.2.10.1 Generic ACPI Table Definition

Appendix A: Device Class Specifications

Al
A2

A3

A4

OVEIVIBW L o e e e
Device Power States Lo e e e e e e
A2.1 BusPower Management e
A.2.2 Display Power Management i it e e e e e e e e
A.2.3 PCMCIA/PCCARD/CardBus Power Management.
A2.4 PCIPower Managementt
A25 USBPower Management ittt e e e e e e e
A2.6 Device Classes o v v v vt i e e e e e e
Default Device Class o o i i e e e
A.3.1 Default Power Management Policy
A3.2 Default Wake Events e
A.3.3 Default Minimum Power Capabilities
Audio Device Class e e
A.4.1 Audio Device Power State Definitions o
A.4.2 Audio Device Power Management Policy
A43 AudioDevice Wake Events L e
A.4.4 Audio Device Minimum Power Capabilities

XXi

A5 COMPortDevice Class o v v v i e e e e e e e e e e e e e e e e e 1026

A.5.1 COM Port Power State Definitions 1027

A.5.2 COM Power Power Management Policy 1027

AS53 COMPortWake Events. o o e e e e 1027

A.5.4 COM Port Minimum Power Capabilities 1027

A.6 Display Device Class o 0 i e e e 1028
A.6.1 Display Device Power State Definitions, 1028
A.6.1.1 Display Codecs o o i i e e e e e 1031

A.6.2 Display Device Power Management Policy 1031

A.6.3 Display Device Wake Eventso oo 1032

A.6.4 Display Device Minimum Power Capabilities 1032

A.6.5 Display Device Performance States oo 1032
A.6.5.1 Common Requirements for Display Class Performance States 1032

A.6.5.2 Performance states for Full Screen Displays 1032

A.6.5.3 Performance States for Video Controllers/Display Adapters 1033

A7 InputDevice Class o v i i i e e e 1033
A.7.1 Input Device Power State Definitions 1034

A.7.2 Input Device Power Management Policy 1034

A.7.3 InputDevice Wake Events e 1034

A.7.4 Input Device Minimum Power Capabilities 1035

A8 Modem Device Class o o i e e e e 1035
A.8.1 Technology Overview o o i ittt s e e e e e 1035
A.8.1.1 Traditional Connections v v v v ittt e e 1036

A.8.1.2 Power-Managed Connections v v v v i v vttt 1036

A.8.1.3 Motherboard Modems o 1036

A.8.2 Modem Device Power State Definitions 1036

A.8.3 Modem Device Power Management Policy, . 1037

A.8.4 Modem Device Wake Events L 1037

A.8.5 Modem Device Minimum Power Capabilities 1037

A9 Network Device Class e 1037
A.9.1 Network Device Power State Definitions L. 1037

A.9.2 Network Device Power Management Policy 1038

A9.3 Network Device Wake Events 1038
A93.1 LinkStatusEvents e 1038

A932 WakeFrameEvents 1039

A.9.4 Network Device Minimum Power Capabilities 1039

A.10 PC Card Controller Device Class o 0 o ittt e s e e e e e 1039
A.10.1 PC Card Controller Device Power State Definitions 1039
A.10.2 PC Card Controller Device Power Management Policy 1040
A.10.3 PC Card Controller Wake Events 1041
A.10.4 PC Card Controller Minimum Power Capabilities 1041

A.11 Storage Device Class 0 e 1041
A.11.1 Storage Device Power State Definitions 1041
A.11.2 Storage Device Power Management Policy 1042
A.11.3 Storage Device Wake Events e 1043
A.11.4 Storage Device Minimum Power Capabilities 1043
Appendix B: Video Extensions 1044
B.1 ACPI Extensions for Display Adapters: Introduction 1044
B.2 Video Extension Definitions e 1045
B3 ACPINamMeSpace oo vttt ittt e e e e e 1045
B.4 Display-specific Methods e 1046
B.4.1 _DOS (Enable/Disable Output Switching) 1046

B.4.2 _DOD (Enumerate All Devices Attached to the Display Adapter) 1047

B43 _ROM (GetROMData)ttt 1050

B4.4 _GPD (GetPOST DeVICe) . . . v v v v v i i e e e e e e e e e e e e e e e 1051

B4.5 _SPD (SetPOSTDevice) o v i i e e e e e e e e 1051

B.4.6 _VPO (Video POST Options) o i v i it i e e e e e e e 1052

B.5 Notifications for Display Devices 1052
B.6 Output Device-specific Methods 1053
B.6.1 _ADR (Return the Unique ID for this Device) 1053

B.6.2 _BCL (Query List of Brightness Control Levels Supported) 1053

B.6.3 _BCM (Setthe Brightness Level), 1054

B.6.4 _BQC (Brightness Query Currentlevel) 1054

B.6.5 _DDC (Return the EDID for this Device) 1054

B.6.6 _DCS (Return the Status of Output Device) 1055

B.6.7 _DGS (Query Graphics State) o i i e e e e e e e 1056

B.6.8 _DSS (Device Set State) e e e e e e e e e e 1056

B.7 Notifications Specific to Output Devices 1057
B.8 Noteson State Changes i e e e e 1058
Appendix C: Deprecated Content 1059
Index 1061

XXiii

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

List of Tables

e Table 1.1 Hardware Type vs. OS Type Interaction

 Table 2.1 Summary of Global Power States

 Table 2.2 Summary of Device Power States

e Table 3.1 Low Battery Levels

e Table 3.3 Implementable Platform Types

e Table 4.1 Feature-Programming Model Summary

e Table 4.2 PM1 Event Registers

e Table 4.3 PM1 Control Registers

e Table 4.4 PM?2 Control Register

e Table 4.5 PM Timer Register

 Table 4.6 Processor Control Registers

 Table 4.7 General-Purpose Event Registers

» Table 4.8 Power Button Support

* Table 4.9 Sleep Button Support

* Table 4.10 Alarm Field Decodings within the FADT

e Table 4.11 PM1 Status Registers Fixed Hardware Feature Status Bits

e Table 4.12 PM1 Enable Registers Fixed Hardware Feature Enable Bits
e Table 4.13 PM1 Control Registers Fixed Hardware Feature Control Bits
e Table 4.14 PM Timer Bits

» Table 4.15 PM?2 Control Register Bits

e Table 4.16 Processor Control Register Bits

e Table 4.17 Processor LVL2 Register Bits

e Table 4.18 Processor LVL3 Register Bits

e Table 4.19 Sleep Control Register

 Table 4.20 Sleep Status Register

e Table 5.1 Generic Address Structure (GAS)

» Table 5.2 Address Space Format

e Table 5.3 RSDP Structure

e Table 5.4 DESCRIPTION_HEADER Fields

e Table 5.5 DESCRIPTION_HEADER Signatures for tables defined by ACPI
e Table 5.6 DESCRIPTION_HEADER Signatures for tables reserved by ACPI
» Table 5.7 Root System Description Table Fields (RSDT)

 Table 5.8 Extended System Description Table Fields (XSDT)

e Table 5.9 FADT Format

e Table 5.10 Fixed ACPI Description Table Fixed Feature Flags

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.11 Fixed ACPI Description Table Boot IA-PC Boot
Table 5.12 Fixed ACPI Description Table ARM Boot Architecture Flags
Table 5.13 Firmware ACPI Control Structure (FACS)

Table 5.14 Firmware Control Structure Feature Flags

Table 5.15 OSPM Enabled Firmware Control Structure Feature Flags
Table 5.16 Global Lock Structure within the FACS

Table 5.17 Differentiated System Description Table Fields (DSDT)
Table 5.18 Secondary System Description Table Fields (SSDT)
Table 5.19 Multiple APIC Description Table (MADT) Format
Table 5.20 Multiple APIC Flags

Table 5.21 Interrupt Controller Structure Types

Table 5.22 Processor Local APIC Structure

Table 5.23 Local APIC Flags

Table 5.24 I/O APIC Structure

Table 5.25 Interrupt Source Override Structure

Table 5.26 MPS INTI Flags

Table 5.27 NMI Source Structure

Table 5.28 Local APIC NMI Structure

Table 5.29 Local APIC Address Override Structure

Table 5.30 /O SAPIC Structure

Table 5.31 Processor Local SAPIC Structure

Table 5.32 Platform Interrupt Source Structure

Table 5.33 Platform Interrupt Source Flags

Table 5.34 Processor Local x2APIC Structure

Table 5.35 Local x2APIC NMI Structure

Table 5.36 GICC Structure

Table 5.37 GICC CPU Interface Flags

Table 5.38 GICD Structure

Table 5.39 GIC MSI Frame Structure

Table 5.40 GIC MSI Frame Flags

Table 5.41 GICR Structure

Table 5.42 GIC ITS Structure

Table 5.43 Multiprocessor Wakeup Structure

Table 5.44 Multiprocessor Wakeup Mailbox Structure

Table 5.45 Smart Battery Description Table (SBST) Format
Table 5.46 Embedded Controller Boot Resources Table Format

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.47 Static Resource Affinity Table Format

Table 5.48 Processor Local APIC/SAPIC Affinity Structure

Table 5.49 Flags - Processor Local APIC/SAPIC Affinity Structure

Table 5.50 Memory Affinity Structure

Table 5.51 Flags - Memory Affinity Structure

Table 5.52 Processor Local x2APIC Affinity Structure

Table 5.53 GICC Affinity Structure

Table 5.54 Flags - GICC Affinity Structure

Table 5.55 Architecture Specific Affinity Structure

Table 5.56 Generic Initiator Affinity Structure

Table 5.57 Device Handle - ACPI

Table 5.58 Device Handle - PCI

Table 5.59 Flags - Generic Initiator Affinity Structure

Table 5.60 SLIT Format

Table 5.61 Corrected Platform Error Polling Table Format

Table 5.62 Corrected Platform Error Polling Processor Structure

Table 5.63 Maximum System Characteristics Table (MSCT) Format

Table 5.64 Maximum Proximity Domain Information Structure

Table 5.65 RASF Table format

Table 5.66 RASF Platform Communication Channel Shared Memory Region
Table 5.67 PCC Command Codes used by RASF Platform Communication Channel
Table 5.68 Platform RAS Capabilities Bitmap

Table 5.69 Parameter Block Structure for PATROL_SCRUB

Table 5.70 MPST Table Structure

Table 5.71 PCC Command Codes used by MPST Platform Communication Channel
Table 5.72 MPST Platform Communication Channel Shared Memory Region
Table 5.73 Power State Values

Table 5.74 Command Status

Table 5.75 Memory Power Node Structure definition

Table 5.76 Flag format

Table 5.77 Memory Power State Structure definition

Table 5.78 Memory Power State Characteristics Structure

Table 5.79 Flag format of Memory Power State Characteristics Structure
Table 5.80 Platform Memory Topology Table

Table 5.81 Common Memory Device

Table 5.82 Socket Type Data

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.83 Memory Controller Type Data

Table 5.84 DIMM Type Specific Data

Table 5.85 Vendor Specific Type Data

Table 5.86 Boot Graphics Resource Table Fields

Table 5.87 Firmware Performance Data Table (FPDT) Format
Table 5.88 Performance Record Structure

Table 5.89 FPDT Performance Record Types

Table 5.90 Runtime Performance Record Types

Table 5.91 Firmware Basic Boot Performance Table Pointer Record
Table 5.92 S3 Performance Table Pointer Record

Table 5.93 Firmware Basic Boot Performance Table Header
Table 5.94 Firmware Basic Boot Performance Data Record
Table 5.95 S3 Performance Table Header

Table 5.96 Basic S3 Resume Performance Record

Table 5.97 Basic S3 Suspend Performance Record

Table 5.98 GTDT Table Structure

Table 5.99 Flag Definitions: Secure ELI Timer, Non-Secure ELI Timer, EL2 Timer, Virtual ELI Timer and
Virtual EL2 Timer

Table 5.100 Platform Timer Type Structures

Table 5.101 GT Block Structure Format

Table 5.102 GT Block Timer Structure Format

Table 5.103 Flag Definitions: GT Block Physical Timers and Virtual Timers
Table 5.104 Flag Definitions - Common Flags

Table 5.105 Arm Generic Watchdog Structure Format

Table 5.106 Flag Definitions - Arm Generic Watchdog Timer

Table 5.107 NVDIMM Firmware Interface Table (NFIT)

Table 5.108 NFIT Structure Types

Table 5.109 SPA Range Structure

Table 5.110 NVDIMM Region Mapping Structure

Table 5.111 Interleave Structure Index and Interleave Ways definition
Table 5.112 Interleave Structure

Table 5.113 SMBIOS Management Information Structure

Table 5.114 NVDIMM Control Region Structure Mark

Table 5.115 NVDIMM Block Data Windows Region Structure

Table 5.116 Flush Hint Address Structure

Table 5.117 Platform Capabilities Structure

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.118 SDEV ACPI Table

Table 5.119 Secure Device Structures

Table 5.120 ACPI_NAMESPACE_DEVICE based Secure Device Structure
Table 5.121 Secure Access Component Types

Table 5.122 Identification Based Secure Access Component

Table 5.123 Memory-based Secure Access Component

Table 5.124 PCle Endpoint Device-based Device Structure

Table 5.125 PCle Endpoint Device-based Device Structure Example
Table 5.126 Heterogeneous Memory Attribute Table Header

Table 5.127 HMAT Structure Types

Table 5.128 Memory Proximity Domain Attributes Structure

Table 5.129 System Locality Latency and Bandwidth Information Structure
Table 5.130 Memory Side Cache Information Structure

Table 5.131 PDTT Structure

Table 5.132 PDTT Platform Communication Channel Identifier Structure
Table 5.133, Type 5 Platform Communication Channel Shared Memory
Table 5.134 PCC Commands Codes used by Platform Debug Trigger Table
Table 5.135 PDTT Platform Communication Channel

Table 5.136 Example: Platform with 4 debug triggers

Table 5.137 Processor Properties Topology Table

Table 5.138 Processor Hierarchy Node Structure

Table 5.139 Processor Structure Flags

Table 5.140 Cache Type Structure

Table 5.141 Cache Structure Flags

Table 5.142 Platform Health Assessment Table (PHAT) Format

Table 5.143 Platform Health Assessment Record Format

Table 5.144 Platform Health Assessment Record Type Format

Table 5.145 PHAT Version Element

Table 5.146 Firmware Version Data Record

Table 5.147 Firmware Health Data Record Structure

Table 5.148 Namespaces Defined Under the Namespace Root

Table 5.149 Operation Region Address Space Identifiers

Table 5.150 IPMI Status Codes

Table 5.151 Accsessor Type Values

Table 5.152 ACPI Event Programming Model Components

Table 5.153 Fixed ACPI Events

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.154 Device Object Notification Values

Table 5.155 System Bus Notification Values

Table 5.156 Control Method Battery Device Notification Values
Table 5.157 Power Source Object Notification Values

Table 5.158 Thermal Zone Object Notification Values

Table 5.159 Control Method Power Button Notification Values
Table 5.160 Control Method Sleep Button Notification Values
Table 5.161 Control Method Lid Notification Values

Table 5.162 NVDIMM Root Device Notification Values

Table 5.163 NVDIMM Device Notification Values

Table 5.164 Processor Device Notification Values

Table 5.165 User Presence Device Notification Values

Table 5.166 Ambient Light Sensor Device Notification Values
Table 5.167 Power Meter Object Notification Values

Table 5.168 Processor Aggregator Device Notification Values
Table 5.169 Error Device Notification Values

Table 5.170 Fan Device Notification Values

Table 5.171 Memory Device Notification Values

Table 5.172 ACPI Device IDs

Table 5.173 Predefined ACPI Names

Table 5.174 Predefined Object Names

Table 5.175 Predefined Operating System Vendor String Prefixes
Table 5.176 Standard ACPI-Defined Feature Group Strings
Table 5.177 DeviceLockInfo Package Values

Table 6.1 Device Identification Objects

Table 6.2 ADR Object Address Encodings

Table 6.3 Additional Language ID Alias Strings

Table 6.4 Buffer O Return Value

Table 6.5 PLD Back Panel Example Settings

Table 6.6 Device Configuration Objects

Table 6.7 HPP Package Contents

Table 6.8 PCI Setting Record Content

Table 6.9 PCI-X Setting Record Content

Table 6.10 PCI Express Setting Record Content

Table 6.11 PCI Express Descriptor Setting Record Content
Table 6.12 PCI Express Register Descriptor

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.13 Platform-Wide _OSC Capabilities DWORD 2

Table 6.14 OSPM USB Support Field

Table 6.15 OSPM USB Control Field

Table 6.16 Mapping Fields

Table 6.17 Example Relative Distances Between Proximity Domains
Table 6.18 Example System Locality Information Table

Table 6.19 Example Relative Distances Between Proximity Domains - 5 Node
Table 6.20 Device Insertion, Removal, and Status Objects

Table 6.21 OST Source Event Codes

Table 6.22 General Processing Status Codes

Table 6.23 Operating System Shutdown Processing (Source Events : Ox100) Status Codes
Table 6.24 Ejection Request / Ejection Processing (Source Events: 0x03 and Ox103) Status Codes
Table 6.25 Insertion Processing (Source Event: 0x200) Status Codes
Table 6.26 Small Resource Data Type Tag Bit Definitions

Table 6.27 Small Resource Items

Table 6.28 IRQ Descriptor Definition

Table 6.29 DMA Descriptor Definition

Table 6.30 Start Dependent Functions Descriptor Definition

Table 6.31 Start Dependent Function Priority Byte Definition

Table 6.32 End Dependent Functions Descriptor Definition

Table 6.33 I/O Port Descriptor Definition

Table 6.34 Fixed-Location I/0O Port Descriptor Definition

Table 6.35 Fixed DMA Resource Descriptor

Table 6.36 Vendor-Defined Resource Descriptor Definition

Table 6.37 End Tag Definition

Table 6.38 Large Resource Data Type Tag Bit Definitions

Table 6.39 Large Resource Items

Table 6.40 24-bit Memory Range Descriptor Definition

Table 6.41 Large Vendor-Defined Resource Descriptor Definition
Table 6.42 32-Bit Memory Range Descriptor Definition

Table 6.43 32-bit Fixed-Location Memory Range Descriptor Definition
Table 6.44 Valid Combination of Address Space Descriptor Fields
Table 6.45 WORD Address Space Descriptor Definition

Table 6.46 DWORD Address Space Descriptor Definition

Table 6.47 WORD Address Space Descriptor Definition

Table 6.48 Extended Address Space Descriptor Definition

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.49 Memory Resource Flag (Resource Type = 0) Definitions
Table 6.50 I/O Resource Flag (Resource Type = 1) Definitions
Table 6.51 Bus Number Range Resource Flag (Resource Type = 2) Definitions
Table 6.52 Extended Interrupt Descriptor Definition

Table 6.53 Generic Register Descriptor Definition

Table 6.54 GPIO Connection Descriptor Definition

Table 6.55 GenericSerialBus Connection Descriptors

Table 6.56 12C Serial Bus Connection Descriptor

Table 6.57 SPI Serial Bus Connection Descriptor

Table 6.58 UART Serial Bus Connection Descriptor

Table 6.59 CSI-2 Connection Resource Descriptor

Table 6.60 Pin Function Description Definition

Table 6.61 Pin Configuration Descriptor Definition

Table 6.62 Pin Group Descriptor Definition

Table 6.63 Pin Group Function Descriptor Definition

Table 6.64 Pin Group Configuration Descriptor Description

Table 6.65 Other Objects and Methods

Table 6.66 OSPM _INI Object Actions

Table 6.67 NVDIMM Label Methods

Table 6.68 _LSI Return Package Values

Table 6.69 _LSR Return Package Values

Table 6.70, _CBR Return Package Values

Table 7.1 Power Resource Object Provisions for Information and Control
Table 7.2 Power Resource Methods

Table 7.3 Device Power Management Child Objects

Table 7.4 PSC Device State Codes

Table 7.5 Power Resource Requirements Package

Table 7.6 S1 Action / Result Table

Table 7.7 S2 Action / Result Table

Table 7.8 S3 Action / Result Table

Table 7.9 S4 Action / Result Table

Table 7.10 BIOS-Supplied Control Methods for System-Level Functions
Table 7.11 System State Package

Table 8.1 C-state/T-state/P-state Coordination Types

Table 8.2 Cstate Package Values

Table 8.3 C-State Dependency Package Values

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 8.4 Processor Container Device Objects

Table 8.5 Valid Local State Combinations in preceding example system

Table 8.6 OS Initiated Flow

Table 8.7 Example of incorrect platform state in OS Initiated Request without Dependency Check
Table 8.8 OS Initiated Request Semantics with Dependency Check

Table 8.9 Example of incorrect platform state in OS Initiated Request without Hierarchy Parameter
Table 8.10 OS Initiated Request Semantics with Hierarchy Parameter

Table 8.11 Local Power States for the Parent Processor or Processor Container
Table 8.12 Extended LPI Fields

Table 8.13 Flags for LPI states

Table 8.14 Enabled Parent State values for example system

Table 8.15 Entry method example

Table 8.16 _RDI package return values

Table 8.17 _PTC Package Values

Table 8.18 TState Package Values

Table 8.19 T-State Dependency Package Values

Table 8.20 _PCT Package Values

Table 8.21 PState Package Values

Table 8.22 P-State Dependency Package Values

Table 8.23 Continuous Performance Control Package Values

Table 8.24 Performance Limited Register Status Bits

Table 8.25 PCC Command Codes Used by Collaborative Processor Performance Control
Table 8.26 Processor Aggregator Device Objects

Table 9.1 System Indicator Control Methods

Table 9.2 Control Method Ambient Light Sensor Device

Table 9.3 Control Method Lid Device

Table 9.4 ATA Specific Objects

Table 9.5 GTM Method Result Codes

Table 9.6 Tape Presence

Table 9.7 ACPI Floppy Drive Information

Table 9.8 MBM Package Details

Table 9.9 MSM Result Encoding

Table 9.10 Memory Device _OSC Capabilities DWORD number 2

Table 9.11 UPC Return Package Values

Table 9.12 User Presence Detection Device

Table 9.13 Time and Alarm Device

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 9.14 Generic Buttons Device Child Objects

Table 9.15 Usage Types and Interrupt Polarity

Table 9.16 Common HID Button Usages

Table 9.17 NVDIMM Root Device Function Index

Table 9.18 Status and Extended Status Field Generic Interpretations
Table 9.19 Query ARS Capabilities - Input Buffer

Table 9.20 Query ARS Capabilities - Output Buffer

Table 9.21 Start ARS - Input Buffer

Table 9.22 Start ARS - Output Buffer

Table 9.23 Query ARS Status - Output Buffer

Table 9.24 ARS Data

Table 9.25 ARS Error Record Format

Table 9.26 Clear Uncorrectable Error - Input Buffer
Table 9.27 Clear Uncorrectable Error - Output Buffer
Table 9.28 Translate SPA - Input Payload Format

Table 9.29 Translate SPA - Output Payload Format

Table 9.30 Translate SPA - Translated NVDIMM Device List Output Payload Format
Table 9.31 ARS Error Inject - Input Format

Table 9.32 ARS Error Inject - Output Format

Table 9.33 ARS Error Inject Clear - Input Format

Table 9.34 ARS Error Inject Clear - Output Format

Table 9.35 ARS Error Inject Status Query - Output Format
Table 9.36 ARS Error Inject Status Query - Error Record Format
Table 9.37 ARS Error Inject Options Support

Table 9.38 NVDIMM Device Method Return Status Code
Table 9.39 NCH Return Value

Table 9.40 _NBS Return Value

Table 9.41 _NIC Output Buffer

Table 9.42 _NIH Input Buffer

Table 9.43 _NIH Output Buffer

Table 9.44 _NIG Output Buffer

Table 10.1 Example SMBus Device Slave Addresses

Table 10.2 Smart Battery Objects

Table 10.3 Battery Control Methods

Table 10.4 BIF Return Package Values

Table 10.5 BIX Return Package Values

10

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 10.6 BMD Return Package Values

Table 10.7 _BPC Return Package Values

Table 10.8 Battery Power Threshold Support Capability
Table 10.9 _BPS Return Package Values

Table 10.10 BST Return Package Values

Table 10.11 Control Method Battery _OSC Capabilities DWORD?2 Bit Definitions
Table 10.12 Power Source Objects

Table 10.13 PIF Method Result Codes

Table 10.14 Power Meter Objects

Table 10.15 PMC Method Result Codes

Table 10.16 Wireless Power Calibration

Table 10.17 Wireless Power Control Notification Values
Table 11.1 Fan Specific Objects

Table 11.2 FIF Package Details

Table 11.3 FPS FanPstate Package Details

Table 11.4 FST Package Details

Table 11.5 Thermal Objects

Table 11.6 Thermal Relationship Package Values 1

Table 11.7 Thermal Relationship Package Values 2

Table 12.1 Read Only Register Table

Table 12.3 Embedded Controller Commands

Table 12.4 Events for Which Embedded Controller Must Generate SCIs
Table 12.5 Read Command (3 Bytes)

Table 12.6 Write Command (3 Bytes)

Table 12.7 Query Command (2 Bytes)

Table 12.8 Burst Enable Command (2 Bytes)

Table 12.9 Burst Disable Command (1 Byte)

Table 12.10 Status Register, SMB_STS

Table 12.11 SMBus Status Codes

Table 12.12 Protocol Register, SMB_PRTCL

Table 12.13 Address Register, SMB_ADDR

Table 12.14 Command Register, SMB_CMD

Table 12.15 Data Register Array, SMB_DATA[i], i=0-31
Table 12.16 Block Count Register; SMB_BCNT

Table 12.17 Alarm Address Register, SMB_ALRM_ADDR
Table 12.18 Alarm Data Registers, SMB_ALRM_DATA[O], SMB_ALRM_DATA[1]

11

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 12.19 SMB EC Interface

Table 12.20 Embedded Controller Device Object Control Methods

Table 12.21 EC SMBus HC Device Objects

Table 13.1 SMBus Protocol Types

Table 14.1 Platform Communications Channel Table (PCCT)

Table 14.2 Platform Communications Channel Global Flags

Table 14.3 Generic PCC Subspace Structure

Table 14.4 PCC Subspace Structure type 0 (Generic Communications Subspace)
Table 14.5 PCC Subspace Structure type 1 (HW-Reduced Communications Subspace)
Table 14.6 PCC Subspace Structure type 2 (HW-Reduced Communications Subspace)
Table 14.7 PCC Subspace Structure type 3 and type 4

Table 14.8 HW Registers based Communications Subspace Structure (Type 5)
Table 14.9 Generic Communications Channel Shared Memory Region

Table 14.10 Generic Communications Channel Command Field

Table 14.11 Generic Communications Channel Status Field

Table 14.12 Master Slave Communications Channel Shared Memory Region
Table 14.13 Master Slave Communications Channel Flags

Table 14.14 Reduced PCC Subspace Shared Memory Region

Table 15.1 Address Range Types

Table 15.2 Input to the INT 15h ES20h Call

Table 15.3 Output from the INT 15h E§20h Call

Table 15.4 Address Range Descriptor Structure

Table 15.5 Extended Attributes for Address Range Descriptor Structure

Table 15.6 UEFI Memory Types and mapping to ACPI address range types
Table 15.7 Sample Memory Map

Table 18.1 Boot Error Record Table (BERT)

Table 18.2 Hardware Error Source Table (HEST)

Table 18.3 IA-32 Architecture Machine Check Exception Structure

Table 18.4 IA-32 Architecture Machine Check Error Bank Structure

Table 18.5 IA-32 Architecture Corrected Machine Check Structure

Table 18.6 IA-32 Architecture NMI Error Structure

Table 18.7 PCI Express Root Port AER Structure

Table 18.8 PCI Express Device AER Structure

Table 18.9 PCI Express/PCI-X Bridge AER Structure

Table 18.10 Generic Hardware Error Source Structure

Table 18.11 Generic Error Status Block

12

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 18.12 Generic Error Data Entry

Table 18.13 Generic Hardware Error Source version 2 (GHESv2) Structure

Table 18.14 Hardware Error Notification Structure
Table 18.15 IA-32 Architecture Deferred Machine Check Structure
Table 18.16 Error Record Serialization Table (ERST)
Table 18.17 Error Record Serialization Actions
Table 18.18 Command Status Definition

Table 18.19 Serialization Instruction Entry

Table 18.20 Serialization Instructions

Table 18.21 Instruction Flags

Table 18.22 Error Record Serialization Info

Table 18.23 Error Injection Table (EINJ)

Table 18.24 Error Injection Actions

Table 18.25 Injection Instruction Entry

Table 18.26 Instruction Flags

Table 18.27 Injection Instructions

Table 18.28 Command Status Definition

Table 18.29 Error Type Definition

Table 18.30 SET_ERROR_TYPE_WITH_ADDRESS Data Structure
Table 18.31 Vendor Error Type Extension Structure
Table 18.32 Trigger Error Action

Table 19.1 ASL Grammar Notation

Table 19.2 Named Object Reference Encodings
Table 19.3 Definition Block Name Modifier Encodings
Table 19.4 ASL Escape Sequences

Table 19.5 Summary of ASL Data Types

Table 19.6 Data Types and Type Conversions

Table 19.7 Object Conversion Rules

Table 19.8 Object Storing and Copying Rules

Table 19.9 Reading from ArgX Objects

Table 19.10 Writing to ArgX Objects

Table 19.11 Reading from LocalX Objects

Table 19.12 Writing to LocalX Objects

Table 19.13 Reading from Named Objects

Table 19.14 Writing to Named Objects

Table 19.15 ASL Operators Summary List

13

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 19.16 ASL compiler controls

Table 19.17 ACPI table management

Table 19.18 Miscellaneous named object creation

Table 19.19 Operation Regions and Fields

Table 19.20 Buffer Fields

Table 19.21 Synchronization

Table 19.22 Object references

Table 19.23 Integer arithmetic

Table 19.24 Logical operators

Table 19.25 Method execution control

Table 19.26 Data type conversion and manipulation
Table 19.27 Resource Descriptor macros

Table 19.28 Constants

Table 19.29 Control method objects

Table 19.30 Concatenate Data Types

Table 19.31 Concatenate Object Types

Table 19.32 Debug Object Display Formats

Table 19.33 Field Unit List Entries

Table 19.34 OperationRegion Address Spaces and Access Types
Table 19.35 Match Term Operator Meanings

Table 19.36 Values Returned By the ObjectType Operator
Table 19.37 Pin Configuration Types and Values

Table 19.38 Pin Group Configuration Types and Values
Table 19.39 PLD Keywords and Assignment Types

Table 19.40 PLD Keywords and assignable String Values
Table 19.41 UUID Buffer Format

Table 19.42 UART Serial Bus Connection Resource Descriptor - Version 2 Macro
Table 20.1 AML Grammar Notation Conventions

Table 20.2 AML Byte Stream Byte Values

Table A-1: Default Power State Definitions

Table A-2: Default Power Management Policy

Table A-3: Audio Device Power State Definitions

Table A-4: Audio Device Power Management Policy
Table A-5: COM Port Device Power State Definitions
Table A-6: COM Port Device Power Management Policy
Table A-7: CRT Monitors Power State Definitions

14

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table A-8:
Table A-9:

Internal Flat Panel Displays Power State Definitions

External Digital Displays Power State Definitions

Table A-10: Standard TV Devices and Analog HDTVs Power State Definitions

Table A-11: Other (new) Full Screen Display Devices Power State Definitions

Table A-12:
Table A-13:
Table A-14:
Table A-15:
Table A-16:
Table A-17:
Table A-18:
Table A-19:
Table A-20:
Table A-21:
Table A-22:
Table A-23:
Table A-24:
Table A-25:

Policy

Table A-26:

Table B-1:
Table B-2:
Table B-3:
Table B-4:
Table B-5:
Table B-6:
Table B-7:
Table B-8:

Video Controllers (Graphics Adapters) Power State Definitions
Display Device Power Management Policy

Input Device Power State Definitions

Input Device Power Management Policy

Modem Device Power State Definitions

Modem Device Power Management Policy

Network Device Power State Definitions

Network Device Power Management Policy

PC Card Controller Power State Definitions

PC Card Controller Power Management Policy

Floppy Disk Devices Power State Definitions

IDE Channel Devices Power State Definitions

IDE Channel Devices Power Management Policy
Video Extension Object Requirements

Video Output Device Attributes

Example Device IDs

Notifications for Display Devices

Output Device Status

Device State for _DGS

Device State for _DSS

Notification Values for Output Devices

Hard Disk, CD-ROM and IDE/ATAPI Removable Storage Devices Power State Definitions

Hard Disk, Floppy Disk, CD-ROM and IDE/ATAPI Removable Storage Devices Power Management

15

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

List of Figures

* Fig.
* Fig.
* Fig.
* Fig.
* Fig.
* Fig.
* Fig.
» Fig.
* Fig.
* Fig.
* Fig.
* Fig.
* Fig.
* Fig.
* Fig.
* Fig.
* Fig.
* Fig.
» Fig.
* Fig.
* Fig.
» Fig.
* Fig.
* Fig.
* Fig.
 Fig.
* Fig.
* Fig.
* Fig.
* Fig.
* Fig.
* Fig.
» Fig.

1 ACPI overview

2 ACPI Structure

3 ASL and AML

4 ACPI Initialization

5 Runtime Thermal Event

1.1 OSPM/ACPI Global System

3.1 Global System Power States and Transitions

3.2 Example Modem and COM Port Hardware

3.3 Reporting Battery Capacity

3.4 Formula for Remaining Battery Percentage

3.5 Formula for the Present Drain Rate

3.6 Low Battery and Warning

4.1 Generic Hardware Feature Model

4.2 Global States and Their Transitions

4.3 Example Event Structure for a Legacy/ACPI Compatible Event Model
4.4 Block Diagram of a Status/Enable Cell

4.5 Example Fixed Hardware Feature Register Grouping
4.6 Register Blocks versus Register Groupings

4.7 Power Management Timer

4.8 Fixed Power Button Logic

4.9 Fixed Hardware Sleep Button Logic

4.10 Sleeping/Wake Logic

4.11 RTC Alarm

4.12 Power Management Events to SMI/SCI Control Logic
4.13 Example of General-Purpose vs. Generic Hardware Events
4.14 Example Generic Address Space Lid Switch Logic
5.1 Root System Description Pointer and Table

5.2 Description Table Structures

5.3 APIC-Global System Interrupts

5.4 8259 - Global System Interrupts

5.5 MPST ACPI Table Overview

5.6 Memory Power State Transitions

5.7 Image Offset

. 5.8 FPDT Hierarchy Structure
. 5.9 NVDIMM Firmware Interface Table (NFIT) Overview

16

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

5.10 HMAT Representation

5.11 Memory Side Cache Example

5.12, Mapping a PDTT Debug Trigger Table Entry to a PCCT PCC Subspace
5.13 Example: Platform with four debug triggers
5.14 L1 Cache Structure

5.15 Cache Type Structure - Type 1 Example

5.16 Example ACPI NameSpace

5.17 AML Encoding

6.1 System Panel and Panel Origin Positions

6.2 Laptop Panel and Panel Origin Positions

6.3 Default Shape Definitions

6.4 PLD Back Panel Rendering

6.5 System Locality information Table

6.6 Device Ejection Flow Example Using _OST
7.1 Working / Sleeping State object evaluation flow
8.1 Processor Power States

8.2 Throttling Example

8.3 Equation 1 Duty Cycle Equation

8.4 Example Control for the STPCLK

8.5 ACPI Clock Logic (One per Processor)

8.6 Processor Hierarchy

8.7 Power states for processor hierarchy

8.8 Worst case wake latency

8.9 Energy of states A,B and C versus sleep duration
8.10 Platform performance thresholds

8.11 OSPM performance controls

9.1 A five-point ALS Response Curve

9.2 A two-point ALS Response Curve

9.3 Example Response Curve for a Transflective Display
9.4 USB ports

9.5 Persistence of expired timer events

9.6 System transitions with WakeAlarm — Timer
9.7 System transitions with WakeAlarm — Policy
9.8 Vendor/Device Specific Driver Loading

10.1 Typical Smart Battery Subsystem (SBS)

10.2 Single Smart Battery Subsystem

17

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 10.3 Smart Battery Subsystem

Fig. 10.4 Remaining Battery Percent Formula

Fig. 10.5 Remaining Battery Life Formula

Fig. 10.6 Power Meter and Power Source/Docking Namespace Example
Fig. 11.1 ACPI Thermal Zone

Fig. 11.2 Thermal Events

Fig. 11.3 Temperature and CPU Performance Versus Time

Fig. 11.4 Active and Passive Threshold Values

Fig. 11.5 Cooling Preferences

Fig. 12.1 Shared Interface

Fig. 12.2 Private Interface

Fig. 12.3 Interrupt Model

Fig. 13.1 Bit Encoding Example

Fig. 13.2 Smart Battery Subsystem Devices

Fig. 13.3 Smart Battery Device Virtual Registers

Fig. 14.1 Communication flow of the doorbell protocol

Fig. 14.2 Communication flow for notifications on slave subspaces
Fig. 16.1 Example Sleeping States

Fig. 16.2 Platform Firmware Initialization

Fig. 16.3 Example Physical Memory Map

Fig. 16.4 Memory as Configured after Boot

Fig. 16.5 OS Initialization

Fig. 18.1 APEI error flow example with external RAS controller

Fig. B-1: Example Display Architecture

18

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Revision History

Table 1: Changes in this release

Revision | Mantis # / Description Affected Content

6.4 1933 Remove obsolete DDBHandle data type Section 19, Section 20

6.4 1975 NFIT PMTT Memory Topology Section 5.2.21.12, Section 9.20.3

6.4 1988 VDIMM SPA Location Cookie Table 5.109

6.4 1991 Generic Initiator clarifications Table 5.59, Section 5.2.27.1, and
Section 5.2.27.4

6.4 1997 Add Fuel Gauge Support to Control Method Battery device | Section 10.2, Section 10.2.1, Table
10.3, Table 10.11

6.4 2006 Add _SB._OSC bit for native USB 4 support/control Section 6.2.11.1.3, Table 6.13,

Section 6.2.11.3

6.4 2010 Define new PCC Structure (Type 5) Section 14.1.7, Section 14.4, Sec-
tion 5.2.28.1
6.4 2044 Query ARS Capabilities Clarification Table 9.20
6.4 2045 CXL ACPI enumeration Table 5.172, Section 6.5.11
6.4 2056 Signature Reservation for Regulatory Graphics Resource | Table 5.6
Table (RGRT)
6.4 2070 Define Address encoding for PCI BAR Target GAS struc- | Table 5.2, Table 6.13
ture
6.4 2075 Add reference to CDAT Structure from ACPI table Section 17, https://uefi.org/acpi
6.4 2076 Reserve CEDT signature Table 5.6, https://uefi.org/acpi
6.4 2077 Clarify CXL _CBR enumeration method Table 6.70
6.4 2081 Add Connection Descriptor definition and macro for MIPI | Table 6.55, Section 6.4.3.8.2.4,
CSI-2 Section 19.6.24
6.4 2087 Add MultiProcessor Wakeup structure Table 5.21, Section 5.2.12.19
6.4 2090 ECR for Battery Charge Limiting (BCL) mode support Section 3.9.6, Table 6.13, Table
10.10, Table 10.6, Section 10.2.2.5
6.4 2094 New platform telemetry data table - PTDT, reservation and | Table 5.5, Section 5.2.30
definition
6.4 2104 Reserve ACPI table signature for the PRMT Table 5.6
6.4 2105 Increase FADT Major & Minor number to match next ACPI | Table 5.9
release.
6.4 2108 Add new ACPI device ID for USB4 host routers Table 5.172
6.4 2111 Add Access Components for Secure ACPI Enumerated De- | Section 5.2.26.1.1
vices in the SDEV table
6.4 2118 AEST table signature reservation Table 5.6
6.4 2120 MPAM Table Name Reservation Table 5.6
6.4 2121 HMAT updates to support systems with heterogeneous | Section 5.2.27.1, Section 5.2.27.4
memory
6.4 2126 Rename SBSA Generic Watchdog and move the spec link | Section 5.2.24, Table 5.100, and
to the UEFI website Section 5.2.24.2
6.4 2127 BDAT name reservation Table 5.6
6.4 2133 Remove reference to DMA Protection Policy Table (DPPT) | Table 5.5
6.4 2137 Extend _DDC to support greater than 256 byte buffer return | Section 23.6.5
6.4 2138 ACPI-based Identifiers for Caches Table 5.137, Section 5.2.29.1, Ta-
ble 5.140, Table 5.141
6.4 2144 Clarify SSDT load order Section 5.2.11
6.4 2146 Error in the HMAT System Locality Latency and Bandwidth | Table 5.129

Information Structure

continues on next page

19

https://uefi.org/acpi
https://uefi.org/acpi

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 1 — continued from previous page

6.4 2150 Clarify description of CoordType in _PSD object Table 8.1, Table 8.3, Table 8.19,
Table 8.22
6.4 2156 Corrections to the FPDT Fig. 5.8, Table 5.87, Section
5.2.23.1, Section 5.2.23.2, Section
5.2.23.3, Section 5.2.23.4, Section
5.2.23.5, Section 5.2.23.6, Section
5.2.23.7, Section 5.2.23.8
6.4 2157 Processor object cleanup missed ProcessorObj in Object- | ObjectTypeKeyword, Table 19.36
TypeKeyword list
6.4 2159 6.3A contains incorrect heading levels for some sections various sections
6.4 2162 Reserve ACPI table signature for the SVKL Table 5.6
6.4 2169 IRQ macro description incorrectly refers to the IO macro Section 19.6.66
6.4 2170 Feedback on the 6.4 draft multiple sections; see Mantis for
details
6.4 2171 Heading changes for consistency in section 19.6 Section 19.6.102, Section
19.6.103, Section 19.6.104,
Section 19.6.105, and Section
19.6.106
6.4 2176 EINJ: Correction for GET_COMMAND_STATUS Action. | Table 18.17
6.4 2179 _BPT control method: arg2 description is incomplete in | Section 10.2.2.10
ACPI 6.4 draft
6.4 2180 New section from ECR M2010 misplaced in ACPI 6.4 draft | Section 14.1.7
6.4 2181 Missing new items in ACPI Predefined Names table Table 5.173
6.4 2182 Multiprocessor Wakeup Structure misplaced in spec Table 5.21, Section 5.2.12.19
6.4 2183 Incorrect PHAT reference in Table 5-5 Table 5.5
6.4 2186 Error in sample code Section 5.6.9.2, Section 5.6.9.3
6.4 2187 Some parts of SDEV sections should be re-ordered Section 5.2.26.1
6.4 2191 Feedback on ACPI 6.4 draft various sections
6.4 2197 Typos in the t-state dependency and p-state dependency ta- | Table 8.19, Table 8.22
bles
Table 2: Changes in previous releases
Revision Mantis # / Description Affected Content
Number
6.3 A 1952 Serious issues with Generic Serial Bus chapters Section 5.5
63A 1972 Add links to grammar definitions Section 19.2, Section 20.2, Section
21.2.2
6.3 A 1973 Change name of TypeXOpcodes for clarity Section 19.2, Section 20.2
63A 1977 Errata for GHES_ASSIST (APEI) feature Table 18.3, Table 18.5, Table 18.10,
Table 18.15, and Section 18.7
6.3 A 1981 Minor issues with BGRT description and field | Table 5.86
names.
6.3 A 1985 ASL macro definitions reversed between “For” | Section 19.3.4
and “Fprintf”
6.3 A 1990 _PRO fixes Section 7.3.8
6.3 A 1995 Clarifcation to the Guaranteed Performance Reg- | Section 8.4.7.1.1.6
ister implementation
6.3 A 2001 Clarifications for PCI Express AER ownership Section 18.3.2.4, Section 18.3.2.5,

Section 18.3.2.6

continues on next page

20

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 2 — continued from previous page

6.3 A 2004 Appendices numbering Appendix A: Device Class Specifica-
tions, Appendix B: Video Extensions,
Appendix C: Deprecated Content
63A 2011 _DSD link in Generic Buttons Device Child Ob- | Section 9.19
jects table
6.3 A 2012 Clarify allowed values for ACPI0007 _UIDs Section 5.2.12, Section 6.1.12
6.3 A 2021 Typo in PM_TMR_BLK field Table 5.9
6.3 A 2022 Errors in description of “X_GPEO_BLK” Table 5.9
6.3 A 2037 Incorrect reference in Real Time Clock Alarm Section 4.8.3.3
6.3 A 2047 Clarifications and Fixes to the Error Injection | Section 18.6
(EINJ) section
6.3 A 2052 Clarify behavior of PerformanceLimitedRegister | Section 8.4.7.1.3.2
in _CPC
6.3 A 2057 Clarify wording of delivered performance con- | Section 8.4.7.1.3.1
straints in CPPC
6.3 A 2059 EISAID Macro - missing algorithm Section 19.3.4
63 A 2064 Make “DPA” definition more generic Device Physical Address (DPA), Sec-
tion 9.20.7.8, Section 9.20.7.8.3
63A 2067 Clarify _HID and _ADR usage Section 6, Section 6.1, Section 6.1.1,
Section 6.1.2, Section 6.1.5
6.3 A 2069 Update figure OSPM/ACPI Global System Fig. 1.1
6.3 A 2072 Deprecate “PPTT Type 2 - Processor ID” section | Was section 5.2.29.3 in ACPI Spec 6.3
6.3 A 2098 Clarification of supported ACPI platform imple- | Table 3.3
mentations
6.3 A 2100 Correction/Clarification of _CBA description Table 5.173
6.3 A 2109 Incorrect SLIT reference in “DESCRIP- | Table 5.5
TION_HEADER Signatures for tables defined by
ACPI”
6.3 A 2112 _TZP questions and issues Section 11.4.26
6.3 A 2113 Label tables in the OS Initiated section of Idle | Section 8.4.4.2.2, Section 8.4.4.2.2.1
State Coordination
6.3 A 2115 Duplicate definition of RawDataBufferTerm Section 19.2.6
63 A 2123 Interrupt Polarity _LL values do not agree between | Section 19.6.64 and Section 19.6.66
chapters
6.3 A 2128 Some changes from ECR 1588 are missing in | Section 19.6.64
ACPI 6.3
6.3 A 2140 Incorrect offsets in PCC Subspace Structures type | Table 14.7
3 and 4
6.3 A 2141 Typos in Chapters 5 and 17 Revision History, Table 5.23, Section
17.3.1, and Section 17.4.1
6.3 A 2145 Error in the PCC Type 3 and 4 subspace descrip- | Table 14.7
tion
6.3 1851 Extend GTDT to describe ARMv8.1 architected | Section 5.2.24
CNTHYV timer
6.3 1855 ARS Error Inject Table 9-299, Section 9.20.7.7, Section
9.20.7.9.1, Section 9.20.7.12
6.3 1867 Add Trigger order to PCC Identifier structure | Section 5.2.28
within PDTT
6.3 1873 Peripheral-attached Memory Table 5-132
6.3 1883 Reserve the table names “CRAT” and “CDIT” http://uefi.org/acpi
6.3 1893 New NVDIMM Device methods _NCH and _NBS | Section 9.20.8.1, Section 9.20.8.2

continues on next page

21

http://uefi.org/acpi

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 2 — continued from previous page

6.3 1898 PCC Operation Region Section 5.5.2.4, Section 6.5.4, Section
19.2.7, Section 19.6, Section 20.2.5.2
6.3 1900 I3C host controller support Table 6-190, Table 6-241
6.3 1904 Generic Initiator Affinity Structure Section 5.2.16
6.3 1910 NVDIMM Address Range Scrubbing (ARS) inter- | Section 5.6.6, Section 9.20.7
face update
6.3 1911 _PRD object in Table 6-186 has no definition Appendix C
6.3 1913 New NVDIMM Device methods for Health Error | Section 5.6.6, Section 9.20.8
Injection
6.3 1914 HMAT Enhancements Section 5.2.27
6.3 1922 _HPX Enhancements Section 6.2.9
6.3 1930 ASL: Make some arguments to ASL operators op- | Section 19.6.7, Section 19.6.46, Sec-
tional tion 19.6.63, Section 19.6.88
6.3 1931 ASL: extend Load() operator to allow table load | Section 19.6.76
from an ASL buffer
6.3 1932 ASL: deprecate Unload operator Section 19.6.146 and related refer-
ences
6.3 1934 SPE support for ARM Section 5.2.12.14, Table 5-155
6.3 1939 Error Disconnect Recover Notification Table 5-165, Section 6.3.5
6.3 1944 Outdated copied text from PCI Firmware Spec Section 6.2.11.3, Section 6.2.11.4
6.3 1946 Generic Initiator _OSC Bit Section 5.2.16.6, Table 6-200
6.3 1948 Adds an “Online Capable” flag to the Local APIC, | Tables 5-46, 5-47, 5-55, and 5-58
Local SPAPIC, and x2APIC structures in MADT
6.3 1958 PCC Operation Region Updates Section 5.5.2.4, Section 19.2.7, Table
19-420, Section 20.2.5.2
6.3 1959 Update to ECR 1914 Table 5-146
6.3 1978 GT Block Timers table - update the Timer Inter- | Table 5-126
rupt Mode description
6.3 1979 ACPI version change from 6.2 to 6.3 Table 5-33
6.3 1980 Fix link to local APIC flags in the Processor Local | Table 5-46
APIC Structure table
6.2B 1819 Errata: remove support for multiple GICD struc- | Table 5-43
tures
6.2B 1852 Fix Inconsistent TranslateType Language Section 19.6.33, Section 19.6.34, Sec-
tion 19.6.41, Section 19.6.42, Section
19.6.109, Section 19.6.110, Section
19.6.151
6.2B 1870 PPTT Clarifications Section 5.2.29.1
6.2B 1881 Incorrect reference “Memory Devices” in | Section 5.2.21.10
“5.2.21.10 Interaction with Memory Hot Plug”
6.2B 1882 Incorrect EINJ table references/link Table 18-404
6.2 B 1894 SRAT GICC Flags Field Definition Errata Table 5-76
6.2B 1905 Missing description in 6.1.9 title in ACPI 6.2a Section 6.1.9
6.2B 1909 Update NFIT SPA Range Structure Table 5-132
6.2B 1929 Miscellaneous Errata Section 19.6.38, Section 19.6.53, Sec-
tion 19.6.54, Removed redundant In-
terrupt section (now Section 19.6.63)
6.2B 1945 NFIT_SPA_ECR Section 5.2.25.2

continues on next page

22

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 2 — continued from previous page

6.2B 1951 _PXM Clarifications Section 5.2.16, Section 5.2.16.6, Sec-
tion 6.2.14, Section 6.2.15, Section
17.2, Section 17.2.1, Section 17.3,
Section 17.3.1, Section 17.4, Section
17.4.1
6.2B 1960 PWR_BUTTON desription should say “power | Table 5-34
button”, not “sleep button”
6.2B 1962 Clarifications for the use of _REG methods Section 6.5.4
6.2B 1965 Clean up Address Space ID Table 5-25, Table 6-238, Section
19.6.114, Section 19.2.7
6.2B 1968 Clarifications for ACPI Namepaths Section 5.2
6.2 A 1839 Missing space in title of ACPI RAS Feature Table | Section 5.2, Section 5.2.20, Table 5-
(RASF) 29
6.2 A 1837 Typos in Extended PCC subspaces (types 3 and 4) | Section 14.1.6
62 A 1831 Add a new NFIT Platform Capabilities Structure Section 5.2.25.1, Figure 5-22, Table
5-131, Section 5.2.25.9
6.2 A 1827 PPTT ID Type Structure offsets Section 5.2.29.3
6.2 A 1825 Remove bits 2-4 in the Platform RAS Capabilities | Section 5.2.20.4
Bitmap table
6.2 A 1820 Region Format Interface Code description Section 5.2.25.6
6.2 A 1819 Remove support for multiple GICD structures Section 5.2.12, Section 5.2.12.1
6.2 A 1814 PDTT typos and PPTT reference Revision History, Section 5.2, Section
5.2.28
6.2 A 1812 Minor correction to Trigger Action Table Section 18.6.4
6.2 A 1811 General Purpose Event Handling flow Section 5.6.4
6.2 1795 ACPI Table Signature Reservation Table 5-30
6.2 1781 Clarify ResourceUsage Descriptor Argument Table 6-193
6.2 1780 Add DescriptorName to PinFunction and PinCon- | Section 19.6.102 and Section
fig Macros 19.6.103
6.2 1770 Update Revision History Revision History
6.2 1769 FADT Format: ACPI Version update to reflect 6.2 | Table 5-33
versus 6.1
6.2 1755 Deprecate PCC Platform Async Notifications Section 14.4, and Section 14.5.1
6.2 1743 PinGroupFunctionConfig resource descriptors up- | Section 6.4.3.11, Section 6.4.3.12,
date Section 6.4.3.13
6.2 1738 PCIEXP_WAKE Bits description updates Table 4-15, Table 4-16, and Table 5-
34
6.2 1731 Software Delegated Exception HW error notitica- | Section 18-394
tion
6.2 1725 NVST Updates - NFIT ARS Error Injection Section 9.20.7.9, Section 9.20.7.10,
and Section 9.20.7.11
6.2 1724 NVST Updates - Platform RAS Capabilities Up- | Section 5.2.20.4
dates
6.2 1723 NVST Updates - Translate SPA DSM Interface Section 2.1, Section 9.20.7.8
6.2 1722 NVST Updates - ARS Updates Section 2.1, Section 9.20.7.2, Section
9.20.7.4, Section 9.20.7.5, and Sec-
tion 9.20.7.6
6.2 1721 NVST Updates - Labels Section 2.1, Section 5-184, and Sec-
tion 6.5.10
6.2 1717 ASL Grammar Update for Reference Operators Section 19.2
6.2 1714 Reserve the table name “SDEI” Table 5-30

continues on next page

23

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 2 — continued from previous page

6.2 1705 Add Heterogeneous Memory Attributes Tables | Section 5.2, Section 5.6.6, Section
(HMAT) 5.6.8, Section 6.2, Section 6.2.18, and
Section 17.4
6.2 1703 Time & Alarm Device _GCP new bits Section 9.18.2
6.2 1680 Pin Group, Pin Group Function and Pin Group | Table 6-224 and Section 6.4.3.10
Configuration Descriptors and Macros
6.2 1679 Pin Configuration Descriptor and Macro Table 6-224 and Section 6.4.3.10
6.2 1677 CPPC Registers in System Memory Section 6.2.11.2 and Section 8.4.7.1
6.2 1674 GHES_ASSIST Proposal Section 18.3.2
6.2 1669 FADT HEADLESS flag should be wvalid for | Section 5.2.9
HW_REDUCED_ACPI platforms
6.2 1667 Processor Properties Topology Table (PPTT) Section 5.2.29
6.2 1659 Master Slave PCC channels Chapter 14, Platform Communica-
tions Channel (PCC)
6.2 1656 SRAT Support for ITS Section 5.2.16
6.2 1650 CPPC Support for Multiple PCC Channels Table 6-200 and Section 8.4.7.1.9
6.2 1649 ECR: Minor updates to IA-32 Architecture De- | Section 18.3.2.10
ferred Machine Check
6.2 1645 Add _STR Support for Thermal Zones Section 6.1, Section 6.1.10, Section
11.4, Section 11.4.14, and Section
11.7.1
6.2 1632 Secure Devices Table (SDEV) Table 5-30
6.2 1611 Add a _PPL object to processor devices Section 8.4.7
6.2 1597 ASL For() Conditional Loop Macro Section 19.6.51, Section 19.2.5, Sec-
tion 19.2.6, and Section 19.3.4
6.2 1588 Clarification on Interrupt Descriptor Usage for | Section 6.2.11.2, Section 6.4.3.6, Sec-
“Interrupt Combining” tion 19.6.62
6.2 1585 Reserve table signature “WSMT, ~ with reference | Table 5-30
to ACPI links page for more details
6.2 1583 Diverse Highest Processor Performance Table 5-158 and Table 6-200
6.2 1578 Function Config Descriptor and Macro Table 6-213 and Section 6.4.3.9
6.2 1576 Platform Debug Trigger Table (PDTT) Section 5.2.28
6.2 1573 Extensions to the ASL Concatenate operator Section 19.2.6 and Section 19.6.12
6.2 1569 Add new introduction (background) section Background chapter
6.1 Errata A 1796 Clarity that Type 1 can never support Level trig- | Section 14.1.4
gered platform interrupt
6.1 Errata A 1785 Lack of clarity on use of System Vector Base on | Section 5.2.12.15
GICD structures
6.1 Errata A 1783 Clarification on Interrupt Descriptor Usage for Bit | Table 6-237
[0] Consumer/Producer
6.1 Errata A 1760 Typo - incorrect bit offsets in the PM 1 Enable Reg- | Table 4-16
isters Fixed Hardware Feature Enable Bits table.
6.1 Errata A 1758 Minor Errata in ERST tables, Serialization In- | Table 18-399 and Table 18-405
struction Entry and Injection Instruction Entry.
6.1 Errata A 1756 Errata: Ensure non-secure timers are accesible to | Table 5-126
non-secure in the Flag Definitions: Common Flags ta-
ble.
6.1 Errata A 1740 Errata in section 9.13: wrong reference Section 9.13
6.1 Errata A 1715 O is a valid GSIV for the secure EL1 physical timer | Table 5-120

in GTDT

continues on next page

24

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 2 — continued from previous page

6.1 Errata A 1687 Typo in the Reserved field of the GIC ITS Struc- | Table 5-66
ture table.
6.1 Errata A 1686 Clarification of the FADT HW_REDUCED_ACPI | Table 5-33
flag description in the FADT Format table.
6.1 Errata A 1676 Clarifications for the ASL Buffer (Declare Buffer | Section 19.6.10
Object)
6.1 Errata A 1671 Typo in Memory Affinity Structure table Section 5-72
6.1 Errata A 1670 Update for _OSI return value Section 5.7.2
6.1 Errata A 1664 Clarification of the RSDP Structure table, Revi- | Table 5-66
sion description.
6.1 Errata A 1662 Clarification of the Generic Communications | Table 14-370
Channel Command Field table.
6.1 Errata A 1661 typos in the Generic Communications Channel | Table 14-371 and Section 14.5
Status Field table and the Platform Notification section.
6.1 Errata A 1660 type in the Generic Communications Channel | Table 14-369
Shared Memory Region table
6.1 Errata A 1651 LPI Clarifications Section 8.4.4.3
6.1 Errata A 1644 Mismatch of mantis number 1449 vs. change de- | Revision History
scription
6.1 Errata A 1643 Incorrect Trow order in | Table 18-397
GET_EXECUTE_OPERATION_TIMINGS table
6.1 Errata A 1642 Clarifications and fixes to _PSD and _TSD Table 5-184
6.1 Errata A 1639 _WPC and _WPP are missing in the Predefined | Table 5-164
ACPI Names table.
6.1 Errata A 1616 Clarify which processor ID to use in the EINJ for | Table 18-403
ARM
6.1 Errata A 1606 Errata: typos in the Interrupt Resource Descriptor | Section 19.6.62
Macro definition
6.1 Errata A 1602 Updates to the PMC Method Result Codes table Table 10-338
6.1 Errata A 1601 Typos in the _CPC Implementation Example Section 8.4.7.1.11
6.1 Errata A 1600 Typos in PCC Subspace Structure Type 1 and Type | Table 14-366 and Table 14-367
2.
6.1 Errata A 1599 Add clarification to existing text (_OSC Control | Table 6-202
Field via arg3)
6.1 Errata A 1591 ASL grammar clarification for “executable” AML | Section 5.4
opcodes
6.1 Errata A 1589 Wireless Power Calibration Device ACPI ID not | Section 10.5 (Table 10-292 removed)
defined and Table 5-163
6.1 Errata A 1582 Clarification for Time and Alarm wake description | Section 9.18.1
6.1 Errata A 1581 Processing Sequence for Graceful Shutdown Re- | Table 5-166 and Section 6.3.5.1
quest - need to update section 6.3.5.1 to reflect change
6.1 Errata A 1579 typos Table 5-130 and Table 5-131
6.1 Errata A 1577 BGRT Image Orientation Offset Table 5-107
6.1 Errata A 1572 Update ASL grammar to support multiple Defini- | Section 19.2.3
tion Blocks
6.1 Errata A 1571 Update AML Filename description for ASL Defi- | Section 19.6.28
nitionBlock operator
6.1 Errata A 1552 GIC Redistributor base address language in GICC | Table 5-60
leaves room for ambiguity
6.1 Errata A 1549 Errata: wrong offset in Generic Communications | Table 14-369

Channel Shared Memory Region table.

continues on next page

25

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 2 — continued from previous page

6.1 1527 Qualcomm feedback on ACPI 6.1 draft 2 Throughout
6.1 1524 Strange hotlink Section 5.7.5
6.1 1514 Comments against 6.1 Draft from HPE Minor corrections and fixed typos
throughout document, especially Sec-
tion 9.20.7.2
6.1 1512 Microsoft feedbacks on ACPI 6.1 draft 2 Section 5.2.25, Section 9.20.7, Sec-
tion 18.3.2
6.1 1503 Editorial comments against 6.1 Draft 1 Throughout—draft corrections & typos
6.1 1500 ACPI 6.1 - Graceful Shutdown (Device Object | Table 5-166
Notification)
6.1 1499 _FIT and _MAT ASL nits in 6.0 and 6.1 Draft Section 6.2.10, Section 6.5.9
6.1 1490 ACPI Version update to reflect 6.1 versus 6.0 Table 5-33
6.1 1483 NFIT SPD extensions and clarifications Section 5.2.25x, Section 6.5.9, Sec-
tion 9.20x
6.1 1478 Wireless Power Calibration ACPI Device Section 10.5 & Section 10.6
6.1 1427 Addition to Memory Device State Flags in NFIT | Table 5-133
6.1 1395 _DSM interfaces associated with NVDIMM-N | Section 9.20.2x through Section
objects 9.20.7
6.1 1384 ERST/EINJ max wait time Table 18-397, Table 18-404
6.1 1367 Interrupt-signaled Events Section 4.1.1.1 Section 5.6, , Section
5.6.10, Section 5.6.4, Section 5.6.5
Section 5.6.5.2, Section 6.2.11.2, Sec-
tion 7.3.13, Section 18.3.2.7.2, Sec-
tion 18.4, and added
6.1 1356 ARM APEI extensions Section 18.3.2.7, Section 18.3.2.8,
Section 18.3.2.9
6.1 1326 Section 2.2, Table 5-37, Section
7.4.2.5, Section 15, Table 15-374,
Section 16.1.4
6.0 Errata 1488 Typo on description of Pkglength encoding | Section 5.4
(ACPI v6.0, section 5.4)
6.0 Errata 1487 The Length of GIC ITS Structure is wrong Table 5-66
6.0 Errata 1470 Region Format Interface Code clarification Table 5-137
6.0 Errata 1462 5.2.21 Errata Section 5.2.21
6.0 Errata 1461 5.2.21.10 Clarification Section 5.2.21.10
6.0 Errata 1449 Graceful Shutdown Request (Device Object Noti- | Section 2.1, Table 5-44, Section
fication Values) 5.2.12.6, Table 5-51, Section 5.2.12.9,
Section 5.2.12.14 through Section
5.2.12.18, Section 5.2.25, Section 5.6,
Table 6-193, Table 6.2.10, Table 6-
249, Table 6.5.9
6.0 Errata 1445 Section 19.6.99 “Package” of the specification | Section 19.6.100
needs updating
6.0 Errata 1444 GTDT CntReadBase Physical address should be | Section 5.2.24
optional
6.0 Errata 1433 Time and Alarm _GCP changes in support of | Section 9.18.2
wakes from S4/S5
6.0 Errata 1432 Errata - Explicit Data Type Conversions Section 19.3.4, Section 19.3.5.2, Sec-
tion 19.3.5.3
6.0 Errata 1406 NFIT RAMDisk Update Section 5.2.25.2

continues on next page

26

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 2 — continued from previous page

6.0 Errata 1403 Two distinct definitions of the MADT have the | Table 5-43
same revision number
6.0 Errata 1393 In FADT: if X_DSDT field is non-zero, DSDT | Table 5-33
field should be ignored or deprecated
6.0 Errata 1392 Incorrect length in the GIC ITS Structure Table 5-66
6.0 Errata 1386 Clarify APEI vs UEFI runtime variable support Table 18-397
6.0 Errata 1385 ACPI 6.0 typo and table misnumbering Section 18.5.2.1
6.0 Errata 1380 Unnecessary restrictions to FW vendors in order- | Section 5.2.12.14
ing of GIC structures in MADT
6.0 Errata 1378 Duplication of table 5-155/156, section mismatch | Table 5-175 & Table 5-180 duplicates
in GIC redistributor removed, Section 5.2.12.17
6.0 Errata 1374 section mismatch: _CCA method belongs to sec- | Table 6-189/Table 6-193
tion 6.2 Device Configuration Objects?
6.0 Errata 1372 Fix inconsistency for _PXM method in section 17 | Section 17.2.1, Section 17.3.2
6.0 Errata 1368 Various errata fixes and clarifications in chapter 18 | Section 18.3.1, Section 18.3.2.7.1,
APEI Section 18.5.1, Section 18.6.1, Sec-
tion 18.6.2, Section 18.6.4
6.0 Errata 1361 Clarify _PIC Method on ARM Section 5.8.1
6.0 Errata 1289 replace use of the term “BIOS” with more accurate | Throughout spec
descriptions
6.0 Errata 1154 Ensure that ACPI and UEFI specs agree on the | Section 15.4
treatment of “holes” in the memory map
6.0 1344 Sharing of Connection Resources, NOTE: The | Section 5.5.2.4.6 through Section
changes were included in ACPI 6.0, but was missed in | 5.5.2.4.6.3.9 Section 19.6.15
the ACPI 6.0 Revision History
6.0 1370 Changes needed for ACPI 6.0: persistent memory | Section 16.3.4
S4 behavior
6.0 1359 Vendor Range for E820 Address Types and UEFI | Table 15-374
memory Types
6.0 1354 Disambiguation of _REV Section 5.7.4
6.0 1343 Comments against v6.0 Final Draft Section 18.6.2, Section 18.6.4
6.0 1340 comment against the Final Draft: Minor errata in | Section 8.4.4.3.4
register fields of LPI example
6.0 1332 Fixes for ACPI 6.0 Draft March 2 Table 5-37, Section 5.2.25.2, Table 5-
132
6.0 1328 ACPI 6.0 Draft feedback - Mantis 1228 Table 5-62
6.0 1337 Missing reference in Extended Address Space De- | Section 6.4.3.5.4
scriptor Definition, Section 6.4.3.5.4
6.0 1333 ACPI 6.0 March?2 Draft Feedback - Bits and NFIT | NFIT throughout
related
6.0 1329 ACPI1 6.0 Feb 18 Draft - Follow consistent notation | throughout
for Bits and Bytes ranges
6.0 1327 ACPI 6.0 Feb 18 draft feedback - NFIT related NFIT throughout
6.0 1324 ACPI 6.0 Feb 5 Draftl Feeback2 - Mantis 1250 Section 5.2, Section 5.2.25, Section
6.1.1, Section 5.6.6
6.0 1320 ACPI 6.0 Feb 5 Draftl Feedback - Mantis 1250 Section 5.2, Section 5.2.25, Section

6.1.1, Section 5.6.6

continues on next page

27

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 2 — continued from previous page

6.0 1319 Comment against ACPI 6.0 Draft 1 concerning | Section 19.1, Section 19.6.3, Sec-
Mantis 1279 tion 19.6.5, Section 19.6.26, Sec-
tion 19.6.31, Section 19.6.60, Sec-
tion 19.6.61Section 19.6.68 - Sec-
tion 19.6.74, Section 19.6.78Section
19.6.85, Section 19.6.86, Section
19.6.92
6.0 1312 Add USB-C Connection support to _UPC Table 9-293, Section 9.14
6.0 1306 New ACPI Version Placeholder Table 5-33
6.0 1302 Errata on reference in section 6.2.11.2 Platform- | Section 6.2.11.2
Wide OSPM Capabilities
6.0 1294 Typo in section 5.7.2: “Section” used when “Ta- | Section 5.7.2
ble” was meant
6.0 1293 Reserve “STAQO” and “XENV” table signatures Table 5-30
6.0 1292 A Missing space in first paragraph of Section 2.4 | Section 2.4
6.0 1284 Battery ACPI ECR Section 5-184, Section 10.2.2.7, Table
10-329, Section 10.2.2, Table 10-331
6.0 1282 AML: Improve Disassembly of Control Method | Section 19.6.44, Section 20.2.5.2,
Invocations Section 20-440
6.0 1281 ASL Printf and Fprintf Debug MacrosTable 10- | Section 19.2.5, Section 19.2.6, Sec-
331Table 10-331 tion 19.3.4, Section 19.3.5.2, Section
19.3, Section 19.4, Section 19.6.52,
Section 19.6.107
6.0 1280 ASL Helper Macro for _PLD (Physical Location | Section 19.2.6, Section 19.3.4, Sec-
of Device) - ToPLD() tion 19.3.5.2, Section 19.4, Section
19.5, Section 19.6.140
6.0 1279 ASL Extensions for Symbolic Operators and Ex- | Section 19.1, Section 19.6.3, Sec-
pressions (ASL 2.0) tion 19.6.5, Section 19.6.26, Sec-
tion 19.6.31, Section 19.6.60, Sec-
tion 19.6.61, Section 19.6.68 - Sec-
tion 19.6.74, Section 19.6.78, Sec-
tion 19.6.85, Section 19.6.86, Section
19.6.92
6.0 1265 Missing word in figure 1-1 Figure 1-1
6.0 1264 Device Power Management Clarifications Section 2.3, Section 2.3.1, Section
3.3.1, Section 3.3, Section 3.4, Sec-
tion 3.4.2, Section 3.4.3, Section
3.4.3, Section 3.4.4x), Section 7, Sec-
tion 7.1, Section 7.2x, Section 7.3
6.0 1262 New Thermal Zone Objects Table 5-184, Section 11.1.5.1, Section
11.4.8, Section 11.4.21
6.0 1261 _OSC, add OS—>Platform information to commu- | Table 6-200
nicate >16 p-states are supported
6.0 1258 Standby Thermal Trip Section 11.4.5
6.0 1253 Clarification of S5 (Soft-Off) and S1~S4 Sleeping | Section 2.4, Section 3.9.4, Section
States 4.7, Section 4.8.2.3, Section 4.8.3.2.1,
Section 7.3.1
6.0 1252 Incorrect Indentation in first page of Section 3 Section 3
6.0 1250 Support for Non-Volatile Memory Firmware Inter- | Section 5.2, Section 5.2.25, Section

faces

6.1.1, Section 5.6.6

continues on next page

28

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 2 — continued from previous page

6.0 1241 PCC and level interrupts for HW reduced plat- | Section 14.1.2, Section 14.1.5
forms
6.0 1232 Deprecate Processor Keyword Table 5-46, Table 5-52, Section
5.2.12.10, Section 5.2.12.12, Section
8.4, Section 11.7.1, Section 11.7.2,
Section 19.6.30, Section 19.6.108
6.0 1231 Adjust max p-states Section 2.6
6.0 1230 Adding Support for Faster Thermal Sampling Table 6-200, Table 5-184, Section
11.4.17, Section 11.4.22, Section 11.6
6.0 1229 Reserve IORT and support for ARM GICv3/4 ITS | Table 5-29, Table 5-45, Section
in MADT 5.2.12.18
6.0 1206 Clarify _HID/_CID/_CLS usage model Section 6.1, Section 6.1.5, Section
6.2x
6.0 1203 CPPC heterogeneous performance capabilities Section 8.4.7, Section 8.4.7.1.10
6.0 1197: MADT Efficiency Classes and wording change | Table 5-60
for MP Parking update
6.0 1176 FADT Hypervisor Vendor Identification Support | Table 5-33
6.0 1171 Extend Address Ranger Types and UEFI Memory | Table 5-37, Section 6.4.3.5.4.1, Sec-
Type to comprehend persistent memory. tion 15, Table 15-379, Section 15.4,
Table 15-380
6.0 1152 Support for Platform-specific device reset Section 7.3.25 and Section 7.3.26 t,
Table 7-255 Table 7-256
6.0 1132 Generic Button(s) Abstraction Table 5-183, Add new Section 9.19
and following
6.0 1125 ACPI Low Power Idle Table (LPIT) and _LPD | Section 5.6.7, Section 5.6.8, Table
proposal 6-200, Section 7.1, Section 7.2.5,
Section 7.4.2.1, Section 8.4, Section
8.4.1, Section 8.4.2, Section 8.4.2.1,
Section 8.4.3.1
5.1 Errata 1265 Missing word in figure 1-1 Figure 1-1
5.1 Errata 1252 Incorrect Indentation in first page of Section 3 Section 3
5.1 Errata 1243 Clarify whether or not the FACS is optional or not | Section 5.2.9, Table 5-33
5.1 Errata 1233 Fix broken Link and Example for _CLS Section 6.1.3
5.1 Errata 1228 Present GIC version in MADT table Table 5-62
5.1 Errata 1196 Table reference in Section 9.8.3.2 is Incorrect Section 9.9.3.2
5.1 Errata 1193 Parking protocol field link is incorrect Section 5.2.12.14, Table 5-60
5.1 Errata 1190 Table references in Section 18 - ACPI Platform | Table 18-383, Table 18-385
Error Interfaces (APEI) are incorrect
5.1 Errata 1189 _CCA attribute default value description does not | Section 6.2.17
work for ARM systems
5.1 1181 MADT GICC table definition is wrong Table 5-61, 5.2.12.14
5.1 1180 FADT minor version byte length is wrong May-34
5.1 1179 Errors in GTDT Section of 5.1 draft 5.2.24, 5.2.24.1, Tables 5-115, 5-118,
5-121, 5-122
5.1 1175 Bad section reference in ACPI 5.1 19.2.3
5.1 1164 Modifications to UEFI Forum ownership of PNP | 6.1.5

ID and ACPI ID Registry

continues on next page

29

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 2 — continued from previous page

5.1 1161 Misc typos in draft documents 5.2.1.6, 5.2.16.4, 5.2.24, 5.2.12.14,
5.2.24.1.1, Table 5-74, Table 5-115-
116, Table 5-118-119, Table 5-121,
Table 5-61, 5-61 8.4.5.1, 8.4.5.1.2.3
Table 6-162, Table 8-229, RM dupli-
cates from 1123/1130:8.4.5.1.31.1
5.1 1160 ACPI 5.1 draft corrections related to _DSD (SEE | 6.2.5, Table 5-148 & 6-157
#1126)
5.1 1157 Reserve ACPI Low Power Idle Table Signature | Table 5-31
“LPIT”
5.1 1155 Updates to M1133 MADT Table 5-63, 5-64
5.1 1151 Bug in ASL example code PRT3 code example following Figure
9-49
5.1 1149 GTDT changes for new GT Configurations 5.2.24,5.24.1x
5.1 1136 Add a Notification Type for System Resource | Table 5-119 Device Object Notifica-
Affinity Change Event tions, new 17.2.2
5.1 1134 FADT changes for PSCI Support on ARM plat- | Table 5-34, 5-36, New table 5-37
forms
5.1 1135 PCC Doorbell Protocol for HW-Reduced Plat- | 14.1.1, 14.1.2-4, 14.2.1-2, 14.3-4
forms
5.1 1133 MADT Updates for new GICs 5.2.12.15-17, Table 5-43, 5.2.12 table
5-45, 5-60, 5-61, 5-63, 5-66
5.1 1131 Per-device Cache-coherency Attribute 6.2, 6.2.16, Was Table 6-142—>Table
6-153
5.1 1126 Add _DSD Predefined Object— “DeviceSpecific | Was Table 5-133 & 6-142 now—>5-
Data” properties 148 & 6-157
5.1 1123 CPPC Performance Feedback Counter Change, | Tables 5-126, 8.4.5, 8.4.5.1x , 8.4.5.1,
1130 CPPC2, [overlapping/duplicate tickets] 8.4.5.1.3.1-4
5.1 1116 Add x2APIC and GIC structure for _MAT method | 6.2.10
5.0B 1145 Support GICs in proximity domain 5.2.16 5.2. new section 16.4 new ta-
bles, 6.2.13 Table 5-65
50B 1144 Fix the gap for Notify value description 5.6.6, new tables: Table 5-132, 5-133
5.0B 1142 Error Source Notifications 18.3.2.6.2, 18.4, Table 18-290
50B 1117 Move http://acpi.info/links.htm content to UEFI | 1.10, 5.2.4, 5.2.22.3, 5.2.24, 5.6.7,
Forum Website 9.8.3.2, 13, 13.2.2 A24, A2.5, Ta-
bles 5-31, 5-60, 5-133
50B 1113 Typos in ACPI 5.0a Table 6-184
50B 1148 Inconsistent BIX object description/example Was Table 10-234—>10-250
50B 1143 Typos in ACPI 5.0a 6.1.8,8.4.1
50B 1102 Clarify Use of GPE Block Devices in Hardware- | 3.11.1, 4.1, 9.10
Reduced ACPI
5.0B Mantis 1114 Lack of description on Bit 4 of _STA 6.3.7
50A Jira 51 incorrect type information Table 19-322
5.0A Jira 50 Misspelling of “management” 3.1
50A Jira 49 Updated description of DerefOf to specify be- | 19.5.29
havior when attempt is made to de-reference a reference
(via Index) to a NULL (empty) package element.
50A Jira 48 Text changes to change PM Timer from required | 4.8.1.4,4.8.2.1,4.8.3.3,5.2.9
to optional
50A Jira 46 Figure 5-29 is a printer killer Fig 5-29
50A Jira 45 Typos in Figure 5-30 Fig 5-30

continues on next page

30

http://acpi.info/links.htm

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 2 — continued from previous page

50A Jira 44 Link issues in table 5-133 Table 5-133
50A Jira 43 Invalid AddressSpaced keywords in example | 6.5.4
ASL code, orphan _REG
5.0A Jira 42 Serious bug in ASL example code for _OSC 6.2.10.4
50A Jira 41 Fix problems with PCC address space descrip- | 14.5
tion
50A Jira 40 Issues with _GRT and _SRT Buffer description 9.18.3,9.18.4
50A Jira 39 Clarification needed for _CST Table 8-206
50A Jira 38 Incorrect field name in “Generic Register De- | 6.4.3.7
scriptor”.
50A Jira 37 Clarifications for _CPC method 8.4.5.1.2.1-2
50A Jira 36 Restore legality of module-level executable | 19.1.3
AML code.
50A Jira 35 ASL grammar: “UserTerm” is confusing 19.1
50A Jira 34 Description of _GTM has a bad line with very | 9.8.2.1.1
large font
50A Jira 33 Missing information in _CPC description 8.4.5.1
5.0A Jira3 2 Error in description of _REG method 6.5.4
50A Jira 31 Clarify length field for Serial resource descriptor | 6.4.3.8.2, Table 6-190
50A Jira 30 Argument descriptions in incorrect order for re- | 19.5.41, 19.5.101
source descriptors
5.0A Jira 29 Issues with memory descriptors (grammar and | 19.1, 19.5
macros)
50A Jira 28 Problems with ASL grammar entry for DWord- | 19.1.8
Memory
50A Jira 27 Problems with Unicode description for _MLS | 6.1.7
method
5.0A Jira 26 Incorrect grammar for “32-bits” and “64-bits” Throughout spec
50A Jira 25 Incorrect table reference in 19.2.5.4 19.2.5.4
5.0A Jira 24 Resource Descriptor tables — formatting issues 6.4
50A Jira 23 Interrupt Descriptors: Wake bit should be split | 6.4
from Share bit
50A Jira 22 ASL grammar for ObjectType operator is incor- | 19.1.6
rect
50A Jira 21 ASL grammar is missing description of type 6 | 19.1.5
opcodes
50A Jira 20 Problems with table 5-31 (reserved ACPI table | Table 5-31
signatures)
50A Jira 19 Clarify description of _BQC method B.54
50A Jira 18 Fix for EC OpRegion availability example 5.2.15
50A Jira 17 Clarify meaning of BGRT status field Table 5-97
5.0A Jira 16 Correction to _DSM example 9.14.1
50A Jira 15 Clarify _DSM backward compatibility require- | 9.15.1
ment and example
50A Jira 14 Description of _CPC is missing definition of un- | 8.4.5.1
supported optional registers
5.0A Jira 13 Incorrect _PLD name expansion Table 5-133, 6.1.8
50A Jira 12 PLD description needs clarification 6.1.8
50A Jira 11 Errata forwarded from HP 5.2.24,5.6.5.3
50A Jira 10 More issues with ACPI table 5-133 Table 5-133
50A Jira 7 Error in QWordIO, ExtendedIO descriptions 19.5.41, 19.5.101

continues on next page

31

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 2 — continued from previous page

50A Jira 6 Appendix A is now misnamed in ACPI 5.0 Appendix A
50A Jira 5 PARTIAL-Need group agreement-Method _GTS | 7.3, 7.3.3, 16.1, 16.1.6-7, fig. 7-204
and _BFS are unused, should be removed from ACPI
spec.
50A Jira 4 Table 5-133 - issues with _Sx methods Table 5-133
50A Jira 3 Issues with predefined names table (table 5-133) | Table 5-133
50A Jira 2 Description of new sleep control register incorrect | Table 4-24
50A Jira 1 SystemCMOS keyword inconsistencies Table 5-114, 5.5.2.4.1, 6.5.4 19, 5.96,
9.15.1-2, 19.5.96, 20.2.5.2
5.0 Ptec-002 5.2.6
5.0 MSFT-020 Enumeration Power Controls 72.7,72.12
5.0 MSFT-019 GTDT table 5.2.24
5.0 MSFT_0018 Locking Targets from AML 5.7.5
5.0 MSFT-0017 PLD clarification for handhelf form factors | 5.1.8
5.0 MSFT-0016 Extended GPIO-signaled Event Numbers 5.6.5.3
5.0 MSFT-0015 (0.1) D3 Cold Errata 7.2.1,7.2.18 through 7.2.22
5.0 MSFT-0014 5.2.23
5.0 MSFT-0013_ADR for SIO 6.2
5.0 MSFT-0012 ROM (Get ROM Data) 5.6.6,9.16
5.0 MSFT-010 Reserved Table Signatures 5.2.6
5.0 MSFT-0009 (0.4)TimeAndAlarmDevice Modification 9.18
5.0 MSFT-0008 Collaborative Processor Performance Con- | 8.4.5
trol
5.0 MSFT-0007 Platform Communications Channel added | Ch 14 (new)
(new ch. 14)
5.0 MSFT-0007-0008 Platform Communication Channel | Ch 14 (new)
and CPPC changes
5.0 MSFT-0006 SPB Abstraction 3.11.3, 5524.5x, 64382, 6528,
18.1.3, 18.1.6, 18.1.7, 18.5.44, 18.5%,
19.2.5.2
5.0 MSFT-0005 GPIO Abstraction 5.5.2.4x, 5.6, 5.6.5.x, 6.4.3, 6.3.8.x,
18.5.51, 18.5.52, 18.5.89
5.0 MSFT-0004 (0.2) Fixed DMA Descriptor 6.4.2.9, 18.5.50
5.0 MSFT-0003 Device identification 6.1,6.1.3,6.1.5,6.1.6,6.1.9
5.0 MSFT-0002 Interrupt Descriptors for Generic Interrupt | 5.2.11, 5.2.14-15
Controller
5.0 MSFT-0001 HW-reduced ACPI 3.11.x, 4, 4.1.x, 43.7, 529, 52.9.1,
6.4.2.1,6.4.3.6,7.2.11,7.3.4,9.6, 12,
12.1, 12.6, 12.11, 12.11.1, 15, 15.1.x,
15.3, 15.3.1.x, 18.5.55, 18.5.57
5.0 INTC-0014 Remove a line (reference) not needed A23
5.0 INTC-0013 n/a
5.0 INTC-0012 fix AML opcode table 19.3
5.0 INTC-0011 fix table offsets 18.6.x (tables)
5.0 INTC-0010 Update Constant Descriptions 18.5.88, 18.5.89, 18.5.104, 18.5.136
5.0 INTCO0009 RASF 5.2.20.x
5.0 INTC-008 5.2.6
5.0 INTC-006 Fixed Example 6.2.10.4
5.0 INTC-005 Update Package Description 18.5.92
5.0 INTC-004 Table Definition Language 20, 21.x
5.0 INTC-003 MPST 6.1,6.1.3,6.1.5,6.1.6, 6.1.9

continues on next page

32

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 2 — continued from previous page

5.0 INTC-002 EINJ 17.6.1,17.6.3, 17.6.5
5.0 INTC-001 (0.8) Firmware Performance Data Table | 5.2.20.4,5.2.20.6
(FPDT)
5.0 INTC-001 Firmware Performance Data Table (FPDT) | 5.2.19- 5.2.20.6
0.4)
5.0 HP-0002 Additional Hardware Error Notification Types | 18.3.2.7
5.0 HP-0001 (0.2) BMC Requested Graceful Shutdown 5.6.5,6.3.5
5.0 ACPI4.0 _DSM function O clarification 9.14.1
5.0 AMD-002 0.3 ROM (Get ROM Data) B.3.3
4.0a Errata corrected and clarifications added. 2.2, 5.2.6, 5.2.12.4, 5.2.18,

55243.1,5.6.5,5.6.6,5.6.7,64.2.8,
6.4.3.5.1-3, 6.5.7, 8.4.3.4, 8445,
8.4.5, 9.2.5, 9.8.2.1.1, 9.10, 9.13,
10.4.1, 10.1.3.1, 10.2.2, 10.2.1.1-2,
10.2.2.8, 10.2.2.9, , 10.3, 10.3.3,
104, 10.3.4, 104.1, 105, 15.1,
17.1, 17.3.1, 17.3.2.6.1, 17.3.2.6.2,
174, 17.5.1.1, 17.6.1, 17.6.3, 18.1.8,
18.5.44, 18.5.89, 18.5.101

4.0 Major specification revision. Clock Domains, x2APIC | n/a
Support, Logical Processor Idling, Corrected Platform
Error Polling Table, Maximum System Characteristics
Table, Power Metering and Budgeting, IPMI Operation
Region, USB3 Support in _PLD, Re-evaluation of _PPC
acknowledgement via _OST, Thermal Model Enhance-
ments, _OSC at _SB, Wake Alarm Device, Battery Re-
lated Extensions, Memory Bandwidth Monitoring and
Reporting, ACPI Hardware Error Interfaces, D3hot.

3.0b Errata corrected and clarifications added. n/a
3.0a Errata corrected and clarifications added. n/a
3.0 Major specification revision. General configuration en- | n/a

hancements. Inter-Processor power, performance, and
throttling state dependency support added. Support for
> 256 processors added. NUMA Distancing support
added. PCI Express support added. SATA support
added. Ambient Light Sensor and User Presence de-
vice support added. Thermal model extended beyond
processor-centric support.

2.0c Errata corrected and clarifications added. n/a
2.0b Errata corrected and clarifications added. n/a
2.0a Errata corrected and clarifications added. ACPI 2.0 Er- | n/a
rata Document Revision 1.0 through 1.5 integrated.
2.0 Errata | Errata corrected and clarifications added. n/a
Rev. 1.5
2.0 Errata | Errata corrected and clarifications added. n/a
Rev. 1.4
2.0 Errata | Errata corrected and clarifications added. n/a
Rev. 1.3
2.0 Errata | Errata corrected and clarifications added. n/a
Rev. 1.2

continues on next page

33

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 2 — continued from previous page

2.0 Errata | Errata corrected and clarifications added. n/a
Rev. 1.1
2.0 Errata | Errata corrected and clarifications added. n/a
Rev. 1.0
20 Major specification revision. 64-bit addressing support | n/a

added. Processor and device performance state sup-
port added. Numerous multiprocessor workstation and
server-related enhancements. Consistency and readabil-
ity enhancements throughout.

1.0b Errata corrected and clarifications added. New inter- | n/a
faces added.

1.0a Errata corrected and clarifications added. New inter- | n/a
faces added.

1.0 Original Release. n/a

34

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Acknowledgments

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an “AS IS” basis and, to the maximum extent permitted by applicable law, this information
is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all
other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness
of responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this
material and any contribution thereto. Designers must not rely on the absence or characteristics of any features or
instructions marked “reserved” or “undefined.” The Unified EFI Forum, Inc. reserves any features or instructions so
marked for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT,
QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD
TO THE SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION
THERETO BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS
OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUEN-
TIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY,
OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS
DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.

Copyright © 2021, Unified Extensible Firmware Interface (UEFI) Forum, Inc. All Rights Reserved. The UEFI Forum
is the owner of all rights and title in and to this work, including all copyright rights that may exist, and all rights to
use and reproduce this work. Further to such rights, permission is hereby granted to any person implementing this
specification to maintain an electronic version of this work accessible by its internal personnel, and to print a copy of
this specification in hard copy form, in whole or in part, in each case solely for use by that person in connection with
the implementation of this Specification, provided no modification is made to the Specification.

35

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Overview

This chapter provides a high-level overview of the Advanced Configuration and Power Interface (ACPI). To
make it easier to understand ACPI, this section focuses on broad and general statements about ACPI and does not
discuss every possible exception or detail about ACPIL. The rest of the ACPI specification provides much greater
detail about the inner workings of ACPI than is discussed here, and is recommended reading for developers using
ACPL

History of ACPI

ACPI was developed through collaboration between Intel, Microsoft*, Toshiba*, HP*, and Phoenix* in the mid-1990s.
Before the development of ACPI, operating systems (OS) primarily used BIOS (Basic Input/Output System) interfaces
for power management and device discovery and configuration. T his power m anagement a pproach used the OS’s
ability to call the system BIOS natively for power management. The BIOS was also used to discover system devices
and load drivers based on probing input/output (I/O) and attempting to match the correct driver to the correct device
(plug and play). The location of devices could also be hard coded within the BIOS because the platform itself was
non-enumerable. These solutions were problematic in three key ways. First, the behavior of OS applications could
be negatively affected by the BIOS-configured power m anagement s ettings, c ausing s ystems to go to sleep during
presentations or other inconvenient times. Second, the power management interface was proprietary on each system.
This required developers to learn how to configure power management for each individual system. Finally, the default
settings for various devices could also conflict with each other, causing devices to crash, behave erratically, or become
undiscoverable.

ACPI was developed to solve these problems and others.
What is ACPI?

ACPI can first be understood as an architecture-independent power management and c onfiguration framework that
forms a subsystem within the host OS. This framework establishes a hardware register set to define p ower states
(sleep, hibernate, wake, etc). The hardware register set can accommodate operations on dedicated hardware and
general purpose hardware.

The primary intention of the standard ACPI framework and the hardware register set is to enable power management
and system configuration without directly calling firmware natively from the OS. ACPI serves as an interface layer
between the operating system and system firmware, as shown in the following figure.

Fig. 1: ACPI overview

ACPI defines two types of data structures that are shared between system firmware and the OS via the ACPI subsystem:
data tables and definition blocks (see figure below). These data structures are the primary communication mechanism
between the firmware and the OS. Data tables store raw data and are consumed by device drivers. Definition blocks
consist of byte code that is executable by an interpreter.

Upon initialization, the AML interpreter extracts byte code in the definition blocks as enumerable objects. This
collection of enumerable objects forms an OS construct called the ACPI namespace. Objects in the ACPI namespace

Overview 36

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 2: ACPI Structure

can either have a directly defined value, or be evaluated by the AML interpreter. The AML interpreter, directed by the
OS, evaluates objects and then interfaces with system hardware to perform necessary operations.

The definition block byte code is compiled from the ACPI Source Language (ASL) code. ASL is the language used
to define ACPI objects and to write control methods. An ASL compiler translates ASL into ACPI Machine Language
(AML) byte code. AML is the language processed by the AML interpreter, as shown in the following figure.

ACPI Source Language (ASL) code is used to define objects and control methods. Then the ASL compiler translates
ASL into ACPI Machine Language (AML) byte code contained within ACPI definition Blocks. Definition blocks
consist of an identifying table header and byte code that is executable by an AML interpreter.

The AML interpreter executes byte code and evaluates objects in the definition blocks to allow the byte code to perform
loop constructs, conditional evaluations, access defined address spaces, and perform other operations that applications
require. The AML interpreter has read/write access to defined address spaces, including system memory, 1/O, PCI
configuration, and more. It accesses these address spaces by defining entry points called objects. Objects can either
have a directly defined value or else must be evaluated and interpreted by the AML interpreter.

This collection of enumerable objects is an OS construct called the ACPI namespace. The namespace is a hierarchical
representation of the ACPI devices on a system. The system bus is the root of enumeration for these ACPI devices.
Devices that are enumerable on other buses, like PCI or USB devices, are usually not enumerated in the namespace.
Instead, their own buses enumerate the devices and load their drivers. However, all enumerable buses have an encoding
technique that allows ACPI to encode the bus-specific addresses of the devices so they can be found in ACPI, even
though ACPI usually does not load drivers for these devices.

Generally, devices that have a _HID object (hardware identification object) are enumerated and have their drivers
loaded by ACPL. Devices that have an _ADR object (physical address object) are usually not enumerated by ACPI and
generally do not have their drivers loaded by ACPI. _ADR devices usually can perform all necessary functions without
involving ACPI, but in cases where the device driver cannot perform a function, or if the driver needs to communicate
to system firmware, ACPI can evaluate objects to perform the needed function.

As an example of this, PCI does not support native hotplug. However, PCI can use ACPI to evaluate objects and define

Overview 37

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 3: ASL and AML

Overview 38

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

methods that allow ACPI to fill in the functions necessary to perform hotplug on PCI.

An additional aspect of ACPI is a runtime model that handles any ACPI interrupt events that occur during system
operation. ACPI continues to evaluate objects as necessary to handle these events. This interrupt-based runtime model
is discussed in greater detail in the Runtime model section below.

ACPI Initialization

The best way to understand how ACPI works is chronologically. The moment the user powers up the system, the
system firmware completes its setup, initialization, and self tests.

The system firmware then uses information obtained during firmware initialization to update the ACPI tables as nec-
essary with various platform configurations and power interface data, before passing control to the bootstrap loader.
The extended root system description table (XSDT) is the first table used by the ACPI subsystem and contains the ad-
dresses of most of the other ACPI tables on the system. The XSDT points to the fixed ACPI description table (FADT)
as well as other major tables that the OS processes during initialization. After the OS initializes, the FADT directs
the ACPI subsystem to the differentiated system description table (DSDT), which is the beginning of the namespace
because it is the first table that contains a definition block.

The ACPI subsystem then processes the DSDT and begins building the namespace from the ACPI definition blocks.
The XSDT also points to the secondary system description tables (SSDTs) and adds them to the namespace. The ACPI
data tables give the OS raw data about the system hardware.

After the OS has built the namespace from the ACPI tables, it begins traversing the namespace and loading device
drivers for all the _HID devices it encounters in the namespace.

In the ACPI Intialization diagram above, system firmware updates the ACPI tables as necessary with information only
available at runtime, before handing off control to the bootstrap loader. The XSDT is the first table used by the OS’s
ACPI subsystem, and contains addresses of most other ACPI tables on the system. The XSDT points to the FADT, the
SSDTs, and other major ACPI tables. The FADT directs the ACPI subsystem to the DSDT, which is the beginning of
the namespace because DSDT is the first table that contains a definition block. The ACPI subsystem then consumes
the DSDT and begins building the ACPI namespace from the definition blocks. The XSDT also points to the SSDTs
and adds them to the namespace.

Runtime Model

After the system is up and running, ACPI works with the OS to handle any ACPI events that occur via an interrupt.
This interrupt invokes ACPI events in one of two general ways: fixed events and general purpose events (GPEs).

Fixed events are ACPI events that have a predefined meaning in the ACPI specification. These fixed events include
actions like pressing the power button or ACPI timer overflows. These events are handled directly by the OS handlers.

GPEs are ACPI events that are not predefined by the ACPI specification. These events are usually handled by evaluat-
ing control methods, which are objects in the namespace and can access system hardware. When the ACPI subsystem
evaluates the control method with the AML interpreter, the GPE object handles the events according to the OS’s im-
plementation. Typically this might involve issuing a notification to a device to invoke the device driver to perform a
function.

We discuss a generic example of this runtime model in the next section.
Thermal Event Example

ACPI includes a thermal model to allow systems to control the system temperature either actively (by performing
actions like turning a fan on) or passively by reducing the amount of power the system uses (by performing actions
like throttling the processor). We can use an example of a generic thermal event shown in Figure 5 to demonstrate how
the ACPI runtime model works.

The ACPI thermal zone includes control methods to read the current system temperature and trip points.

When the OS initially finds a thermal zone in the namespace, it loads the thermal zone driver, which evaluates the
thermal zone to obtain the current temperature and trip points.

Overview 39

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 4: ACPI Initialization

Overview 40

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 5: Runtime Thermal Event

Overview 41

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

When a system component heats up enough to trigger a trip point, a thermal zone GPE occurs.

The GPE causes an interrupt to occur. When the ACPI subsystem receives the interrupt, it first checks whether any
fixed events have occurred. In this example, the thermal zone event is a GPE, so no fixed event has occurred.

The ACPI subsystem then searches the namespace for the control method that matches the GPE number of the inter-
rupt. Upon finding it, the ACPI subsystem evaluates the control method, which might then access hardware and/or
notify the thermal zone handler.

The operating system’s thermal zone handler then takes whatever actions are necessary to handle the event, including
possibly accessing hardware.

ACPI is a very robust interface implementation. The thermal zone trip point could notify the system to turn on a fan,
reduce a device’s performance, read the temperature, shut down the system, or any combination of these and other
actions depending on the need.

This runtime model is used throughout the system to manage all of the ACPI events that occur during system operation.
Summary

ACPI can best be described as a framework of concepts and interfaces that are implemented to form a subsystem
within the host OS. The ACPI tables, handlers, interpreter, namespace, events, and interrupt model together form this
implementation of ACPI, creating the ACPI subsystem within the host OS. In this sense, ACPI is the interface between
the system hardware/firmware and the OS and OS applications for configuration and power management. This gives
various OS a standardized way to support power management and configuration via the ACPI namespace.

The ACPI namespace is the enumerable, hierarchical representation of all ACPI devices on the system and is used to
both find and load drivers for ACPI devices on the system. The namespace can be dynamic by evaluating objects and
sending interrupts in real time, all without the need for the OS to call native system firmware code. This enables device
manufacturers to code their own instructions and events into devices. It also reduces incompatibility and instability by
implementing a standardized power management interface.

Overview 42

CHAPTER
ONE

INTRODUCTION

The Advanced Configuration and Power Interface (ACPI) specification was developed to establish industry common
interfaces enabling robust operating system (OS)-directed motherboard device configuration and power management
of both devices and entire systems. ACPI is the key element in Operating System-directed configuration and Power
Management (OSPM).

ACPI evolved the existing pre-ACPI collection of power management BIOS code, Advanced Power Management
(APM) application programming interfaces (APIs, PNPBIOS APIs, Multiprocessor Specification (MPS) tables and
so on into a well-defined power management and configuration interface specification. ACPI provides the means
for an orderly transition from existing (legacy) hardware to ACPI hardware, and it allows for both ACPI and legacy
mechanisms to exist in a single machine and to be used as needed.

Further, system architectures being built at the time of the original ACPI specification’s inception, stretched the lim-
its of historical “Plug and Play” interfaces. ACPI evolved existing motherboard configuration interfaces to support
advanced architectures in a more robust, and potentially more efficient manner.

The interfaces and OSPM concepts defined within this specification are suitable to all classes of computers including
(but not limited to) desktop, mobile, workstation, and server machines. From a power management perspective,
OSPM/ACPI promotes the concept that systems should conserve energy by transitioning unused devices into lower
power states including placing the entire system in a low-power state (sleeping state) when possible.

This document describes ACPI hardware interfaces, ACPI software interfaces and ACPI data structures that, when
implemented, enable support for robust OS-directed configuration and power management (OSPM).

1.1 Principal Goals

ACPI is the key element in implementing OSPM. ACPI-defined interfaces are intended for wide adoption to encourage
hardware and software vendors to build ACPI-compatible (and, thus, OSPM-compatible) implementations.

The principal goals of ACPI and OSPM are to:

* Enable all computer systems to implement motherboard configuration and power management functions, using
appropriate cost/function tradeoffs:

— Computer systems include (but are not limited to) desktop, mobile, workstation, and server machines.

— Machine implementers have the freedom to implement a wide range of solutions, from the very simple to
the very aggressive, while still maintaining full OS support.

— Wide implementation of power management will make it practical and compelling for applications to
support and exploit it. It will make new uses of PCs practical and existing uses of PCs more economical.

* Enhance power management functionality and robustness:

43

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

— Power management policies too complicated to implement in platform firmware can be implemented and
supported in the OS, allowing inexpensive power managed hardware to support very elaborate power
management policies.

— Gathering power management information from users, applications, and the hardware together into the OS
will enable better power management decisions and execution.

— Unification of power management algorithms in the OS will reduce conflicts between the firmware and OS
and will enhance reliability.

* Facilitate and accelerate industry-wide implementation of power management:

— OSPM and ACPI reduces the amount of redundant investment in power management throughout the in-
dustry, as this investment and function will be gathered into the OS. This will allow industry participants
to focus their efforts and investments on innovation rather than simple parity.

— The OS can evolve independently of the hardware, allowing all ACPI-compatible machines to gain the
benefits of OS improvements and innovations.

¢ Create a robust interface for configuring motherboard devices:

— Enable new advanced designs not possible with existing interfaces.

1.2 Power Management Rationale

It is necessary to move power management into the OS and to use an abstract interface (ACPI) between the OS and
the hardware to achieve the principal goals set forth above. Because ACPI is abstract, the OS can evolve separately
from the hardware and, likewise, the hardware from the OS.

ACPI is by nature more portable across operating systems and processors. ACPI control methods allow for very
flexible implementations of particular features.

Issues with older power management approaches include the following:
* Minimal support for power management inhibits application vendors from supporting or exploiting it.

— Moving power management functionality into the OS makes it available on every machine on which the
OS is installed. The level of functionality (power savings, and so on) varies from machine to machine, but
users and applications will see the same power interfaces and semantics on all OSPM machines.

— This will enable application vendors to invest in adding power management functionality to their products.

* Legacy power management algorithms were restricted by the information available to the platform firmware that
implemented them. This limited the functionality that could be implemented.

— Centralizing power management information and directives from the user, applications, and hardware in
the OS allows the implementation of more powerful functionality. For example, an OS can have a policy
of dividing I/O operations into normal and lazy. Lazy I/O operations (such as a word processor saving
files in the background) would be gathered up into clumps and done only when the required I/O device is
powered up for some other reason. A non-lazy I/O request made when the required device was powered
down would cause the device to be powered up immediately, the non-lazy I/O request to be carried out,
and any pending lazy I/O operations to be done. Such a policy requires knowing when I/O devices are
powered up, knowing which application I/O requests are lazy, and being able to assure that such lazy I/O
operations do not starve.

» Appliance functions, such as answering machines, require globally coherent power decisions. For example, a
telephone-answering application could call the OS and assert, “I am waiting for incoming phone calls; any sleep
state the system enters must allow me to wake and answer the telephone in 1 second.” Then, when the user
presses the “off” button, the system would pick the deepest sleep state consistent with the needs of the phone
answering service.

1.2. Power Management Rationale 44

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

— Platform firmware has become very complex to deal with power management. It is difficult to make work
with an OS and is limited to static configurations of the hardware.

— There is much less state information for the platform firmware to retain and manage (because the OS

manages it).

— Power management algorithms are unified in the OS, yielding much better integration between the OS and

the hardware.

— Because additional ACPI tables (Definition Blocks) can be loaded, for example, when a mobile system
docks, the OS can deal with dynamic machine configurations.

— Because the platform firmware has fewer functions and they are simpler, it is much easier (and therefore
cheaper) to implement and support.

1.3 Legacy Support

ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and allows for both mecha-
nisms to exist in a single machine and be used as needed.

Table 1.1: Hardware Type vs. OS Type Interaction

Hardware/OS

Legacy OS

ACPI OS with OSPM

Legacy hardware

A legacy OS on legacy
hardware does what it al-
ways did.

If the OS lacks legacy support, legacy support is com-
pletely contained within the hardware functions.

Legacy and ACPI hard-
ware support in machine

It works just like a legacy
OS on legacy hardware.

During boot, the OS tells the hardware to switch from
legacy to OSPM/ACPI mode and from then on, the sys-
tem has full OSPM/ACPI support.

ACPI-only hardware

There is no power man-
agement.

There is full OSPM/ACPI support.

1.4 OEM Implementation Strategy

Any OEM is, as always, free to build hardware as they see fit. Given the existence of the ACPI specification, two
general implementation strategies are possible:

e An original equipment manufacturer (OEM) can adopt the OS vendor-provided ACPI OSPM software and
implement the hardware part of the ACPI specification (for a given platform) in one of many possible ways.

* An OEM can develop a driver and hardware that are not ACPI-compatible. This strategy opens up even more
hardware implementation possibilities. However, OEMs who implement hardware that is OSPM-compatible but
not ACPI-compatible will bear the cost of developing, testing, and distributing drivers for their implementation.

1.4. OEM Implementation Strategy

45

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

1.5 Power and Sleep Buttons

OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button that is a “soft”
button that does not turn the machine physically off but signals the OS to put the machine in a soft off or sleeping state.
ACPI defines two types of these “soft” buttons: one for putting the machine to sleep and one for putting the machine
in soft off.

This gives the OEM two different ways to implement machines: A one-button model or a two-button model. The one-
button model has a single button that can be used as a power button or a sleep button as determined by user settings.
The two-button model has an easily accessible sleep button and a separate power button. In either model, an override
feature that forces the machine to the soft-off state without OSPM interaction is also needed to deal with various rare,
but problematic, situations.

1.6 ACPI Specification and the Structure of ACPI

This specification defines ACPI hardware interfaces, ACPI software interfaces and ACPI data structures. This specifi-
cation also defines the semantics of these interfaces.

Fig. 1.1 below lays out the software and hardware components for OSPM/ACPI, and how they relate to each other.
This specification describes the interfaces between components, the contents of the ACPI System Description Tables,
and the related semantics of the other ACPI components. Notice that the ACPI System Description Tables, which
describe a particular platform’s hardware, are at heart of the ACPI implementation and the role of the ACPI System
Firmware is primarily to supply the ACPI Tables (rather than a native instruction API).

ACPI is not a software specification; it is not a hardware specification, although it addresses both software and hard-
ware and how they must behave. ACPI is, instead, an interface specification comprised of both software and hardware
elements.

There are three run-time components to ACPI:
ACPI System Description Tables

Describes the interfaces to the hardware. Some descriptions limit what can be built (for example, some controls are
embedded in fixed blocks of registers and the table specifies the address of the register block). Most descriptions
allow the hardware to be built in arbitrary ways and can describe arbitrary operation sequences needed to make the
hardware function. ACPI Tables containing “Definition Blocks” can make use of a pseudo-code type of language,
the interpretation of which is performed by the OS. That is, OSPM contains and uses an interpreter that executes
procedures encoded in the pseudo-code language and stored in the ACPI tables containing “Definition Blocks.” The
pseudo-code language, known as ACPI Machine Language (AML), is a compact, tokenized, abstract type of machine
language.

ACPI Registers
The constrained part of the hardware interface, described (at least in location) by the ACPI System Description Tables.
ACPI Platform Firmware

Refers to the portion of the firmware that is compatible with the ACPI specifications. Typically, this is the code that
boots the machine (as legacy BIOSs have done) and implements interfaces for sleep, wake, and some restart operations.
It is called rarely, compared to a legacy BIOS. The ACPI Description Tables are also provided by the ACPI Platform
Firmware.

1.5. Power and Sleep Buttons 46

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Applications

Dependent Application APIs

Power Management Subsystem
(OSPM)

0S Kernel

0S-Specific
technologies,
interfaces, and code

ACPI Driver

AML Interpreter

|/ 0S-Independent
technologies,

interfaces, code,
and hardware

Device Driver(s)

Existing industry-
standard register

interfaces ACPI Firmware

(Definition Block
Tables)

ACPI ACPI
Register Set Static Tables

Platform
Firmware

Platform Hardware

[0s-Specific Technology, not part of ACPI
00 ACPI Specification covers these areas
[Hardware/Platform-specific technologies, not part of ACPI

Fig. 1.1: OSPM/ACPI Global System

. ACPI Specification and the Structure of ACPI 47

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

1.7 OS and Platform Compliance

The ACPI specification contains only interface specifications. ACPI does not contain any platform compliance re-
quirements. The following sections provide guidelines for class specific platform implementations that reference
ACPI-defined interfaces and guidelines for enhancements that operating systems may require to completely support
OSPM/ACPI. The minimum feature implementation requirements of an ACPI-compatible OS are also provided.

1.7.1 Platform Implementations of ACPI-defined Interfaces

System platforms implement ACPI-defined hardware interfaces via the platform hardware and ACPI-defined software
interfaces and system description tables via the ACPI system firmware. Specific ACPI-defined interfaces and OSPM
concepts while appropriate for one class of machine (for example, a mobile system), may not be appropriate for
another class of machine (for example, a multi-domain enterprise server). It is beyond the capability and scope of this
specification to specify all platform classes and the appropriate ACPI-defined interfaces that should be required for the
platform class.

Platform design guide authors are encouraged to require the appropriate ACPI-defined interfaces and hardware require-
ments suitable to the particular system platform class addressed in a particular design guide. Platform design guides
should not define alternative interfaces that provide similar functionality to those defined in the ACPI specification.

1.7.1.1 Recommended Features and Interface Descriptions for Design Guides

Common description text and category names should be used in design guides to describe all features, concepts, and
interfaces defined by the ACPI specification as requirements for a platform class. Listed below is the recommended
set of high-level text and category names to be used to describe the features, concepts, and interfaces defined by ACPI.

Note: The definitions and relational requirements of the interfaces specified below are generally spread throughout
the ACPI specification:

o System Address Map Interfaces

* ACPI System Description Tables

* Root System Description Pointer (RSDP)

» System Description Table Header

* Root System Description Table (RSDT)

* Fixed ACPI Description Table (FADT)

o Firmware ACPI Control Structure (FACS)

e Differentiated System Description Table (DSDT)
e Secondary System Description Table (SSDT)

* Multiple APIC Description Table (MADT)

» Smart Battery Table (SBST)

* Extended System Description Table (XSDT)

e Embedded Controller Boot Resources Table (ECDT)
» System Resource Affinity Table (SRAT)

o System Locality information Table

1.7. OS and Platform Compliance 48

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

e Corrected Platform Error Polling Table (CPEP)

* Maximum System Characteristics Table (MSCT)

* ACPI RAS Feature Table (RASF)

* Memory Power State Table (MPST)

* Platform Memory Topology Table

* Boot Graphics Resource Table (BGRT)

» Firmware Performance Data Table (FPDT)

e Generic Timer Description Table (GTDT)

* Fixed ACPI Description Table (FADT)

e Power management timer control/status

» Power or sleep button with S5 override (also possible in generic space)
* Real time clock wakeup alarm control/status

» SCI/SMI routing control/status for Power Management and General-purpose events
* System power state controls (sleeping/wake control)

* Processor power state control (c states)

* Processor throttling control/status

* Processor performance state control/status

* General-purpose event control/status

* Global Lock control/status

» System Reset control

* Embedded Controller control/status

¢ SMBus Host Controller (HC) control/status

e Smart Battery Subsystem

* ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace.
¢ General-purpose event processing

* Motherboard device identification, configuration, and insertion/removal
* Thermal zones

* Power resource control

* Device power state control

» System power state control

 System indicators

* Devices and device controls:

Processor

Control Method Battery

Smart Battery Subsystem
Mobile Lid

1.7. OS and Platform Compliance 49

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

— Power or sleep button with S5 override (also possible in fixed space)
— Embedded controller
— Fan
— Generic Bus Bridge
— ATA Controller
— Floppy Controller
— GPE Block
— Module
— Memory
Global Lock related interfaces
ACPI Event programming model
ACPI-defined Platform Firmware Responsibilities
ACPI-defined State Definitions:
— Global system power states (G-states, S0, S5)
— System sleeping states (S-states S1-S4)
— Device power states (D-states)
— Processor power states (C-states)

— Device and processor performance states (P-states)

1.7.1.2 Terminology Examples for Design Guides

The following example shows how a client platform design guide could use the recommended terminology to define
ACPI requirements, with a goal of requiring robust configuration and power management for the system class.

Note:

This example is provided as a guideline for how ACPI terminology can be used. It should not be interpreted as

a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system features,
concepts, and interfaces, along with their associated event models:

System Address Map Interfaces

ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:

Power management timer control/status

Power or sleep button with S5 override (may also be implemented in generic register space)
Real time clock wakeup alarm control/status

General-purpose event control/status

SCI /SMI routing control/status for Power Management and General-purpose events (control required only if
system supports legacy mode)

System power state controls (sleeping/wake control)

1.7. OS and Platform Compliance 50

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

* Processor power state control (for C1)
* Global Lock control/status (if Global Lock interfaces are required by the system)

* ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:

General-purpose event processing

Motherboard device identification, configuration, and insertion/removal

System power state control (Section 7.3)

Devices and device controls:

* Processor
* Control Method Battery (or Smart Battery Subsystem on a mobile system)
* Smart Battery Subsystem (or Control Method Battery on a mobile system)

+ Power or sleep button with S5 override (may also be implemented in fixed register space)

Global Lock related interfaces when a logical register in the hardware is shared between OS and firmware
environments

* ACPI Event programming model

¢ ACPI-defined Platform Firmware Responsibilities

* ACPI-defined State Definitions:
— System sleeping states (At least one system sleeping state, S1-S4, must be implemented)
— Device power states (D-states must be implemented in accordance with device class specifications)
— Processor power states (All processors must support the C1 Power State)

The following example shows how a design guide could use the recommended terminology to define ACPI related
requirements for systems that execute multiple OS instances, with a goal of requiring robust configuration and contin-
uous availability for the system class.

Note: This example is provided as a guideline for how ACPI terminology can be used. It should not be interpreted as
a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system features and
interfaces, along with their associated event models:

* System Address Map Interfaces
* ACPI System Description Tables provided in the system firmware
ACPI-defined Fixed Registers Interfaces:

* Power management timer control/status

* General-purpose event control/status

* SCI /SMI routing control/status for Power Management and General-purpose events
¢ (control required only if system supports legacy mode)

» System power state controls (sleeping/wake control)

* Processor power state control (for C1)

* Global Lock control/status (if Global Lock interfaces are required by the system)

1.7. OS and Platform Compliance 51

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:

General-purpose event processing

Motherboard device identification, configuration, and insertion/removal (Section 6)

System power state control (Section 7.3)

System indicators

Devices and device controls:
% Processor

Global Lock related interfaces when a logical register in the hardware is shared between OS and firmware
environments

ACPI Event programming model (Section 5.6)
ACPI-defined Platform Firmware Responsibilities (Section 15)
ACPI-defined State Definitions:

Processor power states (All processors must support the C1 Power State)

1.7.2 OSPM Implementations

OS enhancements are needed to support ACPI-defined features, concepts, and interfaces, along with their associated
event models appropriate to the system platform class upon which the OS executes. This is the implementation of
OSPM. The following outlines the OS enhancements and elements necessary to support all ACPI-defined interfaces.
To support ACPI through the implementation of OSPM, the OS needs to be modified to:

Use System Address Map Interfaces.

Find and consume the ACPI System Description Tables.
Interpret ACPI machine language (AML).

Enumerate and configure motherboard devices described in the ACPI Namespace.
Interface with the power management timer.

Interface with the real-time clock wake alarm.

Enter ACPI mode (on legacy hardware systems).

Implement device power management policy.

Implement power resource management.

Implement processor power states in the scheduler idle handlers.
Control processor and device performance states.

Implement the ACPI thermal model.

Support the ACPI Event programming model including handling SCI interrupts, managing fixed events, general-
purpose events, embedded controller interrupts, and dynamic device support.

Support acquisition and release of the Global Lock.
Use the reset register to reset the system.

Provide APIs to influence power management policy.
Implement driver support for ACPI-defined devices.

Implement APIs supporting the system indicators.

1.7. OS and Platform Compliance 52

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Support all system states S1-S5.

1.7.3 OS Requirements

The following list describes the minimum requirements for an OSPM/ACPI-compatible OS:

1.8

Use Section 15 to get the system address map on Intel Architecture (IA) platforms:

INT 15H, E820H - Query System Address Map interface (see Section 15)

EFI GetMemoryMap() Boot Services Function (see Section 15)

Find and consume the ACPI System Description Tables (see Section 5).

Implementation of an AML interpreter supporting all defined AML grammar elements (see Section 20).

Support for the ACPI Event programming model including handling SCI interrupts, managing fixed events,
general-purpose events, embedded controller interrupts, and dynamic device support.

Enumerate and configure motherboard devices described in the ACPI Namespace.
Implement support for the following ACPI devices defined within this specification:
Embedded Controller Device (see Section 12)

GPE Block Device (see Section 9.11)

Implementation of the ACPI thermal model (see Section 3.10).

Support acquisition and release of the Global Lock.

OS-directed power management support (device drivers are responsible for maintaining device context as de-
scribed by the Device Power Management Class Specifications described in Section 22).

Target Audience

This specification is intended for the following users:

1.9

OEMs building hardware containing ACPI-compatible interfaces
Operating system and device driver developers

All platform system firmware developers

CPU and chip set vendors

Peripheral vendors

Document Organization

The ACPI specification document is organized into the following four parts:

The first part of the specification (chapters 1 through 3) introduces ACPI and provides an executive overview.
The second part (chapters 4 and 5) defines the ACPI hardware and software programming models.

The third part (chapters 6 through 17) specifies the ACPI implementation details; this part of the specification is
primarily for developers.

The fourth part (chapters 18 and 19) is technical reference material: chapter 18 is the ACPI Source Language
(ASL) reference, which is referenced by many other sections in this specification.

1.8. Target Audience 53

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

* Appendices contain device class specifications, describing power management characteristics of specific classes
of devices, and device class-specific ACPI interfaces.

1.9.1 ACPI Introduction and Overview

The first three sections of the specification provide an executive overview of ACPIL.

Chapter 1: Introduction Discusses the purpose and goals of the specification, presents an overview of the ACPI-
compatible system architecture, specifies the minimum requirements for an ACPI-compatible system, and pro-
vides references to related specifications.

Chapter 2: Definition of Terms Defines the key terminology used in this specification. In particular, the global sys-
tem states (Mechanical Off, Soft Off, Sleeping, Working, and Non-Volatile Sleep) are defined in this Chapter,
along with the device power state definitions: Off (D3), D3hot, D2, D1, and Fully-On (D0). Device and proces-
sor performance states (PO, P1, ... Pn) are also discussed.

Chapter 3: ACPI Overview Gives an overview of the ACPI specification in terms of the functional areas covered by
the specification: system power management, device power management, processor power management, Plug
and Play, handling of system events, battery management, and thermal management.

1.9.2 Programming Models

Chapters 4 and 5 define the ACPI hardware and software programming models. This part of the specification is
primarily for system designers, developers, and project managers.

All of the implementation-oriented, reference, and platform example Chapters of the specification that follow (all the
rest of the Chapters of the specification) are based on the models defined in Chapters 4 and 5. These Chapters are the
heart of the ACPI specification. There are extensive cross-references between the two Chapters.

Chapter 4: ACPI Hardware Specification Defines a set of hardware interfaces that meet the goals of this specifica-
tion.

Chapter 5: ACPI Software Programming Model Defines a set of software interfaces that meet the goals of this
specification.

1.9.3 Implementation Details

The third part of the specification defines the implementation details necessary to actually build components that work
on an ACPI-compatible platform. This part of the specification is primarily for developers.

Chapter 6: Configuration Defines the reserved Plug and Play objects used to configure and assign resources to
devices, and share resources and the reserved objects used to track device insertion and removal. Also defines
the format of ACPI-compatible resource descriptors.

Chapter 7: Power and Performance Management Defines the reserved device power-management objects and the
reserved-system power-management objects.

Chapter 8: Processor Configuration and Control Defines how the OS manages the processors’ power consumption
and other controls while the system is in the working state.

Chapter 9: ACPI-Specific Device Objects Lists the integrated devices that need support for some device-specific
ACPI controls, along with the device-specific ACPI controls that can be provided. Most device objects are
controlled through generic objects and control methods and have generic device IDs; this Chapter discusses the
exceptions.

Chapter 10: Power Source Devices Defines the reserved battery device and AC adapter objects.

1.9. Document Organization 54

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Chapter 11: Thermal Management Defines the reserved thermal management objects.

Chapter 12: ACPI Embedded Controller Interface Specification Defines the interfaces between an ACPI-
compatible OS and an embedded controller.

Chapter 13: ACPI System Management Bus Interface Specification Defines the interfaces between an ACPI-
compatible OS and a System Management Bus (SMBus) host controller.

Chapter 14: Platform Communications Channel Explains the generic mechanism for OSPM to communicate with
an entity in the platform defines a new address space type.

Chapter 15: System Address Map Interfaces Explains the special INT 15 call for use in ISA/EISA/PCI bus-based
systems. This call supplies the OS with a clean memory map indicating address ranges that are reserved and
ranges that are available on the motherboard. UEFI-based memory address map reporting interfaces are also
described.

Chapter 16: Waking and Sleeping Defines in detail the transitions between system working and sleeping states and
their relationship to wake events. Refers to the reserved objects defined in Chapters 6, 7, and 8.

Chapter 17: Non-Uniform Memory Access (NUMA) Architecture Platforms Discusses in detail how ACPI de-
fine interfaces can be used to describe a NUMA architecture platform. Refers to the reserved objects defined in
Chapters 5, 6, 8, and 9.

Chapter 18: ACPI Platform Error Interfaces Defines interfaces that enable OSPM to processes different types of
hardware error events that are detected by platform-based error detection hardware.

1.9.4 Technical Reference

The fourth part of the specification contains reference material for developers.

Chapter 19: ACPI Source Language Reference Defines the syntax of all the ASL statements that can be used to
write ACPI control methods, along with example syntax usage.

Chapter 20: ACPI Machine Language Specification Defines the grammar of the language of the ACPI virtual ma-
chine language. An ASL translator (compiler) outputs AML.

Chapter 21: ACPI Data Tables and Table Language Definition Describes a simple language (the Table Definition
Language or TDL) that can be used to generate any ACPI data table.

Appendix A: Device class specifications Describes device-specific power management behavior on a per device-
class basis.

Appendix B: Video Extensions Contains video device class-specific ACPI interfaces

1.9.5 Revsion Numbers

Updates to the ACPI specification are considered either new revisions or errata as described below:

* A new revision is produced when there is substantive new content or changes that may modify existing behavior.
New revisions are designated by a Major.Minor version number (e.g. 6.3). In cases where the changes are
exceptionally minor, we may have a Major.Minor.Minor naming convention (e.g. 6.3.1).

¢ An errata is produced when proposed changes or fixes of the specification do not include any significant new
material or modify existing behavior. Errata are designated by adding an upper-case letter at the end of the
version number, such as 6.2A.

1.9. Document Organization 55

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

1.10 Related Documents

Power management and Plug and Play specifications for legacy hardware platforms are available from Links to ACPI-
Related Documents:

* Advanced Power Management (APM) BIOS Specification
* Plug and Play BIOS Specification

Intel Architecture specifications are available at http://developer.intel.com and https://software.intel.com/en-us/
articles/intel-sdm.

Other UEFI Specifications are available at https://uefi.org/specifications:
 Unified Extensible Firmware Interface (UEFI) Specification
* Platform Integration (PI) Specification

Documentation and specifications for the Smart Battery System components and the SMBus are availabe at the fol-
lowing links:

* Smart Battery System specifications

* SMBus specifications

1.10. Related Documents 56

http://uefi.org/acpi
http://uefi.org/acpi
http://developer.intel.com
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://uefi.org/specifications
http://www.sbs-forum.org/specs/
http://smbus.org/specs/

CHAPTER
TWO

DEFINITION OF TERMS

This specification uses a particular set of terminology, defined in this section. This section has three parts:
General ACPI terms are defined and presented alphabetically.

The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global system states
apply to the entire system, and are visible to the user.

The ACPI device power states are defined. Device power states are states of particular devices; as such, they are
generally not visible to the user. For example, some devices may be in the off state even though the system as a whole
is in the working state. Device states apply to any device on any bus.

2.1 General ACPI Terminology

Advanced Configuration and Power Interface (ACPI) As defined in this document, ACPI is a method for describ-
ing hardware interfaces in terms abstract enough to allow flexible and innovative hardware implementations and
concrete enough to allow shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware Computer hardware with the features necessary to support OSPM and with the interfaces to those
features described using the Description Tables as specified by this document.

ACPI Namespace A hierarchical tree structure in OS-controlled memory that contains named objects. These objects
may be data objects, control method objects, bus/device package objects, and so on. The OS dynamically
changes the contents of the namespace at run-time by loading definition blocks from the ACPI Tables that reside
in the ACPI system firmware. All the information in the ACPI Namespace comes from the Differentiated System
Description Table (DSDT), which contains the Differentiated Definition Block, and one or more other definition
blocks.

ACPI Machine Language (AML) Pseudo-code for a virtual machine supported by an ACPI-compatible OS and in
which ACPI control methods and objects are written. The AML encoding definition is provided in section 19,
“ACPI Machine Language (AML) Specification.”

Add-in Card A generic term used to refer to any device which can be inserted or removed from a platform through a
connection bus, such as PCI. Add-in cards are typically inserted within a platform’s physical enclosure, rather
than residing physically external to a platform. An add-in card will have its own devices and associated firmware,
and may have its own Expansion ROM Firmware.

Advanced Programmable Interrupt Controller (APIC) An interrupt controller architecture commonly found on
Intel Architecture-based 32-bit PC systems. The APIC architecture supports multiprocessor interrupt manage-
ment (with symmetric interrupt distribution across all processors), multiple I/O subsystem support, 8259A com-
patibility, and inter-processor interrupt support. The architecture consists of local APICs commonly attached
directly to processors and I/O APICs commonly in chip sets.

ACPI Source Language (ASL) The programming language equivalent for AML. ASL is compiled into AML im-
ages. The ASL statements are defined in section 18, “ACPI Source Language (ASL) Reference.”

57

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Address Range Scrub (ARS) Process by which regions of memory can be scrubbed to look for memory locations
that contain correctable or uncorrectable errors.

BIOS BIOS (Basic Input/Output System) is firmware that provides basic boot capabilities for a platform; it is used
here to refer specifically to traditional x86 BIOS, and not as a general term for all firmware, or a replacement
term for UEFI Core System BIOS. The ambiguity of this the term is what we are trying to remove. See also:
Legacy BIOS, System BIOS.

Boot Firmware Generic term to describe any firmware on a platform used during the boot process. Use a more
specific term, if possible.

Component Synonym for device. Please use the term “device” if possible.

Control Method A control method is a definition of how the OS can perform a simple hardware task. For example,
the OS invokes control methods to read the temperature of a thermal zone. Control methods are written in an
encoded language called AML that can be interpreted and executed by the ACPI-compatible OS. An ACPI-
compatible system must provide a minimal set of control methods in the ACPI tables. The OS provides a
set of well-defined control methods that ACPI table developers can reference in their control methods. OEMs
can support different revisions of chip sets with one version of platform firmware by either including control
methods in the platform firmware that test configurations and respond as needed or including a different set of
control methods for each chip set revision.

Central Processing Unit (CPU) or Processor The part of a platform that executes the instructions that do the work.
An ACPI-compatible OS can balance processor performance against power consumption and thermal states by
manipulating the processor performance controls. The ACPI specification defines a working state, labeled GO
(S0), in which the processor executes instructions. Processor sleeping states, labeled C1 through C3, are also
defined. In the sleeping states, the processor executes no instructions, thus reducing power consumption and,
potentially, operating temperatures. The ACPI specification also defines processor performance states, where
the processor (while in C0) executes instructions, but with lower performance and (potentially) lower power
consumption and operating temperature. For more information, see Section 8.

A definition block contains information about hardware implementation and configuration details in the form of
data and control methods, encoded in AML. An OEM can provide one or more definition blocks in the ACPI
Tables. One definition block must be provided: the Differentiated Definition Block, which describes the base
system. Upon loading the Differentiated Definition Block, the OS inserts the contents of the Differentiated
Definition Block into the ACPI Namespace. Other definition blocks, which the OS can dynamically insert and
remove from the active ACPI Namespace, can contain references to the Differentiated Definition Block. For
more information, see Definition Blocks.

Device A generic term used to refer to any computing, input/output or storage element, or any collection of computing,
input/output or storage elements, on a platform. An example of a device is a CPU, APU, embedded controller
(EC), BMC, Trusted Platform Module (TPM), graphics processing unit (GPU), network interface controller
(NIC), hard disk drive (HDD), solid state drive (SSD), Read Only Memory (ROM), flash ROM, or any of the
large number of other possible devices. If at all possible, use a more specific term.

Device Context The variable data held by the device; it is usually volatile. The device might forget this information
when entering or leaving certain states (for more information, see Device Power State Definitions), in which
case the OS software is responsible for saving and restoring the information. Device Context refers to small
amounts of information held in device peripherals. See System Context.

Device Firmware Firmware that is only used by a specific device and cannot be used with any other device. This
firmware is typically provided by the device manufacturer.

Differentiated System Description Table (DSDT) An OEM must supply a DSDT to an ACPI-compatible OS. The
DSDT contains the Differentiated Definition Block, which supplies the implementation and configuration in-
formation about the base system. The OS always inserts the DSDT information into the ACPI Namespace at
system boot time and never removes it.

Device Physical Address (DPA) A Device relative memory address.

2.1. General ACPI Terminology 58

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Embedded Controller The general class of micro-controllers used to support OEM-specific supports embedded con-
trollers in any platform design, as long as the micro-controller conforms to one of the models described in this
section. The embedded controller performs complex low-level functions through a simple interface to the host
microprocessor(s).

Embedded Controller Interface A standard hardware and software communications interface between an OS driver
and an embedded controller. This allows any OS to provide a standard driver that can directly communicate
with an embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers (for example, Smart Battery and AML code). This in turn
enables the OEM to provide platform features that the OS and applications can use.

Expansion ROM Firmware Peripheral Component Interconnect (PCI) term for firmware executed on a host proces-
sor which is used by an add-in device during the boot process. This includes Option ROM Firmware and UEFI
drivers. Expansion ROM Firmware may be embedded as part of the Host Processor Boot Firmware, or may be
separate (e.g., from an add-in card). See also: Option ROM Firmware.

Firmware Generic term to describe any BIOS or firmware on a platform; it refers to the general class of things, not a
specific type. Use a more specific term, if possible.

Firmware ACPI Control Structure (FACS) A structure in read/write memory that the platform runtime firmware
uses for handshaking between the firmware and the OS. The FACS is passed to an ACPI-compatible OS via the
Fixed ACPI Description Table (FADT). The FACS contains the system’s hardware signature at last boot, the
firmware waking vector, and the Global Lock.

Firmware Storage Device A memory device used to store firmware. This could include Read Only Memory (ROM),
flash memory, eMMC, UFS drives, etc.

Fixed ACPI Description Table (FADT) A table that contains the ACPI Hardware Register Block implementation
and configuration details that the OS needs to directly manage the ACPI Hardware Register Blocks, as well
as the physical address of the DSDT, which contains other platform implementation and configuration details.
An OEM must provide an FADT to an ACPI-compatible OS in the RSDT/XSDT. The OS always inserts the
namespace information defined in the Differentiated Definition Block in the DSDT into the ACPI Namespace
at system boot time, and the OS never removes it.

Fixed Features A set of features offered by an ACPI interface. The ACPI specification places restrictions on where
and how the hardware programming model is generated. All fixed features, if used, are implemented as described
in this specification so that OSPM can directly access the fixed feature registers.

Fixed Feature Events A set of events that occur at the ACPI interface when a paired set of status and event bits in
the fixed feature registers are set at the same time. When a fixed feature event occurs, a system control interrupt
(SCl is raised. For ACPI fixed feature events, OSPM (or an ACPI-aware driver) acts as the event handler.

Fixed Feature Registers A set of hardware registers in fixed feature register space at specific address locations in
system I/O address space. ACPI defines register blocks for fixed features (each register block gets a separate
pointer from the FADT). For more information, see ACPI Hardware Features.

General-Purpose Event Registers The general-purpose event registers contain the event programming model for
generic features. All general-purpose events generate SCIs.

Generic Feature A generic feature of a platform is value-added hardware implemented through control methods and
general-purpose events.

Generic Interrupt Controller (GIC) An interrupt controller architecture for ARM processor-based systems.

Global System Status Global system states apply to the entire system, and are visible to the user. The various global
system states are labeled GO through G3 in the ACPI specification. For more information, see Global System
State Definitions.

Host Processor A host processor is the primary processing unit in a platform, traditionally called a Central Processing
Unit (CPU), now also sometimes referred to as an Application Processing Unit (APU), or a System on Chip
(SoC). This is the processing unit on which the primary operating system (and/or hypervisor), as well as user

2.1. General ACPI Terminology 59

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

applications run. This is the processor that is responsible for loading and executing the Host Processor Boot
Firmware. This term and “Boot Processor” should be considered synonyms for this particular text clean-up
effort (i.e., making them consistent should probably be part of a different ECR, if needed).

Host Processor Boot Firmware Generic term used to describe firmware loaded and executed by the Host Processor
which provides basic boot capabilities for a platform. This class of firmware is a reference to Legacy BIOS
and UEFI, which were sometimes referred to as System BIOS. Where the distinction between Legacy BIOS
and UEFI is not important, the term Host Processor Boot Firmware will be used. Where the distinction is
important, it will be referenced appropriately. Expansion ROM firmware may also be considered as part of the
Host Processor Boot Firmware. Expansion ROM Firmware may be embedded as part of the Host Processor
Boot Firmware, or may be separate from the Host Processor Boot Firmware (e.g., loaded from an add-in card).

Host Processor Runtime Firmware Host processor runtime firmware is any runtime firmware which executes on
the host processor.

Ignored Bits Some unused bits in ACPI hardware registers are designated as “ignored” in the ACPI specification.
Ignored bits are undefined and can return zero or one (in contrast to reserved bits, which always return zero).
Software ignores ignored bits in ACPI hardware registers on reads and preserves ignored bits on writes.

Intel Architecture-Personal Computer (IA-PC) A general descriptive term for computers built with processors
conforming to the architecture defined by the Intel processor family based on the Intel Architecture instruc-
tion set and having an industry-standard PC architecture.

I/0 APIC An Input/Output Advanced Programmable Interrupt Controller routes interrupts from devices to the pro-
cessor’s local APIC.

I/O SAPIC An Input/Output Streamlined Advanced Programmable Interrupt Controller routes interrupts from de-
vices to the processor’s local APIC.

Label Storage Area A persistent storage area reserved for Label storage.

Legacy A computer state where power management policy decisions are made by the platform hardware/firmware
shipped with the system. The legacy power management features found in today’s systems are used to support
power management in a system that uses a legacy OS that does not support the OS-directed power management
architecture.

Legacy BIOS One form of Host Processor Boot Firmware used on x86 platforms which uses a legacy x86 BIOS
structure. This form of host processor boot firmware has been or is being replaced by UEFI. This term will
likely be most useful in distinguishing and comparing older forms of firmware to newer forms (e.g., “it was
done this way in legacy BIOS, but is now done another way in UEFI). See also: BIOS, System BIOS.

Legacy Hardware A computer system that has no ACPI or OSPM power management support.

Legacy OS An OS that is not aware of and does not direct the power management functions of the system. Included
in this category are operating systems with APM 1.x support.

Local APIC A local Advanced Programmable Interrupt Controller receives interrupts from the I/O APIC.

Local SAPIC A local Streamlined Advanced Programmable Interrupt Controller receives interrupts from the I/O
SAPIC.

Management Firmware Firmware used only by a Baseboard Management Controller (BMC) or other Out-of-Band
(OOB) management controller.

Multiple APIC Description Table (MADT) The Multiple APIC Description Table (MADT) is used on systems
supporting the APIC and SAPIC to describe the APIC implementation. Following the MADT is a list of
APIC/SAPIC structures that declare the APIC/SAPIC features of the machine.

Namespace A namespace defines a contiguously-addressed range of Non-Volatile Memory, conceptually similar to
a SCSI Logical Unit (LUN) or an NVM Express namespace. A namespace can be described by one or more
Labels.

2.1. General ACPI Terminology 60

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Non-Host Processor A non-host processor is a generic term used to describe any processing unit on a platform which
is not a host processor (e.g. a microcontroller, co-processor, etc). For the purposes of this particular ECR, this
should also be considered a synonym for “secondary processor”, those CPUs that might be on an SoC, for
example, that are not the host (or “boot”) processor.

NVDIMM Non Volatile Dual In-line Memory Module.

Object The nodes of the ACPI Namespace are objects inserted in the tree by the OS using the information in the
system definition tables. These objects can be data objects, package objects, control method objects, and so on.
Package objects refer to other objects. Objects also have type, size, and relative name.

Object name Part of the ACPI Namespace. There is a set of rules for naming objects.

Operating System-directed Power Management (OSPM) A model of power (and system) management in which
the OS plays a central role and uses global information to optimize system behavior for the task at hand.

Option ROM Firmware Legacy term for boot firmware typically executed on a host processor which is used by a
device during the boot process. Option ROM firmware may be included with the host processor boot firmware
or may be carried separately by a device (such as an add-in card). See also: Expansion ROM Firmware

Package An array of objects.

Peripheral A peripheral (also known as an external device) is a device which resides physically external to a platform
and is connected to a platform, either wired or wirelessly. A peripheral is comprised of its own devices which
may have their own firmware.

Persistent Memory (pmem) Byte-addressable memory that retains its contents across power loss.

Platform A platform consists of multiple devices assembled and working together to deliver a specific computing
function, but does not include any other software other than the firmware as part of the devices in the platform.
Examples of platforms include a notebook, a desktop, a server, a network switch, a blade, etc. - all without and
independent of any operating system, user applications, or user data.

Platform Boot Firmware The collection of all boot firmware on a platform. This firmware is initially loaded by a
platform (such as an SoC, a motherboard, or a complete system) at power-on to do basic initialization of the
platform hardware and then hand control to a boot loader or OS. In some cases this will be x86 BIOS, or it may
be UEFI Core System BIOS, or it could be something else entirely. Once control has been handed over to a boot
loader or an OS, this firmware has no further role.

Platform Runtime Firmware The collection of all run-time firmware on a platform. This is firmware that can pro-
vide functions that can be invoked by an OS, but those functions are still concerned only with the platform
hardware (e.g., PSCI on ARM). The assumption is that platform boot firmware has since been superceded by
the OS since the OS is now up and running, but that there is still a need for an OS to access specific features of
hardware that may only be possible via firmware.

Platform Firmware The collection of platform boot firmware and platform runtime firmware.

Power Button A user push button or other switch contact device that switches the system from the sleeping/soft off
state to the working state, and signals the OS to transition to a sleeping/soft off state from the working state.

Power Management Mechanisms in software and hardware to minimize system power consumption, manage system
thermal limits, and maximize system battery life. Power management involves trade-offs among system speed,
noise, battery life, processing speed, and alternating current (AC) power consumption. Power management
is required for some system functions, such as appliance (for example, answering machine, furnace control)
operations.

Power Resources Resources (for example, power planes and clock sources) that a device requires to operate in a
given power state.

Power Sources The battery (including a UPS battery) and AC line powered adapters or power supplies that supply
power to a platform.

2.1. General ACPI Terminology 61

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Register Grouping Consists of two register blocks (it has two pointers to two different blocks of registers). The
fixed-position bits within a register grouping can be split between the two register blocks. This allows the bits
within a register grouping to be split between two chips.

Reserved Bits Some unused bits in ACPI hardware registers are designated as “Reserved” in the ACPI specification.
For future extensibility, hardware-register reserved bits always return zero, and data writes to them have no side
effects. OSPM implementations must write zeros to all reserved bits in enable and status registers and preserve
bits in control registers.

Root System Description Pointer (RSDP) An ACPI-compatible system must provide an RSDP in the system’s low
address space. This structure’s only purpose is to provide the physical address of the RSDT and XSDT.

Root System Description Table (RSDT) A table with the signature ‘RSDT,” followed by an array of physical point-
ers to other system description tables. The OS locates that RSDT by following the pointer in the RSDP structure.

Runtime Firmware Generic term to describe any firmware on a platform used during runtime (i.e., after the boot
process has completed). Use a more specific term, if possible.

Secondary System Description Table (SSDT) SSDTs are a continuation of the DSDT. Multiple SSDTs can be used
as part of a platform description. After the DSDT is loaded into the ACPI Namespace, each secondary descrip-
tion table listed in the RSDT/XSDT with a unique OEM Table ID is loaded. This allows the OEM to provide
the base support in one table, while adding smaller system options in other tables.

System Physical Address (SPA) The platform physical address assigned and programmed by the platform and uti-
lized by the OS.

Sleep Button A user push button that switches the system from the sleeping/soft off state to the working state, and
signals the OS to transition to a sleeping state from the working state.

Smart Battery Subsystem A battery subsystem that conforms to the following specifications: Smart Battery and
either Smart Battery System Manager or Smart Battery Charger and Selector—and the additional ACPI require-
ments.

Smart Battery Table An ACPI table used on platforms that have a Smart Battery subsystem. This table indicates
the energy-level trip points that the platform requires for placing the system into different sleeping states and
suggested energy levels for warning the user to transition the platform into a sleeping state.

SMBus Interface A standard hardware and software communications interface between an OS bus driver and an
SMBus controller.

Software Software is comprised of elements required to load the operating system and all user applications and user
data subsequently handled by the operating system.

Streamlined Advanced Programmable Interrupt Controller (SAPIC) An advanced APIC commonly found on
Intel Itanium™ Processor Family-based 64-bit systems.

System A system is the entirety of a computing entity, including all elements in a platform (hardware, firmware) and
software (operating system, user applications, user data). A system can be thought of both as a logical construct
(e.g. a software stack) or physical construct (e.g. a notebook, a desktop, a server, a network switch, etc).

System BIOS A term sometimes used in industry to refer to either Legacy BIOS, or to UEFI Core System BIOS, or
both. Please use this term only when referring to Legacy BIOS. See also: BIOS, Legacy BIOS.

System Context The volatile data in the system that is not saved by a device driver.

System Control Interrupt (SCI) A system interrupt used by hardware to notify the OS of ACPI events. The SCI is
an active, low, shareable, level interrupt.

System Management Bus (SMBus) A two-wire interface based upon the I>C protocol. The SMBus is a low-speed
bus that provides positive addressing for devices, as well as bus arbitration.

System Management Interrupt (SMI) An OS-transparent interrupt generated by interrupt events on legacy systems.
By contrast, on ACPI systems, interrupt events generate an OS-visible interrupt that is shareable (edge-style

2.1. General ACPI Terminology 62

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

interrupts will not work). Hardware platforms that want to support both legacy operating systems and ACPI
systems must support a way of re-mapping the interrupt events between SMIs and SCIs when switching between
ACPI and legacy models.

Thermal States Thermal states represent different operating environment temperatures within thermal zones of a
system. A system can have one or more thermal zones; each thermal zone is the volume of space around a
particular temperature-sensing device. The transitions from one thermal state to another are marked by trip
points, which are implemented to generate an SCI when the temperature in a thermal zone moves above or
below the trip point temperature.

UEFI One form of Host Processor Boot Firmware which uses a Unified Extensible Firmware Interface (UEFI) struc-
ture (as defined by the UEFI Forum). This is the current host processor boot firmware structure being adopted
as a standard in the industry. This term should be used when referring specifically to UEFI code on a platform.

UEFI Drivers Standalone binary executables in PECOFF format which are loaded by UEFI during the boot process
to handle specific pieces of hardware.

eXtended Root System Description Table (XSDT) The XSDT provides identical functionality to the RSDT but ac-
commodates physical addresses of DESCRIPTION HEADERs that are larger than 32 bits. Notice that both the
XSDT and the RSDT can be pointed to by the RSDP structure.

2.2 Global System State Definitions

Global system states (Gx states) apply to the entire system and are visible to the user.
Global system states are defined by six principal criteria:

1. Does application software run?

2. What is the latency from external events to application response?

3. What is the power consumption?

4. Is an OS reboot required to return to a working state?

5. Is it safe to disassemble the computer?

6. Can the state be entered and exited electronically?
Following is a list of the system states:

G3 Mechanical Off A computer state that is entered and left by a mechanical means (for example, turning off the
system’s power through the movement of a large red switch). It is implied by the entry of this off state through a
mechanical means that no electrical current is running through the circuitry and that it can be worked on without
damaging the hardware or endangering service personnel. The OS must be restarted to return to the Working
state. No hardware context is retained. Except for the real-time clock, power consumption is zero.

G2/S5 Soft Off A computer state where the computer consumes a minimal amount of power. No user mode or system
mode code is run. This state requires a large latency in order to return to the Working state. The system’s context
will not be preserved by the hardware. The system must be restarted to return to the Working state. It is not safe
to disassemble the machine in this state.

G1 Sleeping A computer state where the computer consumes a small amount of power, user mode threads are not
being executed, and the system “appears” to be off (from an end user’s perspective, the display is off, and so
on). Latency for returning to the Working state varies on the wake environment selected prior to entry of this
state (for example, whether the system should answer phone calls). Work can be resumed without rebooting the
OS because large elements of system context are saved by the hardware and the rest by system software. It is
not safe to disassemble the machine in this state.

2.2. Global System State Definitions 63

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

GO0 Working A computer state where the system dispatches user mode (application) threads and they execute. In this
state, peripheral devices (peripherals) are having their power state changed dynamically. The user can select,
through some Ul, various performance/power characteristics of the system to have the software optimize for
performance or battery life. The system responds to external events in real time. It is not safe to disassemble the
machine in this state.

S4 Non-Volatile Sleep A special global system state that allows system context to be saved and restored (relatively
slowly) when power is lost to the motherboard. If the system has been commanded to enter S4, the OS will
write all system context to a file on non-volatile storage media and leave appropriate context markers. The
machine will then enter the S4 state. When the system leaves the Soft Off or Mechanical Off state, transitioning
to Working (GO) and restarting the OS, a restore from a NVS file can occur. This will only happen if a valid
non-volatile sleep data set is found, certain aspects of the configuration of the machine have not changed, and
the user has not manually aborted the restore. If all these conditions are met, as part of the OS restarting, it will
reload the system context and activate it. The net effect for the user is what looks like a resume from a Sleeping
(G1) state (albeit slower). The aspects of the machine configuration that must not change include, but are not
limited to, disk layout and memory size. It might be possible for the user to swap a PC Card or a Device Bay
device, however.

Notice that for the machine to transition directly from the Soft Off or Sleeping states to S4, the system context must
be written to non-volatile storage by the hardware; entering the Working state first so that the OS or platform runtime
firmware can save the system context takes too long from the user’s point of view. The transition from Mechanical Off
to S4 is likely to be done when the user is not there to see it.

Because the S4 state relies only on non-volatile storage, a machine can save its system context for an arbitrary period
of time (on the order of many years).

Table 2.1: Summary of Global Power States

Global system | Software Latency Power OS restart | Safe to dis- | Exit state
state runs consump- | required assemble electroni-
tion computer cally
GO Working Yes 0 Large No No Yes
G1 Sleeping No >0, wvaries | Smaller No No Yes
with sleep
state
G2/S5 Soft Off No Long Very near 0 | Yes No Yes
G3 Mechanical Off | No Long RTC battery | Yes Yes No

Notice that the entries for G2/S5 and G3 in the Latency column of the above table are “Long.” This implies that a
platform designed to give the user the appearance of “instant-on,” similar to a home appliance device, will use the GO
and G1 states almost exclusively (the G3 state may be used for moving the machine or repairing it).

2.3 Device Power State Definitions

Device power states are states of particular devices; as such, they are generally not visible to the user. For example,
some devices may be in the Off state even though the system as a whole is in the Working state.

Device states apply to any device on any bus. They are generally defined in terms of four principal criteria:
* Power consumption-How much power the device uses.

* Device context—-How much of the context of the device is retained by the hardware. The OS is responsible for
restoring any lost device context (this may be done by resetting the device).

¢ Device driver—-What the device driver must do to restore the device to full on.

2.3. Device Power State Definitions 64

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

» Restore time—How long it takes to restore the device to full on.

The device power states are defined below, although very generically. Many devices do not have all four power states
defined. Devices may be capable of several different low-power modes, but if there is no user-perceptible difference
between the modes, only the lowest power mode will be used. The Device Class Power Management Specifications,
included in Appendix A of this specification, describe which of these power states are defined for a given type (class)
of device and define the specific details of each power state for that device class. For a list of the available Device
Class Power Management Specifications, see Appendix A: Device Class Specifications.

D3 (Off) Power has been fully removed from the device. Also referred to as D3cold in this and other specs. All
device context is lost when this state is entered, so the OS software will reinitialize the device when powering it
back on. Since all device context and power are lost, devices in this state do not decode their address lines, and
cannot be enumerated by software. Devices in this state have the longest restore times.

D3hot The meaning of the D3hot State is defined by each device class. In general, D3hot is expected to save as
much power as possible without affecting PNP Enumeration. Devices in D3hot must have enough power to
remain enumerable by software. For example, PCI Configuration space access and contents must operate as in
shallower power states. Similarly, ACPI identification and configuration objects must operate as in shallower
power states. Otherwise, no device functionality is supported, and Driver software is required to restore any lost
context, or reinitialize the device, during its transition back to DO.

Devices in this state can have long restore times. All classes of devices define this state.

Note: For devices that support both D3hot and D3 exposed to OSPM via _PR3, device software/drivers must al-
ways assume OSPM will target D3and must assume all device context will be lost and the device will no longer be
enumerable.

D2 The meaning of the D2 Device State is defined by each device class. Many device classes may not define D2. In
general, D2 is expected to save more power and preserve less device context than D1 or DO. Buses in D2 may
cause the device to lose some context (for example, by reducing power on the bus, thus forcing the device to
turn off some of its functions).

D1 The meaning of the D1 Device State is defined by each device class. Many device classes may not define D1. In
general, D1 is expected to save less power and preserve more device context than D2.

DO (Fully-On) This state is assumed to be the highest level of power consumption. The device is completely active
and responsive, and is expected to remember all relevant context continuously.

Transitions amongst these power states are restricted for simplicity. Power-down transitions (from higher-power, or
shallower, to lower-power, or deeper) are allowed between any two states. However, power-up transitions (from deeper
to shallower) are required to go through DO; i.e. Dy to Dx<y is illegal for all x !=0.

Table 2.2: Summary of Device Power States

Device State Power Consumption Device Context Re- | Driver Restoration
tained

DO - Fully-On As needed for operation All None

D1 D0>D1>D2> D3hot>D3 >D2 <D2

D2 D0>D1>D2> D3hot>D3 <Dl >Dl1

D3hot D0>D1>D2>D3hot>D3 Optional None <->Full initializa-

tion and load
D3 - Off 0 None Full initialization and load

Note: Devices often have different power modes within a given state. Devices can use these modes as long as they can
automatically transparently switch between these modes from the software, without violating the rules for the current

2.3. Device Power State Definitions

65

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Dx state the device is in. Low-power modes that adversely affect performance (in other words, low speed modes) or
that are not transparent to software cannot be done automatically in hardware; the device driver must issue commands
to use these modes.

2.3.1 Device Performance States

Device performance states (Px states) are power consumption and capability states within the active (D0) device power
state. Performance states allow OSPM to make tradeoffs between performance and energy conservation. Device
performance states have the greatest impact when the implementation is such that the states invoke different device
efficiency levels as opposed to a linear scaling of performance and energy consumption. Since performance state
transitions occur in the active device states, care must be taken to ensure that performance state transitions do not
adversely impact the system.

Device performance states, when necessary, are defined on a per device class basis (See Appendix A: Device Class
Specifications for more information).

2.4 Sleeping and Soft-off State Definitions

S1-S4 are types of sleeping states within the global system state, G1, while S5 is a soft-off state associated with the
G2 system state. The Sx states are briefly defined below.

For a detailed definition of the system behavior within each Sx state, see _Sx (System States). For a detailed definition
of the transitions between each of the Sx states, see Sleeping States.

S1 Sleeping State The S1 sleeping state is a low wake latency sleeping state. In this state, no system context is lost
(CPU or chip set) and hardware maintains all system context.

S2 Sleeping State The S2 sleeping state is a low wake latency sleeping state. This state is similar to the S1 sleeping
state except that the CPU and system cache context is lost (the OS is responsible for maintaining the caches and
CPU context). Control starts from the processor’s reset vector after the wake event.

S3 Sleeping State The S3 sleeping state is a low wake latency sleeping state where all system context is lost except
system memory. CPU, cache, and chip set context are lost in this state. Hardware maintains memory context
and restores some CPU and L2 configuration context. Control starts from the processor’s reset vector after the
wake event.

S4 Sleeping State The S4 sleeping state is the lowest power, longest wake latency sleeping state supported by ACPIL.
In order to reduce power to a minimum, it is assumed that the hardware platform has powered off all devices.
Platform context is maintained.

S5 Soft Off State The S5 state is similar to the S4 state except that the OS does not save any context. The system
is in the “soft” off state and requires a complete boot when it wakes. Software uses a different state value to
distinguish between the S5 state and the S4 state to allow for initial boot operations within the platform boot
firmware to distinguish whether the boot is going to wake from a saved memory image.

2.4. Sleeping and Soft-off State Definitions 66

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

2.5 Processor Power State Definitions

Processor power states (Cx states) are processor power consumption and thermal management states within the global
working state, GO. The Cx states possess specific entry and exit semantics and are briefly defined below. For a more
detailed definition of each Cx state, see Processor Power States.

CO0 Processor Power State While the processor is in this state, it executes instructions.

C1 Processor Power State This processor power state has the lowest latency. The hardware latency in this state
must be low enough that the operating software does not consider the latency aspect of the state when deciding
whether to use it. Aside from putting the processor in a non-executing power state, this state has no other
software-visible effects.

C2 Processor Power State The C2 state offers improved power savings over the C1 state. The worst-case hardware
latency for this state is provided via the ACPI system firmware and the operating software can use this informa-
tion to determine when the C1 state should be used instead of the C2 state. Aside from putting the processor in
a non-executing power state, this state has no other software-visible effects.

C3 Processor Power State The C3 state offers improved power savings over the C1 and C2 states. The worst-case
hardware latency for this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C2 state should be used instead of the C3 state. While in the C3 state, the
processor’s caches maintain state but ignore any snoops. The operating software is responsible for ensuring that
the caches maintain coherency.

2.6 Device and Processor Performance State Definitions

Device and Processor performance states (Px states) are power consumption and capability states within the ac-
tive/executing states, CO for processors and DO for devices. The Px states are briefly defined below. For a more
detailed definition of each Px state from a processor perspective, see Processor Performance Control. For a more
detailed definition of each Px state from a device perspective see Device and Processor Performance States, and
Appendix A: Device Class Specifications.

PO Performance State While a device or processor is in this state, it uses its maximum performance capability and
may consume maximum power.

P1 Performance State In this performance power state, the performance capability of a device or processor is limited
below its maximum and consumes less than maximum power.

Pn Performance State In this performance state, the performance capability of a device or processor is at its min-
imum level and consumes minimal power while remaining in an active state. State n is a maximum number
and is processor or device dependent. Processors and devices may define support for an arbitrary number of
performance states not to exceed 255.

2.5. Processor Power State Definitions 67

CHAPTER
THREE

ACPI CONCEPTS

Platforms compliant with the ACPI specification provide OSPM with direct and exclusive control over the power
management and motherboard device configuration functions of a computer. During OS initialization, OSPM takes
over these functions from legacy implementations such as the APM BIOS, SMM-based firmware, legacy applications,
and the PNPBIOS. Having done this, OSPM is responsible for handling motherboard device configuration events as
well as for controlling the power, performance, and thermal status of the system based on user preference, application
requests and OS imposed Quality of Service (QOS) / usability goals. ACPI provides low-level interfaces that allow
OSPM to perform these functions. The functional areas covered by the ACPI specification are:

System power management ACPI defines mechanisms for putting the computer as a whole in and out of system
sleeping states. It also provides a general mechanism for any device to wake the computer.

Device power management ACPI tables describe motherboard devices, their power states, the power planes the de-
vices are connected to, and controls for putting devices into different power states. This enables the OS to put
devices into low-power states based on application usage.

Processor power management While the OS is idle but not sleeping, it will use commands described by ACPI to
put processors in low-power states.

Device and processor performance management While the system is active, OSPM will transition devices and pro-
cessors into different performance states, defined by ACPIL, to achieve a desirable balance between performance
and energy conservation goals as well as other environmental requirements (for example, visibility and acous-
tics).

Configuration / Plug and Play ACPI specifies information used to enumerate and configure motherboard devices.
This information is arranged hierarchically so when events such as docking and undocking take place, the OS
has precise, a priori knowledge of which devices are affected by the event.

System Events ACPI provides a general event mechanism that can be used for system events such as thermal events,
power management events, docking, device insertion and removal, and so on. This mechanism is very flexible
in that it does not define specifically how events are routed to the core logic chip set.

Battery management Battery management policy moves from the APM BIOS to the ACPI OS. An ACPI-compatible
battery device needs either a Smart Battery subsystem interface, which is controlled by the OS directly through
the embedded controller interface, or a Control Method Battery interface. A Control Method Battery interface
is completely defined by AML control methods, allowing an OEM to choose any type of the battery and any
kind of communication interface supported by ACPIL. The battery must comply with the requirements of its
interface, as described either herein or in other applicable standards. The OS may choose to alter the behavior
of the battery, for example, by adjusting the Low Battery or Battery Warning trip point. When there are multiple
batteries present, the battery subsystem is not required to perform any synthesis of a “composite battery” from
the data of the separate batteries. In cases where the battery subsystem does not synthesize a “composite battery”
from the separate battery’s data, the OS must provide that synthesis.

Thermal management Since the OS controls the power and performance states of devices and processors, ACPI also
addresses system thermal management. It provides a simple, scalable model that allows OEMs to define thermal
zones, thermal indicators, and methods for cooling thermal zones.

68

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Embedded Controller ACPI defines a standard hardware and software communications interface between an OS
bus enumerator and an embedded controller. This allows any OS to provide a standard bus enumerator that can
directly communicate with an embedded controller in the system, thus allowing other drivers within the system
to communicate with and use the resources of system embedded controllers. This in turn enables the OEM to
provide platform features that the OS and applications can use.

SMBus Controller ACPI defines a standard hardware and software communications interface between an OS bus
driver and an SMBus Controller. This allows any OS to provide a standard bus driver that can directly commu-
nicate with SMBus devices in the system. This in turn enables the OEM to provide platform features that the
OS and applications can use.

OSPM’s mission is to optimally configure the platform and to optimally manage the system’s power, performance,
and thermal status given the user’s preferences and while supporting OS imposed Quality of Service (QOS) / usability
goals. To achieve these goals, ACPI requires that once an ACPI compliant platform is in ACPI mode, the platform’s
hardware, firmware, or other non-OS software must not manipulate the platform’s configuration, power, performance,
and thermal control interfaces independently of OSPM. OSPM alone is responsible for coordinating the configuration,
power management, performance management, and thermal control policy of the system. Manipulation of these
interfaces independently of OSPM undermines the purpose of OSPM/ACPI and may adversely impact the system’s
configuration, power, performance, and thermal policy goals. There are two exceptions to this requirement. The first
is in the case of the possibility of damage to a system from an excessive thermal conditions where an ACPI compatible
OS is present and OSPM latency is insufficient to remedy an adverse thermal condition. In this case, the platform may
exercise a failsafe thermal control mechanism that reduces the performance of a system component to avoid damage.
If this occurs, the platform must notify OSPM of the performance reduction if the reduction is of significant duration
(in other words, if the duration of reduced performance could adversely impact OSPM’s power or performance control
policy - operating system vendors can provide guidance in this area). The second exception is the case where the
platform contains Active cooling devices but does not contain Passive cooling temperature trip points or controls,. In
this case, a hardware based Active cooling mechanism may be implemented without impacting OSPM’s goals. Any
platform that requires both active and passive cooling must allow OSPM to manage the platform thermals via ACPI
defined active and passive cooling interfaces.

3.1 System Power Management

Under OSPM, the OS directs all system and device power state transitions. Employing user preferences and knowledge
of how devices are being used by applications, the OS puts devices in and out of low-power states. Devices that are
not being used can be turned off. Similarly, the OS uses information from applications and user settings to put the
system as a whole into a low- power state. The OS uses ACPI to control power state transitions in hardware.

3.2 Power States

From a user-visible level, the system can be thought of as being in one of the states in the following diagram:
See Section 2.2 for detailed definitions of these states.

In general use, computers alternate between the Working and Sleeping states. In the Working state, the computer is
used to do work. User-mode application threads are dispatched and running. Individual devices can be in low-power
(Dx) states and processors can be in low-power (Cx) states if they are not being used. Any device the system turns off
because it is not actively in use can be turned on with short latency. (What “short” means depends on the device. An
LCD display needs to come on in sub-second times, while it is generally acceptable to wait a few seconds for a printer
to wake.)

The net effect of this is that the entire machine is functional in the Working state. Various Working sub-states differ
in speed of computation, power used, heat produced, and noise produced. Tuning within the Working state is largely
about trade-offs among speed, power, heat, and noise.

3.1. System Power Management 69

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 3.1: Global System Power States and Transitions

When the computer is idle or the user has pressed the power button, the OS will put the computer into one of the
sleeping (Sx) states. No user-visible computation occurs in a sleeping state. The sleeping sub-states differ in what
events can arouse the system to a Working state, and how long this takes. When the machine must awaken to all
possible events or do so very quickly, it can enter only the sub-states that achieve a partial reduction of system power
consumption. However, if the only event of interest is a user pushing on a switch and a latency of minutes is allowed,
the OS could save all system context into an NVS file and transition the hardware into the S4 sleeping state. In this
state, the machine draws almost zero power and retains system context for an arbitrary period of time (years or decades
if needed).

The other states are used less often. Computers that support legacy BIOS power management interfaces boot in the
Legacy state and transition to the Working state when an ACPI OS loads. A system without legacy support (for
example, a RISC system) transitions directly from the Mechanical Off state to the Working state. Users typically put
computers into the Mechanical Off state by flipping the computer’s mechanical switch or by unplugging the computer.

3.2.1 Power Button

In legacy systems, the power button typically either forces the machine into Soft Off or Mechanical Off or, on a laptop,
forces it to some sleeping state. No allowance is made for user policy (such as the user wants the machine to “come
on” in less than 1 second with all context as it was when the user turned the machine “off”), system alert functions
(such as the system being used as an answering machine or fax machine), or application function (such as saving a
user file).

In an OSPM system, there are two switches. One is to transition the system to the Mechanical Off state. A mechanism
to stop current flow is required for legal reasons in some jurisdictions (for example, in some European countries). The
other is the “main” power button. This is in some obvious place (for example, beside the keyboard on a laptop). Unlike
legacy on/off buttons, all it does is send a request to the system. What the system does with this request depends on
policy issues derived from user preferences, user function requests, and application data.

3.2. Power States 70

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

3.2.2 Platform Power Management Characteristics
3.2.2.1 Mobile PC

Mobile PCs will continue to have aggressive power management functionality. Going to OSPM/ACPI will allow
enhanced power savings techniques and more refined user policies.

Aspects of mobile PC power management in the ACPI specification are thermal management (see Section 3.10).

3.2.2.2 Desktop PCs

Power-managed desktops will be of two types, though the first type will migrate to the second over time.

Ordinary “Green PC” Here, new appliance functions are not the issue. The machine is really only used for pro-
ductivity computations. At least initially, such machines can get by with very minimal function. In particular,
they need the normal ACPI timers and controls, but don’t need to support elaborate sleeping states, and so on.
They, however, do need to allow the OS to put as many of their devices/resources as possible into device standby
and device off states, as independently as possible (to allow for maximum compute speed with minimum power
wasted on unused devices). Such PCs will also need to support wake from the sleeping state by means of a
timer, because this allows administrators to force them to turn on just before people are to show up for work.

Home PC Computers are moving into home environments where they are used in entertainment centers and to per-
form tasks like answering the phone. A home PC needs all of the functionality of the ordinary green PC. In fact,
it has all of the ACPI power functionality of a laptop except for docking and lid events (and need not have any
legacy power management). Note that there is also a thermal management aspect to a home PC, as a home PC
user wants the system to run as quietly as possible, often in a thermally constrained environment.

3.2.2.3 Multiprocessor and Server PCs

Perhaps surprisingly, server machines often get the largest absolute power savings. Why? Because they have the
largest hardware configurations and because it’s not practical for somebody to hit the off switch when they leave at
night.

Day Mode In day mode, servers are power-managed much like a corporate ordinary green PC, staying in the Working
state all the time, but putting unused devices into low-power states whenever possible. Because servers can be
very large and have, for example, many disk spindles, power management can result in large savings. OSPM
allows careful tuning of when to do this, thus making it workable.

Night Mode In night mode, servers look like home PCs. They sleep as deeply as they can and are still able to wake
and answer service requests coming in over the network, phone links, and so on, within specified latencies. So,
for example, a print server might go into deep sleep until it receives a print job at 3 A.M., at which point it
wakes in perhaps less than 30 seconds, prints the job, and then goes back to sleep. If the print request comes
over the LAN, then this scenario depends on an intelligent LAN adapter that can wake the system in response
to an interesting received packet.

3.2. Power States 71

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

3.3 Device Power Management

This section describes ACPI-compatible device power management. The ACPI device power states are introduced, the
controls and information an ACPI-compatible OS needs to perform device power management are discussed, the wake
operation devices use to wake the computer from a sleeping state is described, and an example of ACPI-compatible
device management using a modem is given

3.3.1 Device Power Management Model

ACPI Device Power Management is based on an integrated model consisting of:

Distributed device power state policy For each hardware device on the system, there is a Power Policy Owner in
the Operating System that is responsible for continuously determining the best power state for the device. The
best device power state is the one that, at any point in time, minimizes the consumption of power by the device
consistent with the usage requirements of the device by the system and its user. Policy is typically defined for
a class of devices, and incorporates application activity, user scenarios and other operating state as necessary. It
is applied to all devices of a given class.

Layered device power state control Once power state decisions are made for a device, they must be carried-out by
device drivers. The model partitions the control functionality between the device, bus and platform layers.
Device drivers at each layer perform control using mechanisms available at that level, coordinated by OSPM. In
general, the ordering proceeds from Device/Class level, to Bus level, to Platform level when a device is powering
down, and the inverse when powering-up.

For instance, a device-level driver has access, via the device programming interface, to settings and control
registers that invoke specific, sometimes proprietary, power control features in the device. The device driver
uses these controls as appropriate for the target ACPI-defined power state determined by the policy owner.
Similarly, classes of devices may have standardized power features, invoked in standardized ways that Class
Drivers might use when entering a target power state.

At the bus level, power management standards come into play to provide bus-specific controls that work for
every device connected to the bus, regardless of device class. PCI, for instance, defines fields in the device
Configuration Space for setting the device’s power state (D0O-D3). Bus-level drivers utilize these standards to
perform control in addition to that applied by the device-specific or device class driver. Bus-specific mechanisms
also enable additional power savings in the system by enabling the bus infrastructure hardware itself to enter
lower power states, as defined in the bus standard.

Finally, for platform-level power state control, ACPI defines mechanisms (_PRx, _PSx, _ON, _OFF) for putting
a device into a given power state. The Operating System’s Power Management software (OSPM) utilizes these
mechanisms to execute the lowest-level, platform-specific control for a given device (such as turning power rails
and clocks off and on, resetting hardware, etc.).

Operating System coordination Finally, ACPI defines information and behavior requirements that enable OSPM to
inform the Power Policy Owner about supported state and wake-up capabilities, and to coordinate the actions
of the various levels of device drivers in controlling power. OSPM, in this role, is responsible for ensuring that
device power management is coordinated with System Power Management such as entering sleep states (S1-
S4) or Low-power Idle states (LPI). Integrated with device power state policy and control, wake-up policy and
control are also coordinated by OSPM. Power Policy Owners, which decide when the device might be needed
to wake the system, ensure that only device power states that the device can wake from are selected when the
platform enters a Sleep or LPI state. Enabling of wake-up hardware is also performed at the device, bus and
platform levels and coordinated by OSPM. OSPM ensures further that the Sleep or LPI state selected for the
system is compatible with the device state and wake-up capabilities of all the devices currently enabled for wake.

3.3. Device Power Management 72

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

3.3.2 Power Management Standards

To manage power of all the devices in the system, the OS needs standard methods for sending commands to a device.
These standards define the operations used to manage power of devices on a particular I/O interconnect and the power
states that devices can be put into. Defining these standards for each I/O interconnect creates a baseline level of power
management support the OS can utilize. Independent Hardware Vendors (IHVs) do not have to spend extra time
writing software to manage power of their hardware, because simply adhering to the standard gains them direct OS
support. For OS vendors, the I/O interconnect standards allow the power management code to be centralized in the
driver for each I/O interconnect. Finally, I/O interconnect-driven power management allows the OS to track the states
of all devices on a given I/O interconnect. When all the devices are in a given state (or example, D3 - off), the OS can
put the entire I/O interconnect into the power supply mode appropriate for that state (for example, D3 - off).

I/0O interconnect-level power management specifications are written for a number of buses including:
e PCI
* PCI Express
* CardBus
» USB
IEEE 1394

3.3.3 Device Power States
To unify nomenclature and provide consistent behavior across devices, standard definitions are used for the power
states of devices. Generally, these states are defined in terms of the following criteria:

* Power consumption—How much power the device uses.

* Device context—-How much of the context of the device is retained by the hardware.

* Device driver—What the device driver must do to restore the device to fully on.

* Restore latency—How long it takes to restore the device to fully on.

More specifically, power management specifications for each class of device (for example, modem, network adapter,
hard disk, and so on) more precisely define the power states and power policy for the class. See Device Power States
for a detailed description of the general device power states (D0-D3).

3.3.4 Device Power State Definitions

The device power state definitions are device-independent, but classes of devices on a bus must support some consistent
set of power-related characteristics. For example, when the bus-specific mechanism to set the device power state to
a given level is invoked, the actions a device might take and the specific sorts of behaviors the OS can assume while
the device is in that state will vary from device type to device type. For a fully integrated device power management
system, these class-specific power characteristics must also be standardized:

Device Power State Characteristics Each class of device has a standard definition of target power consumption lev-
els, state-change latencies, and context loss.

Minimum Device Power Capabilities Each class of device has a minimum standard set of power capabilities.

Device Functional Characteristics Each class of device has a standard definition of what subset of device function-
ality or features is available in each power state (for example, the net card can receive, but cannot transmit; the
sound card is fully functional except that the power amps are off, and so on).

Device Wakeup Characteristics Each class of device has a standard definition of its wake policy.

3.3. Device Power Management 73

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

The Device Class power management specifications define these power state characteristics for each class of device.
See Appendix A: Device Class Specifications.

3.4 Controlling Device Power

ACPI interfaces provide the control methods and information needed to manage device power. OSPM leverages these
interfaces to perform tasks like determining the capabilities of a device, executing methods to set a device’s power
state or get its status, and enabling a device to wake the machine.

¢ Other buses enumerate some devices on the main board. For example, PCI devices are reported through the
standard PCI enumeration mechanisms. Power management of these devices is handled through their own bus
specification (in this case, PCI). All other devices on the main board are handled through ACPI. Specifically,
the ACPI table lists legacy devices that cannot be reported through their own bus specification, the root of each
bus in the system, and devices that have additional power management or configuration options not covered by
their own bus specification.

For more detailed information see Section 7

3.4.1 Getting Device Power Capabilities

As the OS enumerates devices in the system, it gets information about the power management features that the device
supports. The Differentiated Definition Block given to the OS by the platform boot firmware describes every device
handled by ACPI. This description contains the following information:

* A description of what power resources (power planes and clock sources) the device needs in each power state
that the device supports. For example, a device might need a high power bus and a clock in the DO state but only
a low-power bus and no clock in the D2 state.

* A description of what power resources a device needs in order to wake the machine (or none to indicate that the
device does not support wake). The OS can use this information to infer what device and system power states
from which the device can support wake.

» The optional control method the OS can use to set the power state of the device and to get and set resources.

In addition to describing the devices handled by ACPI, the table lists the power planes and clock sources themselves
and the control methods for turning them on and off. For detailed information, see Section 7.

3.4.2 Setting Device Power States

OSPM uses the Set Power State operation to put a device into one of the four power states.

When a device is put in a lower power state, it configures itself to draw as little power from the bus as possible. The
OS tracks the state of all devices on the bus, and will put the bus in the best power state based on the current device
requirements on that bus. For example, if all devices on a bus are in the D3 state, the OS will send a command to the
bus control chip set to remove power from the bus (thus putting the bus in the D3 state). If a particular bus supports a
low-power supply state, the OS puts the bus in that state if all devices are in the D1 or D2 state. Whatever power state
a device is in, the OS must be able to issue a Set Power State command to resume the device.

» The device does not need to have power to do this. The OS must turn on power to the device before it can send
commands to the device.

OSPM also uses the Set Power State operation to enable power management features such as wake (described in Power
and Performance Management).

For power-down operations (transitions from Dx to some deeper Dy), OSPM first evaluates the appropriate control
method for the target state (_PSx), then turns-off any unused power resources. Notice that this might not mean that

3.4. Controlling Device Power 74

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

power is actually removed from the device. If other active devices are sharing a power resource, the power resource
will remain on. In the power-up case (transitions from some Dx back to the shallower DO0), the power resources
required for DO are first turned on, and then the control method (_PSO0) is evaluated.

3.4.3 Getting Device Power Status

OSPM uses the Get Power Status operation to determine the current power configuration (states and features), as well
as the status of any batteries supported by the device. The device can signal an SCI to inform the OS of changes in
power status. For example, a device can trigger an interrupt to inform the OS that the battery has reached low power
level.

Devices use the ACPI event model to signal power status changes (for example, battery status changes) to OSPM. The
platform signals events to the OS via an interrupt, either SCI, or GPIO. An interrupt status bit is set to indicate the
event to the OS. The OS runs the control method associated with the event. This control method signals to the OS
which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information and batteries that
support the Smart Battery System Implementers Forum “Smart Battery Specification”. For batteries that report only
basic battery status information (such as total capacity and remaining capacity), the OS uses control methods from the
battery’s description table to read this information. To read status information for Smart Batteries, the OS can use a
standard Smart Battery driver that directly interfaces to Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the System

The wake operation enables devices to wake the system from a sleeping or low-power idle state. This operation must
not depend on the CPU because the CPU will not be executing instructions.

The OS ensures any bridges between the device and the core logic are in the lowest power state in which they can still
forward the wake signal. When a device with wake enabled decides to wake the system, it sends the defined signal on
its bus. Bus bridges must forward this signal to upstream bridges using the appropriate signal for that bus. Thus, the
signal eventually reaches the core chip set (for example, an ACPI chip set), which in turn wakes the system.

Before putting the system in a sleeping power state, the OS determines which devices are needed to wake the system
based on application requests, and then enables wake on those devices in a device and bus specific manner.

The OS enables the wake feature on devices by setting that device’s SCI Enable bit or unmasking its wake interrupt.
The location of this control is listed in the device’s entry in the description table. Only devices that have their wake
feature enabled can wake the system. The OS keeps track of the power states that the wake devices support, and
keeps the system in a power state in which the wake can still wake the system (based on capabilities reported in the
description table).

When the system is in a Sleeping or low-power idle state and a wake device decides to wake the system, it signals
to the core logic. The status bit corresponding to the device waking the system is set, and the core logic resumes the
system. After the OS is running again, it determines the device responsible for the wake event by either running a
control method (for wake events) or processing the device’s ISR (for wake interrupts).

* Besides using ACPI mechanism to enable a particular device to wake the system, an ACPI platform must also
be able to record and report the wake source to OSPM. When a system is woken from certain states (such as the
S4 state), it may start out in non-ACPI mode. In this case, the SCI status bit may be cleared when ACPI mode is
re-entered. However the platform must still attempt to record the wake source for retrieval by OSPM at a later
point.

 Although the above description explains how a device can wake the system, note that a device can also be put
into a low power state during the SO system state, and that this device may generate a wake signal in the SO state
as the following example illustrates.

3.4. Controlling Device Power 75

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

3.4.5 Example: Modem Device Power Management

To illustrate how these power management methods function in ACPI, consider an integrated modem. (This example

is greatly simplified for the purposes of this discussion.) The power states of a modem are defined as follows (from
the Modem Device Class Power Management Specification):

D0 Modem controller on Phone interface on Speaker on Can be on hook or off hook Can be waiting for answer

D1 Modem controller in low-power mode (context retained by device) Phone interface powered by phone line or in
low-power mode Speaker off Must be on hook

D2 Same as D3

D3 Modem controller off (context lost) Phone interface powered by phone line or off Speaker off On hook
The power policy for the modem is defined as follows:

D3 D0 COM port opened

D0, D1 D3 COM port closed

D0 D1 Modem put in answer mode

D1 D0 Application requests dial or the phone rings while the modem is in answer mode

The wake policy for the modem is very simple: When the phone rings and wake is enabled, wake the system.

Based on that policy, the modem and the COM port to which it is attached can be implemented in hardware as shown

in Figure 3-2. This is just an example for illustrating features of ACPI. This example is not intended to describe how
OEMs should build hardware.

PWR PWR2
i i
, ﬁ'tjﬁ ;;i&
PWR1_EN 4|
[
PWR2_EN - - | ':
|
MDM_D3 o
MLM L
COM_D3 } Yy Y Y
o
ACPI core m
chip set Vo COM port Wo Modem ‘{3 trol Phone Fhone
- 7| (UART) | " controller [="M | interface ; I line
Rl
I ——
VWAKE =

Fig. 3.2: Example Modem and COM Port Hardware

Note: Although not shown above, each discrete part has some isolation logic so that the part is isolated when power is
removed from it. Isolation logic controls are implemented as power resources in the ACPI Differentiated Description

3.4. Controlling Device Power 76

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Block so that devices are isolated as power planes are sequenced off.

3.4.5.1 Obtaining the Modem Capabilities

The OS determines the capabilities of this modem when it enumerates the modem by reading the modem’s entry in
the Differentiated Definition Block. In this case, the entry for the modem would report:

The device supports DO, D1, and D3:

* DO requires PWR1 and PWR?2 as power resources D1 requires PWR1 as a power resource (D3 implicitly requires
Nno power resources)

* To wake the system, the modem needs no power resources (implying it can wake the system from DO, D1, and
D3)

Control methods for setting power state and resources

3.4.5.2 Setting the Modem Power State

While the OS is running (GO state), it switches the modem to different power states according to the power policy
defined for modem:s.

When an application opens the COM port, the OS turns on the modem by putting it in the DO state. Then if the
application puts the modem in answer mode, the OS puts the modem in the D1 state to wait for the call. To make this
power-down transition, OSPM first runs a control method (_PS1) provided in the modem’s entry to put the device in
the D1 state. In this example, this control method asserts the MDM_D1 signal that tells the modem controller to go
into a low-power mode. OSPM then checks to see what power resources are no longer needed by the modem device.
In this case, PWR2 is no longer needed. Then it checks to make sure no other device in the system requires the use of
the PWR2 power resource. If the resource is no longer needed, the OSPM uses the _OFF control method associated
with that power resource in the Differentiated Definition Block to turn off the PWR2 power plane. This control method
sends the appropriate commands to the core chip set to stop asserting the PWR2_EN line.

OSPM does not always turn off power resources when a given device is put in a lower power state. For example,
assume that the PWR1 power plane also powers an active line printer (LPT) port. Suppose the user terminates the
modem application, causing the COM port to be closed, and therefore causing the modem to be shut off (state D3).
As always, OSPM begins the state transition process by running the modem’s control method to switch the device to
the D3 power state. The control method causes the MDM_D3 line to be asserted. Notice that these registers might not
be in the device itself. For example, the control method could read the register that controls MDM_D3.The modem
controller now turns off all its major functions so that it draws little power, if any, from the PWR1 line. OSPM
continues by checking to see which power resources are no longer needed. Because the LPT port is still active, PWR1
is in use. OSPM does not turn off the PWRI1 resource. Because the COM port is closed, the same sequence of events
take place to put it in the D3 state, but the power resource is not turned off due to the LPT dependency.

3.4.5.3 Obtaining the Modem Power Status

Integrated modems have no batteries; the only power status information for the device is the power state of the modem.
To determine the modem’s current power state (D0-D3), OSPM runs a control method (_PSC) supplied in the modem’s
entry in the Differentiated Definition Block. This control method reads from the necessary registers to determine the
modem’s power state.

3.4. Controlling Device Power 77

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

3.4.5.4 Waking the System

As indicated in the modem capabilities, this modem can wake the machine from any device power state. Before putting
the system in a Sleep or LPI state, the OS enables wake on any devices that applications have requested to be able to
wake the system. Then, it chooses the deepest sleeping or LPI state that can still provide the power resources necessary
to allow all enabled wake devices to wake the system. Next, the OS puts each of those devices in the appropriate power
state. In this case, the OS puts the modem in the D3 state because it supports wake from that state. Finally, the OS
puts the system into a sleep or LPI state.

Waking the system via modem starts with the modem’s phone interface asserting its ring indicate (RI) line when it
detects a ring on the phone line. This line is routed to the core logic to generate a wake event. The chipset then wakes
the system and the hardware will eventually pass control back to the OS (the wake mechanism differs depending on
the sleeping state, or LPI). After the OS is running, it puts the device in the DO state and begins handling interrupts
from the modem to process the event.

3.5 Processor Power Management

To further save power in the Working state, the OS puts the CPU into low-power states (C1, C2, and C3) when the OS
is idle. In these low-power states, the CPU does not run any instructions, and wakes when an interrupt, such as the OS
scheduler’s timer interrupt, occurs.

The OS determines how much time is being spent in its idle loop by reading the ACPI Power Management Timer.
This timer runs at a known, fixed frequency and allows the OS to precisely determine idle time. Depending on this
idle time estimate, the OS will put the CPU into different quality low-power states (which vary in power and latency)
when it enters its idle loop.

The CPU states are defined in detail in Processor Configuration and Control

3.6 Device and Processor Performance States

This section describes the concept of device and processor performance states. Device and processor performance
states (Px states) are power consumption and capability states within the active/executing states, CO for processors and
DO for devices. Performance states allow OSPM to make tradeoffs between performance and energy conservation.
Device and processor performance states have the greatest impact when the states invoke different device and processor
efficiency levels as opposed to a linear scaling of performance and energy consumption. Since performance state
transitions occur in the active/executing device states, care must be taken to ensure that performance state transitions
do not adversely impact the system.

Examples of device performance states include:
* A hard drive that provides levels of maximum throughput that correspond to levels of power consumption.
* An LCD panel that supports multiple brightness levels that correspond to levels of power consumption.

* A graphics component that scales performance between 2D and 3D drawing modes that corresponds to levels
of power consumption.

* An audio subsystem that provides multiple levels of maximum volume that correspond to levels of maximum
power consumption.

* A Direct-RDRAMTM controller that provides multiple levels of memory throughput performance, correspond-
ing to multiple levels of power consumption, by adjusting the maximum bandwidth throttles.

Processor performance states are described in Processor Configuration and Control

3.5. Processor Power Management 78

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

3.7 Configuration and “Plug and Play”

In addition to power management, ACPI interfaces provide controls and information that enable OSPM to configure the
required resources of motherboard devices along with their dynamic insertion and removal. ACPI Definition Blocks,
including the Differentiated System Description Table (DSDT) and Secondary System Description Tables (SSDTs),
describe motherboard devices in a hierarchical format called the ACPI namespace. The OS enumerates motherboard
devices simply by reading through the ACPI Namespace looking for devices with hardware IDs.

Each device enumerated by ACPI includes ACPI-defined objects in the ACPI Namespace that report the hardware
resources that the device could occupy, an object that reports the resources that are currently used by the device, and
objects for configuring those resources. The information is used by the Plug and Play OS (OSPM) to configure the
devices.

Note: When preparing to boot a system, the platform boot firmware only needs to configure boot devices. This
includes boot devices described in the ACPI system description tables as well as devices that are controlled through
other standards.

3.7.1 Device Configuration Example: Configuring the Modem

Returning to the modem device example above, the OS will find the modem and load a driver for it when the OS finds
it in the DSDT. This table will have control methods that give the OS the following information:

¢ The device can use IRQ 3, I/O 3F8-3FF or IRQ 4, I/0 2E8-2EF
* The device is currently using IRQ 3, I/O 3F8-3FF

The OS configures the modem’s hardware resources using Plug and Play algorithms. It chooses one of the supported
configurations that does not conflict with any other devices. Then, OSPM configures the device for those resources by
running a control method supplied in the modem’s section of the Differentiated Definition Block. This control method
will write to any I/O ports or memory addresses necessary to configure the device to the given resources.

3.7.2 NUMA Nodes

Systems employing a Non Uniform Memory Access (NUMA) architecture contain collections of hardware resources
including processors, memory, and I/O buses, that comprise what is commonly known as a “NUMA node”. Processor
accesses to memory or I/O resources within the local NUMA node is generally faster than processor accesses to
memory or I/O resources outside of the local NUMA node. ACPI defines interfaces that allow the platform to convey
NUMA node topology information to OSPM both statically at boot time and dynamically at run time as resources are
added or removed from the system.

3.8 System Events

ACPI includes a general event model used for Plug and Play, Thermal, and Power Management events. There are two
registers that make up the event model: an event status register and an event enable register.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If the corresponding bit in
the enable register is set, the core logic will assert the SCI to signal the OS. When the OS receives this interrupt, it
will run the control methods corresponding to any bits set in the event status register. These control methods use AML
commands to tell the OS what event occurred.

3.7. Configuration and “Plug and Play” 79

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

For example, assume a machine has all of its Plug and Play, Thermal, and Power Management events connected to
the same pin in the core logic. The event status and event enable registers would only have one bit each: the bit
corresponding to the event pin.

When the system is docked, the core logic sets the status bit and signals the SCI. The OS, seeing the status bit set,
runs the control method for that bit. The control method checks the hardware and determines the event was a docking
event (for example). It then signals to the OS that a docking event has occurred, and can tell the OS specifically where
in the device hierarchy the new devices will appear.

Since the event model registers are generalized, they can describe many different platform implementations. The single
pin model above is just one example. Another design might have Plug and Play, Thermal, and Power Management
events wired to three different pins so there would be three status bits (and three enable bits). Yet another design might
have every individual event wired to its own pin and status bit. This design, at the opposite extreme from the single pin
design, allows very complex hardware, yet very simple control methods. Countless variations in wiring up events are
possible. However, note that care must be taken to ensure that if events share a signal that the event that generated the
signal can be determined in the corresponding event handling control method allowing the proper device notification
to be sent.

3.9 Battery Management

Battery management policy moves from the APM BIOS to the ACPI-compatible OS. Batteries must comply with
the requirements of their associated interfaces, as described either herein or in other applicable standards. The OS
may choose to alter the behavior of the battery, for example, by adjusting the Low Battery or Battery Warning trip
point. When there are multiple batteries present, the battery subsystem is not required to perform any synthesis of a
“composite battery” from the data of the separate batteries. In cases where the battery subsystem does not synthesize
a “composite battery” from the separate battery’s data, the OS must provide that synthesis.

An ACPI-compatible battery device needs either a Smart Battery subsystem interface or a Control Method Battery
interface.

* Smart Battery is controlled by the OS directly through the embedded controller (EC). See Section 10.1 and
Section 12.9 for more information.

* Control Method Battery is completely accessed by AML code control methods, allowing the OEM to choose
any type of battery and any kind of communication interface supported by ACPIL. See Section 10.2 for more
information.

This section describes concepts common to all battery types.

3.9.1 Battery Communications

Both the Smart Battery and Control Method Battery interfaces provide a mechanism for the OS to query information
from the platform’s battery system. This information may include full charged capacity, present battery capacity, rate
of discharge, and other measures of the battery’s condition. All battery system types must provide notification to the
OS when there is a change such as inserting or removing a battery, or when a battery starts or stops discharging. Smart
Batteries and some Control Method Batteries are also able to give notifications based on changes in capacity. Smart
batteries provide extra information such as estimated run-time, information about how much power the battery is able
to provide, and what the run-time would be at a predetermined rate of consumption.

3.9. Battery Management 80

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

3.9.2 Battery Capacity

Each battery must report its designed capacity, latest full-charged capacity, and present remaining capacity. Remaining
capacity decreases during usage, and it also changes depending on the environment. Therefore, the OS must use latest
full-charged capacity to calculate the battery percentage. In addition the battery system must report warning and low
battery levels at which the user must be notified and the system transitioned to a sleeping state. See Fig. 3.3 for the
relation of these five values.

A system may use either rate and capacity [mA/mAh] or power and energy [mW/mWh] for the unit of battery infor-
mation calculation and reporting. Mixing [mA] and [mW] is not allowed on a system.

b R Designed capacity
H-----------Last full charged capacity

44— FPresent remaining capacity

| & OEM designed initial capacity for warning
I R OEM designed initial capacity for low

Fig. 3.3: Reporting Battery Capacity

3.9.3 Battery Gas Gauge

At the most basic level, the OS calculates Remaining Battery Percentage [%] using the following formula:

Battery R ining C i Ah/mWh
Remaining Battery Percentage[%] = attery Remaining Capacity [mAh/mWh] * 100

Last Full Charged Capacity [mAh/mWh]

Fig. 3.4: Formula for Remaining Battery Percentage

Control Method Battery also reports the Present Drain Rate [mA or mW] for calculating the remaining battery life. At
the most basic level, Remaining Battery life is calculated by following formula:

Battery Remaining Capacity [mAh/mWh]
Battery Present Drain Rate [mA/mW]

Remaining Battery Life [h]=

Fig. 3.5: Formula for the Present Drain Rate

Smart Batteries also report the present rate of drain, but since they can directly report the estimated run-time, this
function should be used instead as it can more accurately account for variations specific to the battery.

3.9. Battery Management 81

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

3.9.4 Low Battery Levels

A system has an OEM-designed initial capacity for warning, initial capacity for low, and a critical battery level or flag.
The values for warning and low represent the amount of energy or battery capacity needed by the system to take certain
actions. The critical battery level or flag is used to indicate when the batteries in the system are completely drained.

OSPM can determine independent warning and low battery capacity values based on the OEM-designed levels, but
cannot set these values lower than the OEM-designed values, as shown in the figure below.

Full Last full charged capacity

‘ QE5PM-selected low battery waming capacity
<
. -
........... , OEM-designed initial capacity for warming (minimurm)
OSPM-selected low batiery
OEM-designed initial capacity for low (minimum})

critical [OEM-defined Battery Critical flag

Fig. 3.6: Low Battery and Warning

Each Control Method Battery in a system reports the OEM-designed initial warning capacity and OEM-designed
initial low capacity as well as a flag to report when that battery has reached or is below its critical energy level. Unlike
Control Method Batteries, Smart Batteries are not necessarily specific to one particular machine type, so the OEM-
designed warning, low, and critical levels are reported separately in a Smart Battery Table described in Smart Battery
Table (SBST) .

The table below describes how these values should be set by the OEM and interpreted by the OS.

Table 3.1: Low Battery Levels

Level Description

Warning When the total available energy (mWh) or capacity (mAh) in the batteries falls below this

level, the OS will notify the user through the UI. This value should allow for a few minutes

of run-time before the “Low” level is encountered so the user has time to wrap up any

important work, change the battery, or find a power outlet to plug the system in.
continues on next page

3.9. Battery Management 82

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 3.1 — continued from previous page
Level Description
Low This value is an estimation of the amount of energy or battery capacity required by the
system to transition to any supported sleeping state. When the OS detects that the total
available battery capacity is less than this value, it will transition the system to a user defined
system state (S1-S4). In most situations this should be S4 so that system state is not lost
if the battery eventually becomes completely empty. The design of the OS should consider
that users of a multiple battery system may remove one or more of the batteries in an attempt
replace or charge it. This might result in the remaining capacity falling below the “Low”
level not leaving sufficient battery capacity for the OS to safely transition the system into the
sleeping state. Therefore, if the batteries are discharging simultaneously, the action might
need to be initiated at the point when both batteries reach this level.
Critical The Critical battery state indicates that all available batteries are discharged and do not
appear to be able to supply power to run the system any longer. When this occurs, the OS
must attempt to perform an emergency shutdown as described below.
For a smart battery system, this would typically occur when all batteries reach a capacity of
0, but an OEM may choose to put a larger value in the Smart Battery Table to provide an
extra margin of safely.
For a Control Method Battery system with multiple batteries, the flag is reported per battery.
If any battery in the system is in a critically low state and is still providing power to the
system (in other words, the battery is discharging), the system is considered to be in a
critical energy state. The _BST control method is required to return the Critical flag on a
discharging battery only when all batteries have reached a critical state; the ACPI system
firmware is otherwise required to switch to a non-critical battery.

3.9.4.1 Emergency Shutdown

Running until all batteries in a system are critical is not a situation that should be encountered normally, since the
system should be put into a sleeping state when the battery becomes low. In the case that this does occur, the OS
should take steps to minimize any damage to system integrity. The emergency shutdown procedure should be designed
to minimize bad effects based on the assumption that power may be lost at any time. For example, if a hard disk is
spun down, the OS should not try to spin it up to write any data, since spinning up the disk and attempting to write data
could potentially corrupt files if the write were not completed. Even if a disk is spun up, the decision to attempt to save
even system settings data before shutting down would have to be evaluated since reverting to previous settings might
be less harmful than having the potential to corrupt the settings if power was lost halfway through the write operation.

3.9.5 Battery Calibration

The reported capacity of many batteries generally degrade over time, providing less run time for the user. However, it
is possible with many battery systems to provide more usable runtime on an old battery if a calibration or conditioning
cycle is run occasionally. The user has typically been able to perform a calibration cycle either by going into the
platform boot firmware setup menu, or by running a custom driver and calibration application provided by the OEM.
The calibration process typically takes several hours, and the laptop must be plugged in during this time. Ideally the
application that controls this should make this as good of a user experience as possible, for example allowing the user
to schedule the system to wake up and perform the calibration at some time when the system will not be in use. Since
the calibration user experience does not need to be different from system to system it makes sense for this service to
be provided by the OSPM. In this way OSPM can provide a common experience for end users and eliminate the need
for OEMs to develop custom battery calibration software.

In order for OSPM to perform generic battery calibration, generic interfaces to control the two basic calibration
functions are required. These functions are defined in Power Source and Power Meter Devices and _BST (Battery
Status). First, there is a means to detect when it would be beneficial to calibrate the battery. Second there is a means to
perform that calibration cycle. Both of those functions may be implemented by dedicated hardware such as a battery

3.9. Battery Management 83

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

controller chip, by firmware in the embedded controller, by the platform firmware, or by OSPM. From here on any
function implemented through AML, whether or not the AML code relies on hardware, will be referred to as “AML
controlled” since the interface is the same whether the AML passes control to the hardware or not.

Detection of when calibration is necessary can be implemented by hardware or AML code and be reported through
the _BMD method. Alternately, the _BMD method may simply report the number of cycles before calibration should
be performed and let the OS attempt to count the cycles. A counter implemented by the hardware or the platform
firmware will generally be more accurate since the batteries can be used without the OS running, but in some cases, a
system designer may opt to simplify the hardware or firmware implementation.

When calibration is desirable and the user has scheduled the calibration to occur, the calibration cycle can be AML
controlled or OSPM controlled. OSPM can only implement a very simple algorithm since it doesn’t have knowledge
of the specifics of the battery system. It will simply discharge the battery until it quits discharging, then charge it until
it quits charging. In the case where the AC adapter cannot be controlled through the _BMC, it will prompt the user
to unplug the AC adapter and reattach it after the system powers off. If the calibration cycle is controlled by AML,
the OS will initiate the calibration cycle by calling _BMC. That method will either give control to the hardware, or
will control the calibration cycle itself. If the control of the calibration cycle is implemented entirely in AML code,
the platform runtime firmware may avoid continuously running AML code by having the initial call to _BMC start the
cycle, set some state flags, and then exit. Control of later parts of the cycle can be accomplished by putting code that
checks these state flags in the battery event handler (_Qxx, _Lxx, or _Exx).

Details of the control methods for this interface are defined in Control Method Batteries.

3.9.6 Battery Charge Limiting

If the Platform is said to support Battery Charge Limiting feature, it must:
1. Advertise true charge level to the OSPM, at all times for all installed batteries
2. Limit the battery from reaching its Full Charge Capacity when Battery Charge Limiting is active
3. Set _BST.Battery State.Bit[3] when Battery Charge Limiting is active
4. Ensure that _BST.Battery State (Bit 0 and Bit 1) reflect true charging/discharging state of the battery

OSPM must recognize the following settings:

Table 3.2: Battery Charge Limiting States

_BST.Battery| _BST.Battery| _BST.Battery| Interpretation

State.Bit[3] | State.Bit[0] | State.Bit[1]

Cleared N/A N/A Battery Charge Limiting is disengaged

Set Cleared Cleared Battery Charge Limiting is engaged, and the battery has
reached the steady state, it will not be charged or discharged

Set Cleared Set Battery Charge Limiting is engaged, and the battery has not
reached the steady state

Set Set Cleared Battery Charge Limiting is engaged, and the battery has not
reached the steady state

3.9. Battery Management

84

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

3.10 Thermal Management Concepts

ACPI allows the OS to play a role in the thermal management of the system while maintaining the platform’s ability
to mandate cooling actions as necessary. In the passive cooling mode, OSPM can make cooling decisions based on
application load on the CPU as well as the thermal heuristics of the system. OSPM can also gracefully shutdown the
computer in case of high temperature emergencies.

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is one large thermal
zone, but an OEM can partition the system into several logical thermal zones if necessary. Thermal Zone is an example
mobile PC diagram that depicts a single thermal zone with a central processor as the thermal-coupled device. In this
example, the whole notebook is covered as one large thermal zone. This notebook uses one fan for active cooling and
the CPU for passive cooling.

rT:l‘ier'ma

- . CPW E
(Passive Gooling)|™ - Memory/ A
M
Zone CPU PCI Bridge NVRAM
F 3 rM_I
[Jad—s| PCUPCI [
s i [:J o) Bridge
{Active Cooling) ¥
o
X " leb| Graphics
‘ " e—»D CRT
AP & use
> | L Port 1 Docking
Mcmanzary]
l_(o ¥ <...| Keyboard
FO: PIC, PITs, F2- Embedded
— DMA, RTC, EIO, .| USB Controller Ps12
HOD ") pons
g ‘—.{_3 Mouse
T _““ Fi1: BM
(T-I'D'Ij e IDE
DFRO . o .
¥ sI0- + + 4 » FOD

DPR1

EPROM COMs,
LPT, 4——FD<—H: COM

FOC, | g————p 3 1PT
ACPI

Fig. 3.7: Thermal Zone

The following sections are an overview of the thermal control and cooling characteristics of a computer. For some
thermal implementation examples on an ACPI platform, see Section 11.6

3.10.1 Active and Passive Cooling Modes

ACPI defines two cooling modes, Active and Passive:

Passive cooling OS reduces the power consumption of devices at the cost of system performance to reduce the tem-
perature of the system.

Active cooling OS increases the power consumption of the system (for example, by turning on a fan) to reduce the
temperature of the system.

These two cooling modes are inversely related to each other. Active cooling requires increased power to reduce the
heat within the system while Passive cooling requires reduced power to decrease the temperature. The effect of this
relationship is that Active cooling allows maximum system performance, but it may create undesirable fan noise, while
Passive cooling reduces system performance, but is inherently quiet.

3.10. Thermal Management Concepts 85

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

3.10.2 Performance vs. Energy Conservation

A robust OSPM implementation provides the means for the end user to convey to OSPM a preference (or a level of
preference) for either performance or energy conservation. Allowing the end user to choose this preference is most
critical to mobile system users where maximizing system run-time on a battery charge often has higher priority over
realizing maximum system performance.

A user’s preference for performance corresponds to the Active cooling mode while a user’s preference for energy
conservation corresponds to the Passive cooling mode. ACPI defines an interface to convey the cooling mode to
the platform. Active cooling can be performed with minimal OSPM thermal policy intervention. For example, the
platform indicates through thermal zone parameters that crossing a thermal trip point requires a fan to be turned on.
Passive cooling requires OSPM thermal policy to manipulate device interfaces that reduce performance to reduce
thermal zone temperature.

3.10.3 Acoustics (Noise)

Active cooling mode generally implies that fans will be used to cool the system and fans vary in their audible output.
Fan noise can be quite undesirable given the loudness of the fan and the ambient noise environment. In this case,
the end user’s physical requirement for fan silence may override the preference for either performance or energy
conservation.

A user’s desire for fan silence corresponds to the Passive cooling mode. Accordingly, a user’s desire for fan silence
also means a preference for energy conservation.

For more information on thermal management and examples of platform settings for active and passive cooling, see
Section 3.10

3.10.4 Multiple Thermal Zones

The basic thermal management model defines one thermal zone, but in order to provide extended thermal control in
a complex system, ACPI specifies a multiple thermal zone implementation. Under a multiple thermal zone model,
OSPM will independently manage several thermal-coupled devices and a designated thermal zone for each thermal-
coupled device, using Active and/or Passive cooling methods available to each thermal zone. Each thermal zone can
have more than one Passive and Active cooling device. Furthermore, each zone might have unique or shared cooling
resources. In a multiple thermal zone configuration, if one zone reaches a critical state then OSPM must shut down
the entire system.

3.11 Flexible Platform Architecture Support

ACPI defines mechanisms and models to accommodate platform architectures that deviate from the traditional PC.
ACPI provides support for platform technologies that enable lower-power, lower cost, more design flexibility and
more device diversity. This support is described in the following sections, and detailed in later chapters.

3.11. Flexible Platform Architecture Support 86

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

3.11.1 Hardware-reduced ACPI

ACPI offers an alternative platform interface model that removes ACPI hardware requirements for platforms that do
not implement the PC Architecture. In the Hardware-reduced ACPI model, the Fixed hardware interface requirements
of Chapter 4 are removed, and Generic hardware interfaces are used instead. This provides the level of flexibility
needed to innovate and differentiate in low-power hardware designs while enabling support by multiple Operating
Systems.

Hardware-reduced ACPI has the following requirements:
» UEFI firmware interface for boot (Legacy BIOS is not supported).
* Boot in ACPI mode only (ACPI Enable, ACPI Disable, SMI_CMD and Legacy mode are not supported)

* No hardware resource sharing between OSPM and other asynchronous operating environments, such as UEFI
Runtime Services or System Management Mode. (The Global Lock is not supported)

* No dependence on OS-support for maintaining cache coherency across processor sleep states (Bus Master
Reload and Arbiter Disable are not supported)

* GPE block devices are not supported

Systems that do not meet the above requirements must implement the ACPI Fixed Hardware interface.

3.11.1.1 Interrupt-based Wake Events

On HW-reduced ACPI platforms, wakeup is an attribute of connected interrupts. Interrupts that are designed to wake
the processor or the entire platform are defined as wake-capable. Wake-capable interrupts, when enabled by OSPM,
wake the system when they assert.

3.11.2 Low-Power Idle

Platform architectures may support hardware power management models other than the traditional ACPI
Sleep/Resume model. These are typically implemented in proprietary hardware and are capable of delivering low-
latency, connected idle while saving as much energy as ACPI Sleep states. To support the diversity of hardware
implementations, ACPI provides a mechanism for the platform to indicate to OSPM that such capability is available.

3.11.2.1 Low Power SO Idle Capable Flag

This flag in the FADT informs OSPM whether a platform has advanced idle power capabilities such that SO idle
achieves savings similar to or better than those typically achieved in S3. With this flag, OSPM can keep the system
in SO idle for its low-latency response and its connectedness rather than transitioning to a system sleep state which
has neither. The flag enables support for a diversity of platform implementations: traditional Sleep/Resume systems,
systems with advanced idle power, systems that support neither, and systems that can support both, depending on the
capabilities of the installed OS.

3.11. Flexible Platform Architecture Support 87

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

3.11.3 Connection Resources

General-purpose I/0 (GPIO) and Simple Peripheral Bus (SPB) controllers are hardware resources provided in silicon
solutions to enable flexible configuration of a broad range of system designs. These controllers can provide input,
output, interrupt and serial communication connections to arbitrary devices in a system. The function to which one
of these connections is put depends on the specific device involved and the needs of the platform design. In order to
support these platform technologies, ACPI defines a general abstraction for flexible connections.

In order to maintain compatibility with existing software models, ACPI abstracts these connections as hardware re-
sources.

The Connection Resource abstraction mirrors the hardware functionality of GPIO and SPB controllers. Like other
resources, these connections are allocated and configured before use. With the resources described by the platform,
OSPM abstracts the underlying configuration from device drivers. Drivers, then, can be written for the device’s
function only, and reused with that functional hardware regardless of how it is integrated into a given system.

The key aspects of the Connection Resource abstraction are:
e GPIO and SPB controllers are enumerated as devices in the ACPI Namespace.
* GPIO Connection and SPB Connection resource types are defined.

» Namespace devices that are connected to GPIO or SPB controllers use Resource Template Macros to add Con-
nection Resources to their resource methods (_CRS, _SRS, etc.).

GPIO Connection Resources can be designated by the platform for use as GPIO-signaled ACPI Events.

» Connection Resources can be used by AML methods to access pins and peripherals through GPIO and SPB
operation regions.

3.11.3.1 Supported Platforms
The HW-reduced ACPI and Low power SO Idle Capable flags combine to represent 4 platform types that can be

implemented. The following table enumerates these, as well as the intended OSPM behavior and specific platform
requirements.

Table 3.3: Implementable Platform Types

Low Power | Hardware- OSPM Behavior Platform Implementation

SO Idle | reduced

Capable ACPI

0 0 Fixed hardware interface accessed for | Implement Fixed-feature hardware
features, events and system power | interface. Optionally implements

management. Optionally accesses | GPIO-signaled ACPI events.
GPIO-signaled ACPI events if im-
plemented in ACPI FW. Traditional
Sleep/Resume power management.
0 1 Fixed-feature hardware interface not | Implement GPIO-signaled ACPI
accessed. Sleep/Resume Power Man- | Events; Implement software alter-
agement using FADT SLEEP_*_REG | natives to any ACPI fixed features,
fields and Interrupt-based wake sig- | including the Sleep registers. Im-
naling. plement wake-capable interrupts for
wake events.

continues on next page

3.11. Flexible Platform Architecture Support 88

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 3.3 — continued from previous page

Low Power | Hardware- OSPM Behavior Platform Implementation

SO Idle | reduced

Capable ACPI

1 0 Fixed hardware interface accessed | Implement Fixed-feature hardware
for features and events. Platform- | interface. Optionally implements
specific Low-power Idle power man- | GPIO-signaled ACPI events. Imple-
agement. Optionally accesses GPIO- | ment low-power hardware such that
signaled ACPI events if implemented | the platform achieves power savings
in ACPI FW. in SO similar to or better than those

typically achieved in S3.

1 1 Fixed-feature hardware interface not | Implement GPIO-signaled ACPI

accessed. Platform-specific Low- | Events; Implement software alter-

power Idle power management.

natives to any ACPI fixed features
desired; Implement wake-capable
interrupts for any wake events. Imple-
ment low-power hardware such that
the platform achieves power savings
in SO similar to or better than those
typically achieved in S3.

3.11. Flexible Platform Architecture Support

89

CHAPTER
FOUR

ACPI HARDWARE SPECIFICATION

ACPI defines standard interface mechanisms that allow an ACPI-compatible OS to control and communicate with
an ACPI-compatible hardware platform. These interface mechanisms are optional (See ‘“Hardware-Reduced ACPI”,
below).However, if the ACPI Hardware Specification is implemented, platforms must comply with the requirements
in this section.

This section describes the hardware aspects of ACPI.

ACPI defines “hardware” as a programming model and its behavior. ACPI strives to keep much of the existing
legacy programming model the same; however, to meet certain feature goals, designated features conform to a specific
addressing and programming scheme. Hardware that falls within this category is referred to as “fixed.”

Although ACPI strives to minimize these changes, hardware engineers should read this section carefully to understand
the changes needed to convert a legacy-only hardware model to an ACPI/Legacy hardware model or an ACPI-only
hardware model.

ACPI classifies hardware into two categories: Fixed or Generic. Hardware that falls within the fixed category meets
the programming and behavior specifications of ACPI. Hardware that falls within the generic category has a wide
degree of flexibility in its implementation.

4.1 Hardware-Reduced ACPI

For certain classes of systems the ACPI Hardware Specification may not be adequate. Examples include legacy-
free, UEFI-based platforms with recent processors, and those implementing mobile platform architectures. For such
platforms, a Hardware-reduced ACPI mode is defined. Under this definition, the ACPI Fixed Hardware interface is
not implemented, and software alternatives for many of the features it supports are used instead. Note, though, that
Hardware-reduced ACPI is not intended to support every possible ACPI system that can be built today. Rather, it is
intended to introduce new systems that are designed to be HW-reduced from the start. The ACPI HW Specification
should be used if the platform cannot be designed to work without it. Specifically, the following features are not
supported under the HW-reduced definition:

* The Global Lock, SMI_CMD, ACPI Enable and ACPI Disable. Hardware-reduced ACPI systems always boot
in ACPI mode, and do not support hardware resource sharing between OSPM and other asynchronous operating
environments, such as UEFI Runtime Services or System Management Mode.

* Bus Master Reload and Arbiter Disable. Systems that depend on OS use of these bits to maintain cache co-
herency across processor sleep states are not supported.

* GPE block devices are not supported.
Platforms that require the above features must implement the ACPI Hardware Specification.

Platforms that are designed for the Hardware-reduced ACPI definition must implement Revision 5 or greater of the
Fixed ACPI Descriptor Table, and must set the HW_REDUCED_ACPI flag in the Flags field.

90

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Note: FFH is permitted and applicable to both full and HW-reduced ACPI implementations.

4.1.1 Hardware-Reduced Events

HW-reduced ACPI platforms require alternatives to some of the features supported in the ACPI HW Specification,
where none already exists. There are two areas that require such alternatives: The ACPI Platform Event Model, and
System and Device Wakeup.

4.1.1.1 GPIO-Signaled Events or Interrupt Signaled Events

General Purpose Input/Output (GPIO) hardware can be used for signaling platform events. GPIO HW is a general-
ization of the GPE model, and is a shared hardware resource used for many applications. ACPI support for GPIO is
described in section Connection Resources. ACPI 6.1 introduces the capability to signal events via interrupts. See
Interrupt-signaled ACPI events for further details.

GPIO based event signaling is provided through GPIO interrupt connections, which describe the connection to a GPIO
controller and pin, and which are mapped to the ACPI Event Handling mechanism via the ACPI Event Information
namespace object (_AEI). OSPM treats GPIO Interrupt Connections listed in _AEI exactly as it does SCI interrupts:
it executes the Event Method associated with the specific event. The name of the method to run is determined by the
pin information contained in the GPIO Interrupt Connection resource. See GPIO-signaled ACPI Events for further
details.

GPIO-signaled events can also be wake events, just as GPE events can on traditional ACPI platforms. Designating
which events are wake events is done through attributes of the GPIO Interrupt Connection resource used.Devices may
use _PRW to manage wake events as described in _PRW (Power Resources for Wake).

Interrupt based event signaling follows a similar methodology, a generic event device (GED) is declared which in turn
describes all interrupts associated with event generation. The interrupts are listed in a _CRS object. When an interrupt
is asserted the OSPM will execute the event method (_EVT) declared in the GED object specifying the interrupt
identifier as a parameter. In this way the interrupt can be associated with specific platform events.

4.1.1.2 Interrupt-based Wake Events

Wake events on HW-reduced ACPI platforms are always caused by an interrupt reaching the processor. Therefore,
there are two requirements for waking the system from a sleep or low-power idle state, or a device from a low-power
state. First, the interrupt line must be Wake-Capable. Wake-capable interrupts are designed to be able to be delivered
to the processor from low-power states. This implies that it must also cause the processor and any required platform
hardware to power-up so that an Interrupt Service Routine can run. Secondly, an OS driver must enable the interrupt
before entering a low-power state, or before OSPM puts the system into a sleep or low-power idle state.

Wake-capable interrupts are designated as such in their Extended Interrupt or GPIO Interrupt Connection resource
descriptor.

4.2 Fixed Hardware Programming Model

Because of the changes needed for migrating legacy hardware to the fixed category, ACPI limits the features specified
by fixed hardware. Fixed hardware features are defined by the following criteria:

» Performance sensitive features
* Features that drivers require during wake

« Features that enable catastrophic OS software failure recovery

4.2. Fixed Hardware Programming Model 91

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

ACPI defines register-based interfaces to fixed hardware. CPU clock control and the power management timer are
defined as fixed hardware to reduce the performance impact of accessing this hardware, which will result in more
quickly reducing a thermal condition or extending battery life. If this logic were allowed to reside in PCI configuration
space, for example, several layers of drivers would be called to access this address space. This takes a long time and
will either adversely affect the power of the system (when trying to enter a low-power state) or the accuracy of the
event (when trying to get a time stamp value).

Access to fixed hardware by OSPM allows OSPM to control the wake process without having to load the entire OS.
For example, if PCI configuration space access is needed, the bus enumerator is loaded with all drivers used by the
enumerator. Defining these interfaces in fixed hardware at addresses with which OSPM can communicate without any
other driver’s assistance, allows OSPM to gather information prior to making a decision as to whether it continues
loading the entire OS or puts it back to sleep.

If elements of the OS fail, it may be possible for OSPM to access address spaces that need no driver support. In such
a situation, OSPM will attempt to honor fixed power button requests to transition the system to the G2 state. In the
case where OSPM event handler is no longer able to respond to power button events, the power button override feature
provides a back-up mechanism to unconditionally transition the system to the soft-off state.

4.3 Generic Hardware Programming Model

Although the fixed hardware programming model requires hardware registers to be defined at specific address lo-
cations, the generic hardware programming model allows hardware registers to reside in most address spaces and
provides system OEMs with a wide degree of flexibility in the implementation of specific functions in hardware.
OSPM directly accesses the fixed hardware registers, but relies on OEM-provided ACPI Machine Language (AML)
code to access generic hardware registers.

AML code allows the OEM to provide the means for OSPM to control a generic hardware feature’s control and event
logic.

The section entitled “ACPI Source Language Reference” describes the ACPI Source Language (ASL)—a programming
language that OEMSs use to create AML. The ASL language provides many of the operators found in common object-
oriented programming languages, but it has been optimized to enable the description of platform power management
and configuration hardware. An ASL compiler converts ASL source code to AML, which is a very compact machine
language that the ACPI AML code interpreter executes.

AML does two things:
* Abstracts the hardware from OSPM
* Buffers OEM code from the different OS implementations

One goal of ACPI is to allow the OEM “value added” hardware to remain basically unchanged in an ACPI configu-
ration. One attribute of value-added hardware is that it is all implemented differently. To enable OSPM to execute
properly on different types of value added hardware, ACPI defines higher level “control methods” that it calls to per-
form an action. The OEM provides AML code, which is associated with control methods, to be executed by OSPM.
By providing AML code, generic hardware can take on almost any form.

Another important goal of ACPI is to provide OS independence. To do this, the OEM AML code has to execute the
same under any ACPI-compatible OS. ACPI allows for this by making the AML code interpreter part of OSPM. This
allows OSPM to take care of synchronizing and blocking issues specific to each particular OS.

The generic feature model is represented in the following block diagram. In this model the generic feature is described
to OSPM through AML code. This description takes the form of an object that sits in the ACPI Namespace associated
with the hardware to which it is adding value.

As an example of a generic hardware control feature, a platform might be designed such that the IDE HDD’s D3 state
has value-added hardware to remove power from the drive. The IDE drive would then have a reference to the AML

4.3. Generic Hardware Programming Model 92

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 4.1: Generic Hardware Feature Model

PowerResource object (which controls the value added power plane) in its namespace, and associated with that object
would be control methods that OSPM invokes to control the D3 state of the drive:

* _PSO: A control method to sequence the IDE drive to the DO state.
e _PS3: A control method to sequence the IDE drive to the D3 state.
e _PSC: A control method that returns the status of the IDE drive (on or off).

The control methods under this object provide an abstraction layer between OSPM and the hardware. OSPM under-
stands how to control power planes (turn them on or off or to get their status) through its defined PowerResource
object, while the hardware has platform-specific AML code (contained in the appropriate control methods) to perform
the desired function. In this example, the platform would describe its hardware to the ACPI OS by writing and placing
the AML code to turn the hardware off within the _PS3 control method. This enables the following sequence:

When OSPM decides to place the IDE drive in the D3 state, it calls the IDE driver and tells it to place the drive into
the D3 state (at which point the driver saves the device’s context).

When the IDE driver returns control, OSPM places the drive in the D3 state.

OSPM finds the object associated with the HDD and then finds within that object any AML code associated with the
D3 state.

OSPM executes the appropriate _PS3 control method to control the value-added “generic” hardware to place the HDD
into an even lower power state.

As an example of a generic event feature, a platform might have a docking capability. In this case, it will want
to generate an event. Notice that all ACPI events generate an SCI, which can be mapped to any shareable system
interrupt. In the case of docking, the event is generated when a docking has been detected or when the user requests
to undock the system. This enables the following sequence:

OSPM responds to the SCI and calls the AML code event handler associated with that generic event. The ACPI table
associates the hardware event with the AML code event handler.

The AML-code event handler collects the appropriate information and then executes an AML Notify command to
indicate to OSPM that a particular bus needs re-enumeration.

The following sections describe the fixed and generic hardware feature set of ACPI. These sections enable a reader to
understand the following:

* Which hardware registers are required or optional when an ACPI feature, concept or interface is required by a
design guide for a platform class

4.3. Generic Hardware Programming Model 93

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

* How to design fixed hardware features
* How to design generic hardware features

¢ The ACPI Event Model

4.4 Diagram Legend

The hardware section uses simplified logic diagrams to represent how certain aspects of the hardware are implemented.
The following symbols are used in the logic diagrams to represent programming bits:

= Write-only control bit
@ Enable, control, or status bit

E Sticky status bit

E Query value

The half round symbol with an inverted “V” represents a write-only control bit. This bit has the behavior that it
generates its control function when it is set. Reads to write-only bits are treated as ignore by software (the bit position
is masked off and ignored).

The round symbol with an “X” represents a programming bit. As an enable or control bit, software setting or clearing
this bit will result in the bit being read as set or clear (unless otherwise noted). As a status bit it directly represents the
value of the signal.

The square symbol represents a sticky status bit. A sticky status bit is set by the level (not edge) of a hardware signal
(active high or active low). The bit is only cleared by software writing a “1” to its bit position.

The rectangular symbol represents a query value from the embedded controller. This is the value the embedded
controller returns to the system software upon a query command in response to an SCI event. The query value is
associated with the event control method that is scheduled to execute upon an embedded controller event.

4.5 Register Bit Notation

Throughout this section there are logic diagrams that reference bits within registers. These diagrams use a notation
that easily references the register name and bit position. The notation is as follows:

Registername.Bit
Registername contains the name of the register as it appears in this specification
Bit contains a zero-based decimal value of the bit position

For example, the SLP_EN bit resides in the PM1x_CNT register bit 13 and would be represented in diagram notation
as:

SLP_EN
PM1x_CNT.13

4.4. Diagram Legend 94

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.6 The ACPI Hardware Model

The ACPI hardware model is defined to allow OSPM to sequence the platform between the various global system
states (GO-G3) as illustrated in the following figure by manipulating the defined interfaces. When first powered on,
the platform finds itself in the global system state G3 or “Mechanical Off.” This state is defined as one where power
consumption is very close to zero—the power plug has been removed; however, the real-time clock device still runs off
a battery. The G3 state is entered by any power failure, defined as accidental or user-initiated power loss.

The G3 state transitions into either the GO working state or the Legacy state depending on what the platform supports.
If the platform is an ACPI-only platform, then it allows a direct boot into the GO working state by always returning
the status bit SCI_EN set (1) (for more information, see Legacy/ACPI Select and the SCI Interrupt). If the platform
supports both legacy and ACPI operations (which is necessary for supporting a non-ACPI OS), then it would always
boot into the Legacy state (illustrated by returning the SCI_EN clear (0)). In either case, a transition out of the G3
state requires a total boot of OSPM.

The Legacy system state is the global state where a non-ACPI OS executes. This state can be entered from either the G3
“Mechanical Off,” the G2 “Soft Off,” or the GO “Working” states only if the hardware supports both Legacy and ACPI
modes. In the Legacy state, the ACPI event model is disabled (no SCIs are generated) and the hardware uses legacy
power management and configuration mechanisms. While in the Legacy state, an ACPI-compliant OS can request a
transition into the GO working state by performing an ACPI mode request. OSPM performs this transition by writing
the ACPI_ENABLE value to the SMI_CMD, which generates an event to the hardware to transition the platform into
ACPI mode. When hardware has finished the transition, it sets the SCI_EN bit and returns control back to OSPM.
While in the GO “working state,” OSPM can request a transition to Legacy mode by writing the ACPI_DISABLE
value to the SMI_CMD register, which results in the hardware going into legacy mode and resetting the SCI_EN bit
LOW (for more information, see Legacy/ACPI Select and the SCI Interrupt).

The GO “Working” state is the normal operating environment of an ACPI system. In this state different devices
are dynamically transitioning between their respective power states (DO, D1, D2, D3hot, or D3) and processors are
dynamically transitioning between their respective power states (CO, C1, C2 or C3). In this state, OSPM can make a
policy decision to place the platform into the system G1 “sleeping” state. The platform can only enter a single sleeping
state at a time (referred to as the global G1 state); however, the hardware can provide up to four system sleeping states
that have different power and exit latencies represented by the S1, S2, S3, or S4 states. When OSPM decides to enter a
sleeping state it picks the most appropriate sleeping state supported by the hardware (OS policy examines what devices
have enabled wake events and what sleeping states these support). OSPM initiates the sleeping transition by enabling
the appropriate wake events and then programming the SLP_TYPx field with the desired sleeping state and then setting
the SLP_ENx bit. The system will then enter a sleeping state; when one of the enabled wake events occurs, it will
transition the system back to the working state (for more information, see Waking and Sleeping).

Another global state transition option while in the GO “working” state is to enter the G2 “soft off” or the G3 “me-
chanical off” state. These transitions represent a controlled transition that allows OSPM to bring the system down
in an orderly fashion (unloading applications, closing files, and so on). The policy for these types of transitions can
be associated with the ACPI power button, which when pressed generates an event to the power button driver. When
OSPM is finished preparing the operating environment for a power loss, it will either generate a pop-up message to
indicate to the user to remove power, in order to enter the G3 “Mechanical Off” state, or it will initiate a G2 “soft-off”
transition by writing the value of the S5 “soft off” system state to the SLP_TYPx register and setting the SLP_EN bit.

The G1 sleeping state is represented by four possible sleeping states that the hardware can support. Each sleeping state
has different power and wake latency characteristics. The sleeping state differs from the working state in that the user’s
operating environment is frozen in a low-power state until awakened by an enabled wake event. No work is performed
in this state, that is, the processors are not executing instructions. Each system sleeping state has requirements about
who is responsible for system context and wake sequences (for more information, see Waking and Sleeping).

The G2 “soft off” state is an OS initiated system shutdown. This state is initiated similar to the sleeping state transition
(SLP_TYPx is set to the S5 value and setting the SLP_EN bit initiates the sequence). Exiting the G2 soft-off state
requires rebooting the system. In this case, an ACPI-only system will re-enter the GO state directly (hardware returns
the SCI_EN bit set), while an ACPI/Legacy system transitions to the Legacy state (SCI_EN bit is clear).

4.6. The ACPI Hardware Model 95

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 4.2: Global States and Their Transitions

The ACPI architecture defines mechanisms for hardware to generate events and control logic to implement this behav-
ior model. Events are used to notify OSPM that some action is needed, and control logic is used by OSPM to cause
some state transition. ACPI-defined events are “hardware” or “interrupt” events. A hardware event is one that causes
the hardware to unconditionally perform some operation. For example, any wake event will sequence the system from
a sleeping state (S1, S2, S3, and S4 in the global G1 state) to the GO working state (see Example Sleeping States).

An interrupt event causes the execution of an event handler (AML code or an ACPI-aware driver), which allows the
software to make a policy decision based on the event. For ACPI fixed-feature events, OSPM or an ACPI-aware driver
acts as the event handler. For generic logic events OSPM will schedule the execution of an OEM-supplied AML
control method associated with the event.

For legacy systems, an event normally generates an OS-transparent interrupt, such as a System Management Interrupt,
or SMI. For ACPI systems the interrupt events need to generate an OS-visible interrupt that is shareable; edge-style
interrupts will not work. Hardware platforms that want to support both legacy operating systems and ACPI systems
support a way of re-mapping the interrupt events between SMIs and SCIs when switching between ACPI and legacy
models. This is illustrated in the following block diagram.

This example logic illustrates the event model for a sample platform that supports both legacy and ACPI event models.
This example platform supports a number of external events that are power-related (power button, LID open/close,
thermal, ring indicate) or Plug and Play-related (dock, status change). The logic represents the three different types of
events:

OS Transparent Events

These events represent OEM-specific functions that have no OS support and use software that can be
operated in an OS-transparent fashion (that is, SMIs).

Interrupt Events

These events represent features supported by ACPI-compatible operating systems, but are not supported
by legacy operating systems. When a legacy OS is loaded, these events are mapped to the transparent
interrupt (SMI# in this example), and when in ACPI mode they are mapped to an OS-visible shareable

4.6. The ACPI Hardware Model 96

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Legacy Only Event Logic

De_l‘fi“ Idie ACPI/Legacy Event Logic
{mers ACPI Only Event Logic

Device _ ACPliLegacy Generic Control Features
Traps ACPI/Legacy Fixed Control Features

G ey) IR e

PWRBTN User ~
LID Interface i SCH
I Sleep/Wake
THRM > b State machine

Logic
Power Plane

— SMIEvents e
—— SCIISMI Events

— Wake-up Events CPU Clock
Control

Fig. 4.3: Example Event Structure for a Legacy/ACPI Compatible Event Model

DOCK
STS CHG

RI

interrupt (SCI#). This logic is represented by routing the event logic through the decoder that routes the
events to the SMI# arbiter when the SCI_EN bit is cleared, or to the SCI# arbiter when the SCI_EN bit is
set.

Hardware events

These events are used to trigger the hardware to initiate some hardware sequence such as waking, resetting,
or putting the system to sleep unconditionally.

In this example, the legacy power management event logic is used to determine device/system activity or idleness
based on device idle timers, device traps, and the global standby timer. Legacy power management models use the idle
timers to determine when a device should be placed in a low-power state because it is idle—that is, the device has not
been accessed for the programmed amount of time. The device traps are used to indicate when a device in a low-power
state is being accessed by OSPM. The global standby timer is used to determine when the system should be allowed
to go into a sleeping state because it is idle—that is, the user interface has not been used for the programmed amount of
time.

These legacy idle timers, trap monitors, and global standby timer are not used by OSPM in the ACPI mode. This work
is handled by different software structures in an ACPI-compatible OS. For example, the driver model of an ACPI-
compatible OS is responsible for placing its device into a low-power state (D1, D2, D3hot, or D3) and transitioning it
back to the On state (DO) when needed. And OSPM is responsible for determining when the system is idle by profiling
the system (using the PM Timer) and other knowledge it gains through its operating structure environment (which will
vary from OS to OS). When the system is placed into the ACPI mode, these events no longer generate SMIs, as OSPM
handles this function. These events are disabled through some OEM-proprietary method.

On the other hand, many of the hardware events are shared between the ACPI and legacy models (docking, the power
button, and so on) and this type of interrupt event changes to an SCI event when enabled for ACPI. The ACPI OS will
generate a request to the platform runtime firmware to enter into the ACPI mode. The firmware sets the SCI_EN bit
to indicate that the system has successfully entered into the ACPI mode, so this is a convenient mechanism to map the
desired interrupt (SMI or SCI) for these events (as shown in Figure 4-3).

The ACPI architecture specifies some dedicated hardware not found in the legacy hardware model: the power manage-
ment timer (PM Timer). This is a free running timer that the ACPI OS uses to profile system activity. The frequency

4.6. The ACPI Hardware Model 97

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

of this timer is explicitly defined in this specification and must be implemented as described.

Although the ACPI architecture reuses most legacy hardware as is, it does place restrictions on where and how the
programming model is generated. If used, all fixed hardware features are implemented as described in this specification
so that OSPM can directly access the fixed hardware feature registers.

Generic hardware features are manipulated by ACPI control methods residing in the ACPI Namespace. These inter-
faces can be very flexible; however, their use is limited by the defined ACPI control methods (for more information,
see ACPI-Defined Devices and Device-Specific Objects). Generic hardware usually controls power planes, buffer
isolation, and device reset resources. Additionally, “child” interrupt status bits can be accessed via generic hardware
interfaces; however, they have a “parent” interrupt status bit in the GP_STS register. ACPI defines eight address spaces
that may be accessed by generic hardware implementations. These include:

* System I/O space

* System memory space

* PCI configuration space

* Embedded controller space

» System Management Bus (SMBus) space
« CMOS

* PCI BAR Target

* [PMI space

* Platform Communication Channel

Generic hardware power management features can be implemented accessing spare I/O ports residing in any of these
address spaces. The ACPI specification defines an optional embedded controller and SMBus interfaces needed to
communicate with these associated address spaces.

4.6.1 Hardware Reserved Bits

ACPI hardware registers are designed such that reserved bits always return zero, and data writes to them have no side
affects. OSPM implementations must write zeros to reserved bits in enable and status registers and preserve bits in
control registers, and they will treat these bits as ignored.

4.6.2 Hardware Ignored Bits

ACPI hardware registers are designed such that ignored bits are undefined and are ignored by software. Hardware-
ignored bits can return zero or one. When software reads a register with ignored bits, it masks off ignored bits prior to
operating on the result. When software writes to a register with ignored bit fields, it preserves the ignored bit fields.

4.6.3 Hardware Write-Only Bits

ACPI hardware defines a number of write-only control bits. These bits are activated by software writing a 1 to their
bit position. Reads to write-only bit positions generate undefined results. Upon reads to registers with write-only bits,
software masks out all write-only bits.

4.6. The ACPI Hardware Model 98

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.6.4 Cross Device Dependencies

Cross Device Dependency is a condition in which an operation to a device interferes with the operation of other
unrelated devices, or allows other unrelated devices to interfere with its behavior. This condition is not supportable
and can cause platform failures. ACPI provides no support for cross device dependencies and suggests that devices be
designed to not exhibit this behavior. The following two examples describe cross device dependencies:

4.6.4.1 Example 1: Related Device Interference

This example illustrates a cross device dependency where a device interferes with the proper operation of other unre-
lated devices. Device A has a dependency that when it is being configured it blocks all accesses that would normally
be targeted for Device B. Thus, the device driver for Device B cannot access Device B while Device A is being con-
figured; therefore, it would need to synchronize access with the driver for Device A. High performance, multithreaded
operating systems cannot perform this kind of synchronization without seriously impacting performance.

To further illustrate the point, assume that Device A is a serial port and Device B is a hard drive controller. If these
devices demonstrate this behavior, then when a software driver configures the serial port, accesses to the hard drive
need to block. This can only be done if the hard disk driver synchronizes access to the disk controller with the serial
driver. Without this synchronization, hard drive data will be lost when the serial port is being configured.

4.6.4.2 Example 2: Unrelated Device Interference

This example illustrates a cross-device dependency where a device demonstrates a behavior that allows other unrelated
devices to interfere with its proper operation. Device A exhibits a programming behavior that requires atomic back-
to-back write accesses to successfully write to its registers; if any other platform access is able to break between the
back-to-back accesses, then the write to Device A is unsuccessful. If the Device A driver is unable to generate atomic
back-to-back accesses to its device, then it relies on software to synchronize accesses to its device with every other
driver in the system; then a device cross dependency is created and the platform is prone to Device A failure.

4.7 ACPI Hardware Features

This section describes the different hardware features defined by the ACPI interface. These features are categorized as
the following:

¢ Fixed Hardware Features
¢ Generic Hardware Features

Fixed hardware features reside in a number of the ACPI-defined address spaces at the locations described by the ACPI
programming model. Generic hardware features reside in one of four address spaces (system I/O, system memory,
PCI configuration, embedded controller, or serial device I/O space) and are described by the ACPI Namespace through
the declaration of AML control methods.

Fixed hardware features have exact definitions for their implementation. Although many fixed hardware features
are optional, if implemented they must be implemented as described since OSPM manipulates the registers of fixed
hardware devices and expects the defined behavior. Functional fixed hardware provides functional equivalents of the
fixed hardware feature interfaces as described in Generic Hardware Programming Model

Generic hardware feature implementation is flexible. This logic is controlled by OEM-supplied AML code (for more
information, see ACPI Software Programming Model), which can be written to support a wide variety of hardware.
Also, ACPI provides specialized control methods that provide capabilities for specialized devices. For example, the
Notify command can be used to notify OSPM from a generic hardware event handler (control method) that a docking
or thermal event has taken place. A good understanding of this section and ACPI Software Programming Model of

4.7. ACPI Hardware Features 99

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

this specification will give designers a good understanding of how to design hardware to take full advantage of an
ACPI-compatible OS.

Notice that the generic features are listed for illustration only, the ACPI specification can support many types of
hardware not listed.

Table 4.1: Feature-Programming Model Summary

Feature Name

Description

Programming Model

Power Management
Timer

24-bit or 32-bit free running timer.

Fixed Hardware Feature Control Logic

Power Button

User pushes button to switch the system
between the working and sleeping/soft-off
states.

Fixed Hardware Event and Control Logic or
Generic Hardware Event and Logic

Sleep Button

User pushes button to switch the system
between the working and sleeping/soft-off
states.

Fixed Hardware Event and Control Logic or
Generic Hardware Event and Logic

Power Button Over-
ride

User sequence (press the power button for 4
seconds) to turn off a hung system.

Real Time Clock | Programmed time to wake the system. Optional Fixed Hardware*

Alarm

Sleep/Wake Control | Logic used to transition the system between | Fixed Hardware Control and Event Logic
Logic the sleeping and working states.

Embedded Con- | ACPI Embedded Controller protocol and in- | Generic Hardware Event Logic, must reside

troller Interface

terface, as described in the ACPI Embedded
Controller Interface Specification.

in the general-purpose register block

Legacy/ACPI Select | Status bit that indicates the system is us- | Fixed Hardware Control Logic
ing the legacy or ACPI power management
model (SCI_EN).

Lid switch Button used to indicate whether the system’s | Generic Hardware Event Feature

lid is open or closed (mobile systems only)

C1 Power State

Processor instruction to place the processor
into a low-power state.

Processor ISA

C2 Power Control

Logic to place the processor into a C2 power
state.

Fixed Hardware Control Logic

C3 Power Control

Logic to place the processor into a C3 power
state.

Fixed Hardware Control Logic

Thermal Control

Logic to generate thermal events at specified
trip points.

Generic Hardware Event and Control Logic
(See description of thermal logic in Thermal
Management Concepts)

Device Power Man-
agement

Control logic for switching between differ-
ent device power states.

Generic Hardware control logic

AC Adapter

Logic to detect the insertion and removal of
the AC adapter.

Generic Hardware event logic

Docking/device in-
sertion and removal

Logic to detect device insertion and removal
events.

Generic Hardware event logic

* RTC wakeup alarm is required; the fixed hardware feature status bit is optional.

4.7. ACPI Hardware Features

100

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.8 ACPI Register Model

ACPI hardware resides in one of six address spaces:
* System I/O
e System memory
* PCI configuration
* SMBus
* Embedded controller
* Functional Fixed Hardware

Different implementations will result in different address spaces being used for different functions. The ACPI speci-
fication consists of fixed hardware registers and generic hardware registers. Fixed hardware registers are required to
implement ACPI-defined interfaces. The generic hardware registers are needed for any events generated by value-
added hardware.

ACPI defines register blocks. An ACPI-compatible system provides an ACPI table (the FADT, built in memory at
boot-up) that contains a list of pointers to the different fixed hardware register blocks used by OSPM. The bits within
these registers have attributes defined for the given register block. The types of registers that ACPI defines are:

* Status/Enable Registers (for events)
* Control Registers

If a register block is of the status/enable type, then it will contain a register with status bits, and a corresponding
register with enable bits. The status and enable bits have an exact implementation definition that needs to be followed
(unless otherwise noted), which is illustrated by the following diagram:

Status Bit

Event Input > X) » Event Output

Enable Bit

Fig. 4.4: Block Diagram of a Status/Enable Cell

Notice that the status bit, which hardware sets by the Event Input being set in this example, can only be cleared by
software writing a 1 to its bit position. Also, the enable bit has no effect on the setting or resetting of the status bit; it
only determines if the SET status bit will generate an “Event Output,” which generates an SCI when set if its enable
bit is set.

ACPI also defines register groupings. A register grouping consists of two register blocks, with two pointers to two
different blocks of registers, where each bit location within a register grouping is fixed and cannot be changed. The
bits within a register grouping, which have fixed bit positions, can be split between the two register blocks. This allows
the bits within a register grouping to reside in either or both register blocks, facilitating the ability to map bits within
several different chips to the same register thus providing the programming model with a single register grouping bit
structure.

OSPM treats a register grouping as a single register; but located in multiple places. To read a register grouping, OSPM
will read the “A” register block, followed by the “B” register block, and then will logically “OR” the two results
together (the SLP_TYP field is an exception to this rule). Reserved bits, or unused bits within a register block always
return zero for reads and have no side effects for writes (which is a requirement).

4.8. ACPI Register Model 101

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

The SLP_TYPx field can be different for each register grouping. The respective sleeping object _Sx contains a
SLP_TYPa and a SLP_TYPbD field. That is, the object returns a package with two integer values of 0-7 in it. OSPM
will always write the SLP_TYPa value to the “A” register block followed by the SLP_TYPb value within the field
to the “B” register block. All other bit locations will be written with the same value. Also, OSPM does not read the
SLP_TYPx value but throws it away.

& & a%® &

RN

Fig. 4.5: Example Fixed Hardware Feature Register Grouping

Register Block A

Reqgister
Grouping

As an example, the above diagram represents a register grouping consisting of register block A and register block b.
Bits “a” and “d” are implemented in register block B and register block A returns a zero for these bit positions. Bits
“b”, “c” and “e” are implemented in register block A and register block B returns a zero for these bit positions. All
reserved or ignored bits return their defined ACPI values.

When accessing this register grouping, OSPM must read register block a, followed by reading register block b. OSPM
then does a logical OR of the two registers and then operates on the results.

When writing to this register grouping, OSPM will write the desired value to register group A followed by writing the
same value to register group B.

ACPI defines the following fixed hardware register blocks. Each register block gets a separate pointer from the FADT.
These addresses are set by the OEM as static resources, so they are never changed—OSPM cannot re-map ACPI
resources. The following register blocks are defined:

Registers Register Blocks Register Groupings

PM1a_STS = paMia EVT BLK-,

oS —— PM1 EVT Grouping
PM1D EN — PM1b_EVT_BLK—
PM1a_CNT PM1a_CNT_BLK—
—— PM1 CNT Grouping
PM1b_CNT PM1b_CNT_BLK—
PM2_CNT PM2_CNT_BLK PM2 Control Block
PM_TMR PM_TMR_BLK PM Timer Block
P_CNT —
L W
P LVL2 — P_BLK Processor Block
P_LvL3 —
GEEEESES _——— GPEO_BLK General Purpose Event 0
GPE1_STS — ePE1 Bl
GPE1_EN — - General Purpose Event 1
- Block

Fig. 4.6: Register Blocks versus Register Groupings

The PM1 EVT grouping consists of the PM1a_EVT and PM1b_EVT register blocks, which contain the fixed hardware
feature event bits. Each event register block (if implemented) contains two registers: a status register and an enable

4.8. ACPI Register Model 102

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

register. Each register grouping has a defined bit position that cannot be changed; however, the bit can be implemented
in either register block (A or B). The A and B register blocks for the events allow chipsets to vary the partitioning of
events into two or more chips. For read operations, OSPM will generate a read to the associated A and B registers,
OR the two values together, and then operate on this result. For write operations, OSPM will write the value to the
associated register in both register blocks. Therefore, there are two rules to follow when implementing event registers:

* Reserved or unimplemented bits always return zero (control or enable).
* Writes to reserved or unimplemented bits have no affect.

The PM1 CNT grouping contains the fixed hardware feature control bits and consists of the PM1a_CNT_BLK and
PM1b_CNT_BLK register blocks. Each register block is associated with a single control register. Each register
grouping has a defined bit position that cannot be changed; however, the bit can be implemented in either register
block (A or B). There are two rules to follow when implementing CNT registers:

* Reserved or unimplemented bits always return zero (control or enable).
* Writes to reserved or unimplemented bits have no affect.

The PM2_CNT_BLK register block currently contains a single bit for the arbiter disable function. The general-
purpose event register contains the event programming model for generic features. All generic events, just as fixed
events, generate SCIs. Generic event status bits can reside anywhere; however, the top-level generic event resides in
one of the general-purpose register blocks. Any generic feature event status not in the general-purpose register space
is considered a child or sibling status bit, whose parent status bit is in the general-purpose event register space. Notice
that it is possible to have N levels of general-purpose events prior to hitting the GPE event status.

General-purpose event registers are described by two register blocks: The GPEO_BLK or the GPE1_BLK. Each
register block is pointed to separately from within the FADT. Each register block is further broken into two registers:
GPEx_STS and GPEx_EN. The status and enable registers in the general-purpose event registers follow the event
model for the fixed hardware event registers.

4.8.1 ACPI Register Summary

The following tables summarize the ACPI registers:

Table 4.2: PM1 Event Registers

Register Size (Bytes) Address (relative to register block)
PM1a_STS PM1_EVT_LEN/2 <PMla_EVT_BLK>
PMla_EN PM1_EVT_LEN/2 <PMla_EVT_BLK>+PM1_EVT_LEN/2
PM1b_STS PM1_EVT_LEN/2 <PMI1b_EVT_BLK>
PMI1b_EN PM1_EVT_LEN/2 <PMI1b_EVT_BLK>+PM1_EVT_LEN/2

Table 4.3: PM1 Control Registers

Register Size (Bytes) Address (relative to register block)
PM1_CNTa PMI1_CNT_LEN <PMla_CNT_BLK>
PM1_CNTb PMI1_CNT_LEN <<PM1b_CNT_BLK>

Table 4.4: PM2 Control Register

Register Size (Bytes) Address (relative to register block)
PM2_CNT PM2_CNT_LEN <PM2_CNT_BLK>

4.8. ACPI Register Model 103

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 4.5: PM Timer Register

Register Size (Bytes) Address (relative to register block)
PM_TMR PM_TMR_LEN <PM_TMR_BLK>

Table 4.6: Processor Control Registers

Register Size (Bytes) Address (relative to register block)

P_CNT 4 Either <P_BLK> or specified by the PTC object - see Processor Throttling
Controls

P_LVL2 1 <P_BLK>+4h

P_LVL3 1 <P_BLK>+5h

Table 4.7: General-Purpose Event Registers

Register Size (Bytes) Address (relative to register block)
GPEOQO_STS GPEO_LEN/2 <GPEO_BLK>

GPEO_EN GPEO_LEN/2 <GPEO_BLK>+GPEO_LEN/2
GPE1_STS GPE1_LEN/2 <GPE1_BLK>

GPE1_EN GPE1_LEN/2 <GPE1_BLK>+GPEI1_LEN/2

4.8.1.1 PM1 Event Registers

The PM1 event register grouping contains two register blocks: the PM1a_EVT_BLK is a required register block when
the following ACPI interface categories are required by a class specific platform design guide:

* Power management timer control/status

» Processor power state control/status

* Global Lock related interfaces

* Power or Sleep button (fixed register interfaces)

» System power state controls (sleeping/wake control)

The PM1b_EVT_BLK is an optional register block. Each register block has a unique 32-bit pointer in the Fixed
ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If the PM1b_EVT_BLK is not
supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 event grouping contains two registers that are required to be the same size: the
PM1x_STS and PM1x_EN (where x can be “a” or “b”). The length of the registers is variable and is described by the
PMI1_EVT_LEN field in the FADT, which indicates the total length of the register block in bytes. Hence if a length
of “4” is given, this indicates that each register contains two bytes of I/O space. The PM1 event register block has a
minimum size of 4 bytes.

4.8. ACPI Register Model 104

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.8.1.2 PM1 Control Registers

The PM1 control register grouping contains two register blocks: the PM1a_CNT_BLK is a required register block
when the following ACPI interface categories are required by a class specific platform design guide:

» SCI/SMI routing control/status for power management and general-purpose events
* Processor power state control/status

* Global Lock related interfaces

* System power state controls (sleeping/wake control)

The PM1b_CNT_BLK is an optional register block. Each register block has a unique 32-bit pointer in the Fixed
ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If the PM1b_CNT_BLK is not
supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 control grouping contains a single register: the PM1x_CNT. The length of the register
is variable and is described by the PM1_CNT_LEN field in the FADT, which indicates the total length of the register
block in bytes. The PM1 control register block must have a minimum size of 2 bytes.

4.8.1.3 PM2 Control Register

The PM2 control register is contained in the PM2_CNT_BLK register block. The FADT contains a length variable
for this register block (PM2_CNT_LEN) that is equal to the size in bytes of the PM2_CNT register (the only register
in this register block). This register block is optional, if not supported its block pointer and length contain a value of
Zero.

4.8.1.4 PM Timer Register

The PM timer register is contained in the PM_TMR_BLK register block. It is an optional register block that must be
implemented when the power management timer control/status ACPI interface category is required by a class specific
platform design guide.

If defined, this register block contains the register that returns the running value of the power management timer. The
FADT also contains a length variable for this register block (PM_TMR_LEN) that is equal to the size in bytes of the
PM_TMR register (the only register in this register block).

4.8.1.5 Processor Control Block (P_BLK)

There is an optional processor control register block for each processor in the system. As this is a homogeneous feature,
all processors must have the same level of support. The ACPI OS will revert to the lowest common denominator of
processor control block support. The processor control block contains the processor control register (P_CNT-a 32-bit
performance control configuration register), and the P_LVL2 and P_LVL3 CPU sleep state control registers. The 32-
bit P_CNT register controls the behavior of the processor clock logic for that processor, the P_LVL2 register is used
to place the CPU into the C2 state, and the P_LVL3 register is used to place the processor into the C3 state.

4.8. ACPI Register Model 105

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.8.1.6 General-Purpose Event Registers

The general-purpose event registers contain the root level events for all generic features. To facilitate the flexibil-
ity of partitioning the root events, ACPI provides for two different general-purpose event blocks: GPEQ_BLK and
GPE1_BLK. These are separate register blocks and are not a register grouping, because there is no need to main-
tain an orthogonal bit arrangement. Also, each register block contains its own length variable in the FADT, where
GPEO_LEN and GPE1_LEN represent the length in bytes of each register block.

Each register block contains two registers of equal length: GPEx_STS and GPEx_EN (where x is O or 1). The length of
the GPEO_STS and GPEO_EN registers is equal to half the GPEO_LEN. The length of the GPE1_STS and GPE1_EN
registers is equal to half the GPE1_LEN. If a generic register block is not supported then its respective block pointer
and block length values in the FADT table contain zeros. The GPEO_LEN and GPE1_LEN do not need to be the same
size.

4.8.2 Fixed Hardware Features

This section describes the fixed hardware features defined by ACPI.

4.8.3 Power Management Timer

The ACPI specification defines an optional power management timer that provides an accurate time value that can
be used by system software to measure and profile system idleness (along with other tasks). The power management
timer provides an accurate time function while the system is in the working (GO) state. To allow software to extend the
number of bits in the timer, the power management timer generates an interrupt when the last bit of the timer changes
(from O to 1 or 1 to 0). ACPI supports either a 24-bit or 32-bit power management timer. The PM Timer is accessed
directly by OSPM, and its programming model is contained in fixed register space. The programming model can be
partitioned in up to three different register blocks. The event bits are contained in the PM1_EVT register grouping,
which has two register blocks, and the timer value can be accessed through the PM_TMR_BLK register block. A
block diagram of the power management timer is illustrated in the following figure.

Fig. 4.7: Power Management Timer

The power management timer is a 24-bit or 32-bit fixed rate free running count-up timer that runs off a 3.579545
MHz clock. The ACPI OS checks the FADT to determine whether the PM Timer is a 32-bit or 24-bit timer. The
programming model for the PM Timer consists of event logic, and a read port to the counter value. The event logic
consists of an event status and enable bit. The status bit is set any time the last bit of the timer (bit 23 or bit 31) goes
from set to clear or clear to set. If the TMR_EN bit is set, then the setting of the TMR_STS will generate an ACPI
event in the PM1_EVT register grouping (referred to as PMTMR_PME in the diagram). The event logic is only used
to emulate a larger timer.

OSPM uses the read-only TMR_VAL field (in the PM TMR register grouping) to read the current value of the timer.
OSPM never assumes an initial value of the TMR_VAL field; instead, it reads an initial TMR_VAL upon loading

4.8. ACPI Register Model 106

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

OSPM and assumes that the timer is counting. It is allowable to stop the Timer when the system transitions out of the
working (G0/S0) state. The only timer reset requirement is that the timer functions while in the working state.

The PM Timer’s programming model is implemented as a fixed hardware feature to increase the accuracy of reading
the timer.

4.8.3.1 Console Buttons

ACPI defines user-initiated events to request OSPM to transition the platform between the GO working state and the G1
sleeping, G2 soft off and G3 mechanical off states. ACPI also defines a recommended mechanism to unconditionally
transition the platform from a hung GO working state to the G2 soft-off state.

ACPI operating systems use power button events to determine when the user is present. As such, these ACPI events
are associated with buttons in the ACPI specification.

The ACPI specification supports two button models:

* A single-button model that generates an event for both sleeping and entering the soft-off state. The function of
the button can be configured using OSPM UL

* A dual-button model where the power button generates a soft-off transition request and a sleep button generates
a sleep transition request. The type of button implies the function of the button.

Control of these button events is either through the fixed hardware programming model or the generic hardware
programming model (control method based). The fixed hardware programming model has the advantage that OSPM
can access the button at any time, including when the system is crashed. In a crashed system with a fixed hardware
power button, OSPM can make a “best” effort to determine whether the power button has been pressed to transition to
the system to the soft-off state, because it doesn’t require the AML interpreter to access the event bits.

4.8.3.1.1 Power Button

The power button logic can be used in one of two models: single button or dual button. In the single-button model, the
user button acts as both a power button for transitioning the system between the GO and G2 states and a sleep button
for transitioning the system between the GO and G1 states. The action of the user pressing the button is determined by
software policy or user settings. In the dual-button model, there are separate buttons for sleeping and power control.
Although the buttons still generate events that cause software to take an action, the function of the button is now
dedicated: the sleep button generates a sleep request to OSPM and the power button generates a wake request.

Support for a power button is indicated by a combination of the PWR_BUTTON flag and the power button device
object, as shown in the following:

Table 4.8: Power Button Support

Indicated Support PWR_BUTTON Flag Power Button Device Object
Fixed hardware power button Clear Absent
Control method power button Set Present

The power button can also have an additional capability to unconditionally transition the system from a hung working
state to the G2 soft-off state. In the case where OSPM event handler is no longer able to respond to power button
events, the power button override feature provides a back-up mechanism to unconditionally transition the system to
the soft-off state. This feature can be used when the platform doesn’t have a mechanical off button, which can also
provide this function. ACPI defines that holding the power button active for four seconds or longer will generate a
power button override event.

4.8. ACPI Register Model 107

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.8.3.1.1.1 Fixed Power Button

Fig. 4.8: Fixed Power Button Logic

The fixed hardware power button has its event programming model in the PM1x_EVT_BLK. This logic consists
of a single enable bit and sticky status bit. When the user presses the power button, the power button status bit
(PWRBTN_STS) is unconditionally set. If the power button enable bit (PWRBTN_EN) is set and the power button
status bit is set (PWRBTN_STS) due to a button press while the system is in the GO state, then an SCI is generated.
OSPM responds to the event by clearing the PWRBTN_STS bit. The power button logic provides debounce logic that
sets the PWRBTN_STS bit on the button press “edge.”

While the system is in the G1 or G2 global states (S1, S2, S3, S4 or S5 states), any further power button press after
the button press that transitioned the system into the sleeping state unconditionally sets the power button status bit and
wakes the system, regardless of the value of the power button enable bit. OSPM responds by clearing the power button
status bit and waking the system.

4.8.3.1.1.2 Control Method Power Button

The power button programming model can also use the generic hardware programming model. This allows the power
button to reside in any of the generic hardware address spaces (for example, the embedded controller) instead of fixed
space. If the power button is implemented using generic hardware, then the OEM needs to define the power button as
a device with an _HID object value of “PNPOCOC,” which then identifies this device as the power button to OSPM.
The AML event handler then generates a Notify command to notify OSPM that a power button event was generated.
While the system is in the working state, a power button press is a user request to transition the system into either the
sleeping (G1) or soft-off state (G2). In these cases, the power button event handler issues the Notify command with
the device specific code of 0x80. This indicates to OSPM to pass control to the power button driver (PNPOCOC) with
the knowledge that a transition out of the GO state is being requested. Upon waking from a G1 sleeping state, the AML
event handler generates a notify command with the code of 0x2 to indicate it was responsible for waking the system.

The power button device needs to be declared as a device within the ACPI Namespace for the platform and only
requires an _HID. An example definition follows.

This example ASL code performs the following:

¢ Creates a device named “PWRB” and associates the Plug and Play identifier (through the _HID object) of
“PNPOCOC.”

The Plug and Play identifier associates this device object with the power button driver.

* Creates an operational region for the control method power button’s programming model: System I/O space at
0x200.

* Fields that are not accessed are written as zeros. These status bits clear upon writing a 1 to their bit position,
therefore preserved would fail in this case.

* Creates a field within the operational region for the power button status bit (called PBP). In this case the power
button status bit is a child of the general-purpose event status bit 0. When this bit is set, it is the responsibility of
the ASL-code to clear it (OSPM clears the general-purpose status bits). The address of the status bit is 0x200.0
(bit 0 at address 0x200).

4.8. ACPI Register Model 108

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

¢ Creates an additional status bit called PBW for the power button wake event. This is the next bit and its physical
address would be 0x200.1 (bit 1 at address 0x200).

* Generates an event handler for the power button that is connected to bit 0 of the general-purpose event status
register 0. The event handler does the following:

¢ Clears the power button status bit in hardware (writes a one to it).

» Notifies OSPM of the event by calling the Notify command passing the power button object and the device
specific event indicator 0x80.

// Define a control method power button

Device (_SB.PWRB)

{
Name (_HID, EISAID ("PNPOCOC"))
Name (_PRW, Package() {0, 0x4})
OperationRegion (\PHO, SystemIO, 0x200, 0x1)
Field (\PHO, ByteAcc, NoLock, WriteAsZeros)
{

PBP, 1, // sleep/off request
PBW, 1 // wakeup request
}
}
Scope (_GPE) // Root level event handlers

{
Method (_L00)
{
// uses bit 0 of GPO_STS register
If (PBP)
{
PBP = One // clear power button status
Notify (_SB.PWRB, 0x80) // Notify 0S of event

If (\PBW)
{
PBW = One
Notify (_SB.PWRB, 0x2)

4.8.3.1.1.3 Power Button Override

The ACPI specification also allows that if the user presses the power button for more than four seconds while the
system is in the working state, a hardware event is generated and the system will transition to the soft-off state. This
hardware event is called a power button override. In reaction to the power button override event, the hardware clears
the power button status bit (PWRBTN_STS).

4.8. ACPI Register Model 109

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.8.3.1.2 Sleep Button

When using the two button model, ACPI supports a second button that when pressed will request OSPM to transition
the platform between the GO working and G1 sleeping states. Support for a sleep button is indicated by a combination
of the SLEEP_BUTTON flag and the sleep button device object:

Table 4.9: Sleep Button Support

Indicated Support SLEEP_BUTTON Flag Sleep Button Device Object
No sleep button Set Absent
Fixed hardware slee button Clear Absent
Control method sleep button Set Present

4.8.3.1.2.1 Fixed Hardware Sleep Button

Fig. 4.9: Fixed Hardware Sleep Button Logic

The fixed hardware sleep button has its event programming model in the PM1x_EVT_BLK. This logic consists of a sin-
gle enable bit and sticky status bit. When the user presses the sleep button, the sleep button status bit (SLPBTN_STS)
is unconditionally set. Additionally, if the sleep button enable bit (SLPBTN_EN) is set, and the sleep button status
bit is set (SLPBTN_STS, due to a button press) while the system is in the GO state, then an SCI is generated. OSPM
responds to the event by clearing the SLPBTN_STS bit. The sleep button logic provides debounce logic that sets the
SLPBTN_STS bit on the button press “edge.”

While the system is sleeping (in either the SO, S1, S2, S3 or S4 states), any further sleep button press (after the button
press that caused the system transition into the sleeping state) sets the sleep button status bit (SLPBTN_STS) and
wakes the system if the SLP_EN bit is set. OSPM responds by clearing the sleep button status bit and waking the
system.

4.8.3.1.2.2 Control Method Sleep Button

The sleep button programming model can also use the generic hardware programming model. This allows the sleep
button to reside in any of the generic hardware address spaces (for example, the embedded controller) instead of fixed
space. If the sleep button is implemented via generic hardware, then the OEM needs to define the sleep button as a
device with an _HID object value of “PNPOCOE”, which then identifies this device as the sleep button to OSPM. The
AML event handler then generates a Notify command to notify OSPM that a sleep button event was generated. While
in the working state, a sleep button press is a user request to transition the system into the sleeping (G1) state. In
these cases the sleep button event handler issues the Notify command with the device specific code of 0x80. This will
indicate to OSPM to pass control to the sleep button driver (PNPOCOE) with the knowledge that the user is requesting
a transition out of the GO state. Upon waking-up from a G1 sleeping state, the AML event handler generates a Notify
command with the code of 0x2 to indicate it was responsible for waking the system.

The sleep button device needs to be declared as a device within the ACPI Namespace for the platform and only requires
an _HID. An example definition is shown below.

The AML code below does the following:

4.8. ACPI Register Model 110

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Creates a device named “SLPB” and associates the Plug and Play identifier (through the _HID object) of
“PNPOCOE.”

The Plug and Play identifier associates this device object with the sleep button driver.

Creates an operational region for the control method sleep button’s programming model: System I/O space at
0x201.

“]”

Fields that are not accessed are written as “1s” (these status bits clear upon writing a
hence preserved would fail in this case).

to their bit position,

Creates a field within the operational region for the sleep button status bit (called PBP). In this case the sleep
button status bit is a child of the general-purpose status bit 0. When this bit is set it is the responsibility of the
AML code to clear it (OSPM clears the general-purpose status bits). The address of the status bit is 0x201.0 (bit
0 at address 0x201).

Creates an additional status bit called PBW for the sleep button wake event. This is the next bit and its physical
address would be 0x201.1 (bit 1 at address 0x201).

Generates an event handler for the sleep button that is connected to bit O of the general-purpose status register
0. The event handler does the following:

Clears the sleep button status bit in hardware (writes a “1” to it).

Notifies OSPM of the event by calling the Notify command passing the sleep button object and the device
specific event indicator 0x80.

// Define a control method sleep button
Device (_SB.SLPB)

{

Name (_HID, EISAID ("PNPOCOE"))

Name (_PRW, Package(){0x01, 0x04})
OperationRegion (\Boo, SystemIO, 0x201, 0Ox1)
Field (\Boo, ByteAcc, NoLock, WriteAsZeros)
{

SBP, 1, // sleep request
SBW, 1 // wakeup request
}
}
Scope (_GPE) // Root level event handlers
{
Method (_LO1) // uses bit 1 of GPO_STS register
{
If (\SBP)
{
\SBP = One // clear sleep button status

Notify (_SB.SLPB, 0x80) // Notify 0OS of event
If (\SBW)

\SBW = One
Notify (_SB.SLPB, 0x2)

4.8. ACPI Register Model 111

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.8.3.2 Sleeping/Wake Control

The sleeping/wake logic consists of logic that will sequence the system into the defined low-power hardware sleeping
state (S1-S4) or soft-off state (S5) and will wake the system back to the working state upon a wake event. Notice that
the S4BIOS state is entered in a different manner (for more information, see The S4BIOS Transition).

Fig. 4.10: Sleeping/Wake Logic

The logic is controlled via two bit fields: Sleep Enable (SLP_EN) and Sleep Type (SLP_TYPx). The type of sleep
or soft-off state desired is programmed into the SLP_TYPx field and upon assertion of the SLP_EN the hardware
will sequence the system into the defined sleeping state. OSPM gets values for the SLP_TYPx field from the _Sx
objects defined in the static definition block. If the object is missing OSPM assumes the hardware does not support
that sleeping state. Prior to entering the desired sleeping state, OSPM will read the designated _Sx object and place
this value in the SLP_TYP field.

Additionally ACPI defines a fail-safe Off protocol called the “power button override,” which allows the user to initiate
an Off sequence in the case where the system software is no longer able to recover the system (the system has hung).
ACPI defines that this sequence be initiated by the user pressing the power button for over 4 seconds, at which point
the hardware unconditionally sequences the system to the Off state. This logic is represented by the PWRBTN_OR
signal coming into the sleep logic.

While in any of the sleeping states (G1), an enabled “Wake” event will cause the hardware to sequence the system
back to the working state (G0). The “Wake Status” bit (WAK_STS) is provided for OSPM to “spin-on” after setting
the SLP_EN/SLP_TYP bit fields. When waking from the S1 sleeping state, execution control is passed backed to
OSPM immediately, whereas when waking from the S2-S4 states execution control is passed to the platform boot
firmware (execution begins at the CPU’s reset vector). The WAK_STS bit provides a mechanism to separate OSPM’s
sleeping and waking code during an S1 sequence. When the hardware has sequenced the system into the sleeping state
(defined here as the processor is no longer able to execute instructions), any enabled wake event is allowed to set the
WAK_STS bit and sequence the system back on (to the GO state). If the system does not support the S1 sleeping state,
the WAK_STS bit can always return zero.

If more than a single sleeping state is supported, then the sleeping/wake logic is required to be able to dynamically
sequence between the different sleeping states. This is accomplished by waking the system; OSPM programs the new
sleep state into the SLP_TYP field, and then sets the SLP_EN bit-placing the system again in the sleeping state.

4.8. ACPI Register Model 112

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.8.3.3 Real Time Clock Alarm

If implemented, the Real Time Clock (RTC) alarm must generate a hardware wake event when in the sleeping state.
The RTC can be programmed to generate an alarm. An enabled RTC alarm can be used to generate a wake event when
the system is in a sleeping state. ACPI provides for additional hardware to support OSPM in determining that the RTC
was the source of the wake event: the RTC_STS and RTC_EN bits. Although these bits are optional, if supported they
must be implemented as described here.

If the RTC_STS and RTC_EN bits are not supported, OSPM will attempt to identify the RTC as a possible wake
source; however, it might miss certain wake events. If implemented, the RTC wake feature is required to work in the
following sleeping states: S1-S3. S4 wake is optional and supported through the RTC_S4 flag within the FADT (if
set, then the platform supports RTC wake in the S4 state) *.

Note: * The G2/S5 “soft off” and the G3 “mechanical off” states are not sleeping states. The OS will disable the
RTC_EN bit prior to entering the G2/S5 or G3 states regardless.

When the RTC generates a wake event the RTC_STS bit will be set. If the RTC_EN bit is set, an RTC hardware
power management event will be generated (which will wake the system from a sleeping state, provided the battery
low signal is not asserted).

Fig. 4.11: RTC Alarm

The RTC wake event status and enable bits are an optional fixed hardware feature and a flag within the FADT
(FIX_RTC) indicates if the register bits are to be used by OSPM. If the RTC wake event status and enable bits are
implemented in fixed hardware, OSPM can determine if the RTC was the source of the wake event without loading the
entire OS. This also gives the platform the capability of indicating an RTC wake source without consuming a GPE bit,
as would be required if RTC wake was not implemented using the fixed hardware RTC feature. If the fixed hardware
feature event bits are not supported, then OSPM will attempt to determine this by reading the RTC’s status field. If the
platform implements the RTC fixed hardware feature, and this hardware consumes resources, the _FIX method can be
used to correlate these resources with the fixed hardware. See _FIX (Fixed Register Resource Provider), for details.

OSPM supports enhancements over the existing RTC device (which only supports a 99 year date and 24-hour alarm).
Optional extensions are provided for the following features:

Day Alarm The DAY_ALRM field points to an optional CMOS RAM location that selects the day within the month
to generate an RTC alarm.

Month Alarm The MON_ALRM field points to an optional CMOS RAM location that selects the month within the
year to generate an RTC alarm.

Centenary Value The CENT field points to an optional CMOS RAM location that represents the centenary value of
the date (thousands and hundreds of years).

The RTC_STS bit may be set through the RTC interrupt (IRQ8 in IA-PC architecture systems). OSPM will insure
that the periodic and update interrupt sources are disabled prior to sleeping. This allows the RTC’s interrupt pin to
serve as the source for the RTC_STS bit generation. Note however that if the RTC interrupt pin is used for RTC_STS
generation, the RTC_STS bit value may not be accurate when waking from S4. If this value is accurate when waking
from S4, the platform should set the S4_RTC_STS_VALID flag, so that OSPM can utilize the RTC_STS information.

4.8. ACPI Register Model 113

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 4.10: Alarm Field Decodings within the FADT

Field Value Address (Location) in RTC CMOS
RAM (Must be Bank 0)
DAY_ALRM
Eight bit value that can represent 0x01-0x31 The DAY_ALRM field in the FADT will
days in BCD or 0x01-0x1F days in binary. Bits 6 | contain a non-zero value that represents
and 7 of this field are treated as Ignored by an offset into the RTC’s CMOS RAM area
software. The RTC is initialized such that this that contains the day alarm value. A value
field contains a “‘don’t care” value when the of zero in the DAY_ALRM field indicates
platform firmware switches from legacy to that the day alarm feature is not
ACPI mode. A don’t care value can be any supported.
unused value (not 0x1-0x31 BCD or 0x01-0Ox1F
hex) that the RTC reverts back to a 24 hour
alarm.
MON_ALRM
Eight bit value that can represent 01-12 The MON_ALRM field in the FADT will
months in BCD or 0x01-0xC months in binary. contain a non-zero value that represents
The RTC is initialized such that this field an offset into the RTC’s CMOS RAM area
contains a don’t care value when the platform that contains the month alarm value. A
firmware switches from legacy to ACPI mode. value of zero in the MON_ALRM field
A “don’t care” value can be any unused value indicates that the month alarm feature is
(not 1-12 BCD or x01-xC hex) that the RTC not supported. If the month alarm is
reverts back to a 24 hour alarm and/or 31 day supported, the day alarm function must
alarm). also be supported.
CENTURY
8-bit BCD or binary value. This value indicates The CENTURY field in the FADT will
the thousand year and hundred year contain a non-zero value that represents
(Centenary) variables of the date in BCD (19 an offset into the RTC’s CMOS RAM area
for this century, 20 for the next) or binary that contains the Centenary value for the
(x13 for this century, x 14 for the next). date. A value of zero in the CENTURY
field
indicates that the Centenary value is not
supported by this RTC.

4.8.3.4 Legacy/ACPI Select and the SCI Interrupt

As mentioned previously, power management events are generated to initiate an interrupt or hardware sequence. ACPI
operating systems use the SCI interrupt handler to respond to events, while legacy systems use some type of transparent
interrupt handler to respond to these events (that is, an SMI interrupt handler). ACPI-compatible hardware can choose
to support both legacy and ACPI modes or just an ACPI mode. Legacy hardware is needed to support these features
for non-ACPI-compatible operating systems. When the ACPI OS loads, it scans the platform firmware tables to
determine that the hardware supports ACPI, and then if the it finds the SCI_EN bit reset (indicating that ACPI is
not enabled), issues an ACPI activate command to the SMI handler through the SMI command port. The platform
firmware acknowledges the switching to the ACPI model of power management by setting the SCI_EN bit (this bit
can also be used to switch over the event mechanism as illustrated below):

4.8. ACPI Register Model 114

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

SCI_EN
PM1x_CNT.0

Power o » SMI_EVNT

Management Dec

i —»

Event Logic e SCI_EVNT
- Shareable
Interrupt

Fig. 4.12: Power Management Events to SMI/SCI Control Logic

The interrupt events (those that generate SMIs in legacy mode and SCIs in ACPI mode) are sent through a decoder
controlled by the SCI_EN bit. For legacy mode this bit is reset, which routes the interrupt events to the SMI interrupt
logic. For ACPI mode this bit is set, which routes interrupt events to the SCI interrupt logic. This bit always returns
set for ACPI-compatible hardware that does not support a legacy power management mode (in other words, the bit is
wired to read as “1” and ignore writes).

The SCI interrupt is defined to be a shareable interrupt and is connected to an OS visible interrupt that uses a shareable
protocol. The FADT has an entry that indicates what interrupt the SCI interrupt is mapped to (see System Description
Table Header).

If the ACPI platform supports both legacy and ACPI modes, it has a register that generates a hardware event (for
example, SMI for IA-PC processors). OSPM uses this register to make the hardware switch in and out of ACPI mode.
Within the FADT are three values that signify the address (SMI_CMD) of this port and the data value written to enable
the ACPI state (ACPI_ENABLE), and to disable the ACPI state (ACPI_DISABLE).

To transition an ACPI/Legacy platform from the Legacy mode to the ACPI mode the following would occur:
* ACPI driver checks that the SCI_EN bit is zero, and that it is in the Legacy mode.
* OSPM does an OUT to the SMI_CMD port with the data in the ACPI_ENABLE field of the FADT.
* OSPM polls the SCI_EN bit until it is sampled as SET.

To transition an ACPI/Legacy platform from the ACPI mode to the Legacy mode the following would occur:
¢ ACPI driver checks that the SCI_EN bit is one, and that it is in the ACPI mode.
* OSPM does an OUT to the SMI_CMD port with the data in the ACPI_DISABLE field of the FADT.
¢ OSPM polls the SCI_EN bit until it is sampled as RESET.

Platforms that only support ACPI always return a 1 for the SCI_EN bit. In this case OSPM skips the Legacy to ACPI
transition stated above.

4.8.3.5 Processor Control

The ACPI specification defines several processor controls including power state control, throttling control, and perfor-
mance state control. See Processor Configuration and Control for a complete description of the processor controls.

4.8. ACPI Register Model 115

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.8.4 Fixed Hardware Registers

The fixed hardware registers are manipulated directly by OSPM. The following sections describe fixed hardware
features under the programming model. OSPM owns all the fixed hardware resource registers; these registers cannot
be manipulated by AML code. Registers are accessed with any width up to its register width (byte granular).

4.8.4.1 PM1 Event Grouping

The PM1 Event Grouping has a set of bits that can be distributed between two different register blocks. This allows
these registers to be partitioned between two chips, or all placed in a single chip. Although the bits can be split between
the two register blocks (each register block has a unique pointer within the FADT), the bit positions are maintained.
The register block with unimplemented bits (that is, those implemented in the other register block) always returns
zeros, and writes have no side effects.

4.8.4.1.1 PM1 Status Registers

Register Location: <PMla_EVT_BLK/PMI1b_EVT_BLK> System I/O or Memory Space
Default Value: 00h

Attribute: Read/Write

Size: PM1_EVT_LEN/2

The PM1 status registers contain the fixed hardware feature status bits. The bits can be split between two registers:
PM1a_STS or PM1b_STS. Each register grouping can be at a different 32-bit aligned address and is pointed to by the
PMla_EVT_BLK or PM1b_EVT_BLK. The values for these pointers to the register space are found in the FADT.
Accesses to the PM1 status registers are done through byte or word accesses.

For ACPl/legacy systems, when transitioning from the legacy to the GO working state this register is cleared by
platform firmware prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI only platforms
(where SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off state to the GO
working state this register is cleared prior to entering the GO working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that the feature is
not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4.11: PM1 Status Registers Fixed Hardware Feature Status

Bits
Bit Name Description
0 TMR_STS This is the timer carry status bit. This bit gets set any time the most
significant bit of a 24/32-bit counter changes from clear to set or set to
clear. While TMR_EN and TMR_STS are set, an interrupt event is raised.
1-3 Reserved Reserved
BM_STS This is the bus master status bit. This bit is set any time a system bus

master requests the system bus, and can only be cleared by writing a “1” to
this bit position. Notice that this bit reflects bus master activity, not CPU
activity (this bit monitors any bus master that can cause an incoherent
cache for a processor in the C3 state when the bus master performs a
memory transaction).

continues on next page

4.8. ACPI Register Model 116

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 4.11 — continued from previous page
Bit Name Description
5 GBL_STS This bit is set when an SCI is generated due to the platform runtime
firmware wanting the attention of the SCI handler. Platform runtime
firmware will have a control bit (somewhere within its address space) that
will raise an SCI and set this bit. This bit is set in response to the platform
runtime firmware releasing control of the Global Lock and having seen
the pending bit set.
6-7 Reserved Reserved. These bits always return a value of zero.
8 PWRBTN_STS This optional bit is set when the Power Button is pressed. In the system
working state, while PWRBTN_EN and PWRBTN_STS are both set, an
interrupt event is raised. In the sleep or soft-off state, a wake event is gen-
erated when the power button is pressed (regardless of the PWRBTN_EN
bit setting). This bit is only set by hardware and can only be reset by soft-
ware writing a “1” to this bit position. ACPI defines an optional mech-
anism for unconditional transitioning a system that has stopped working
from the GO working state into the G2 soft-off state called the power but-
ton override. If the Power Button is held active for more than four sec-
onds, this bit is cleared by hardware and the system transitions into the
G2/S5 Soft Off state (unconditionally). Support for the power button is
indicated by the PWR_BUTTON flag in the FADT being reset (zero). If
the PWR_BUTTON flag is set or a power button device object is present
in the ACPI Namespace, then this bit field is ignored by OSPM. If the
power button was the cause of the wake (from an S1-S4 state), then this
bit is set prior to returning control to OSPM.
9 SLPBTN_STS This optional bit is set when the sleep button is pressed. In the system
working state, while SLPBTN_EN and SLPBTN_STS are both set, an
interrupt event is raised. In the sleep or soft-off states a wake event is
generated when the sleeping button is pressed and the SLPBTN_EN bit
is set. This bit is only set by hardware and can only be reset by software
writing a “1” to this bit position. Support for the sleep button is indi-
cated by the SLP_BUTTON flag in the FADT being reset (zero). If the
SLP_BUTTON flag is set or a sleep button device object is present in the
ACPI Namespace, then this bit field is ignored by OSPM. If the sleep but-
ton was the cause of the wake (from an S1-S4 state), then this bit is set
prior to returning control to OSPM.
10 RTC_STS This optional bit is set when the RTC generates an alarm (asserts the RTC
IRQ signal). Additionally, if the RTC_EN bit is set then the setting of the
RTC_STS bit will generate a power management event (an SCI, SMI, or
resume event). This bit is only set by hardware and can only be reset by
software writing a ‘1’ to this bit position. If the RTC was the cause of the
wake (from an S1-S3 state), then this bit is set prior to returning control to
OSPM. If the RTC_S4 flag within the FADT is set, and the RTC was the
cause of the wake from the S4 state), then this bit is set prior to returning

control to OSPM.
11 Ignore This bit field is ignored by software.
12-14 Reserved Reserved. These bits always return a value of zero.

continues on next page

4.8. ACPI Register Model 117

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 4.11 — continued from previous page
Bit Name Description
14 PCIEXP_WAKE_STS This bit is optional for chipsets that implement PCI Express. This bit is
set by hardware to indicate that the system woke due to a PCI Expressv
wakeup event. A PCI Express wakeup event is defined as the PCI Express
WAKEH# pin being active , one or more of the PCI Express ports being in
the beacon state, or receipt of a PCI Express PME message at a root port.
This bit should only be set when one of these events causes the system
to transition from a non-SO system power state to the SO system power
state. This bit is set independent of the state of the PCIEXP_WAKE_DIS
bit. Software writes a 1 to clear this bit. If the WAKE# pin is still active
during the write, one or more PCI Express ports is in the beacon state
or the PME message received indication has not been cleared in the root
port, then the bit will remain active (i.e. all inputs to this bit are level-
sensitive). Note: This bit does not itself cause a wake event or prevent
entry to a sleeping state. Thus if the bit is 1 and the system is put into a
sleeping state, the system will not automatically wake.
15 WAK_STS This bit is set when the system is in the sleeping state and an enabled wake
event occurs. Upon setting this bit system will transition to the working
state. This bit is set by hardware and can only be cleared by software
writing a “1” to this bit position.

4.8.4.1.2 PM1Enable Registers

Register Location: <<PMla_EVT_BLK/PMI1b_EVT_BLK>+ PM1_EVT_LEN/ 2 System I/O or Memory Space
Default Value: 00h

Attribute: Read/Write

Size: PM1_EVT_LEN/2

The PM1 enable registers contain the fixed hardware feature enable bits. The bits can be split between two registers:
PM1a_EN or PM1b_EN. Each register grouping can be at a different 32-bit aligned address and is pointed to by the
PMla_EVT_BLK or PM1b_EVT_BLK. The values for these pointers to the register space are found in the FADT.
Accesses to the PM1 Enable registers are done through byte or word accesses.

For ACPl/legacy systems, when transitioning from the legacy to the GO working state the enables are cleared by
platform firmware prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI-only platforms
(where SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off state to the GO
working state this register is cleared prior to entering the GO working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that the feature is
not supported as a fixed hardware feature, then software treats the enable bits as write as zero.

Table 4.12: PM1 Enable Registers Fixed Hardware Feature Enable

Bits

Bit Name Description

0 TMR_EN This is the timer carry interrupt enable bit. When this bit is set then an SCI
event is generated anytime the TMR_STS bit is set. When this bit is reset
then no interrupt is generated when the TMR_STS bit is set.

1-4 Reserved Reserved. These bits always return a value of zero.

GBL_EN The global enable bit. When both the GBL_EN bit and the GBL_STS bit

are set, an SCI is raised.

continues on next page

4.8. ACPI Register Model 118

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 4.12 — continued from previous page

Bit Name Description
6-7 Reserved Reserved
8 PWRBTN_EN This optional bit is used to enable the setting of the PWRBTN_STS bit to

generate a power management event (SCI or wake). The PWRBTN_STS
bit is set anytime the power button is asserted. The enable bit does not have
to be set to enable the setting of the PWRBTN_STS bit by the assertion of
the power button (see description of the power button hardware). Support
for the power button is indicated by the PWR_BUTTON flag in the FADT
being reset (zero). If the PWR_BUTTON flag is set or a power button de-
vice object is present in the ACPI Namespace, then this bit field is ignored
by OSPM.

9 SLPBTN_EN This optional bit is used to enable the setting of the SLPBTN_STS bit to
generate a power management event (SCI or wake). The SLPBTN_STS bit
is set anytime the sleep button is asserted. The enable bit does not have to
be set to enable the setting of the SLPBTN_STS bit by the active assertion
of the sleep button (see description of the sleep button hardware). Support
for the sleep button is indicated by the SLP_BUTTON flag in the FADT
being reset (zero). If the SLP_BUTTON flag is set or a sleep button device
object is present in the ACPI Namespace, then this bit field is ignored by

OSPM.

10 RTC_EN This optional bit is used to enable the setting of the RTC_STS bit to gener-
ate a wake event. The RTC_STS bit is set any time the RTC generates an
alarm.

11-13 Reserved Reserved. These bits always return a value of zero.

14 PCIEXP_WAKE_DIS This bit is optional for chipsets that implement PCI Express. This bit dis-

ables the inputs to the PCIEXP_WAKE_STS bit in the PM1 Status register
from waking the system. Modification of this bit has no impact on the
value of the PCIEXP_WAKE_STS bit. PCIEXP_WAKE_DIS bit. Soft-
ware writes a 1 to clear this bit. If the WAKE# pin is still active during
the write, one or more PCI Express ports is in the beacon state or the PME
message received indication has not been cleared in the root port, then the
bit will remain active (i.e. all inputs to this bit are level-sensitive). Note:
This bit does not itself cause a wake event or prevent entry to a sleeping
state. Thus if the bit is 1 and the system is put into a sleeping state, the
system will not automatically wake.

15 Reserved Reserved. These bits always return a value of zero.

4.8.4.2 PM1 Control Grouping

The PM1 Control Grouping has a set of bits that can be distributed between two different registers. This allows these
registers to be partitioned between two chips, or all placed in a single chip. Although the bits can be split between
the two register blocks (each register block has a unique pointer within the FADT), the bit positions specified here are
maintained. The register block with unimplemented bits (that is, those implemented in the other register block) returns
zeros, and writes have no side effects.

4.8. ACPI Register Model 119

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.8.4.2.1 PM1 Control Registers

Register Location: <PM1la_CNT_BLK /PMI1b_CNT_BLK> System I/O or Memory Space
Default Value: 00h

Attribute: Read/Write

Size: PM1_CNT_LEN

The PM1 control registers contain the fixed hardware feature control bits. These bits can be split between two registers:
PM1a_CNT or PM1b_CNT. Each register grouping can be at a different 32-bit aligned address and is pointed to by
the PM1a_CNT_BLK or PM1b_CNT_BLK. The values for these pointers to the register space are found in the FADT.
Accesses to PM1 control registers are accessed through byte and word accesses.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that the feature is
not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4.13: PM1 Control Registers Fixed Hardware Feature Control

Bits
Bit Name Description
0 SCI_EN Selects the power management event to be either an SCI or SMI

interrupt for the following events. When this bit is set, then power
management events will generate an SCI interrupt. When this bit is
reset power management events will generate an SMI interrupt. It
is the responsibility of the hardware to set or reset this bit. OSPM
always preserves this bit position.

1 BM_RLD When set, this bit allows the generation of a bus master request to
cause any processor in the C3 state to transition to the CO state.
When this bit is reset, the generation of a bus master request does
not affect any processor in the C3 state.

2 GBL_RLS This write-only bit is used by the ACPI software to raise an event
to the platform runtime firmware, that is, generates an SMI to pass
execution control to the platform runtime firmware for IA-PC plat-
forms. Platform runtime firmware software has a corresponding en-
able and status bit to control its ability to receive ACPI events (for
example, BIOS_EN and BIOS_STS). The GBL_RLS bit is set by
OSPM to indicate a release of the Global Lock and the setting of the
pending bit in the FACS memory structure.

8:3 Reserved Reserved. These bits are reserved by OSPM.
9 Ignore Software ignores this bit field.
12:10 SLP_TYPx Defines the type of sleeping or soft-off state the system enters when

the SLP_EN bit is set to one. This 3-bit field defines the type of
hardware sleep state the system enters when the SLP_EN bit is set.
The _Sx object contains 3-bit binary values associated with the re-
spective sleeping state (as described by the object). OSPM takes the
two values from the _Sx object and programs each value into the
respective SLP_TYPx field.

13 SLP_EN This is a write-only bit and reads to it always return a zero. Setting
this bit causes the system to sequence into the sleeping state asso-
ciated with the SLP_TYPx fields programmed with the values from
the _Sx object.

15:14 Reserved Reserved. This field always returns zero.

4.8. ACPI Register Model 120

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.8.4.3 Power Management Timer (PM_TMR)

Register Location: <PM_TMR_BLK> System I/O or Memory Space
Default Value: 00h

Attribute: Read-Only

Size: 32 bits

This optional read-only register returns the current value of the power management timer (PM timer) if it is imple-
mented on the platform. The FADT has a flag called TMR_VAL_EXT that an OEM sets to indicate a 32-bit PM timer
or reset to indicate a 24-bit PM timer. When the last bit of the timer toggles the TMR_STS bit is set. This register is
accessed as 32 bits.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that the feature is
not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4.14: PM Timer Bits

Bit Name Description

TMR_VAL 23:0 This read-only field returns the running count of the power manage-
ment timer. This is a 24-bit counter that runs off a 3.579545-MHz
clock and counts while in the SO working system state. The starting
value of the timer is undefined, thus allowing the timer to be reset
(or not) by any transition to the SO state from any other state. The
timer is reset (to any initial value), and then continues counting until
the system’s 14.31818 MHz clock is stopped upon entering its Sx
state. If the clock is restarted without a reset, then the counter will
continue counting from where it stopped.

E_TMR_VAL 31:24 This read-only field returns the upper eight bits of a 32-bit power
management timer. If the hardware supports a 32-bit timer, then
this field will return the upper eight bits; if the hardware supports a
24-bit timer then this field returns all zeros.

4.8.4.4 PM2 Control (PM2_CNT)

Register Location: <PM2_CNT_BLK> System I/O, System Memory, or Functional
Fixed Hardware Space

Default Value: 00h

Attribute: Read/Write

Size: PM2_CNT_LEN

This register block is naturally aligned and accessed based on its length. For ACPI 1.0 this register is byte aligned and
accessed as a byte.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that the feature is
not supported as a fixed hardware feature, then software treats these bits as ignored.

4.8. ACPI Register Model 121

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 4.15: PM2 Control Register Bits

Bit Name Description

0 ARB_DIS This bit is used to enable and disable the system arbiter. When this
bit is CLEAR the system arbiter is enabled and the arbiter can grant
the bus to other bus masters. When this bit is SET the system arbiter
is disabled and the default CPU has ownership of the system. OSPM
clears this bit when using the C0O, C1 and C2 power states.

>0 Reserved Reserved

4.8.4.5 Processor Register Block (P_BLK)

This optional register block is used to control each processor in the system. There is one unique processor register
block per processor in the system. For more information about controlling processors and control methods that can be
used to control processors, see Processor Configuration and Control This register block is DWORD aligned and the
context of this register block is not maintained across S3 or S4 sleeping states, or the S5 soft-off state.

4.8.4.5.1 Processor Control (P_CNT): 32

Register Location: Either <P_BLK>: System I/O Space
or specified by _PTC Object: System 1/O, System Memory, or
Functional Fixed Hardware Space

Default Value: 00h

Attribute: Read/Write

Size: 32 bits

This register is accessed as a DWORD. The CLK_VAL field is where the duty setting of the throttling hardware is
programmed as described by the DUTY_WIDTH and DUTY_OFFSET values in the FADT. Software treats all other
CLK_VAL bits as ignored (those not used by the duty setting value).

Table 4.16: Processor Control Register Bits

Bit Name Description
3:0 CLK_VAL Possible locations for the clock throttling value.
4 THT_EN This bit enables clock throttling of the clock as set in the CLK_VAL

field. THT_EN bit must be reset LOW when changing the
CLK_VAL field (changing the duty setting).
31:5 CLK_VAL Possible locations for the clock throttling value.

4.8.4.5.2 Processor LVL2 Register (P_LVL2): 8

Register Location: Either <P_BLK> + 4: System I/O Space
or specified by _CST Object: System I/O, System Memory, or
Functional Fixed Hardware Space

Default Value: 00h

Attribute: Read-Only

Size: 8 bits

4.8. ACPI Register Model 122

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

This register is accessed as a byte.

Table 4.17: Processor LVL2 Register Bits
Bit Name Description
7:0 P LVL2 Reads to this register return all zeros; writes to this register have
no effect. Reads to this register also generate an “enter a C2 power
state” to the clock control logic.

4.8.4.5.3 Processor LVL3 Register (P_LVL3): 8

Register Location: Either <P_BLK> + 5: System I/O Space
or specified by _CST Object: System I/O, System Memory, or
Functional Fixed Hardware Space

Default Value: 00h

Attribute: Read-Only

Size: 8 bits

This register is accessed as a byte.

Table 4.18: Processor LVL3 Register Bits
Bit Name Description
7:0 P LVL3 Reads to this register return all zeros; writes to this register have
no effect. Readsto this register also generate an “enter a C3 power
state” to the clock control logic.

4.8.4.6 Reset Register

The optional ACPI reset mechanism specifies a standard mechanism that provides a complete system reset. When
implemented, this mechanism must reset the entire system. This includes processors, core logic, all buses, and all
peripherals. From an OSPM perspective, asserting the reset mechanism is the logical equivalent to power cycling the
system. Upon gaining control after a reset, OSPM will perform actions in like manner to a cold boot.

The reset mechanism is implemented via an 8-bit register described by RESET_REG in the FADT (always accessed via
the natural alignment and size described in RESET_REG). To reset the system, software will write a value (indicated
in RESET_VALUE in FADT) to the reset register. The RESET_REG field in the FADT indicates the location of the
reset register.

The reset register may exist only in I/O space, Memory space, or in PCI Configuration space on a function in bus 0.
Therefore, the Address_Space_ID value in RESET_REG must be set to System I/O space, System Memory space, or
PCI Configuration space (with a bus number of 0). As the register is only 8 bits, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

The system must reset immediately following the write to this register. OSPM assumes that the processor will not
execute beyond the write instruction. OSPM should execute spin loops on the CPUs in the system following a write
to this register.

4.8. ACPI Register Model 123

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.8.4.7 Sleep Control and Status Registers

The optional ACPI sleep registers (SLEEP_CONTROL_REG and SLEEP_STATUS_REG) specify a standard mech-
anism for system sleep state entry on HW-Reduced ACPI systems. When implemented, the Sleep registers
are a replacement for the SLP_TYP, SLP_EN and WAK_STS registers in the PM1_BLK. Use of these regis-
ters is at the discretion of OSPM. OSPM can decide whether to enter sleep states on the platform based on the
LOW_POWER_SO_IDLE_CAPABLE flag. Even when implemented, OSPM may use other provided options for
hibernate and shutdown (e.g. UEFI ResetSystem()).

The HW-reduced Sleep mechanism is implemented via two 8-bit registers described by SLEEP_CONTROL_REG
and SLEEP_STATUS_REG in the FADT (always accessed via the natural alignment and size described in
SLEEP_*_REG). To put the system into a sleep state, software will write the HW-reduced Sleep Type value (ob-
tained from the _Sx object in the DSDT) and the SLP_EN bit to the sleep control register. The OSPM then polls
the WAK_STS bit of the SLEEP_STATUS_REG waiting for it to be one (1), indicating that the system has been
transitioned back to the Working state.

The Sleep registers may exist only in I/O space, Memory space, or in PCI Configuration space on a function in bus 0.
Therefore, the Address_Space_ID value must be set to System I/O space, SystemMemory space, or PCI Configuration
space (with a bus number of 0). As the registers are only 8 bits, Register_Bit_Width must be 8 and Register_Bit_Offset
must be 0.

Table 4.19: Sleep Control Register

Field Bit Bit Description

Name Length | Offset

Reserved 1 0 Reserved. This bit is reserved by OSPM.

Ignore 1 1 Software ignores this bit field.

SLP_TYPx 3 2 Defines the type of sleeping state the system enters when the SLP_EN bit

is set to one. This 3-bit field defines the type of hardware sleep state the
system enters when the SLP_EN bit is set. The _Sx object contains 3-bit
binary values associated with the respective sleeping state (as described by
the object). OSPM takes the HW-reduced Sleep Type value from the _SX
object and programs it into the SLP_TYPx field.

SLP_EN 1 5 This is a write-only bit and reads to it always return a zero. Setting this
bit causes the system to sequence into the sleeping state associated with the
SLP_TYPx fields programmed with the values from the _Sx object.
Reserved 2 6 Reserved. This field always returns zero.

Table 4.20: Sleep Status Register

Field Name Bit Length Bit Offset Description

Ignore 4 0 Software ignores this bit field.

Reserved 2 4 Reserved. These bits always return a value of zero.
Ignore 1 6 Software ignores this bit field.

WAK_STS 1 7 This bit is set when the system is in the sleeping state

and an enabled wake event occurs. Upon setting this
bit system will transition to the working state. This bit
is set by hardware and can only be cleared by software
writing a “1” to this bit position.

4.8. ACPI Register Model 124

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.8.5 Generic Hardware Registers

ACPI provides a mechanism that allows a unique piece of “value added” hardware to be described to OSPM in the
ACPI Namespace. There are a number of rules to be followed when designing ACPI-compatible hardware.

Programming bits can reside in any of the defined generic hardware address spaces (system I/O, system memory,
PCI configuration, embedded controller, or SMBus), but the top-level event bits are contained in the general-purpose
event registers. The general-purpose event registers are pointed to by the GPEO_BLK and GPE1_BLK register blocks,
and the generic hardware registers can be in any of the defined ACPI address spaces. A device’s generic hardware
programming model is described through an associated object in the ACPI Namespace, which specifies the bit’s
function, location, address space, and address location.

The programming model for devices is normally broken into status and control functions. Status bits are used to
generate an event that allows OSPM to call a control method associated with the pending status bit. The called control
method can then control the hardware by manipulating the hardware control bits or by investigating child status bits
and calling their respective control methods. ACPI requires that the top level “parent” event status and enable bits
reside in either the GPEO_STS or GPE1_STS registers, and “child” event status bits can reside in generic address
space.

The example below illustrates some of these concepts. The top diagram shows how the logic is partitioned into two
chips: a chipset and an embedded controller.

 The chipset contains the interrupt logic, performs the power button (which is part of the fixed register space, and
is not discussed here), the lid switch (used in portables to indicate when the clam shell lid is open or closed),
and the RI# function (which can be used to wake a sleeping system).

* The embedded controller chip is used to perform the AC power detect and dock/undock event logic. Addition-
ally, the embedded controller supports some system management functions using an OS-transparent interrupt in
the embedded controller (represented by the EXTSMI# signal).

At the top level, the generic events in the GPEx_STS register are the:

* Embedded controller interrupt, which contains two query events: one for AC detection and one for docking (the
docking query event has a child interrupt status bit in the docking chip).

* Ring indicate status (used for waking the system).
* Lid status.
The embedded controller event status bit (EC_STS) is used to indicate that one of two query events is active.

* A query event is generated when the AC# signal is asserted. The embedded controller returns a query value of
34 (any byte number can be used) upon a query command in response to this event; OSPM will then schedule
for execution the control method associated with query value 34.

Another query event is for the docking chip that generates a docking event. In this case, the embedded controller will
return a query value of 35 upon a query command from system software responding to an SCI from the embedded
controller. OSPM will then schedule the control method associated with the query value of 35 to be executed, which
services the docking event.

For each of the status bits in the GPEx_STS register, there is a corresponding enable bit in the GPEx_EN register.
Notice that the child status bits do not necessarily need enable bits (see the DOCK_STS bit).

The lid logic contains a control bit to determine if its status bit is set when the LID is open (LID_POL is set and LID
is set) or closed (LID_POL is clear and LID is clear). This control bit resides in generic I/O space (in this case, bit 2
of system I/O space 33h) and would be manipulated with a control method associated with the lid object.

As with fixed hardware events, OSPM will clear the status bits in the GPEx register blocks. However, AML code
clears all sibling status bits in the generic hardware.

Generic hardware features are controlled by OEM supplied control methods, encoded in AML. ACPI provides both
an event and control model for development of these features. The ACPI specification also provides specific control

4.8. ACPI Register Model 125

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 4.13: Example of General-Purpose vs. Generic Hardware Events

4.8. ACPI Register Model 126

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

methods for notifying OSPM of certain power management and Plug and Play events. ACPI Software Programming
Model provides information on the types of hardware functionality that support the different types of subsystems. The
following is a list of features supported by ACPI. The list is not intended to be complete or comprehensive.

* Device insertion/ejection (for example, docking, device bay, A/C adapter)
* Batteries *

* Platform thermal subsystem

* Turning on/off power resources

* Mobile lid Interface

* Embedded controller

* System indicators

* OEM-specific wake events

* Plug and Play configuration

Note: * ACPI operating systems assume the use of the Smart Battery System Implementers Forum defined standard
for batteries, called the “Smart Battery Specification” (SBS). ACPI provides a set of control methods for use by OEMs
that use a proprietary “control method” battery interface.

4.8.5.1 General-Purpose Event Register Blocks

ACPI supports up to two general-purpose register blocks as described in the FADT (see ACPI Software Programming
Model), and an arbitrary number of additional GPE blocks described as devices within the ACPI namespace. Each
register block contains two registers: an enable and a status register. Each register block is 32-bit aligned. Each register
in the block is accessed as a byte. It is up to the specific design to determine if these bits retain their context across
sleeping or soft-off states. If they lose their context across a sleeping or soft-off state, then platform boot firmware
resets the respective enable bit prior to passing control to the OS upon waking.

4.8.5.1.1 General-Purpose Event 0 Register Block

This register block consists of two registers: The GPEO_STS and the GPEO_EN registers. Each register’s length
is defined to be half the length of the GPEO register block, and is described in the ACPI FADT’s GPEO_BLK and
GPEO_BLK_LEN operators. OSPM owns the general-purpose event resources and these bits are only manipulated by
OSPM; AML code cannot access the general-purpose event registers.

It is envisioned that chipsets will contain GPE event registers that provide GPE input pins for various events.

The platform designer would then wire the GPEs to the various value-added event hardware and the AML code would
describe to OSPM how to utilize these events. As such, there will be the case where a platform has GPE events that
are not wired to anything (they are present in the chip set), but are not utilized by the platform and have no associated
AML code. In such, cases these event pins are to be tied inactive such that the corresponding SCI status bit in the GPE
register is not set by a floating input pin.

4.8. ACPI Register Model 127

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4.8.5.1.1.1 General-Purpose Event 0 Status Register

Register Location: <GPEO_STS> System I/O or System Memory Space
Default Value: 00h

Attribute: Read/Write

Size: GPEO_BLK_LEN/2

The general-purpose event 0 status register contains the general-purpose event status bits in bank zero of the general-
purpose registers. Each available status bit in this register corresponds to the bit with the same bit position in the
GPEO_EN register. Each available status bit in this register is set when the event is active, and can only be cleared by
software writing a “1” to its respective bit position. For the general-purpose event registers, unimplemented bits are
ignored by OSPM.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with its respective
enable bit set. OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.5.1.1.2 General-Purpose Event 0 Enable Register

Register Location: <GPEO_EN> System I/O or System Memory Space
Default Value: 00h

Attribute: Read/Write

Size: GPEO_BLK_LEN/2

The general-purpose event 0 enable register contains the general-purpose event enable bits. Each available enable bit in
this register corresponds to the bit with the same bit position in the GPEO_STS register. The enable bits work similarly
to how the enable bits in the fixed-event registers are defined: When the enable bit is set, then a set status bit in the
corresponding status bit will generate an SCI bit. OSPM accesses GPE registers through byte accesses (regardless of
their length).

4.8.5.1.2 General-Purpose Event 1 Register Block

This register block consists of two registers: The GPE1_STS and the GPE1_EN registers. Each register’s length
is defined to be half the length of the GPEI register block, and is described in the ACPI FADT’s GPE1_BLK and
GPE1_BLK_LEN operators.

4.8.5.1.2.1 General-Purpose Event 1 Status Register

Register Location: <GPE1_STS> System I/O or System Memory Space
Default Value: 00h

Attribute: Read/Write

Size: GPE1_BLK_LEN/2

The general -purpose event 1 status register contains the general-purpose event status bits. Each available status bit in
this register corresponds to the bit with the same bit position in the GPE1_EN register. Each available status bit in this
register is set when the event is active, and can only be cleared by software writing a “1” to its respective bit position.
For the general-purpose event registers, unimplemented bits are ignored by the operating system.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with its respective
enable bit set.

4.8. ACPI Register Model 128

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.5.1.2.2 General-Purpose Event 1 Enable Register

Register Location: <GPE1_EN> System I/O or System Memory Space
Default Value: 00h

Attribute: Read/Write

Size: GPE1_BLK_LEN/2

The general-purpose event 1 enable register contains the general-purpose event enable. Each available enable bit
in this register corresponds to the bit with the same bit position in the GPE1_STS register. The enable bits work
similarly to how the enable bits in the fixed-event registers are defined: When the enable bit is set, a set status bit in
the corresponding status bit will generate an SCI bit.

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.5.2 Example Generic Devices

This section points out generic devices with specific ACPI driver support.

4.8.5.2.1 Lid Switch

The Lid switch is an optional feature present in most “clam shell” style mobile computers. It can be used by the OS
as policy input for sleeping the system, or for waking the system from a sleeping state. If used, then the OEM needs
to define the lid switch as a device with an _HID object value of “PNPOCOD”, which identifies this device as the lid
switch to OSPM. The Lid device needs to contain a control method that returns its status. The Lid event handler AML
code reconfigures the lid hardware (if it needs to) to generate an event in the other direction, clear the status, and then
notify OSPM of the event.

Example hardware and ASL code is shown below for such a design.

Fig. 4.14: Example Generic Address Space Lid Switch Logic

This logic will set the Lid status bit when the button is pressed or released (depending on the LID_POL bit).
The ASL code below defines the following:
* An operational region where the lid polarity resides in address space System address space in registers 0x201.

* A field operator to allow AML code to access this bit: Polarity control bit (LID_POL) is called LPOL and is
accessed at 0x201.0.

* A device named _SB.LID with the following:

4.8. ACPI Register Model 129

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

* A Plug and Play identifier “PNPOCOD” that associates OSPM with this object.

» Defines an object that specifies a change in the lid’s status bit can wake the system from the S4 sleep state and
from all higher sleep states (S1, S2, or S3).

* The lid switch event handler that does the following:

* Defines the lid status bit (LID_STS) as a child of the general-purpose event O register bit 1.
 Defines the event handler for the lid (only event handler on this status bit) that does the following:
* Flips the polarity of the LPOL bit (to cause the event to be generated on the opposite condition).

* Generates a notify to the OS that does the following:

¢ Passes the _SB.LID object.

* Indicates a device specific event (notify value 0x80).

// Define a Lid switch
OperationRegion (\PHO, SystemIO, 0x201, O0Ox1)
Field (\PHO, ByteAcc, NoLock, Preserve)
{
LPOL, 1 // Lid polarity control bit
}

Device (_SB.LID)
{
Name (_HID, EISAID ("PNPOCOD"))
Method (_LID)
{
Return (LPOL)
}
Name (_PRW, Package (2){
1, // bit 1 of GPE to enable Lid wakeup
0x041}) // can wakeup from S4 state
}

Scope (_GPE)
{
Method (_L01) // uses bit 1 of GPO_STS register
{
LPOL ~= LPOL // Flip the 1lid polarity bit
Notify (_SB.LID, 0x80) // Notify OS of event

4.8.5.2.2 Embedded Controller

ACPI provides a standard interface that enables AML code to define and access generic logic in “embedded controller
space.” This supports current computer models where much of the value added hardware is contained within the
embedded controller while allowing the AML code to access this hardware in an abstracted fashion.

¢ The embedded controller is defined as a device and must contain a set number of control methods:
¢ _HID with a value of PNPOCO09 to associate this device with the ACPI’s embedded controller’s driver.
e _CRS to return the resources being consumed by the embedded controller.

* _GPE that returns the general-purpose event bit that this embedded controller is wired to.

4.8. ACPI Register Model 130

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Additionally the embedded controller can support up to 255 generic events per embedded controller, referred to as
query events. These query event handles are defined within the embedded controller’s device as control methods. An
example of defining an embedded controller device is shown below:

Device (ECO) {
// PnP 1ID
Name (_HID, EISAID ("PNPOCO9"))
// Returns the "Current Resources" of EC
Name (_CRS, ResourceTemplate ()
{
IO (Decodel6b, 0x62, 0x62, 0, 1)
IO (Decodel6, 0x66, 0x66, 0, 1)
B

// Indicate that the EC SCI is bit 0 of the GP_STS register

Name (_GPE, 0) // embedded controller is wired to bit 0 of GPE
OperationRegion (\EC0, EmbeddedControl, 0, OxFF)

Field (ECO, ByteAcc, Lock, Preserve)

{

// Field units of ECO

}

// Query methods
Method (_Q00)
...)

Method (_QFF)

{ ... }

For more information on the embedded controller, see ACPI Embedded Controller Interface Specification

4.8.5.2.3 Fan

ACPI has a device driver to control fans (active cooling devices) in platforms. A fan is defined as a device with the
Plug and Play ID of “PNPOCOB.” It should then contain a list power resources used to control the fan.

For more information, see ACPI-Defined Devices and Device-Specific Objects.

4.8. ACPI Register Model 131

CHAPTER
FIVE

ACPI SOFTWARE PROGRAMMING MODEL

ACPI defines a hardware register interface that an ACPI-compatible OS uses to control core power management
features of a machine, as described in ACPI Hardware Specification ACPI also provides an abstract interface for
controlling the power management and configuration of an ACPI system. Finally, ACPI defines an interface between
an ACPI-compatible OS and the platform runtime firmware.

To give hardware vendors flexibility in choosing their implementation, ACPI uses tables to describe system informa-
tion, features, and methods for controlling those features. These tables list devices on the system board or devices that
cannot be detected or power managed using some other hardware standard, plus their capabilities as described in ACP/
Concepts They also list system capabilities such as the sleeping power states supported, a description of the power
planes and clock sources available in the system, batteries, system indicator lights, and so on. This enables OSPM to
control system devices without needing to know how the system controls are implemented.

Topics covered in this section are:

* The ACPI system description table architecture is defined, and the role of OEM-provided definition blocks in
that architecture is discussed.

* The concept of the ACPI Namespace is discussed.

5.1 Overview of the System Description Table Architecture

The Root System Description Pointer (RSDP) structure is located in the system’s memory address space and is setup by
the platform firmware. This structure contains the address of the Extended System Description Table (XSDT), which
references other description tables that provide data to OSPM, supplying it with knowledge of the base system’s
implementation and configuration (see Root System Description Pointer and Table).

All system description tables start with identical headers. The primary purpose of the system description tables is to
define for OSPM various industry-standard implementation details. Such definitions enable various portions of these
implementations to be flexible in hardware requirements and design, yet still provide OSPM with the knowledge it
needs to control hardware directly.

The Extended System Description Table (XSDT) points to other tables in memory. Always the first table, it points to
the Fixed ACPI Description Table (FADT). The data within this table includes various fixed-length entries that describe
the fixed ACPI features of the hardware. The FADT table always refers to the Differentiated System Description Table
(DSDT), which contains information and descriptions for various system features. The relationship between these
tables is shown in Description Table Structures .

OSPM finds the RSDP structure as described in Finding the RSDP on IA-PC Systems (“Finding the RSDP on IA-PC
Systems”) or Finding the RSDP on UEFI Enabled Systems (‘“Finding the RSDP on UEFI Enabled Systems”).

When OSPM locates the structure, it looks at the physical address for the Root System Description Table or the Ex-
tended System Description Table. The Root System Description Table starts with the signature “RSDT”, while the
Extended System Description Table starts with the signature “XSDT”. These tables contain one or more physical

132

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Located in system's memory address space

AL
[A
Root System Extended System
Descrption Pointer Description Table
RSD PTR
Pointer
Pointer Entry
E.F]'H].-" contents contents
Entry
Fig. 5.1: Root System Description Pointer and Table
Fixed ACPI Differentiated System Firmware ACP
Description Table Descripfion Table Control Structure
FACS
Wake Vector
Shared Lock
Static | -
Static info _ _ ~ .
FIRM Differentiated [q I
BLKS Block | Dniver ‘_/ |
o -. |

Software
e X TH
Hardware —
GPx BLK
— | OEMSiecfc |
|)

Y
Device IO
Device Memory
PCI configuration
Embedded Controller space

PM2x_BLK
PM1x_BLK

Located in
port space

Fig. 5.2: Description Table Structures

5.1. Overview of the System Description Table Architecture 133

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

pointers to other system description tables that provide various information about the system. As shown in Descrip-
tion Table Structures , there is always a physical address in the Root System Description Table for the Fixed ACPI
Description Table (FADT).

When OSPM follows a physical pointer to another table, it examines each table for a known signature. Based on the
signature, OSPM can then interpret the implementation-specific data within the description table.

The purpose of the FADT is to define various static system information related to configuration and power manage-
ment. The Fixed ACPI Description Table starts with the “FACP” signature. The FADT describes the implementation
and configuration details of the ACPI hardware registers on the platform.

For a specification of the ACPI Hardware Register Blocks (PM1a_EVT_BLK, PM1b_EVT_BLK, PMla_CNT_BLK,
PMI1b_CNT_BLK, PM2_CNT_BLK, PM_TMR_BLK, GP0_BLK, GP1_BLK, and one or more P_BLKSs), see ACPI
Register Model The PM1la_EVT_BLK, PM1b_EVT_BLK, PMla_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK,
and PM_TMR_BLK blocks are for controlling low-level ACPI system functions.

The GPEO_BLK and GPE1_BLK blocks provide the foundation for an interrupt-processing model for Control Meth-
ods. The P_BLK blocks are for controlling processor features.

Besides ACPI Hardware Register implementation information, the FADT also contains a physical pointer to a data
structure known as the Differentiated System Description Table (DSDT), which is encoded in Definition Block format
(See Definition Blocks).

A Definition Block contains information about the platform’s hardware implementation details in the form of data
objects arranged in a hierarchical (tree-structured) entity known as the “ACPI namespace”, which represents the plat-
form’s hardware configuration. All definition blocks loaded by OSPM combine to form one namespace that represents
the platform. Data objects are encoded in a format known as ACPI Machine Language or AML for short. Data objects
encoded in AML are “evaluated” by an OSPM entity known as the AML interpreter. Their values may be static or
dynamic. The AML interpreter’s dynamic data object evaluation capability includes support for programmatic evalua-
tion, including accessing address spaces (for example, I/O or memory accesses), calculation, and logical evaluation, to
determine the result. Dynamic namespace objects are known as “control methods”. OSPM “loads” an entire definition
block as a logical unit - adding to or removing the associated objects from the namespace. The DSDT contains a Def-
inition Block named the Differentiated Definition Block that contains implementation and configuration information
OSPM can use to perform power management, thermal management, or Plug and Play functionality that goes beyond
the information described by the ACPI hardware registers.

Definition Blocks can either define new system attributes or, in some cases, build on prior definitions. A Definition
Block can be loaded from system memory address space. One use of a Definition Block is to describe and distribute
platform version changes.

Definition blocks enable wide variations of hardware platform implementations to be described to the ACPI-
compatible OS while confining the variations to reasonable boundaries. Definition blocks enable simple platform
implementations to be expressed by using a few well-defined object names. In theory, it might be possible to define
a PCI configuration space-like access method within a Definition Block, by building it from I/O space, but that is not
the goal of the Definition Block specification. Such a space is usually defined as a “built in” operator.

Some operators perform simple functions and others encompass complex functions. The power of the Definition Block
comes from its ability to allow these operations to be glued together in numerous ways, to provide functionality to
OSPM. The operators present are intended to allow many useful hardware designs to be ACPI-expressed, not to allow
all hardware designs to be expressed.

5.1. Overview of the System Description Table Architecture 134

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.1.1 Address Space Translation

Some platforms may contain bridges that perform translations as I/O and/or Memory cycles pass through the bridges.
This translation can take the form of the addition or subtraction of an offset. Or it can take the form of a conversion
from I/O cycles into Memory cycles and back again. When translation takes place, the addresses placed on the
processor bus by the processor during a read or write cycle are not the same addresses that are placed on the I/O bus by
the I/O bus bridge. The address the processor places on the processor bus will be known here as the processor-relative
address. And the address that the bridge places on the I/O bus will be known as the bus-relative address. Unless
otherwise noted, all addresses used within this section are processor-relative addresses.

For example, consider a platform with two root PCI buses. The platform designer has several choices. One solution
would be to split the 16-bit I/O space into two parts, assigning one part to the first root PCI bus and one part to the
second root PCI bus. Another solution would be to make both root PCI buses decode the entire 16-bit I/O space,
mapping the second root PCI bus’s I/O space into memory space. In this second scenario, when the processor needs
to read from an I/O register of a device underneath the second root PCI bus, it would need to perform a memory read
within the range that the root PCI bus bridge is using to map the I/O space.

¢ Industry standard PCs do not provide address space translations because of historical compatibility issues.

5.2 ACPI System Description Tables

This section specifies the structure of the system description tables:
e Generic Address Structure (GAS)
* Root System Description Pointer (RSDP)
o System Description Table Header
* Root System Description Table (RSDT)
» Extended System Description Table (XSDT)
* Fixed ACPI Description Table (FADT)
e Firmware ACPI Control Structure (FACS)
* Differentiated System Description Table (DSDT)
* Secondary System Description Table (SSDT)
* Multiple APIC Description Table (MADT)
* GIC CPU Interface (GICC) Structure
» Smart Battery Table (SBST)
» Extended System Description Table (XSDT)
» Embedded Controller Boot Resources Table (ECDT)
* System Locality Information Table (SLIT)
» System Resource Affinity Table (SRAT)
e Corrected Platform Error Polling Table (CPEP)
* Maximum System Characteristics Table (MSCT)
* ACPI RAS Feature Table (RASF)
* Memory Power State Table (MPST)
* Platform Memory Topology Table (PMTT)

5.2. ACPI System Description Tables 135

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

* Boot Graphics Resource Table (BGRT)

* Firmware Performance Data Table (FPDT)

* Generic Timer Description Table (GTDT)

* NVDIMM Firmware Interface Table (NFIT)

* Heterogeneous Memory Attribute Table (HMAT)
* Platform Debug Trigger Table (PDTT)

* Processor Properties Topology Table (PPTT)

All numeric values in ACPI-defined tables, blocks, and structures are always encoded in little endian format. Signature
values are stored as fixed-length strings.

5.2.1 Reserved Bits and Fields

For future expansion, all data items marked as reserved in this specification have strict meanings. This section lists
software requirements for reserved fields. Notice that the list contains terms such as ACPI tables and AML code
defined later in this section of the specification.

5.2.1.1 Reserved Bits and Software Components
* OEM implementations of software and AML code return the bit value of O for all reserved bits in ACPI tables
or in other software values, such as resource descriptors.
* For all reserved bits in ACPI tables and registers, OSPM implementations must:
* Ignore all reserved bits that are read.

 Preserve reserved bit values of read/write data items (for example, OSPM writes back reserved bit values it
reads).

* Write zeros to reserved bits in write-only data items.

5.2.1.2 Reserved Values and Software Components

¢ OEM implementations of software and AML code return only defined values and do not return reserved values.

OSPM implementations write only defined values and do not write reserved values.

5.2.1.3 Reserved Hardware Bits and Software Components

* Software ignores all reserved bits read from hardware enable or status registers.
* Software writes zero to all reserved bits in hardware enable registers.
» Software ignores all reserved bits read from hardware control and status registers.

» Software preserves the value of all reserved bits in hardware control registers by writing back read values.

5.2. ACPI System Description Tables 136

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.1.4 Ignored Hardware Bits and Software Components

» Software handles ignored bits in ACPI hardware registers the same way it handles reserved bits in these same
types of registers.

5.2.2 Compatibility

All versions of the ACPI tables must maintain backward compatibility. To accomplish this, modifications of the tables
consist of redefinition of previously reserved fields and values plus appending data to the 1.0 tables. Modifications of
the ACPI tables require that the version numbers of the modified tables be incremented. The length field in the tables
includes all additions and the checksum is maintained for the entire length of the table.

5.2.3 Address Format

Addresses used in the ACPI 1.0 system description tables were expressed as either system memory or I/O space. This
was targeted at the IA-32 environment. Newer architectures require addressing mechanisms beyond that defined in
ACPI 1.0. To support these architectures ACPI must support 64-bit addressing and it must allow the placement of
control registers in address spaces other than System I/O.

5.2.3.1 Functional Fixed Hardware

ACPI defines the fixed hardware low-level interfaces as a means to convey to the system OEM the minimum interfaces
necessary to achieve a level of capability and quality for motherboard configuration and system power management.
Additionally, the definition of these interfaces, as well as others defined in this specification, conveys to OS Ven-
dors (OSVs) developing ACPI-compatible operating systems, the necessary interfaces that operating systems must
manipulate to provide robust support for system configuration and power management.

While the definition of low-level hardware interfaces defined by ACPI 1.0 afforded OSPM implementations a certain
level of stability, controls for existing and emerging diverse CPU architectures cannot be accommodated by this model
as they can require a sequence of hardware manipulations intermixed with native CPU instructions to provide the
ACPI-defined interface function. In this case, an ACPI-defined fixed hardware interface can be functionally imple-
mented by the CPU manufacturer through an equivalent combination of both hardware and software and is defined by
ACPI as Functional Fixed Hardware.

In TA-32-based systems, functional fixed hardware can be accommodated in an OS independent manner by using
System Management Mode (SMM) based system firmware. Unfortunately, the nature of SMM-based code makes this
type of OS independent implementation difficult if not impossible to debug. As such, this implementation approach is
not recommended. In some cases, Functional Fixed Hardware implementations may require coordination with other
OS components. As such, an OS independent implementation may not be viable.

OS-specific implementations of functional fixed hardware can be implemented using technical information supplied
by the CPU manufacturer. The downside of this approach is that functional fixed hardware support must be developed
for each OS. In some cases, the CPU manufacturer may provide a software component providing this support. In other
cases support for the functional fixed hardware may be developed directly by the OS vendor.

The hardware register definition was expanded, in ACPI 2.0, to allow registers to exist in address spaces other than
the System I/O address space. This is accomplished through the specification of an address space ID in the register
definition (see Generic Address Structure for more information). When specifically directed by the CPU manufacturer,
the system firmware may define an interface as functional fixed hardware by indicating Ox7F (Functional Fixed Hard-
ware), in the address space ID field for register definitions. It is emphasized that functional fixed hardware definitions
may be declared in the ACPI system firmware only as indicated by the CPU Manufacturer for specific interfaces as
the use of functional fixed hardware requires specific coordination with the OS vendor.

5.2. ACPI System Description Tables 137

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Only certain ACPI-defined interfaces may be implemented using functional fixed hardware and only when the in-
terfaces are common across machine designs for example, systems sharing a common CPU architecture that does
not support fixed hardware implementation of an ACPI-defined interface. OEMs are cautioned not to anticipate that
functional fixed hardware support will be provided by OSPM differently on a system-by-system basis. The use of
functional fixed hardware carries with it a reliance on OS specific software that must be considered. OEMs should
consult OS vendors to ensure that specific functional fixed hardware interfaces are supported by specific operating
systems.

» FFH is permitted and applicable to both full and HW-reduced ACPI implementations.
5.2.3.2 Generic Address Structure

The Generic Address Structure (GAS) provides the platform with a robust means to describe register locations. This
structure, described below (Generic Address Structure (GAS)), is used to express register addresses within tables
defined by ACPI .

Table 5.1: Generic Address Structure (GAS)

Field Byte Byte Description
Length | Offset
Address 1 0
Space ID The address space where the data structure or register exists. Defined
values are:

0x00 System Memory space
0x01 System I/O space

0x02 PCI Configuration space
0x03 Embedded Controller

0x04 SMBus

0x05 SystemCMOS

0x06 PciBarTarget

0x07 IPMI

0x08 General PurposelO

0x09 GenericSerialBus

0x0A Platform Communications Channel (PCC)
0x0B to Ox7E Reserved

0x7F Functional Fixed Hardware

0x80 to OxBF Reserved

0xCO0 to OxFF OEM Defined
Register Bit | 1 1 The size in bits of the given register. When addressing a data structure,
Width this field must be zero.
Register Bit | 1 2 The bit offset of the given register at the given address. When addressing
Offset a data structure, this field must be zero.

continues on next page

5.2. ACPI System Description Tables 138

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.1 — continued from previous page

Field Byte Byte Description
Length | Offset
Access Size 1 3
Specifies access size. Unless otherwise defined by the Address Space ID:
0 Undefined (legacy reasons)
1 Byte access
2 Word access
3 Dword access
4 QWord access
Address 8 4 The 64-bit address of the data structure or register in the given address
space (relative to the processor). (See below for specific formats.)
Table 5.2: Address Space Format
Address Space Format

0-System Memory

The 64-bit physical memory address (relative to the processor) of the register. 32-bit plat-
forms must have the high DWORD set to 0.

1-System I/O

The 64-bit I/O address (relative to the processor) of the register. 32-bit platforms must have
the high DWORD set to 0.

2-PCI Configuration
Space

PCI Configuration space addresses must be confined to devices on PCI Segment Group 0,
bus 0. This restriction exists to accommodate access to fixed hardware prior to PCI bus
enumeration. The format of addresses are defined as follows:

Word Location Description

Highest Word Reserved (must be 0)

— PCI Device number on bus 0

— PCI Function number

Longest Word Offset in the configuration space header

For example: Offset 23h of Function 2 on device 7 on bus 0 segment 0 would be
represented as: 0x0000000700020023.

6-PCI BAR Target

PciBarTarget is used to locate a MMIO register on a PCI device BAR space. PCI
Configuration space addresses must be confined to devices on a host bus, i.e any bus
returned by a _BBN object. This restriction exists to accommodate access to fixed
hardware prior to PCI bus enumeration. The format of the Address field for this type of
address is:

Bits [63:56] — PCI Segment

Bits [55:48] — PCI Bus

Bits [47:43] — PCI Device

Bits [42:40] — PCI Function

Bits [39:37] — BAR index#

Bits [36:0] — Offset from BAR in DWORDs

0x0A-PCC

{Definition needed}

continues on next page

5.2. ACPI System Description Tables 139

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.2 — continued from previous page
Address Space Format
0x7F-Functional Use of GAS fields other than Address_Space_ID is specified by the CPU manufacturer. The
Fixed Hardware use of functional fixed hardware carries with it a reliance on OS specific software that must
be considered. OEMs should consult OS vendors to ensure that specific functional fixed
hardware interfaces are supported by specific operating systems.

5.2.4 Universally Unique Identifiers (UUIDs)

UUIDs (Universally Unique IDentifiers), also known as GUIDs (Globally Unique IDentifiers) are 128 bit long values
that extremely likely to be different from all other UUIDs generated until 3400 A.D. UUIDs are used to distinguish
between callers of ASL methods, such as _DSM and _OSC.

The format of both the binary and string representations of UUIDs, along with an algorithm to generate them, is
specified in ISO/IEC 11578:1996 Information technology - Open Systems Interconnection - Remote Procedure Call
(RPC). This can also be found as part of the DCE 1.1: Remote Procedure Call technical standard, and in the Wikipedia
entry for UUIDs.

5.2.5 Root System Description Pointer (RSDP)

During OS initialization, OSPM must obtain the Root System Description Pointer (RSDP) structure from the plat-
form. When OSPM locates the Root System Description Pointer (RSDP) structure, it then locates the Root System
Description Table (RSDT) or the Extended Root System Description Table (XSDT) using the physical system address
supplied in the RSDP.

5.2.5.1 Finding the RSDP on IA-PC Systems

OSPM finds the Root System Description Pointer (RSDP) structure by searching physical memory ranges on 16-byte
boundaries for a valid Root System Description Pointer structure signature and checksum match as follows:

* The first 1 KB of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the EBDA can be found
in the two-byte location 40:0Eh on the BIOS data area.

* The BIOS read-only memory space between OEO00Oh and OFFFFFh.

5.2.5.2 Finding the RSDP on UEFI Enabled Systems

In Unified Extensible Firmware Interface (UEFI) enabled systems, a pointer to the RSDP structure exists within the
EFI System Table. The OS loader is provided a pointer to the EFI System Table at invocation. The OS loader must
retrieve the pointer to the RSDP structure from the EFI System Table and convey the pointer to OSPM, using an OS
dependent data structure, as part of the hand off of control from the OS loader to the OS.

The OS loader locates the pointer to the RSDP structure by examining the EFI Configuration Table within the EFI
System Table. EFI Configuration Table entries consist of Globally Unique Identifier (GUID)/table pointer pairs. The
UEFI specification defines two GUIDs for ACPI; one for ACPI 1.0 and the other for ACPI 2.0 or later specification
revisions.

The EFI GUID for a pointer to the ACPI 1.0 specification RSDP structure is:
* eb9d2d30-2d88-11d3-9a16-0090273fc14d.

The EFI GUID for a pointer to the ACPI 2.0 or later specification RSDP structure is:
» 8868e871-e4f1-11d3-bc22-0080c73c8881.

5.2. ACPI System Description Tables 140

https://www.iso.org/standard/2229.html
https://www.iso.org/standard/2229.html
https://pubs.opengroup.org/onlinepubs/9629399/toc.pdf
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

The OS loader for an ACPI-compatible OS will search for an RSDP structure pointer (RSDP Structure) using the
current revision GUID first and if it finds one, will use the corresponding RSDP structure pointer. If the GUID is not
found then the OS loader will search for the RSDP structure pointer using the ACPI 1.0 version GUID.

The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table before assuming platform
control via the EFI ExitBootServices interface. See the UEFI Specification for more information.

5.2.5.3 Root System Description Pointer (RSDP) Structure

The revision number contained within the structure indicates the size of the table structure.

Table 5.3: RSDP Structure

Field Byte Byte Description
Length| Offset
Signature 8 0 “RSD PTR ” (Notice that this signature must contain a trailing
blank character.)
Checksum 1 8 This is the checksum of the fields defined in the ACPI 1.0 spec-

ification. This includes only the first 20 bytes of this table, bytes
0 to 19, including the checksum field. These bytes must sum to

Zero.
OEMID 6 9 An OEM-supplied string that identifies the OEM.
Revision 1 15 The revision of this structure. Larger revision numbers are back-

ward compatible to lower revision numbers. The ACPI version
1.0 revision number of this table is zero. The ACPI version 1.0
RSDP Structure only includes the first 20 bytes of this table, bytes
0 to 19. It does not include the Length field and beyond. The cur-
rent value for this field is 2.

RsdtAddress | 4 16 32 bit physical address of the RSDT.

Length* 4 20 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table. This field is not available in the ACPI version 1.0 RSDP
Structure.

XsdtAddress* 8 24 64 bit physical address of the XSDT.

Extended 1 32 This is a checksum of the entire table, including both checksum

Checksum* fields.

Reserved* 3 33 Reserved field

* These fields are only valid when the Revision value is 2 or above.

5.2.6 System Description Table Header

All system description tables begin with the structure shown in the DESCRIPTION_HEADER Fields. The Signature
field in this table determines the content of the system description table. Also see the DESCRIPTION_HEADER
Signatures for tables defined by ACPI.

5.2. ACPI System Description Tables 141

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.4: DESCRIPTION_HEADER Fields

Field Byte Byte Description
Length| Offset
Signature 4 0 The ASCII string representation of the table identifier.

Note that if OSPM finds a signature in a table that is
not listed in Table 5.5, then OSPM ignores the entire
table (it is not loaded into ACPI namespace); OSPM
ignores the table even though the values in the Length
and Checksum fields are correct.

Length 4 4 The length of the table, in bytes, including the header,
starting from offset 0. This field is used to record the
size of the entire table.

Revision 1 8 The revision of the structure corresponding to the sig-
nature field for this table. Larger revision numbers are
backward compatible to lower revision numbers with
the same signature.

Checksum 1 9 The entire table, including the checksum field, must
add to zero to be considered valid.

OEMID 6 10 An OEM-supplied string that identifies the OEM.

OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify

the particular data table. This field is particularly useful
when defining a definition block to distinguish defini-
tion block functions. The OEM assigns each dissimilar

table a new OEM Table ID.

OEM Revision 4 24 An OEM-supplied revision number. Larger numbers
are assumed to be newer revisions.

Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for
the ASL Compiler.

For OEMs, good design practices will ensure consistency when assigning OEMID and OEM Table ID fields in any
table. The intent of these fields is to allow for a binary control system that support services can use. Because many
support functions can be automated, it is useful when a tool can programmatically determine which table release is a
compatible and more recent revision of a prior table on the same OEMID and OEM Table ID.

Table 5.5 and Table 5.6 contain the system description table signatures defined by this specification. These system
description tables may be defined by ACPI and documented within this specification, or they may simply be reserved
by ACPI and defined by other industry specifications. This allows OS and platform specific tables to be defined and
pointed to by the RSDT/XSDT as needed. For tables defined by other industry specifications, the ACPI specification
acts as gatekeeper to avoid collisions in table signatures.

Table signatures will be reserved by the ACPI promoters and posted independently of this specification in ACPI errata
and clarification documents on the ACPI web site. Requests to reserve a 4-byte alphanumeric table signature should be
sent to the email address info@acpi.info and should include the purpose of the table and reference URL to a document
that describes the table format. Tables defined outside of the ACPI specification may define data value encodings in
either little endian or big endian format. For the purpose of clarity, external table definition documents should include
the endian-ness of their data value encodings.

Since reference URLs can change over time and may not always be up-to-date in this specification, a separate document
containing the latest known reference URLSs can be found at “Links to ACPI-Related Documents” (http://uefi.org/acpi

5.2. ACPI System Description Tables 142

mailto:info@acpi.info

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

), which should conspicuously be placed in the same location as this specification.

Table 5.5: DESCRIPTION_HEADER Signatures for tables defined

by ACPI
Signature Description Reference
“APIC” Multiple APIC Description Table Section 5.2.12
“BERT” Boot Error Record Table Section 18.3.1
“BGRT” Boot Graphics Resource Table Section 5.2.22
“CPEP” Corrected Platform Error Polling Table Section 5.2.18
“DSDT” Differentiated System Description Table | Section 5.2.11.1
“ECDT” Embedded Controller Boot Resources | Section 5.2.15
Table
“EINJ” Error Injection Table Section 18.6.1
“ERST” Error Record Serialization Table Section 18.5
“FACP” Fixed ACPI Description Table (FADT) Section 5.2.9
“FACS” Firmware ACPI Control Structure Section 5.2.10
“FPDT” Firmware Performance Data Table Section 5.2.23
“GTDT” Generic Timer Description Table Section 5.2.24
“HEST” Hardware Error Source Table Section 18.3.2
“MSCT” Maximum System Characteristics Table | Section 5.2.19
“MPST” Memory Power StateTable Section 5.2.21
“NFIT” NVDIMM Firmware Interface Table Section 5.2.25
“OEMXx” OEM Specific Information Tables OEM Specific tables. All table signa-
tures starting with “OEM” are reserved
for OEM use.
“PCCT” Platform Communications Channel Ta- | Section 14.1
ble
“PHAT” Platform Health Assessment Table Section 5.2.30
“PMTT” Platform Memory Topology Table Section 5.2.21.12
“PSDT” Persistent System Description Table Section 5.2.11.3
“RASF” ACPI RAS Feature Table Section 5.2.20
“RSDT” Root System Description Table Section 5.2.7
“SBST” Smart Battery Specification Table Section 5.2.14
“SDEV” Secure DEVices Table Section 5.2.26
“SLIT” System Locality Distance Information | Section 5.2.17
Table
“SRAT” System Resource Affinity Table Section 5.2.16
“SSDT” Secondary System Description Table Section 5.2.11.2
“XSDT” Extended System Description Table Section 5.2.8
Table 5.6: DESCRIPTION_HEADER Signatures for tables reserved
by ACPI
Signature Description and External Reference
“AEST” Arm Error Source Table. See Links to ACPI-Related Documents under the heading
“Arm Error Source Table”.
“BDAT” BIOS Data ACPI Table - exposing platform margining data. See Links to ACPI-
Related Documents under the heading “BIOS Data ACPI Table”.
“BOOT” Reserved Signature
“CDIT” Component Distance Information Table. See Links to ACPI-Related Documents
under the heading “Component Distance Information Table”.

continues on next page

5.2. ACPI System Description Tables

143

http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.6 — continued from previous page

Signature Description and External Reference

“CEDT” CXL Early Discovery Table. See “Links to ACPI-Related Documents” (http://uefi.
org/acpi) under the heading “CXL Early Discovery Table”.

“CRAT” Component Resource Attribute Table. See Links to ACPI-Related Documents under
the heading “Component Resource Attribute Table”.

“CSRT” Core System Resource Table. See Links to ACPI-Related Documents under the head-
ing “Core System Resource Table”.

“DBGP” Debug Port Table. See Links to ACPI-Related Documents under the heading “Debug
Port Table”.

“DBPG2” Debug Port Table 2. See Links to ACPI-Related Documents under the heading “De-
bug Port Table 2”.

“DMAR” DMA Remapping Table. See Links to ACPI-Related Documents under the heading
“DMA Remapping Table”.

“DRTM” Dynamic Root of Trust for Measurement Table. See Links to ACPI-Related Docu-
ments under the heading “TCG D-RTM Architecture Specification”.

“ETDT” Event Timer Description Table (Obsolete). IA-PC Multimedia Timers Specification.
This signature has been superseded by “HPET” (below) and is now obsolete.

“HPET” IA-PC High Precision Event Timer Table. See Links to ACPI-Related Documents
under the heading “IA-PC High Precision Event Timer Table”.

“IBFT” iSCSI Boot Firmware Table. See Links to ACPI-Related Documents under the head-
ing “iSCSI Boot Firmware Table”.

“IORT” I/O Remapping Table. See Links to ACPI-Related Documents under the heading
“I/O Remapping Table”.

“IVRS” I/0 Virtualization Reporting Structure. See Links to ACPI-Related Documents un-
der the heading “I/O Virtualization Reporting Structure”.

“LPIT” Low Power Idle Table. See Links to ACPI-Related Documents under the heading
“Low Power Idle Table”.

“MCFG” PCI Express Memory-mapped Configuration Space base address description table.
PCI Firmware Specification, Revision 3.0. See Links to ACPI-Related Documents
under the heading “PCI Sig”.

“MCHI” Management Controller Host Interface table. DSP0256 Management Component
Transport Protocol (MCTP) Host Interface Specification. See Links to ACPI-Related
Documents under the heading “Management Controller Host Interface Table”.

“MPAM” Arm Memory Partitioning And Monitoring. See Links to ACPI-Related Documents
under the heading “Arm Memory Partitioning And Monitoring”.

“MSDM” Microsoft Data Management Table. See Links to ACPI-Related Documents under
the heading “Microsoft Software Licensing Tables”.

“PRMT” Platform Runtime Mechanism Table. See Links to ACPI-Related Documents under
the heading “Platform Runtime Mechanism Table”.

“RGRT” Regulatory Graphics Resource Table. See Links to ACPI-Related Documents under
the heading “Regulatory Graphics Resource Table”.

“SDEI” Software Delegated Exceptions Interface. See Links to ACPI-Related Documents
under the heading “Software Delegated Exceptions Interface.”

“SLIC” Microsoft Software Licensing table. See Links to ACPI-Related Documents under
the heading “Microsoft Software Licensing Table Specification”.

“SPCR” Microsoft Serial Port Console Redirection table. See Links to ACPI-Related Docu-
ments under the heading “Serial Port Console Redirection Table”.

“SPMI” Server Platform Management Interface table. See Links to ACPI-Related Docu-
ments under the heading “Server Platform Management Interface Table”.

“STAO” _STA Opverride table. See Links to ACPI-Related Documents under the heading
“ STA Override Table”.

continues on next page

5.2. ACPI System Description Tables

144

http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.6 — continued from previous page
Signature Description and External Reference

“SVKL” Storage Volume Key Data table in the Intel Trusted Domain Extensions. See Links
to ACPI-Related Documents under the heading “Storage Volume Key Data”.
“TCPA” Trusted Computing Platform Alliance Capabilities Table. TCPA PC Specific Im-

plementation Specification. See Links to ACPI-Related Documents under the heading
“Trusted Computing Platform Alliance Capabilities Table”.

“TPM2” Trusted Platform Module 2 Table. See Links to ACPI-Related Documents under the
heading “Trusted Platform Module 2 Table”.

“UEFI” Unified Extensible Firmware Interface Specification. See the UEFI Specifications
web page.

“WAET” Windows ACPI Emulated Devices Table**. See Links to ACPI-Related Documents
under the heading “Windows ACPI Emulated Devices Table”.

“WDAT” Watch Dog Action Table. Requirements for Hardware Watchdog Timers Supported

by Windows - Design Specification. See Links to ACPI-Related Documents under the
heading “Watchdog Action Table (WDAT)”.

“WDRT” Watchdog Resource Table. Watchdog Timer Hardware Requirements for Windows
Server 2003. See Links to ACPI-Related Documents under the heading “Watchdog
Timer Resource Table (WDRT)”.

“WPBT” Windows Platform Binary Table. See Links to ACPI-Related Documents under the
heading “Windows Platform Binary Table”.

“WSMT” Windows Security Mitigations Table. See Links to ACPI-Related Documents under
the heading “Windows SMM Security Mitigations Table (WSMT).”

“XENV” Xen Project. See Links to ACPI-Related Documents under the heading Xen Project
Table.

5.2.7 Root System Description Table (RSDT)

OSPM locates that Root System Description Table by following the pointer in the RSDP structure. The RSDT, shown
in Root System Description Table Fields (RSDT) , starts with the signature ‘RSDT’ followed by an array of physical
pointers to other system description tables that provide various information on other standards defined on the current
system. OSPM examines each table for a known signature. Based on the signature, OSPM can then interpret the
implementation-specific data within the table.

Platforms provide the RSDT to enable compatibility with ACPI 1.0 operating systems. The XSDT, described in the
next section, supersedes RSDT functionality.

Table 5.7: Root System Description Table Fields (RSDT)

Field Byte Byte Description
Length| Offset

Signature 4 0 ‘RSDT’ Signature for the Root System Description Ta-
ble.

Length 4 4 Length, in bytes, of the entire RSDT. The length im-
plies the number of Entry fields (n) at the end of the
table.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

continues on next page

5.2. ACPI System Description Tables 145

http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
https://uefi.org/specifications
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi
http://uefi.org/acpi

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.7 — continued from previous page

Field

Byte
Length

Byte
Offset

Description

OEM Table ID

8

16

For the RSDT, the table ID is the manufacture model
ID. This field must match the OEM Table ID in the
FADT.

OEM Revision

24

OEM revision of RSDT table for supplied OEM Table
ID.

Creator ID

28

Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

Creator Revision

32

Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for
the ASL Compiler.

Entry

36

An array of 32-bit physical addresses that point to
other DESCRIPTION_HEADERs. OSPM assumes
at least the DESCRIPTION_HEADER is addressable,
and then can further address the table based upon its
Length field.

5.2.8 Extended System Description Table (XSDT)

The XSDT provides identical functionality to the RSDT but accommodates physical addresses of DESCRIPTION
HEADERSs that are larger than 32 bits. Notice that both the XSDT and the RSDT can be pointed to by the RSDP
structure. An ACPI-compatible OS must use the XSDT if present.

Table 5.8: Extended System Description Table Fields (XSDT)

Field Byte Byte Description
Length| Offset

Signature 4 0 ‘XSDT’. Signature for the Extended System Descrip-
tion Table.

Length 4 4 Length, in bytes, of the entire table. The length implies
the number of Entry fields (n) at the end of the table.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the XSDT, the table ID is the manufacture model
ID. This field must match the OEM Table ID in the
FADT.

OEM Revision 4 24 OEM revision of XSDT table for supplied OEM Table
ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for
the ASL Compiler.

continues on next page

5.2. ACPI System Description Tables

146

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.8 — continued from previous page

Field Byte Byte Description
Length| Offset
Entry 8*n 36 An array of 64-bit physical addresses that point to

other DESCRIPTION_HEADERs. OSPM assumes
at least the DESCRIPTION_HEADER is addressable,
and then can further address the table based upon its
Length field.

5.2.9 Fixed ACPI Description Table (FADT)

The Fixed ACPI Description Table (FADT) defines various fixed hardware ACPI information vital to an ACPI-
compatible OS, such as the base address for the following hardware registers blocks: PMla_EVT_BLK,
PM1b_EVT_BLK, PMla_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, PM_TMR_BLK, GPEO_BLK, and
GPE1_BLK.

The FADT also has a pointer to the DSDT that contains the Differentiated Definition Block, which in turn provides
variable information to an ACPI-compatible OS concerning the base system design.

All fields in the FADT that provide hardware addresses provide processor-relative physical addresses.

Note: If the HW_REDUCED_ACPI flag in the table is set, OSPM will ignore fields related to the ACPI HW register
interface: Fields at offsets 46 through 108 and 148 through 232, as well as FADT Flag bits 1, 2, 3,7,8,13, 14, 16, and
17).

Note: In all cases where the FADT contains a 32-bit field and a corresponding 64-bit field the 64-bit field should
always be preferred by the OSPM if the 64-bit field contains a non-zero value which can be used by the OSPM. In this
case, the 32-bit field must be ignored regardless of whether or not it is zero, and whether or not it is the same value as
the 64-bit field. The 32-bit field should only be used if the corresponding 64-bit field contains a zero value, or if the
64-bit value can not be used by the OSPM subject to e.g. CPU addressing limitations.

Table 5.9: FADT Format

Field Byte Byte Description
Length | Offset
Header
4 0 ‘FACP’. Signature for the Fixed ACPI Description Ta-
* Signature ble. (This signature predates ACPI 1.0, explaining the
mismatch with this table’s name.)
4 4 Length, in bytes, of the entire FADT.
* Length

continues on next page

5.2. ACPI System Description Tables 147

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.9 — continued from previous page

Field Byte Byte Description
Length | Offset
FADT Major Version 1 8
6

Major Version of this FADT structure, in
“Major.Minor” form, where ‘Minor’ is the value in the
Minor Version Field (Byte offset 131 in this table)

It is the intention that everything contained in the ACPI
table would comply with what is contained in the ACPI
specification itself. The FADT Major and Minor
version follow in lock-step with the version of the
ACPI Specification. Conforming to a given ACPI
specification means that each and every ACPI-related
table conforms to the version number for that table that
is listed in that version of the specification.

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the FADT, the table ID is the manufacture model ID.
This field must match the OEM Table ID in the RSDT.

OEM Revision 4 24 OEM revision of FADT for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables con-
taining Definition Blocks, this is the revision for the
ASL Compiler.

FIRMWARE_CTRL 4 36 Physical memory address of the FACS, where OSPM

and Firmware exchange control information. See Sec-
tion 5.2.10 for more information about the FACS. If
the X_FIRMWARE_CTRL field contains a non zero
value which can be used by the OSPM, then this
field must be ignored by the OSPM. If the HARD-
WARE_REDUCED_ACEPI flag is set, and both this field
and the X_FIRMWARE_CTRL field are zero, there is
no FACS available.

DSDT 4 40 Physical memory address of the DSDT. If the X_DSDT
field contains a non-zero value which can be used by the
OSPM, then this field must be ignored by the OSPM.
Reserved 1 44 ACPI 1.0 defined this offset as a field named
INT_MODEL, which was eliminated in ACPI 2.0. Plat-
forms should set this field to zero but field values of one
are also allowed to maintain compatibility with ACPI
1.0.

continues on next page

5.2. ACPI System Description Tables 148

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.9 — continued from previous page

Field Byte Byte Description
Length | Offset
Preferred_PM_Profile 1 45
This field is set by the OEM to convey the preferred
power management profile to OSPM. OSPM can use
this field to set default power management policy
parameters during OS installation. Field Values:
0 Unspecified
1 Desktop
2 Mobile
3 Workstation
4 Enterprise Server
5 SOHO Server
6 Appliance PC
7 Performance Server
8) Tablet
>8 Reserved
SCLINT 2 46 System vector the SCI interrupt is wired to in 8259
mode. On systems that do not contain the 8259, this
field contains the Global System interrupt number of the
SCI interrupt. OSPM is required to treat the ACPI SCI
interrupt as a sharable, level, active low interrupt.
SMI_CMD 4 48 System port address of the SMI Command Port. Dur-
ing ACPI OS initialization, OSPM can determine that
the ACPI hardware registers are owned by SMI (by way
of the SCI_EN bit), in which case the ACPI OS issues
the ACPI_ENABLE command to the SMI_CMD port.
The SCI_EN bit effectively tracks the ownership of the
ACPI hardware registers. OSPM issues commands to
the SMI_CMD port synchronously from the boot pro-
cessor. This field is reserved and must be zero on system
that does not support System Management mode.
ACPI_ENABLE 1 52 The value to write to SMI_CMD to disable SMI own-

ership of the ACPI hardware registers. The last action
SMI does to relinquish ownership is to set the SCI_EN
bit. During the OS initialization process, OSPM will
synchronously wait for the ntransfer of SMI ownership
to complete, so the ACPI system releases SMI owner-
ship as quickly as possible. This field is reserved and
must be zero on systems that do not support Legacy
Mode.

continues on next page

5.2. ACPI System Description Tables

149

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.9 — continued from previous page

Field Byte Byte Description
Length | Offset
ACPI_DISABLE 1 53 The value to write to SMI_CMD to re-enable SMI own-

ership of the ACPI hardware registers. This can only
be done when ownership was originally acquired from
SMI by OSPM using ACPI_ENABLE. An OS can hand
ownership back to SMI by relinquishing use to the ACPI
hardware registers, masking off all SCI interrupts, clear-
ing the SCI_EN bit and then writing ACPI_DISABLE
to the SMI_CMD port from the boot processor. This
field is reserved and must be zero on systems that do
not support Legacy Mode.
S4BIOS_REQ 1 54 The value to write to SMI_CMD to enter the S4BIOS
state. The S4BIOS state provides an alternate way to
enter the S4 state where the firmware saves and restores
the memory context. A value of zero in S4BIOS_F in-
dicates S4BIOS_REQ is not supported. (See Section
5.2.10)
PSTATE_CNT 1 55 If non-zero, this field contains the value OSPM writes
to the SMI_CMD register to assume processor perfor-
mance state control responsibility.
PMla_EVT_BLK 4 56 System port address of the PM1a Event Register Block.
See Section 4.8.4.1 for a hardware description layout
of this register block. This is a required field. If the
X_PMIla_CNT_BLK field contains a non zero value
which can be used by the OSPM, then this field must
be ignored by the OSPM.
PMI1b_EVT_BLK 4 60 System port address of the PM1b Event Register Block.
See Section 4.8.4.1 for a hardware description layout of
this register block. This field is optional; if this reg-
ister block is not supported, this field contains zero. If
the X PM1b_EVT BLK field contains a non zero value
which can be used by the OSPM, then this field must be
ignored by the OSPM.
PMla_CNT_BLK 4 64 System port address of the PMla Control Register
Block. See Section 4.8.4.1 for a hardware description
layout of this register block. This is a required field. If
the X_PM1la_CNT_BLK field contains a non zero value
which can be used by the OSPM, then this field must be
ignored by the OSPM.
PMI1b_CNT_BLK 4 68 System port address of the PMI1b Control Register
Block. See Section 4.8.4.1 for a hardware description
layout of this register block. This field is optional; if
this register block is not supported, this field contains
zero. If the X_PM1b_CNT _BLK field contains a non
zero value which can be used by the OSPM, then this
field must be ignored by the OSPM.

continues on next page

5.2. ACPI System Description Tables 150

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.9 — continued from previous page

Field Byte Byte Description
Length | Offset
PM2_CNT_BLK 4 72 System port address of the PM2 Control Register Block.

See Table 4.4 for a hardware description layout of this
register block. This field is optional; if this regis-
ter block is not supported, this field contains zero. If
the X_PM2 CNT _ BLK field contains a non zero value
which can be used by the OSPM, then this field must be
ignored by the OSPM.

PM_TMR_BLK 4 76 System port address of the Power Management Timer
Control Register Block. See the Section 4.8.4.3
for a hardware description layout of this register
block. This is an optional field; if this register
block is not supported, this field contains zero. If
the X_PM_TMR_BLK field contains a non-zero value
which can be used by the OSPM, then this field must be
ignored by the OSPM.

GPE(O_BLK 4 80 System port address of General-Purpose Event 0 Regis-
ter Block. See Section 4.8.5.1 for more information. If
this register block is not supported, this field contains
zero. If the X GPEO_BLK field contains a nonzero
value which can be used by the OSPM, then this field
must be ignored by the OSPM.

GPE1_BLK 4 84 System port address of General-Purpose Event 1 Reg-
ister Block. See Section 4.8.5.1 for more information.
This is an optional field; if this register block is not sup-
ported, this field contains zero. If the X_GPE1_BLK
field contains a nonzero value which can be used by the
OSPM, then this field must be ignored by the OSPM.

PM1_EVT_LEN 1 88 Number of bytes decoded by PM1a_EVT_BLK and, if
supported, PM1b_ EVT_BLK. This value is >= 4.

PM1_CNT_LEN 1 89 Number of bytes decoded by PM1a_CNT_BLK and, if
supported, PM1b_CNT_BLK. This value is >= 2.

PM2_CNT_LEN 1 90 Number of bytes decoded by PM2_CNT_BLK. Support

for the PM2 register block is optional. If supported, this
value is >= 1. If not supported, this field contains zero.
PM_TMR_LEN 1 91 Number of bytes decoded by PM_TMR_BLK. If the
PM Timer is supported, this field’s value must be 4. If
not supported, this field contains zero.

GPEO_BLK_LEN 1 92 Number of bytes decoded by GPEO_BLK. The value is
a non-negative multiple of 2.

GPE1_BLK_LEN 1 93 Number of bytes decoded by GPE1_BLK. The value is
a non-negative multiple of 2.

GPE1_BASE 1 94 Offset within the ACPI general-purpose event model
where GPEI based events start.

CST_CNT 1 95 If non-zero, this field contains the value OSPM writes

to the SMI_CMD register to indicate OS support for the
_CST object and C States Changed notification.
P_LVL2_LAT 2 96 The worst-case hardware latency, in microseconds, to
enter and exit a C2 state. A value > 100 indicates the
system does not support a C2 state.

continues on next page

5.2. ACPI System Description Tables 151

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.9 — continued from previous page

Field Byte Byte Description
Length | Offset
P LVL3 LAT 2 98 The worst-case hardware latency, in microseconds, to

enter and exit a C3 state. A value > 1000 indicates the
system does not support a C3 state.

FLUSH_SIZE 2 100 If WBINVD=0, the value of this field is the number
of flush strides that need to be read (using cacheable
addresses) to completely flush dirty lines from any
processor’s memory caches. Notice that the value in
FLUSH_STRIDE is typically the smallest cache line
width on any of the processor’s caches (for more infor-
mation, see the FLUSH_STRIDE field definition). If
the system does not support a method for flushing the
processor’s caches, then FLUSH_SIZE and WBINVD
are set to zero. Notice that this method of flushing the
processor caches has limitations, and WBINVD=1 is
the preferred way to flush the processors caches. This
value is typically at least 2 times the cache size. The
maximum allowed value for FLUSH_SIZE multiplied
by FLUSH_STRIDE is 2 MB for a typical maximum
supported cache size of 1 MB. Larger cache sizes are
supported using WBINVD=1. This value is ignored if
WBINVD=1. This field is maintained for ACPI 1.0 pro-
cessor compatibility on existing systems. Processors in
new ACPI-compatible systems are required to support
the WBINVD function and indicate this to OSPM by
setting the WBINVD field = 1.

FLUSH_STRIDE 2 102 If WBINVD=0, the value of this field is the cache line
width, in bytes, of the processor’s memory caches. This
value is typically the smallest cache line width on any
of the processor’s caches. For more information, see the
description of the FLUSH_SIZE field. This value is ig-
nored if WBINVD=1. This field is maintained for ACPI
1.0 processor compatibility on existing systems. Pro-
cessors in new ACPI-compatible systems are required
to support the WBINVD function and indicate this to
OSPM by setting the WBINVD field = 1.

DUTY_OFFSET 1 104 The zero-based index of where the processor’s duty cy-
cle setting is within the processor’s P_CNT register.
DUTY_WIDTH 1 105 The bit width of the processor’s duty cycle setting value

in the P_CNT register. Each processor’s duty cycle
setting allows the software to select a nominal pro-
cessor frequency below its absolute frequency as de-
fined by: THTL_EN = 1 BF * DC/(2DUTY_WIDTH)
Where: BF-Base frequency DC-Duty cycle setting
When THTL_EN is 0, the processor runs at its absolute
BF. A DUTY_WIDTH value of 0 indicates that proces-
sor duty cycle is not supported and the processor con-
tinuously runs at its base frequency.

continues on next page

5.2. ACPI System Description Tables 152

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.9 — continued from previous page

Field Byte Byte Description
Length | Offset
DAY_ALRM 1 106 The RTC CMOS RAM index to the day-of-month alarm

value. If this field contains a zero, then the RTC day of
the month alarm feature is not supported. If this field
has a non-zero value, then this field contains an index
into RTC RAM space that OSPM can use to program
the day of the month alarm. See Section 4.8.3.3 for a
description of how this hardware works.

MON_ALRM 1 107 The RTC CMOS RAM index to the month of year alarm
value. If this field contains a zero, then the RTC month
of the year alarm feature is not supported. If this field
has a non-zero value, then this field contains an index
into RTC RAM space that OSPM can use to program
the month of the year alarm. If this feature is supported,
then the DAY_ALRM feature must be supported also.
CENTURY 1 108 The RTC CMOS RAM index to the century of data
value (hundred and thousand year decimals). If this field
contains a zero, then the RTC centenary feature is not
supported. If this field has a non-zero value, then this
field contains an index into RTC RAM space that OSPM
can use to program the centenary field.

TAPC_BOOT_ARCH 2 109 IA-PC Boot Architecture Flags. See Table 5.12 for a
description of this field.

Reserved 1 111 Must be 0.

Flags 4 112 Fixed feature flags. See Table 5.10 for a description of
this field.

RESET_REG 12 116 The address of the reset register represented in Generic

Address Structure format (See Section 4.8.4.6 for a de-
scription of the reset mechanism.) Note: Only Sys-
tem I/O space, System Memory space and PCI Con-
figuration space (bus #0) are valid for values for Ad-
dress_Space_ID. Also, Register_Bit_Width must be 8
and Register_Bit_Offset must be 0.

RESET_VALUE 1 128 Indicates the value to write to the RESET_REG port to
reset the system. (See Section 4.8.4.6 for a description
of the reset mechanism.)

ARM_BOOT_ARCH 2 129 ARM Boot Architecture Flags. See Table 5.12 for a de-
scription of this field.

continues on next page

5.2. ACPI System Description Tables 153

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.9 — continued from previous page

Field Byte Byte Description
Length | Offset
FADT Minor Version 1 131

4. (errata bits 4-7 = 0)

Minor Version of this FADT structure, in
“Major.Minor” form, where ‘Major’ is the value in the
Major Version Field (Byte offset 8 in this table).

Bits 0-3 - The low order bits correspond to the minor
version of the specification version. For instance, ACPI
6.3 has a major version of 6, and a minor version of 3.
Bits 4-7 - The high order bits correspond to the version
of the ACPI Specification errata this table complies
with. A value of 0 means that it complies with the base
version of the current specification. A value of 1 means
this is compatible with Errata A, 2 would be
compatible with Errata B, and so on.

X_FIRMWARE_CTRL 8 132 Extended physical address of the FACS. If this field con-
tains a nonzero value which can be used by the OSPM,
then the FIRMWARE_CTRL field must be ignored by
the OSPM. If the HARDWARE_REDUCED_ACPI flag
is set, and both this field and the FIRMWARE_CTRL
field are zero, there is no FACS available.

X_DSDT 8 140 Extended physical address of the DSDT. If this field
contains a nonzero value which can be used by the
OSPM, then the DSDT field must be ignored by the
OSPM.

X_PMla_EVT_BLK 12 148 Extended address of the PM1a Event Register Block,
represented in Generic Address Structure format. See
Section 4.8.4.1 for a hardware description layout of this
register block. This is a required field. If this field con-
tains a nonzero value which can be used by the OSPM,
then the PM1a_EVT_BLK field must be ignored by the
OSPM.

X PM1b_EVT BLK 12 160 Extended address of the PM1b Event Register Block,
represented in Generic Address Structure format. See
Section 4.8.4.1 for a hardware description layout of this
register block. This field is optional; if this register
block is not supported, this field contains zero. If this
field contains a nonzero value which can be used by
the OSPM, then the PM1b_EVT_BLK field must be ig-
nored by the OSPM.

X PMla CNT BLK 12 172 Extended address of the PM1a Control Register Block,
represented in Generic Address Structure format. See
Section 4.8.4.2 for a hardware description layout of this
register block. This is a required field. If this field con-
tains a nonzero value which can be used by the OSPM,
then the PM1a_CNT_BLK field must be ignored by the
OSPM.

continues on next page

5.2. ACPI System Description Tables 154

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.9 — continued from previous page

Field Byte Byte Description
Length | Offset
X PM1b_CNT_BLK 12 184 Extended address of the PM1b Control Register Block,

represented in Generic Address Structure format. See
Section 4.8.4.2 for a hardware description layout of this
register block. This field is optional; if this register
block is not supported, this field contains zero. If this
field contains a nonzero value which can be used by
the OSPM, then the PM1b_CNT_BLK field must be ig-
nored by the OSPM.
X_PM2_CNT_BLK 12 196 Extended address of the PM2 Control Register Block,
represented in Generic Address Structure format. See
PM2 Control (PM2_CNT) for a hardware description
layout of this register block. This field is optional; if
this register block is not supported, this field contains
zero. If this field contains a nonzero value which can
be used by the OSPM, then the PM2_CNT_BLK field
must be ignored by the OSPM.
X_PM_TMR_BLK 12 208 Extended address of the Power Management Timer
Control Register Block, represented in Generic Ad-
dress Structure format. See Section 4.8.4.3 for a hard-
ware description layout of this register block. This
field is optional; if this register block is not sup-
ported, this field contains zero. If this field contains a
nonzero value which can be used by the OSPM, then the
PM_TMR_BLK field must be ignored by the OSPM.
X_GPEO_BLK 12 220 Extended address of the General-Purpose Event 0 Reg-
ister Block, represented in Generic Address Structure
format. See Section 4.8.5.1 for more information. This
is an optional field; if this register block is not sup-
ported, this field contains zero. If this field contains a
nonzero value which can be used by the OSPM, then
the GPEO_BLK field must be ignored by the OSPM.
X _GPE1_BLK 12 232 Extended address of the General-Purpose Event 1 Reg-
ister Block, represented in Generic Address Structure
format. See Section 4.8.5.1 for more information. This
is an optional field; if this register block is not sup-
ported, this field contains zero. If this field contains a
nonzero value which can be used by the OSPM, then
the GPE1_BLK field must be ignored by the OSPM.
SLEEP_CONTROL_REG 12 244 The address of the Sleep register, represented in Generic
Address Structure format (see Section 4.8.4.7 for a de-
scription of the sleep mechanism). Note: Only Sys-
tem I/O space, System Memory space and PCI Con-
figuration space (bus #0) are valid for values for Ad-
dress_Space_ID. Also, Register_Bit_Width must be 8
and Register_Bit_Offset must be 0.

continues on next page

5.2. ACPI System Description Tables 155

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.9 — continued from previous page

Field

Byte
Length

Byte
Offset

Description

SLEEP_STATUS_REG

12

256

The address of the Sleep status register, represented in
Generic Address Structure format (see Section 4.8.4.7
for a description of the sleep mechanism). Note: Only
System I/O space, System Memory space and PCI Con-
figuration space (bus #0) are valid for values for Ad-
dress_Space_ID. Also, Register_Bit_Width must be 8
and Register_Bit_Offset must be 0.

Hypervisor Vendor Identity

268

64-bit identifier of hypervisor vendor. All bytes in this
field are considered part of the vendor identity. These
identifiers are defined independently by the vendors
themselves, usually following the name of the hyper-
visor product. Version information should NOT be in-
cluded in this field - this shall simply denote the ven-
dor’s name or identifier. Version information can be
communicated through a supplemental vendor-specific
hypervisor API. Firmware implementers would place
zero bytes into this field, denoting that no hypervisor
is present in the actual firmware.

Note: [Hypervisor Vendor Identity] A firmware implementer would place zero bytes into this field, denoting that no
hypervisor is present in the actual firmware.

Note: [Hypervisor Vendor Identity | A hypervisor vendor that presents ACPI tables of its own construction to a guest
(for ‘virtual’ firmware or its ‘virtual’ platform), would provide its identity in this field.

Note: [Hypervisor Vendor Identity] If a guest operating system is aware of this field it can consult it and act on the
result, based on whether it recognized the vendor and knows how to use the API that is defined by the vendor.

5.2. ACPI System Description Tables

156

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.10: Fixed ACPI Description Table Fixed Feature Flags

FACP - Flag

Bit
Length

Bit Off-
set

Description

WBINVD

1

0

Processor properly implements a functional
equivalent to the WBINVD IA-32 instruc-
tion. If set, signifies that the WBINVD
instruction correctly flushes the processor
caches, maintains memory coherency, and
upon completion of the instruction, all
caches for the current processor contain no
cached data other than what OSPM refer-
ences and allows to be cached. If this flag
is not set, the ACPI OS is responsible for
disabling all ACPI features that need this
function. This field is maintained for ACPI
1.0 processor compatibility on existing sys-
tems. Processors in new ACPI-compatible
systems are required to support this func-
tion and indicate this to OSPM by setting
this field.

WBINVD_FLUSH

If set, indicates that the hardware flushes
all caches on the WBINVD instruction
and maintains memory coherency, but does
not guarantee the caches are invalidated.
This provides the complete semantics of
the WBINVD instruction, and provides
enough to support the system sleeping
states. If neither of the WBINVD flags is
set, the system will require FLUSH_SIZE
and FLUSH_STRIDE to support sleeping
states. If the FLUSH parameters are also
not supported, the machine cannot support
sleeping states S1, S2, or S3.

PROC_Cl1

A one indicates that the C1 power state is
supported on all processors.

P_LVL2_UP

A zero indicates that the C2 power state is
configured to only work on a uniprocessor
(UP) system. A one indicates that the C2
power state is configured to work on a UP
or multiprocessor (MP) system.

PWR_BUTTON

A zero indicates the power button is handled
as a fixed feature programming model; a one
indicates the power button is handled as a
control method device. If the system does
not have a power button, this value would
be “1” and no power button device would
be present. Independent of the value of this
field, the presence of a power button device
in the namespace indicates to OSPM that the
power button is handled as a control method
device.

continues on next page

5.2. ACPI System Description Tables

157

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.10 — continued from previous page

FACP - Flag

Bit
Length

Bit Off-
set

Description

SLP_BUTTON

1

5

A zero indicates the sleep button is handled
as a fixed feature programming model; a one
indicates the sleep button is handled as a
control method device. If the system does
not have a sleep button, this value would
be “1” and no sleep button device would be
present. Independent of the value of this
field, the presence of a sleep button device
in the namespace indicates to OSPM that the
sleep button is handled as a control method
device.

FIX_RTC

A zero indicates the RTC wake status is sup-
ported in fixed register space; a one indi-
cates the RTC wake status is not supported
in fixed register space.

RTC_S4

Indicates whether the RTC alarm function
can wake the system from the S4 state. The
RTC must be able to wake the system from
an S1, S2, or S3 sleep state. The RTC alarm
can optionally support waking the system
from the S4 state, as indicated by this value.

TMR_VAL_EXT

A zero indicates TMR_VAL is imple-
mented as a 24-bit value. A one indi-
cates TMR_VAL is implemented as a 32-bit
value. The TMR_STS bit is set when the
most significant bit of the TMR_VAL tog-
gles.

DCK_CAP

A zero indicates that the system cannot sup-
port docking. A one indicates that the sys-
tem can support docking. Notice that this
flag does not indicate whether or not a dock-
ing station is currently present; it only indi-
cates that the system is capable of docking.

RESET_REG_SUP

10

If set, indicates the system supports sys-
tem reset via the FADT RESET_REG as de-
scribed in Section 4.8.4.6.

SEALED_CASE

11

System Type Attribute. If set indicates that
the system has no internal expansion capa-
bilities and the case is sealed.

HEADLESS

12

System Type Attribute. If set indicates the
system cannot detect the monitor or key-
board / mouse devices.

CPU_SW_SLP

13

If set, indicates to OSPM that a proces-
sor native instruction must be executed after
writing the SLP_TYPx register.

continues on next page

5.2. ACPI System Description Tables

158

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.10 — continued from previous page

FACP - Flag Bit Bit Off- | Description
Length | set
PCI_EXP_WAK 1 14 If set, indicates the platform supports the

PCIEXP_WAKE_STS bit in the PM1 Sta-
tus register and the PCIEXP_WAKE_EN bit
in the PM1 Enable register. This bit must
be set on platforms containing chipsets that
implement PCI Express and supports PM1
PCIEXP_WAK bits.
USE_PLATFORM_CLOCK 1 15 A value of one indicates that OSPM should
use a platform provided timer to drive
any monotonically non-decreasing counters,
such as OSPM performance counter ser-
vices. Which particular platform timer will
be used is OSPM specific, however, it is
recommended that the timer used is based
on the following algorithm: If the HPET is
exposed to OSPM, OSPM should use the
HPET. Otherwise, OSPM will use the ACPI
power management timer. A value of one
indicates that the platform is known to have
a correctly implemented ACPI power man-
agement timer. A platform may choose to
set this flag if a internal processor clock
(or clocks in a multi-processor configura-
tion) cannot provide consistent monotoni-
cally non-decreasing counters. Note: If a
value of zero is present, OSPM may arbi-
trarily choose to use an internal processor
clock or a platform timer clock for these
operations. That is, a zero does not imply
that OSPM will necessarily use the internal
processor clock to generate a monotonically
non-decreasing counter to the system.
S4_RTC_STS_VALID 1 16 A one indicates that the contents of the
RTC_STS flag is valid when waking the sys-
tem from S4. See Table 4.11 for more infor-
mation. Some existing systems do not reli-
ably set this input today, and this bit allows
OSPM to differentiate correctly functioning
platforms from platforms with this errata.
REMOTE_POWER_ON_CAPABLE 1 17 A one indicates that the platform is com-
patible with remote power- on. That is, the
platform supports OSPM leaving GPE wake
events armed prior to an S5 transition. Some
existing platforms do not reliably transition
to S5 with wake events enabled (for exam-
ple, the platform may immediately generate
a spurious wake event after completing the
S5 transition). This flag allows OSPM to
differentiate correctly functioning platforms
from platforms with this type of errata.
continues on next page

5.2. ACPI System Description Tables 159

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.10 — continued from previous page

FACP - Flag Bit Bit Off- | Description
Length | set
FORCE_APIC_CLUSTER_MODEL 1 18 A one indicates that all local APICs must be

configured for the cluster destination model
when delivering interrupts in logical mode.
If this bit is set, then logical mode interrupt
delivery operation may be undefined until
OSPM has moved all local APICs to the
cluster model. Note that the cluster destina-
tion model doesn’t apply to Itanium™ Pro-
cessor Family (IPF) local SAPICs. This bit
is intended for X APIC based machines that
require the cluster destination model even
when 8 or fewer local APICs are present in
the machine.
FORCE_APIC_PHYSICAL._- 1 19 A one indicates that all local xAPICs must
DESTINATION_MODE be configured for physical destination mode.
If this bit is set, interrupt delivery operation
in logical destination mode is undefined. On
machines that contain fewer than 8§ local
xAPICs or that do not use the xAPIC archi-
tecture, this bit is ignored.
HW_REDUCED_ACPTI * 1 20 A one indicates that the Hardware-Reduced
ACPI (section 4.1) is implemented, there-
fore software-only alternatives are used for
supported fixed-features defined in chapter
4.

LOW_POWER_SO_IDLE_CAPABLE 1 21 A one informs OSPM that the platform is
able to achieve power savings in SO similar
to or better than those typically achieved in
S3. In effect, when this bit is set it indicates
that the system will achieve no power bene-
fit by making a sleep transition to S3.

Reserved 10 22

* The description of HW_REDUCED_ACPI provided here applies to ACPI specifications 5.0 and later.

5.2.9.1 Preferred PM Profile System Types

The following descriptions of preferred power management profile system types are to be used as a guide for setting the
Preferred_PM_Profile field in the FADT. OSPM can use this field to set default power management policy parameters
during OS installation.

Desktop A single user, full featured, stationary computing device that resides on or near an individual’s work area.
Most often contains one processor. Must be connected to AC power to function. This device is used to per-
form work that is considered mainstream corporate or home computing (for example, word processing, Internet
browsing, spreadsheets, and so on).

Mobile A single-user, full-featured, portable computing device that is capable of running on batteries or other power
storage devices to perform its normal functions. Most often contains one processor. This device performs the
same task set as a desktop. However it may have limitations dues to its size, thermal requirements, and/or power
source life.

5.2. ACPI System Description Tables 160

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Workstation A single-user, full-featured, stationary computing device that resides on or near an individual’s work
area. Often contains more than one processor. Must be connected to AC power to function. This device is used
to perform large quantities of computations in support of such work as CAD/CAM and other graphics-intensive
applications.

Enterprise Server A multi-user, stationary computing device that frequently resides in a separate, often specially de-
signed, room. Will almost always contain more than one processor. Must be connected to AC power to function.
This device is used to support large-scale networking, database, communications, or financial operations within
a corporation or government.

SOHO Server A multi-user, stationary computing device that frequently resides in a separate area or room in a small
or home office. May contain more than one processor. Must be connected to AC power to function. This device
is generally used to support all of the networking, database, communications, and financial operations of a small
office or home office.

Appliance PC A device specifically designed to operate in a low-noise, high-availability environment such as a con-
sumer’s living rooms or family room. Most often contains one processor. This category also includes home
Internet gateways, Web pads, set top boxes and other devices that support ACPI. Must be connected to AC
power to function. Normally they are sealed case style and may only perform a subset of the tasks normally
associated with today’s personal computers.

Performance Server A multi-user stationary computing device that frequently resides in a separate, often specially
designed room. Will often contain more than one processor. Must be connected to AC power to function. This
device is used in an environment where power savings features are willing to be sacrificed for better performance
and quicker responsiveness.

Tablet A full-featured, highly mobile computing device which resembles writing tablets and which users interact with
primarily through a touch interface. The touch digitizer is the primary user input device, although a keyboard
and/or mouse may be present. Tablet devices typically run on battery power and are generally only plugged
into AC power in order to charge. This device performs many of the same tasks as Mobile; however battery life
expectations of Tablet devices generally require more aggressive power savings especially for managing display
and touch components.

5.2.9.2 System Type Attributes

This set of flags is used by the OS to assist in determining assumptions about power and device management. These
flags are read at boot time and are used to make decisions about power management and device settings. For example,
a system that has the SEALED_CASE bit set may take a very aggressive low noise policy toward thermal management.
In another example an OS might not load video, keyboard or mouse drivers on a HEADLESS system.

5.2.9.3 IA-PC Boot Architecture Flags

This set of flags is used by an OS to guide the assumptions it can make in initializing hardware on IA-PC platforms.
These flags are used by an OS at boot time (before the OS is capable of providing an operating environment suitable
for parsing the ACPI namespace) to determine the code paths to take during boot. In IA-PC platforms with reduced
legacy hardware, the OS can skip code paths for legacy devices if none are present. For example, if there are no
ISA devices, an OS could skip code that assumes the presence of these devices and their associated resources. These
flags are used independently of the ACPI namespace. The presence of other devices must be described in the ACPI
namespace as specified in Section 6 These flags pertain only to IA-PC platforms. On other system architectures, the
entire field should be set to 0.

5.2. ACPI System Description Tables 161

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.11: Fixed ACPI Description Table Boot IA-PC Boot

IAPC_BOOT_ARCH Bit Bit Description
length | offset
LEGACY_DEVICES 1 0 If set, indicates that the motherboard supports user-visible de-

vices on the LPC or ISA bus. User-visible devices are devices
that have end-user accessible connectors (for example, LPT
port), or devices for which the OS must load a device driver so
that an end-user application can use a device. If clear, the OS
may assume there are no such devices and that all devices in
the system can be detected exclusively via industry standard
device enumeration mechanisms (including the ACPI names-
pace).

8042 1 1 If set, indicates that the motherboard contains support for
a port 60 and 64 based keyboard controller, usually imple-
mented as an 8042 or equivalent micro-controller.

VGA Not Present 1 2 If set, indicates to OSPM that it must not blindly probe the
VGA hardware (that responds to MMIO addresses AOOOOh-
BFFFFh and IO ports 3BOh-3BBh and 3COh-3DFh) that may
cause machine check on this system. If clear, indicates to
OSPM that it is safe to probe the VGA hardware.

MSI Not Supported 1 3 If set, indicates to OSPM that it must not enable Message
Signaled Interrupts (MSI) on this platform.

PCle ASPM Controls 1 4 If set, indicates to OSPM that it must not enable OSPM
ASPM control on this platform.

CMOS RTC Not Present 1 5 If set, indicates that the CMOS RTC is either not imple-

mented, or does not exist at the legacy addresses. OSPM uses
the Control Method Time and Alarm Namespace device in-
stead.

Reserved 10 6 Must be 0.

5.2.9.4 ARM Architecture Boot Flags

These flags are used by an OS at boot time (before the OS is capable of providing an operating environment suitable
for parsing the ACPI namespace) to determine the code paths to take during boot. For the PSCI flags, specifically, the
flags describe if the platform is compliant with the PSCI specification. A link to the PSCI specification can be found
at “Links to ACPI-Related Documents” at http://uefi.org/acpi.

The ARM Architecture boot flags are described in the following table.

Table 5.12: Fixed ACPI Description Table ARM Boot Architecture

Flags
ARM_BOOT_ARCH Bit Bit Off- | Description
Length | set
PSCI_COMPLIANT 1 0 1 if PSCI is implemented.
PSCI_USE_HVC 1 1 1 if HVC must be used as the PSCI conduit.instead of SMC.
Reserved 14 2 This value is zero.

5.2. ACPI System Description Tables 162

http://uefi.org/acpi

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.10 Firmware ACPI Control Structure (FACS)

The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the platform boot firmware
reserves for ACPI usage. This structure is optional if and only if the HARDWARE_REDUCED_ACPI flag in the
FADT is set. The FACS is passed to an ACPI-compatible OS using the FADT. For more information about the FADT
FIRMWARE_CTRL field, see Section 5.2.9

The platform boot firmware aligns the FACS on a 64-byte boundary anywhere within the system’s memory address
space. The memory where the FACS structure resides must not be reported as system AddressRangeMemory in the
system address map. For example, the E820 address map reporting interface would report the region as AddressRan-
geReserved. For more information, see Section 15.

Table 5.13: Firmware ACPI Control Structure (FACS)

Field Byte Byte Description
Length | Offset
Signature 4 0 ‘FACS’
Length 4 4 Length, in bytes, of the entire Firmware ACPI Control
Structure. This value is 64 bytes or larger.
Hardware Signature 4 8 The value of the system’s “hardware signature” at last

boot. This value is calculated by the platform boot
firmware on a best effort basis to indicate the base hard-
ware configuration of the system such that different base
hardware configurations can have different hardware
signature values. Although memory described using
EfiPersistentMemory is not saved/restored by OS dur-
ing S4, any change to persistent memory that impacts
any OS visible firmware interfaces must change hard-
ware signature (see Table 15.6). Any change to the data
in Persistent Memory itself should not be included in
computing the hardware signature. OSPM uses this in-
formation in waking from an S4 state, by comparing the
current hardware signature to the signature values saved
in the non-volatile sleep image. If the values are not the
same, OSPM assumes that the saved non-volatile image
is from a different hardware configuration and cannot be
restored.

continues on next page

5.2. ACPI System Description Tables 163

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.13 — continued from previous page

Field Byte Byte Description
Length | Offset
Firmware Waking Vector 4 12 This field is superseded by the

X_Firmware_Waking_Vector field. The 32-bit ad-
dress field where OSPM puts its waking vector. Before
transitioning the system into a global sleeping state,
OSPM fills in this field with the physical memory
address of an OS-specific wake function. During
POST, the platform firmware first checks if the value
of the X_Firmware_Waking_Vector field is non-zero
and if so transfers control to OSPM as outlined in the
X_Firmware_Waking_vector field description below. If
the X_Firmware_Waking_Vector field is zero then the
platform firmware checks the value of this field and if
it is non-zero, transfers control to the specified address.
On PCs, the wake function address is in memory below
1 MB and the control is transferred while in real mode.
OSPM’s wake function restores the processors’ context.
For IA-PC platforms, the following example shows
the relationship between the physical address in the
Firmware Waking Vector and the real mode address the
BIOS jumps to. If, for example, the physical address
is 0x12345, then the BIOS must jump to real mode
address 0x1234:0x0005. In general this relationship is
Real-mode address = Physical address>>4 : Physical
address and 0xO00F Notice that on IA-PC platforms,
A20 must be enabled when the BIOS jumps to the real
mode address derived from the physical address stored
in the Firmware Waking Vector.

Global Lock 4 16 This field contains the Global Lock used to synchronize
access to shared hardware resources between the OSPM
environment and an external controller environment (for
example, the SMI environment). This lock is owned ex-
clusively by either OSPM or the firmware at any one
time. When ownership of the lock is attempted, it might
be busy, in which case the requesting environment exits
and waits for the signal that the lock has been released.
For example, the Global Lock can be used to protect
an embedded controller interface such that only OSPM
or the firmware will access the embedded controller in-
terface at any one time. See Section 5.2.10.1 for more
information on acquiring and releasing the Global Lock.
Flags 4 20 Table 5.14

continues on next page

5.2. ACPI System Description Tables 164

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.13 — continued from previous page

Field

Byte
Length

Byte
Offset

Description

X Firmware Waking Vector

8

24

64-bit physical address of OSPM’s Waking Vector. Be-
fore transitioning the system into a global sleeping state,
OSPM fills in this field and the OSPM Flags field to
describe the waking vector. OSPM populates this field
with the physical memory address of an OS-specific
wake function. During POST, the platform firmware
checks if the value of this field is non-zero and if so
transfers control to OSPM by jumping to this address
after creating the appropriate execution environment,
which must be configured as follows: For 64-bit Ita-
nium™ Processor Family (IPF) -based platforms: Inter-
rupts must be disabled The processor must have psr.i set
to 0. See the Intel® ItaniumTM Architecture Software
Developer’s Manual for more information. Memory ad-
dress translation must be disabled The processor must
have psr.it, psr.dt, and psr.rt set to 0. See the Intel®
ItaniumTM Architecture Software Developer’s Manual
for more information. For IA 32 and x64 platforms,
platform firmware is required to support a 32 bit exe-
cution environment. Platform firmware can addition-
ally support a 64 bit execution environment. If plat-
form firmware supports a 64 bit execution environment,
firmware inspects the OSPM Flags during POST. If the
64BIT_WAKE_F flag is set, the platform firmware cre-
ates a 64 bit execution environment. Otherwise, the plat-
form firmware creates a 32 bit execution environment.
For 64 bit execution environment: Interrupts must be
disabled EFLAGS.IF set to 0 Long mode enabled Pag-
ing mode is enabled and physical memory for waking
vector is identity mapped (virtual address equals phys-
ical address) Waking vector must be contained within
one physical page Selectors are set to be flat and are
otherwise not used For 32 bit execution environment:
Interrupts must be disabled EFLAGS.IF set to 0 Mem-
ory address translation / paging must be disabled 4 GB
flat address space for all segment registers

Version

32

2-Version of this table

Reserved

33

This value is zero.

OSPM Flags

36

OSPM enabled firmware control structure flags. Plat-
form firmware must initialize this field to zero. See Ta-
ble 5.15 for more details.

Reserved

24

40

This value is zero.

5.2. ACPI System Description Tables

165

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.14: Firmware Control Structure Feature Flags

FACS - Flag Bit Bit Off- | Description
Length | set
S4BIOS_F 1 0 Indicates whether the platform supports

S4BIOS_REQ. If S4BIOS_REQ is not sup-
ported, OSPM must be able to save and restore
the memory state in order to use the S4 state.
64BIT_WAKE_SUPPORTED_F 1 1 Indicates that the platform firmware supports a
64 bit execution environment for the waking vec-
tor. When set and the OSPM additionally set
64BIT_WAKE_F, the platform firmware will cre-
ate a 64 bit execution environment before transfer-
ring control to the X_Firmware_Waking_Vector.
Reserved 30 2 The value is zero.

Table 5.15: OSPM Enabled Firmware Control Structure Feature

Flags
FACS - Flag Bit Bit Off- | Description
Length | set

64BIT_WAKE_F 1 0 OSPM sets this bit to indicate to platform firmware that the
X_Firmware_Waking_Vector requires a 64 bit execution envi-
ronment. This flag can only be set if platform firmware sets
64BIT_WAKE_SUPPORTED_F in the FACS flags field. This bit
field has no affect on ItaniumTM Processor Family (IPF) -based
platforms, which require a 64 bit execution environment.

Reserved 31 1 The value is zero.

5.2.10.1 Global Lock

The purpose of the ACPI Global Lock is to provide mutual exclusion between the host OS and the platform runtime
firmware. The Global Lock is a 32-bit (DWORD) value in read/write memory located within the FACS and is accessed
and updated by both the OS environment and the SMI environment in a defined manner to provide an exclusive lock.
Note: this is not a pointer to the Global Lock, it is the actual memory location of the lock. The FACS and Global Lock
may be located anywhere in physical memory.

By convention, this lock is used to ensure that while one environment is accessing some hardware, the other environ-
ment is not. By this convention, when ownership of the lock fails because the other environment owns it, the requesting
environment sets a “pending” state within the lock, exits its attempt to acquire the lock, and waits for the owning en-
vironment to signal that the lock has been released before attempting to acquire the lock again. When releasing the
lock, if the pending bit in the lock is set after the lock is released, a signal is sent via an interrupt mechanism to the
other environment to inform it that the lock has been released. During interrupt handling for the “lock released” event
within the corresponding environment, if the lock ownership were still desired an attempt to acquire the lock would be
made. If ownership is not acquired, then the environment must again set “pending” and wait for another “lock release”
signal.

The table below shows the encoding of the Global Lock DWORD in memory.

5.2. ACPI System Description Tables 166

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.16: Global Lock Structure within the FACS

Field Bit Bit Off- | Description
Length | set
Pending 1 0 Non-zero indicates that a request for ownership of the Global Lock is
pending.
Owned 1 1 Non-zero indicates that the Global Lock is Owned.
Reserved 30 2 Reserved for future use.

The following code sequence is used by both OSPM and the firmware to acquire ownership of the Global Lock. If
non-zero is returned by the function, the caller has been granted ownership of the Global Lock and can proceed. If
zero is returned by the function, the caller has not been granted ownership of the Global Lock, the “pending” bit has
been set, and the caller must wait until it is signaled by an interrupt event that the lock is available before attempting
to acquire access again.

Note: In the examples that follow, the “GlobalLock” variable is a pointer that has been previously initialized to point
to the 32-bit Global Lock location within the FACS.

AcquireGlobalLock:
mov ecx, GlobalLock ; ecx = Address of Global Lock in FACS
acgl0: mov eax, [ecx] ; Get current value of Global Lock

mov edx, eax

and edx, not 1 ; Clear pending bit

bts edx, 1 ; Check and set owner bit

adc edx, 0 ; If owned, set pending bit

lock cmpxchg dword ptrlecx], edx ; Attempt to set new value

jnz short acglO ; If not set, try again

cmp dl, 3 ; Was it acquired or marked pending-?
sbb eax, eax ; acquired = -1, pending = 0

ret

The following code sequence is used by OSPM and the firmware to release ownership of the Global Lock. If non-zero
is returned, the caller must raise the appropriate event to the other environment to signal that the Global Lock is now
free. Depending on the environment, this signaling is done by setting the either the GBL_RLS or BIOS_RLS within
their respective hardware register spaces. This signal only occurs when the other environment attempted to acquire
ownership while the lock was owned.

ReleaseGlobalLock:
mov ecx, GlobalLock ; ecx = Address of Global Lock in FACS
rellO: mov eax, [ecx] ; Get current value of Global Lock

mov edx, eax

and edx, not 03h ; Clear owner and pending field
lock cmpxchg dword ptr[ecx], edx ; Attempt to set it

jnz short rell0 ; If not set, try again

and eax, 1 ; Was pending set?

; 1f one is returned (we were pending) the caller must signal that the
; lock has been released using either GBL_RLS or BIOS_RLS as appropriate

(continues on next page)

5.2. ACPI System Description Tables 167

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

ret

Although using the Global Lock allows various hardware resources to be shared, it is important to notice that its
usage when there is ownership contention could entail a significant amount of system overhead as well as waits of an
indeterminate amount of time to acquire ownership of the Global Lock. For this reason, implementations should try
to design the hardware to keep the required usage of the Global Lock to a minimum.

The Global Lock is required whenever a logical register in the hardware is shared. For example, if bit O is used by
ACPI (OSPM) and bit 1 of the same register is used by SMI, then access to that register needs to be protected under
the Global Lock, ensuring that the register’s contents do not change from underneath one environment while the other
is making changes to it. Similarly if the entire register is shared, as the case might be for the embedded controller
interface, access to the register needs to be protected under the Global Lock.

5.2.11 Definition Blocks

A Definition Block consists of data in AML format (see Section 5.4 “Definition Block Encoding™) and contains
information about hardware implementation details in the form of AML objects that contain data, AML code, or other
AML objects. The top-level organization of this information after a definition block is loaded is name-tagged in a
hierarchical namespace.

OSPM “loads” or “unloads” an entire definition block as a logical unit. OSPM will load a definition block either
as a result of executing the AML Load() or LoadTable() operator or encountering a table definition during initial-
ization. During initialization, OSPM loads the Differentiated System Description Table (DSDT), which contains the
Differentiated Definition Block, using the DSDT pointer retrieved from the FADT. OSPM will load other definition
blocks during initialization as a result of encountering Secondary System Description Table (SSDT) definitions in
the RSDT/XSDT. Each SSDT must be loaded in the order presented in the RSDT/XSDT. The DSDT and SSDT are
described in the following sections.

As mentioned, the AML Load() and LoadTable() operators make it possible for a Definition Block to load other
Definition Blocks, either statically or dynamically, where they in turn can either define new system attributes or, in
some cases, build on prior definitions. Although this gives the hardware the ability to vary widely in implementation,
it also confines it to reasonable boundaries. In some cases, the Definition Block format can describe only specific and
well-understood variances. In other cases, it permits implementations to be expressible only by means of a specified
set of “built in” operators. For example, the Definition Block has built in operators for I/O space.

In theory, it might be possible to define something like PCI configuration space in a Definition Block by building it
from I/O space, but that is not the goal of the definition block. Such a space is usually defined as a “built in” operator.

Some AML operators perform simple functions, and others encompass complex functions. The power of the Definition
block comes from its ability to allow these operations to be glued together in numerous ways, to provide functionality
to OSPM.

The AML operators defined in this specification are intended to allow many useful hardware designs to be easily
expressed, not to allow all hardware designs to be expressed.

Note: To accommodate addressing beyond 32 bits, the integer type was expanded to 64 bits in ACPI 2.0, see Section
19.3.5 . Existing ACPI definition block implementations may contain an inherent assumption of a 32-bit integer
width. Therefore, to maintain backwards compatibility, OSPM uses the Revision field, in the header portion of system
description tables containing Definition Blocks, to determine whether integers declared within the Definition Block
are to be evaluated as 32-bit or 64-bit values. A Revision field value greater than or equal to 2 signifies that integers
declared within the Definition Block are to be evaluated as 64-bit values. The ASL writer specifies the value for the
Definition Block table header’s Revision field via the ASL Definition Block’s ComplianceRevision field. See Section
19.6.29 , for more information. It is the responsibility of the ASL writer to ensure the Definition Block’s compatibility
with the corresponding integer width when setting the ComplianceRevision field.

5.2. ACPI System Description Tables 168

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.11.1 Differentiated System Description Table (DSDT)

The Differentiated System Description Table (DSDT) is part of the system fixed description. The DSDT is comprised
of a system description table header followed by data in Definition Block format. See Section 5.2.11 for a description
of Definition Blocks. During initialization, OSPM finds the pointer to the DSDT in the Fixed ACPI Description Table
(using the FADT’s DSDT or X_DSDT fields) and then loads the DSDT to create the ACPI Namespace.

Table 5.17: Differentiated System Description Table Fields (DSDT)

Field Byte Byte Description
Length | Offset
Signature 4 0 ‘DSDT’ Signature for the Differentiated System Description
Table.
Length 4 4 Length, in bytes, of the entire DSDT (including the header).
Revision 1 8

2. This field also sets the global integer width for the AML
interpreter. Values less than two will cause the inter-
preter to use 32-bit integers and math. Values of two
and greater will cause the interpreter to use full 64-bit
integers and math.

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 The manufacture model ID.

OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID for the ASL Compiler.

Creator Revision 4 32 Revision number of the ASL Compiler.

Definition Block n 36 n bytes of AML code (see Section 5.4).

5.2.11.2 Secondary System Description Table (SSDT)

Secondary System Description Tables (SSDT) are a continuation of the DSDT. The SSDT is comprised of a system de-
scription table header followed by data in Definition Block format. There can be multiple SSDTs present. After OSPM
loads the DSDT to create the ACPI Namespace, each secondary system description table listed in the RSDT/XSDT
with a unique OEM Table ID is loaded in the order presented in the RSDT/XSDT.

* Additional tables can only add data; they cannot overwrite data from previous tables.

This allows the OEM to provide the base support in one table and add smaller system options in other tables. For
example, the OEM might put dynamic object definitions into a secondary table such that the firmware can construct
the dynamic information at boot without needing to edit the static DSDT. A SSDT can only rely on the DSDT being
loaded prior to it.

Table 5.18: Secondary System Description Table Fields (SSDT)

Field Byte Byte Description
Length | Offset
Header
Signature 4 0 ‘SSDT’ Signature for the Secondary System Description Ta-
ble.
Length 4 4 Length, in bytes, of the entire SSDT (including the header).
Revision 1 8 2
Checksum 1 9 Entire table must sum to zero.

continues on next page

5.2. ACPI System Description Tables 169

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.18 — continued from previous page

Field Byte Byte Description
Length | Offset
OEMID 6 10 OEM ID
OEM Table ID 8 16 The manufacture model ID.
OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID for the ASL Compiler.
Creator Revision 4 32 Revision number of the ASL Compiler.
Definition Block n 36 n bytes of AML code (see Section 5.4).

5.2.11.3 Persistent System Description Table (PSDT)

The table signature, “PSDT” refers to the Persistent System Description Table (PSDT) defined in the ACPI 1.0 speci-
fication. The PSDT was judged to provide no specific benefit and as such has been deleted from follow-on versions of
the ACPI specification. OSPM will evaluate a table with the “PSDT” signature in like manner to the evaluation of an
SSDT as described in Section 5.2.11.2

5.2.12 Multiple APIC Description Table (MADT)

The ACPI interrupt model describes all interrupts for the entire system in a uniform interrupt model implementation.
Supported interrupt models include the PC-AT-compatible dual 8259 interrupt controller, for Intel processor-based sys-
tems, the Intel Advanced Programmable Interrupt Controller (APIC) and Intel Streamlined Advanced Programmable
Interrupt Controller (SAPIC), and, for ARM processor-based systems, the Generic Interrupt Controller (GIC). The
choice of the interrupt model(s) to support is up to the platform designer. The interrupt model cannot be dynamically
changed by the system firmware; OSPM will choose which model to use and install support for that model at the time
of installation. If a platform supports multiple models, an OS will install support for only one of the models; it will not
mix models. Multi-boot capability is a feature in many modern operating systems. This means that a system may have
multiple operating systems or multiple instances of an OS installed at any one time. Platform designers must allow for
this.

This section describes the format of the Multiple APIC Description Table (MADT), which provides OSPM with
information necessary for operation on systems with APIC, SAPIC or GIC implementations.

ACPI represents all interrupts as “flat” values known as global system interrupts. Therefore to support APICs, SAPICs
or GICs on an ACPI-enabled system, each used interrupt input must be mapped to the global system interrupt value
used by ACPI. See Section 5.2.13 for more details.

Additional support is required to handle various multi-processor functions that implementations might support (for
example, identifying each processor’s local interrupt controller ID).

All addresses in the MADT are processor-relative physical addresses.

Starting with ACPI Specification 6.3, the use of the Processor() object was deprecated. Only legacy systems should
continue with this usage. On the Itanium architecture only, a _UID is provided for the Processor() that is a string
object. This usage of _UID is also deprecated since it can preclude an OSPM from being able to match a processor
to a non-enumerable device, such as those defined in the MADT. From ACPI Specification 6.3 onward, all processor
objects for all architectures except Itanium must now use Device() objects with an _HID of ACPI0007, and use only
integer _UID values.

Table 5.19: Multiple APIC Description Table (MADT) Format

Field Byte Byte Description
Length | Offset

Header

continues on next page

5.2. ACPI System Description Tables 170

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.19 — continued from previous page

Field Byte Byte Description
Length | Offset

Signature 4 0 ‘APIC’ Signature for the Multiple APIC Description Table.

Length 4 4 Length, in bytes, of the entire MADT.

Revision 1 8 5

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the MADT, the table ID is the manufacturer model ID.

OEM Revision 4 24 OEM revision of MADT for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables contain-
ing Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Local Interrupt Controller | 4 36 The 32-bit physical address at which each processor can ac-

Address cess its local interrupt controller.

Flags 4 40 Multiple APIC flags. See Multiple APIC Flags for a descrip-
tion of this field.

Interrupt Controller Struc- | — 44 A list of interrupt controller structures for this implementa-

ture[n] tion. This list will contain all of the structures from Interrupt
Controller Structure Types needed to support this platform.
These structures are described in the following sections.

Table 5.20: Multiple APIC Flags
Multiple APIC Flags Bit Bit Off- | Description
Length | set

PCAT_COMPAT 1 0 A one indicates that the system also has a PC-AT-compatible
dual-8259 setup. The 8259 vectors must be disabled (that is,
masked) when enabling the ACPI APIC operation.

Reserved 31 1 This value is zero.

Immediately after the Flags value in the MADT is a list of interrupt controller structures that declare the interrupt
features of the machine. The first byte of each structure declares the type of that structure and the second byte declares

the length of that structure.

Table 5.21: Interrupt Controller Structure Types

Value Description _MAT for | _MAT for an | Reference
Processor I/0 APIC ob-
object (a) ject (b)
0 Processor Local APIC yes no Section 5.2.12.2
1 I/O APIC no yes Section 5.2.12.3
2 Interrupt Source Override no yes Section 5.2.12.5
3 Non-maskable Interrupt (NMI) | no yes Section 5.2.12.6
Source
4 Local APIC NMI yes no Section 5.2.12.7
5 Local APIC Address Override no no Section 5.2.12.8
6 I/0 SAPIC no yes Section 5.2.12.9
7 Local SAPIC yes no Section 5.2.12.10
8 Platform Interrupt Sources no yes Section 5.2.12.11
9 Processor Local x2APIC yes no Section 5.2.12.12

continues on next page

5.2. ACPI System Description Tables

171

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.21 — continued from previous page

Value Description _MAT for | _MAT for an | Reference
Processor 1/0 APIC ob-
object (a) ject (b)
0xA Local x2APIC NMI yes no Section 5.2.12.13
0xB GIC CPU Interface (GICC) yes no Section 5.2.12.14
0xC GIC Distributor (GICD) no no Section 5.2.12.15
0xD GIC MSI Frame no no Section 5.2.12.16
0xE GIC Redistributor (GICR) no no Section 5.2.12.17
OxF GIC Interrupt Translation Service | no no Section 5.2.12.18
TS)
0x10 Multiprocessor Wakeup no no Section 5.2.12.19
0x11-0x7F Reserved. OSPM skips structures of | no no
the reserved type.
0x80-0xFF Reserved for OEM use no no
Notes

(a) When _MAT (see Section 6.2.10) appears under a Processor Device object (see Section 8.4), OSPM
processes the Interrupt Controller Structures returned by _MAT with the types labeled “yes” and ignores
other types.

(b) When _MAT appears under an I/O APIC Device, OSPM processes the Interrupt Controller Structures
returned by _MAT with the types labeled “yes” and ignores other types.

5.2.12.1 MADT Processor Local APIC / SAPIC Structure Entry Order

OSPM implementations may limit the number of supported processors on multi-processor platforms. OSPM executes
on the boot processor to initialize the platform including other processors. To ensure that the boot processor is sup-
ported post initialization, two guidelines should be followed. The first is that OSPM should initialize processors in the
order that they appear in the MADT. The second is that platform firmware should list the boot processor as the first
processor entry in the MADT.

The advent of multi-threaded processors yielded multiple logical processors executing on common processor hard-
ware. ACPI defines logical processors in an identical manner as physical processors. To ensure that non multi-
threading aware OSPM implementations realize optimal performance on platforms containing multi-threaded proces-
sors, two guidelines should be followed. The first is the same as above, that is, OSPM should initialize processors in
the order that they appear in the MADT. The second is that platform firmware should list the first logical processor
of each of the individual multi-threaded processors in the MADT before listing any of the second logical processors.
This approach should be used for all successive logical processors.

Failure of OSPM implementations and platform firmware to abide by these guidelines can result in both unpredictable
and non optimal platform operation.

5.2.12.2 Processor Local APIC Structure

When using the APIC interrupt model, each processor in the system is required to have a Processor Local APIC record
in the MADT, and a processor device object in the DSDT. OSPM does not expect the information provided in this
table to be updated if the processor information changes during the lifespan of an OS boot. While in the sleeping state,
processors are not allowed to be added, removed, nor can their APIC ID or Flags change. When a processor is not
present, the Processor Local APIC information is either not reported or flagged as disabled.

5.2. ACPI System Description Tables 172

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.22: Processor Local APIC Structure

Field Byte Byte Description
Length | Offset
Type 1 0 0 Processor Local APIC structure
Length 1 1 8
ACPI Processor UID 1 2 The OS associates this Local APIC Structure with a proces-

sor object in the namespace when the _UID child object of
the processor’s device object (or the Processorld listed in the
Processor declaration operator) evaluates to a numeric value
that matches the numeric value in this field. Note that the use
of the Processor declaration operator is deprecated. See the
description at the beginning of this section for more informa-

tion.
APIC ID 1 3 The processor’s local APIC ID.
Flags 4 4 Local APIC flags. See the following table (Table 5.23) for a

description of this field.

Table 5.23: Local APIC Flags
Local APIC Flags Bit Bit Off- | Description
Length | set

Enabled 1 0 If this bit is set the processor is ready for use. If this bit is

clear and the Online Capable bit is set, system hardware sup-
ports enabling this processor during OS runtime. If this bit
is clear and the Online Capable bit is also clear, this proces-
sor is unusable, and OSPM shall ignore the contents of the
Processor Local APIC Structure.

Online Capable 1 1 The information conveyed by this bit depends on the value of
the Enabled bit. If the Enabled bit is set, this bit is reserved
and must be zero. Otherwise, if this this bit is set, system
hardware supports enabling this processor during OS runtime.
Reserved 30 2 Must be zero.

5.2.12.3 1/0 APIC Structure

In an APIC implementation, there are one or more I/O APICs. Each I/O APIC has a series of interrupt inputs, referred
to as INTIn, where the value of n is from O to the number of the last interrupt input on the I/O APIC. The I/O APIC
structure declares which global system interrupts are uniquely associated with the I/O APIC interrupt inputs. There is
one I/O APIC structure for each I/O APIC in the system. For more information on global system interrupts see Section
5.2.13

Table 5.24: 1I/0 APIC Structure

Field Byte Byte Description
Length | Offset
Type 1 0 1 I/O APIC structure
Length 1 1 12
I/0 APIC ID 1 2 The I/0 APIC’s ID.
Reserved 1 3 0
I/0 APIC Address 4 4 The 32-bit physical address to access this I/O APIC. Each I/O
APIC resides at a unique address.

continues on next page

5.2. ACPI System Description Tables 173

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.24 — continued from previous page

Field Byte Byte Description
Length | Offset
Global System Interrupt | 4 8 The global system interrupt number where this /O APIC’s
Base interrupt inputs start. The number of interrupt inputs is deter-
mined by the I/O APIC’s Max Redir Entry register.

5.2.12.4 Platforms with APIC and Dual 8259 Support

Systems that support both APIC and dual 8259 interrupt models must map global system interrupts 0-15 to the 8259
IRQs 0-15, except where Interrupt Source Overrides are provided (see Section 5.2.12.5 below). This means that I/O
APIC interrupt inputs 0-15 must be mapped to global system interrupts 0-15 and have identical sources as the 8259
IRQs 0-15 unless overrides are used. This allows a platform to support OSPM implementations that use the APIC
model as well as OSPM implementations that use the 8259 model (OSPM will only use one model; it will not mix
models).

When OSPM supports the 8259 model, it will assume that all interrupt descriptors reporting global system interrupts
0-15 correspond to 8259 IRQs. In the 8259 model all global system interrupts greater than 15 are ignored. If OSPM
implements APIC support, it will enable the APIC as described by the APIC specification and will use all reported
global system interrupts that fall within the limits of the interrupt inputs defined by the I/O APIC structures. For more
information on hardware resource configuration see Section 6

5.2.12.5 Interrupt Source Override Structure

Interrupt Source Overrides are necessary to describe variances between the IA-PC standard dual 8259 interrupt defi-
nition and the platform’s implementation.

It is assumed that the ISA interrupts will be identity-mapped into the first I/O APIC sources. Most existing APIC
designs, however, will contain at least one exception to this assumption. The Interrupt Source Override Structure is
provided in order to describe these exceptions. It is not necessary to provide an Interrupt Source Override for every
ISA interrupt. Only those that are not identity-mapped onto the APIC interrupt inputs need be described.

* This specification only supports overriding ISA interrupt sources.

For example, if your machine has the ISA Programmable Interrupt Timer (PIT) connected to ISA IRQ 0, but in APIC
mode, it is connected to I/O APIC interrupt input 2, then you would need an Interrupt Source Override where the
source entry is ‘0’ and the Global System Interrupt is ‘2.

Table 5.25: Interrupt Source Override Structure

Field Byte Byte Description
Length | Offset

Type 1 0 2 Interrupt Source Override

Length 1 1 10

Bus 1 2 0 Constant, meaning ISA

Source 1 3 Bus-relative interrupt source (IRQ)

Global System Interrupt 4 4 The Global System Interrupt that this bus-relative interrupt
source will signal.

Flags 2 8 MPS INTI flags. See the corresponding tabel below for a de-
scription of this field.

The MPS INTI flags listed in Table 5.26 are identical to the flags used in the MPS version 1.4 specification, Table
4-10. The Polarity flags are the PO bits and the Trigger Mode flags are the EL bits.

5.2. ACPI System Description Tables 174

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.26: MPS INTI Flags

Local APIC - Flags Bit Bit Off- | Description
Length | set
Polarity 2 0

Polarity of the APIC I/O input signals:
00 Conforms to the specifications of the bus (for example,
EISA is active-low for level-triggered interrupts).

01 Active high
10 Reserved
11 Active low

Trigger Mode 2 2
Trigger mode of the APIC I/O Input signals:

00 Conforms to specifications of the bus (For example, ISA
is edge-triggered)

01 Edge-triggered

10 Reserved

11 Level-triggered

Reserved 12 4 Must be zero.

Interrupt Source Overrides are also necessary when an identity mapped interrupt input has a non-standard polarity.

* You must have an interrupt source override entry for the IRQ mapped to the SCI interrupt if this IRQ is not
identity mapped. This entry will override the value in SCI_INT in FADT. For example, if SCI is connected to
IRQ 9 in PIC mode and IRQ 9 is connected to INTIN11 in APIC mode, you should have 9 in SCI_INT in the
FADT and an interrupt source override entry mapping IRQ 9 to INTIN11.

5.2.12.6 Non-Maskable Interrupt (NMI) Source Structure

This structure allows a platform designer to specify which I/O (S)APIC interrupt inputs should be enabled as non-
maskable. Any source that is non-maskable will not be available for use by devices.

Table 5.27: NMI Source Structure

Field Byte Byte Description
Length | Offset
Type 1 0 3 NMI Source
Length 1 1 8
Flags 2 2 Same as MPS INTI flags
Global System Interrupt 4 4 The Global System Interrupt that this NMI will signal.

5.2. ACPI System Description Tables 175

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.12.7 Local APIC NMI Structure

This structure describes the Local APIC interrupt input (LINTn) that NMI is connected to for each of the processors
in the system where such a connection exists. This information is needed by OSPM to enable the appropriate local

APIC entry.

Each Local APIC NMI connection requires a separate Local APIC NMI structure. For example, if the platform has 4
processors with ID 0-3 and NMI is connected LINT1 for processor 3 and 2, two Local APIC NMI entries would be

needed in the MADT.
Table 5.28: Local APIC NMI Structure
Field Byte Byte Description
Length | Offset

Type 1 0 4 Local APIC NMI Structure

Length 1 1 6

ACPI Processor UID 1 2 Value corresponding to the _UID listed in the processor’s de-
vice object, or the Processor ID corresponding to the ID listed
in the processor object. A value of OxFF signifies that this
applies to all processors in the machine. Note that the use of
the Processor declaration operator is deprecated. See the com-
patibility note in Processor Local x2APIC Structure, and see
Processor (Declare Processor).

Flags 2 3 MPS INTI flags. See Table 5.26 for a description of this field.

Local APIC LINT# 1 5 Local APIC interrupt input LINTn to which NMI is con-
nected.

5.2.12.8 Local APIC Address Override Structure

This optional structure supports 64-bit systems by providing an override of the physical address of the local APIC in
the MADT’s table header, which is defined as a 32-bit field.

If defined, OSPM must use the address specified in this structure for all local APICs (and local SAPICs), rather than
the address contained in the MADT’s table header. Only one Local APIC Address Override Structure may be defined.

Table 5.29: Local APIC Address Override Structure

Field Byte Byte Description
Length | Offset
Type 1 0 5 Local APIC Address Override Structure
Length 1 1 12
Reserved 2 2 Reserved (must be set to zero)
Local APIC Address 8 4 Physical address of Local APIC. For Itanium™ Processor

Family (IPF)-based platforms, this field contains the starting
address of the Processor Interrupt Block. See the Intel® Ita-
niumTM Architecture Software Developer’s Manual for more
information.

5.2. ACPI System Description Tables

176

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.12.9 I/0 SAPIC Structure

The I/0O SAPIC structure is very similar to the I/O APIC structure. If both I/O APIC and I/O SAPIC structures exist
for a specific APIC ID, the information in the I/O SAPIC structure must be used.

The I/0 SAPIC structure uses the /O APIC ID field as defined in the [/O APIC table. The Global System Interrupt
Base field remains unchanged but has been moved. The I/O APIC Address field has been deleted. A new address and
reserved field have been added.

Table 5.30: I/O SAPIC Structure

Field Byte Byte Description
Length | Offset

Type 1 0 6 1/0 SAPIC Structure

Length 1 1 16

I/0 APIC ID 1 2 I/0 SAPIC ID

Reserved 1 3 Reserved (must be zero)

Global System Interrupt | 4 4 The global system interrupt number where this I/O SAPIC’s

Base interrupt inputs start. The number of interrupt inputs is deter-
mined by the I/O SAPIC’s Max Redir Entry register.

I/0 SAPIC Address 8 8 The 64-bit physical address to access this I/O SAPIC. Each
I/0 SAPIC resides at a unique address.

If defined, OSPM must use the information contained in the I/O SAPIC structure instead of the information from the
1/0 APIC structure.

If both I/O APIC and an I/O SAPIC structures exist in an MADT, the OEM/platform firmware writer must prevent
“mixing” I/O APIC and I/O SAPIC addresses. This is done by ensuring that there are at least as many I/O SAPIC
structures as I/O APIC structures and that every /O APIC structure has a corresponding I/O SAPIC structure (same
APIC ID).

5.2.12.10 Local SAPIC Structure

The Processor local SAPIC structure is very similar to the processor local APIC structure. When using the SAPIC
interrupt model, each processor in the system is required to have a Processor Local SAPIC record in the MADT, and
a processor device object in the DSDT. OSPM does not expect the information provided in this table to be updated if
the processor information changes during the lifespan of an OS boot. While in the sleeping state, processors are not
allowed to be added, removed, nor can their SAPIC ID or Flags change. When a processor is not present, the Processor
Local SAPIC information is either not reported or flagged as disabled.

Table 5.31: Processor Local SAPIC Structure

Field Byte Byte Description
Length | Offset
Type 1 0 7 Processor Local SAPIC structure
Length 1 1 Length of the Local SAPIC Structure in bytes.
ACPI Processor ID 1 2 OSPM associates the Local SAPIC Structure with a processor

object declared in the namespace using the Processor state-
ment by matching the processor object’s ProcessorID value
with this field. The use of the Processor statement is depre-
cated. See the compatibility note in Processor Local x2APIC
Structure, and Processor (Declare Processor).

Local SAPIC ID 1 The processor’s local SAPIC ID

Local SAPIC EID 1 4 The processor’s local SAPIC EID

w

continues on next page

5.2. ACPI System Description Tables 177

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.31 — continued from previous page

Field Byte Byte Description
Length | Offset
Reserved 3 5 Reserved (must be set to zero)
Flags 4 8 Local SAPIC flags. See Local APIC Flags for a description
of this field.
ACPI Processor UID | 4 12 OSPM associates the Local SAPIC Structure with a processor
Value object declared in the namespace using the Device statement,

when the _UID child object of the processor device evaluates
to a numeric value, by matching the numeric value with this

field.
ACPI Processor UID | >=1 16 OSPM associates the Local SAPIC Structure with a processor
String object declared in the namespace using the Device statement,

when the _UID child object of the processor device evaluates
to a string, by matching the string with this field. This value
is stored as a null-terminated ASCII string.

5.2.12.11 Platform Interrupt Source Structure

The Platform Interrupt Source structure is used to communicate which I/O SAPIC interrupt inputs are connected to
the platform interrupt sources.

Platform Management Interrupts (PMIs) are used to invoke platform firmware to handle various events (similar to SMI
in IA-32). The Intel® ItaniumTM architecture permits the I/O SAPIC to send a vector value in the interrupt message
of the PMI type. This value is specified in the I/O SAPIC Vector field of the Platform Interrupt Sources Structure.

INIT messages cause processors to soft reset.

If a platform can generate an interrupt after correcting platform errors (e.g., single bit error correction), the interrupt
input line used to signal such corrected errors is specified by the Global System Interrupt field in the following table.
Some systems may restrict the retrieval of corrected platform error information to a specific processor. In such cases,
the firmware indicates the processor that can retrieve the corrected platform error information through the Processor
ID and EID fields in the structure below. OSPM is required to program the I/O SAPIC redirection table entries with
the Processor ID, EID values specified by the ACPI system firmware. On platforms where the retrieval of corrected
platform error information can be performed on any processor, the firmware indicates this capability by setting the
CPEI Processor Override flag in the Platform Interrupt Source Flags field of the structure below. If the CPEI Processor
Override Flag is set, OSPM uses the processor specified by Processor ID, and EID fields of the structure below only
as a target processor hint and the error retrieval can be performed on any processor in the system. However, firmware
is required to specify valid values in Processor ID, EID fields to ensure backward compatibility.

If the CPEI Processor Override flag is clear, OSPM may reject a ejection request for the processor that is targeted for
the corrected platform error interrupt. If the CPEI Processor Override flag is set, OSPM can retarget the corrected
platform error interrupt to a different processor when the target processor is ejected.

Note that the _MAT object can return a buffer containing Platform Interrupt Source Structure entries. It is allowed for
such an entry to refer to a Global System Interrupt that is already specified by a Platform Interrupt Source Structure
provided through the static MADT table, provided the value of platform interrupt source flags are identical.

Refer to the ItaniumTM Processor Family System Abstraction Layer (SAL) Specification for details on handling the
Corrected Platform Error Interrupt.

5.2. ACPI System Description Tables 178

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.32: Platform Interrupt Source Structure

Field Byte Byte Description
Length | Offset

Type 1 0 8 Platform Interrupt Source structure

Length 1 1 16

Flags 2 2 MPS INTI flags. See Table 5.26 for a description of this field.

Interrupt Type 1 4 1 PMI | 2 INIT | 3 Corrected Platform Error Interrupt. All
other values are reserved.

Processor ID 5 Processor ID of destination.

Processor EID 1 6 Processor EID of destination.

I/0 SAPIC Vector 1 7 Value that OSPM must use to program the vector field of the
I/0 SAPIC redirection table entry for entries with the PMI
interrupt type.

Global System Interrupt 4 8 The Global System Interrupt that this platform interrupt will
signal.

Platform Interrupt Source | 4 12 Platform Interrupt Source Flags. See Platform Interrupt

Flags Source Flags for a description of this field

Table 5.33: Platform Interrupt Source Flags

Platform Interrupt | Bit Bit Off- | Description

Source Flags Length | set

CPEI Processor Override 1 0 When set, indicates that retrieval of error information is al-
lowed from any processor and OSPM is to use the informa-
tion provided by the processor ID, EID fields of the Platform
Interrupt Source Structure as a target processor hint.

Reserved 31 1 Must be zero.

5.2.12.12 Processor Local x2APIC Structure

The Processor X2APIC structure is very similar to the processor local APIC structure. When using the X2APIC
interrupt model, logical processors are required to have a processor device object in the DSDT and must convey the
processor’s APIC information to OSPM using the Processor Local X2APIC structure.

* [Compatibility note] On some legacy OSes, Logical processors with APIC ID values less than 255 (whether in
XAPIC or X2APIC mode) must use the Processor Local APIC structure to convey their APIC information to
OSPM, and those processors must be declared in the DSDT using the Processor() keyword. Logical processors
with APIC ID values 255 and greater must use the Processor Local x2APIC structure and be declared using the
Device() keyword.

OSPM does not expect the information provided in this table to be updated if the processor information changes
during the lifespan of an OS boot. While in the sleeping state, logical processors must not be added or removed, nor
can their X2APIC ID or x2APIC Flags change. When a logical processor is not present, the processor local X2APIC
information is either not reported or flagged as disabled.

The format of x2APIC structure is listed in Section 5.2.12.12 .

Table 5.34: Processor Local x2APIC Structure

Field Byte Byte Description

Length | Offset
Type 1 0 9 Processor Local x2APIC structure
Length 1 1 16

continues on next page

5.2. ACPI System Description Tables 179

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.34 — continued from previous page

Field Byte Byte Description
Length | Offset

Reserved 2 2 Reserved - Must be zero

X2APIC ID 4 4 The processor’s local x2APIC ID.

Flags 4 8 Same as Local APIC flags. See Local APIC Flags for a de-
scription of this field.

ACPI Processor UID 4 12 OSPM associates the X2APIC Structure with a processor ob-
ject declared in the namespace using the Device statement,
when the _UID child object of the processor device evaluates
to a numeric value, by matching the numeric value with this
field.

5.2.12.13 Local x2APIC NMI Structure

The Local APIC NMI and Local x2APIC NMI structures describe the interrupt input (LINTn) that NMI is connected
to for each of the logical processors in the system where such a connection exists. Each NMI connection to a processor
requires a separate NMI structure. This information is needed by OSPM to enable the appropriate APIC entry.

NMI connection to a logical processor with local x2APIC ID 255 and greater requires an X2APIC NMI structure.
NMI connection to a logical processor with an x2APIC ID less than 255 requires a Local APIC NMI structure. For
example, if the platform contains 8 logical processors with xX2APIC IDs 0-3 and 256-259 and NMI is connected LINT1
for processor 3, 2, 256 and 257 then two Local APIC NMI entries and two X2APIC NMI entries must be provided in
the MADT.

The Local APIC NMI structure is used to specify global LINTx for all processors if all logical processors have x2APIC
ID less than 255. If the platform contains any logical processors with an x2APIC ID of 255 or greater then the Local
X2APIC NMI structure must be used to specify global LINTx for ALL logical processors. The format of x2APIC
NMI structure is listed in Section 5.2.12.13 .

Table 5.35: Local x2APIC NMI Structure

Field Byte Byte Description
Length | Offset
Type 1 0 0OAH Local x2APIC NMI Structure
Length 1 1 12
Flags 2 2 Same as MPS INTI flags. See MPS INTI Flags For a descrip-
tion of this field.
ACPI Processor UID 4 4 UID corresponding to the ID listed in the processor Device

object. A value of OxFFFFFFFF signifies that this applies to
all processors in the machine.

Local x2APIC LINT# 1 8 Local x2APIC interrupt input LINTn to which NMI is con-
nected.
Reserved 3 9 Reserved - Must be zero.

5.2. ACPI System Description Tables 180

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.12.14 GIC CPU Interface (GICC) Structure

In the GIC interrupt model, logical processors are required to have a Processor Device object in the DSDT, and must
convey each processor’s GIC information to the OS using the GICC structure.

The format of the GICC structure is shown in the following table.

Table 5.36: GICC Structure

Field Byte Byte Description
Length | Offset

Type 1 0 0xB GICC structure

Length 1 1 80

Reserved 2 2 Reserved - Must be zero

CPU Interface Number 4 4 GIC’s CPU Interface Number. In GICv1/v2 implementations,
this value matches the bit index of the associated processor
in the GIC distributor’s GICD_ITARGETSR register. For
GICv3/4 implementations this field must be provided by the
platform, if compatibility mode is supported. If it is not sup-
ported by the implementation, then this field must be zero.

ACPI Processor UID 4 8 The OS associates this GICC Structure with a processor de-
vice object in the namespace when the _UID child object of
the processor device evaluates to a numeric value that matches
the numeric value in this field.

Flags 4 12 See GICC CPU Interface Flags.

Parking Protocol Version | 4 16 Version of the ARM-Processor Parking Protocol imple-
mented. See http://uefi.org/acpi. The document link is listed
under “Multiprocessor Startup for ARM Platforms” For sys-
tems that support PSCI exclusively and do not support the
parking protocol, this field must be set to 0.

Performance Interrupt | 4 20 The GSIV used for Performance Monitoring Interrupts

GSIV

Parked Address 8 24 The 64-bit physical address of the processor’s Parking Proto-
col mailbox

Physical Base Address 8 32 On GICv1/v2 systems and GICv3/4 systems in GICv2 com-
patibility mode, this field holds the 64-bit physical address at
which the processor can access this GIC CPU Interface. If
provided here, the “Local Interrupt Controller Address” field
in the MADT must be ignored by the OSPM.

GICV 8 40 Address of the GIC virtual CPU interface registers. If the plat-
form is not presenting a GICv2 with virtualization extensions
this field can be 0.

GICH 8 48 Address of the GIC virtual interface control block registers.
If the platform is not presenting a GICv2 with virtualization
extensions this field can be 0.

VGIC Maintenance inter- | 4 56 GSIV for Virtual GIC maintenance interrupt

rupt

continues on next page

5.2. ACPI System Description Tables

181

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.36 — continued from previous page

Field

Byte
Length

Byte
Offset

Description

GICR Base Address

8

60

On systems supporting GICv3 and above, this field holds the
64-bit physical address of the associated Redistributor. If all
of the GIC Redistributors are in the always-on power domain,
GICR structures should be used to describe the Redistributors
instead, and this field must be set to 0. If a GICR structure is
present in the MADT then this field must be ignored by the
OSPM.

MPIDR

68

This fields follows the MPIDR formatting of ARM
architecture. If ARMv7 architecture is used then the format
must be as follows:

Bits [63:24] Must be zero

Bits [23:16] Aff2 : Match Aff2 of target processor MPIDR
Bits [15:8] Aff1 : Match Aff1 of target processor MPIDR
Bits [7:0] AffO : Match AffO of target processor MPIDR
For platforms implementing ARMvS the format must be:
Bits [63:40] Must be zero

Bits [39:32] Aff3 : Match Aff3 of target processor MPIDR
Bits [31:24] Must be zero

Bits [23:16] Aff2 : Match Aff2 of target processor MPIDR
Bits [15:8] Affl : Match Aff1 of target processor MPIDR
Bits [7:0] AffO : Match AffO of target processor MPIDR

Processor Power Effi-

ciency Class

76

Describes the relative power efficiency of the associated pro-
cessor. Lower efficiency class numbers are more efficient than
higher ones (e.g. efficiency class 0 should be treated as more
efficient than efficiency class 1). However, absolute values
of this number have no meaning: 2 isn’t necessarily half as
efficient as 1.

Reserved

77

Must be zero.

SPE overflow Interrupt

78

Statistical Profiling Extension buffer overflow GSIV. This in-
terrupt is a level triggered PPI. Zero if SPE is not supported
by this processor.

Table 5.37: GICC CPU Interface Flags

GIC Flags Bit Bit Off- | Description
Length | set
Enabled 1 0 If zero, this processor is unusable, and the operating system
support will not attempt to use it.
Performance Interrupt | 1 1 0 - Level-triggered | 1 - Edge-Triggered
Mode
VGIC Maintenance inter- | 1 2 0 - Level-triggered | 1 - Edge-Triggered
rupt Mode Flags
Reserved 29 3 Must be zero.

5.2. ACPI System Description Tables

182

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.12.15 GIC Distributor (GICD) Structure

ACPI represents all wired interrupts as “flat” values known as global system interrupts (GSIVs) as described in Section
5.2.13 . On ARM-based systems the Generic Interrupt Controller (GIC) manages interrupts on the system. Each
interrupt is identified in the GIC by an interrupt identifier (INTID). ACPI GSIVs map one to one to GIC INTIDs for
peripheral interrupts, whether shared (SPI) or private (PPI). The GIC distributor structure describes the GIC distributor
to the OS. One, and only one, GIC distributor structure must be present in the MADT for an ARM based system.

The format of the GICD structure is listed in Table 5.38 .

Table 5.38: GICD Structure

Field Byte Byte Description
Length | Offset

Type 1 0 0xC GICD structure

Length 1 1 24

Reserved 2 2 Reserved - Must be zero

GICID 4 4 This GIC Distributor’s hardware ID

Physical Base Address 8 8 The 64-bit physical address for this Distributor

System Vector Base 4 16 Reserved - Must be zero

GIC version 1 20 0x00: No GIC version is specified, fall back to hardware dis-
covery for GIC version | 0x01: GICv1 | 0x02: GICv2 | 0x03:
GICv3 | 0x04: GICv4 | 0x05-0xFF, Reserved for future use.

Reserved 3 21 Must be zero

5.2.12.16 GIC MSI Frame Structure

Each GICv2m MSI frame consists of a 4k page which includes registers to generate message signaled interrupts to
an associated GIC distributor. The frame also includes registers to discover the set of distributor lines which may be
signaled by MSIs from that frame. A system may have multiple MSI frames, and separate frames may be defined for
secure and non-secure access. This structure must only be used to describe non-secure MSI frames.

The format of the GIC MSI Frame Structure is listed in Section 5.2.12.16 .

Table 5.39: GIC MSI Frame Structure

Field Byte Byte Description
Length | Offset
Type 1 0 0xD GIC MSI Frame structure
Length 1 1 24
Reserved 2 2 Reserved - Must be zero
GIC MSI Frame ID 4 4 GIC MSI Frame ID. In a system with multiple GIC MSI

frames, this value must be unique to each one.

Physical Base Address The 64-bit physical address for this MSI Frame

Flags GIC MSI Frame Flags. See Section 5.2.12.16

SPI Count 2 20 SPI Count used by this frame. Unless the SPI Count Select
flag is set to 1 this value should match the lower 16 bits of the
MSI_TYPER register in the frame.

SPI Base 2 22 SPI Base used by this frame. Unless the SPI Base Select flag
is set to 1 this value should match the upper 16 bits of the
MSI_TYPER register in the frame.

oo
oo

N
—_
(@)}

5.2. ACPI System Description Tables 183

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.40: GIC MSI Frame Flags

GIC MSI Frame Flags

Bit
Length

Bit Off-
set

Description

SPI Count/Base Select

1

0

0: The SPI Count and Base fields should be ignored, and the
actual values should be queried from the MSI_TYPER regis-
ter in the associated GIC MSI frame. | 1: The SPI Count and
Base values override the values specified in the MSI_TYPER
register in the associated GIC MSI frame.

Reserved

31

Must be zero.

5.2.12.17 GIC Redistributor (GICR) Structure

The GICR Structure is described in Table 5.41. This structure enables the discovery of GIC Redistributor base ad-
dresses by providing the Physical Base Address of a page range containing the GIC Redistributors. More than one
GICR Structure may be presented in the MADT. GICR structures should only be used when describing GIC imple-
mentations which conform to version 3 or higher of the GIC architecture and which place all Redistributors in the
always-on power domain.When a GICR structure is presented, the OSPM must ignore the GICR Base Address field
of the GICC structures (see the following table).

Table 5.41: GICR Structure

Field Byte Byte Description
Length | Offset
Type 1 0 O0xE GICR structure
Length 1 1 16
Reserved 2 2 Reserved - Must be zero
Discovery Range Base | 8 4 The 64-bit physical address of a page range containing all GIC
Address Redistributors
Discovery Range Length 4 12 Length of the GIC Redistributor Discovery page range.

5.2.12.18 GIC Interrupt Translation Service (ITS) Structure

The GIC ITS is optionally supported in GICv3/v4 implementations. The format of the GIC ITS Structure is listed in

Table 5.42 :
Table 5.42: GIC ITS Structure
Field Byte Byte Description
Length | Offset
Type 1 0 OxF GIC ITS structure
Length 1 1 20
Reserved 2 2 Reserved - Must be zero
GIC ITS ID 4 4 GIC ITS ID. In a system with multiple GIC ITS units, this
value must be unique to each one.
Physical Base Address 8 8 The 64-bit physical address for the Interrupt Translation Ser-
vice
Reserved 4 16 Reserved - Must be zero

5.2. ACPI System Description Tables

184

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.12.19 Multiprocessor Wakeup Structure

The platform firmware publishes a multiprocessor wakeup structure to let the bootstrap processor wake up application
processors with a mailbox. The mailbox is memory that the firmware reserves so that each processor can have the OS
send a message to them.

During system boot, the firmware puts the application processors in a state to check the mailbox. The shared mailbox is
a 4K-aligned 4K-size memory block allocated by the firmware in the ACPINvs memory. The firmware is not allowed
to modify the mailbox location when the firmware transfer the control to an OS loader. The mailbox is broken down
into two 2KB sections: an OS section and a firmware section.

The OS section can only be written by OS and read by the firmware, except the command field. The application
processor need clear the command to Noop(0) as the acknowledgement that the command is received. The firmware
must cache the content in the mailbox which might be used later before clear the command such as Wakeup Vector.
Only after the command is changed to Noop(0), the OS can send the next command. The firmware section must be
considered read-only to the OS and is only to be written to by the firmware. All data communication between the OS
and FW must be in little endian format.

The OS section contains command, flags, APIC ID, and a wakeup address. After the OS detects the processor number
from the MADT table, the OS may prepare the wakeup routine, fill the wakeup address field in the mailbox, indicate
which processor need to be wakeup in the APID ID field, and send wakeup command. Once an application processor
detects the wakeup command and its own APIC ID, the application processor will jump to the OS-provided wakeup
address. The application processor will ignore the command if the APIC ID does not match its own.

For each application processor, the mailbox can be used only once for the wakeup command. After the application pro-
cess takes the action according to the command, this mailbox will no longer be checked by this application processor.
Other processors can continue using the mailbox for the next command.

Table 5.43: Multiprocessor Wakeup Structure

Field Byte Byte Description
Length | Offset
Type 1 0 0x 10 Multiprocessor Wakeup structure
Length 1 1 16
MailBox Version 2 2 Version of the mailbox. O for this version of the spec.
Reserved 4 4 Must be 0.
MailBoxAddress 8 8 Physical address of the mailbox. It must be in ACPINvs. It must
also be 4K bytes aligned. See Table 5.44 for the Mailbox definition.

Table 5.44: Multiprocessor Wakeup Mailbox Structure

Field Byte Byte Description
Length | Offset
Command 2 0

0: Noop - no operation.
1: Wakeup — jump to the wakeup vector.
2-0xFFFF: Reserved

Reserved 2 2 Must be 0.

Apicld 4 4 The processor’s local APIC ID. The application processor
shall check if the Apicld field matches its own APIC ID. The
application processor shall ignore the command in case of
APIC ID mismatch.

continues on next page

5.2. ACPI System Description Tables 185

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.44 — continued from previous page

Field Byte Byte Description
Length | Offset
WakeupVector 8 8

The wakeup address for application processor(s).

For Intel processors, the execution environment is:
Interrupts must be disabled.
RFLAGES.IF set to 0.
Long mode enabled.
Paging mode is enabled and physical memory for
waking vector is identity mapped (virtual address
equals physical address)
Waking vector must be contained within one physical
page.
Selectors are set to flat and otherwise not used.

ReservedForOs 2032 16 Reserved for OS use.
ReservedForFirmware 2048 2048 Reserved for firmware use.

5.2.13 Global System Interrupts

Global System Interrupts can be thought of as ACPI Plug and Play IRQ numbers. They are used to virtualize interrupts
in tables and in ASL methods that perform resource allocation of interrupts. Do not confuse global system interrupts
with ISA IRQs although in the case of the IA-PC 8259 interrupts they correspond in a one-to-one fashion.

There are two interrupt models used in ACPI-enabled systems. The first model is the APIC model. In the APIC model,
the number of interrupt inputs supported by each I/O APIC can vary. OSPM determines the mapping of the Global
System Interrupts by determining how many interrupt inputs each I/O APIC supports and by determining the global
system interrupt base for each I/O APIC as specified by the /O APIC Structure. OSPM determines the number of
interrupt inputs by reading the Max Redirection register from the I/O APIC. The global system interrupts mapped to
that I/O APIC begin at the global system interrupt base and extending through the number of interrupts specified in
the Max Redirection register. There is exactly one I/O APIC structure per I/O APIC in the system. This mapping is
depicted in the following figure.

5.2. ACPI System Description Tables 186

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Global System Interrupt Vector Interrupt Input Lines *System Vector Base’
(ie ACPI PaP IRQ#) on IOAPIC reported in IOAPIC Struc
24 input 0 [MINTI O 0
IOAPIC
23 |PINTI 23
16 imput 24 INTIL 0 24
IOAPIC
39 PINTI 15
24 mput 40 | INTLO 40
IOAPIC :
51 TI 11
55 TI 23

Fig. 5.3: APIC-Global System Interrupts

5.2. ACPI System Description Tables 187

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

The other interrupt model is the standard AT style mentioned above which uses ISA IRQs attached to a master/slave
pair of 8259 PICs. The system vectors correspond to the ISA IRQs. The ISA IRQs and their mappings to the 8259
pair are part of the AT standard and are well defined. This mapping is depicted in the following figure.

Global System Interrupt Vector 8239 ISA TRQs

(12 ACPI PnP IRQ#) ¢ ¢
0 IRQO
Master IRQ3
8259
7 RQ7
2 IR8
Slave _
8259 RQ11
15 IRQI15

Fig. 5.4: 8259 - Global System Interrupts

5.2.14 Smart Battery Table (SBST)

If the platform supports batteries as defined by the Smart Battery Specification 1.0 or 1.1, then an Smart Battery Table
(SBST) is present. This table indicates the energy level trip points that the platform requires for placing the system
into the specified sleeping state and the suggested energy levels for warning the user to transition the platform into
a sleeping state. Notice that while Smart Batteries can report either in current (mA/mAh) or in energy (mW/mWh),
OSPM must set them to operate in energy (mW/mWh) mode so that the energy levels specified in the SBST can be
used. OSPM uses these tables with the capabilities of the batteries to determine the different trip points. For more
precise definitions of these levels, see Section 3.9.3

Table 5.45: Smart Battery Description Table (SBST) Format

Field Byte Byte Description
Length | Offset

Header

Signature 4 0 ‘SBST’ Signature for the Smart Battery Description Table.

Length 4 4 Length, in bytes, of the entire SBST

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the SBST, the table ID is the manufacturer model ID.

OEM Revision 4 24 OEM revision of SBST for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables contain-
ing Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Warning Energy Level 4 36 OEM suggested energy level in milliWatt-hours (mWh) at
which OSPM warns the user.

Low Energy Level 4 40 OEM suggested platform energy level in mWh at which
OSPM will transition the system to a sleeping state.

continues on next page

5.2. ACPI System Description Tables

188

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.45 — continued from previous page

Field Byte Byte Description
Length | Offset
Critical Energy Level 4 44 OEM suggested platform energy level in mWh at which
OSPM performs an emergency shutdown.

5.2.15 Embedded Controller Boot Resources Table (ECDT)

This optional table provides the processor-relative, translated resources of an Embedded Controller. The presence of
this table allows OSPM to provide Embedded Controller operation region space access before the namespace has been
evaluated. If this table is not provided, the Embedded Controller region space will not be available until the Embedded
Controller device in the AML namespace has been discovered and enumerated. The availability of the region space
can be detected by providing a _REG method object underneath the Embedded Controller device.

Table 5.46: Embedded Controller Boot Resources Table Format

Field Byte Byte Description
Length | Offset

Header

Signature 4 0 ‘ECDT’ Signature for the Embedded Controller Table.

Length 4 4 Length, in bytes, of the entire Embedded Controller Table

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the Embedded Controller Table, the table ID is the manu-
facturer model ID.

OEM Revision 4 24 OEM revision of Embedded Controller Table for supplied
OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables contain-
ing Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

EC_CONTROL 12 36 Contains the processor relative address, represented in
Generic Address Structure format, of the Embedded Con-
troller Command/Status register. | Note: Only System I/O
space and System Memory space are valid for values for Ad-
dress_Space_ID.

EC_DATA 12 48 Contains the processor-relative address, represented in
Generic Address Structure format, of the Embedded Con-
troller Data register. | Note: Only System I/O space
and System Memory space are valid for values for Ad-
dress_Space_ID.

UID 4 60 Unique ID-Same as the value returned by the _UID under the
device in the namespace that represents this embedded con-
troller.

GPE_BIT 1 64 The bit assignment of the SCI interrupt within the GPEx_STS
register of a GPE block described in the FADT that the em-
bedded controller triggers.

EC_ID Variable | 65 ASCII, null terminated, string that contains a fully qualified
reference to the namespace object that is this embedded con-
troller device (for example, “_SB.PCI0.ISA.EC”). Quotes
are omitted in the data field.

5.2. ACPI System Description Tables

189

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

ACPI OSPM implementations supporting Embedded Controller devices must also support the ECDT. ACPI 1.0 OSPM
implementation will not recognize or make use of the ECDT. The following example code shows how to detect whether

the Embedded Controller operation regions are available in a manner that is backward compatible with prior versions
of ACPI/OSPM.

Device (ECO)
{
Name (REGC, Ones)
Method (_REG, 2)
{
If (Arg0 == 3)
{
REGC = Argl
}

}

Method (ECAV, 0)
{
If (REGC == Ones)
{
If (_REV >=2)
{
Return (One)
}
Else
{
Return (Zero)
}
}
Else
{
Return (REGC)
}

To detect the availability of the region, call the ECAV method. For example:

If (_SB.PCIO.ECO0.ECAV())
{

//...regions are available...

//...regions are not available...

5.2. ACPI System Description Tables 190

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.16 System Resource Affinity Table (SRAT)

This optional table provides information that allows OSPM to associate the following types of devices with system
locality / proximity domains and clock domains:

* processors,
* memory ranges (including those provided by hot-added memory devices), and

* generic initiators (e.g. heterogeneous processors and accelerators, GPUs, and I/O devices with integrated com-
pute or DMA engines).

On NUMA platforms, SRAT information enables OSPM to optimally configure the operating system during a point
in OS initialization when evaluation of objects in the ACPI Namespace is not yet possible.

OSPM evaluates the SRAT only during OS initialization. The Local APIC ID / Local SAPIC ID / Local x2APIC ID
or the GICC ACPI Processor UID of all processors started at boot time must be present in the SRAT. If the Local
APIC ID / Local SAPIC ID / Local x2APIC ID or the GICC ACPI Processor UID of a dynamically added processor
is not present in the SRAT, a _PXM object must exist for the processor’s device or one of its ancestors in the ACPI
Namespace.

Note: SRAT is the place where proximity domains are defined, and _PXM provides a mechanism to associate a device
object (and its children) to an SRAT-defined proximity domain.

See Section 6.2.14 (_PXM Proximity) for more information.

Table 5.47: Static Resource Affinity Table Format

Field Byte Byte Description
Length | Offset

Header

Signature 4 0 ‘SRAT”. Signature for the System Resource Affinity Table.

Length 4 4 Length, in bytes, of the entire SRAT. The length implies the
number of Entry fields at the end of the table

Revision 1 8 3

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 For the System Resource Affinity Table, the table ID is the
manufacturer model ID.

OEM Revision 4 24 OEM revision of System Resource Affinity Table for supplied
OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator Revision 4 32 Revision of utility that created the table.

Reserved 4 36 Reserved to be 1 for backward compatibility

Reserved 8 40 Reserved

Static Resource Alloca- | — 48 A list of static resource allocation structures for the plat-

tion Structure[n] form. See Processor Local APIC/SAPIC Affinity Structure,
Memory Affinity Structure, Processor Local x2APIC Affinity
Structure, and GICC Affinity Structure.

5.2. ACPI System Description Tables 191

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.16.1 Processor Local APIC/SAPIC Affinity Structure
The Processor Local APIC/SAPIC Affinity structure provides the association between the APIC ID or SAPIC ID/EID

of a processor and the proximity domain to which the processor belongs. See the Processor Local APIC/SAPIC
Affinity structure.

Table 5.48: Processor Local APIC/SAPIC Affinity Structure

Field Byte Byte Description
Length | Offset
Type 1 0 0 Processor Local APIC/SAPIC Affinity Structure
Length 1 1 16
Proximity Domain [7:0] 1 2 Bit [7:0] of the proximity domain to which the processor be-
longs.
APIC ID 1 3 The processor local APIC ID.
Flags 4 4 Flags - Processor Local APIC/SAPIC Affinity Structure. See

Processor Local APIC/SAPIC Affinity Structure for a descrip-
tion of this field.

Local SAPIC EID 1 8 The processor local SAPIC EID.

Proximity Domain [31:8] | 3 9 Bit [31:8] of the proximity domain to which the processor be-
longs.

Clock Domain 4 12 The clock domain to which the processor belongs. See _CDM
(Clock Domain).

Table 5.49: Flags - Processor Local APIC/SAPIC Affinity Structure

Field Bit Bit Off- | Description
Length | set
Enabled 1 0 If clear, the OSPM ignores the contents of the Processor Local

APIC/SAPIC Affinity Structure. This allows system firmware
to populate the SRAT with a static number of structures but
only enable them as necessary.

Reserved 31 1 Must be zero.

5.2.16.2 Memory Affinity Structure

The Memory Affinity structure provides the following topology information statically to the operating system:
* The association between a memory range and the proximity domain to which it belongs
* Information about whether the memory range can be hot-plugged.

See the table below for more details.

Table 5.50: Memory Affinity Structure

Field Byte Byte Description
Length | Offset
Type 1 0 1 Memory Affinity Structure
Length 1 1 40
Proximity Domain 4 2 Integer that represents the proximity domain to which the
memory range belongs.
Reserved 2 6 Reserved
Base Address Low 4 8 Low 32 Bits of the Base Address of the memory range

continues on next page

5.2. ACPI System Description Tables 192

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.50 — continued from previous page

Field Byte Byte Description
Length | Offset

Base Address High 4 12 High 32 Bits of the Base Address of the memory range

Length Low 4 16 Low 32 Bits of the length of the memory range.

Length High 4 20 High 32 Bits of the length of the memory range.

Reserved 4 24 Reserved

Flags 4 28 Flags - Memory Affinity Structure. Indicates whether the re-
gion of memory is enabled and can be hot plugged. See the
corresponding table below for more details.

Reserved 8 32 Reserved

Table 5.51: Flags - Memory Affinity Structure

Field Bit Bit Off- | Description

Length | set

Enabled 1 0 If clear, the OSPM ignores the contents of the Memory Affin-
ity Structure. This allows system firmware to populate the
SRAT with a static number of structures but only enable then
as necessary.

Hot Pluggable 1 1 The information conveyed by this bit depends on the value of
the Enabled bit. If the Enabled bit is set and the Hot Pluggable
bit is also set. The system hardware supports hot-add and hot-
remove of this memory region If the Enabled bit is set and
the Hot Pluggable bit is clear, the system hardware does not
support hot-add or hot-remove of this memory region. If the
Enabled bit is clear, the OSPM will ignore the contents of the
Memory Affinity Structure

NonVolatile 1 2 If set, the memory region represents Non-Volatile memory

Reserved 29 3 Must be zero.

5.2.16.3 Processor Local x2APIC Affinity Structure

The Processor Local x2APIC Affinity structure provides the association between the local x2APIC ID of a processor
and the proximity domain to which the processor belongs. Section 5.2.16.3 provides the details of the Processor Local
x2APIC Affinity structure.

Table 5.52: Processor Local xX2APIC Affinity Structure

Field Byte Byte Description
Length | Offset

Type 1 0 2 Processor Local x2APIC Affinity Structure

Length 1 1 24

Reserved 2 2 Reserved - Must be zero

Proximity Domain 4 4 The proximity domain to which the logical processor belongs.

X2APIC ID 4 8 The processor local x2APIC ID.

Flags 4 12 Same as Processor Local APIC/SAPIC Affinity Structure
flags. See the corresponding table below for a description of
this field.

Clock Domain 4 16 The clock domain to which the logical processor belongs. See
_CDM (Clock Domain).

Reserved 4 20 Reserved.

5.2. ACPI System Description Tables

193

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

On x86-based platforms, the OSPM uses the Hot Pluggable bit to determine whether it should shift into PAE mode to
allow for insertion of hot-plug memory with physical addresses over 4 GB.

5.2.16.4 GICC Affinity Structure

The GICC Affinity Structure provides the association between the ACPI Processor UID of a processor and the prox-
imity domain to which the processor belongs. Section 5.2.16.4 provides the details of the GICC Affinity structure.

Table 5.53: GICC Affinity Structure

Field Byte Byte Description
Length | Offset

Type 1 0 3 GICC Affinity Structure.

Length 1 1 18

Proximity Domain 4 2 The proximity domain to which the logical processor belongs.

ACPI Processor UID 4 6 The ACPI Processor UID of the associated GICC.

Flags 4 10 Flags - GICC Affinity Structure. See the corresponding table
below for a description of this field.

Clock Domain 4 14 The clock domain to which the logical processor belongs. See
_CDM (Clock Domain).

Table 5.54: Flags - GICC Affinity Structure

Field Bit Bit Off- | Description
Length | set
Enabled 1 0 If clear, the OSPM ignores the contents of the GICC Affinity
Structure. This allows system firmware to populate the SRAT
with a static number of structures but only enable them as
necessary.
Reserved 31 1 Must be zero.

5.2.16.5 GIC Interrupt Translation Service (ITS) Affinity Structure

The GIC ITS Affinity Structure provides the association between a GIC ITS and a proximity domain. This enables
the OSPM to discover the memory that is closest to the ITS, and use that in allocating its management tables and
command queue. The ITS is identified using an ID matching a declaration of a GIC ITS in the MADT, see Section
5.2.12.18 for details. The following table provides the details of the GIC ITS Affinity structure.

Table 5.55: Architecture Specific Affinity Structure

Field Byte Byte Description
Length | Offset
Type 1 0 4 GIC ITS Affinity Structure
Length 1 1 12
Proximity domain | 4 2 Integer that represents the proximity domain to which the GIC ITS be-
longs to.
Reserved 2 6 Reserved must be zero
ITS ID 4 8 ITS ID matching a GIC ITS entry in the MADT

5.2. ACPI System Description Tables 194

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.16.6 Generic Initiator Affinity Structure

The Generic Initiator Affinity Structure provides the association between a generic initiator and the proximity domain
to which the initiator belongs. See Section 5.2.16.6 for details.

Support of Generic Initiator Affinity Structures by OSPM is optional, and the platform may query whether the OS
supports it via the _OSC method. See Section 6.2.11.2 .

Table 5.56: Generic Initiator Affinity Structure

Field Byte Byte Description
Length | Offset
Type 1 0 5 Generic Initiator Structure.
Length 1 1 32
Reserved 1 2 Reserved and must be zero.
Device Handle Type 1 3
Device Handle Type:
0 - ACPI Device Handle
1 - PCI Device Handle
2-255 - Reserved
Proximity Domain 4 4 The proximity domain to which the generic initiator belongs.
Device Handle 16 8 Device Handle of the Generic Initiator. See Device Handle -
ACPI for a description of the ACPI Device Handle, and De-
vice Handle - PCI for a description of the PCI Device Handle.
Flags 4 24 Flags - Generic Initiator Affinity Structure. See the corre-
sponding table below for a description of this field.
Reserved 4 28 Reserved and must be zero.
Table 5.57: Device Handle - ACPI
Field Byte Byte Description
Length | Offset
ACPI _HID 8 0 The _HID value
ACPI _UID 4 8 The _UID value
Reserved 4 12 Must be zero.
Table 5.58: Device Handle - PCI
Field Byte Byte Description
Length | Offset
PCI Segment 2 0 PCI segment number. For systems with fewer than 255 PCI buses,
this number must be 0.
PCI BDF Number 2 2
PCI Bus Number (Bits 7:0 of Byte 2)
PCI Device Number (Bits 7:3 of Byte 3)
PCI Function Number (Bits 2:0 of Byte 3)
Reserved 12 4 Must be zero

5.2. ACPI System Description Tables

195

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.59: Flags - Generic Initiator Affinity Structure

Field Bit Bit Off- | Description
Length | set
Enabled 1 0 If clear, the OSPM ignores the contents of the Generic Initia-

tor Affinity Structure. This allows system firmware to pop-
ulate the SRAT with a static number of structures but only
enable then as necessary.

Architectural transactions | 1 1 If set, indicates that the Generic Initiator can initiate all trans-
actions at the same architectural level as the host (e.g. full
atomicOps, cache coherency, virtual memory, ...) see imple-
mentors note

Reserved 30 2 Must be zero.

Note: If a generic device with coherent memory is attached to the system, it is recommended to define affinity
structures for both the device and memory associated with the device. They both may have the same proximity
domain.

If a generic device is marked with “architectural transactions,”’ the Generic Initiator supports all applicable architectural
mechanisms for cache synchronization, atomicOps and virtual memory, etc. - fully equivalent to the memory model
of the host processor (with potentially different but equivalent instruction mechanisms in its ISA).

Supporting a subset of architectural transactions would be only permissible if the lack of the feature does not have
material consequences to the memory model. One example is lack of cache coherency support on the GI, if the GI
does not have any local caches to global memory that require invalidation through the data fabric.

OS is assured that the GI adheres to the memory model as the host processor architecture related to observable trans-
actions to memory for memory fences and other synchronization operations issued on either initiator or host.

5.2.17 System Locality Information Table (SLIT)

This optional table provides a matrix that describes the relative distance (memory latency) between all System Local-
ities, which are also referred to as Proximity Domains. Systems employing a Non Uniform Memory Access (NUMA)
architecture contain collections of hardware resources including for example, processors, memory, and I/O buses, that
comprise what is known as a “NUMA node”. Processor accesses to memory or I/O resources within the local NUMA
node is generally faster than processor accesses to memory or I/O resources outside of the local NUMA node.

The value of each Entry[i,j] in the SLIT table, where i represents a row of a matrix and j represents a column of a
matrix, indicates the relative distances from System Locality / Proximity Domain i to every other System Locality j in
the system (including itself).

The i,j row and column values correlate to Proximity Domain values in the System Resource Affinity Table (SRAT),
and to values returned by _PXM objects in the ACPI namespace. See Section 5.2.16 for more information.

The entry value is a one-byte unsigned integer. The relative distance from System Locality i to System Locality j is
the i*N + j entry in the matrix, where N is the number of System Localities. Except for the relative distance from a
System Locality to itself, each relative distance is stored twice in the matrix. This provides the capability to describe
the scenario where the relative distances for the two directions between System Localities is different.

The diagonal elements of the matrix, the relative distances from a System Locality to itself are normalized to a value
of 10. The relative distances for the non-diagonal elements are scaled to be relative to 10. For example, if the relative
distance from System Locality i to System Locality j is 2.4, a value of 24 is stored in table entry i*N+ j and in j*N+ 1,
where N is the number of System Localities.

If one locality is unreachable from another, a value of 255 (OxFF) is stored in that table entry. Distance values of 0-9
are reserved and have no meaning.

5.2. ACPI System Description Tables 196

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.60: SLIT Format

Field Byte Byte Description
Length | Offset

Header

- Signature 4 0 ‘SLIT’. Signature for the System Locality Distance Informa-
tion Table.

- Length 4 4 Length, in bytes, of the entire System Locality Distance In-
formation Table.

- Revision 1 8 1

- Checksum 1 9 Entire table must sum to zero.

- OEMID 6 10 OEM ID.

- OEM Table ID 8 16 For the System Locality Information Table, the table ID is the
manufacturer model ID.

- OEM Revision 4 24 OEM revision of System Locality Information Table for sup-
plied OEM Table ID.

- Creator ID 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the ID for the ASL
Compiler.

- Creator Revision 4 32 Revision of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the revision for the
ASL Compiler.

Number of System Local- | 8 36 Indicates the number of System Localities in the system.

ities

Entry[0][0] 1 44 Matrix entry (0,0), contains a value of 10.

Entry[0][Number of Sys- | 1 Matrix entry (0, Number of System Localities-1)

tem Localities-1]

Entry[1][0] 1 Matrix entry (1,0)

Entry [Number of System | 1 Matrix entry (Number of System Localities-1, Number of

Localities-1] [Number of System Localities-1), contains a value of 10

System Localities-1]

5.2.18 Corrected Platform Error Polling Table (CPEP)

Platforms may contain the ability to detect and correct certain operational errors while maintaining platform func-
tion. These errors may be logged by the platform for the purpose of retrieval. Depending on the underlying hard-
ware support, the means for retrieving corrected platform error information varies. If the platform hardware supports
interrupt-based signaling of corrected platform errors, the MADT Platform Interrupt Source Structure describes the
Corrected Platform Error Interrupt (CPEI). See Section 5.2.12.11. Alternatively, OSPM may poll processors for cor-
rected platform error information. Error log information retrieved from a processor may contain information for all
processors within an error reporting group. As such, it may not be necessary for OSPM to poll all processors in the
system to retrieve complete error information. This optional table provides information that allows OSPM to poll only
the processors necessary for a complete report of the platform’s corrected platform error information.

Table 5.61: Corrected Platform Error Polling Table Format

Field Byte Byte Description
Length | Offset

Header

continues on next page

5.2. ACPI System Description Tables 197

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.61 — continued from previous page

Field Byte Byte Description
Length | Offset

- Signature 4 0 ‘CPEP’. Signature for the Corrected Platform Error
Polling Table.

- Length 4 4 Length, in bytes, of the entire CPET. The length implies
the number of Entry fields at the end of the table

- Revision 1 8 1

- Checksum 1 9 Entire table must sum to zero.

- OEMID 6 10 OEM ID.

- OEM Table ID 8 16 For the Corrected Platform Error Polling Table, the table
ID is the manufacturer model ID.

- OEM Revision 4 24 OEM revision of Corrected Platform Error Polling Table
for supplied OEM Table ID.

- Creator ID 4 28 Vendor ID of utility that created the table.

- Creator Revision 4 32 Revision of utility that created the table.

Reserved 8 36 Reserved, must be 0.

CPEP Processor Structure[n] — 44 A list of Corrected Platform Error Polling Processor
structures for the platform. See corresponding table be-
low.

5.2.18.1 Corrected Platform Error Polling Processor Structure

The Corrected Platform Error Polling Processor structure provides information on the specific processors OSPM polls
for error information. See corresponding table below for details of the Corrected Platform Error Polling Processor

structure.

5.2. ACPI System Description Tables

198

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.62: Corrected Platform Error Polling Processor Structure

Field Byte Byte Description
Length | Offset
Type 1 0 0 Corrected Platform Error Polling Processor structure for
APIC/SAPIC based processors
Length 1 1 8
Processor ID 1 2 Processor ID of destination.
Processor EID 1 3 Processor EID of destination.
Polling Interval 4 4 Platform-suggested polling interval (in milliseconds)

5.2.19 Maximum System Characteristics Table (MSCT)

This section describes the format of the Maximum System Characteristic Table (MSCT), which provides OSPM with
information characteristics of a system’s maximum topology capabilities. If the system maximum topology is not
known up front at boot time, then this table is not present. OSPM will use information provided by the MSCT only
when the System Resource Affinity Table (SRAT) exists. The MSCT must contain all proximity and clock domains
defined in the SRAT.

5.2. ACPI System Description Tables 199

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.63: Maximum System Characteristics Table (MSCT) Format

Field Byte Byte Off- | Description
Length set
Header
- Signature 4 0 ‘MSCT’ Signature for the Maximum Sys-

tem Characteristics Table.

Length 4 4 Length, in bytes, of the entire MSCT.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the MSCT, the table ID is the manufac-
turer model ID.

OEM Revision 4 24 OEM revision of MSCT for supplied OEM
Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

For tables containing Definition Blocks, this
is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For
tables containing Definition Blocks, this is
the revision for the ASL Compiler.

Offset to Proximity Domain Informa- | 4 36 Offset in bytes to the Proximity Domain In-
tion Structure [OffsetProxDomlInfo] formation Structure table entry.

Maximum Number of Proximity Do- | 4 40 Indicates the maximum number of Proxim-
mains ity Domains ever possible in the system.

The number reported in this field is (max-
imum domains - 1). For example if there
are 0x10000 possible domains in the sys-
tem, this field would report OxFFFF.
Maximum Number of Clock Domains | 4 44 Indicates the maximum number of Clock
Domains ever possible in the system. The
number reported in this field is (maximum
domains - 1). See Section 6.2.1.

Maximum Physical Address 8 48 Indicates the maximum Physical Address
ever possible in the system. Note: this is
the top of the reachable physical address.

Proximity Domain Information Struc- | — [OffsetProx- | A list of Proximity Domain Information for
ture[Maximum Number of Proximity Domlnfo] this implementation. The structure format is
Domains] defined in the Maximum Proximity Domain

Information Structure section.

5.2.19.1 Maximum Proximity Domain Information Structure

The Maximum Proximity Domain Information Structure is used to report system maximum characteristics. It is likely
that these characteristics may be the same for many proximity domains, but they can vary from one proximity domain
to another. This structure optimizes to cover the former case, while allowing the flexibility for the latter as well. These
structures must be organized in ascending order of the proximity domain enumerations. All proximity domains within
the Maximum Number of Proximity Domains reported in the MSCT must be covered by one of these structures.

5.2. ACPI System Description Tables 200

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.64: Maximum Proximity Domain Information Structure
Field Byte Byte Description
Length | Offset

Revision 1 0 1

Length 1 1 22

Proximity Domain Range (low) | 4 2 The starting proximity domain for the proximity domain
range that this structure is providing information.

Proximity Domain Range (high) | 4 6 The ending proximity domain for the proximity domain
range that this structure is providing information.

Maximum Processor Capacity 4 10 The Maximum Processor Capacity of each of the Prox-

imity Domains specified in the range. A value of 0
means that the proximity domains do not contain pro-
cessors. This field must be >= the number of processor
entries for the domain in the SRAT.

Maximum Memory Capacity

8 14 The Maximum Memory Capacity (size in bytes) of the
Proximity Domains specified in the range. A value of 0
means that the proximity domains do not contain mem-
ory.

5.2.20 ACPI RAS Feature Table (RASF)

The following table describes the structure of ACPI RAS Feature Table.

Table 5.65: RASF Table format

Field Byte Byte Description
Length | Offset

Header

- Signature 4 0 ‘RASF’ is Signature for RAS Feature Table

- Length 4 4 Length in bytes for entire RASF. The length implies the
number of Entry fields at the end of the table

- Revision 1 8 1

- Checksum 1 9 Entire table must sum to zero

- OEMID 6 10 OEM ID

- OEM Table ID 8 16 The table ID is the manufacturer model ID

- OEM Revision 4 24 OEM revision of table for supplied OEM Table ID

- Creator ID 4 28 Vendor ID of utility that created the table

- Creator Revision 4 32 Revision of utility that created the table

RASF Specific Entries

- RASF Platform Communica- | 12 36 Identifier of the RASF Platform Communication Chan-

tion Channel Identifier nel. OSPM should use this value to identify the PCC
Sub channel structure in the RASF table

5.2. ACPI System Description Tables 201

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.20.1 RASF PCC Sub Channel Identifier

RASF PCC Sub Channel Identifier is used by the OSPM to identify the PCC Sub channel structure. RASF table
references its PCC Subspace by this identifier as shown in Table 5.65 .

5.2.20.2 Using PCC registers

OSPM will write PCC registers by filling in the register value in PCC sub channel space and issuing a PCC Execute
command. See Table 5.67.

To minimize the cost of PCC transactions, OSPM should read or write all registers in the same PCC subspace via a
single read or write command.

5.2.20.3 RASF Communication Channel

RASF Action Entries are defined in the PCC sub channel as below.

Table 5.66: RASF Platform Communication Channel Shared Mem-
ory Region
Field Byte Byte Description
Length | Offset
Signature 4 0 The PCC Signature of 0x52415346 (corresponds to
ASCII signature of RASF)
Command 2 4 PCC command field; see PCC Command Codes used by
RASF Platform Communication Channel, and the Plat-
form Communications Channel (PCC).
Status 2 6 PCC status field. See Platform Communications Chan-
nel (PCC).

Communication Space:

2 8 Byte 0 - Minor Version | Byte 1 - Major Version
* Version

16 10 Bit Map describing the platform RAS capabilities as
RAS Capabilities shown in Platform RAS Capabilities. The Platform pop-
ulates this field. The OSPM uses this field to determine
the RAS capabilities of the platform.
16 26 Bit Map of the RAS features for which the OSPM is
» Set RAS Capabilities invoking the command. The Bit Map is described in
Section 5.2.20.4. OSPM sets the bit corresponding to a
RAS capability to invoke a command on that capability.
The bitmap implementation allows OSPM to invoke a
command on each RAS feature supported by the plat-
form at the same time.
2 42 The Number of parameter blocks will depend on how
* Number of RASF Param- many RAS Capabilities the Platform Supports. Typ-
eter blocks ically, there will be one Parameter Block per RAS
Feature, using which that feature can be managed by
OSPM.

continues on next page

5.2. ACPI System Description Tables 202

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.66 — continued from previous page

Field Byte Byte Description
Length | Offset
4 44 Status:
» Set RAS Capabilities Sta- 0000b = Success
tus 0001b = Not Vvalid

0010b = Not Supported
0011lb = Busy

0100b = FailedF

0101b = Aborted

0110b = Invalid Data

Varies 48 Start of the parameter blocks, the structure of which
¢ Parameter Blocks (N is shown in the Parameter Block Structure for PA-
Bytes) TROL_SCRUB. These parameter blocks are used as

communication mailbox between the OSPM and the
platform, and there is 1 parameter block for each RAS
feature. NOTE: There can be only on parameter block

per type.

Table 5.67: PCC Command Codes used by RASF Platform Commu-
nication Channel

Command Description

0x00 Reserved

0x01 Execute RASF Command.
0x02-0xFF All other values are reserved.

5.2.20.4 Platform RAS Capabilities

The following table defines the Platform RAS capabilities:

Table 5.68: Platform RAS Capabilities Bitmap

Bit RAS Feature Description

0 Hardware based patrol scrub supported Indicates that the platform supports hardware
based patrol scrub of DRAM memory

1 Hardware based patrol scrub supported and ex- | Indicates that the platform supports hardware

posed to software based patrol scrub of DRAM memory and plat-

form exposes this capability to software using
this RASF mechanism

2-127 Reserved Reserved for future use

5.2. ACPI System Description Tables 203

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.20.5 Parameter Block

The following table describes the Parameter Blocks. The structure is used to pass parameters for controlling the

corresponding RAS Feature.

Each RAS Feature is assigned a TYPE number, which is the bit index into the RAS capabilities bitmap described in

Table 5.68 .
Table 5.69: Parameter Block Structure for PATROL_SCRUB
Field Byte Byte Description
Length | Offset

Type 2 0 0x0000 - Patrol scrub

Version 2 2 Byte 0 - Minor Version | Byte 1 - Major Version

Length 2 4 Length, in bytes of the entire parameter block structure

Patrol Scrub Command (IN- | 2 6

PUT) 0x01 - GET_PATROL_PARAMETERS
0x02 - START_PATROL_SCRUBBER
0x03 - STOP_PATROL_SCRUBBER

Requested Address | 16 8 OSPM Specifies the BASE (Bytes 7-0) and SIZE

Range(INPUT) (Bytes 15-8) of the address range to be patrol
scrubbed. OSPM sets this parameter for the follow-
ing commands: GET_PATROL_PARAMETERS and
START_PATROL_SCRUBBER

Actual Address Range (OUT- | 16 24 The platform returns this value in response to

PUT) GET_PATROL_PARAMETERS. The platform calcu-
lates the nearest patrol scrub boundary address from
where it can start. This range should be a superset of
the Requested Address Range. BASE (Bytes 7-0) and
SIZE (Bytes 15-8) of the address

Flags (OUTPUT) 2 40

The platform returns this value in response to
GET_PATROL_PARAMETERS:

Bit [0]: Will be set if patrol scrubber is already running
for address range specified in “Actual Address Range”

Bits [3:1]: Current Patrol Speeds, if Bit [0] is set:
000b - Slow
100b - Medium
111b - Fast
All other combinations are reserved.
Bits [15:4]: RESERVED

continues on next page

5.2. ACPI System Description Tables

204

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.69 — continued from previous page

Field Byte Byte Description
Length | Offset
Requested Speed (INPUT) 1 42

The OSPM Sets this field as follows, for the
START_PATROL_SCRUBBER command::

Bit [0]: Will be set if patrol scrubber is already running
for address range specified in “Actual Address Range”

Bits [2:0]: Requested Patrol Speeds

000b - Slow

100b - Medium

111b - Fast

All other combinations are reserved.
Bits [7:3]: RESERVED

5.2.20.5.1 Sequence of Operations:

The following sequence documents the steps for OSPM to identify whether the platform supports hardware based
patrol scrub and invoke commands to request hardware to patrol scrub the specified address range.

1. Identify whether the platform supports hardware based patrol scrub and exposes the support to software by
reading the RAS capabilities bitmap in the RASF table.

2. Call GET_PATROL_PARAMETERS, by setting the Requested Address Range.
3. Platform Returns Actual Address Range and Flags.

4. Based on the above two data, if the OPSM decides to start the patrol scrubber or change the speed of the patrol
scrubber, then the OSPM calls START_PATROL_SCRUBBER, by setting the Requested Address Range and
Requested Speed.

5.2.21 Memory Power State Table (MPST)

The following table describes the structure of new ACPI memory power state table (MPST). This table defines the
memory power node topology of the configuration, as described earlier in Section 1 . The configuration includes
specifying memory power nodes and their associated information. Each memory power node is specified using address
ranges, supported memory power states. The memory power states will include both hardware controlled and software
controlled memory power states. There can be multiple entries for a given memory power node to support non
contiguous address ranges. MPST table also defines the communication mechanism between OSPM and platform
runtime firmware for triggering software controlled memory powerstate transitions implemented in platform runtime
firmware.

The following figure provides a structured organization overview of MPST table.

5.2. ACPI System Description Tables 205

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 5.5: MPST ACPI Table Overview

5.2. ACPI System Description Tables 206

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.70: MPST Table Structure

Field Byte Byte Description
Length | Offset

Header

- Signature 4 0 ‘MPST". Signature for Memory Power State Table

- Length 4 4 Length in bytes for entire MPST. The length im-
plies the number of Entry fields at the end of the
table

- Revision 1 8 1

- Checksum 1 9 Entire table must sum to zero

- OEMID 6 10 OEM ID

- OEM Table ID 8 16 For the memory power state table, the table ID is
the manufacturer model ID

- OEM Revision 4 24 OEM revision of memory power state Table for
supplied OEM Table ID

- Creator ID 4 28 Vendor ID of utility that created the table

- Creator Revision 4 32 Revision of utility that created the table

Memory PCC

- MPST Platform Communication | 1 36 Identifier of the MPST Platform Communication

Channel Identifier Channel.

- Reserved 3 37 Reserved

Memory Power Node

- Memory Power Node Count 2 40 Number of Memory power Node structure entries

- Reserved 2 42 Reserved

- Memory Power Node Structure | — — This field provides information on the memory

[Memory Power Node Count] power nodes present in the system. The informa-
tion includes memory node id, power states sup-
ported & associated latencies. Further details of
this field are specified in Memory Power Node.

Memory Power State Characteris-

tics

- Memory Power State Characteristics | 2 — Number of Memory power State Characteristics

Count Structure entries

- Reserved 2 Reserved

- Memory Power State Characteristics | — — This field provides information of memory power

Structure [m] states supported in the system. The informa-
tion includes power consumed, transition laten-
cies, relevant flags.

5.2.21.1 MPST PCC Sub Channel

The MPST PCC Sub Channel Identifier value provided by the platform in this field should be programmed to the Type
field of PCC Communications Subspace Structure. The MPST table references its PCC Subspace in a given platform
by this identifier, as shown in Table 5.70.

5.2. ACPI System Description Tables

207

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.21.1.1 Using PCC registers

OSPM will write PCC registers by filling in the register value in PCC sub channel space and issuing a PCC Execute
command. See the table below. All other command values are reserved.

Table 5.71: PCC Command Codes used by MPST Platform Commu-
nication Channel

Command Description
0x00-0x02 All other values are reserved.
0x03 Execute MPST Command.
0x04-0xFF All other values are reserved.
Table 5.72: MPST Platform Communication Channel Shared Mem-
ory Region
Field Byte Byte Description
Length | Offset
Signature 4 0 The PCC signature. The signature of a sub-
space is computed by a bitwise-or of the value
0x50434300 with the subspace ID. For example,
subspace 3 has signature 0x50434303.
Command 2 4 PCC command field: see Section 14
Status 2 6 PCC status field: see Section 14
Communication Space
MEMORY_POWER _- 4 8 Memory region for OSPM to write the requested

COMMAND_REGISTER

memory power state.

Write:

1 to this field to GET the memory,,
—power state

2 to this field to set the memory,
—power state

3 - GET AVERAGE POWER CONSUMED

4 - GET MEMORY ENERGY CONSUMED

continues on next page

5.2. ACPI System Description Tables

208

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.72 — continued from previous page

Field Byte

Length

Byte
Offset

Description

MEMORY_POWER_- 4
STATUS_REGISTER

12

Bits [3:0]: Status (specific to MEM-
ORY_POWER_COMMAND_REGISTER):

- 0000b = Success

- 0001b = Not Valid

- 0010b = Not Supported
- 00l1lb = Busy

- 0100b = Failed

- 0101b = Aborted

- 0110b = Invalid Data
— Other values reserved

Bit [4]: Background Activity
cific to the following
ORY_POWER_COMMAND_REGISTER
value:

spe-
MEM-

3 - GET AVERAGE POWER CONSUMED

4 - GET MEMORY ENERGY CONSUMED

Ob = inactive

1b = background memory activity is,
—~1in progress

Bits [31:5]: Reserved

POWER_STATE_ID 4

16

On completion of a GET operation, OSPM reads
the current platform state ID from this field. Prior
to a SET operation, OSPM populates this field
with the power state value which needs to be trig-
gered. Power State values will be based on the
platform capability.

MEMORY_POWER_NODE_ID 4

20

This field identifies Memory power node number
for the command.

MEMORY_ENERGY_CONSUMED | 8

24

This field returns the energy consumed by
the memory that constitutes the MEM-
ORY_POWER_NODE_ID specified in the
previous field. A value of all 1s in this field
indicates that platform does not implement this
field.

EXPECTED_AVERAGE_- 8
POWER_CONSUMED

32

This field returns the expected average power con-
sumption for the memory constituted by MEM-
ORY_POWER_NODE _ID. A value of all 1s in
this field indicates that platform does not imple-
ment this field.

Note:
determining the memory power management action.

OSPM should use the ratio of computed memory power consumed to expected average power consumed in

5.2. ACPI System Description Tables

209

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.21.2 Memory Power State

Memory Power State represents the state of a memory power node (which maps to a memory address range) while the
platform is in the GO working state. Memory power node could be in active state named MPSO or in one of the power
manage states MPS1-MPSn.

It should be noted that active memory power state (MPS0) does not preclude memory power management in that state.
It only indicates that any active state memory power management in MPSO is transparent to the OSPM and more
importantly does not require assist from OSPM in terms of restricting memory occupancy and activity.

MPS1-MPSn states are characterized by non-zero exit latency for exit from the state to MPSO. These states could
require explicit OSPM-initiated entry and exit, explicit OSPM-initiated entry but autonomous exit or autonomous
entry and exit. In all three cases, these states require explicit OSPM action to isolate and free the memory address
range for the corresponding memory power node.

Transitions to more aggressive memory power states (for example, from MPS1 to MPS2) can be entered on progressive
idling but require transition through MPSO (i.e. M PS1 — MPS0 — M PS2). Power state transition diagram is
shown in Fig. 5.6 .

It is possible that after OSPM request a memory power state, a brief period of activity returns the memory power node
to MPSO state . If platform is capable of returning to a memory power state on subsequent period of idle, the platform
must treat the previously requested memory power state as a persistent hint.

Fig. 5.6: Memory Power State Transitions

The following table enumerates the power state values that a node can transition to.

5.2. ACPI System Description Tables 210

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.73: Power State Values

Value State Name Description

0 MPSO0 This state value maps to active state of memory node (Normal operation).
OSPM can access memory during this state.

1 MPS1 This state value can be mapped to any memory power state depending on

the platform capability. The platform will inform the features of MPS1
state using the Memory Power State Structure. By convention, it is re-
quired that low value power state will have lower power savings and lower
latencies than the higher valued power states.

2,3..

.n MPS2, MPS3, ... MPSn Same description as MPS1.

The following table provides the list of command status options:

Table 5.74: Command Status

Field Bit Bit Off- | Description
Length | set
Command Complete 1 0 If set, the platform has completed processing the last com-
mand.
SCI Doorbell 1 1 If set, then this PCC Sub-Channel has signaled the SCI door

bell. In Response to this SCI, OSPM should probe the Com-
mand Complete and the Platform Notification fields to deter-
mine the cause of SCI.

Error 1 2 If set, an error occurred executing the last command.

Platform Notification

(O8]

Indicates that the SCI doorbell was invoked by the platform.

Reserved 12 4 Reserved.

5.2.21.3 Action Sequence

SetMemoryPowerState: The following sequence needs to be done to set a memory power state.

1.

NS A »N

Write target POWER NODE ID value to MEMORY_POWER_NODE_ID register of PCC sub channel.
StepNumList-1 Write target POWER NODE ID value to MEMORY_POWER_NODE_ID register of PCC sub
channel.

Write desired POWER STATE ID value to POWER STATE ID register of PCC sub channel.

Write SET (See Table 5.72) to MEMORY_POWER_STATE register of PCC sub channel.

Write PCC EXECUTE (See PCC Command Codes used by MPST Platform Communication Channel)
OSPM rings the door bell by writing to Doorbell register.

Platform completes the request and will generate SCI to indicate that the command is complete.

OSPM reads the Status register for the PCC sub channel and confirms that the command was successfully
completed.

GetMemoryPowerState: The following sequence needs to be done to get the current memory power state.

1.

Write target POWER NODE ID value to MEMORY_POWER_NODE_ID register of PCC sub channel.
StepNumList-1 Write target POWER NODE ID value to MEMORY_POWER_NODE_ID register of PCC sub
channel.

. Write GET (See Table 5.72) to MEMORY_POWER_STATE register of PCC sub channel.
. Write PCC EXECUTE (See PCC Command Codes used by MPST Platform Communication Channel)

5.2.

ACPI System Description Tables 211

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

4. OSPM rings the door bell by writing to Doorbell register.
5. Platform completes the request and will generate SCI to indicate that command is complete.

6. OSPM reads Status register for the PCC sub channel and confirms that the command was successfully com-
pleted.

7. OSPM reads POWER STATE from POWER_STATE_ID register of PCC sub channel.

5.2.21.4 Memory Power Node

Memory Power Node is a representation of a logical memory region that needs to be transitioned in and out of a
memory power state as a unit. This logical memory region is made up of one more system memory address range(s).
A Memory Power Node is uniquely identified by Memory Power Node ID.

Note that memory power node structure defined in Table 5.75 can only represent a single address range. This address
range should be 4K aligned. If a Memory Power Node contains more than one memory address range (i.e. non-
contiguous range), firmware must construct a Memory power Node structure for each of the memory address ranges
but specify the same Memory Power Node ID in all the structures.

Memory Power Nodes are not hierarchical. However, a given memory address range covered by a Memory power
node could be fully covered by another memory power node if that nodes memory address range is inclusive of the
other node’s range. For example, memory power node MPNO may cover memory address range 1G-2G and memory
power node MPN1 covers 1-4G. Here MPN1 memory address range also comprehends the range covered by MPNO.

OSPM is expected to identify the memory power node(s) that corresponds to the maximum memory address range
that OSPM is able to power manage at a given time. For example, if MPNO covers 1G-2G and MPN1 covers 1-4G and
OSPM is able to power manage 1-4G, it should select MPN1. If MPNO is in a non-active memory power state, OSPM
must move MPNO to MPSO (Active state) before placing MPN1 in desired Memory Power State. Further, MPN1 can
support more power states than MPNO. If MPN1 is in such a state , say MPS3 , that MPNO does not support, software
must not query MPNO. If queried, MPNO will return “not Valid” until MPN1 returns to MPS0.

* [Implementation Note] In general, memory nodes corresponding to larger address space ranges correspond to
higher memory aggregation (e.g. memory covered by a DIMM vs. memory covered by a memory channel) and
hence typically present higher power saving opportunities.

5.2.21.4.1 Memory Power Node Structure

The following structure specifies the fields used for communicating memory power node information. Each entry in
the MPST table will be having corresponding memory power node structure defined.

This structure communicates address range, number of power states implemented, information about individual power
states, number of distinct physical components that comprise this memory power node.

The physical component identifiers can be cross-referenced against the memory topology table entries.

Table 5.75: Memory Power Node Structure definition

Field Byte Byte Description
Length | Offset
Flag 1 0 The flag describes type of memory node. See the Table 5.76
table below for details.
Reserved 1 1 For future use

continues on next page

5.2. ACPI System Description Tables 212

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.75 — continued from previous page

Field Byte Byte Description
Length | Offset

Memory Power Node Id 2 2 This field provides memory power node number. This is a
unique identification for Memory Power State Command and
creation of freelists/cache lists in OSPM memory manager to
bias allocation of non power managed nodes vs. power man-
aged nodes.

Length 4 4 Length in bytes for Memory Power Node Structure. The
length implies the number of Entry fields at the end of the
table.

Base Address Low 4 8 Low 32 bits of Base Address of the memory range.

Base Address High 4 12 High 32 bits of Base Address of the memory range.

Length Low 4 16 Low 32 bits of Length of the memory range. This field along
with “Length High” field is used to derive the end physical
address of this address range.

Length High 4 20 High 32 bits of Length of the memory range.

Number of Power States | 4 24 This field indicates number of power states supported for this

(n)

memory power node and in turn determines the number of
entries in memory power state structure.

Number of Physical Com- | 4

28 This field indicates the number of distinct Physical Compo-

ponents nents that constitute this memory power node. This field is
also used to identify the number of entries of Physical Com-
ponent Identifier entries present at end of this table.

Memory Power State | — 32 This field provides information of various power states sup-

Structure [n]

ported in the system for a given memory power node

Physical Component | 2 — 2 byte identifier of distinct physical component that makes up
Identifierl this memory power node
Physical Component | 2 — 2 byte identifier of distinct physical component that makes up

Identifier m

this memory power node

Table 5.76: Flag format

Bit

Name

Description

Enabled

If clear, the OSPM ignores this Memory Power Node Structure. This
allows system firmware to populate the MPST with a static number of
structures but enable them as necessary.

Power Managed Flag

1 - Memory node is power managed

0 - Memory node is not power managed. For non power managed node,
OSPM shall not attempt to transition node into low power state. System
behavior is undefined if OSPM attempts this. NOTE: If the memory
range corresponding to the memory node includes platform firmware
reserved memory that cannot be power managed, the platform should
indicate such memory as “not power managed” to OSPM. This allows
OSPM to ignore such ranges from its power optimization.

Hot Pluggable

This flag indicates that the memory node supports the hot plug feature.
See Interaction with Memory Hot Plug.

3-7

Reserved

Reserved for future use

5.2. ACPI System Description Tables

213

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.21.5 Memory Power State Structure

Table 5.77: Memory Power State Structure definition

Field Byte Byte Description
Length | Offset
Power State Value 1 0 This field provides value of power state. The specific value to be

used is system dependent. However convention needs to be main-
tained where higher numbers indicates deeper power states with
higher power savings and higher latencies. For example, a power
state value of 2 will have higher power savings and higher latencies
than a power state value of 1.

Power State Infor- | 1 1 This field provides unique index into the memory power state char-
mation Index acteristics entries which will provide details about the power con-
sumed, power state characteristics and transition latencies. The in-
dexing mechanism is to avoid duplication (and hence reduce po-
tential for mismatch errors) of memory power state characteristics
entries across multiple memory nodes.

5.2.21.6 Memory Power State Characteristics structure

The table below describes the power consumed, exit latency and the characteristics of the memory power state. This
table is referenced by a memory power node.

Table 5.78: Memory Power State Characteristics Structure

Field Byte Byte Offset
Length
Power State Structure ID 1 0 Bit [5:0] = This field describes the format of table Structure

Power State Structure ID Value = 1
Bit [7:6] = Structure Revision | Current revision is 1

Flag 1 1 The flag describes the caveats associated with entering the
specified power state. Refer to Table 5.79 for details.

Reserved 2 2 Reserved

Average Power Consumed | 4 4 This field provides average power consumed for this memory

in MPSO state (in milli power node in MPSO state. This power is measured in milli-

watts) Watts and signifies the total power consumed by this mem-

ory the given power state as measured in DC watts. Note
that this value should be used as guideline only for esti-
mating power savings and not as actual power consumed.
Also memory power node can map to single or collection of
RANKSs/DIMMs. The actual power consumed is dependent
on DIMM type, configuration and memory load.

Relative Power Saving to | 4 8 This is a percentage of power saved in MPSx state relative
MPSO0 state to MPSO state and should be calculated as %%MPS0 power -
MPSx power)/MPSO0 Power)*100. When this entry is describ-
ing MPSO state itself, OSPM should ignore this field.

Exit Latency (in ns) | 8 12 This field provides latency of exiting out of a power state
(MPSx —> MPSO0) (MPSx) to active state (MPS0). The unit of this field is
nanoseconds.

When this entry is describing MPSO state itself, OSPM should
ignore this field.

continues on next page

5.2. ACPI System Description Tables 214

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.78 — continued from previous page

Field Byte Byte Offset
Length
Reserved 8 20 Reserved for future use.

Table 5.79: Flag format of Memory Power State Characteristics

Structure

Bit Name Description

0 Memory Content | If Bit [0] is set, it indicates memory contents will be preserved in the specified
Preserved power state If Bit [0] is clear, it indicates memory contents will be lost in the

specified power state (e.g. for states such as offline)

1 Autonomous Mem- | If Bit [1] is set, this field indicates that given memory power state entry tran-
ory Power State En- | sition needs to be triggered explicitly by OSPM by calling the Set Power State
try command. If Bit [1] is clear, this field indicates that given memory power state

entry transition is automatically implemented in hardware and does not require
a OSPM trigger. The role of OSPM in this case is to ensure that the correspond-
ing memory region is idled from a software standpoint to facilitate entry to the
state. Not meaningful for MPSO - write it for this table

2 Autonomous Mem- | If Bit [1] is set, this field indicates that given memory power state exit needs to
ory Power State Exit | be explicitly triggered by the OSPM before the memory can be accessed. Sys-
tem behavior is undefined if OSPM or other software agents attempt to access
memory that is currently in a low power state. If Bit [1] is clear, this field in-
dicates that given memory power state is exited automatically on access to the
memory address range corresponding to the memory power node.

3-7 Reserved Reserved for future use

5.2.21.6.1 Power Consumed

Average Power Consumed in MPSO state indicates the power in milli Watts for the MPSO state. Relative power savings
to MPSO indicates the savings in the MPSx state as a percentage of savings relative to MPSO state.

5.2.21.6.2 Exit Latency

Exit Latency provided in the Memory Power Characteristics structure for a specific power state is inclusive of the entry
latency for that state.

Exit latency must always be provided for a memory power state regardless of whether the memory power state entry
and/or exit are autonomous or requires explicit trigger from OSPM.

5.2.21.7 Autonomous Memory Power Management

Not all memory power management states require OSPM to actively transition a memory power node in and out of
the memory power state. Platforms may implement memory power states that are fully handled in hardware in terms
of entry and exit transition. In such fully autonomous states, the decision to enter the state is made by hardware based
on the utilization of the corresponding memory region and the decision to exit the memory power state is initiated in
response to a memory access targeted to the corresponding memory region.

The role of OSPM software in handling such autonomous memory power states is to vacate the use of such memory
regions when possible in order to allow hardware to effectively save power. No other OSPM initiated action is required
for supporting these autonomously power managed regions. However, it is not an error for OSPM explicitly initiates

5.2. ACPI System Description Tables 215

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

a state transition to an autonomous entry memory power state through the MPST command interface. The platform
may accept the command and enter the state immediately in which case it must return command completion with
SUCCESS (00000b) status. If platform does not support explicit entry, it must return command completion with NOT
SUPPORTED (00010b) status.

5.2.21.8 Handling BIOS Reserved Memory

Platform firmware may have regions of memory reserved for its own use that are unavailable to OSPM for allocation.
Memory nodes where all (or a portion) of the memory is reserved by platform firmware may pose a problem for OSPM
because it does not know whether the platform firmware reserved memory is in use.

If the platform firmware reserved memory impacts the ability of the memory power node to enter memory power
state(s), the platform must indicate to OSPM (by clearing the Power Managed Flag - see Table 5.76 for details) that
this memory power node cannot be power managed. This allows OSPM to ignore such ranges from its memory power
optimization.

5.2.21.9 Interaction with NUMA processor and memory affinity tables

The memory power state table describes address range for each of the memory power nodes specified. OSPM can
use the address ranges information provided in MPST table and derive processor affinity of a given memory power
node based on the SRAT entries created by the platform boot firmware. The association of memory power node to
proximity domain can be used by OSPM to implement memory coalescing taking into account NUMA node topology
for memory allocation/release and manipulation of different page lists in memory management code (implementation
specific).

An example of policy which can be implemented in OSPM for memory coalescing is: OSPM can prefer allocating
memory from local memory power nodes before going to remote memory power nodes. The later sections provide
sample NUMA configurations and explain the policy for various memory power nodes.

5.2.21.10 Interaction with Memory Hot Plug

The hot pluggable memory regions are described using memory device objects (see Section 9.13). The memory
address ranges of these memory device objects are defined using the _CRS method.

Scope (_SB) {
Device (MEMO) {
Name (_HID, EISAID ("PNPOC80"))
Name (_CRS, ResourceTemplate () {
QwordMemory (
ResourceConsumer,
14
MinFixed,
MaxFixed,
Cacheable,
ReadWrite,
OxXFFFFFFF,
0x10000000,
0x30000000,
Or ror

5.2. ACPI System Description Tables 216

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

The memory power state table (MPST) is a static structure created for all memory objects independent of hot plug
status (online or offline) during initialization. The OSPM will populate the MPST table during the boot. If hot-
pluggable flag is set for a given memory power node in MPST table, OSPM will not use this node till physical
presence of memory is communicated through ACPI notification mechanism.

The association between memory device object (e.g. MEMO) to the appropriate memory power node id in the MPST
table is determined by comparing the address range specified using _CRS method and address ranges configured
in the MPST table entries. This association needs to be identified by OSPM as part of ACPI memory hot plug
implementation. When memory device is hot added, as part of existing acpi driver for memory hot plug, OSPM will
scan device object for _CRS method and get the relevant address ranges for the given memory object, OSPM will
determine the appropriate memory power node ids based on the address ranges from _CRS and enable it for power
management and memory coalescing.

Similarly when memory is hot removed, the corresponding memory power nodes will be disabled.

5.2.21.11 OS Memory Allocation Considerations

OSes (non-virtualized OS or a hypervisor/VMM) may need to allocate non-migratable memory. It is recommended
that the OSes (if possible) allocate this memory from memory ranges corresponding to memory power nodes that
indicate they are not power manageable. This allows OS to optimize the power manageable memory power nodes for
optimal power savings.

OSes can assume that memory ranges that belong to memory power nodes that are power manageable (as indicated by
the flag) are interleaved in a manner that does no impact the ability of that range to enter power managed states. For
example, such memory is not cacheline interleaved.

Reference to memory in this document always refers to host physical memory. For virtualized environments, this
requires hypervisors to be responsible for memory power management. Hypervisors also have the ability to create
opportunities for memory power management by vacating appropriate host physical memory through remapping guest
physical memory.

OSes can assume that the memory ranges included in MPST always refer to memory store - either volatile or non-
volatile and never to MMIO or MMCEFG ranges.

5.2.21.12 Platform Memory Topology Table (PMTT)

This table describes the memory topology of the system to OSPM, where the memory topology can be logical or
physical. The topology is provided as a hierarchy of memory devices where the top level memory devices (e.g.
sockets) are associated with the platform, down to the last level physical components (e.g. DIMMs) associated with a
parent memory device.

Table 5.80: Platform Memory Topology Table

Field Byte Byte Description
Length | Offset
Header
- Signature 4 0 ‘PMTT’. Signature for Platform Memory Topology Ta-
ble.
- Length 4 4 Length in bytes of the entire PMTT.

continues on next page

5.2. ACPI System Description Tables 217

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.80 — continued from previous page

Field Byte Byte Description
Length | Offset
- Revision 1 8
Revision number of the Platform Memory Topology
Table, Common Memory Device, and memory device
structures (Table 5.82, Table 5.83, Table 5.84, and
Table 5.85) defined in this specification.
Current value: 2
Compatibility Note: Revision 1 is deprecated in ACPI
Specification 6.4.
- Checksum 1 9 Entire table must sum to zero.
- OEMID 6 10 OEM ID
- OEM Table ID 8 16 For the PMTT, the table ID is the manufacturer model
ID
- OEM Revision 4 24 OEM revision of the PMTT for supplied OEM Table ID.
- Creator ID 4 28 Vendor ID of utility that created the table.
- Creator Revision 4 32 Revision of utility that created the table.
Number of Memory Devices 4 36 The number of top level Memory Device structures that
immediately follow. A zero in this field indicates no
Memory Device structures follow.
Memory Aggregator Device | — 40 A list of memory device structures for the platform. See
Structure [n] Table 5.81 below.
Table 5.81: Common Memory Device
Field Byte Byte Description
Length | Offset
Header
- Type 1 0
This field describes the type of Memory Device:
0 - Socket
1 - Memory Controller
2 - DIMM
3 - OXFE - Reserved, OxFF - Vendor Specific Type
- Reserved 1 1 Reserved, must be zero.
- Length 2 Length in bytes for this structure. The length includes the Type
Specific Data, but not memory devices associated with this device.

continues on next page

5.2. ACPI System Description Tables

218

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.81 — continued from previous page

Field Byte Byte Description
Length | Offset
- Flags 2 4
Bit [0]:
0 - Indicates that this is not a top level device.
1 - Indicates that this is a top level aggregator device. This
device must be counted in the number of top level aggregator
devices in PMTT table and must be surfaces via PMTT.
Bit [1]:
0 indicates a logical element of topology.
1 indicates a physical element of the topology.
Bits [2] and [3]:
01 - Indicates that components aggregated by this device
implement both volatile and non-volatile memory
10 - Indicates that all components aggregated by this device
implement non-volatile memory
11 - Reserved
Bits [15:4] Reserved, must be zero
Reserved 2 6 Reserved, must be zero.

Number of Memory | 4 8 The number of Memory Devices associated with this device. A zero
Devices in this field indicates that no Memory Device structures follow the
Type Specific Data.

Type Specific Data — 12 Type specific data. Interpretation of this data is specific to the type

of the memory device. See Table 5.82, Table 5.83, Table 5.84, and

Table 5.85.
Memory Device | — — An optional list of Memory Device structures associated with this
Structure [n] device.

Table 5.82: Socket Type Data
Field Byte Byte Description
Length | Offset
Common Memory | 12 0 See Table 5.81. Type = 0 - Socket. Length =16.
Device Header
Socket Identifier 2 12 Uniquely identifies the socket in the system.
Reserved 2 14 Reserved, must be zero.
Memory Device | — 16 An optional list of Memory Device structures associated with this
Structure [n] socket.
Table 5.83: Memory Controller Type Data
Field Byte Byte Description
Length | Offset

Common Memory Device | 12 0 See Table 5.81. Type = 1 - Memory Controller. Length =16.
Header
Memory Controller Iden- | 2 12 Uniquely identifies the memory controller within its parent
tifier memory device type.
Reserved 2 14 Reserved, must be zero.

continues on next page

5.2. ACPI System Description Tables

219

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.83 — continued from previous page

Field Byte Byte Description
Length | Offset
Memory Device Structure | — 16 An optional list of Memory Device structures associated with
[n] this memory controller.
Table 5.84: DIMM Type Specific Data
Field Byte Byte Description
Length | Offset

Common Memory Device | 12 0 See Table 5.81. Type = 2 - DIMM. Length =16.

Header

SMBIOS Handle 4 12 Refers to Type 17 table handle of corresponding SMBIOS
record. The platform indicates that this field is not valid by
setting a value of OxFFFFFFFFE. If the platform provides a
valid handle, the upper 2 bytes must be 0 (since SMBIOS
handles are 2 bytes only). NOTE: The use of this handle is for
management software to be able to cross-reference the phys-
ical DIMM described in SMBIOS against the topology de-
scribed in this table. It is not expected that OSPM will utilize
this field.

Table 5.85: Vendor Specific Type Data
Field Byte Byte Description
Length | Offset

Common Memory | 12 0 See Table 5.81. Type = OxFF - Vendor Specific.

Device Header

Type UUID 16 12 Vendor specific type unique identifier.

Vendor Specific | — 28 Vendor specific type data.

Data

Memory Device | — — An optional list of Memory Device structures associated with this

Structure [n] device.

5.2.22 Boot Graphics Resource Table (BGRT)

The Boot Graphics Resource Table (BGRT) is an optional table that provides a mechanism to indicate that an image
was drawn on the screen during boot, and some information about the image.

The table is written when the image is drawn on the screen. This should be done after it is expected that any firmware
components that may write to the screen are done doing so and it is known that the image is the only thing on the
screen. If the boot path is interrupted (e.g., by a key press), the valid bit within the status field should be changed to 0
to indicate to the OS that the current image is invalidated.

This table is only supported on UEFI systems.

Table 5.86: Boot Graphics Resource Table Fields

Field Byte Byte Description
Length | Offset
Header
- Signature 4 0 “BGRT” Signature for the table.

continues on next page

5.2. ACPI System Description Tables

220

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.86 — continued from previous page

Field Byte Byte Description

Length | Offset
- Length 4 4 Length, in bytes, of the entire table
- Revision 1 8 1
- Checksum 1 9 Entire table must sum to zero.
- OEMID 6 10 OEM ID
- OEM Table ID 8 16 The table ID is the manufacturer model ID.
- OEM Revision 4 24 OEM revision for supplied OEM Table ID.
- Creator ID 4 28 Vendor ID of utility that created the table.
- Creator Revision 4 32 Revision of utility that created the table.
Version 2 36 2-bytes (16 bit) version ID. This value must be 1.
Status 1 38

1-byte status field indicating current status of the image:
Bits [7:3] = Reserved (must be zero)

Bits [2:1] = Orientation Offset. These bits describe the clockwise
degree offset from the image’s default orientation.

[00] = 0, no offset

[01]1=90

[10] =180

[11]=270
Bit [0] = Displayed. A one indicates the boot image graphic is
displayed.

Image Type 1 39
1-byte enumerated type field indicating format of the image:

0 = Bitmap
1 - 255 Reserved (for future use)

Image Address 8 40 8-byte (64 bit) physical address pointing to the firmware’s in-
memory copy of the image bitmap.

Image Offset X 4 48 A 4-byte (32-bit) unsigned long describing the display X-offset of
the boot image. (X, Y) display offset of the top left corner of the
boot image. The top left corner of the display is at offset (0, 0).
Image Offset Y 4 52 A 4-byte (32-bit) unsigned long describing the display Y-offset of
the boot image. (X, Y) display offset of the top left corner of the
boot image. The top left corner of the display is at offset (0, 0).

The BGRT is a dynamic ACPI table that enables boot firmware to provide OPSM with a pointer to the location in
memory where the boot graphics image is stored.

5.2. ACPI System Description Tables 221

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.22.1 Version

The version field identifies which revision of the BGRT table is implemented. The version field should be set to 1.

5.2.22.2 Status

The status field contains information about the current status of the BGRT image (see Table 5.86 above).

5.2.22.3 Image Type

The Image type field contains information about the format of the image being returned. If the value is 0, the Image
Type is Bitmap. The format for a Bitmap is defined atthe reference located in “Links to ACPI-Related Documents”
(http://uefi.org/acpi) under the heading “Types of Bitmaps”.

All other values not defined in the table are reserved for future use.

5.2.22.4 Image Address

The Image Address contains the location in memory where an in-memory copy of the boot image can be found. The
image should be stored in EfiBootServicesData, allowing the system to reclaim the memory when the image is no
longer needed.

Implementations must present the image in a 24 bit bitmap with pixel format 0xRRGGBB, or a32-bit bitmap with the
pixel format OxrrRRGGBB, where ‘11’ is reserved.

5.2.22.5 Image Offset

The Image Offset contains 2 consecutive 4 byte unsigned longs describing the (X, Y) display offset of the top left
corner of the boot image. The top left corner of the display is at offset (0, 0).

Fig. 5.7: Image Offset

5.2. ACPI System Description Tables 222

http://uefi.org/acpi

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.23 Firmware Performance Data Table (FPDT)

This section describes the format of the Firmware Performance Data Table (FPDT), which provides sufficient infor-
mation to describe the platform initialization performance records. This information represents the boot performance
data relating to specific tasks within the firmware boot process. The FPDT includes only those mileposts that are part
of every platform boot process:

* End of reset sequence (Timer value noted at beginning of platform boot firmware initialization - typically at
reset vector)

¢ Handoff to OS Loader

This information represents the firmware boot performance data set that would be used to track performance of each
UEFI phase, and would be useful for tracking impacts resulting from changes due to hardware/software configuration.

All timer values are express in 1 nanosecond increments. For example, if a record indicates an event occurred at a
timer value of 25678, this means that 25.678 microseconds have elapsed from the last reset of the timer measurement.
All timer values will be required to have an accuracy of +/- 10%.

Fig. 5.8: FPDT Hierarchy Structure

Table 5.87: Firmware Performance Data Table (FPDT) Format

Field Byte Byte Description
Length | Offset

Header
- Signature 4 0 ‘FPDT’ Signature for the Firmware Performance Data Table.
- Length 4 4 The length of the table, in bytes, of the entire FPDT.

continues on next page

5.2. ACPI System Description Tables 223

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.87 — continued from previous page

Field Byte Byte Description
Length | Offset

- Revision 1 8 The revision of the structure corresponding to the signature
field for this table. For the Firmware Performance Data Table
conforming to this revision of the specification, the revision is
1.

- Checksum 1 9 The entire table, including the checksum field, must add to
zero to be considered valid.

- OEMID 6 10 An OEM-supplied string that identifies the OEM.

- OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify this
particular data table.

- OEM Revision 4 24 An OEM-supplied revision number.

- Creator ID 4 28 The Vendor ID of the utility that created this table.

- Creator Revision 4 32 The revision of the utility that created this table.

Performance Records - 36 A set of FPDT Performance Records, as defined in Table 5-
112. {add link}

5.2.23.1 Performance Record Format

A performance record is comprised of a sub-header including a record type and length, and a set of data. The format
of the data is specific to the record type. In this manner, records are only as large as needed to contain the specific type

of data to be conveyed.

Note that unless otherwise specified, multiple records are permitted for a given type, because some events may occur
multiple times during the boot process.

Table 5.88: Performance Record Structure
Field Byte Byte Description
Length | Offset

Performance 2 0 This value depicts the format and contents of the performance

Record Type record.

Record Length 1 2 This value depicts the length of the performance record, in bytes.

Revision 1 3 This value is updated if the format of the record type is extended.
Any changes to a performance record layout must be backwards-
compatible in that all previously defined fields must be maintained
if still applicable, but newly defined fields allow the length of the
performance record to be increased. Previously defined record fields
must not be redefined, but are permitted to be deprecated.

Data - 4 The content of this field is defined by the Performance Record Type
definition.

5.2. ACPI System Description Tables

224

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.23.2 FPDT Performance Record Types

The table below describes the various records contained within the FPDT, and their corresponding Record Types.

Table 5.89: FPDT Performance Record Types

Record Type | Type Description

Value

0x0000 Firmware Basic | Record containing a pointer to the Firmware Basic Boot Perfor-
Boot Performance | mance Table.
Pointer Record

0x0001 S3 Performance Ta- | Record containing a pointer to the S3 Performance Table.
ble Pointer Record

0x0002 - 0xOFFF Reserved Reserved for ACPI specification usage.

0x1000 - Ox1FFF Reserved Reserved for Platform Vendor usage.

0x2000 - 0x2FFF Reserved Reserved for Hardware Vendor usage.

0x3000 - Ox3FFF Reserved Reserved for platform firmware Vendor usage.

0x4000 - OxFFFF Reserved Reserved for future use

5.2.23.3 Runtime Performance Record Types

The table below describes the various Runtime Performance records and their corresponding Record Types. These
records are not contained within the FPDT; they are referenced by their respective pointer records in the FPDT.

Table 5.90: Runtime Performance Record Types

Record Type Value Type

Description

0x0000

Basic S3 Resume Perfor-
mance Record

Performance record describing minimal firmware per-
formance metrics for S3 resume operations.

0x0001 Basic S3 Suspend Perfor- | Performance record describing minimal firmware per-
mance Record formance metrics for S3 suspend operations.
0x0002 Firmware Basic Boot Per- | Performance record showing basic performance metrics

formance Data Record

for critical phases of the firmware boot process.

0x0003 - 0xOFFF Reserved Reserved for ACPI specification usage.
0x1000 - Ox1FFF Reserved Reserved for Platform Vendor usage.

0x2000 - 0x2FFF Reserved Reserved for Hardware Vendor usage.

0x3000 - Ox3FFF Reserved Reserved for platform firmware Vendor usage.
0x4000 - OxFFFF Reserved Reserved for future use

5.2.23.4 Firmware Basic Boot Performance Table Pointer Record

The Firmware Basic Boot Performance Table Pointer Record contains a pointer to the Firmware Basic Boot Per-
formance Table. The Firmware Basic Boot Performance Table itself exists in a range of memory described as ACPI
AddressRangeReserved in the system memory map. The record pointer is a required entry in the FPDT for any system,
and the pointer must point to a valid static physical address. Only one of these records will be produced.

Table 5.91: Firmware Basic Boot Performance Table Pointer Record

Field Byte Byte Description
Length | Offset
Performance Record Type | 2 0 0 - Firmware Basic Boot Performance Table Pointer Record

continues on next page

5.2. ACPI System Description Tables

225

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.91 — continued from previous page

Field Byte Byte Description
Length | Offset

Record Length 1 2 16 - This value depicts the length of the performance record,
in bytes.

Revision 1 3 1 - Revision of this Performance Record

Reserved 4 4 Reserved

FBPT Pointer 8 8 64-bit processor-relative physical address of the Firmware Ba-
sic Boot Performance Table

5.2.23.5 S3 Performance Table Pointer Record

The S3 Performance Table Pointer Record contains a pointer to the S3 Performance Table. The S3 Performance Table
itself exists in a range of memory described as ACPI AddressRangeReserved in the system memory map. The record
pointer is a required entry in the FPDT for any system supporting the S3 state, and the pointer must point to a valid
static physical address. Only one of these records will be produced.

Table 5.92: S3 Performance Table Pointer Record

Field Byte Byte Description
Length | Offset

Performance Record Type | 2 0 1 - S3 Performance Table Pointer Record

Record Length 1 2 16 - This value depicts the length of the performance record,
in bytes.

Revision 1 3 1 - Revision of this Performance Record

Reserved 4 4 Reserved

S3PT Pointer 8 8 64-bit processor-relative physical address of the S3 Perfor-
mance Table

5.2.23.6 Firmware Basic Boot Performance Table

The Firmware Basic Boot Performance Table resides outside of the FPDT. It includes a header, defined in Table 5.93,
and one or more Performance Records.

All event entries will be overwritten during the platform runtime firmware S4 resume sequence. The Firmware Basic
Boot Performance Table must include the Firmware Basic Boot Performance Data Record. Other entries are optional.

Table 5.93: Firmware Basic Boot Performance Table Header

Field Byte Byte Description
Length | Offset
Signature 4 0 ‘FBPT’ is the signature to use.
Length 4 4 Length of the Firmware Basic Boot Performance Table. This

includes the header and allocated size of the subsequent
records. This size would at minimum include the size of
the header and the Firmware Basic Boot Performance Data
Record.

5.2. ACPI System Description Tables 226

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.23.7 Firmware Basic Boot Performance Data Record

The Firmware Basic Boot Performance Data Record contains timer information associated with final OS loader activ-
ity, as well as data associated with boot time starting and ending information.

Table 5.94: Firmware Basic Boot Performance Data Record

Field Byte Byte Description
Length | Offset

Performance Record Type | 2 0 2 - Firmware Basic Boot Performance Data Record. Only one
of these records will be produced.

Record Length 1 2 48 - This value depicts the length of the performance record,
in bytes.

Revision 1 3 2 - Revision of this Performance Record

Reserved 4 Reserved

Reset End 8 8 Timer value logged at the beginning of firmware image exe-
cution. This may not always be zero or near zero.
OS Loader Loadlmage | 8 16 Timer value logged just prior to loading the OS boot loader
Start into memory. For non-UEFI compatible boots, this field must
be zero.
OS Loader Startlmage | 8 24 Timer value logged just prior to launching the currently
Start loaded OS boot loader image. For non-UEFI compatible
boots, the timer value logged will be just prior to the INT 19h
handler invocation.

ExitBootServices Entry 8 32 Timer value logged at the point when the OS loader calls
the ExitBootServices function for UEFI compatible firmware.
For non-UEFI compatible boots, this field must be zero.

ExitBootServices Exit 8 40 Timer value logged at the point just prior to the OS loader
gaining control back from the ExitBootServices function for
UEFI compatible firmware. For non-UEFI compatible boots,
this field must be zero.

5.2.23.8 S3 Performance Table
The S3 Performance Table resides outside of the FPDT. It includes a header, defined in Table 5.96 , and one or more
Performance Records.

All event entries must be initialized to zero during the initial boot sequence, and overwritten during the platform
runtime firmware S3 resume sequence. The S3 Performance Table must include the Basic S3 Resume Performance
Record. Other entries are optional.

Table 5.95: S3 Performance Table Header

Field Byte Byte escription
Length | Offset
Signature 4 0 ‘S3PT’ is the signature to use.
Length 4 4 Length of the S3 Performance Table. This includes the header

and allocated size of the subsequent records. This size would
at minimum include the size of the header and the Basic S3
Resume Performance Record.

5.2. ACPI System Description Tables 227

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.96: Basic S3 Resume Performance Record

Field Byte Byte Description
Length | Offset

Runtime Performance | 2 0 0 - The Basic S3 Resume Performance Record Type. Only

Record Type one of these records will be produced.

Record Length 1 2 24 - The value depicts the length of this performance record,
in bytes.

Revision 1 3 1 - Revision of this Performance Record

Resume Count 4 4 A count of the number of S3 resume cycles since the last full
boot sequence.

FullResume 8 8 Timer recorded at the end of platform runtime firmware S3
resume, just prior to handoff to the OS waking vector. Only
the most recent resume cycle’s time is retained.

AverageResume 8 16 Average timer value of all resume cycles logged since the last
full boot sequence, including the most recent resume. Note
that the entire log of timer values does not need to be retained
in order to calculate this average. AverageResumenew = (Av-
erageResumeold * (ResumeCount -1) + FullResume) / Re-
sumeCount

Table 5.97: Basic S3 Suspend Performance Record

Field Byte Byte Description

Length | Offset

Runtime Performance | 2 0 1 - Basic S3 Suspend Performance Record. Zero to one of

Record Type these records will be produced.

Record Length 1 2 20 - The value depicts the length of this performance record,
in bytes.

Revision 1 3 1 - Revision of this Performance Record

SuspendStart 8 4 Timer value recorded at the OS write to SLP_TYP upon entry
to S3. Only the most recent suspend cycle’s timer value is
retained.

SuspendEnd 8 12 Timer value recorded at the final firmware write to SLP_TYP

(or other mechanism) used to trigger hardware entry to S3.
Only the most recent suspend cycle’s timer value is retained.

5.2.24 Generic Timer Description Table (GTDT)

This section describes the format of the Generic Timer Description Table (GTDT), which provides OSPM with in-
formation about a system’s Generic Timers configuration. The Generic Timer (GT) is a standard timer interface im-
plemented on ARM processor-based systems. The GT hardware specification can be found at Links to ACPI-Related
Documents (http://uefi.org/acpi) under the heading ARM Architecture . The GTDT provides OSPM with information
about a system’s GT interrupt configurations, for both per-processor timers, and platform (memory-mapped) timers.

The GT specification defines the following per-processor timers:

e Secure EL1 timer

¢ Non-Secure EL1 timer

e EL2 timer
¢ Virtual EL1 timer

e Virtual EL2 timer

5.2. ACPI System Description Tables

228

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

and defines the following memory-mapped Platform timers:

* GT Block
* Arm Generic Watchdog

Table 5.98: GTDT Table Structure

Field Byte Byte Description
Length | Offset

Header

- Signature 4 0 ‘GTDT’. Signature for the Generic Timer Description
Table.

- Length 4 4 Length, in bytes, of the entire Generic Timer Descrip-
tion Table.

- Revision 1 8 3

- Checksum 1 9 Entire table must sum to zero.

- OEMID 6 10 OEM ID.

- OEM Table ID 8 16 The manufacturer model ID.

- OEM Revision 4 24 OEM revision for supplied OEM Table ID.

- Creator ID 4 28 Vendor ID of utility that created the table.

- Creator Revision 4 32 Revision of utility that created the table.

CntControlBase Physical Ad- | 8 36 The 64-bit physical address at which the Counter Con-

dress trol block is located.This value is optional if the system
implements EL3 (Security Extensions). If not provided,
this field must be OxFFFFFFFFFFFFFFFE.

Reserved 4 44 Must be zero

Secure EL1 Timer GSIV 4 48 GSIV for the secure EL1 timer. This value is op-
tional, as an operating system executing in the non-
secure world (EL2 or EL1), will ignore the content of
these fields.

Secure EL1 Timer Flags 4 52 Flags for the secure EL1 timer (defined below). This
value is optional, as an operating system executing in
the non-secure world (EL2 or EL1) will ignore the con-
tent of this field.

Non-Secure EL1 Timer GSIV 4 56 GSIV for the non-secure EL1 timer.

Non-Secure EL.1 Timer Flags 4 60 Flags for the non-secure EL1 timer (defined below).

Virtual EL1 Timer GSIV 4 64 GSIV for the virtual EL1 timer.

Virtual EL1 Timer Flags 4 68 Flags for the virtual EL1 timer (defined below)

EL2 Timer GSIV 4 72 GSIV for the EL2 timer.

EL2 Timer Flags 4 76 Flags for the EL2 timer(defined below).

CntReadBase Physical Address | 8 80 The 64-bit physical address at which the Counter Read
block is located. This value is optional if the system
implements EL3 (Security Extensions). If not provided,
this field must be OxFFFFFFFFFFFFFFFFE.

Platform Timer Count 4 88 Number of entries in the Platform Timer Structure|[] ar-
ray

Platform Timer Offset 4 92 Offset to the Platform Timer Structure[] array from the
start of this table

Virtual EL2 Timer GSIV 4 96 GSIV for the virtual EL2 timer. This field is mandatory

for systems implementing ARMvS8.1 VHE. For systems
not implementing ARMv8.1 VHE, this field is 0.

continues on next page

5.2. ACPI System Description Tables

229

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.98 — continued from previous page

Field Byte Byte Description
Length | Offset
Virtual EL2 Timer Flags 4 100 Flags for the virtual EL2 timer (defined below). This

field is mandatory for systems implementing ARMvS.1
VHE. For systems not implementing ARMvS8.1 VHE,

this field is O.
Platform Timer Structure[] — Platform | Array of Platform Timer Type structures describing
Timer memory-mapped Timers available on this platform.
Offset These structures are described in the sections below.

The following flags each have the same definition, as shown in the table below: Secure EL1 Timer Flags, Non-Secure
EL1 Timer Flags, EL2 Timer Flags, Virtual EL1 Timer Flags, and Virtual EL2 Timer Flags.

Table 5.99: Flag Definitions: Secure EL1 Timer, Non-Secure EL1
Timer, EL2 Timer, Virtual EL1 Timer and Virtual EL2 Timer

Bit Field Bit Off- | Number | Description
set of bits

Timer interrupt Mode 0 1
This bit indicates the mode of the timer interrupt:
1: Interrupt is Edge triggered
0: Interrupt is Level triggered

Timer Interrupt polarity 1 1
This bit indicates the polarity of the timer interrupt:
1: Interrupt is Active low
0: Interrupt is Active high

Always-on Capability 2 1
This bit indicates the always-on capability of the timer
implementation:
1: This timer is guaranteed to assert its interrupt and wake a
processor, regardless of the processor’s power state. All of
the methods by which an ARM Generic Timer may generate
an interrupt must be supported, and must be capable of
waking the processor.
0: This timer may lose context or may not be guaranteed to
assert interrupts when its associated processor enters a
low-power state.

Reserved 3 29 Reserved, must be zero.

The GTDT Platform Timer Structure [] field is an array of Platform Timer Type structures, each of which describes
the configuration of an available platform timer. These timers are in addition to the per-processor timers described
above them in the GTDT.

Table 5.100: Platform Timer Type Structures

Value Description
0 GT Block
1 Arm Generic Watchdog

continues on next page

5.2. ACPI System Description Tables 230

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.100 — continued from previous page

Value

Description

0x02-0xFF

Reserved for future use

The first byte of each structure declares the type of that structure and the second and third bytes declare the length of

that structure.

5.2.24.1 GT Block Structure

The GT Block is a standard timer block that is mapped into the system address space. Each GT Block implements up

to 8 GTs (GTO - GT7).

The format of the GT Block structure is shown in the following table.

Table 5.101: GT Block Structure Format

Field Byte Byte Description
Length | Offset
Type 1 0 0x0 GT Block
Length 2 1 20+n*40, where n is the number of timers implemented
in the GT Block
Reserved 1 3 Must be zero
GT Block Physical address | 8 4 The 64-bit physical address at which the GT CntCTL-
(CntCtlBase) Base Block is located
GT Block Timer Count 4 12 Number of Timers implemented in this GT Block (‘n’).
. Must be less than or equal to 8.
GT Block Timer Offset 4 16 Offset to the Platform Timer Structure array from the
start of this structure
GT Block Timer Structure|] n*40 GT Array of GT Block Timer Structures. See the GT Block
Block Timer Structure Format table.
Timer
Offset

Table 5.102: GT Block Timer Structure Format

Field Byte Byte Description
Length | Offset

GT Frame Number 1 0 The frame number (0-7) for this timer (‘x’)

Reserved 3 1 Must be zero

GTx Physical Address (CntBa- | 8 4 Physical Address at which the CntBase block for GTx

seX) is located

GTx Physical Address (Cn- | 8 12 Physical Address at which the CntELOBase block for

tELOBaseX) GTx is located. If this block is not implemented for
GTx, must be OxXFFFFFFFFFFFFFFFF.

GTx Physical Timer GSIV 4 20 GSIV for the GTx physical timer

GTx Physical Timer Flags 4 24 Flags for the GTx physical timer. See Flag Definitions:
GT Block Physical Timers and Virtual Timers.

GTx Virtual Timer GSIV 4 28 GSIV for the GTx virtual timer If the Virtual Timer is
not implemented for GTx, this field must be 0.

GTx Virtual Timer Flags 4 32 Flags for the GTx virtual timer, if implemented. See

Flag Definitions: GT Block Physical Timers and Virtual
Timers.

continues on next page

5.2. ACPI System Description Tables

231

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.102 — continued from previous page

Field Byte Byte Description
Length | Offset
GTx Common Flags 4 36 See Common Flags.

Table 5.103: Flag Definitions: GT Block Physical Timers and Virtual

Timers
Bit Field Bit Off- | Number | Description
set of bits
Timer interrupt Mode 0 1
This bit indicates the mode of the timer interrupt:
1: Interrupt is Edge triggered.
0: Interrupt is Level triggered.
Timer Interrupt polarity 1 1
This bit indicates the polarity of the timer interrupt:
1: Interrupt is Active low
0: Interrupt is Active high
Reserved 2 30 Reserved, must be zero.

Flag Definitions: Common Flags

Table 5.104: Flag Definitions - Common Flags
Bit Field Bit Off- | Number| Description
set of bits
Secure Timer 0 1

This bit indicates whether the timer is secure or
non-secure:

1: Timer is Secure
0: Timer is Non-secure

Always-on Capability 1 1
This bit indicates the always-on capability of the
Physical and Virtual Timers implementation:
1: This timer is guaranteed to assert its interrupt
and wake a processor, regardless of the
processor’s power state. All of the methods by
which an ARM Generic Timer may generate an
interrupt must be supported, and must be capable
of waking the processor.
0: This timer may lose context or may not be
guaranteed to assert interrupts when its
associated processor enters a low-power state.

Reserved 2 30 Reserved, must be zero.

5.2. ACPI System Description Tables 232

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.24.2 Arm Generic Watchdog Structure

The Arm Generic Watchdog is a Platform GT with built-in support for use as the Watchdog timer on platforms com-
pliant with the Server Base System Architecture (SBSA) or Base System Architecture (BSA). For more information,
see Links to ACPI-Related Documents under the heading Arm Base System Architecture (BSA).

The format of the Arm Generic Watchdog structure is shown in the following table.

Table 5.105: Arm Generic Watchdog Structure Format

Field Byte Byte Description
Length | Offset
Type 1 0 0x1 Watchdog GT
Length 2 1 28
Reserved 1 3 Must be zero
RefreshFrame Physical Address | 8 4 Physical Address at which the RefreshFrame block is
located
WatchdogControlFrame Physi- | 8 12 Physical Address at which the Watchdog Control Frame
cal Address block is located
Watchdog Timer GSIV 4 20 GSIV for the Arm Generic Watchdog timer
Watchdog Timer Flags 4 24 Flags for the Arm Generic Watchdog timer. See Flag
Definitions: Arm Generic Watchdog Timer.
Table 5.106: Flag Definitions - Arm Generic Watchdog Timer
Bit Field Bit Off- | Number| Description
set of bits
Timer interrupt Mode 0 1
This bit indicates the mode of the timer interrupt:
1: Interrupt is Edge triggered
0: Interrupt is Level triggered
Timer Interrupt polarity 1 1
This bit indicates the polarity of the timer interrupt:
1: Interrupt is Active low
0: Interrupt is Active high
Secure Timer 2 1
This bit indicates whether the timer is secure or
non-secure:
1: Timer is Secure
0: Timer is Non-secure
Reserved 3 29 Reserved, must be zero.

5.2. ACPI System Description Tables

233

http://uefi.org/acpi

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.25 NVDIMM Firmware Interface Table (NFIT)

5.2.25.1 Overview

This optional table provides information that allows OSPM to enumerate NVDIMMs present in the platform and
associate system physical address ranges created by the NVDIMMs. NVDIMMs are represented by zero or more
NVDIMM devices under a single NVDIMM root device in ACPI namespace.

OSPM evaluates NFIT only during system initialization. Any changes to the NVDIMM state at runtime or information
regarding hot added NVDIMM:s are communicated using the _FIT method (See Section 6.5.9) of the NVDIMM root
device.

The NFIT consists of the following structures:

1.

System Physical Address (SPA) Range Structure(s) (see Section 5.2.25.2) — Describes the SPA ranges occupied
by NVDIMMs and the types of the SPA ranges.

NVDIMM Region Mapping Structure(s) (see Section 5.2.25.3) — Describes mappings of NVDIMM regions to
SPA ranges and NVDIMM region properties.

Interleave Structure(s) (see Section 5.2.25.4) — Describes the various interleave options used by NVDIMM
regions.

SMBIOS Management Information Structure(s) (see Section 5.2.25.5) — Describes SMBIOS Table entries for
hot added NVDIMMs.

NVDIMM Control Region Structure(s) (see Section 5.2.25.6) — Describes NVDIMM function interfaces, and if
applicable, their Block Control Windows.

NVDIMM Block Data Window Region Structure(s) (see Section 5.2.25.7) — Describes Block Data Windows for
a NVDIMM function interfaces that have Block Control Windows.

Flush Hint Address Structure(s) (see Section 5.2.25.8) — Describes special system physical addresses that when
written help achieve durability for writes to NVDIMM regions.

. Platform Capabilities Structure (see Section 5.2.25.9) — Describes the Platform Capabilities to inform OSPM of

platform-wide NVDIMM capabilities.

5.2. ACPI System Description Tables 234

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

The following figure illustrates the above structures and how they are associated with each other.

Fig. 5.9: NVDIMM Firmware Interface Table (NFIT) Overview

The following table defines the NFIT.

Table 5.107: NVDIMM Firmware Interface Table (NFIT)

Field Byte Byte Offset Description
Length

Header

- Signature 4 0 ‘NFIT’ is Signature for this table

- Length 4 4 Length in bytes for entire table.

- Revision 1 8 1

- Checksum 1 9 Entire table must sum to zero

- OEMID 6 10 OEM ID

- OEM Table ID 8 16 The table ID is the manufacturer model ID

- OEM Revision 4 24 OEM revision of table for supplied OEM
Table ID

- Creator ID 4 28 Vendor ID of utility that created the table

- Creator Revision 4 32 Revision of utility that created the table

Reserved 4 36 NFIT Structure[n]

— 40 A list of NFIT structures | Each NFIT Structure must start with a 2 byte

for this implementation. Type field followed by a 2 byte length field.

This allows OSPM to ignore unrecognized
types. Supported NFIT Structure types are
listed in Table 5.108.

5.2. ACPI System Description Tables

235

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.108: NFIT Structure Types

Value Description

0 System Physical Address (SPA) Range Structure
1 NVDIMM Region Mapping Structure

2 Interleave Structure

3 SMBIOS Management Information Structure

4 NVDIMM Control Region Structure
5

6

7

8-

NVDIMM Block Data Window Region Structure
Flush Hint Address Structure

Platform Capabilities Structure

O0xFFFF Reserved

5.2.25.2 System Physical Address (SPA) Range Structure

This structure describes the system physical address ranges occupied by NVDIMMs, and their corresponding Region
Types.

System physical address ranges described as Virtual CD or Virtual Disk shall be described as AddressRangeReserved
in E820, and EFI Reserved Memory Type in the UEFI GetMemoryMap.

Platform is allowed to implement this structure just to describe system physical address ranges that describe Virtual
CD and Virtual Disk. For Virtual CD Region and Virtual Disk Region (both volatile and persistent), the following
fields - Proximity Domain, SPA Range Structure Index, Flags, and Address Range Memory Mapping Attribute, are
not relevant and shall be set to 0.

The default mapping of the NVDIMM Control Region shall be UC memory attributes with AddressRangeReserved
type in E820 and EfiMemoryMappedIO type in UEFI GetMemoryMap. The default mapping of the NVDIMM
Block Data Window Region shall be WB memory attributes with AddressRangeReserved type in E§20 and EfiMem-
oryMappedIO type in UEFI GetMemoryMap.

Table 5.109: SPA Range Structure

Field Byte Byte Description
Length | Offset
Type 2 0 0 - SPA Range Structure
Length 2 2 Length in bytes for entire structure.
SPA Range Structure Index 2 4 Used by NVDIMM Region Mapping Structure to

uniquely refer to this structure. Value of 0 is Reserved
and shall not be used as an index.

Flags 2 6
Bit [0] set to 1 indicates that Control region is strictly
for management during hot add/online operation.

Bit [1] set to 1 to indicate that data in the Proximity
Domain field is valid.

Bit [2] set to 1 to indicate that data in the
SPALocationCookie field is valid.

Bits [15:3]: Reserved

~
[

Reserved Reserved
Proximity Domain 4 12 Integer that represents the proximity domain to which
the memory belongs. This number must match with cor-
responding entry in the SRAT table.

continues on next page

5.2. ACPI System Description Tables 236

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.109 — continued from previous page

Field Byte Byte Description
Length | Offset
Address Range Type GUID 16 16 GUID that defines the type of the Address Range Type.

The GUID can be any of the values defined in this sec-
tion, or a vendor defined GUID.

System Physical Address Range | 8 32 Start Address of the System Physical Address Range
Base

System Physical Address Range | 8 40 Range Length of the region in bytes

Length

Address Range Memory Map- | 8 48

ping Attribute Memory mapping attributes for this address range:

EFI_MEMORY_UC = 0x00000001
EFI_MEMORY_WC = 0x00000002
EFI_MEMORY_WT = 0x00000004
EFI_MEMORY_WB = 0x00000008
EFI_MEMORY_UCE = 0x00000010
EFI_MEMORY_WP = 0x00001000
EFI_MEMORY_RP = 0x00002000
EFI_MEMORY_XP = 0x00004000
EFI_MEMORY_NYV = 0x00008000
EFI_MEMORY_MORE_RELIABLE = 0x00010000
EFI_MEMORY_RO = 0x00020000
EFI_MEMORY _SP = 0x00040000

SpaLocationCookie 8 56 Opaque cookie value set by platform firmware for
OSPM use, to detect changes that may impact the read-
ability of the data.

The following GUIDs are used to describe the NVDIMM Region Types. Additional GUIDs can be generated to
describe additional Address Range Types.

Persistent Memory (PM) Region:
{ 0x66F0D379, 0xB4F3, 0x4074, 0xAC, 0x43, 0x0D, 0x33, 0x18, 0xB7, 0x8C, 0xDB }

NVDIMM Control Region:
{ 0x92F701F6, 0x13B4, 0x405D, 0x91, 0x0B, 0x29, 0x93, 0x67, 0xE8, 0x23, 0x4C }

NVDIMM Block Data Window Region:
{ 0x91AF0530, 0x5D86, 0x470E, 0xA6, 0xB0, 0x0A, 0x2D, 0xB9, 0x40, 0x82, 0x49 }

RAM Disk supporting a Virtual Disk Region - Volatile (a volatile memory region that contains a raw disk format):
{ 0x77AB535A,0x45FC,0x624B,0x55,0x60,0xF7,0xB2,0x81,0xD1,0xF9,0x6E }

RAM Disk supporting a Virtual CD Region - Volatile (a volatile memory region that contains an ISO image):
{ 0x3DSABD30,0x4175,0x87CE,0x6D,0x64,0xD2,0xAD,0xE5,0x23,0xC4,0xBB }

RAM Disk supporting a Virtual Disk Region - Persistent (a persistent memory region that contains a raw disk format):
{ 0x5CEA02C9,0x4D07,0x69D3,0x26,0x9F,0x44,0x96,0xFB,0xE0,0x96,0xF9 }

RAM Disk supporting a Virtual CD Region - Persistent (a persistent memory region that contains an ISO image):
{ 0x08018188,0x42CD,0xBB48,0x10,0x0F,0x53,0x87,0xD5,0x3D,0xED,0x3D }

5.2. ACPI System Description Tables 237

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Note: The Address Range Type GUID values used in the ACPI NFIT must match the corresponding values in the Disk
Type GUID of the RAM Disk device path that describe the same RAM Disk Type. Refer to the UEFI specification for

details.

5.2.25.3 NVDIMM Region Mapping Structure

The NVDIMM Region Mapping structure describes an NVDIMM region and its mapping, if any, to an SPA range.

Table 5.110: NVDIMM Region Mapping Structure

Field

Byte
Length

Byte
Offset

Description

Type

2

0

1 - NVDIMM Region Mapping Structure

Length

2

2

Length in bytes for entire structure.

NFIT Device Handle

4

4

The _ADR of the NVDIMM device (see Section 9.20.3) con-
taining the NVDIMM region

NVDIMM Physical ID

Handle (i.e., instance number) for the SMBIOS Memory De-
vice (Type 17) structure describing the NVDIMM containing
the NVDIMM region. See the DSP0134 System Manage-
ment BIOS (SMBIOS) Reference Specification, Version 3.0.0
(2015-02-12) by the Distributed Management Task Force, Inc.
(DMTF) at http://www.dmtf.org/standards/smbios

NVDIMM Region ID

10

Unique identifier for the NVDIMM region. This identi-
fier shall be unique across all the NVDIMM regions in the
NVDIMM. There could be multiple regions within the device
corresponding to different address types. Also, for a given ad-
dress type, there could be multiple regions due to interleave
discontinuity.

SPA Range Structure In-
dex

12

The SPA range, if any, associated with the NVDIMM region::
0x0000: The NVDIMM region does not map to a SPA range.
The following fields are not valid and should be ignored:

- NVDIMM Region Size;

- Region Offset;

- NVDIMM Physical Address Region Base;

- Interleave Structure Index; and

- Interleave Ways.

Fields other than the above (e.g. NFIT Device Handle,
NVDIMM Physical ID, NVDIMM Region ID, and
NVDIMM State Flags) are valid:

- 0x0001 to OxFFFF: The index of the SPA Range Structure
(see Section 5.2.25.2) for the NVDIMM region.

NVDIMM Control Re-
gion Structure Index

14

The index of the NVDIMM Control Region Structure (see
Section 5.2.25.6) for the NVDIMM region.

continues on next page

5.2. ACPI System Description Tables

238

http://www.dmtf.org/standards/smbios

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.110 — continued from previous page

Field

Byte
Length

Byte
Offset

Description

NVDIMM Region Size

8

16

The size of the NVDIMM region, in bytes. If SPA Range
Structure Index and Interleave Ways are both non-zero, this
field shall match System Physical Address Range Length di-
vided by Interleave Ways. NOTE: the size in SPA Range oc-
cupied by the NVDIMM for this region will not be the same
as the NVDIMM Region Size when Interleave Ways is greater
than 1.

Region Offset

24

In bytes: The Starting Offset for the NVDIMM region in the
Interleave Set. This offset is with respect to System Physi-
cal Address Range Base in the SPA Range Structure. NOTE:
The starting SPA of the NVDIMM region in the NVDIMM is
provided by System Physical Address Range Base + Region
Offset

NVDIMM Physical Ad-
dress Region Base

32

In bytes. The base physical address within the NVDIMM of
the NVDIMM region.

Interleave Structure Index

40

The Interleave Structure, if any, for the NVDIMM region, as
defined in Table 5.111.

Interleave Ways

42

Number of NVDIMMSs in the interleave set, including the
NVDIMM containing the NVDIMM region, as defined in Ta-
ble 5.111.

continues on next page

5.2. ACPI System Description Tables

239

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.110 — continued from previous page

Field Byte Byte Description
Length | Offset
NVDIMM State Flags 2 44

Bit [0] set to 1 indicates that the previous SAVE operation to
the NVDIMM containing the NVDIMM region failed.

Bit [0] set to O indicates that the previous SAVE succeeded,
or there was no previous SAVE.

Bit [1] set to 1 indicates that the last RESTORE operation
from the NVDIMM containing the NVDIMM region failed.
Bit [1] set to O indicates that the last RESTORE succeeded or
there was no last RESTORE.

Bit [2] set to 1 indicates that the platform flush of data to the
NVDIMM containing the NVDIMM region before the
previous SAVE failed. As a result, the restored data content
may be inconsistent even if Bit [0] and Bit [1] do not indicate
failure.

Bit [2] set to 0 indicates that the platform flush succeeded, or
there was no platform flush.

Bit [3] set to 1 indicates that the NVDIMM containing the
NVDIMM region is not able to accept persistent writes. For
an energy-source backed NVDIMM device, Bit [3] is set if it
is not armed or the previous ERASE operation did not
complete.

Bit [3] set to 0 indicates that the NVDIMM containing the
NVDIMM region is armed.

Bit [4] set to 1 indicates that the NVDIMM containing the
NVDIMM region observed SMART and health events prior
to OSPM handoff.

Bit [5] set to 1 indicates that platform firmware is enabled to
notify OSPM of SMART and health events related to the
NVDIMM containing the NVDIMM region using Notify
codes as specified in NVDIMM Device Notification Values.
Bit [6] set to 1 indicates that the platform firmware did not
map the NVDIMM containing the NVDIMM region into an
SPA range. This could be due to various issues such as a
device initialization error, device error, insufficient hardware
resources to map the device, or a disabled device.
Implementation Note: In case of device error, Bit [4] might
be set along with Bit [6].

Bit [7] to Bit [15] are reserved.

Implementation Note: Platform firmware might report
several set bits.

Reserved 2 46 Reserved

5.2. ACPI System Description Tables 240

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.111: Interleave Structure Index and Interleave Ways defini-

tion
Interleave Interleave Interpretation
Structure Ways
Index
0 0 Interleaving, if any, of the NVDIMM region is not reported
0 1 The NVDIMM region is not interleaved with other NVDIMMs (i.e., it is one-
way interleaved)
0 >1 The NVDIMM region is part of an interleave set with the number of NVDIMMs

indicated in the Interleave Ways field, including the NVDIMM containing the
NVDIMM region, but the Interleave Structure is not described.

>0 >1 The NVDIMM region is part of an interleave set with: a) the number of
NVDIMMs indicated in the Interleave Ways field, including the NVDIMM
containing the NVDIMM region; and b) the Interleave Structure (see Section
5.2.25.4) indicated by the Interleave Structure Index field.

All other com- Invalid case

binations

Note: Interleave Structure Index=0, Interleave Ways !=1 is to allow a PM range which is interleaved but the actual
interleave is not described but only provides the physical Memory Devices (as described by SMBIOS Type 17) that
contribute to the PM region. Typically, only block region requires the interleave structure since software has to undo
the effect of interleave.

5.2.25.4 Interleave Structure
Memory from DIMMs/NVDIMMs could be interleaved across memory channels, memory controller and processor

sockets. This structure describes the memory interleave for a given address range. Since interleave is a repeating
pattern, this structure only describes the lines involved in the memory interleave before the pattern start to repeat.

Table 5.112: Interleave Structure

Field Byte Byte Offset Description
Length
Type 2 0 2 - Interleave Structure
Length 2 2 Length in bytes for entire structure.
Interleave 2 4 Index Number uniquely identifies the interleave description - this
Structure allows reuse of interleave description across multiple NVDIMMs.
Index Index must be non-zero.
Reserved 2 6
Number 4 8 Only need to describe the number of lines needed before the inter-
of Lines leave pattern repeats
Described (m)
Line Size (in | 4 12 e.g. 64, 128, 256, 4096
bytes)
Line 1 Offset 4 16 Line 1 Offset refers to the offset of the line, in multiples of Line
Size, from the corresponding SPA Range Base for the NVDIMM
region. Line 1 SPA = SPA Range Base + Region Offset + (Line 1
Offset*Line Size). Line SPA is naturally aligned to the Line size.
4

continues on next page

5.2. ACPI System Description Tables 241

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.112 — continued from previous page

Field Byte
Length

Byte Offset

Description

Line m Offset | 4

16+((m-1)%4)

Line m Offset refers to the offset of the line, in multiples of Line
Size, from the corresponding SPA Range Base for the NVDIMM
region. Line m SPA = SPA Range Base + Region Offset + (Line m
Offset*Line Size) where m is the last line number before the pattern
repeats.

5.2.25.5 SMBIOS Management Information Structure

This structure enables platform to communicate the additional SMBIOS entries beyond the entries provided by SM-
BIOS Table at boot to the OS (e.g. Type 17 entries corresponding to hot added NVDIMMs).

Table 5.113: SMBIOS Management Information Structure

Field Byte Byte Description
Length | Offset
Type 2 0 3 - SMBIOS Management Information Structure
Length 2 2 Length in bytes for entire structure.
Reserved 4 4
Data _ 8 SMBIOS Table Entries

5.2.25.6 NVDIMM Control Region Structure

The system shall include an NVDIMM Control Region Structure for every Function Interface in the NVDIMM.

Table 5.114:

NVDIMM Control Region Structure Mark

Field

Byte
Length

Byte
Offset

Description

Type

2

0

4 - NVDIMM Control Region Structure

Length

2

2

Length in bytes for entire structure. The length of this struc-
ture is either 32 bytes or 80 bytes. The length of the structure
can be 32 bytes only if the Number of Block Control Windows
field has a value of 0.

NVDIMM Control Re-
gion Structure Index

Index Number uniquely identifies the NVDIMM Control Re-
gion Structure.

Vendor ID

Identifier indicating the vendor of the NVDIMM. This field
shall be set to the value of the NVDIMM SPD Module Man-
ufacturer ID Code field ® with byte 0 set to DDR4 SPD byte
320 and byte 1 set to DDR4 SPD byte 321.

Device ID

Identifier for the NVDIMM, assigned by the module vendor.
This field shall be set to the value of the NVDIMM SPD Mod-
ule Product Identifier field ® with byte 0 set to SPD byte 192
and byte 1 set to SPD byte 193.

Revision ID

10

Revision of the NVDIMM, assigned by the module vendor.
Byte 1 of this field is reserved. Byte O of this field shall be
set to the value of the NVDIMM SPD Module Revision Code
field @ (i.e., SPD byte 349).

continues on next page

5.2. ACPI System Description Tables

242

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.114 — continued from previous page

Field Byte Byte Description
Length | Offset
Subsystem Vendor ID 2 12 Vendor of the NVDIMM non-volatile memory subsystem

controller . This field shall be set to the value of the
NVDIMM SPD Non-Volatile Memory Subsystem Controller
Vendor ID field ® with byte 0 set to SPD byte 194 and byte 1
set to SPD byte 195.

Subsystem Device ID 2 14 Identifier for the NVDIMM non-volatile memory subsystem
controller, assigned by the non-volatile memory subsystem
controller vendor. This field shall be set to the value of the
NVDIMM SPD Non-Volatile Memory Subsystem Controller
Device ID field ® with byte 0 set to SPD byte 196 and byte 1
set to SPD byte 197.

Subsystem Revision ID 2 16 Revision of the NVDIMM non-volatile memory subsystem
controller, assigned by the non-volatile memory subsystem
controller vendor. Byte 1 of this field is reserved. Byte 0 of
this field shall be set to the value of the NVDIMM SPD Non-
Volatile Memory Subsystem Controller Revision Code field ®
(i.e. SPD byte 198).

Valid Fields 1 18
Valid bits for fields defined after the initial NFIT definition in
ACPI 6.0 within the initially defined lengths of 32 and 80
bytes.

Bits [7-1]: Reserved. Bit [0]: Manufacturing Location field
and Manufacturing Date field.

Bit [0] set to one indicates that the Manufacturing Location
field and Manufacturing Date field are valid.

Bit [0] set to zero indicates that the Manufacturing Location
field and Manufacturing Date field are not valid and should
be ignored. Systems compliant with this specification shall
set Bit [0] to one. Systems that were compliant with ACPI
6.0 had Bit [0] set to zero, meaning they did not have
Manufacturing Location and Manufacturing Date fields.

Manufacturing Location 1 19 Manufacturing location for the NVDIMM, assigned by the
module vendor. This field shall be set to the value of the
NVDIMM SPD Module Manufacturing Location field * (SPD
byte 322). Validity of this field is indicated in Valid Fields Bit
[0].

Manufacturing Date 2 20 Date the NVDIMM was manufactured, assigned by the mod-
ule vendor. This field shall be set to the value of the NVDIMM
SPD Module Manufacturing Date field @ with byte 0 set to
SPD byte 323 and byte 1 set to SPD byte 324. Validity of this
field is indicated in Valid Fields Bit [0].

Reserved 2 22 Reserved

Serial Number 4 24 Serial number of the NVDIMM, assigned by the module ven-
dor. This field shall be set to the value of the NVDIMM SPD
Module Serial Number field with byte O set to SPD byte 325,
byte 1 set to SPD byte 326, byte 2 set to SPD byte 327, and
byte 3 set to SPD byte 328.

continues on next page

5.2. ACPI System Description Tables 243

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.114 — continued from previous page

Field Byte Byte Description
Length | Offset
Region Format Interface | 2 28
Code Identifier for the programming interface. This field shall be

set to the value of the NVDIMM SPD Function Interface
descriptor ® for the function interface represented by the
NVDIMM Control Region structure, with:

a. byte 0 bits 7:5 set to 000b;

b. byte 0 bits 4:0 set to the Function Interface field
(Function Interface descriptor bits 4:0);

c. byte 1 bits 7:5 set to 000b; and

d. byte 1 bits 4:0 set to the Function Class field
(Function Interface descriptor bits 9:5).

EXAMPLE - A Function Interface Descriptor of 0x8021
means:

a. Function Interface Descriptor is implemented;

b. there is no Extended Function Parameter Block;
c. function class is byte-addressable energy backed
(0x01); and

d. function interface is byte addressable energy backed
function interface 1 (0x01) 9, and maps to a Region
Format Interface Code of 0x0101.

Number of Block Control | 2 30 Number of Block Control Windows must match the corre-
Windows sponding number of Block Data Windows. Fields that follow
this field are valid only if the number of Block Control Win-
dows is non-zero.

Size of Block Control | 8 32 In Bytes

Window

Command Register Offset | 8 40 In Bytes. Logical offset. Refer to Note. The start of the sub-

in Block Control Window sequent Block Control Windows is calculated by adding Size
of Block Control Window.

Size of Command Regis- | 8 48 In Bytes

ter in Block Control Win-

dows

Status Register Offset in | 8 56 Logical offset in bytes. Refer to Notel. The start of the sub-

Block Control Window sequent Block Control Window is calculated by adding Size
of Block Control Window.

Size of Status Register in | 8 64 In Bytes

Block Control Windows

NVDIMM Control Re- | 2 72 Bit [0] set to 1 to indicate that the Block Data Windows im-

gion Flag plementation is buffered. The content of the data window is
only valid when so indicated by Status Register.

Reserved 6 74 Reserved

Notes for above table:

(a) See JEDEC Standard No. 21-C JEDEC Configurations for Solid State Memories , Annex L: Serial Presence
Detect (SPD) for DDR4 SDRAM modules, DDR4 SPD Document Release 2.

(b) See JEDEC Standard No. 21-C JEDEC Configurations for Solid State Memories , Annex L: Serial Presence
Detect (SPD) for DDR4 SDRAM modules, DDR4 SPD Document Release 3 (forthcoming).

5.2. ACPI System Description Tables 244

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(c) In an NVDIMM, the module contains a non-volatile memory subsystem controller.

(d) See JEDEC Standard No. 2233-22 B yte Addressable Energy Backed Interface, Version 1.0 (forthcoming).

Note: “Logical offset” in the structure above refers to the offset from the start of NVDIMM Control Region. The
logical offset is with respect to the device, not with respect to system physical address space. Software should construct
the device address space (accounting for interleave) before applying the block control start offset.

5.2.25.7 NVDIMM Block Data Window Region Structure

This structure shall be provided only if the number of Block Data Windows is non-zero.

Table 5.115: NVDIMM Block Data Windows Region Structure

Field Byte Byte Description

Length | Offset
Type 2 0 5 - NVDIMM Block Data Window Region Structure
Length 2 2 Length in bytes for entire structure.
NVDIMM Control Re- | 2 4 Provides association for the corresponding NVDIMM Control
gion Structure Index Region. Shall be Non-zero.
Number of Block Data | 2 6 Number of Block Data Windows shall match the correspond-
Windows ing number of Block Control Windows.
Block Data Window Start | 8 8 Logical offset in bytes (see note below). The start of the sub-
Offset sequent Block Data Window is calculated by adding Size of

Block Data Window.

Size of Block Data Win- | 8 16 In Bytes
dow
Block Accessible Mem- | 8 24 In Bytes
ory Capacity
Beginning address of first | 8 32 In Bytes. The address of the next block is obtained by adding
block in Block Accessible the value of this field to Size of Block Data Window.
Memory

Note: Logical offset in table above refers to offset from the start of NVDIMM Data Window Region. The logical
offset is with respect to the device not with respect to system physical address space. Software should construct the
device address space (accounting for interleave) before applying the Block Data Window start offset.

5.2.25.8 Flush Hint Address Structure

Software needs an assurance of durability (i.e. a guarantee that the writes have reached the target NVDIMM) after
writing to a NVDIMM region. The Flush Hint feature is platform specific and if supported, the platform exposes this
durability mechanism to OSPM by providing a Flush Hint Address Structure.

For a given NVDIMM (as indicated by the NFIT Device Handle in the Flush Hint Address Structure), software can
write to any one of these Flush Hint Addresses to cause any preceding writes to the NVDIMM region to be flushed out
of the intervening platform buffers to the targeted NVDIMM (to achieve durability). Note that the platform buffers do
not include processor cache(s)! Processors typically include ISA to flush data out of processor caches.

5.2. ACPI System Description Tables 245

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.116: Flush Hint Address Structure

Field Byte Byte Description
Length | Offset
Type 2 0 6 - Flush Hint Address Structure
Length 2 2 Length in bytes for entire structure.
NFIT Device Handle 4 4 Indicates the NVDIMM supported by the Flush Hint Ad-
dresses in this structure.
Number of Flush Hint Ad- | 2 8 Number of Flush Hint Addresses in this structure.
dresses in this structure
(m)
Reserved 6 10 Reserved
Flush Hint Address 1 8 16 64-bit system physical address that needs to be written to
cause durability flush. Software is allowed to write up to a
cache line of data. The content of the data is not relevant to
the functioning of the flush hint mechanism.
8 24
Flush Hint Address m 8 16+ 64-bit system physical address that needs to be written to
((m- cause durability flush. Software is allowed to write up to a
1)*8) cache line of data. The content of the data is not relevant to

the functioning of the flush hint mechanism.

5.2.25.9 Platform Capabilities Structure

This structure informs OSPM of the NVDIMM platform capabilities.

Table 5.117: Platform Capabilities Structure

Field Byte Byte Description
Length | Offset

Type 2 0 7 - Platform Capabilities Structure

Length 2 2 Length in bytes for entire structure.

Highest Valid Capability 1 4 The bit index of the highest valid capability implemented by
the platform. The subsequent bits shall not be considered to
determine the capabilities supported by the platform.

Reserved 3 5 Reserved (0)

continues on next page

5.2. ACPI System Description Tables

246

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.117 — continued from previous page

Field

Byte Byte Description
Length | Offset

Capabilities 4 8

Bit[0] - CPU Cache Flush to NVDIMM Durability on Power
Loss Capable. If set to 1, indicates that platform ensures the
entire CPU store data path is flushed to persistent memory on
system power loss.

Bit[1] - Memory Controller Flush to NVDIMM Durability
on Power Loss Capable. If set to 1, indicates that platform
provides mechanisms to automatically flush outstanding
write data from the memory controller to persistent memory
in the event of platform power loss. Note: If bit O is set to 1
then this bit shall be set to 1 as well.

Bit[2] - Byte Addressable Persistent Memory Hardware
Mirroring Capable. If set to 1, indicates that platform
supports mirroring multiple byte addressable persistent
memory regions together. If this feature is supported and
enabled, healthy hardware mirrored interleave sets will have
the EFI_MEMORY_MORE_RELIABLE Address Range
Memory Mapping Attribute set in the System Physical
Address Range structure in the NFIT table.

Bits[31:3] - Reserved

Reserved

4 12 Reserved (1)

5.2.25.10 NVDIMM Representation Format

If software or an NVDIMM manufacturer displays, prints on a label, or otherwise makes available an identifier for an
NVDIMM (e.g., to uniquely identify the NVDIMM), then the following hexadecimal format should be used:

* If the Manufacturing Location and Manufacturing Date fields are valid:

C language format string: "$02x%02x-%02x-%02x%02x-%02x%02x%02x%02x"

Format values:

1.

9.

S S T B

Vendor ID byte O (including the parity bit)
Vendor ID byte 1

Manufacturing Location byte
Manufacturing Date byte O (i.e., the year)
Manufacturing Date byte 1 (i.e., the week)
Serial Number byte 0

Serial Number byte 1

Serial Number byte 2

Serial Number byte 3

* If the Manufacturing Location and Manufacturing Date fields are not valid:

5.2. ACPI System Description Tables 247

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

C language format string: "%$02x%02x-%02x%02x%02x%02x"

Format values:

—_

. Vendor ID byte 0 (including the parity bit)
2. Vendor ID byte 1

3. Serial Number byte 0

4. Serial Number byte 1

5. Serial Number byte 2

6. Serial Number byte 3

This format matches the order of SPD bytes 320 to 328 from low to high (i.e., showing the lowest or first byte on the
left).

5.2.26 Secure Devices (SDEV) ACPI Table

The Secure DEVices (SDEV) table is a list of secure devices known to the system. The table is applicable to systems
where a secure OS partition and a non-secure OS partition co-exist. A secure device is a device that is protected by
the secure OS, preventing accesses from non-secure OS.

The table provides a hint as to which devices should be protected by the secure OS. The enforcement of the table is
provided by the secure OS and any pre-boot environment preceding it. The table itself does not provide any security
guarantees. It is the responsibility of the system manufacturer to ensure that the operating system is configured to
enable security features that make use of the SDEV table.

There are three options for each device in the system:

1) Device is listed in SDEV. “Allow handoff...” flag is clear. This provides a hint that the device should be
always protected within the secure OS. For example, the secure OS may require that a device used for user
authentication must be protected to guard against tampering by malicious software.

2) Device is listed in SDEV. “Allow handoff...” flag is set. This provides a hint that the device should be initially
protected by the secure OS, but it is up to the discretion of the secure OS to allow the device to be handed off
to the non-secure OS when requested. Any OS component that expected the device to be operating in secure
mode would not correctly function after the handoff has been completed. For example, a device may be used for
variety of purposes, including user authentication. If the secure OS determines that the necessary components
for driving the device are missing, it may release control of the device to the non-secure OS. In this case, the
device cannot be used for secure authentication, but other operations can correctly function.

3) Device not listed in SDEV. For example, the status quo is that no hints are provided. Any OS component that
expected the device to be in secure mode would not correctly function.

The OS vendor provides guidance on which devices can be listed in the SDEV table. In other words, which devices
are compatible with the secure OS, and which devices should have the “allow handoff” flag set.

See the following table for the SDEV ACPI definition.

Table 5.118: SDEV ACPI Table

Field Byte Byte Description
Length | Offset

Header
- Signature 4 0 ‘SDEV’. Signature for the Table
- Length 4 4 Length, in bytes, of the entire Table.

continues on next page

5.2. ACPI System Description Tables 248

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.118 — continued from previous page

Field Byte Byte Description
Length | Offset
- Revision 1 8 1
- Checksum 1 9 Entire table must sum to zero.
-OEM ID 6 10 OEM ID
- OEM Table ID 8 16 For the SDEV Table, the table ID is the manufacturer model
ID.
- OEM Revision 4 24 OEM revision of SDEV Table for supplied OEM Table ID.
- Creator ID 4 28 Vendor ID of utility that created the table.
- Creator Revision 4 32 Revision of utility that created the table.
Secure Device Structures | — 36 A list of structures containing one or more Secure Device

1

Structures as defined in next section.

5.2.26.1 Secure Device Structures

Table 5.119: Secure Device Structures

Value Description

0 ACPI_NAMESPACE_DEVICE based Secure Device.

1 PClIe Endpoint Device-based Secure Device.

All Other Values Reserved for future use. For forward compatibility, software skips structures it does not

comprehend by skipping the appropriate number of bytes indicated by the Length field. All
new device structures must include the Type, Flags, and Length fields as the first 3 fields
respectively.

5.2.26.1.1 ACPI_NAMESPACE_DEVICE based Secure Device Structure

Table 5.120: ACPI_NAMESPACE_DEVICE based Secure Device

Structure
Field Byte Byte Description
Length | Offset

Type 1 0 0x00: ACPI integrated devices

Flags 1 1
Bit 0: Allow handoff to non-secure OS. All other bits are
reserved and must be zero.

Bit 1: Secure Access Components present.
All other bits are reserved and must be zero.

Length 2 2 Length of this entry in bytes.

Device Identifier Offset 2 4 Offset, in the Secure ACPI Device structure, of a null termi-
nated ASCII string that contains a fully qualified reference to
the ACPI namespace object that is this device. (For example,
_SB.I2CO represents the ACPI object name for an embed-
ded I2C Device in southbridge; Quotes are omitted in the data
field). Refer to ACPI specification for fully qualified refer-
ences for ACPI name-space objects.

Device Identifier Length 2 6 Length of Device Identifier string in bytes, including the ter-

mination byte.

continues on next page

5.2. ACPI System Description Tables

249

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.120 — continued from previous page

Field Byte Byte Description
Length | Offset
Vendor specific data Off- | 2 8 Offset, in Secure ACPI Device Structure, of the data specific
set to the device supplied by the vendor.
Vendor specific data | 2 10 Length of the data specific to the device supplied by the ven-
Length dor.
Secure Access Compo- | 2 12 Offset, in ACPI_NAMESPACE_DEVICE based Secure De-
nents Offset vice Structure, of the list of Secure Access Components
needed for device execution in a secure OS. Only present if
the “secure access components present” bit is set.
Secure Access Compo- | 2 14 Length of the list of Secure Access Components data. Only
nents Length present if the “secure access components present” bit is set.

Table 5.121: Secure Access Component Types

Value Description

0 Identification Based Secure Access Component. A minimum of one is required for a secure
device. When there are multiple Identification Components present, priority is determined
by list order. See Table 5.122

1 Memory Based Secure Access Component. See Table 5.123

All other values Reserved for future use. For forward compatibility, software skips structures that it does not
comprehend by skipping the appropriate number of bytes indicated by the Length field. All
new device structures must include the Type, Flags, and Length fields as the first 3 fields,
respectively.

Table 5.122: Identification Based Secure Access Component

Field Byte Byte Description
Length | Offset
Type 1 0 0x00: Identification Component. See Table 5.121
Flags 1 1 Reserved for future use.
Length 2 2 Length of this Entry in Bytes.
Hardware Identifier Offset | 2 4

Offset, in Identification Component Structure, of a null
terminated ASCII string that contains the Hardware
Identifier.

The Hardware Identifier is a PNP or ACPI ID. A valid PNP
ID must be of the form “AAA####” where A is an uppercase
letter and # is a hex digit.

A valid ACPI ID must be of the form “NNNN####" where N
is an uppercase letter or a digit.

The Hardware Identifier is a required field.

Hardware Identifier | 2 6 Length of the Hardware Identifier in bytes including the ter-
Length mination byte.

continues on next page

5.2. ACPI System Description Tables 250

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.122 — continued from previous page

Field Byte Byte Description
Length | Offset
Subsystem Identifier Off- | 2 8
set Offset, in Identification Component Structure, of a null
terminated ASCII string that contains the Subsystem
Identifier.
The Subsystem Identifier is a PNP or ACPI ID. The
Hardware Identifier is a PNP or ACPI ID. A valid PNP ID
must be of the form “AAA####” where A is an uppercase
letter and # is a hex digit.
A valid ACPI ID must be of the form “NNNN####” where N
is an uppercase letter or a digit.
The Subsystem Identifier is optional. If a Subsystem
Identifier is not present. This value should be 0.
Subsystem Identifier | 2 10 Length of the Subsystem Identifier in bytes including the ter-
Length mination byte.
Hardware Revision 2 12 The Hardware Revision.
Hardware Revision | 1 14 If 0, the Hardware Revision is ignored.
Present
Class Code Present 1 15 If 0, the PCI-Compatible Class code is ignored.
PCI-Compatible Base- | 1 16 The PCI-Compatible Base-Class code.
Class
PCI-Compatible Sub- | 1 17 The PCI-Compatible Sub-Class code.
Class
PCI-Compatible Pro- | 1 18 The PCI-Compatible Programming Interface Code.
gramming Interface
Table 5.123: Memory-based Secure Access Component
Field Byte Byte Description
Length | Offset
Type 1 0 0x01: Memory Component.
Flags 1 1 Reserved for future use.
Length 2 2 Length of this Entry in Bytes.
Reserved 4 4 Padding.
Memory Address Base 8 8 Starting address of the memory component.
Memory Length 8 16 Length of the memory component in Bytes.

5.2.26.1.2 PCle Endpoint Device-based Device Structure

Table 5.124: PCIe Endpoint Device-based Device Structure

Field Byte Byte Description
Length | Offset
Type 1 0 0x01: PClIe Endpoint device.
Flags 1 1 Bit 0: Allow handoff to non-secure OS. All other bits are re-
served and must be zero.
Length 2 2 Length of this Entry in Bytes.

continues on next page

5.2. ACPI System Description Tables

251

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.124 — continued from previous page

Field Byte Byte Description
Length | Offset
PCI Segment Number 2 4 PCI segment number of the device .
Start Bus Number 2 6 This field describes the bus number (bus number of the first

PCI Bus produced by the PCI Host Bridge) under which the
secure device resides.

PCI Path Offset 2 8 Pointer to the PCI path entry offset in the Secure PCI Device
Structure data region. A PCI Path describes the hierarchal
path from the Host Bridge to the device. For example, a de-
vice in an N-deep hierarchy is identified by N {PCI Device
Number, PCI Function Number} pairs, where N is a positive
integer. Even numbered offsets contain the Device numbers,
and odd numbered offsets contain the Function numbers. The
first {Device, Function} pair resides on the bus identified by
the ‘Start Bus Number’ field. Each subsequent pair resides on
the bus directly behind the bus of the device identified by the
previous pair. The identity (Bus, Device and Function) of the
target device is obtained by recursively walking down these N
{Device, Function} pairs.

PCI Path Length 2 10 Length of the PCI path entry.
Vendor specific data Off- | 2 12 Offset of the data specific to the device.
set
Vendor specific data | 2 14 Length of the data specific to the device.
Length

Example

The following table is an example for implementing a PCIe Endpoint Device Based Device Structure for a PCle device
(Bus 1, Dev 2, Function 1), that is a child of a PClIe Root Port (Bus 0, Dev 18, Function 0).

Table 5.125: PCIe Endpoint Device-based Device Structure Example

Field Byte Byte Value
Length | Offset
Type 1 0 0x01: PClIe Endpoint device.
Flags 1 1 0x01
Length 2 2 0x18
PCI Segment Number 2 4 0x0
Start Bus Number 2 6 0x0
PCI Path Offset 2 8 0x10 (16 DEC)
PCI Path Length 2 10 0x4
Vendor-specific data Off- | 2 12 0x14 (20 DEC)
set
Vendor-specific data | 2 14 0x4
Length
PCI Path
PCI Device 1 16 0x12 (18 DEC)
PCI Function 1 17 0x0
PCI Device 1 18 0x2
PCI Function 1 19 0x1
Vendor specific data 4 20 0xDEADBEEF

5.2. ACPI System Description Tables 252

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.27 Heterogeneous Memory Attribute Table (HMAT)

5.2.27.1 HMAT Overview

The Heterogeneous Memory Attribute Table (HMAT) describes the memory attributes, such as memory side cache
attributes and bandwidth and latency details, related to Memory Proximity Domains. The software is expected to use
this information as a hint for optimization, or when the system has heterogeneous memory.

OSPM evaluates HMAT only during system initialization. Any changes to the HMAT state at runtime or information
regarding HMAT for hot plug are communicated using the _HMA method.

The HMAT consists of the following structures:

1. Memory Proximity Domain Attributes Structure(s). Describes attributes of memory proximity domains. See
Table 5.128.

2. System Locality Latency and Bandwidth Information Structure(s). Describes the memory access latency and
bandwidth information from various memory access initiator proximity domains. See Section 5.2.27.4. The op-
tional access mode and transfer size parameters indicate the conditions under which the Latency and Bandwidth
are achieved.

3. Memory Side Cache Information Structure(s). Describes memory side cache information for memory proximity
domains if the memory side cache is present and the physical device (SMBIOS handle) forms the memory side
cache. See Table 5.130.

These structures are illustrated by the following figure.

Fig. 5.10: HMAT Representation

5.2. ACPI System Description Tables 253

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.126: Heterogeneous Memory Attribute Table Header

Field Byte Byte Description
Length | Offset
Header
- Signature 4 0 ‘HMAT" is Signature for this table
- Length 4 4 Length in bytes for entire table.
- Revision 1 8 2
- Checksum 1 9 Entire table must sum to zero
- OEMID 6 10 OEM ID
- OEM Table ID 8 16 The table ID is the manufacturer model ID
- OEM Revision 4 24 OEM revision of table for supplied OEM Table ID
- Creator ID 4 28 Vendor ID of utility that created the table
- Creator Revision 4 32 Revision of utility that created the table
Reserved 4 36 To make the structures 8 byte aligned
HMAT Table Structures[n] — 40 A list of HMAT table structures for this implementation.

Table 5.127: HMAT Structure Types

Value Description

0 Memory Proximity Domain Attributes Structure

1 System Locality Latency and Bandwidth Information Structure
2 Memory Side Cache Information Structure

3-0xFFFF Reserved

5.2.27.2 Memory Side Cache Overview

Memory side cache allows to optimize the performance of memory subsystems. Fig. 5.11 shows an example of system
physical address (SPA) range with memory side cache in front of actual memory that is seen by the software. When
the software accesses an SPA, if it is present in the near memory (hit) it would be returned to the software, if it is not
present in the near memory (miss) it would access the next level of memory and so on.

The term “far memory” is used to denote the last level memory (Level 0 Memory) in the memory hierarchy as shown in
Fig.5.11. The Level n Memory acts as memory side cache to Level n-1 Memory and Level n-1 memory acts as memory
side cache for Level n-2 memory and so on. If Non-Volatile memory is cached by memory side cache, then platform is
responsible for persisting the modified contents of the memory side cache corresponding to the Non-Volatile memory
area on power failure, system crash or other faults.

5.2.27.3 Memory Proximity Domain Attributes Structure

This structure describes the system physical address (SPA) range occupied by the memory subsystem and its associa-
tivity with processor proximity domain as well as hint for memory usage.

Table 5.128: Memory Proximity Domain Attributes Structure

Field Byte Byte Description
Length | Offset
Type 2 0 0 - Memory Proximity Domain Attributes Structure
Reserved 2 2
Length 4 4 40 - Length in bytes for entire structure.

continues on next page

5.2. ACPI System Description Tables 254

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.128 — continued from previous page
Field Byte Byte Description
Length | Offset
Flags 2 8 Bit [0]: set to 1 to indicate that data in the Proximity
Domain for the Attached Initiator field is valid. Bit [1]:
Reserved. Previously defined as Memory Proximity Do-
main field is valid. Deprecated since ACPI 6.3. Bit [2]:
Reserved. Previously defined as Reservation Hint. Dep-
recated since ACPI 6.3. Bits [15:3] : Reserved.

Reserved 2 10
Proximity Domain for the At- | 4 12 This field is valid only if the memory controller respon-
tached Initiator sible for satisfying the access to memory belonging to
the specified memory proximity domain is directly at-
tached to an initiator that belongs to a proximity do-
main. In that case, this field contains the integer that
represents the proximity domain to which the initiator
(Generic Initiator or Processor) belongs. This num-
ber shall match the corresponding entry in the SRAT
table’s processor affinity structure (e.g., Processor Lo-
cal APIC/SAPIC Affinity Structure, Processor Local
x2APIC Affinity Structure, GICC Affinity Structure) if
the initiator is a processor, or the Generic Initiator Affin-
ity Structure if the initator is a generic initiator. Note:
this field provides additional information as to the ini-
tiator node that is closest (as in directly attached) to
the memory address ranges within the specified mem-
ory proximity domain, and therefore should provide the
best performance.

Proximity Domain for the Mem- | 4 16 Integer that represents the memory proximity domain to
ory which this memory belongs.

Reserved 4 20
Reserved 8 24 Previously defined as the Start Address of the System
Physical Address Range. Deprecated since ACPI Spec-
ification 6.3.

Reserved 8 32 Previously defined as the Range Length of the region in
bytes. Deprecated since ACPI Specification 6.3.

5.2.27.4 System Locality Latency and Bandwidth Information Structure
This structure provides a matrix that describes the normalized memory read/write latency, the read/write bandwidth
between Initiator Proximity Domains (Processor or I/0O) and Target Proximity Domains (Memory).

The Entry Base Unit for latency is in picoseconds. The Entry Base Unit for bandwidth is in megabytes per second
(MB/s). The Initiator to Target Proximity Domain matrix entry can have one of the following values:

* 1-OxFFFE: the corresponding latency or bandwidth information expressed in multiples of Entry Base Unit.
» OxFFFF: the initiator and target domains are unreachable from each other.
The represented latency or bandwidth value is determined as follows:
* Represented latency = (Initiator to Target Proximity Domain matrix entry value * Entry Base Unit) picoseconds.
* Represented bandwidth = (Initiator to Target Proximity Domain matrix entry value * Entry Base Unit) MB/s.

The following examples show how to report latency and throughput values:

5.2. ACPI System Description Tables 255

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 5.11: Memory Side Cache Example

* If the “Entry Base Unit” is 1 for latency and the matrix entry has the value of 10, the latency is 10 picoseconds.

e If the “Entry Base Unit” is 1000 for latency and the matrix entry has the value of 100, the latency is 100
nanoseconds.

* If the “Entry Base Unit” is 1 for BW and the matrix entry has the value of 10, the BW is 10 MB/s.

If the “Entry Base Unit” is 1024 for BW and the matrix entry has the value of 100, the BW is 100 GB/s.

Note: The lowest latency number represents best performance and the highest bandwidth number represents best
performance. The latency and bandwidth numbers represented in this structure correspond to specification rated
latency and bandwidth for the platform. The represented latency is determined by aggregating the specification rated
latencies of the memory device and the interconnects from initiator to target. The represented bandwidth is determined
by the lowest bandwidth among the specification rated bandwidth of the memory device and the interconnects from
the initiator to target.

Multiple table entries may be present, based on qualifying parameters, like minimum transfer size, etc. They may
be ordered starting from most- to least-optimal performance. Unless specified otherwise in the table, the reported
numbers assume naturally aligned data and sequential access transfers. The platform should declare “Minimum trans-
fer size” based on distinct, software observable boundaries for latency or bandwidth, as appropriate for the platform
architecture.

5.2. ACPI System Description Tables 256

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.129: System Locality Latency and Bandwidth Information

Structure

Field

Byte
Length

Byte
Offset

Description

Type

2

0

1 - System Locality Latency and Bandwidth Information
Structure

Reserved

[\

Reserved

Length

E IS

N

Length in bytes for entire structure.

Flags

Bits [3:0] Memory hierarchy:
0x00 - Memory: If the memory side cache is not
present, this structure represents the memory
performance. If memory side cache is present, this
structure represents the memory performance when no
hits occur in any of the memory side caches associated
with the memory.
0x01 - 1st level memory side cache
0x02 - 2nd level memory side cache
0x03 - 3rd level memory side cache

Bits [5:4] Access attributes:
0x10 — minimum transfer size to achieve values
0x20 — non-sequential transfers

Bits [7:6] Reserved

Data Type

Type of data represented by this structure instance:
If Memory Hierarchy = 0:

- 0 - Access Latency (if read and write latencies are
same)

- 1 - Read Latency
- 2 - Write Latency

- 3 - Access Bandwidth (if read and write bandwidth
are same)
- 4 - Read Bandwidth
- 5 - Write Bandwidth
If Memory Hierarchy = 1, 2, or 3:
- 0 - Access Hit Latency (if read hit and write hit
latencies are same)
- 1 - Read Hit Latency
- 2 - Write Hit Latency
- 3 - Access Hit Bandwidth (if read hit and write hit
latency are same)

- 4 - Read Hit Bandwidth
- 5 - Write Hit Bandwidth
Other values are reserved.

continues on next page

5.2. ACPI System Description Tables

257

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.129 — continued from previous page

Field Byte Byte Description
Length | Offset
MinTransferSize 1 10
Transfer size defined as a 5-biased power of 2 exponent,
when the bandwith/latency value is achieved. The values are
as follows:
0 — byte-aligned (any alignment)
1 — 64 Bytes
2 — 128 Bytes
3 —256 Bytes
7 — 4096 Bytes
8 - 8192 Bytes
11 — 64KiByte
Reserved 1 11 Reserved
Number of Initiator Prox- | 4 12 Indicates total number of Proximity Domains that can initiate
imity Domains (s) memory access requests to other proximity domains. This is
typically the processor or I/O proximity domains.
Number of Target Proxim- | 4 16 Indicates total number of Proximity Domains that can act as
ity Domains (t) target. This is typically the Memory Proximity Domains.
Reserved 4 20 Reserved
Entry Base Unit 8 24 Base unit for Matrix Entry Values (latency or bandwidth).
Base unit for latency in picoseconds. Base unit for bandwidth
in megabytes per second (MB/s). This field shall be non-zero.
Initiator Proximity Do- | 4 32
main List[0]
Initiator Proximity Do- | 4
main List[1]
Initiator Proximity Do- | 4
main List[s-1]
Target Proximity Domain | 4 32 +4x
List[0] S
Target Proximity Domain | 4
List[1]
Target Proximity Domain | 4
List[t-1]
Latency / bandwith val- Total Number Entry shall be equal to Number of Initiator
ues Proximity Domains * Number of Target Proximity Domains
Entry[0][0] 2 32 +4 x | Matrix entry (Initiator Proximity Domain List[0], Target
s+4 xt | Proximity Domain List[0])
Entry[0][1] 2 Matrix entry (Initiator Proximity Domain List[0], Target

Proximity Domain List[1])

continues on next page

5.2. ACPI System Description Tables

258

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.129 — continued from previous page

Field Byte Byte Description
Length | Offset
Entry[0][Number of Tar- | 2 Matrix entry (Initiator Proximity Domain List[0], Target
get Proximity Domains - Proximity Domain List[t-1])
1]
Entry[1][0] 2 Matrix entry (Initiator Proximity Domain List[1], Target
Proximity Domain List[0])
Entry[1][1] 2 Matrix entry (Initiator Proximity Domain List[1], Target
Proximity Domain List[1])
Entry[1][Number of Tar- Matrix entry (Initiator Proximity Domain List[1], Target
get Proximity Domains - Proximity Domain List[t-1])
1]
Entry[Number of Initiator | 2 Matrix entry (Initiator Proximity Domain List[s-1], Target
Proximity Domains - 1][Proximity Domain List[t-1])
Number of Target Proxim-
ity Domains -1]

Implementation notes:

The Flag field in this table allows read latency, write latency, read bandwidth and write bandwidth as well
as Memory Hierarchy levels, minimum transfer size and access attributes. Hence this structure could be
repeated several times, to express all the appropriate combinations of Memory Hierarchy levels, memory
and transfer attributes expressed for each level. If multiple structures are present, they may be ordered
starting from most- to least-optimal performance. Unless specified otherwise in the table, the reported
numbers assume naturally aligned data and sequential access transfers.

If either latency or bandwidth information is being presented in the HMAT, it is required to be complete
with respect to initiator-target pair entries. For example, if read latencies are being included in the SLLBI,
then read latencies for all initiator-target pairs must be present. If some pairs are incalculable, then the
read latency dataset must be omitted entirely. It is acceptable to provide only a subset of the possible
datasets. For example, it is acceptable to provide read latencies but omit write latencies. This provides
OSPM a complete picture for at least one set of attributes, and it has the choice of keeping that data or
discarding it.

The platform should declare “Minimum transfer size” based on distinct, software-observable boundaries
for latency or bandwidth, as appropriate for the platform architecture.

If both SLIT table and the HMAT table with the memory latency information are present, the OSPM
should attempt to use the data in the HMAT rather than the data in the SLIT.

5.2.27.5 Memory Side Cache Information Structure

System memory hierarchy could be constructed to have a large size of low performance far memory and smaller size
of high performance near memory. The Memory Side Cache Information Structure describes memory side cache
information for a given memory domain. The software could use this information to effectively place the data in

memory to maximize the performance of the system memory that use the memory side cache.

5.2. ACPI System Description Tables

259

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.130:

Memory Side Cache Information Structure

Field

Byte
Length

Byte
Offset

Description

Type

2

0

2 - Memory Side Cache Information Structure

Reserved

Length

Length in bytes for entire structure.

Proximity Domain for the
Memory

2
4
4

2
4
8

Integer that represents the memory proximity domain to
which the memory side cache information applies. This num-
ber shall match the corresponding entry in the SRAT table’s
Memory Affinity Structure

Reserved

12

Memory Side Cache Size

16

Size of memory side cache in bytes for the above memory
proximity domain.

Cache Attributes

24

Bits [3:0] - Total Cache Levels for this Memory Proximity
Domain:

- 0 - None

- 1 - One level cache

- 2 - Two level cache

- 3 - Three level cache

- Other values reserved
Bits [7:4] - Cache Level described in this structure:

- 0 - None

- 1 - One level cache

- 2 - Two level cache

- 3 - Three level cache

- Other values reserved
Bits [11:8] - Cache Associativity:

-0 - None

- 1 - Direct Mapped

- 2 - Complex Cache Indexing (implementation

specific)

- Other values reserved
Bits [15:12] - Write Policy

- 0 - None

- 1 - Write Back (WB)

- 2 - Write Through (WT)

- Other values reserved

Bits [31:16] - Cache Line size in bytes. Number of bytes
accessed from next cache level on cache miss.

Reserved

28

Number of SMBIOS han-
dles (n)

30

Number of SMBIOS handles that contributes to the memory
side cache physical devices.

SMBIOS Handles

2xn

32

Refers to corresponding SMBIOS Type-17 Handles Structure
that contains Physical Memory Component related informa-
tion

Implementation Note: A proximity domain should contain only one set of memory attributes. If memory attributes
differ, represent them in different proximity domains. If the Memory Side Cache Information Structure is present, the

5.2. ACPI System Description Tables

260

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

System Locality Latency and Bandwidth Information Structure shall contain latency and bandwidth information for
each memory side cache level.

5.2.28 Platform Debug Trigger Table (PDTT)

This section describes the format of the Platform Debug Trigger Table (PDTT) description table, which is an optional
table that describes one or more PCC subspace identifiers that can be used to trigger/notify the platform specific debug
facilities to capture non-architectural system state. This is intended as a standard mechanism for the OSPM to notify
the platform of a fatal crash (e.g. kernel panic or bug check).

This table is intended for platforms that provide debug hardware facilities that can capture system info beyond the
normal OS crash dump. This trigger could be used to capture platform specific state information (e.g. firmware state,
on-chip hardware facilities, auxiliary controllers, etc.). This type of debug feature could be leveraged on mobile, client,
and enterprise platforms.

Certain platforms may have multiple debug subsystems that must be triggered individually. This table accommodates
such systems by allowing multiple triggers to be listed.

After triggering debug facilities, the CPU may continue to operate as expected so that the kernel may continue with
crash processing/handling (e.g. possibly attempting to attach a debugger or proceed with a full crash dump prior to
rebooting the system), depending on the value defined in Trigger order. Please refer to Section 5.2.28.2 for more
details.

After triggering debug facilities, the CPU must continue to operate as expected so that the kernel may continue with
crash processing/handling (e.g. possibly attempting to attach a debugger or proceed with a full crash dump prior to
rebooting the system).

On some platforms, the debug trigger may put some hardware components/peripherals into a frozen non-operational
state, and so the debug trigger is not recommended to be used during normal run-time operation.

Other platforms may allow the debug trigger for capture system state to debug run-time behavioral issues (e.g. system
performance and power issues), specified by the “Run-time” flag field in Table 5.132.

When multiple triggers exist, the triggers within each of the two groups, defined by trigger order, will be executed in
order. OSPM may need to wait for PCC completion before executing next trigger based on the “Wait for Completion”
flag field in Table 5.132.

Note: The mechanism by which this system debug state information is retrieved by the user is platform and vendor
specific. This will most likely will require special tools and privileges in order to access and parse the platform debug
information captured by this trigger.

Table 5.131: PDTT Structure

Field Byte Byte Description
Length | Offset
Signature 4 0 ‘PDTT’
Length 4 4 Length in bytes of the entire Platform Debug Trigger
Table
Revision 1 8 0
Checksum 1 9 Entire table must sum to zero.
OEM ID 6 10 OEM ID
OEM Table ID 8 16 The table ID is the manufacturer model ID.
OEM Revision 4 24 OEM revision for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table.
Creator Revision 4 32 Revision of utility that created the table.

continues on next page

5.2. ACPI System Description Tables 261

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.131 — continued from previous page

Field Byte Byte Description
Length | Offset
Trigger Count 1 36 Number of PDTT Platform Communication Channel
Identifiers
Reserved 3 37 Must be zero
Trigger Identifier Array Offset 4 40 Offset to the “PDTT Platform Communication Channel
Identifiers[]” Array
PDTT Platform Communication | — Trigger | Array of PDTT Platform Communication Channel Iden-
Channel Identifiers [] Iden- tifiers to notify various platform debug facilities. This
tifier identifier selects the PCC subspace index that must be
Array listed in the PCCT. It also describes per trigger flags.
Offset Each Identifier is 2 bytes. Must provide a minimum of

one identifier. See Table 5.132 below.

Table 5.132: PDTT Platform Communication Channel Identifier

Structure

Field

Bit
Length

Bit Off-
set

Description

PDTT PCC Sub Channel Identi-
fier

8

0

PCC sub channel ID. Note: this must be an index listed
in the PCCT

Run-time

0: Trigger must only be invoked in fatal crash scenar-
ios. This debug trigger may put some hardware compo-
nents/peripherals into a frozen non-operational state. |
1: Trigger may be invoked at run-time as well as in fatal
crash scenarios.

Wait for Completion

0: OSPM may initiate next trigger immediately | 1:
OSPM must wait for PCC complete prior to initiating
the next trigger in the list

Trigger Order

10

Used in fatal crash scenarios: 0: OSPM must initiate
trigger before kernel crash dump processing | 1: OSPM
must initiate trigger at the end of crash dump process-
ing.

Reserved

11

Must be zero

5.2.28.1 PDTT PCC Sub Channel

The PDTT PCC Sub Channel Identifier value provided by the platform in this field is index in the PCCT table (as shown
in the picture below). PCC Communications Subspace Structure for PDTT can use any type of PCC communication
subspace. PCC Sub Channel entry in PCCT table identified by the PDTT PCC Sub Channel Identifier will have the
information on type of PCC Sub channel definition associated with the debug trigger. The PDTT references its PCC
Subspace in a given platform by this identifier, as shown in Table 5.132.

Section 5.2.28.1 below shows how the right PCC subspace entry associated with a debug trigger in PDTT can be found

from the PCTT table.

5.2. ACPI System Description Tables

262

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 5.12: Mapping a PDTT Debug Trigger Table Entry to a PCCT PCC Subspace

5.2.28.1.1 Using PCC registers

A platform debug trigger can choose to use any type of PCC subspace. The definition of the shared memory region for
a debug trigger will follow the definition of shared memory region associated with the PCC subspace type used for the
debug trigger. For example if a platform debug trigger chooses to use Generic PCC communication subspace (Type
0), then it will use the Generic Communication Channel shared memory region described in Section 14.2. OSPM will
write PCC registers by filling in the register values in PCC sub channel space. If a platform debug trigger choose to
use a PCC communication subchannel that uses a Generic Communication shared memory region then it will write
the debug trigger command in the command field. See Table 5.132 for allowed debug commands. All other command
values are reserved.

The platform can also use the PCC sub channel Type 5 for debug a trigger. In this case, OSPM will follow the PCC
sub channel definition and write to the doorbell register to trigger a debug log. A platform debug trigger using PCC
Communication sub channel Type 5 will use the shared memory region to share vendor-specific debug information.

The following table defines the Type-5 PCC channel shared memory region definition for debug trigger.

Table 5.133: Type 5 Platform Communication Channel Shared Mem-

ory
Field Byte Byte Description

Length | Offset
Signature 4 0 The PCC signature. The signature of a subspace is computed by

a bitwise-or of the value 0x50434300 with the subspace ID. For
example, subspace 3 has the signature 0x50434303.

Communication
Subspace

continues on next page

5.2. ACPI System Description Tables 263

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.133 — continued from previous page

Field Byte Byte Description
Length | Offset
Vendor specific | — 4 Vendor specific area to share additional information between OSPM
space and platform. The length of the vendor specified area must be 4
bytes less than the Length field specified in the PCCT entry referring
to this shared memory space.

Table 5.134: PCC Commands Codes used by Platform Debug Trigger

Table
Command Description
0x00 Execute Platform Debug Trigger (doorbell only - no command/response).
0x01 Execute Platform Debug Trigger (with vendor specific command in communication space).
0x01-0xFF All other values are reserved.

Table 5.135: PDTT Platform Communication Channel

Field Bit Bit Off- | Description
Length | set
Signature 4 0 The PCC signature. The signature of a subspace is computed

by a bitwise-or of the value 0x50434300 with the subspace
ID. For example, subspace 3 has signature 0x50434303.

Command 2 4 PCC command field, see Section 14 and Table 5.134

Status 2 6 PCC status field (see Section 14)

Communication Space — — —

Vendor-specific Variable | 8 Optional vendor specific command/response area written by

OSPM - must be zero if not supported

5.2.28.2 PDTT PCC Trigger Order

The trigger order defines two categories for triggers
Trigger Order 0: Triggers are invoked by OSPM before executing its crash dump processing functions.

Trigger Order 1: Triggers are invoked by OSPM at the end of crash dump processing functions, typically after the
kernel has processed crash dumps.

Capturing platform specific debug information from certain IPs would require intrusive mechanism which may limit
kernel operations after the operations. Trigger order allows the platform to define such operations that will be invoked
at the end of kernel operations by OSPM.

5.2.28.3 Example: OS Invoking Multiple Debug Triggers

To illustrate how these debug triggers are intended to be used by the OS, consider this example of a system with 4
independent debug triggers as shown in Fig. 5.13. These triggers are described to the OS via the PDTT example in
Table 5.136.

Note: This example assumes no vendor specific communication is required, so only PCC command 0x0 is used.

When the OS encounters a fatal crash, prior to collecting a crash dump and rebooting the system, the OS may choose
to invoke the debug triggers in the order listed in the PDTT. The addresses of the doorbell register and the PCC general
communication space (if needed) are retrieved from the PCCT, depending on the PCC subspace type (see Table 14.4,
Table 14.5, or Table 14.6).

5.2. ACPI System Description Tables 264

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 5.13: Example: Platform with four debug triggers

Table 5.136: Example: Platform with 4 debug triggers

Field Value Notes

Signature ‘PDTT’

Trigger Count 4 Describing the 4 triggers illustrated in Fig. 5.13 above

Reserved 0

Trigger Identifier Array Offset 44

PDTT PCC Identifiers [0] 0x0004
[Bits 0:7] - 4 (channel subspace ID 4)
[Bit 8] - 0 (Trigger may only be invoked in fatal crash scenarios)
[Bit 9] - 0 (OSPM may initiate next trigger immediately)

PDTT PCC Identifiers [1] 0x0201
[Bits 0:7] - 1 (channel ID subspace 1)
[Bit 8] - 0 (Trigger may only be invoked in fatal crash scenarios)
[Bit 9] - 1 (OSPM must wait for PCC complete prior to initiating
the next trigger in the list)

PDTT PCC Identifiers [2] 0x0002

[Bits 0:7] - 2 (channel ID subspace 2)
[Bit 8] - 0 (Trigger may only be invoked in fatal crash scenarios)
[Bit 9] - 0 (OSPM may initiate next trigger immediately)

continues on next page

5.2. ACPI System Description Tables

265

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.136 — continued from previous page

Field Value Notes

PDTT PCC Identifiers [3] 0x0203

[Bits 0:7] - 3 (channel ID subspace 3)
[Bit 8] - 0 (Trigger may only be invoked in fatal crash scenarios)

[Bit 9] - 1 (OSPM must wait for PCC complete prior to initiating
the next trigger in the list)

Walking through the list of triggers in the PDTT, the OS may execute the following steps:

1. For Trigger O, retrieves doorbell register address from PCCT per PCC subspace ID 4 and writes to it with

appropriate write/preserve mask. Since OS does not need to wait for completion, OS does not need to send a
PCC command and should ignore the PCC subspace base address

. For Trigger 1, retrieves doorbell register address and PCC subspace address from PCCT per PCC subspace ID
1. Since OS must wait for completion, OS must write PCC command (0x0) and write to the doorbell register
per section 14 and poll for the completion bit.

. For Trigger 2, , retrieves doorbell register address from PCCT per PCC subspace ID 2 and writes to it with
appropriate write/preserve mask. Since OS does not need to wait for completion, OS does not need to send a
PCC command and should ignore the PCC subspace base address

. For Trigger 3, retrieves doorbell register address and PCC subspace address from PCCT per PCC subspace ID
3. Since OS must wait for completion, OS must write PCC command (0x0) and write to the doorbell register
per section 14 and poll for the completion bit.

Note: When wait for completion is necessary, the OS must poll bit zero (completion bit) of the status field of that
PCC channel (see Table 14.6 and the Generic Communications Channel Shared Memory Region.

5.2.29 Processor Properties Topology Table (PPTT)

This optional table is used to describe the topological structure of processors controlled by the OSPM, and their shared
resources, such as caches. The table can also describe additional information such as which nodes in the processor
topology constitute a physical package. The structure of PPTT is described in Table 5.137 .

Table 5.137: Processor Properties Topology Table

Field Byte Byte Description
Length | Offset
Header
- Signature 4 0 ‘PPTT’ Processor Properties Topology Table
- Length 4 4 Length of entire PPTT table in bytes
- Revision 1 8 3
- Checksum 1 9 The entire table must sum to zero.
- OEMID 6 10 OEM ID.
- OEM Table ID 8 16 OEM revision of table for supplied OEM Table ID
- OEM Revision 4 24 OEM revision of the PPTT for the supplied OEM Table
ID.
- Creator ID 4 28 Vendor ID of utility that created the table
- Creator Revision 4 32 Revision of utility that created the table
Body

continues on next page

5.2. ACPI System Description Tables

266

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.137 — continued from previous page

Field Byte Byte Description
Length | Offset
— 36 List of processor topology structures

* Processor topology struc-
ture[N]

Note: Processor topology structures are described in the following sections.

5.2.29.1 Processor hierarchy node structure (Type 0)

The processor hierarchy node structure is described in Table 5.138 . This structure can be used to describe a single
processor or a group. To describe topological relationships, each processor hierarchy node structure can point to a
parent processor hierarchy node structure. This allows representing tree like topology structures. Multiple trees may
be described, covering for example multiple packages. For the root of a tree, the parent pointer should be 0.

If PPTT is present, one instance of this structure must be present for every individual processor presented through the
MADT interrupt controller structures. In addition, an individual entry must be present for every instance of a group
of processors that shares a common resource described in the PPTT. Resources are described in other PPTT structures
such as Type 1 cache structures. Each physical package in the system must also be represented by a processor node
structure.

Each processor node includes a list of resources that are private to that node. Resources are described in other PPTT
structures such as Type 1 cache structures. The processor node’s private resource list includes a reference to each of
the structures that represent private resources to a given processor node. For example, an SoC level processor node
might contain two references, one pointing to a Level 3 cache resource and another pointing to an ID structure. For
compactness, separate instances of an identical resource can be represented with a single structure that is listed as a
resource of multiple processor nodes.

For example, is expected that in the common case all processors will have identical L1 caches. For these platforms a
single L1 cache structure could be listed by all processors, as shown in the following figure.

Fig. 5.14: L1 Cache Structure

5.2. ACPI System Description Tables 267

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Note: though less space efficient, it is also acceptable to declare a node for each instance of a resource. In the example
above, it would be legal to declare an L1 for each processor.

Note: Compaction of identical resources must be avoided if an implementation requires any resource instance to be
referenced uniquely. For example, in the above example, the L1 resource of each processor must be declared using a
dedicated structure to permit unique references to it.

Table 5.138: Processor Hierarchy Node Structure

Field Byte Byte Description
Length | Offset
Type 1 0 0 - processor structure
Length 1 1 Length of the local processor structure in bytes
Reserved 2 2 Must be zero
Flags 4 4 See Processor Structure Flags.
Parent 4 8 Reference to parent processor hierarchy node structure. The

reference is encoded as the difference between the start of the
PPTT table and the start of the parent processor structure en-
try. A value of zero must be used where a node has no parent.
ACPI Processor ID 4 12 If the processor structure represents an actual processor, this
field must match the value of ACPI processor ID field in the
processor’s entry in the MADT. If the processor structure rep-
resents a group of associated processors, the structure might
match a processor container in the name space. In that case
this entry will match the value of the _UID method of the as-
sociated processor container. Where there is a match it must
be represented. The flags field, described in Processor Struc-
ture Flags, includes a bit to describe whether the ACPI pro-
cessor ID is valid.

Number of private re- | 4 16 Number of resource structure references in Private Resources
sources (below)
Private resources[N] N*4 20 Each resource is a reference to another PPTT structure. The

structure referred to must not be a processor hierarchy node.
Each resource structure pointed to represents resources that
are private the processor hierarchy node. For example, for
cache resources, the cache type structure represents caches
that are private to the instance of processor topology repre-
sented by this processor hierarchy node structure. The refer-
ences are encoded as the difference between the start of the
PPTT table and the start of the resource structure entry.

Processor Structure Flags are described in the following table.

Table 5.139: Processor Structure Flags

Field Bit Bit Off- | Description
Length | set
Physical package 1 0 Set to 1 if this node of the processor topology represents the

boundary of a physical package, whether socketed or surface
mounted. Set to O if this instance of the processor topology
does not represent the boundary of a physical package. Each
valid processor must belong to exactly one package. That is,
the leaf must itself be a physical package or have an ancestor
marked as a physical package.

continues on next page

5.2. ACPI System Description Tables 268

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.139 — continued from previous page

Field Bit Bit Off- | Description
Length | set
ACPI Processor ID valid 1 1 For non-leaf entries in the processor topology, the ACPI Pro-

cessor ID entry can relate to a Processor container in the
namespace. The processor container will have a matching ID
value returned through the _UID method. As not every pro-
cessor hierarchy node structure in PPTT may have a matching
processor container, this flag indicates whether the ACPI pro-
cessor ID points to valid entry. Where a valid entry is possible
the ACPI Processor ID and _UID method are mandatory. For
leaf entries in PPTT that represent processors listed in MADT,
the ACPI Processor ID must always be provided and this flag
must be set to 1.

Processor is a Thread 1 2 For leaf entries: must be set to 1 if the processing element
representing this processor shares functional units with sibling
nodes. For non-leaf entries: must be set to 0.

Node is a Leaf 1 3 Must be set to 1 if node is a leaf in the processor hierarchy.
Else must be set to 0.
Identical Implementation | 1 4 A value of 1 indicates that all children processors share an

identical implementation revision. This field should be ig-
nored on leaf nodes by the OSPM. Note: this implies an
identical processor version and identical implementation re-
version, not just a matching architecture revision.

Reserved 27 5 Must be zero

Note: Threads sharing a core must be grouped under a unique Processor hierarchy node structure for each group of
threads.

Note: Processors may be marked as disabled in the MADT. In this case, the corresponding processor hierarchy node
structures in PPTT should be considered as disabled. Additionally, all processor hierarchy node structures representing
a group of processors with all child processors disabled should be considered as being disabled. All resources attached
to disabled processor hierarchy node structures in PPTT should also be considered disabled.

5.2.29.2 Cache Type Structure - Type 1

The cache type structure is described in Table 5.140. The cache type structure can be used to represent a set of caches
that are private to a particular processor hierarchy node structure, that is, to a particular node in the processor topology
tree. The set of caches is described as a NULL, or zero, terminated linked list. Only the head of the list needs to be
listed as a resource by a processor node (and counted toward Number of Private Resources), as the cache node itself
contains a link to the next level of cache.

Cache type structures are optional, and can be used to complement or replace cache discovery mechanisms provided
by the processor architecture. For example, some processor architectures describe individual cache properties, but do
not provide ways of discovering which processors share a particular cache. When cache structures are provided, all
processor caches must be described in a cache type structure.

Each cache type structure includes a reference to the cache type structure that represents the next level cache. The
level in this context must relate to the CPU architecture’s definition of cache level. The list must include all caches
that are private to a processor hierarchy node. It is not permissible to skip levels. That is, a cache node included in a

5.2. ACPI System Description Tables 269

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

given hierarchy processor node level must not point to a cache structure referred to by a processor node in a different
level of the hierarcy.

For example, if a node represents a CPU that has a private L1 and private L2 cache, the list would contain both caches
(L1->L2->0). If on the other hand the L2 cache was shared, the list would just include the L1 (L1->0), and a parent
processor topology node, to all processors that share the L2, would contain the cache type structure that represents the
shared L2.

Processors, or higher level nodes within the hierarchy, with separate instruction and data caches must describe the
instruction and data caches with separate linked lists of cache type structures both listed as private resources of the
relevant processor hierarchy node structure. If the separate instruction are data caches are unified at a higher level of
cache then the linked lists should converge.

Consider the example shown in the following figure.

Fig. 5.15: Cache Type Structure - Type 1 Example

5.2. ACPI System Description Tables 270

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

In this Type 1 example:

» Each processor has private L1 data, L1 intruction and L2 caches. The two processors are contained in a cluster

which provides an L3 cache.

 Each processor’s hierarchy node has two separate cache type structures as private resources for L1I and L1D

* Both the L1I and L1D cache structures point to the L2 cache structure as their next level of cache

* L2 cache type structure terminates the linked list of the CPU’s caches. The resulting list denotes all private

caches at the processor level

* Both processor nodes have their parent pointer pointing to node that represents the cluster.

* The cluster node includes the L3 cache as it’s private resource. The L3 node in turn has no next level of cache.

An entry in the list indicates primarily that a cache exists at this node in the hierarchy. Where possible, cache properties
should be discovered using processor architectural mechanisms, but the cache type structure may also provide the
properties of the cache. A flag is provided to indicate whether properties provided in the table are valid, in which case
the table content should be used in preference to processor architected discovery. On Arm-based systems, all cache

properties must be provided in the table.

Table 5.140: Cache Type Structure

Field Byte Byte

Length | Offset

Description

Type 1 0

1 - Cache type structure

Length

28

Reserved

Must be zero

See Cache Structure Flags.

R &[] —

1
2
Flags 4
Next Level of Cache | 4

Reference to next level of cache that is private to the processor
topology instance. The reference is encoded as the difference be-
tween the start of the PPTT table and the start of the cache type
structure entry. This value will be zero if this entry represents
the last cache level appropriate to the the processor hierarchy node
structures using this entry.

Size 12

Size of the cache in bytes.

Number of sets 16

Number of sets in the cache

Associativity 20

Integer number of ways.

—_ =

Attributes 21

Bits 1:0: Allocation type:

0x0 - Read allocate

0x1 - Write allocate

0x2 or 0x03 indicate Read and Write allocate
Bits:3:2: Cache type:

0x0 Data

0x1 Instruction

0x2 or 0x3 Indicate a unified cache
Bits 4: Write policy:

0x0 Write back

0x1 Write through
Bits:7:5 Reserved must be zero.

Line size 2 22

Line size in bytes

continues on next page

5.2. ACPI System Description Tables

271

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.140 — continued from previous page

Field Byte Byte Description
Length | Offset
Cache ID 4 24 Unique, non-zero identifier for this cache. If Cache ID is valid as in-

dicated by the Flags field, then this structure defines a unique cache
in the system. A Cache ID value of O indicates a NULL identifier
that is not valid.

The cache type structure flags are described in the following table.

Table 5.141: Cache Structure Flags

Field

Bit

Length

Bit Off-
set

Description

Size property valid

1

0

Set to 1 if the size properties described is valid. A value of 0
indicates that, where possible, processor architecture specific
discovery mechanisms should be used to ascertain the value
of this property.

Number of sets valid

Set to 1 if the number of sets property described is valid. A
value of 0 indicates that, where possible, processor architec-
ture specific discovery mechanisms should be used to ascer-
tain the value of this property.

Associativity valid

Set to 1 if the associativity property described is valid. A value
of 0 indicates that, where possible, processor architecture spe-
cific discovery mechanisms should be used to ascertain the
value of this property.

Allocation type valid

Set to 1 if the allocation type attribute described is valid. A
value of 0 indicates that, where possible, processor architec-
ture specific discovery mechanisms should be used to ascer-
tain the value of this attribute.

Cache type valid

Set to 1 if the cache type attribute described is valid. A value
of 0 indicates that, where possible, processor architecture spe-
cific discovery mechanisms should be used to ascertain the
value of this attribute.

Write policy valid

Set to 1 if the write policy attribute described is valid. A value
of 0 indicates that, where possible, processor architecture spe-
cific discovery mechanisms should be used to ascertain the
value of this attribute.

Line size valid

Set to 1 if the line size property described is valid. A value of O
indicates that, where possible, processor architecture specific
discovery mechanisms should be used to ascertain the value
of this property.

Cache ID Valid

Set to 1 if the Cache ID property described is valid. A value
of 0 indicates that, where possible, processor architecture spe-
cific discovery mechanisms should be used to ascertain the
value of this property.

Reserved

24

Must be zero

5.2. ACPI System Description Tables

272

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.30 Platform Health Assessment Table (PHAT)

This section describes the format of the Platform Health Assessment Table (PHAT), which provides a means by which
a platform can expose an extensible set of platform health related telemetry that may be useful for software running
within the constraints of an operating system. These elements are typically going to encompass things that are likely
otherwise not enumerable during the OS runtime phase of operations, such as version of pre-OS components, or health
status of firmware drivers that were executed by the platform prior to launch of the OS. It is not expected that the OSPM
would act on the data being exposed.

Table 5.142: Platform Health Assessment Table (PHAT) Format

Field Byte Byte Description
Length | Offset

Header

- Signature 4 0 PHAT Signature for the Platform Health Assessment Table.

- Length 4 4 The length of the table, in bytes, of the entire PHAT

- Revision 1 8 The revision of the structure corresponding to the signature
field for this table. For the PHAT confirming to this revision
of the specification, the revision is 1.

- Checksum 1 9 The entire table, including the checksum field, must add to
zero to be considered valid.

- OEMID 6 10 An OEM-supplied string that identifies the OEM.

- OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify this
particular data table

- OEM Revision 4 24 OEM-supplied revision number.

- Creator ID 4 28 The Vendor ID of the utility that created this table.

- Creator Revision 4 32 The revision of the utility that created this table.

Platform Telemetry Records | — 36 The set of Platform Telemetry Records

5.2.30.1 Platform Health Assessment Record Format

A platform health assessment record is comprised of a sub-header including a record type and length, and a set of data.
The format of the record layout is specific to the record type. In this manner, records are only as large as needed to
contain the specific type of data to be conveyed.

Table 5.143: Platform Health Assessment Record Format

Field

Byte
Length

Byte
Offset

Description

Platform Health Assess-
ment Record Type

2

0

This value depicts the format and contents of the platform
health assessment record.

Record Length

2

This value depicts the length of the platform health assessment
record, in bytes.

Revision

This value is updated if the format of the record type is ex-
tended. Any changes to a platform health assessment record
layout must be backwards compatible in that all previously de-
fined fields must be maintained if still applicable, but newly
defined fields allow the length of the platform health record
to be increased. Previously defined record fields must not be
redefined, but are permitted to be deprecated.

Data

The content of this field is defined by the Platform Health As-
sessment Record Type definition.

5.2. ACPI System Description Tables

273

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.2.30.2 Platform Health Assessment Record Type Format
The table below describes the various types of records contained within the PHAT, and their associated Platform Health

Assessment Record Type. Note that unless otherwise specified, multiple platform telemetry records are permitted in
the PHAT for a given type.

Table 5.144: Platform Health Assessment Record Type Format

Record Type | Type Description

Value

0x0000 Firmware Version | Pre-OS platform health assessment record containing version data for
Data Record components within the platform firmware, option ROMs, and other

pre-OS platform components.

0x0001 Firmware Health | Pre-OS platform health assessment record containing health-related
Data Record information for pre-OS platform components.

0x0002 — 0xOFFF Reserved Reserved for ACPI specification usage.

0x1000 — 0x1FFF Reserved Reserved for Platform Vendor usage.

0x2000 — 0x2FFF Reserved Reserved for Hardware Vendor usage.

0x3000 — 0x3FFF Reserved Reserved for Platform Firmware Vendor usage.

0x4000 — 0x4FFF Reserved Reserved for future use.

5.2.30.3 Firmware Version Data Record Structure

A platform health assessment record which contains the version-related information associated with pre-OS compo-
nents in the platform.

Table 5.145: PHAT Version Element

Field Byte Byte Description
Length | Offset
Component ID 16 0 Unique GUID associated with this component.
Version Value 8 16 64-bit version value
Producer ID 4 24

The ACPI Vendor ID (e.g. ‘ABCD’):
0xFFFF — no ID defined
0x0000 — invalid value

Table 5.146: Firmware Version Data Record

Field Byte Byte Description
Length | Offset
Platform Record Type 2 0 0 — Firmware Version Data Record
Record Length 2 2 12+28*RecordCount — This value depicts the length of the
version data record, in bytes.
Revision 1 4 1 — Revision of this Firmware Version Data Record.
Reserved 3 5 Reserved
Record Count 4 8 PHAT Version Element Count

continues on next page

5.2. ACPI System Description Tables 274

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.146 — continued from previous page

Field Byte Byte Description
Length | Offset
PHAT Version Element Varies 12 Array of PHAT Version Elements. First entry is the origi-

nal producer of the component, and if there’s a subsequent
entry, that means a second agent modified the original com-
ponent in some way, and whichever the last entry is, that’s
the currently running instance of the component. This allows
for IHV/IBV/OEM/others to establish a chain of data records
associated with a given component.

5.2.30.4 Firmware Health Data Record Structure

A platform health assessment record which contains the health-related information associated with pre-OS components
in the platform. This structure is intended to be used to identify the barebones state of a pre-OS component in a generic
fashion. In addition, the Device Path can give standardized hints of where in the pre-OS the platform resides, whether
it’s a well-known hardware node (e.g. storage controller) or some other vendor specific location that may be hanging

off another bus.

This structure also provides a means by which a platform could also expose device-specific data that goes beyond the

simple healthy and not healthy statement.

Table 5.147: Firmware Health Data Record Structure

Field Byte Byte Description
Length | Offset

Platform Record | 2 0 1 — Firmware Health Data Record

Type

Record Length 2 2 varies — This value depicts the length of the health data record, in
bytes.

Revision 1 4 1 — Revision of this Firmware Health Data Record.

Reserved 5 Reserved

AmHealthy 1 7
Has the device encountered any issues? This allows any agent
parsing this record to understand in whether or not the device is
healthy without needing to parse the device-specific health data.
Any device health state may expose device-specific data:

0= Errors found

1= No errors found

2= Unknown

3= Advisory — additional device-specific data exposed

DeviceSignature 16 8 The unique GUID associated with this device.

Device-specific 4 24 Offset to the Device-specific Data from the start of this Data Record.

Data Offset If 0, then there is no device-specific data.

Device Path Varies 28 The UEFI Device Path associated with the record producer. See
the UEFI specification for the EFI_DEVICE_PATH_PROTOCOL
definition.

Device-specific Varies Device- | The health record associated with a particular device. Its definition

Data specific | is specific to the given device that produced this record.

Data
Offset

5.2. ACPI System Description Tables

275

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.3 ACPI Namespace

For all Definition Blocks, the system maintains a single hierarchical namespace that it uses to refer to objects. All
Definition Blocks load into the same namespace. Although this allows one Definition Block to reference objects and
data from another (thus enabling interaction), it also means that OEMs must take care to avoid any naming collisions.
For the most part, since the name space is hierarchical, typically the bulk of a dynamic definition file will load into a
different part of the hierarchy. The root of the name space and certain locations where interaction is being designed
are the areas in which extra care must be taken.

A name collision in an attempt to load a Definition Block is considered fatal. The contents of the namespace changes
only on a load operation.

The namespace is hierarchical in nature, with each name allowing a collection of names “below” it. The following
naming conventions apply to all names:

¢ All names are a fixed 32 bits.
* The first byte of a name is inclusive of: ‘A’-°Z’, ‘_’, (0x41-0x5A, 0x5F).
* The remaining three bytes of a name are inclusive of: ‘A’-‘Z’, ‘0’-‘9’, *_’, (0x41-0x5A, 0x30-0x39, 0x5F).

* By convention, when an ASL compiler pads a name shorter than 4 characters, it is done so with trailing under-
scores (°_"). See the language definition for AML NameSeg in the ASL Reference chapter.

* Names beginning with °_’ are reserved by this specification. Definition Blocks can only use names beginning
with ‘_’ as defined by this specification.

* A name proceeded with *' causes the name to refer to the root of the namespace (*' is not part of the 32-bit
fixed-length name).

* A name proceeded with ‘** causes the name to refer to the parent of the current namespace (‘A’ is not part of the
32-bit fixed-length name).

Except for names preceded with a “, the current namespace determines where in the namespace hierarchy a name
being created goes and where a name being referenced is found. A name is located by finding the matching name
in the current namespace, and then in the parent namespace. If the parent namespace does not contain the name, the
search continues recursively upwards until either the name is found or the namespace does not have a parent (the
root of the namespace). This indicates that the name is not found - unless the operation being performed is explicitly
prepared for failure in name resolution, this is considered an error and may cause the system to stop working.

An attempt to access names in the parent of the root will result in the name not being found.

There are two types of namespace paths: an absolute namespace path (that is, one that starts with a ' prefix), and a
relative namespace path (that is, one that is relative to the current namespace). The namespace search rules discussed
above, only apply to single NameSeg paths, which is a relative namespace path. For those relative name paths that
contain multiple NameSegs or Parent Prefixes, ‘*’, the search rules do not apply. If the search rules do not apply to a
relative namespace path, the namespace object is looked up relative to the current namespace. For example:

ABCD //search rules apply
~ABCD //search rules do not apply
XYZ .ABCD //search rules do not apply

\\XYZ.ABCD //search rules do not apply

All name references use a 32-bit fixed-length name or use a Name Extension prefix to concatenate multiple 32-bit
fixed-length name components together. This is useful for referring to the name of an object, such as a control method,
that is not in the scope of the current namespace.

Namepaths are used primarily for two purposes:

 To reference an existing object. In this case, all NameSegs within the Namepath must already exist.

5.3. ACPI Namespace 276

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

* To create a new object. For example:

Device (XYZ.ABCD) {...}
OperationRegion (\XYZ.ABCD, SystemMemory, 0, 0x200)

Each of these declarations is intended to create a new object with the name ABCD according the following rules:
¢ Object XYZ must already exist for the ABCD object to be created
e If XYZ does not exist, that will cause a fatal error

In general, it is only the final Nameseg that will be used as the name of the new object. If any other Nameseg along
the Namepath does not exist, it is a fatal error. In this sense, the Namepath is similar to a file pathname in a filesystem
consisting of some number of existing directories followed by a final filename.

The figure below shows a sample of the ACPI namespace after a Differentiated Definition Block has been loaded.

[Cj Root

PR — Processor Tree
4?@ CPUD — Processor 0 object
{3 \PIDO — Power resource for IDED
1 _STA — Method to retumn status of power resource
™= _ON — Method to turn on power resource
™1 _OFF — Method to tum off power resource
e — System bus tree
PCIO —PCl hus
_HID — Device 1D
_CRS — Current resources (PCI bus number)
IDED — IDEOQ device Key
_ADR — PCI device #, function # |i| Package
_PRO — Power resource requirements for DO @ Processor Object
_GPE — General purpose events (GP_STS) i' g?;;;i; Resource
_Lo — Method to handle level GP_STS.1 |i‘| Bus/Device Object
_E02 — Method to handle edge GP_STS.2 | Data Object
_Lo3 — Method to handle level GP_STS3 | Control Method (AML code)

Fig. 5.16: Example ACPI NameSpace

Care must be taken when accessing namespace objects using a relative single segment name because of the namespace
search rules. An attempt to access a relative object recurses toward the root until the object is found or the root
is encountered. This can cause unintentional results. For example, using the namespace described in Figure 5.5,
attempting to access a _CRS named object from within the _SB_.PCI0.IDEO will have different results depending
on if an absolute or relative path name is used. If an absolute pathname is specified (_SB_.PCIO.IDEO._CRS) an
error will result since the object does not exist. Access using a single segment name (_CRS) will actually access the
SB.PCI0._CRS object. Notice that the access will occur successfully with no errors.

5.3. ACPI Namespace 277

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.3.1 Predefined Root Namespaces

The following namespaces are defined under the namespace root.

Table 5.148: Namespaces Defined Under the Namespace Root

Name Description
_GPE General events in GPE register block.
_PR ACPI 1.0 Processor Namespace. ACPI 1.0 requires all Processor objects to be defined

under this namespace. ACPI 2.0 and later allow Processor object definitions under the
_SB namespace. Platforms may maintain the _PR namespace for compatibility with
ACPI 1.0 operating systems, but it is otherwise deprecated. see the compatibility note
in Processor Local x2APIC Structure. An ACPI-compatible namespace may define
Processor objects in either the _SB or _PR scope but not both. For more information
about defining Processor objects, see Processor Configuration and Control.

_SB All Device/Bus Objects are defined under this namespace.

_SI System indicator objects are defined under this namespace. For more information
about defining system indicators, see _SI System Indicators.

\TZ ACPI 1.0 Thermal Zone namespace. ACPI 1.0 requires all Thermal Zone objects

to be defined under this namespace. Thermal Zone object definitions may now be
defined under the _SB namespace. ACPI-compatible systems may maintain the _TZ
namespace for compatibility with ACPI 1.0 operating systems. An ACPI-compatible
namespace may define Thermal Zone objects in either the _SB or _TZ scope but
not both. For more information about defining Thermal Zone objects, see Thermal
Management.

5.3.2 Objects

All objects, except locals, have a global scope. Local data objects have a per-invocation scope and lifetime and are
used to process the current invocation from beginning to end.

The contents of objects vary greatly. Nevertheless, most objects refer to data variables of any supported data type, a
control method, or system software-provided functions.

Objects may contain a revision field. Successive ACPI specifications define object revisions so that they are backwards
compatible with OSPM implementations that support previous specifications / object revisions. New object fields are
added at the end of previous object definitions. OSPM interprets objects according to the revision number it supports
including all earlier revisions. As such, OSPM expects that an object’s length can be greater than or equal to the length
of the known object revision. When evaluating objects with revision numbers greater than that known by OSPM,
OSPM ignores internal object fields values that are beyond the defined object field range for the known revision.

5.3. ACPI Namespace 278

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.4 Definition Block Encoding

This section specifies the encoding used in a Definition Block to define names (load time only), objects, and packages.

5.4.1 AML Encoding

The Definition Block is encoded as a stream from beginning to end. The lead byte in the stream comes from the
AML encoding tables shown in ACPI Source Language (ASL) Reference and signifies how to interpret some number
of following bytes, where each following byte can in turn signify how to interpret some number of following bytes.
For a full specification of the AML encoding, see ACPI Source Language (ASL) Reference

Within the stream there are two levels of data being defined. One is the packaging and object declarations (load time),
and the other is an object reference (package contents/run-time).

All encodings are such that the lead byte of an encoding signifies the type of declaration or reference being made. The
type either has an implicit or explicit length in the stream. All explicit length declarations take the form shown below,
where Pkglength is the length of the inclusive length of the data for the operation.

LeadByte PkglLength data. .. LeadByte ...
\—b PkgLength —T

Fig. 5.17: AML Encoding

Encodings of implicit length objects either have fixed length encodings or allow for nested encodings that, at some
point, either result in an explicit or implicit fixed length.

The Pkglength is encoded as a series of 1 to 4 bytes in the stream with the most significant two bits of byte zero,
indicating how many following bytes are in the Pkglength encoding. The next two bits are only used in one-byte
encodings, which allows for one-byte encodings on a length up to 0x3F. Longer encodings, which do not use these
two bits, have a maximum length of the following: two-byte encodings of OxOFFF, three-byte encodings of OxOFFFFF,
and four-byte length encodings of OxOFFFFFFFFE.

It is fatal for a package length to not fall on a logical boundary. For example, if a package is contained in another
package, then by definition its length must be contained within the outer package, and similarly for a datum of implicit
length.

5.4.2 Definition Block Loading

At some point, the system software decides to “load” a Definition Block. Loading is accomplished when the system
makes a pass over the data and populates the ACPI namespace and initializes objects accordingly. The namespace for
which population occurs is either from the current namespace location, as defined by all nested packages or from the
root if the name is preceded with '.

The first object present in a Definition Block must be a named control method. This is the Definition Block’s initial-
ization control.

Packages are objects that contain an ordered reference to one or more objects. A package can also be considered a
vertex of an array, and any object contained within a package can be another package. This permits multidimensional
arrays of fixed or dynamic depths and vertices.

Unnamed objects are used to populate the contents of named objects. Unnamed objects cannot be created in the “root.”
Unnamed objects can be used as arguments in control methods.

5.4. Definition Block Encoding 279

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Control method execution may generate errors when creating objects. This can occur if a Method that creates named
objects blocks and is reentered while blocked. This will happen because all named objects have an absolute path. This
is true even if the object name specified is relative. For example, the following ASL code segments are functionally
identical.

(M

Method (DEAD)
{
Scope (_SB_.FO0O)
{
Name (BAR,0x1234) // Run time definition
}

2

Scope (_SB_)
{

Name (_SB_. FOO.BAR,) // Load time definition
}

Notice that in the above example the execution of the DEAD method will always fail because the object
SB.FOO.BAR is created at load time.

The term of “Definition Block level” is used to refer to the AML byte streams that are not contained in any control
method. Such AML byte streams can appear in the “root” scope or in the scopes created/opened by the “Device,
PowerResource, Processor, Scope and ThermalZone” operators. Please refer to “ASL Operator Reference , ASL
Operator Reference”for detailed descriptions.

Not only the named objects, but all term objects (mathematical, logical, and conditional expressions, etc., see “Term
Objects Encoding , Term Object Encoding”) are allowed at the Definition Block level. Allowing such executable
AML opcodes at the Definition Block level allows BIOS writers to define dynamic object lists according to the system
settings. For example:

DefinitionBlock ("DSDT.aml", "DSDT", 2, "OEM", "FOOBOOK", 0x1000)
{

If (CFGl () == 1))
{

Scope (_SB.PCIO.XHC.RHUB)
{

If (CFG2 () == 1)

Device (HS11)
{

If (CFG3 () == 1)
{
Device (CAMO)
{

}

(continues on next page)

5.4. Definition Block Encoding 280

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

The interpretation of the definition block during the definition block loading is similar to the interpretation of the
control method during the control method execution.

5.5 Control Methods and the ACPI Source Language (ASL)

OEMs and platform firmware vendors write definition blocks using the ACPI Source Language (ASL) and use a trans-
lator to produce the byte stream encoding described in Definition Block Encoding . For example, the ASL statements
that produce the example byte stream shown in that earlier section are shown in the following ASL example. For a full
specification of the ASL statements, see ACPI Source Language (ASL) Reference.

DefinitionBlock (
"forbook.aml", // Output Filename
"DSDT", // Signature
0x02, // DSDT Compliance Revision
"OEM", // OEMID
"forbook", // TABLE ID
0x1000 // OEM Revision
)
{ // start of definition block

OperationRegion (\GIO, SystemIO, 0x125, 0x1)
Field (\GIO, ByteAcc, NoLock, Preserve)
{
cTO01, 1,
}

Scope (_SB)
{ // start of scope
Device (PCIO)
{ // start of device
PowerResource (FETO, 0, 0)
{ // start of pwr
Method (_ON)
{
CT01 = Ones // assert power
Sleep (30) // wait 30ms
}

Method (_OFF)
{

CT01l = Zero // assert reset#
}

(continues on next page)

5.5. Control Methods and the ACPI Source Language (ASL) 281

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

Method (_STA)
{
Return (CTO1)

}
} // end of power
} // end of device
} // end of scope

} // end of definition block

5.5.1 ASL Statements

ASL is principally a declarative language. ASL statements declare objects. Each object has three parts, two of which
can be null:

Object := ObjectType FixedList VariablelList

FixedList refers to a list of known length that supplies data that all instances of a given ObjectType must have. It is
written as (a, b, c,), where the number of arguments depends on the specific ObjectType, and some elements can be
nested objects, that is (a, b, (q, 1, s, t), d). Arguments to a FixedList can have default values, in which case they can be
skipped. Some ObjectTypes can have a null FixedList.

VariableList refers to a list, not of predetermined length, of child objects that help define the parent. It is written as {X,
y, Z, aa, bb, cc}, where any argument can be a nested object. ObjectType determines what terms are legal elements of
the VariableList. Some ObjectTypes can have a null variable list.

For a detailed specification of the ASL language, see ACPI Source Language (ASL) Reference

5.5.2 Control Method Execution

OSPM evaluates control method objects as necessary to either interrogate or adjust the system-level hardware state.
This is called an invocation.

A control method can use other internal, or well defined, control methods to accomplish the task at hand, which
can include defined control methods provided by the operating software. Control Methods can reference any objects
anywhere in the Namespace. Interpretation of a Control Method is not preemptive, but it can block. When a control
method does block, OSPM can initiate or continue the execution of a different control method. A control method can
only assume that access to global objects is exclusive for any period the control method does not block.

Global objects are those NameSpace objects created at table load time.

5.5.2.1 Arguments

Up to seven arguments can be passed to a control method. Each argument is an object that in turn could be a “package”
style object that refers to other objects. Access to the argument objects is provided via the ASL ArgTerm (ArgX)
language elements. The number of arguments passed to any control method is fixed and is defined when the control
method package is created.

Method arguments can take one of the following forms:

* An ACPI name or namepath that refers to a named object. This includes the LocalX and ArgX names. In this
case, the object associated with the name is passed as the argument.

5.5. Control Methods and the ACPI Source Language (ASL) 282

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

* An ACPI name or namepath that refers to another control method. In this case, the method is invoked and the
return value of the method is passed as the argument. A fatal error occurs if no object is returned from the
method. If the object is not used after the method invocation it is automatically deleted.

¢ A valid ASL expression. In the case, the expression is evaluated and the object that results from this evaluation
is passed as the argument. If this object is not used after the method invocation it is automatically deleted.

5.5.2.2 Method Calling Convention

The calling convention for control methods can best be described as call-by-reference-constant. In this convention,
objects passed as arguments are passed by “reference”, meaning that they are not copied to new objects as they are
passed to the called control method (A calling convention that copies objects or object wrappers during a call is known
as call-by-value or call-by-copy).

This call-by-reference-constant convention allows internal objects to be shared across each method invocation, there-
fore reducing the number of object copies that must be performed as well as the number of buffers that must be copied.
This calling convention is appropriate to the low-level nature of the ACPI subsystem within the kernel of the host op-
erating system where non-paged dynamic memory is typically at a premium. The ASL programmer must be aware of
the calling convention and the related side effects.

However, unlike a pure call-by-reference convention, the ability of the called control method to modify arguments
is extremely limited. This reduces aliasing issues such as when a called method unexpectedly modifies a object or
variable that has been passed as an argument by the caller. In effect, the arguments that are passed to control methods
are passed as constants that cannot be modified except under specific controlled circumstances.

Generally, the objects passed to a control method via the ArgX terms cannot be directly written or modified by the
called method. In other words, when an ArgX term is used as a target operand in an ASL statement, the existing ArgX
object is not modified. Instead, the new object replaces the existing object and the ArgX term effectively becomes a
LocalX term.

The only exception to the read-only argument rule is if an ArgX term contains an Object Reference created via the
RefOf ASL operator. In this case, the use of the ArgX term as a target operand will cause any existing object stored at
the ACPI name referred to by the RefOf operation to be overwritten.

In some limited cases, a new, writable object may be created that will allow a control method to change the value of
an ArgX object. These cases are limited to Buffer and Package objects where the “value” of the object is represented
indirectly. For Buffers, a writable Index or Field can be created that refers to the original buffer data and will allow the
called method to read or modify the data. For Packages, a writable Index can be created to allow the called method to
modify the contents of individual elements of the Package.

5.5.2.3 Local Variables and Locally Created Data Objects

Control methods can access up to eight local data objects. Access to the local data objects have shorthand encodings.
On initial control method execution, the local data objects are NULL. Access to local objects is via the ASL LocalTerm
language elements.

Upon control method execution completion, one object can be returned that can be used as the result of the execution
of the method. The “caller” must either use the result or save it to a different object if it wants to preserve it. See the
description of the Return ASL operator for additional details

NameSpace objects created within the scope of a method are dynamic. They exist only for the duration of the method
execution. They are created when specified by the code and are destroyed on exit. A method may create dynamic
objects outside of the current scope in the NameSpace using the scope operator or using full path names. These
objects will still be destroyed on method exit. Objects created at load time outside of the scope of the method are
static. For example:

5.5. Control Methods and the ACPI Source Language (ASL) 283

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Scope (\XYZ)

{
Name (BAR, 5) // Creates \\XYZ.BAR
Method (FOO, 1)
{

CREG = BAR // same effect as CREG = \XYZ.BAR
Name (BAR, 7) // Creates \\XYZ.FOO.BAR
DREG = BAR // same effect as DREG = \XYZ.FOO.BAR
Name (\XYZ.FOOB, 3) // Creates \\XYZ.FOOB
} // end method
} // end scope

The object \XXYZ.BAR is a static object created when the table that contains the above ASL is loaded. The object
\XYZ.FOO.BAR is a dynamic object that is created when the Name (BAR, 7) statement in the FOO method is exe-
cuted. The object \XYZ.FOOB is a dynamic object created by the \XXYZ.FOO method when the Name (XYZ.FOOB,
3) statement is executed. Notice that the \ X YZ.FOOB object is destroyed after the \XYZ.FOO method exits.

5.5.2.4 Access to Operation Regions

5.5.2.4.1 Operation Regions

Control Methods read and write data to locations in address spaces (for example, System memory and System 1/O) by
using the Field operator (see Declare Field Objects) to declare a data element within an entity known as an “Operation
Region” and then performing accesses using the data element name. An Operation Region is a specific region of
operation within an address space that is declared as a subset of the entire address space using a starting address
(offset) and a length (see OperationRegion (Declare Operation Region). Control methods must have exclusive access
to any address accessed via fields declared in Operation Regions. Control methods may not directly access any
other hardware registers, including the ACPI-defined register blocks. Some of the ACPI registers, in the defined
ACPI registers blocks, are maintained on behalf of control method execution. For example, the GPEx_BLK is not
directly accessed by a control method but is used to provide an extensible interrupt handling model for control method
1nvocation.

¢ Accessing an OpRegion may block, even if the OpRegion is not protected by a mutex. For example, because of
the slow nature of the embedded controller, an embedded controller OpRegion field access may block.

The following table defines Operation Region spaces.

Table 5.149: Operation Region Address Space Identifiers

Value Name (RegionSpace Keyword) Reference

0 SystemMemory

1 SystemlIO

2 PCI_Config

3 EmbeddedControl See ACPI Embedded Controller Interface
Specification

4 SMBus See ACPI System Management Bus Inter-
face Specification

5 SystemCMOS See CMOS Protocols

6 PciBarTarget See PCI Device BAR Target Protocols

7 IPMI See Declaring IPMI Operation Regions

8 GeneralPurposelO See Declaring GeneralPurposelO Operation
Regions

continues on next page

5.5. Control Methods and the ACPI Source Language (ASL) 284

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.149 — continued from previous page

Value Name (RegionSpace Keyword) Reference

9 GenericSerialBus See Declaring GenericSerialBus Operation
Regions

0x0A PCC See Declaring PCC Operation Regions

0x0B-0x7F Reserved

0x80 to OxFF OEM defined

5.5.2.4.2 CMOS Protocols

This section describes how CMOS battery-backed non-volatile memory can be accessed from ASL. Most computers
contain an RTC/CMOS device that can be represented as a linear array of bytes of non-volatile memory. There is
a standard mechanism for accessing the first 64 bytes of non-volatile RAM in devices that are compatible with the
Motorola RTC/CMOS device used in the original IBM PC/AT. Existing RTC/CMOS devices typically contain more
than 64 bytes of non-volatile RAM, and no standard mechanism exists for access to this additional storage area. To
provide access to all of the non-volatile memory in these devices from AML, PnP IDs exist for each type of extension.
These are PNPOB0O, PNPOBO1, and PNPOBO2. The specific devices that these PnP IDs support are described in
PC/AT RTC/CMOS Devices, along with field definition ASL example code. The drivers corresponding to these device
handle operation region accesses to the SystemCMOS operation region for their respective device types.

All bytes of CMOS that are related to the current time, day, date, month, year and century are read-only.

5.5.2.4.3 PCI Device BAR Target Protocols

This section describes how PCI devices’ control registers can be accessed from ASL. PCI devices each have an address
space associated with them called the Configuration Space. At offset 0x10 through offset 0x27, there are as many as
six Base Address Registers, (BARs). These BARs contain the base address of a series of control registers (in I/O or
Memory space) for the PCI device. Since a Plug and Play OS may change the values of these BARs at any time, ASL
cannot read and write from these deterministically using I/O or Memory operation regions. Furthermore, a Plug and
Play OS will automatically assign ownership of the I/O and Memory regions associated with these BARs to a device
driver associated with the PCI device. An ACPI OS (which must also be a Plug and Play operating system) will not
allow ASL to read and write regions that are owned by native device drivers.

If a platform uses a PCI BAR Target operation region, an ACPI OS will not load a native device driver for the
associated PCI function. For example, if any of the BARs in a PCI function are associated with a PCI BAR Target
operation region, then the OS will assume that the PCI function is to be entirely under the control of the ACPI system
firmware. No driver will be loaded. Thus, a PCI function can be used as a platform controller for some task (hot-plug
PCI, and so on) that the ACPI system firmware performs.

5.5.2.4.3.1 Declaring a PCI BAR Target Operation Region

PCI BARs contain the base address of an I/O or Memory region that a PCI device’s control registers lie within. Each
BAR implements a protocol for determining whether those control registers are within I/O or Memory space and how
much address space the PCI device decodes. (See the PCI Specification for more details.)

PCI BAR Target operation regions are declared by providing the offset of the BAR within the PCI device’s PCI
configuration space. The BAR determines whether the actual access to the device occurs through an I/O or Memory
cycle, not by the declaration of the operation region. The length of the region is similarly implied.

In the term OperationRegion(PBAR, PciBarTarget, 0x10, 0x4), the offset is the offset of the BAR within the configu-
ration space of the device. This would be an example of an operation region that uses the first BAR in the device.

5.5. Control Methods and the ACPI Source Language (ASL) 285

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.5.2.4.3.2 PCI Header Types and PCI BAR Target Operation Regions

PCI BAR Target operation regions may only be declared in the scope of PCI devices that have a PCI Header Type of
0. PCI devices with other header types are bridges. The control of PCI bridges is beyond the scope of ASL.

5.5.2.4.4 Declaring IPMI Operation Regions

This section describes the Intelligent Platform Management Interface (IPMI) address space and the use of this address
space to communicate with the Baseboard Management Controller (BMC) hardware from AML.

Similar to SMBus, IPMI operation regions are command based, where each offset within an IPMI address space
represent an IPMI command and response pair. Given this uniqueness, IPMI operation regions include restrictions
on their field definitions and require the use of an IPMI-specific data buffer for all transactions. The IPMI interface
presented in this section is intended for use with any hardware implementation compatible with the IPMI specification,
regardless of the system interface type.

Support of the IPMI generic address space by ACPI-compatible operating systems is optional, and is contingent on
the existence of an ACPI IPMI device, i.e. a device with the “IPI0001” plug and play ID. If present, OSPM should
load the necessary driver software based on the system interface type as specified by the _IFT (IPMI Interface Type)
control method under the device, and register handlers for accesses into the IPMI operation region space.

For more information, refer to the IPMI specification.

Each IPMI operation region definition identifies a single IPMI network function. Operation regions are defined only
for those IPMI network functions that need to be accessed from AML. As with other regions, IPMI operation regions
are only accessible via the Field term (see Declaring IPMI Fields).

This interface models each IPMI network function as having a 256-byte linear address range. Each byte offset within
this range corresponds to a single command value (for example, byte offset 0xC1 equates to command value 0xC1),
with a maximum of 256 command values. By doing this, IPMI address spaces appear linear and can be processed in a
manner similar to the other address space types.

The syntax for the OperationRegion term (from OperationRegion (Declare Operation Region)) is described below:

OperationRegion (
RegionName, // NameString
RegionSpace, // RegionSpaceKeyword
Offset, // TermArg=>Integer
Length // TermArg=>Integer

)

Where:

* RegionName specifies a name for this IPMI network function (for example, “POWR”).
* RegionSpace must be set to IPMI (operation region type value 0x07).

» Offset is a word-sized value specifying the network function and initial command value offset for the target
device. The network function address is stored in the high byte and the command value offset is stored in the
low byte. For example, the value 0x3000 would be used for a device with the network function of 0x06, and an
initial command value offset of zero (0).

* Length is set to the 0x100 (256), representing the maximum number of possible command values, for regions
with an initial command value offset of zero (0). The difference of these two values is used for regions with
non-zero offsets. For example, a region with an Offset value of 0x3010 would have a corresponding Length of
0xFO (0x100 minus 0x10).

For example, a Baseboard Management Controller will support power metering capabilities at the network function
0x30, and IPMI commands to query the BMC device information at the network function 0x06.

5.5. Control Methods and the ACPI Source Language (ASL) 286

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

The following ASL code shows the use of the OperationRegion term to describe these IPMI functions:

Device (IPMI)

{
Name (_HID, "IPIOO001"™) // IPMI device
Name (_IFT, O0Ox1) // KCS system interface type
OperationRegion (DEVC, IPMI, 0x0600, 0x100) // Device info network function
OperationRegion (POWR, IPMI, 0x3000, 0x100) // Power network function

Notice that these operation regions in this example are defined within the immediate context of the ‘owning’ [PMI
device. This ensures the correct operation region handler will be used, based on the value returned by the _IFT object.
Each definition corresponds to a separate network function, and happens to use an initial command value offset of zero

(0).
5.5.2.4.4.1 Declaring IPMI Fields
As with other regions, IPMI operation regions are only accessible via the Field term. Each field element is assigned a

unique command value and represents a virtual command for the targeted network function.

The syntax for the Field term (from Event (Declare Event Synchronization Object)) is described below:

Field(
RegionName, // NameString=>OperationRegion
AccessType, // AccessTypeKeyword - BufferAcc
LockRule, // LockRuleKeyword
UpdateRule // UpdateRuleKeyword - ignored

) {FieldUnitList}

Where:
» RegionName specifies the operation region name previously defined for the network function.

* AccessType must be set to BufferAcc. This indicates that access to field elements will be done using a region-
specific data buffer. For this access type, the field handler is not aware of the data buffer’s contents which may
be of any size. When a field of this type is used as the source argument in an operation it simply evaluates
to a buffer. When used as the destination, however, the buffer is passed bi-directionally to allow data to be
returned from write operations. The modified buffer then becomes the response message of that command. This
is slightly different than the normal case in which the execution result is the same as the value written to the
destination. Note that the source is never changed, since it only represents a virtual register for a particular [IPMI
command.

* LockRule indicates if access to this operation region requires acquisition of the Global Lock for synchronization.
This field should be set to Lock on system with firmware that may access the BMC via IPMI, and NoLock
otherwise.

» UpdateRule is not applicable to IPMI operation regions since each virtual register is accessed in its entirety.
This field is ignored for all IPMI field definitions.

IPMI operation regions require that all field elements be declared at command value granularity. This means that each
virtual register cannot be broken down to its individual bits within the field definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. This limitation is im-
posed both to simplify the [PMI interface and to maintain consistency with the physical model defined by the IPMI
specification.

Since the system interface used for IPMI communication is determined by the _IFT object under the IPMI device,
there is no need for using of the AccessAs term within the field definition. In fact its usage will be ignored by the
operation handler.

5.5. Control Methods and the ACPI Source Language (ASL) 287

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

For example, the register at command value 0xC1 for the power meter network function might represent the command
to set a BMC enforced power limit, while the register at command value 0xC2 for the same network function might
represent the current configured power limit. At the same time, the register at command value 0xC8 might represent
the latest power meter measurement.

The following ASL code shows the use of the OperationRegion, Field, and Offset terms to represent these virtual
registers:

OperationRegion (POWR, IPMI, 0x3000, 0x100) // Power network function
Field (POWR, BufferAcc, NoLock, Preserve)
{

Offset (0xC1), // Skip to command value 0xCl

SPWL, 8, // Set power limit [command value 0xC1l]

GPWL, 8, // Get power limit [command value 0xC2]

Offset (0xC8), // Skip to command value 0xC8

GPMM, 8 // Get power meter measurement [command value 0xC8]

Notice that command values are equivalent to the field element’s byte offset (for example, SPWL=0xCl,
GPWL=0xC2, GPMM=0xC8).

5.5.2.4.4.2 Declaring and Using IPMI Request and Response Buffer

Since each virtual register in the IPMI operation region represents an individual IPMI command, and the operation
relies on use of bi-directional buffer, a common buffer structure is required to represent the request and response
messages. The use of a data buffer for IPMI transactions allows AML to receive status and data length values.

The IPMI data buffer is defined as a fixed-length 66-byte buffer that, if represented using a ‘C’-styled declaration,
would be modeled as follows:

typedef struct
{
BYTE Status; // Byte 0 of the data buffer
BYTE Length; // Byte 1 of the data buffer
BYTE[64] Dataj; // Bytes 2 through 65 of the data buffer

Where:
« Status (byte 0) indicates the status code of a given IPMI command. See /PMI Status Code for more information.

* Length (byte 1) specifies the number of bytes of valid data that exists in the data buffer. Valid Length values
are 0 through 64. Before the operation is carried out, this value represents the length of the request data buffer.
Afterwards, this value represents the length of the result response data buffer.

* Data (bytes 65-2) represents a 64-byte buffer, and is the location where actual data is stored. Before the operation
is carried out, this represents the actual request message payload. Afterwards, this represents the response
message payload as returned by the IPMI command.

For example, the following ASL shows the use of the IPMI data buffer to carry out a command for a power function.
This code is based on the example ASL presented in Declaring IPMI Fields which lists the operation region and field
definitions for relevant IPMI power metering commands.

/+ Create the IPMI data buffer =/

Name (BUFF, Buffer (66){}) // Create IPMI data buffer as BUFF
CreateByteField (BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField (BUFF, 0x01, LENG) // LENG = Length (Byte)

(continues on next page)

5.5. Control Methods and the ACPI Source Language (ASL) 288

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

CreateByteField (BUFF, 0x02, MODE) // MODE = Mode (Byte)

CreateByteField (BUFF, 0x03, RESV) // RESV = Reserved (Byte)

LENG = 0x2 // Request message is 2 bytes long

MODE = 0x1 // Set Mode to 1

BUFF = (GPMM = BUFF) // Write the request into the GPMM command,

// then read the results

CreateByteField (BUFF, 0x02, CMPC) // CMPC = Completion code (Byte)
CreateWordField (BUFF, 0x03, APOW) // APOW = Average power measurement (Word)

If ((STAT == 0x0) && (CMPC == 0x0)) // Successful?
{
Return (APOW) // Return the average power measurement
}
Else
{
Return (Ones) // Return invalid

Notice the use of the CreateField primitives to access the data buffer’s sub-elements (Status, Length, and Data), where
Data (bytes 65-2) is ‘typecast’ into different fields (including the result completion code).

The example above demonstrates the use of the Store() operator and the bi-directional data buffer to invoke the actual
IPMI command represented by the virtual register. The inner Store() writes the request message data buffer to the
IPMI operation region handler, and invokes the command. The outer Store() takes the result of that command and
writes it back into the data buffer, this time representing the response message.

5.5.2.4.4.3 IPMI Status Code

Every IPMI command results in a status code returned as the first byte of the response message, contained in the
bi-directional data buffer. This status code can indicate success, various errors, and possibly timeout from the IPMI
operation handler. This is necessary because it is possible for certain [IPMI commands to take up to 5 seconds to carry
out, and since an AML Store() operation is synchronous by nature, it is essential to make sure the IPMI operation
returns in a timely fashion so as not to block the AML interpreter in the OSPM.

* This status code is different than the IPMI completion code, which is returned as the first byte of the response
message in the data buffer payload. The completion code is described in the complete IPMI specification.

Table 5.150: IPMI Status Codes

Status | Name Description
Code
00h IPMI OK Indicates the command has been successfully completed.
07h IPMI Unknown | Indicates failure because of an unknown IPMI error.
Failure
10h IPMI Command | Indicates the operation timed out.
Operation Timeout

5.5. Control Methods and the ACPI Source Language (ASL) 289

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.5.2.4.5 Declaring GeneralPurposelO Operation Regions

For GeneralPurposelO Operation Regions, the syntax for the OperationRegion term (from section OperationRegion
(Declare Operation Region)) is described below:

OperationRegion (
RegionName, // NameString
RegionSpace, // RegionSpaceKeyword
Offset, // TermArg=>Integer
Length // TermArg=>Integer

)

Where:

* RegionName specifies a name for this GeneralPurposelO region (for example, “GPI1”).
* RegionSpace must be set to GeneralPurposelO (operation region type value 0x08).
 Offset is ignored for the GeneralPurposelO RegionSpace.

 Length is the maximum number of GPIO IO pins to be included in the Operation Region, rounded up to the next
byte.

GeneralPurposelO OpRegions must be declared within the scope of the GPIO controller device being accessed.

5.5.2.4.5.1 Declaring GeneralPurposelO Fields

As with other regions, GeneralPurposelO operation regions are only accessible via the Field term. Each field element
represents a subset of the length bits declared in the OpRegion declaration. The pins within the OpRegion that are
accessed via a given field name are defined by a Connection descriptor. The total number of defined field bits following
a connection descriptor must equal the number of pins listed in the descriptor.

The syntax for the Field term (from Field (Declare Field Objects)) is described below:

Field(
RegionName, // NameString=>OperationRegion
AccessType, // AccessTypeKeyword
LockRule, // LockRuleKeyword
UpdateRule // UpdateRuleKeyword - ignored
) {FieldUnitList}

Where:
* RegionName specifies the operation region name previously declared.
* AccessType must be set to ByteAcc.

* LockRule indicates if access to this operation region requires acquisition of the Global Lock for synchronization.
Note that, on HW-reduced ACPI platforms, this field must be set to NoLock.

e UpdateRule is not applicable to GeneralPurposelO operation regions since Preserve is always required. This
field is ignored for all GeneralPurposelO field definitions.

The following ASL code shows the use of the OperationRegion, Field, and Offset terms as they apply to GeneralPur-
poselO space.

Device (DEVA) //An Arbitrary Device Scope

{
// Other required stuff for this device

(continues on next page)

5.5. Control Methods and the ACPI Source Language (ASL) 290

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

Name (GMOD, ResourceTemplate ()
//An existing GPIO Connection (to be used later)

//2 Outputs that define the Power mode of the device
Gpiolo (Exclusive, PullDown, , , , "_SB.GPI2") {10, 12}
})
} //End DEVA

Device (GPI2) //The OpRegion declaration, and the _REG method,
//must be in the controller's namespace scope

//Other required stuff for the GPIO controller
OperationRegion (GPO2, GeneralPurposeIO, 0, 1)
// Note: length of 1 means region is less than 1 byte (8 pins) long
Method (_REG, 2)
{

// Track availability of GeneralPurposeIO space

Device (DEVB) //Access some GPIO Pins from this device scope
//to change the device's power mode

//.. Other required stuff for this device

Name (_DEP, Package() {"_SB.GPI2"}) //OpRegion Dependency hint for OSPM
Field (_SB.GPI2.GP0O2, ByteAcc, NolLock, Preserve)
{

Connection (GMOD), // Re-Use an existing connection (defined elsewhere)

MODE, 2, // Power Mode

Connection (GpioIo (Exclusive, PullUp, , , , "_SB.GPI2") {7}),
STAT, 1, // e.g. Status signal from the device
Connection (GpiolIo (Exclusive, PullUp, , , , "_SB.GPI2") {9}),
RSET, 1 // e.g. Reset signal to the device

Method (_PS3)
{

If (1) // Make sure GeneralPurposelO OpRegion is available

MODE = 0x03 //Set both MODE bits. Power Mode 3

}
} //End DEVB

5.5.2.4.6 Declaring GenericSerialBus Operation Regions

For GenericSerialBus Operation Regions, the syntax for the OperationRegion term (from OperationRegion (Declare
Operation Region)) is described below:

OperationRegion (
RegionName, // NameString
RegionSpace, // RegionSpaceKeyword
Offset, // TermArg=>Integer
Length // TermArg=>Integer

(continues on next page)

5.5. Control Methods and the ACPI Source Language (ASL) 291

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

Where:
* RegionName specifies a name for this region (for example, TOP1).
* RegionSpace must be set to GenericSerialBus (operation region type value 0x09).

» Offset specifies the initial command value offset for the target device. For example, the value 0x00 refers to a
command value offset of zero (0). Raw protocols ignore this value.

* Length is set to the 0x100 (256), representing the maximum number of possible command values.
* The Operation Region must be declared within the scope of the Serial Bus controller device.

The following ASL code shows the use of the OperationRegion, Field, and Offset terms as they apply to SPB space.

Scope (_SB.I2C)
{
Name (SDBO, ResourceTemplate ()
{
I2CSerialBusV2 (0x4a,,100000,,"
_sB.12C",,,,,RawbDataBuffer(){1,2,3,4,5,6})

})

OperationRegion (TOP1l, GenericSerialBus, 0x00, 0x100)
// GenericSerialBus device at command offset 0x00
Field (TOP1, BufferAcc, NoLock, Preserve)
{
Connection (SDBO),
// Use the Resource Descriptor defined above
AccessAs (BufferAcc, AttribWord),
// Use the GenericSerialBus Read/Write Word protocol
FLDO, 8, // Virtual register at command value 0.
FLD1, 8 // Virtual register at command value 1.

Field(TOP1l, BufferAcc, NoLock, Preserve)
{
Connection (I2CSerialBusV2 (0x5a,,100000,,"
_SB.I2C",,,,,RawDataBuffer(){1,6})),
AccessAs (BufferAcc, AttribBytes (16)),
FLD2, 8 // Virtual register at command value 0.

// Create the GenericSerialBus data buffer

Name (BUFF, Buffer(34){}) // Create GenericSerialBus data buffer as BUFF

Status (Byte)
Data (Word)

CreateByteField (BUFF, 0x00, STAT) // STAT
CreateWordField (BUFF, 0x02, DATA) // DATA

The Operation Region in this example is defined within the scope of the target controller device, 12C.

GenericSerialBus regions are only accessible via the Field term (see Declare Field Objects). GenericSerialBus proto-
cols are assigned to field elements using the AccessAs term (see “ASL Macros™) within the field definition.

5.5. Control Methods and the ACPI Source Language (ASL) 292

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.151: Accsessor Type Values

Accessor Type Value Description
AttribQuick 0x02 Read/Write Quick Protocol
AttribSendReceive 0x04 Send/Receive Byte Protocol
AttribByte 0x06 Read/Write Byte Protocol
AttribWord 0x08 Read/Write Word Protocol
AttribBlock 0x0A Read/Write Block Protocol
AttribBytes 0x0B Read/Write N-Bytes Protocol
AttribProcessCall 0x0C Process Call Protocol
AttribBlockProcessCall 0x0D Write Block-Read Block Process Call Pro-
tocol
AttribRawBytes 0x0E Raw Read/Write N-Bytes Protocol
AttribRawProcessBytes 0xOF Raw Process Call Protocol

5.5.2.4.6.1 Declaring GenericSerialBus Fields

As with other regions, GenericSerialBus operation regions are only accessible via the Field term. Each field element

is assigned a unique command value and represents a virtual register on the targeted GenericSerialBus device.

The syntax for the Field term (see Section 19.6.47) is described below:

Field(
RegionName, // NameString=>OperationRegion
AccessType, // AccessTypeKeyword
LockRule, // LockRuleKeyword — ignored for Hardware-reduced ACPI platforms
UpdateRule // UpdateRuleKeyword - ignored

) {FieldUnitList}

Where:

* RegionName specifies the operation region name previously defined for the device.

* AccessType must be set to BufferAcc. This indicates that access to field elements will be done using a region-

specific data buffer. For this access type, the field handler is not aware of the data buffer’s contents which may
be of any size. When a field of this type is used as the source argument in an operation it simply evaluates
to a buffer. When used as the destination, however, the buffer is passed bi-directionally to allow data to be
returned from write operations. The modified buffer then becomes the execution result of that operation. This
is slightly different than the normal case in which the execution result is the same as the value written to the
destination. Note that the source is never changed, since it could be a read only object (see Declaring and Using
a GenericSerialBus Data Buffer).

LockRule indicates if access to this operation region requires acquisition of the Global Lock for synchronization.
This field should be set to Lock on system with firmware that may access the GenericSerialBus, and NoLock
otherwise. On Hardware-reduced ACPI platforms, there is not a global lock so this parameter is ignored.

UpdateRule is not applicable to GenericSerialBus operation regions since each virtual register is accessed in its
entirety. This field is ignored for all GenericSerialBus field definitions.

GenericSerialBus operation regions require that all field elements be declared at command value granularity. This

means that each virtual register cannot be broken down to its individual bits within the field definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. This limitation is imposed

to simplify the GenericSerialBus interface.

GenericSerialBus protocols are assigned to field elements using the AccessAs term within the field definition. The

syntax for this term (from ASL Root and Secondary Terms) is described below:

5.5. Control Methods and the ACPI Source Language (ASL)

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

AccessAs (
AccessType, //AccessTypeKeyword
AccessAttribute //Nothing \| ByteConst \| AccessAttribKeyword

Where:
* AccessType must be set to BufferAcc.

* AccessAttribute indicates the GenericSerialBus protocol to assign to command values that follow this term.
See:ref:using-the-genericserialbus-protocols for a listing of the GenericSerialBus protocols.

An AccessAs term must appear in a field definition to set the initial GenericSerialBus protocol for the field elements
that follow. A maximum of one GenericSerialBus protocol may be defined for each field element. Devices supporting
multiple protocols for a single command value can be modeled by specifying multiple field elements with the same
offset (command value), where each field element is preceded by an AccessAs term specifying an alternate protocol.

For GenericSerialBus operation regions, connection attributes must be defined for each set of field elements. Gener-
icSerialBus resources are assigned to field elements using the Connection term within the field definition. The syntax
for this term (from Connection (Declare Field Connection Attributes) “Connection (Declare Field Connection At-
tributes)”) is described below:

Connection (ConnectionResourceObj)

Where:

* ConnectionResourceObj points to a Serial Bus Resource Connection Descriptor (see GenericSerialBus Con-
nection Descriptors for valid types), or a named object that specifies a buffer field containing the connection
resource information.

Each Field definition references the initial command offset specified in the operation region definition. The offset is
iterated for each subsequent field element defined in that respective Field. If a new connection is described in the same
Field definition, the offset will not be returned to its initial value and a new Field must be defined to inherit the initial
command value offset from the operation region definition. The following example illustrates this point.

OperationRegion (TOPl, GenericSerialBus, 0x00, 0x100) //Initial offset is 0
Field (TOP1l, BufferAcc, NoLock, Preserve)
{
Connection (I2CSerialBusV2 (0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer(){1,6})),
Offset (0x0),
AccessAs (BufferAcc, AttribBytes (4)),
TFK1, 8, //TFKl at command value offset 0
TFK2, 8, //TFK2 at command value offset 1
Connection (I2CSerialBusV2 (0x5c,,100000,,"_SB.I2C",,,,,RawDataBuffer () {3,1})),
AccessAs (BufferAcc, AttribBytes (12)),
TS1, 8 //TS1 at command value offset 2

Field (TOP1l, BufferAcc, NoLock, Preserve)

{
Connection (I2CSerialBusV2 (0x5b,,100000,, "_SB.I2C",,,,,RawDataBuffer(){2,9})),
AccessAs (BufferAcc, AttribByte),
T™1, 8 //TM1 at command value offset 0

5.5. Control Methods and the ACPI Source Language (ASL) 294

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.5.2.4.6.2 Declaring and Using a GenericSerialBus Data Buffer

The use of a data buffer for GenericSerialBus transactions allows AML to receive status and data length values, as
well as making it possible to implement the Process Call protocol. The BufferAcc access type is used to indicate to
the field handler that a region-specific data buffer will be used.

For GenericSerialBus operation regions, this data buffer is defined as an arbitrary length buffer that, if represented
using a ‘C’-styled declaration, would be modeled as follows:

typedef struct
{

BYTE Status; // Byte 0 of the data buffer

BYTE Length; // Byte 1 of the data buffer

BYTE [x-1] Data; // Bytes 2-x of the arbitrary length data buffer,
} // where x is the last index of the overall buffer
Where:

« Status (byte 0) indicates the status code of a given GenericSerialBus transaction.

* Length (byte 1) specifies the number of bytes of valid data that exists in the data buffer (bytes 2-x). Use of this
field is only defined for the Read/Write Block protocol. For other protocols—where the data length is implied by
the protocol-this field is reserved. Since this field is one byte, the maximum length of the data buffer is 255.

* Data (bytes 2-x) represents an arbitrary length buffer, and is the location where actual data is stored.

For example, the following ASL shows the use of the GenericSerialBus data buffer for performing transactions to a
Smart Battery device.

/+ Create the GenericSerialBus data buffer =/

Name (BUFF, Buffer (34){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField (BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField (BUFF, 0x01, LEN) // LEN = Length (Byte)

CreateWordField (BUFF, 0x02, DATW) // DATW = Data (Word - Bytes 2 & 3)
CreateField (BUFF, 0x10, 256, DBUF) // DBUF = Data (Block - Bytes 2-33)

/+ Read the battery temperature =/
BUFF = BTMP // Invoke Read Word transaction
If (STAT == 0x00) // Successful?

// DATW = Battery temperature in 1/10th degrees Kelvin

/+ Read the battery manufacturer name =*/
BUFF = MFGN // Invoke Read Blocktransaction
If (STAT == 0x00) // Successful?

// LEN = Length of the manufacturer name
// DBUF = Manufacturer name (as a counted string)

Notice the use of the CreateField primitives to access the data buffer’s sub-elements (Status, Length, and Data), where
Data (bytes 2-33) is ‘typecast’ as both word (DATW) and block (DBUF) data.

5.5. Control Methods and the ACPI Source Language (ASL) 295

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

The example above demonstrates the use of the Store() operator to invoke a Read Block transaction to obtain the name
of the battery manufacturer. Evaluation of the source operand (MFGN) results in a 34-byte buffer that gets copied by
Store() to the destination buffer (BUFF).

Capturing the results of a write operation, for example to check the status code, requires an additional Store() operator,
as shown below:

BUFF = (MFGN = BUFF)
If (STAT == 0x00) // Transaction successful?
{

Note that the outer Store() copies the results of the Write Block transaction back into BUFF. This is the nature of
BufferAcc’s bi-directionality. It should be noted that storing (or parsing) the result of a GenericSerialBus Write
transaction is not required although useful for ascertaining the outcome of a transaction.

GenericSerialBus Process Call protocols require similar semantics due to the fact that only destination operands are
passed bi-directionally. These transactions require the use of the double-Store() semantics to properly capture the
return results.

5.5.2.4.6.3 Using the GenericSerialBus Protocols

This section provides information and examples on how each of the GenericSerialBus protocols can be used to access
GenericSerialBus devices from AML.

Read/Write Quick (AttribQuick)

The GenericSerialBus Read/Write Quick protocol (AttribQuick) is typically used to control simple devices using a
device-specific binary command (for example, ON and OFF). Command values are not used by this protocol and thus
only a single element (at offset 0) can be specified in the field definition. This protocol transfers no data.

The following ASL code illustrates how a device supporting the Read/Write Quick protocol should be accessed:

OperationRegion (TOP1l, GenericSerialBus, 0x00, 0x100)
// GenericSerialBus device at command value offset 0
Field (TOP1l, BufferAcc, NoLock, Preserve)
{
Connection (I2CSerialBusV2 (0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer (){1,6})),
AccessAs (BufferAcc, AttribQuick),
// Use the GenericSerialBus Read/Write Quick protocol
FLDO, 8 // Virtual register at command value 0.

}
/+ Create the GenericSerialBus data buffer =/

Name (BUFF, Buffer (2){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField (BUFF, 0x00, STAT) // STAT = Status (Byte)

/+ Signal device (e.g. OFF) =/
BUFF = FLDO // Invoke Read Quick transaction

If (STAT == 0x00) // Was the transactions successful?
{

(continues on next page)

5.5. Control Methods and the ACPI Source Language (ASL) 296

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

/* Signal device (e.g. ON) =/

FLDO = FLDO // Invoke Write Quick transaction

In this example, a single field element (FLDO) at offset 0 is defined to represent the protocol’s read/write bit. Access
to FLDO will cause a GenericSerialBus transaction to occur to the device. Reading the field results in a Read Quick,
and writing to the field results in a Write Quick. In either case data is not transferred—access to the register is simply
used as a mechanism to invoke the transaction.

Send/Receive Byte (AttribSendReceive)

The GenericSerialBus Send/Receive Byte protocol (AttribSendReceive) transfers a single byte of data. Like
Read/Write Quick, command values are not used by this protocol and thus only a single element (at offset 0) can
be specified in the field definition.

The following ASL code illustrates how a device supporting the Send/Receive Byte protocol should be accessed:

OperationRegion (TOP1l, GenericSerialBus, 0x00, 0x100)
// GenericSerialBus device at command value offset 0
Field (TOP1l, BufferAcc, NoLock, Preserve)
{
Connection (I2CSerialBusV2 (0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer (){1,6})),
AccessAs (BufferAcc, AttribSendReceive),
// Use the GenericSerialBus Send/Receive Byte protocol
FLDO, 8 // Virtual register at command value 0.

// Create the GenericSerialBus data buffer

Name (BUFF, Buffer (3){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField (BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField (BUFF, 0x02, DATA) // DATA = Data (Byte)

// Receive a byte of data from the device

BUFF = FLDO // Invoke a Receive Byte transaction
If (STAT == 0x00) // Successful?
{

// DATA = Received byte...
// Send the byte '0x16' to the device

DATA = 0x16 // Save 0x16 into the data buffer
FLDO = BUFF //Invoke a Send Byte transaction

In this example, a single field element (FLDO) at offset O is defined to represent the protocol’s data byte. Access to
FLDO will cause a GenericSerialBus transaction to occur to the device. Reading the field results in a Receive Byte,
and writing to the field results in a Send Byte.

Read/Write Byte (AttribByte)

The GenericSerialBus Read/Write Byte protocol (AttribByte) also transfers a single byte of data. But unlike
Send/Receive Byte, this protocol uses a command value to reference up to 256 byte-sized virtual registers.

The following ASL code illustrates how a device supporting the Read/Write Byte protocol should be accessed:

5.5. Control Methods and the ACPI Source Language (ASL) 297

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

OperationRegion (TOPl, GenericSerialBus, 0x00, 0x100)
// GenericSerialBus device at command value offset

Field (TOP1l, BufferAcc, NoLock, Preserve)

{
Connection (I2CSerialBusV2 (0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer (){1,6})),
AccessAs (BufferAcc, AttribByte), // Use the GenericSerialBus Read/Write Byte,

—protocol
FLDO, 8, // Virtual register at command value 0.
FLD1, 8, // Virtual register at command value 1.
FLD2, 8 // Virtual register at command value 2.

// Create the GenericSerialBus data buffer
Name (BUFF, Buffer (3){})
// Create GenericSerialBus data buffer as BUFF

CreateByteField (BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField (BUFF, 0x02, DATA) // DATA Data (Byte)

// Read a byte of data from the device using command value 1

BUFF = FLD1 // Invoke a Read Byte transaction
If (STAT == 0x00) // Successful?
{

// DATA = Byte read from FLDI...
// Write the byte '0x16' to the device using command value 2

DATA = 0x16 // Save 0x16 into the data buffer
FLD2 = BUFF // Invoke a Write Byte transaction

In this example, three field elements (FLDO, FLD1, and FLLD2) are defined to represent the virtual registers for com-
mand values 0, 1, and 2. Access to any of the field elements will cause a GenericSerialBus transaction to occur to the
device. Reading FLD1 results in a Read Byte with a command value of 1, and writing to FLD2 results in a Write Byte
with command value 2.

Read/Write Word (AttribWord)

The GenericSerialBus Read/Write Word protocol (AttribWord) transfers 2 bytes of data. This protocol also uses a
command value to reference up to 256 word-sized virtual device registers.

The following ASL code illustrates how a device supporting the Read/Write Word protocol should be accessed:

OperationRegion (TOP1l, GenericSerialBus, 0x00, 0x100)
// GenericSerialBus device at command value offset 0
Field (TOP1l, BufferAcc, NoLock, Preserve)
{
Connection (I2CSerialBusV2 (0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer (){1,6})),
AccessAs (BufferAcc, AttribWord),
// Use the GenericSerialBus Read/Write Word protocol

FLDO, 8, // Virtual register at command value O.
FLD1, 8, // Virtual register at command value 1.
FLD2, 8 // Virtual register at command value 2.

(continues on next page)

5.5. Control Methods and the ACPI Source Language (ASL) 298

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

// Create the GenericSerialBus data buffer

Name (BUFF, Buffer(6){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField (BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField (BUFF, 0x02, DATA) // DATA = Data (Word)

/* Read two bytes of data from the device using command value 1 x/

BUFF = FLD1 // Invoke a Read Word transaction
If (STAT == 0x00) // Was the transaction successful?
{

// DATA = Word read from FLDI...
/+ Write the word '0x5416' to the device using command value 2 x/

DATA 0x5416 // Save 0x5416 into the data buffer
FLD2 = BUFF // Invoke a Write Word transaction

In this example, three field elements (FLDO, FLD1, and FLLD2) are defined to represent the virtual registers for com-
mand values 0, 1, and 2. Access to any of the field elements will cause a GenericSerialBus transaction to occur to the
device. Reading FLD1 results in a Read Word with a command value of 1, and writing to FLD2 results in a Write
Word with command value 2.

Notice that although accessing each field element transmits a word (16 bits) of data, the fields are listed as 8 bits each.
The actual data size is determined by the protocol. Every field element is declared with a length of 8 bits so that
command values and byte offsets are equivalent.

Read/Write Block (AttribBlock)

The GenericSerialBus Read/Write Block protocol (AttribBlock) transfers variable-sized data. This protocol uses a
command value to reference up to 256 block-sized virtual registers.

The following ASL code illustrates how a device supporting the Read/Write Block protocol should be accessed:

OperationRegion (TOP1l, GenericSerialBus, 0x00, 0x100)
Field (TOP1l, BufferAcc, NoLock, Preserve)
{
Connection (I2CSerialBusV2 (0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer(){1,6})),
Offset (0x0),
AccessAs (BufferAcc, AttribBlock),
TFK1, 8,
TFK2, 8

// Create the GenericSerialBus data buffer

Name (BUFF, Buffer (34){}) // Create SerialBus buf as BUFF
CreateByteField (BUFF, 0x00, STAT) // STAT = Status (Byte)

CreateBytefield (BUFF, 0x01, LEN) // LEN = Length (Byte)

CreateWordField (BUFF, 0x03, DATW) // DATW = Data (Word - Bytes 2 & 3, or 16 bits)
CreateField (BUFF, 16, 256, DBUF) // DBUF Data (Bytes 2-33)

CreateField (BUFF, 16, 32, DATD) // DATD = Data (DWord)

/+ Read block of data from the device using command value 0 */

BUFF = TFK1

(continues on next page)

5.5. Control Methods and the ACPI Source Language (ASL) 299

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

If (STAT != 0x00)

Return (0)

/+ Read block of data from the device using command value 1 */

BUFF = TFK2
If (STAT != 0x00)
{

Return (0)

In this example, two field elements (TFK1, and TFK?2) are defined to represent the virtual registers for command
values 0 and 1. Access to any of the field elements will cause a GenericSerialBus transaction to occur to the device.

Writing blocks of data requires similar semantics, such as in the following example:

Store (16, LEN) // In bits, so 4 bytes

LEN = 16

BUFF = (TFKl = BUFF)

If (STAT == 0x00) // Was the transaction successful?

{

This accessor is not viable for some SPBs because the bus may not support the appropriate functionality. In cases that
variable length buffers are desired but the bus does not support block accessors, refer to the SerialBytes protocol.

Word Process Call (AttribProcessCall)

The GenericSerialBus Process Call protocol (AttribProcessCall) transfers 2 bytes of data bi-directionally (performs a
Write Word followed by a Read Word as an atomic transaction). This protocol uses a command value to reference up
to 256 word-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

OperationRegion (TOP1l, GenericSerialBus, 0x00, 0x100)
// GenericSerialBus device at slave address 0x42
Field (TOP1l, BufferAcc, NoLock, Preserve)
{
Connection (I2CSerialBusV2 (0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer(){1,6})),
AccessAs (BufferAcc, AttribProcessCall),
// Use the GenericSerialBus Process Call protocol

FLDO, 8, // Virtual register at command value 0.
FLD1, 8, // Virtual register at command value 1.
FLD2, 8 // Virtual register at command value 2.

// Create the GenericSerialBus data buffer

Name (BUFF, Buffer (6){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField (BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField (BUFF, 0x02, DATA) // DATA = Data (Word)

/+ Process Call with input value '0Ox5416' to the device using command value 1 x/

DATA = 0x5416 // Save 0x5416 into the data buffer

(continues on next page)

5.5. Control Methods and the ACPI Source Language (ASL) 300

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

BUFF = (FLD1 = BUFF) // Invoke a Process Call transaction
If (STAT == 0x00) // Was the transaction successful?

{
// DATA = Word returned from FLDI1...

In this example, three field elements (FLDO, FLD1, and FLLD2) are defined to represent the virtual registers for com-
mand values 0, 1, and 2. Access to any of the field elements will cause a GenericSerialBus transaction to occur to
the device. Reading or writing FLDI results in a Process Call with a command value of 1. Notice that unlike other
protocols, Process Call involves both a write and read operation in a single atomic transaction. This means that the
Data element of the GenericSerialBus data buffer is set with an input value before the transaction is invoked, and holds
the output value following the successful completion of the transaction.

Block Process Call (AttribBlockProcessCall)

The GenericSerialBus Block Write-Read Block Process Call protocol (AttribBlockProcessCall) transfers a block of
data bi-directionally (performs a Write Block followed by a Read Block as an atomic transaction). This protocol uses
a command value to reference up to 256 block-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

OperationRegion (TOP1l, GenericSerialBus, 0x00, 0x100)
// GenericSerialBus device at slave address 0x42
Field (TOP1l, BufferAcc, NoLock, Preserve)
{
Connection (I2CSerialBusV2 (0x5a,,100000,,"_SB.I12C",,,,,RawDataBuffer(){1,6})),
AccessAs (BufferAcc, AttribBlockProcessCall),
// Use the Block Process Call protocol
FLDO, 8, // Virtual register representing a command value of 0
FLD1, 8 // Virtual register representing a command value of 1

// Create the GenericSerialBus data buffer as BUFF

Name (BUFF, Buffer (35){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField (BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField (BUFF, 0x01, LEN) // LEN = Length (Byte)

CreateField (BUFF, 0x10, 256, DATA) // Data (Block)

/* Process Call with input value "ACPI" to the device using command value 1 x/

DATA = "ACPI" // Fill in outgoing data

LEN = 4 // Length of the valid data not including status (STAT)
// and length (LEN) bytes.

BUFF = (FLD1 = BUFF)

If (STAT == 0x00) // Test the status

{
// BUFF now contains information returned from PC
// LEN now equals size of data returned

Read/Write N Bytes (AttribBytes)

The GenericSerialBus Read/Write N Bytes protocol (AttribBytes) transfers variable-sized data. The read transfer byte
length of the bi-directional call specified as a part of the AccessAs attribute.

5.5. Control Methods and the ACPI Source Language (ASL) 301

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

The following ASL code illustrates how a device supporting the Read/Write N Bytes protocol should be accessed:

OperationRegion (TOPl, GenericSerialBus, 0x00, 0x100)
Field (TOP1l, BufferAcc, NoLock, Preserve)
{
Connection (I2CSerialBusV2 (0x5a,,100000,,"_SB.I2C",,,,,RawDataBuffer(){1,6})),
AccessAs (BufferAcc, AttribBytes (4)),
TFK1, 8, //TFK1l at command value 0
TFK2, 8, //TFK2 at command value 1
Connection (I2CSerialBus (0x5b,,100000,,"_SB.I2C",,,,RawDataBuffer (){2,9})),
// same connection attribute, but different vendor data passed to driver
AccessAs (BufferAcc, AttribByte),
TM1, 8 //TM1l at command value 2

// Create the GenericSerialBus data buffer

Name (BUFF, Buffer (34) {}) // Create SerialBus buf as BUFF
CreateByteField (BUFF, 0x00, STAT) // STAT = Status (Byte)

CreateBytefield (BUFF, 0x01l, LEN) // LEN = Length (Byte)

CreateWordField (BUFF, 0x02, DATW) // DATW = Data (Word - Bytes 2 & 3, or 16 bits)
CreateField (BUFF, 16, 256, DBUF) // DBUF = Data (Bytes 2-34)

CreateField (BUFF, 16, 32, DATD) // DATD = Data (DWord)

// Read block of data from the device using command value 0

BUFF = TFK1
If (STAT != 0x00)
{

Return (0)

// Write block of data to the device using command value 1

BUFF = (TFK2 = BUFF)
If (STAT != 0x00)
{

Return (0)

In this example, two field elements (TFK1, and TFK?2) are defined to represent the virtual registers for command
values 0 and 1. Access to any of the field elements will cause a GenericSerialBus transaction to occur to the device of
the length specified in the AccessAttributes.

Raw Read/Write N Bytes (AttribRawBytes)

The GenericSerialBus Raw Read/Write N Bytes protocol (AttribRawBytes) transfers variable-sized data. The read
transfer byte length of the bi- directional transaction specified as a part of the AccessAs attribute. The initial command
value specified in the operation region definition is ignored by Raw accesses.

The following ASL code illustrates how a device supporting the Read/Write N Bytes protocol should be accessed:

OperationRegion (TOP1l, GenericSerialBus, 0x00, 0x100)

Field (TOP1l, BufferAcc, NoLock, Preserve)

{
Connection (I2CSerialBusV2 (0x5a,,100000,,"_SB.I12C",,,,,RawDataBuffer(){1,6})),
AccessAs (BufferAcc, AttribRawBytes (4)),
TFK1, 8

(continues on next page)

5.5. Control Methods and the ACPI Source Language (ASL) 302

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

/+ Create the GenericSerialBus data buffer =/

Name (BUFF, Buffer (34){}) // Create SerialBus buf as BUFF
CreateByteField (BUFF, 0x00, STAT) // STAT = Status (Byte)

CreateByteField (BUFF, 0x01, LEN) // LEN = Length (Byte)

CreateWordField (BUFF, 0x02, DATW) // DATW = Data (Word - Bytes 2 & 3, or 16 bits)
CreateField (BUFF, 16, 256, DBUF) // DBUF = Data (Bytes 2-34)

CreateField (BUFF, 16, 32, DATD) // DATD = Data (DWord)

DATW = O0x0B // Store appropriate reference data for driver to interpret
/* Read from TFK1 =/

BUFF = TFK1
If (STAT != 0x00)
{

Return (0)

/* Write to TFK1 =*/

BUFF = (TFKl = BUFF)
If (STAT != 0x00)
{

Return (0)

Access to any field elements will cause a GenericSerialBus transaction to occur to the device of the length specified in
the AccessAttributes.

Raw accesses assume that the writer has knowledge of the bus that the access is made over and the device that is being
accessed. The protocol may only ensure that the buffer is transmitted to the appropriate driver, but the driver must be
able to interpret the buffer to communicate to a register.

Raw Block Process Call (AttribRawProcessBytes)

The GenericSerialBus Raw Write-Read Block Process Call protocol (AttribRawProcessBytes) transfers a block of
data bi-directionally (performs a Write Block followed by a Read Block as an atomic transaction). The read transfer
byte length of the bi-directional transaction specified as a part of the AccessAs attribute. The initial command value
specified in the operation region definition is ignored by Raw accesses.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

OperationRegion (TOP1l, GenericSerialBus, 0x00, 0x100)
// GenericSerialBus device at slave address 0x42
Field (TOP1l, BufferAcc, NoLock, Preserve)
{
Connection (I2CSerialBusV2 (0x5a,,100000,,"_SB.I12C",,,,,RawDataBuffer (){1,6})),
AccessAs (BufferAcc, AttribRawProcessBytes (2)),
// Use the Raw Bytes Process Call protocol
FLDO, 8

// Create the GenericSerialBus data buffer as BUFF

Name (BUFF, Buffer (34){}) // Create GenericSerialBus data buffer as BUFF

(continues on next page)

5.5. Control Methods and the ACPI Source Language (ASL) 303

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

CreateByteField (BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField (BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateWordField (BUFF,0x02, DATW) // Data (Bytes 2 and 3)
CreateField (BUFF, 0x10, 256, DATA) // Data (Block)

DATW = 0x0B //Store appropriate reference data for driver to interpret
/* Process Call with input value "ACPI" to the device «*/

DATA = "ACPI" // Fill in outgoing data
LEN = 4 // Length of the valid data

BUFF = (FLDO = BUFF)
If (STAT == 0x00)
{

// Execute the PC
// Test the status

// BUFF now contains information returned from PC
// LEN now equals size of data returned

Raw accesses assume that the writer has knowledge of the bus that the access is made over and the device that is being
accessed. The protocol may only ensure that the buffer is transmitted to the appropriate driver, but the driver must be
able to interpret the buffer to communicate to a register.

5.5.2.4.7 Declaring PCC Operation Regions

The Platform Communication Channel (PCC) is described in Chapter 14. The PCC table, described in Platform
Communications Channel Table , contains information about PCC subspaces implemented in a given platform, where
each subspace is a unique channel.

5.5.2.4.7.1 Overview

The PCC Operation Region works in conjunction with the PCC Table (Platform Communications Channel Table).
The PCC Operation Region is associated with the region of the shared memory that follows the PCC signature. PCC
Operation Region must not be used for extended subspaces of Type 4 (Slave subspaces). PCC subspaces that are
earmarked for use as PCC Operation Regions must not be used as PCC subspaces for standard ACPI features such as
CPPC, RASF, PDTT and MPST. These standard features must always use the PCC Table instead.

5.5.2.4.7.2 Declaring a PCC OperationRegion

The syntax for the OperationRegion term (OperationRegion (Declare Operation Region)) is described below:

OperationRegion (

RegionName, // NameString

RegionSpace, //
Offset, //
Length //

RegionSpaceKeyword
TermArg=>Integer
TermArg=>Integer

The PCC Operation Region term in ACPI namespace will be defined as follows:

OperationRegion ([subspace-name], PCC, [subspace-id], Length)

5.5. Control Methods and the ACPI Source Language (ASL)

304

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Where:
* RegionName is set to [subspace-name] , which is a unique name for this PCC subspace.
* RegionSpace must be set to PCC, operation region type 0xOA
 Offset must be set to [subspace-id] , the subspace ID of this channel, as defined in the PCC table (PCCT).

» Length is the total size of the operation region, and is equal to the total size of the fields that succeed the PCC
signature in the shared memory.

5.5.2.4.7.3 Declaring message fields within a PCC OperationRegion

For all PCC subspace types, the PCC Operation Region pertains to the region of PCC subspace that succeeds the PCC
signature. The layout of the Shared Memory Regions is specific to the PCC subspace. The Operation Region handler
must therefore obtain the subspace type first before it can comprehend and access individual fields within the subspace.

Fields within an Operation region are accessed using the Field keyword, and correspond to the fields that succeed the
PCC signature in the subspace shared memory. The syntax for the Field term (from Field (Declare Field Objects)) is
as follows:

Field (
RegionName,
AccessType,
LockRule,
UpdateRule

) {FieldUnitList}

For PCC Operation Regions:
* RegionName specifies the name of the operation region, declared above the field term.
* AccessType must be set to ByteAcc.

* LockRule indicates if access to this operation region requires acquisition of the Global lock for synchronization.
This field must be set to NoLock.

» UpdateRule is not applicable to PCC operation regions, since each command region is accessed in its entirety.

The FieldUnitList specifies individual fields within the Shared Memory Region of the subspace, which depends on the
type of subspace. The declaration of the fields must match the layout of the subspace. Accordingly, for the Generic
Communications subspaces (Types 0-2), the FieldUnitList may be declared as follows:

Field (NAME, ByteAcc, NoLock, Preserve)
{

CMD, 16, // Command field
STAT, 16, // Status field, to be read on completion of the command
DATA, [Size] // Communication space of size [Size] bits

}

Likewise, for the Extended Communication subspaces (Type 3), the FieldUnitList may be declared as follows:

Field (NAME, ByteAcc, NoLock, Preserve)
{

FLGS, 32, // Command Flags field

LEN, 32, // Length field

CMD, 32, // Command field

DATA, [Size] // Communication space of size [Size] bits

5.5. Control Methods and the ACPI Source Language (ASL) 305

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.5.2.4.7.4 An Example of PCC Operation Region Declaration

As an example, if a platform feature uses PCC subspace with subspace ID of 0x02 of subspace Type 3 (Extended PCC
communication channel), then the caller may declare the operation region as follows:

OperationRegion (PFRM, PCC, 0x02, 0x10C)
Field (PFRM, ByteAcc, NoLock, Preserve)
{
Offset (4), // Flags start at offset 4 from beginning of shared memory

FLGS, 32, // Command Flags field
LGTH, 32, // Length field
CoMD, 32, // Command field

COSP, 0x800 // Communication space of size 256 bytes
}

In this example, PFRM is the name of the subspace dedicated to the platform feature, and the size of the shared memory
region is 0x10C bytes (256 bytes of communication space and 16 bytes of fields excluding the PCC Signature).

5.5.2.4.7.5 Using a PCC OperationRegion

The PCC Operation Region handler begins transmission of the message on the channel when it detects a write to the
CMD field. The caller must therefore update all other fields relevant to the operation region first, and then in the final
step, write the command itself. As explained in Declaring message fields within a PCC OperationRegion, the fields to
be updated are specific to the subspace type.

For the Generic Communication subspace type (Types 0, 1 and 2), the order of Operation Region writes would be as
follows:

1. Write the command payload into the DATA field. StepNumList-1 Write the command payload into the DATA
field.

2. Write the command into the CMD field.
For the Extended Communication subspace type (Type 3), the order of Operation Region writes would be as follows:

1. Write the command payload, length and flags into the CMD, LEN and FLGS fields, respectively, in any order of
preference. StepNumList-1 Write the command payload, length and flags into the CMD, LEN and FLGS fields,
respectively, in any order of preference.

2. Write the command into the CMD field.

In the above steps, the fields are as described in Section 5.5.2.4.7.4. When the platform completes processing the
command, it uses the same subspace Shared Memory Region to return the response data. The caller can thus read the
Operation Region to retrieve the response data.

If channel errors are encountered during transmission of the command or its response, the channel reports an error
status in the Channel Status register. The caller must therefore first check the Channel Status register before processing
the return data. For the Generic PCC Communication Subspaces, the Channel Status register is located in the Shared
Memory Region itself, as described in Generic Communications Channel Status Field. The caller must thus check the
STAT field in the Operation Region for the purpose. For the Extended PCC Communication Subspaces, the Channel
Status register is located anywhere in system memory or IO, and pointed to by the Error Status register field within the
Type 3 PCC Subspace structure, as described in Extended PCC subspaces (types 3 and 4).

5.5. Control Methods and the ACPI Source Language (ASL) 306

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.5.2.4.7.6 Using the _REG Method for PCC Operation Regions

It is possible for the OS to include PCC operation region handlers that only comprehend and support a subset of the
possible subspaces defined in this specification. The OS can provide supplementary information in the _REG method
in order to indicate which exact subspaces(s) are supported. To accomplish this, the Arg0 parameter passed to the
_REG method must include both the Address Space ID (PCC) and a qualifying Address Space sub-type in Byte 1, as
follows:

Arg0, Byte 0 = PCC = 0x0A Arg0, Byte 1 = subspace type as defined in Section 14.1.2.

The OS may now indicate support for handling PCC operation region subspace Type 3 by invoking the _REG method
with Arg0=0x030A and Argl = 0x01.

5.5.2.4.7.7 Example Use of a PCC OperationRegion

The following sample ACPI Power Meter (Power Meters) implementation describes how a PCC Operation Region
can be used to read a platform power sensor that is exposed through a platform services channel. In this sample
system, the platform services channel is implemented as an Extended PCC Communication Channel (Type 3), and
assigned a PCC subspace ID of 0x07 in the PCCT. The sample platform implements three sensors - two power sen-
sors, associated with CPU cluster 0 and cluster 1 respectively, and a SoC-level thermal sensor. The power sensors
are read using command 0x15 (READ_POWER_SENSOR), while the thermal sensor is read using command 0x16
(READ_THERMAL_SENSOR), both on the platform services channel. The READ_POWER_SENSOR command
take two input parameters called SensorInstance and MeasurementFormat, which are appended together to the com-
mand as the payload. SensorInstance specifies which power sensor is being referenced. MeasurementFormat specifies
the measurement unit (watts or milliwatts) in which the power consumption is expressed. The command payload is
thus formatted as follows:

typedef struct

{
BYTE SensorInstance; // Which instance of the sensor is being read
BYTE MeasurementFormat; // 0 = mW, 1 =W

} COMMAND_PAYLOAD;

The power sensor for CPU cluster 0 is read by setting SensorInstance to 0x01, while the power sensor for CPU cluster
1 is read by setting SensorInstance to 0x02.

The response to the command from the platform is of the form:

typedef struct
{

DWORD Reading; // The sensor value read

DWORD Status; // Status of the operation - 0: success, non-zero: error
} SENSOR_RESPONSE;

Here, the field Status pertains to the success or failure of the requested service. Channel errors can occur independent
of the service, during transmission of the request. A generic placeholder register, CHANNEL_STATUS_REG, and an
associated error status field, ERROR_STATUS_BIT, is used as an illustration of how the channel status register may
be read to detect channel errors during transit.

The ACPI Power Meter object may now be implemented for this example platform as follows:

Device (PMTO0) // ACPI Power Meter object for CPU Cluster 0 Power Sensor

{
Name (_HID, "ACPIOOOD") // ACPI Power Meter device

// The Operation Region declaration, based on "An Example of PCC Operation

(continues on next page)

5.5. Control Methods and the ACPI Source Language (ASL) 307

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

// Region Declaration" described earlier in this chapter.

OperationRegion (PFRM, PCC, 0x07, 0x8C)
Field (PFRM, ByteAcc, NoLock, Preserve)
{

FLGS, 32, // Command Flags field
LEN, 32, // Length field
CcMD, 32, // Command field
DATA, 0x400 // Communication space of size 128 bytes
}
Method (_REG, 2) // Check if OS Op region handler is available
{
/ *

*

Check if Arg0.Byte0 = OxA, PCC Operation Region Supported?
Check if Arg0.Bytel = 0x3, subchannel type 3 as defined in Table 14-357
Disallow further processing until support for Type 3 becomes available

*

*

*/

// Read a Power sensor
Method (_PMM, 0, Serialized)
{

// Create the command buffer

Name (BUFF, Buffer (0x80){}) // Create PCC data buffer as BUFF
Name (PAYL, Buffer(2) {0x02, 0x01}) // Instance = CPU cluster 1

// Read power in units of Watts
DATA = PAYL // Only first two bytes written, the rest default to O
// Update the length and status fields

LEN = 0x06 // 4B (command) + 2B (payload)
FLGS = 0x01 // Set Notify on Completion

% All done. Now write to the command field to begin transmission of
* the message over the PCC subspace. On receipt, the platform will
* read power sensor of CPU cluster 0 and return the power consumption
* reading in the Operation Region itself
*/
CMD = 0x15 // READ_POWER_SENSOR command = 0x15

If (LEqual (LAnd (CHANNEL_STATUS_REG, ERROR_STATUS_BIT), 0x01)
{
Return (Ones). // Return invalid, so that the caller can take remedial
—steps

BUFF = DATA

CreateDWordField (RUFF, 0x00, PCL1l) // Power consumed by CPU cluster 1
CreateDWordField (BUFF, 0x01, STAT) // Return status

If (STAT == 0x0)) // Successful?

{

Return (PCL1) // Return the power measurement for CPU cluster 1

(continues on next page)

5.5. Control Methods and the ACPI Source Language (ASL) 308

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

}
Else

{

Return (Ones) // Return invalid

}

5.6 ACPI Event Programming Model

The ACPI event programming model is based on the SCI interrupt and General-Purpose Event (GPE) register. ACPI
provides an extensible method to raise and handle the SCI interrupt, as described in this section.

Hardware-Reduced ACPI platforms use GPIO-signaled ACPI Events, or Interrupt-signaled ACPI events. Note that
any ACPI platform may utilize GPIO-signaled and/or Interrupts-signaled ACPI events (in other words, these events
are not limited to Hardware-reduced ACPIvplatforms).

5.6.1 ACPI Event Programming Model Components

The components of the ACPI event programming model are the following:
* OSPM
* FADT
e PM1a_STS, PM1b_STS and PM1a_EN, PM1b_EN fixed register blocks
¢ GPEO_BLK and GPE1_BLK register blocks
* GPE register blocks defined in GPE block devices
* SCI interrupt
* ACPI AML code general-purpose event model
¢ ACPI device-specific model events
* ACPI Embedded Controller event model

The role of each component in the ACPI event programming model is described in the following table.

Table 5.152: ACPI Event Programming Model Components

Component Description

OSPM Receives all SCI interrupts raised (receives all SCI events). Either
handles the event or masks the event off and later invokes an OEM-
provided control method to handle the event. Events handled di-
rectly by OSPM are fixed ACPI events; interrupts handled by con-
trol methods are general-purpose events.

FADT Specifies the base address for the following fixed register blocks
on an ACPI-compatible platform: PM1x_STS and PM1x_EN fixed
registers and the GPEx_STS and GPEx_EN fixed registers.
PM1x_STS and PM1x_EN fixed registers PM1x_STS bits raise fixed ACPI events. While a PM1x_STS bit
is set, if the matching PM1x_EN bit is set, the ACPI SCI event is
raised.

continues on next page

5.6. ACPI Event Programming Model 309

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.152 — continued from previous page
Component Description
GPEx_STS and GPEx_EN fixed registers GPEx_STS bits that raise general-purpose events. For every event
bit implemented in GPEx_STS, there must be a comparable bit in
GPEx_EN. Up to 256 GPEx_STS bits and matching GPEx_EN bits
can be implemented. While a GPEx_STS bit is set, if the matching
GPEx_EN bit is set, then the general-purpose SCI event is raised.
SCI interrupt A level-sensitive, shareable interrupt mapped to a declared inter-
rupt vector. The SCI interrupt vector can be shared with other low-
priority interrupts that have a low frequency of occurrence.
ACPI AML code general-purpose event | A model that allows OEM AML code to use GPEx_STS events.
model This includes using GPEx_STS events as “wake” sources as well as
other general service events defined by the OEM (“button pressed,”
“thermal event,” “device present/not present changed,” and so on).
ACPI device-specific model events Devices in the ACPI namespace that have ACPI-specific device IDs
can provide additional event model functionality. In particular, the
ACPI embedded controller device provides a generic event model.
ACPI Embedded Controller event model A model that allows OEM AML code to use the response from the
Embedded Controller Query command to provide general-service
event defined by the OEM.

5.6.2 Types of ACPI Events

At the ACPI hardware level, two types of events can be signaled by an SCI interrupt:
* Fixed ACPI events
* General-purpose events

In turn, the general-purpose events can be used to provide further levels of events to the system. And, as in the case of
the embedded controller, a well-defined second-level event dispatching is defined to make a third type of typical ACPI
event. For the flexibility common in today’s designs, two first-level general-purpose event blocks are defined, and the
embedded controller construct allows a large number of embedded controller second-level event-dispatching tables to
be supported. Then if needed, the OEM can also build additional levels of event dispatching by using AML code on a
general-purpose event to sub-dispatch in an OEM defined manner.

5.6.3 Fixed Event Handling

When OSPM receives a fixed ACPI event, it directly reads and handles the event registers itself. The following table
lists the fixed ACPI events. For a detailed specification of each event, see the ACPI Hardware Specification

Table 5.153: Fixed ACPI Events

Event Comment
Power management timer carry bit set. | For more information, see the description of the TMR_STS and TMR_EN
bits of the PM1x fixed register block in PM 1 Event Grouping

continues on next page

5.6. ACPI Event Programming Model 310

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.153 — continued from previous page
Event Comment
Power button signal A power button can be supplied in two ways. One way is to simply use the
fixed status bit, and the other uses the declaration of an ACPI power device
and AML code to determine the event. For more information about the
alternate-device based power button, see Control Method Power Button.
Notice that during the SO state, both the power and sleep buttons merely
notify OSPM that they were pressed. If the system does not have a sleep
button, it is recommended that OSPM use the power button to initiate
sleep operations as requested by the user.
Sleep button signal A sleep button can be supplied in one of two ways. One way is to simply
use the fixed status button. The other way requires the declaration of an
ACPI sleep button device and AML code to determine the event.
RTC alarm ACPI-defines an RTC wake alarm function with a minimum of one-month
granularity. The ACPI status bit for the device is optional. If the ACPI
status bit is not present, the RTC status can be used to determine when
an alarm has occurred. For more information, see the description of the
RTC_STS and RTC_EN bits of the PM1x fixed register block in PM]
Event Grouping
Wake status The wake status bit is used to determine when the sleeping state has been
completed. For more information, see the description of the WAK_STS
and WAK_EN bits of the PM1x fixed register block in PM 1 Event Group-
ing
System bus master request The bus-master status bit provides feedback from the hardware as to when
a bus master cycle has occurred. This is necessary for supporting the pro-
cessor C3 power savings state. For more information, see the description
of the BM_STS bit of the PM 1x fixed register block in PM 1 Event Group-
ing
Global Release Status This status is raised as a result of the Global Lock protocol, and is handled
by OSPM as part of Global Lock synchronization. For more information,
see the description of the GBL_STS bit of the PM1x fixed register block
in PM1 Event Grouping.

5.6.4 General-Purpose Event Handling

When OSPM receives a general-purpose event, it either passes control to an ACPI-aware driver, or uses an OEM-
supplied control method to handle the event. An OEM can implement up to 128 general-purpose event inputs in
hardware per GPE block, each as either a level or edge event. It is also possible to implement a single 256-pin block
as long as it’s the only block defined in the system.

An example of a general-purpose event is specified in ACPI Hardware Specification where EC_STS and EC_EN bits
are defined to enable OSPM to communicate with an ACPI-aware embedded controller device driver. The EC_STS bit
is set when either an interface in the embedded controller space has generated an interrupt or the embedded controller
interface needs servicing. Notice that if a platform uses an embedded controller in the ACPI environment, then the
embedded controller’s SCI output must be directly and exclusively tied to a single GPE input bit.

Hardware can cascade other general-purpose events from a bit in the GPEx_BLK through status and enable bits
in Operational Regions (I/O space, memory space, PCI configuration space, or embedded controller space). For
more information, see the specification of the General-Purpose Event Blocks (GPEx_BLK) in General-Purpose Event
Register Blocks

OSPM manages the bits in the GPEx blocks directly, although the source to those events is not directly known and is
connected into the system by control methods. When OSPM receives a general-purpose event (the event is from either
a GPEx_BLK STS bit, a GPIO pin, or an Interrupt), OSPM does the following:

5.6. ACPI Event Programming Model 311

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

1. Disables the interrupt source

2. (GPEx_BLK EN bit): GPIO interrupt for GPIO-signaled events. | Interrupt for Interrupt-signaled events. | If an
edge event, clears the status bit.

3. Performs one of the following: Dispatches to an ACPI-aware device driver. | Queues the matching control
method for execution. | Manages a wake event using device _PRW objects.

4. If a level event, waits for the control method handler to complete and clears the status bit.
5. Enables the interrupt source.
For OSPM to manage the bits in the GPEx_BLK blocks directly:
 Enable bits must be read/write.
* Status bits must be latching.

* Status bits must be read/clear, and cleared by writing a “1” to the status bit.

5.6.4.1 _Exx, _Lxx, and _Qxx Methods for GPE Processing

The OEM AML code can perform OEM-specific functions custom to each event the particular platform might gen-
erate by executing a control method that matches the event. For GPE events, OSPM will execute the control method
of the name _GPE. TXX where XX is the hex value format of the event that needs to be handled and T indicates
the event handling type (T must be either ‘E’ for an edge event or ‘L’ for a level event). The event values for sta-
tus bits in GPEO_BLK start at zero (_T00) and end at the (GPEO_BLK_LEN / 2) - 1. The event values for status
bits in GPE1_BLK start at GPE1_BASE and end at GPE1_BASE + (GPE1_BLK_LEN / 2) - 1. GPEO_BLK_LEN,
GPE1_BASE, and GPE1_BLK_LEN are all defined in the FADT.

The _Qxx methods are used for the Embedded Controller and SMBus (see below).

5.6.4.1.1 Queuing the Matching Control Method for Execution

When a general-purpose event is raised, OSPM uses a naming convention to determine which control method to queue
for execution and how the GPE EOI is to be handled. The GPEx_STS bits in the GPEx_BLK are indexed with a
number from 0 through FF. The name of the control method to queue for an event raised from an enable status bit
is always of the form _GPE._Txx where xx is the event value and T indicates the event EOI protocol to use (either
‘E’ for edge triggered, or ‘L’ for level triggered). The event values for status bits in GPEO_BLK start at zero (_T00),
end at the (GPEO_BLK_LEN / 2) - 1, and correspond to each status bit index within GPEO_BLK. The event values
for status bits in GPE1_BLK are offset by GPE_BASE and therefore start at GPE1_BASE and end at GPE1_BASE +
(GPE1_BLK_LEN/2)-1.

For example, suppose an OEM supplies a wake event for a communications port and uses bit 4 of the GPEO_STS bits
to raise the wake event status. In an OEM-provided Definition Block, there must be a Method declaration that uses the
name _GPE._L04 or \GPE._E04 to handle the event. An example of a control method declaration using such a name
is the following:

Method (_GPE._L04) { // GPE 4 level wake handler
Notify (_SB.PCIO.COMO, 2)
}

The control method performs whatever action is appropriate for the event it handles. For example, if the event means
that a device has appeared in a slot, the control method might acknowledge the event to some other hardware register
and signal a change notify request of the appropriate device object. Or, the cause of the general-purpose event can
result from more then one source, in which case the control method for that event determines the source and takes the
appropriate action.

5.6. ACPI Event Programming Model 312

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

When a general-purpose event is raised from the GPE bit tied to an embedded controller, the embedded controller
driver uses another naming convention defined by ACPI for the embedded controller driver to determine which con-
trol method to queue for execution. The queries that the embedded controller driver exchanges with the embedded
controller are numbered from O through FF, yielding event codes 01 through FF. (A query response of 0 from the em-
bedded controller is reserved for “no outstanding events.”) The name of the control method to queue is always of the
form _Qxx where xx is the number of the query acknowledged by the embedded controller. An example declaration
for a control method that handles an embedded controller query is the following:

Method (_Q34) { // embedded controller event for thermal
Notify (_SB.Tz0.THM1, 0x80)
}

When an SMBus alarm is handled by the SMBus driver, the SMBus driver uses a similar naming convention defined
by ACPI for the driver to determine the control method to queue for execution. When an alarm is received by the
SMBus host controller, it generally receives the SMBus address of the device issuing the alarm and one word of data.
On implementations that use SMBALERT# for notifications, only the device address will be received. The name of
the control method to queue is always of the form _Qxx where xx is the SMBus address of the device that issued
the alarm. The SMBus address is 7 bits long corresponding to hex values 0 through 7F, although some addresses are
reserved and will not be used. The control method will always be queued with one argument that contains the word of
data received with the alarm. An exception is the case of an SMBus using SMBALERT# for notifications, in this case
the argument will be 0. An example declaration for a control method that handles a SMBus alarm follows:

Method (_Q18, 1) { // Thermal sensor device at address 001 1000
// Arg0 contains notification value (if any)
// Arg0 = 0 if device supports only SMBALERT#
Notify (_SB.Tz0.THM1, 0x80)
}

5.6.4.1.2 Dispatching to an ACPI-Aware Device Driver

Certain device support, such as an embedded controller, requires a dedicated GPE to service the device. Such GPEs
are dispatched to native OS code to be handled and not to the corresponding GPE-specific control method.

In the case of the embedded controller, an OS-native, ACPI-aware driver is given the GPE event for its device. This
driver services the embedded controller device and determines when events are to be reported by the embedded con-
troller by using the Query command. When an embedded controller event occurs, the ACPI-aware driver dispatches
the requests to other ACPI-aware drivers that have registered to handle the embedded controller queries or queues
control methods to handle each event. If there is no device driver to handle specific queries, OEM AML code can per-
form OEM-specific functions that are customized to each event on the particular platform by including specific control
methods in the namespace to handle these events. For an embedded controller event, OSPM will queue the control
method of the name _QXX, where XX is the hex format of the query code. Notice that each embedded controller
device can have query event control methods.

Similarly, for an SMBus driver, if no driver registers for SMBus alarms, the SMBus driver will queue control methods
to handle these. Methods must be placed under the SMBus device with the name _QXX where XX is the hex format
of the SMBus address of the device sending the alarm.

5.6. ACPI Event Programming Model 313

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.6.4.2 GPE Wake Events

An important use of the general-purpose events is to implement device wake events. The components of the ACPI
event programming model interact in the following way:

* When a device asserts its wake signal, the general-purpose status event bit used to track that device is set.
* While the corresponding general-purpose enable bit is enabled, the SCI interrupt is asserted.

« If the system is sleeping, this will cause the hardware, if possible, to transition the system into the SO state.
* Once the system is running, OSPM will dispatch the corresponding GPE handler.

* The handler needs to determine which device object has signaled wake and performs a wake Notify command
on the corresponding device object(s) that have asserted wake.

¢ In turn OSPM will notify OSPM native driver(s) for each device that will wake its device to service it.

Events that wake may not be intermixed with non-wake (runtime) events on the same GPE input. The only exception
to this rule is made for the special devices below. Only the following devices are allowed to utilize a single GPE for
both wake and runtime events:

1. Button Devices: PNPOCOC - Power Button Device | PNPOCOD - Lid Device | PNPOCOE - Sleep Button Device
2. PCI Bus Wakeup Event Reporting (PME): PNPOAO3 - PCI Host Bridge

All wake events that are not exclusively tied to a GPE input (for example, one input is shared for multiple wake events)
must have individual enable and status bits in order to properly handle the semantics used by the system.

5.6.4.2.1 Managing a Wake Event Using Device _PRW Objects

A device’s _PRW object provides the zero-based bit index into the general-purpose status register block to indicate
which general-purpose status bit from either GPEO_BLK or GPE1_BLK is used as the specific device’s wake mask.
Although the hardware must maintain individual device wake enable bits, the system can have multiple devices using
the same general-purpose event bit by using OEM-specific hardware to provide second-level status and enable bits. In
this case, the OEM AML code is responsible for the second-level enable and status bits.

OSPM enables or disables the device wake function by enabling or disabling its corresponding GPE and by executing
its _PSW control method (which is used to take care of the second-level enables). When the GPE is asserted, OSPM
still executes the corresponding GPE control method that determines which device wakes are asserted and notifies the
corresponding device objects. The native OS driver is then notified that its device has asserted wake, for which the
driver powers on its device to service it.

If the system is in a sleeping state when the enabled GPE bit is asserted the hardware will transition the system into
the SO state, if possible.

5.6.4.2.2 Determining the System Wake Source Using _Wxx Control Methods

After a transition to the SO state, OSPM may evaluate the _SWS object in the _GPE scope to determine the index of
the GPE that was the source of the transition event. When a single GPE is shared among multiple devices, the platform
provides a _Wxx control method, where xx is GPE index as described in Determining the System Wake Source Using
_Wxx Control Methods , that allows the source device of the transition to be determined. If implemented, the _Wxx
control method must exist in the _GPE scope or in the scope of a GPE block device.

If _Wxx is implemented, either hardware or firmware must detect and save the source device as described in sws-
system-wake-source. During invocation, the _Wxx control method determines the source device and issues a No-
tify(<device>,0x2) on the device that caused the system to transition to the SO state. If the device uses a bus-specific
method of arming for wakeup, then the Notify must be issued on the parent of the device that has a _PRW method.

5.6. ACPI Event Programming Model 314

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

The _Wxx method must issue a Notify(<device>,0x2) only to devices that contain a _PRW method within their device
scope. OSPM’s evaluation of the _SWS and _Wxx objects is indeterminate. As such, the platform must not rely on
_SWS or _Wxx evaluation to clear any hardware state, including GPEx_STS bits, or to perform any wakeup-related
actions.

If the GPE index returned by the _SWS object is only referenced by a single _PRW object in the system, it is implied
that the device containing that _PRW is the wake source. In this case, it is not necessary for the platform to provide a
_ Wxx method.

5.6.5 GPIO-signaled ACPI Events

On Hardware-reduced ACPI platforms, ACPI events can be signaled when a GPIO Interrupt is received by OSPM,
and that GPIO Interrupt Connection is listed in a GPIO controller device’s _AEI object. OSPM claims all such GPIO
interrupts, and maps them to the appropriate event method required by the ACPI event model.

5.6.5.1 Declaring GPIO Controller Devices

A GPIO controller is modeled as a device in the namespace, with _HID or _ADR and _CRS objects, at a minimum. Op-
tionally, the GPIO controller device scope may include GeneralPurposeIO OpRegion declarations (Section 5.5.2.4.5)
and GPIO interrupt-to-ACPI Event mappings (Section 5.6.5.2). Note that for GPIO-signaled ACPI Events, the corre-
sponding event method (e.g. _Exx, _Lxx, or _EVT) must also appear in the target GPIO controller’s scope. For GPIO
event numbers larger than 255 (OxFF), the _EVT method is used.

Each pin on a GPIO Controller has a configuration (e.g. level-sensitive interrupt, de-bounced input, high-drive output,
etc.), which is described to OSPM in the GPIO Interrupt or GPIO IO Connection resources claimed by peripheral
devices or used in operation region accesses.

5.6.5.2 _AEI Object for GPIO-signaled Events
The _AEI object designates those GPIO interrupts that shall be handled by OSPM as ACPI events (see Section 5.6.5).
This object appears within the scope of the GPIO controller device whose pins are to be used as GPIO-signaled events.
Arguments:

None
Return Value:

A resource template Buffer containing only GPIO Interrupt Connection descriptors.

Example:

Device (_SB.GPI2)
{
Name (_HID, "XYZ00OO3")
Name (_UID, 2) //Third instance of this controller on the
—platform
Name (_CRS, ResourceTemplate ()
{ //Register Interface
MEMORY32FIXED (ReadWrite, 0x30000000, 0x200,) //Interrupt line (GSIV 21)
Interrupt (ResourceConsumer, Level, ActiveHigh, Exclusive) {21}
})
Name (_AEI, ResourceTemplate ()
{ //Thermal Zone Event
GpioInt (Edge, ActiveHigh, Exclusive, PullDown, , " _SB.GPI2") {14}
//Power Button

(continues on next page)

5.6. ACPI Event Programming Model 315

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

GpiolInt (Edge, ActivelLow, ExclusiveAndWake, PullUp, , " _SB.GPI2") {36}
})

5.6.5.3 The Event (_EVT) Method for Handling GPlO-signaled Events

GPIO Interrupt Connection Descriptors assign GPIO pins a controller-relative, O-based pin number. GPIO Pin numbers
can be as large as 65, 535. GPIO Interrupt Connections that are assigned by the platform to signal ACPI events are
listed in the _AFEI object under the GPIO controller. Since the GPIO interrupt connection descriptor also provides the
mode of the interrupt associated with an event, it gives OSPM all the information it needs to invoke a handler method
for the event. No naming convention is required to encode the mode and pin number of the event. Instead, a handler for
a GPIO-signaled event simply needs to have a well-known name and take the pin number of the event as a parameter.
A single instance of the method handles all ACPI events for a given GPIO controller device.

For GPIO-signaled events, the Event (_ EVT) method is used. _EVT is defined as follows:
Arguments (1):

Arg0 - EventNumber. An Integer indicating the event number (Controller-relative zero-based GPIO pin
number) of the current event. Must be in the range 0x0000 - Oxffff.

Return Value:
None
Description:

The _EVT method handles a GPIO-signaled event. It must appear within the scope of the GPIO controller
device whose pins are used to signal the event.

OSPM handles GPIO-signaled events as follows:

e The GPIO interrupt is handled by OSPM because it is listed in the _AEI object under a GPIO
controller.

* When the event fires, OSPM handles the interrupt according to its mode and invokes the _EVT
method, passing it the pin number of the event.

* From this point on, handling is exactly like that for GPEs. The _EVT method does a Notify() on the
appropriate device, and OS-specific mechanisms are used to notify the driver of the event.

 For event numbers less than 255, _Exx and _Lxx methods may be used instead. In this case, they
take precedence and _EVT will not be invoked.

Note: For event numbers less than 255, _Exx and _Lxx methods may be used instead. In this case, they take
precedence and _EVT will not be invoked.

Example:

Scope (_SB.GPI2)
{
Method (_EVT,1) { // Handle all ACPI Events signaled by GPIO Controller GPI2
Switch (Arg0)
{
Case (300) {

Notify (_SB.DEVX, 0x80)

(continues on next page)

5.6. ACPI Event Programming Model 316

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

}

Case (1801) {

}

Notify (_SB.DEVY, 0x80)

Case (14...) {

}

}

Notify (_SB.DEVZ, 0x80)

} //End of Method
} //End of Scope

5.6.6 Device Object Notifications

During normal operation, the platform needs to notify OSPM of various device-related events. These notifications
are accomplished using the Notify operator, which indicates a target device, thermal zone, or processor object and a
notification value that signifies the purpose of the notification. Notification values from 0 through 0x7F are common
across all device object types. Notification values of 0xCO and above are reserved for definition by hardware vendors
for hardware specific notifications. Notification values from 0x80 to OxBF are device-specific and defined by each
such device. For more information on the Notify operator, see Section 19.6.94.

Table 5.154: Device Object Notification Values

Value

Description

Bus Check. This notification is performed on a device object to indicate to OSPM that it needs
to perform a Plug and Play re-enumeration operation on the device tree starting from the point
where it has been notified. OSPM will typically perform a full enumeration automatically at boot
time, but after system initialization it is the responsibility of the ACPI AML code to notify OSPM
whenever a re-enumeration operation is required. The more accurately and closer to the actual
change in the device tree the notification can be done, the more efficient the operating system’s
response will be; however, it can also be an issue when a device change cannot be confirmed.
For example, if the hardware cannot recognize a device change for a particular location during a
system sleeping state, it issues a Bus Check notification on wake to inform OSPM that it needs to
check the configuration for a device change.

Device Check. Used to notify OSPM that the device either appeared or disappeared. If the device
has appeared, OSPM will re-enumerate from the parent. If the device has disappeared, OSPM
will invalidate the state of the device. OSPM may optimize out re-enumeration. If _DCK is
present, then Notify(object,1) is assumed to indicate an undock request. If the device is a bridge,
OSPM may re-enumerate the bridge and the child bus.

Device Wake. Used to notify OSPM that the device has signaled its wake event, and that OSPM
needs to notify OSPM native device driver for the device. This is only used for devices that
support _ PRW.

Eject Request. Used to notify OSPM that the device should be ejected, and that OSPM needs to
perform the Plug and Play ejection operation. OSPM will run the _EJx method.

Device Check Light. Used to notify OSPM that the device either appeared or disappeared. If the
device has appeared, OSPM will re-enumerate from the device itself, not the parent. If the device
has disappeared, OSPM will invalidate the state of the device.

continues on next page

5.6. ACPI Event Programming Model 317

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.154 — continued from previous page

Value

Description

Frequency Mismatch. Used to notify OSPM that a device inserted into a slot cannot be attached
to the bus because the device cannot be operated at the current frequency of the bus. For example,
this would be used if a user tried to hot-plug a 33 MHz PCI device into a slot that was on a bus
running at greater than 33 MHz.

Bus Mode Mismatch. Used to notify OSPM that a device has been inserted into a slot or bay that
cannot support the device in its current mode of operation. For example, this would be used if a
user tried to hot-plug a PCI device into a slot that was on a bus running in PCI-X mode.

Power Fault. Used to notify OSPM that a device cannot be moved out of the D3 state because of
a power fault.

Capabilities Check. This notification is performed on a device object to indicate to OSPM that it
needs to re-evaluate the _OSC control method associated with the device.

Device _PLD Check. Used to notify OSPM to reevaluate the _PLD object, as the Device’s con-
nection point has changed.

0xA

Reserved.

0xB

System Locality Information Update. Dynamic reconfiguration of the system may cause existing
relative distance information to change. The platform sends the System Locality Information
Update notification to a point on a device tree to indicate to OSPM that it needs to invoke the
_SLI objects associated with the System Localities on the device tree starting from the point
notified.

0x0C

Reserved.

0x0D

System Resource Affinity Update. Dynamic migration of devices may cause existing system
resource affinity to change. The platform software issues the System Resource Affinity Update
notification to a point on a device tree to indicate to OSPM that it needs to invoke the _PXM
object of the notified device to update the resource affinity.

0x0E

Heterogeneous Memory Attributes Update. Dynamic reconfiguration of the system may cause
existing latency, bandwidth or memory side caching attribute to change. The platform software
issues the Heterogeneous Memory Attributes Update notification to a point on a device tree to
indicate to OSPM that it needs to invoke the _HMA objects associated with the Heterogeneous
Memory Attributes on the device tree starting from the point notified.

0xOF

Error Disconnect Recover: Used to notify OSPM of asynchronous removal of devices for error
containment purposes. The notification is issued on a bus device that is still present, but one
or more of its child device have been disconnected from the system due to an error condition.
OSPM should invalidate the software state associated with the disconnected child devices without
attempting to access these child devices. Subsequently, OSPM can optionally attempt to recover
the disconnected child devices and ,if possible, bring them back to functional state via bus specific
methods. OSPM communicates the status of these recovery operations to the Firmware via the
_OST method. Section 6.3.5.2 describes the associated _OST status codes. OSPM support for
Error Disconnect Recover notification for a given type of bus is enumerated via a bus specific
mechanism.

0x10-0xFF

Reserved.

Below are the notification values defined for specific ACPI devices. For more information concerning the object-
specific notification, see the section for the corresponding device/object.

Table 5.155: System Bus Notification Values

Hex value

Description

0x80

Reserved.

continues on next page

5.6. ACPI Event Programming Model 318

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.155 — continued from previous page

Hex value Description

0x81 Graceful Shutdown Request. Used to notify OSPM that a graceful shutdown of the operating
system has been requested. Once the operating system has finished its graceful shutdown proce-
dure it should initiate a transition to the G2 “soft off” state. The Notify operator must target the
System Bus: (_SB). See Section 6.3.5 for a description of shutdown processing.

Table 5.156: Control Method Battery Device Notification Values

Hex value Description

0x80 Battery Status Changed. Used to notify OSPM that the Control Method Battery device status
has changed.

0x81 Battery Information Changed. Used to notify OSPM that the Control Method Battery device
information has changed. This only occurs when a battery is replaced.

0x82 Battery Maintenance Data Status Flags Check. Used to notify OSPM that the Control Method
Battery device battery maintenance data status flags should be checked.

0x83-0xBF Reserved

Table 5.157: Power Source Object Notification Values

Hex value Description

0x80 Power Source Status Changed. Used to notify OSPM that the power source status has changed.

0x81 Power Source Information Changed. Used to notify OSPM that the power source information
has changed.

0x82-0xBF Reserved

Table 5.158: Thermal Zone Object Notification Values

Hex value Description

0x80 Thermal Zone Status Changed. Used to notify OSPM that the thermal zone temperature has
changed.

0x81 Thermal Zone Trip points Changed. Used to notify OSPM that the thermal zone trip points
have changed.

0x82 Device Lists Changed. Used to notify OSPM that the thermal zone device lists (_ALx, _PSL,
_TZD) have changed.

0x83 Thermal / Active Cooling Relationship Table Changed. Used to notify OSPM that values in
the either the thermal relationship table or the active cooling relationship table have changed.

0x84-0xBF Reserved

Table 5.159: Control Method Power Button Notification Values

Hex value Description

0x80 SO Power Button Pressed. Used to notify OSPM that the power button has been pressed while
the system is in the SO state. Notice that when the button is pressed while the system is in the
S1-S4 state, a Device Wake notification must be issued instead.

0x81-0xBF Reserved

5.6. ACPI Event Programming Model 319

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.160: Control Method Sleep Button Notification Values

Hex value Description

0x80 S0 Sleep Button Pressed. Used to notify OSPM that the sleep button has been pressed while the
system is in the SO state. Notice that when the button is pressed while the system is in the S1-S4
state, a Device Wake notification must be issued instead.

0x81-0xBF Reserved

Table 5.161: Control Method Lid Notification Values

Hex value Description

0x80 Lid Status Changed. Used to notify OSPM that the control method lid device status has changed.

0x81-0xBF Reserved

Table 5.162: NVDIMM Root Device Notification Values

Hex value Description

0x80 NFIT Update Notification. Used to notify OSPM that it needs to re-evaluate the _FIT method
under the NVDIMM root device (see Section 9.20.2).

0x81 Unconsumed Uncorrectable Memory Error Detected. Used to pro-actively notify OSPM of
uncorrectable memory errors detected (for example a memory scrubbing engine that continuously
scans the NVDIMMs memory). This is an optional notification. Only locations that were mapped
in to SPA by the platform will generate a notification.

0x82 ARS Stopped Notification. This is an optional notification, used to notify OSPM when the
platform completes ARS or when ARS has stopped prematurely for any ARS that was either
started by the platform or by OSPM via Start ARS (see Section 9.20.7.5). The OSPM can
evaluate Query ARS Status on receiving this event notification.

0x83-0xBF Reserved

Table 5.163: NVDIMM Device Notification Values

Hex value Description

0x80 Reserved

0x81 NFIT Health Event Notification. Used to notify OSPM of health event(s) for the NVDIMM de-
vice (see Section 9.20.3). On receiving the NFIT Health Event Notification, the OSPM is required
to determine new health event by re-enumerating the health of the corresponding NVDIMM de-
vice. This could be accomplished by evaluating the _NCH method (see Section 9.20.8.1) or
_DSM method under the NVDIMM device. This is also used to notify OSPM of a change in the
“Overall Health Status Attributes” field reported by the _NCH method.

0x82-0xBF Reserved

Table 5.164: Processor Device Notification Values

Hex value Description

0x80 Performance Present Capabilities Changed. Used to notify OSPM that the number of sup-
ported processor performance states has changed. This notification causes OSPM to re-evaluate
the _PPC object. See Section 8.4.6.3 for more information.

0x81 C States Changed. Used to notify OSPM that the number or type of supported processor C

States has changed. This notification causes OSPM to re-evaluate the _CST object. See Section
8.4.2.1 for more information.

continues on next page

5.6. ACPI Event Programming Model 320

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.164 — continued from previous page

Hex value Description

0x82 Throttling Present Capabilities Changed. Used to notify OSPM that the number of supported
processor throttling states has changed. This notification causes OSPM to re-evaluate the _TPC
object. See Section 8.4.5.3 for more information.

0x83 Guaranteed Changed. Used to notify OSPM that the value of the CPPC Guaranteed Register
has changed.

0x84 Minimum Excursion. Used to notify OSPM that an excursion to CPPC Minimum has occurred.

0x85 Highest Performance Changed. Used to notify OSPM that the value of the CPPC Highest
Performance Register has changed.

0x86-0xBF Reserved

Table 5.165: User Presence Device Notification Values

Hex value Description

0x80 User Presence Changed. Used to notify OSPM that a meaningful change in user presence has
occurred, causing OSPM to re-evaluate the _UPD object.

0x81-0xBF Reserved

Table 5.166: Ambient Light Sensor Device Notification Values

Hex value Description

0x80 ALS IlNluminance Changed. Used to notify OSPM that a meaningful change in ambient light
illuminance has occurred, causing OSPM to re-evaluate the _ALI object.

0x81 ALS Color Temperature Changed. Used to notify OSPM that a meaningful change in ambient
light color temperature or chromaticity has occurred, causing OSPM to re-evaluate the _ALT
and/or _ALC objects.

0x82 ALS Response Changed. Used to notify OSPM that the set of points used to convey the ambient
light response has changed, causing OSPM to re-evaluate the _ALR object.

0x83-0xBF Reserved

Table 5.167: Power Meter Object Notification Values

Hex value Description

0x80 Power Meter Capabilities Changed. Used to notify OSPM that the power meter information
has changed.

0x81 Power Meter Trip Points Crossed. Used to notify OSPM that one of the power meter trip points
has been crossed.

0x82 Power Meter Hardware Limit Changed. Used to notify OSPM that the hardware limit has been
changed by the platform.

0x83 Power Meter Hardware Limit Enforced. Used to notify OSPM that the hardware limit has
been enforced by the platform.

0x84 Power Meter Averaging Interval Changed. Used to notify OSPM that the power averaging interval
has changed.

0x85-0xBF Reserved

Table 5.168: Processor Aggregator Device Notification Values
Hex value Description
0x80 Processor Utilisation Request. Used to notify OSPM that OSPM evaluates the _PUR object

which indicates to OSPM the number of logical processors to be idled.

continues on next page

5.6. ACPI Event Programming Model 321

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.168 — continued from previous page
Hex value Description
0x81-0xBF Reserved

Table 5.169: Error Device Notification Values

Hex value Description

0x80 Notification For Generic Error Sources. Used to notify OSPM to respond to this notification
by checking the error status block of all generic error sources to identify the source reporting the
error.

0x81-0xBF Reserved

Table 5.170: Fan Device Notification Values

Hex value Description

0x80 Low Fan Speed. Used to notify OSPM of a low (errant) fan speed. Causes OSPM to re-evaluate
the _FSL object.

0x81-0xBF Reserved

Table 5.171: Memory Device Notification Values

Hex value Description

0x80 Memory Bandwidth Low Threshold crossed. Used to notify OSPM that bandwidth of memory
described by the memory device has been reduced by the platform to less than the low memory
bandwidth threshold.

0x81 Memory Bandwidth High Threshold crossed. Used to notify OSPM that bandwidth of memory

described by the memory device has been increased by the platform to greater than or equal to
the high memory bandwidth threshold.
0x82-0xBF Reserved

5.6.7 Device Class-Specific Objects

Most device objects are controlled through generic objects and control methods and they have generic device IDs.
These generic objects, control methods, and device IDs are specified in Section 6, through Section 11 . Section 5.6.8,
“Predefined ACPI Names for Objects, Methods, and Resources,” lists all the generic objects and control methods
defined in this specification.

However, certain integrated devices require support for some device-specific ACPI controls. This section lists these
devices, along with the device-specific ACPI controls that can be provided.

Some of these controls are for ACPI-aware devices and as such have Plug and Play IDs that represent these devices.
The table below lists the Plug and Play IDs defined by the ACPI specification.

Note: Plug and Play IDs that are not defined by the ACPI specification are defined and described in the “Links to
ACPI-Related Documents” (http://uefi.org/acpi) under the heading “Legacy PNP Guidelines”.

5.6. ACPI Event Programming Model 322

http://uefi.org/acpi

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.172: ACPI Device IDs

Plug and
Play ID

Description

PNPOCO8

ACPI. Not declared in ACPI as a device. This ID is used by OSPM for the hardware resources
consumed by the ACPI fixed register spaces, and the operation regions used by AML code. It
represents the core ACPI hardware itself.

PNPOAO5

Generic Container Device. A device whose settings are totally controlled by its ACPI resource
information, and otherwise needs no device or bus-specific driver support. This was originally
known as Generic ISA Bus Device. This ID should only be used for containers that do not pro-
duce resources for consumption by child devices. Any system resources claimed by a PNPOAOS
device’s _CRS object must be consumed by the container itself.

PNPOAO6

Generic Container Device. This device behaves exactly the same as the PNPOAQOS device. This
was originally known as Extended I/O Bus. This ID should only be used for containers that do
not produce resources for consumption by child devices. Any system resources claimed by a
PNPOAO6 device’s _CRS object must be consumed by the container itself.

PNPOC09

Embedded Controller Device. A host embedded controller controlled through an ACPI-aware
driver.

PNPOCOA

Control Method Battery. A device that solely implements the ACPI Control Method Battery
functions. A device that has some other primary function would use its normal device ID. This
ID is used when the devices primary function is that of a battery.

PNPOCOB

Fan. A device that causes cooling when “on” (DO device state).

PNPOCOC

Power Button Device. A device controlled through an ACPI-aware driver that provides power
button functionality. This device is only needed if the power button is not supported using the
fixed register space.

PNPOCOD

Lid Device. A device controlled through an ACPI-aware driver that provides lid status function-
ality. This device is only needed if the lid state is not supported using the fixed register space.

PNPOCOE

Sleep Button Device. A device controlled through an ACPI-aware driver that provides power
button functionality. This device is optional.

PNPOCOF

PCI Interrupt Link Device. A device that allocates an interrupt connected to a PCI interrupt
pin. See Section 6.2.13 for more details.

PNPOCS80

Memory Device. This device is a memory subsystem.

ACPIO001

SMBus 1.0 Host Controller. An SMBus host controller (SMB-HC) compatible with the em-
bedded controller-based SMB-HC interface (see Section 12.9), and implementing the SMBus 1.0
Specification.

ACPI0002

Smart Battery Subsystem. The Smart battery Subsystem specified in Section 10, “Power Source
Devices.”

ACPI0003

Power Source Device. The Power Source device specified in Section 10, “Power Source De-
vices.” This can represent either an AC Adapter (on mobile platforms) or a fixed Power Supply.

ACPI0004

Module Device. This device is a container object that acts as a bus node in a namespace. A
Module Device without any of the _CRS, _PRS and _SRS methods behaves the same way as
the Generic Container Devices (PNPOAOS or PNPOAO6). If the Module Device contains a _CRS
method, only these resources described in the _CRS are available for consumption by its child
devices. Also, the Module Device can support _PRS and _SRS methods if _CRS is supported.

ACPI0005

SMBus 2.0 Host Controller. An SMBus host controller (SMB-HC compatible with the embed-
ded controller-based SMB-HC interface (see Section 12.9), and implementing the SMBus 2.0
Specification.

ACPI0006

GPE Block Device. This device allows a system designer to describe GPE blocks beyond the
two that are described in the FADT.

ACPIO007

Processor Device. This device provides an alternative to declaring processors using the processor
ASL statement. See Section 8.4 for more details.

ACPI0008

Ambient Light Sensor Device. This device is an ambient light sensor. See Section 9.3.

continues on next page

5.6. ACPI Event Programming Model 323

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.172 — continued from previous page

Plug and | Description

Play ID

ACPI0009 I/OxAPIC Device. This device is an I/O unit that complies with both the APIC and SAPIC
interrupt models.

ACPIO00A I/0 APIC Device. This device is an I/O unit that complies with the APIC interrupt model.

ACPIOO0B I/0 SAPIC Device. This device is an I/O unit that complies with the SAPIC interrupt model.

ACPIO00C Processor Aggregator Device. This device provides a control point for all processors in the
platform. See Section 8.5.

ACPIO00D Power Meter Device. This device is a power meter. See Section 10.4.

ACPIOO0OE Time and Alarm Device. This device is a control method-based real-time clock and wake alarm.
See Section 9.18.

ACPIOOOF User Presence Detection Device. This device senses user presence (proximity). See Section
9.16)

ACPI0010 Processor container device. Used to declare hierarchical processor topologies (see Section 8.4.3,
and Section 8.4.3.1).

ACPIOO011 Generic Buttons Device. This device reports button events corresponding to Human Interface
Device (HID) control descriptors (see Section 9.19).

ACPIO012 NVDIMM Root Device. This device contains the NVDIMM devices. See Section 9.20 and Table
5.107.

ACPI0013 Generic Event Device. This device maps Interrupt-signaled events. See Section 5.6.9.

ACPI0014 Wireless Power Calibration Device. This device uses user presence and notification.

ACPIO015 USB4 host interface device. See Links to ACPI-Related Documents under the heading “USB4
Host Interface Specification”

ACPI0016 Compute Express Link Host Bridge. This device is a Compute Express Link Host bridge.

5.6.8 Predefined ACPI Names for Objects, Methods, and Resources

The following table summarizes the predefined names for the ACPI namespace objects, control methods, and resource
descriptor fields defined in this specification. Provided for each name is a short description and a reference to the
section number and page number of the actual definition of the name. ACPI names that are predefined by other
specifications are also listed along with their corresponding specification reference.

Note: All names that begin with an underscore are reserved for ACPI use only.

Table 5.173: Predefined ACPI Names

Name Description

_ACx Active Cooling — returns the active cooling policy threshold values.

_ADR Address: (1) returns the address of a device on its parent bus. (2) returns a unique ID for the
display output device. (3) resource descriptor field.

_AFI Designates those GPIO interrupts that shall be handled by OSPM as ACPI events.

_ALC Ambient Light Chromaticity — returns the ambient light color chromaticity.

_ALI Ambient Light Illuminance — returns the ambient light brightness.

_ALN Alignment — base alignment, resource descriptor field.

_ALP Ambient Light Polling — returns the ambient light sensor polling frequency.

_ALR Ambient Light Response — returns the ambient light brightness to display brightness mappings.

_ALT Ambient Light Temperature — returns the ambient light color temperature.

_AlLx Active List — returns a list of active cooling device objects.

continues on next page

5.6. ACPI Event Programming Model 324

http://uefi.org/acpi

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.173 — continued from previous page

Name Description

_ART Active cooling Relationship Table — returns thermal relationship information between platform
devices and fan devices.

_ASI Address Space Id — resource descriptor field.

_ASZ Access Size — resource descriptor field.

_ATT Type-Specific Attribute — resource descriptor field.

_BAS Base Address — range base address, resource descriptor field.

_BBN Bios Bus Number — returns the PCI bus number returned by the platform firmware.

_BCL Brightness Control Levels — returns a list of supported brightness control levels.

_BCM Brightness Control Method — sets the brightness level of the display device.

_BCT Battery Charge Time — returns time remaining to complete charging battery.

_BDN Bios Dock Name — returns the Dock ID returned by the platform firmware.

_BIF Battery Information — returns a Control Method Battery information block.

_BIX Battery Information Extended — returns a Control Method Battery extended information block.

_BLT Battery Level Threshold — set battery level threshold preferences.

_BM Bus Master — resource descriptor field.

_BMA Battery Measurement Averaging Interval — Sets battery measurement averaging interval.

_BMC Battery Maintenance Control — Sets battery maintenance and control features.

_BMD Battery Maintenance Data — returns battery maintenance, control, and state data.

_BMS Battery Measurement Sampling Time — Sets the battery measurement sampling time.

_BPC Battery Power Characteristics

_BPS Battery Power State

_BPT Battery Power Threshold

_BQC Brightness Query Current — returns the current display brightness level.

_BST Battery Status — returns a Control Method Battery status block.

_BTH Battery Throttle Limit - specifies the thermal throttle limit of battery for the firmware when en-
gaging charging.

_BTM Battery Time — returns the battery runtime.

_BTP Battery Trip Point — sets a Control Method Battery trip point.

_CBA Configuration Base Address — returns the base address of the MMIO range corresponding to the
Enhanced Configuration Access Mechanism for a PCI Express or Compute Express Link host bus.
The full description for the _CBA object resides in the PCI Firmware Specification. A reference
to that specification is found in the “Links to ACPI-Related Documents” (http://uefi.org/acpi)
under the heading “PCI SIG”.

_CBR CXL Host Bridge Register Info

_CCA Cache Coherency Attribute — specifies whether a device and its descendants support hardware
managed cache coherency.

_CDM Clock Domain — returns a logical processor’s clock domain identifier.

_CID Compatible ID — returns a device’s Plug and Play Compatible ID list.

_CLS Class Code — supplies OSPM with the PCI-defined class, subclass and programming interface for
a device. Optional.

_CPC Continuous Performance Control — declares an interface that allows OSPM to transition the pro-
cessor into a performance state based on a continuous range of allowable values.

_CRS Current Resource Settings — returns the current resource settings for a device.

_CRT Critical Temperature — returns the shutdown critical temperature.

_CSD C State Dependencies — returns a list of C-state dependencies.

_CST C States — returns a list of supported C-states.

_CWS Clear Wake Status — Clears the wake status of a Time and Alarm Control Method Device.

_DBT Debounce Timeout -Debounce timeout setting for a GPIO input connection, resource descriptor
field

_DCK Dock — sets docking isolation. Presence indicates device is a docking station.

continues on next page

5.6. ACPI Event Programming Model 325

http://uefi.org/acpi

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.173 — continued from previous page

Name Description

_DCS Display Current Status — returns status of the display output device.

_DDC Display Data Current — returns the EDID for the display output device.

_DDN Dos Device Name — returns a device logical name.

_DEC Decode — device decoding type, resource descriptor field.

_DEP Operation Region Dependencies — evaluates to a package and designates device objects that
OSPM should assign a higher priority in start ordering due to future operation region accesses.

_DGS Display Graphics State — returns the current state of the output device.

_DIS Disable — disables a device.

_DLM Device Lock Mutex- Designates a mutex as a Device Lock.

_DMA Direct Memory Access — returns a device’s current resources for DMA transactions.

_DOD Display Output Devices — enumerate all devices attached to the display adapter.

_DOS Disable Output Switching — sets the display output switching mode.

_DPL Device Selection Polarity - The polarity of the Device Selection signal on a SPISerialBus con-
nection, resource descriptor field

_DRS Drive Strength — Drive strength setting for a GPIO output connection, resource descriptor field

_DSD Device Specific Data— returns device-specific information.

_DSM Device Specific Method — executes device-specific functions.

_DSS Device Set State — sets the display device state.

_DSW Device Sleep Wake — sets the sleep and wake transition states for a device.

_DTI Device Temperature Indication — conveys native device temperature to the platform.

_Exx Edge GPE — method executed as a result of a general-purpose event.

_EC Embedded Controller — returns EC offset and query information.

_EDL Eject Device List — returns a list of devices that are dependent on a device (docking).

_EJD Ejection Dependent Device — returns the name of dependent (parent) device (docking).

_Elx Eject — begin or cancel a device ejection request (docking).

_END Endian-ness — Endian orientation of a UART SerialBus connection, resource descriptor field

_EVT Event Method - Event method for GPIO-signaled events numbered larger than 255.

_FDE Floppy Disk Enumerate — returns floppy disk configuration information.

_FDI Floppy Drive Information — returns a floppy drive information block.

_FDM Floppy Drive Mode — sets a floppy drive speed.

_FIF Fan Information — returns fan device information.

_FIT Firmware Interface Table - returns a list of NFIT Structures.

_FIX Fixed Register Resource Provider — returns a list of devices that implement FADT register blocks.

_FLC Flow Control — Flow Control mechanism for a UART SerialBus connection, resource descriptor
field

_FPS Fan Performance States — returns a list of supported fan performance states.

_FSL Fan Set Level — Control method that sets the fan device’s speed level (performance state).

_FST Fan Status — returns current status information for a fan device.

_GAI Get Averaging Interval — returns the power meter averaging interval.

_GCP Get Capabilities — Returns the capabilities of a Time and Alarm Control Method Device

_GHL Get Hardware Limit — returns the hardware limit enforced by the power meter.

_GL Global Lock — OS-defined Global Lock mutex object.

~GLK Global Lock — returns a device’s Global Lock requirement for device access.

_GPD Get Post Data — returns the value of the VGA device that will be posted at boot.

_GPE General Purpose Events: (1) predefined Scope (_GPE). (2) Returns the SCI interrupt associated
with the Embedded Controller.

_GRA Granularity — address space granularity, resource descriptor field.

_GRT Get Real Time — Returns the current time from a Time and Alarm Control Method Device.

_GSB Global System Interrupt Base — returns the GSB for a I/O APIC device.

continues on next page

5.6. ACPI Event Programming Model 326

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.173 — continued from previous page

Name Description

_GTF Get Task File — returns a list of ATA commands to restore a drive to default state.

_GT™M Get Timing Mode — returns a list of IDE controller timing information.

_GWS Get Wake Status — Gets the wake status of a Time and Alarm Control Method Device.

_HE High-Edge — interrupt triggering, resource descriptor field.

_HID Hardware ID — returns a device’s Plug and Play Hardware ID.

_HMA Heterogeneous Memory Attributes - returns a list of HMAT structures.

_HOT Hot Temperature — returns the critical temperature for sleep (entry to S4).

_HPP Hot Plug Parameters — returns a list of hot-plug information for a PCI device.

_HPX Hot Plug Parameter Extensions — returns a list of hot-plug information for a PCI device. Super-
sedes _HPP.

_HRV Hardware Revision— supplies OSPM with the device’s hardware revision. Optional.

_IFT IPMI Interface Type. See the Intelligent Platform Management Interface Specification at “Links
to ACPI-Related Documents” (http://uefi.org/acpi) under the heading “Server Platform Manage-
ment Interface Table”.

_INI Initialize — performs device specific initialization.

_INT Interrupts — interrupt mask bits, resource descriptor field.

_IOR IO Restriction — IO restriction setting for a GPIO IO connection, resource descriptor field

_IRC Inrush Current — presence indicates that a device has a significant inrush current draw.

_Lxx Level GPE — Control method executed as a result of a general-purpose event.

_LCK Lock — locks or unlocks a device (docking).

_LEN Length — range length, resource descriptor field.

_LID Lid — returns the open/closed status of the lid on a mobile system.

_LIN Lines in Use - Handshake lines in use in a UART SerialBus connection, resource descriptor field

_LL Low Level — interrupt polarity, resource descriptor field.

_LPI Low Power Idle States — returns the list of low power idle states supported by a processor or
processor container.

_LSI Label Storage Information — Returns information about the Label Storage Area associated with
the NVDIMM object, including its size.

_LSR Label Storage Read — Returns label data from the Label Storage Area of the NVDIMM object.

_LSW Label Storage Write — Writes label data in to the Label Storage Area of the NVDIMM object.

~MAF Maximum Address Fixed — resource descriptor field.

_MAT Multiple Apic Table Entry — returns a list of Interrupt Controller Structures.

_MAX Maximum Base Address — resource descriptor field.

_MBM Memory Bandwidth Monitoring Data — returns bandwidth monitoring data for a memory device.

_MEM Memory Attributes — resource descriptor field.

_MIF Minimum Address Fixed — resource descriptor field.

_MIN Minimum Base Address — resource descriptor field.

_MLS Multiple Language String — returns a device description in multiple languages.

_MOD Mode —Resource descriptor field

_MSG Message — sets the system message waiting status indicator.

_MSM Memory Set Monitoring — sets bandwidth monitoring parameters for a memory device.

~MTL Minimum Throttle Limit — returns the minimum throttle limit of a specific thermal.

_MTP Memory Type — resource descriptor field.

_NTT Notification Temperature Threshold — returns a threshold for device temperature change that re-
quires platform notification.

_OFF Off — sets a power resource to the off state.

_ON On — sets a power resource to the on state.

_0S Operating System — returns a string that identifies the operating system.

_0ScC Operating System Capabilities — inform AML of host features and capabilities.

continues on next page

5.6. ACPI Event Programming Model 327

http://uefi.org/acpi

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.173 — continued from previous page

Name Description

_OSI Operating System Interfaces — returns supported interfaces, behaviors, and features.

_OST Ospm Status Indication — inform AML of event processing status.

_PAI Power Averaging Interval — sets the averaging interval for a power meter.

_PAR Parity — Parity for a UART SerialBus connection, resource descriptor field

_PCL Power Consumer List — returns a list of devices powered by a power source.

_PCT Performance Control — returns processor performance control and status registers.

_PDC Processor Driver Capabilities — inform AML of processor driver capabilities.

_PDL P-state Depth Limit — returns the lowest available performance P-state.

_PHA Clock Phase — Clock phase for a SPISerialBus connection, resource descriptor field

_PIC PIC — inform AML of the interrupt model in use.

_PIF Power Source Information — returns a Power Source information block.

_PIN Pin List — List of GPIO pins described, resource descriptor field.

_PLD Physical Location of Device — returns a device’s physical location information.

_PMC Power Meter Capabilities — returns a list of Power Meter capabilities info.

_PMD Power Metered Devices — returns a list of devices that are measured by the power meter device.

_PMM Power Meter Measurement — returns the current value of the Power Meter.

_POL Polarity — Resource descriptor field

_PPC Performance Present Capabilites — returns a list of the performance states currently supported by
the platform.

_PPE Polling for Platform Error — returns the polling interval to retrieve Corrected Platform Error in-
formation.

_PPI Pin Configuration — Pin configuration for a GPIO connection, resource descriptor field

_PR Processor — predefined scope for processor objects.

_PRO Power Resources for DO — returns a list of dependent power resources to enter state DO (fully on).

_PR1 Power Resources for D1 — returns a list of dependent power resources to enter state D1.

_PR2 Power Resources for D2 — returns a list of dependent power resources to enter state D2.

_PR3 Power Resources for D3hot — returns a list of dependent power resources to enter state D3hot.

_PRE Power Resources for Enumeration - Returns a list of dependent power resources to enumerate
devices on a bus.

_PRL Power Source Redundancy List — returns a list of power source devices in the same redundancy
grouping.

_PRR Power Resource for Reset — executes a reset on the associated device or devices.

_PRS Possible Resource Settings — returns a list of a device’s possible resource settings.

_PRT Pci Routing Table — returns a list of PCI interrupt mappings.

_PRW Power Resources for Wake — returns a list of dependent power resources for waking.

_PSO Power State 0 — sets a device’s power state to DO (device fully on).

_PS1 Power State 1 — sets a device’s power state to D1.

_PS2 Power State 2 — sets a device’s power state to D2.

_PS3 Power State 3 — sets a device’s power state to D3 (device off).

_PSC Power State Current — returns a device’s current power state.

_PSD Power State Dependencies — returns processor P-State dependencies.

_PSE Power State for Enumeration

_PSL Passive List — returns a list of passive cooling device objects.

_PSR Power Source — returns the power source device currently in use.

_PSS Performance Supported States — returns a list of supported processor performance states.

_PSV Passive — returns the passive trip point temperature.

_PSW Power State Wake — sets a device’s wake function.

_PTC Processor Throttling Control — returns throttling control and status registers.

_PTP Power Trip Points — sets trip points for the Power Meter device.

continues on next page

5.6. ACPI Event Programming Model 328

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.173 — continued from previous page

Name Description

_PTS Prepare To Sleep — inform the platform of an impending sleep transition.

_PUR Processor Utilization Request — returns the number of processors that the platform would like to
idle.

_PXM Proximity — returns a device’s proximity domain identifier.

_Qxx Query — Embedded Controller query and SMBus Alarm control method.

_RBO Register Bit Offset — resource descriptor field.

_RBW Register Bit Width — resource descriptor field.

_RDI Resource Dependencies for Idle - returns the list of power resource dependencies for system level
low power idle states.

_REG Region — inform AML code of an operation region availability change.

_REV Revision — returns the revision of the ACPI specification that is implemented.

_RMV Remove — returns a device’s removal ability status (docking).

_RNG Range — memory range type, resource descriptor field.

_ROM Read-Only Memory — returns a copy of the ROM data for a display device.

_RST Device Reset — executes a reset on the associated device or devices.

_RT Resource Type — resource descriptor field.

_RTV Relative Temperature Values — returns temperature value information.

_RW Read-Write Status — resource descriptor field.

_RXL Receive Buffer Size - Size of the receive buffer in a UART Serialbus connection, resource de-
scriptor field.

_S0 SO System State — returns values to enter the system into the SO state.

_S1 S1 System State — returns values to enter the system into the S1 state.

_S2 S2 System State — returns values to enter the system into the S2 state.

_S3 S3 System State — returns values to enter the system into the S3 state.

_S4 S4 System State — returns values to enter the system into the S4 state.

_S5 S5 System State — returns values to enter the system into the S5 state.

_S1D S1 Device State — returns the highest D-state supported by a device when in the S1 state.

_S2D S2 Device State — returns the highest D-state supported by a device when in the S2 state.

_S3D S3 Device State — returns the highest D-state supported by a device when in the S3 state.

_S4D S4 Device State — returns the highest D-state supported by a device when in the S4 state.

_SOW SO Device Wake State — returns the lowest D-state that the device can wake itself from SO.

_S1W S1 Device Wake State — returns the lowest D-state for this device that can wake the system from
S1.

_S2wW S2 Device Wake State — returns the lowest D-state for this device that can wake the system from
S2.

_S3wW S3 Device Wake State — returns the lowest D-state for this device that can wake the system from
S3.

_S4wW S4 Device Wake State — returns the lowest D-state for this device that can wake the system from
S4.

_SB System Bus — scope for device and bus objects.

_SBS Smart Battery Subsystem — returns the subsystem configuration.

_SCP Set Cooling Policy — sets the cooling policy (active or passive).

_SDD Set Device Data — sets data for a SATA device.

_SEG Segment — returns a device’s PCI Segment Group number.

_SHL Set Hardware Limit — sets the hardware limit enforced by the Power Meter.

_SHR Sharable — interrupt share status, resource descriptor field.

_SI System Indicators — predefined scope.

_S1Z Size — DMA transfer size, resource descriptor field.

_SLI System Locality Information — returns a list of NUMA system localities.

continues on next page

5.6. ACPI Event Programming Model 329

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.173 — continued from previous page

Name Description

_SLV Slave Mode — Slave mode setting for a SerialBus connection, resource descriptor field.

_SPD Set Post Device — sets which video device will be posted at boot.

_SPE Connection Speed — Connection speed for a SerialBus connection, resource descriptor field

_SRS Set Resource Settings — sets a device’s resource allocation.

_SRT Set Real Time — Sets the current time to a Time and Alarm Control Method Device.

_SRV IPMI Spec Revision. See the Intelligent Platform Management Interface Specification at “Links
to ACPI-Related Documents” (http://uefi.org/acpi) under the heading “Server Platform Manage-
ment Interface Table”.

_SST System Status — sets the system status indicator.

_STA Status : (1) returns the current status of a device. (2) Returns the current on or off state of a Power
Resource.

_STB Stop Bits - Number of stop bits used in a UART SerialBus connection, resource descriptor field

_ST™ Set Timing Mode — sets an IDE controller transfer timings.

_STP Set Expired Timer Wake Policy — sets expired timer policies of the wake alarm device.

_STR String — returns a device’s description string.

_STV Set Timer Value — set timer values of the wake alarm device.

_SUB Supplies OSPM with the device’s Subsystem ID. Optional.

_SUN Slot User Number — returns the slot unique ID number.

_SWS System Wake Source — returns the source event that caused the system to wake.

_T x Temporary — reserved for use by ASL compilers.

_TC1 Thermal Constant 1 — returns TC1 for the passive cooling formula.

_TC2 Thermal Constant 2 — returns TC2 for the passive cooling formula.

_TDL T-State Depth Limit — returns the _TSS entry number of the lowest power throttling state.

_TFP Thermal Fast Sampling Period - returns the thermal sampling period for passive cooling.

_TIP Expired Timer Wake Policy — returns timer policies of the wake alarm device.

_TIV Timer Values — returns remaining time of the wake alarm device.

_TMP Temperature — returns a thermal zone’s current temperature.

_TPC Throttling Present Capabilities — returns the current number of supported throttling states.

_TPT Trip Point Temperature — inform AML that a devices’ embedded temperature sensor has crossed
a temperature trip point.

_TRA Translation — address translation offset, resource descriptor field.

_TRS Translation Sparse — sparse/dense flag, resource descriptor field.

_TRT Thermal Relationship Table — returns thermal relationships between platform devices.

_TSD Throttling State Dependencies — returns a list of T-state dependencies.

_TSF Type-Specific Flags — resource descriptor field.

_TSN Thermal Sensor Device - returns a reference to the thermal sensor reporting a zone temperature

_TSP Thermal Sampling Period — returns the thermal sampling period for passive cooling.

_TSS Throttling Supported States — returns supported throttling state information.

_TST Temperature Sensor Threshold — returns the minimum separation for a device’s temperature trip
points.

_TTP Translation Type — translation/static flag, resource descriptor field.

_TTS Transition To State — inform AML of an S-state transition.

_TXL Transmit Buffer Size — Size of the transmit buffer in a UART Serialbus connection, resource
descriptor field

_TYP Type — DMA channel type (speed), resource descriptor field.

_TZ Thermal Zone — predefined scope: ACPI 1.0.

_TZD Thermal Zone Devices — returns a list of device names associated with a Thermal Zone.

_TZM Thermal Zone Member — returns a reference to the thermal zone of which a device is a member.

_TZP Thermal Zone Polling — returns a Thermal zone’s polling frequency.

continues on next page

5.6. ACPI Event Programming Model 330

http://uefi.org/acpi

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.173 — continued from previous page

Name Description

_UID Unique ID - return a device’s unique persistent ID.

_UPC USB Port Capabilities — returns a list of USB port capabilities.

_UPD User Presence Detect — returns user detection information.

_UPpPP User Presence Polling — returns the recommended user presence polling interval.

_VEN Vendor-defined Data — Vendor-defined data for a GPIO or SerialBus connection, resource de-
scriptor field

_VPO Video Post Options — returns the implemented video post options.

_WAK Wake — inform AML that the system has just awakened.

_WPC Wireless Power Calibration - returns the notifier to wireless power controller.

_WPP Wireless Power Polling - returns the recommended polling frequency

~Wxx Wake Event — method executed as a result of a wake event.

5.6.9 Interrupt-signaled ACPI events

ACPI 6.lintroduces support for generating ACPI events when an interrupt is received by the OSPM, and that interrupt
is listed in the Generic Event Device (GED) _CRS object. OSPM claims all such interrupts, and maps them to the
appropriate event method required by the ACPI event model.

5.6.9.1 Declaring Generic Event Device

The Generic Event Device (GED) is modelled as a device in the namespace with a _HID defined to be ACPI0013.
The GED must also provide one _CRS and _EVT object for claiming interrupts and mapping them to ACPI events, as
described in the following sections. The platform declare its support for the GED, and query whether an OS supports
it, via the _OSC method, see Section 6.2.11.2.

5.6.9.2 _CRS Object for Interrupt-signaled Events

The _CRS object designates those interrupts that shall be handled by OSPM as ACPI events. This object appears
within the scope of the GED whose interrupts sources are to be used as Interrupt-signaled events.

Arguments:

None

Return Value:

A resource template Buffer containing only Interrupt Resource descriptors.

* For event numbers less than 255, _Exx and _Lxx methods may be used instead. In this case, they take precedence
and EVT will not be invoked.

Example:

Device (_SB.GEDI)
{
Name (_HID, "ACPIO0O013")
Name (_CRS, ResourceTemplate ()
{
Interrupt (ResourceConsumer, Level, ActiveHigh, Exclusive) {41}
Interrupt (ResourceConsumer, Level, ActiveHigh, Shared) {42}
Interrupt (ResourceConsumer, Level, ActiveHigh, ExclusiveAndWake) {43}

})

(continues on next page)

5.6. ACPI Event Programming Model 331

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

} //End of Scope

5.6.9.3 The Event (_EVT) Method for Handling Interrupt-signaled Events

Interrupts that are assigned by the platform to signal ACPI events are listed in the _CRS object under the GED device.
Since the interrupt descriptor also provides the mode of the interrupt associated with an event, it gives OSPM all the
information it needs to invoke a handler method for the event. A single instance of the method handles all ACPI events
for a given GED.

* Please refer to Section 5.6.4 for the OSPM requirements of handling an event (steps 1-5).
For Interrupt-signaled events, the Event (_EVT) method is used.
_EVT is defined as follows:
Arguments: (1)

Arg0 - EventNumber. An Integer indicating the event number (GSIV number) of the current event. Must
be in the range 0x00000000 - Oxffffffft.

Return Value:
None
Description

The _EVT method handles an Interrupt-signaled event. It must appear within the scope of the GED whose interrupts
are used to signal the event.

OSPM handles Interrupt-signaled events as follows:
* The interrupt is handled by OSPM because it is listed in the _CRS object under a GED.

* When the event fires, OSPM handles the interrupt according to its mode and invokes the _EVT method, passing
it the interrupt number of the event. In the case of level interrupts, the ASL within the _EVT method must be
responsible for clearing the interrupt at the device.

* From this point on, handling is exactly like that for GPEs. The _EVT method may optionally call Notify() on
the appropriate device, and OS-specific mechanisms are used to notify the driver of the event.

Example:

Device (_SB.GEDI)
{
Name (_HID, "ACPI0013")
Name (_CRS, ResourceTemplate ()
{
Interrupt (ResourceConsumer, Level, ActiveHigh, Exclusive) {41}
Interrupt (ResourceConsumer, Edge, ActiveHigh, Shared) {42}
Interrupt (ResourceConsumer, Level, ActiveHigh, ExclusiveAndWake) {43}
}
Method (_EVT,1) { // Handle all ACPI Events signaled by the Generic
Event Device (GED1)
Switch (Arg0) // Arg0 = GSIV of the interrupt
{
Case (41) { // interrupt 41
Store (One, ISTS) // clear interrupt status register at device X
// which is mapped via an operation region

(continues on next page)

5.6. ACPI Event Programming Model 332

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

Notify (_SB.DEVX, 0x0) // insertion request
}
Case (42) { // interrupt 42
Notify (_SB.DEVX, 0x3) // ejection request
}
Case (43) { // interrupt 43
Store (One, ISTS) // clear interrupt status register at device X
// which is mapped via an operation region
Notify (_SB.DEVX, 0x2) // wake event
}
}
} //End of Method
} //End of GED1 Scope
Device (_SB.DEVX)
{

Name (_PRW, Package ()
{
Package (2){ // EventInfo
_SB.GED1, // device reference
0x2 // event (zero-based CRS index) = 2 (maps to interrupt 43)
}I
0x03, // Can wake up from S3 state
PWRA // PWRA must be ON for DEVX to wake system
})

} //End of DEVX Scope

5.6.9.4 GED Wake Events

An important use of the interrupt-signaled events is to implement device wake events. Interrupt-based Wake Events
are described in Section 4.1.1.2. Note that the interrupt associated with that wake event must be wake-capable per the
Extended Interrupt resource descriptor listed under the _CRS object.

Consider the ASL example in the previous section, note that the interrupts that map to the wake event for DEVX are
wake-capable. The components of the Interrupt-signaled ACPI event programming model interact in the following
way:

e When a device asserts its wake signal and the interrupt has been enabled by the GED driver, the interrupt is
asserted.

* If the system is sleeping, this will cause the hardware, if possible, to transition the system into the SO state.
* Once the system is running, OSPM will dispatch the GED interrupt service routine.

* The GED needs to determine which interrupt has been asserted and may perform a Notify command on the
corresponding device object(s) that have asserted wake.

¢ In turn OSPM will notify OSPM native driver(s) for each device that will wake its device to service it.

Wake events must be exclusively tied to a GED interrupt (for example, one interrupt cannot be shared by multiple
wake events) in order to properly handle the semantics used by the system

Note that any ACPI platform may utilize GPIO-signaled and/or Interrupts-signaled ACPI events (i.e. they are not
limited to Hardware-reduced ACPI platforms).

5.6. ACPI Event Programming Model 333

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.6.10 Managing a Wake Event Using Device _ PRW Objects

A device’s _PRW object provides the zero-based bit index into the general-purpose status register block to indicate
which general-purpose status bit from either GPEO_BLK or GPE1_BLK is used as the specific device’s wake mask.
Although the hardware must maintain individual device wake enable bits, the system can have multiple devices using
the same general-purpose event bit by using OEM-specific hardware to provide second-level status and enable bits. In
this case, the OEM AML code is responsible for the second-level enable and status bits.

A device’s _PRW object provides the zero-based index into the _AEI object of a GPIO controller device or zero-based
index into the _CRS object of a Generic Event Device (GED).

OSPM enables or disables the device wake function by enabling or disabling its corresponding event and by executing
its _PSW control method (which is used to take care of the second-level enables). When the event is asserted, OSPM
still executes the corresponding event control method that determines which device wakes are asserted and notifies the
corresponding device objects. The native OS driver is then notified that its device has asserted wake, for which the
driver powers on its device to service it.

If the system is in a sleeping state when the enabled event is asserted the hardware will transition the system into the
SO state, if possible.

5.7 Predefined Objects

The AML interpreter of an ACPI compatible operating system supports the evaluation of a number of predefined
objects. The objects are considered “built in” to the AML interpreter on the target operating system.

A list of predefined object names are shown in the following table.

Table 5.174: Predefined Object Names

Name Description

_GL Global Lock mutex

_OS Name of the operating system

_OSI Operating System Interface support

_REV Revision of the ACPI specification that is implemented

5.7.1 _GL (Global Lock Mutex)

This predefined object is a Mutex object that behaves like a Mutex as defined in Section 19.6.87, “Mutex (Declare
Synchronization/Mutex Object),” with the added behavior that acquiring this Mutex also acquires the shared environ-
ment Global Lock defined in Section 5.2.10.1, “Global Lock.” This allows Control Methods to explicitly synchronize
with the Global Lock if necessary.

5.7.2 _OSI (Operating System Interfaces)
This method is used by the system firmware to query OSPM about interfaces and features that are supported by the
host operating system. The usage and implementation model for this method is as follows:

e The _OSI method is implemented within the operating system.

e OSI is called by the firmware AML code, usually during initialization (such as via _INI method). Thus, _OSI is
actually an “up-call” from the firmware AML to the OS — exactly the opposite of other control methods.

e An _OSI invocation by the firmware is a request to the operating system: “Do you support this inter-
face/feature?”

5.7. Predefined Objects 334

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

e The host responds to this _OSI request with a simple yes or no (Ones/Zero, TRUE/FALSE, Sup-
ported/NotSupported).

The _OSI method requires one argument and returns an integer. The argument is a string that contains an optional
ACPI-defined OsVendorString followed by a required FeatureGroupString. The feature group string can be either
ACPI-defined or OS vendor defined.

_OSI cannot and should not be used by the firmware in an attempt to identify the host operating system; rather, this
method is intended to be used to identify specific features and interfaces that are supported by the OS. The example
below illustrates this:

_OSI ("Windows 2009")

In the _OSI invocation above, “Windows” is the OsVendorString, and “2009” is the vendor-defined FeatureGroup-
String. A return value of TRUE (Ones) from this call does NOT indicate that the executing operating system is
Windows. It simply indicates that the actual OS conforms to “Windows 2009 features and interfaces, and is thus
compatible with Windows 2009. ACPI implementations other than Windows often reply TRUE to all Windows _OSI
requests.

The OsVendorString should always be accompanied by a FeatureGroupString. However, the OsVendorString itself
is optional and can be omitted if the feature group string applies to all operating systems. The ACPI-defined feature
group strings may be used in this standalone manner. For feature group strings may be used in this standalone manner.
For example:

_O0SI ("3.0 Thermal Model")

Arguments: (1)

Arg0 — A String containing the optional OS vendor prefix (as defined in Table 5-186) and/or the required Feature
Group string (as ACPI-defined in Table 5-187 , or a vendor-defined custom feature/interface string). The optional OS
vendor string is not needed in the case of the ACPI-defined feature group strings.

Return Value:
An Integer containing a Boolean that indicates whether the requested feature is supported:
0x0 (Zero) — The interface, behavior, or feature is not supported

Ones (-1) — The interface, behavior, or feature is supported. Note: The value of Ones is OXFFFFFFFF in 32-bit mode
(DSDT revision 1) or OxXFFFFFFFFFFFFFFFF in 64-bit mode (DSDT revision 2 and greater).

Table 5.175: Predefined Operating System Vendor String Prefixes

Operating System Vendor String Pre- | Description
fix
“FreeBSD” <FeatureGroupString> Free BSD OS features/interfaces
“HP-UX” <FeatureGroupString> HP Unix Operating Environment OS features/interfaces
“Linux” <FeatureGroupString> GNU/Linux Operating system OS features/interfaces
“OpenVMS” <FeatureGroupString> HP OpenVMS Operating Environment OS features/interfaces
“Windows” <FeatureGroupString> Microsoft Windows OS features/interfaces
Table 5.176: Standard ACPI-Defined Feature Group Strings
Feature Group String Description
“Module Device” OSPM supports the declaration of module device (ACPI0004) in the
namespace and will enumerate objects under the module device scope.
“Processor Device” OSPM supports the declaration of processors in the namespace using the
ACPIO007 processor device HID.

continues on next page

5.7. Predefined Objects 335

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.176 — continued from previous page

Feature Group String Description

“3.0 Thermal Model” OSPM supports the extensions to the ACPI thermal model in Revision
3.0.

“Extended Address Space Descriptor” | OSPM supports the Extended Address Space Descriptor

“3.0 _SCP Extensions” OSPM evaluates _SCP with the additional acoustic limit and power limit
arguments defined in ACPI 3.0.

“Processor Aggregator Device” OSPM supports the declaration of the processor aggregator device in the
namespace using the ACPIO00C processor aggregator device HID.

OSPM may indicate support for multiple OS interface / behavior strings if the operating system supports the behaviors.
For example, a newer version of an operating system may indicate support for strings from all or some of the prior
versions of that operating system.

_OSI provides the platform with the ability to support new operating system versions and their associated features
when they become available. OSPM can choose to expose new functionality based on the _OSI argument string. That
is, OSPM can use the strings passed into _OSI to ensure compatibility between older platforms and newer operating
systems by maintaining known compatible behavior for a platform. As such, it is recommended that _OSI be evaluated
by the _SB.INI control method so that platform compatible behavior or features are available early in operating system
initialization.

Since feature group functionality may be dependent on OSPM implementation, it may be required that OS vendor-
defined strings be checked before feature group strings.

Platform developers should consult OS vendor specific information for OS vendor defined strings representing a set
of OS interfaces and behaviors. ACPI defined strings representing an operating system and an ACPI feature group are
listed in the following tables.

5.7.2.1 _OSI Examples

Use of standard ACPI-defined feature group strings::

Scope (_SB)
{
Name (PAD1, 0)
Name (MDEV, O0)
Method (_INI)
{
If (CondRefOf (_OSI) // Ensure _OSI exists in the 0S

{
If (_OSI ("Processor Aggregator Device")

Store (1, PAD1)
If (_OSI ("Module Device")

// Expose PCI Root Bridge under Module Device -
// OS support Module Device
Store (0, MDEV1)
Loadtable ("OEM1", "OEMID", "Tablel")
}
Else
{
// Expose PCI Root Bridge under _SB -
// OS does not support Module Device
Store (1, MDEV1)

(continues on next page)

5.7. Predefined Objects 336

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

Loadtable ("OEM2", "OEMID", "Table2")

Use of OS vendor-defined feature group strings:

//
// In this example, "Windows" is the OsVendorString, and the year strings
// (2009, 2012, and 2105) are the vendor-defined FeatureGroupStrings
//
Scope (_SB)
{
Name (0SYS, 0x7D0) // Type of OS indicating supported features
Method (_INI)
{
If (CondRefOf (_OSI) // Ensure _OSI exists in the 0S
{
If (_OSI ("Windows 2009")
{
Store (0x7D1, OSYS)

}
If (_OSI ("Windows 2012")

Store (0x7D1, OSYS)
}
If (_OSI ("Windows 2015")

Store (0x7D1, OSYS)

5.7.3 _OS (OS Name Object)

This predefined object evaluates to a string that identifies the operating system. In robust OSPM implementations,
_OS evaluates differently for each OS release. This may allow AML code to accommodate differences in OSPM
implementations. This value does not change with different revisions of the AML interpreter.

Arguments:
None
Return Value:

A String containing the operating system name.

5.7. Predefined Objects 337

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.7.4 _REV (Revision Data Object)
This predefined object evaluates to an Integer (DWORD) representing the revision of the ACPI Specification imple-
mented by the specified _OS.
Arguments:
None
Return Value:
An Integer representing the revision of the currently executing ACPI implementation.
1. Only ACPI 1 is supported, only 32-bit integers.
2. ACPI 2 or greater is supported. Both 32-bit and 64-bit integers are supported.
Actual integer width depends on the revision of the DSDT (revision < 2 means 32-bit. >= 2 means 64-bit).

Other values - Reserved

5.7.5 _DLM (DevicelLock Mutex)

This object appears in a device scope when AML access to the device must be synchronized with the OS environment.
It is used in conjunction with a standard Mutex object. With _DLM, the standard Mutex provides synchronization
within the AML environment as usual, but also synchronizes with the OS environment.

_DLM evaluates to a package of packages, each containing a reference to a Mutex and an optional resource template
protected by the Mutex, If only the Mutex name is specified, then the sharing rules (i.e. which resources are protected
by the lock) are defined by a predefined contract between the AML and the OS device driver. If the resource template
is specified, then only those resources within the resource template are protected.

Arguments:
None
Return Value:

A variable-length Package containing sub-packages of Mutex References and resource templates. The resource
template in each subpackage is optional.

Return Value Information:

Package {
DeviceLockInfo [0] // x+Packagexx*

DeviceLockInfo [n] x*// Packagex*x

}

Each variable-length DeviceLockInfo sub-Package contains either one element or 2 elements, as described below:

Package {
DeviceLockMutex // xxReferencex* to a Mutex object
Resources // **Buffer*x or x*Referencex* (Resource Template)

5.7. Predefined Objects 338

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 5.177: DeviceLockInfo Package Values

Element Object Type Description

DeviceLockMutex Reference A reference to the mutex that is to be shared be-
tween the AML code and the host operating sys-
tem.

Resources Buffer* (or reference to a Buffer) Optional. Contains a Resource Template that de-
scribes the resources that are to be protected by
the Device Lock Mutex.

Example:

Device (DEV1)
{
Mutex (MTX1, 0)
Name (RES1l, ResourceTemplate ()
{
I2cSerialBusV2 (0x0400, DevicelInitiated, 0x00001000,
AddressingModel0Bit, "_SB.DEV1",
0, ResourceConsumer, I2C1l)

1)

Name (_DLM, Package (1)
{
Package (2)
{
MTX1,
RES1

Device (DEV2)
{
Mutex (MTX2, 0)
Mutex (MTX3, 0)
Name (_DLM, Package (2)
{
Package (2)
{
\\DEV2.MTX2,
ResourceTemplate ()
{
I2cSerialBusV2 (0x0400, DeviceInitiated, 0x00001000,
AddressingModel0Bit, "_SB.DEV2",
0, ResourceConsumer, I2C2)
}
}I
Package (1) // Optional resource not needed
{
\\DEV2 .MTX3

5.7. Predefined Objects 339

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

5.8 System Configuration Objects

5.8.1 _PIC Method

The _PIC optional method is used to report to the platform runtime firmware the current interrupt model used by the
OS. This control method returns nothing. The argument passed into the method signifies the interrupt model OSPM
has chosen, PIC mode, APIC mode, or SAPIC mode. Notice that calling this method is optional for OSPM. If the
platform CPU architecture supports PIC mode and the method is never called, the platform runtime firmware must
assume PIC mode. It is important that the platform runtime firmware save the value passed in by OSPM for later use
during wake operations.

Arguments: (1)

Arg0 — An Integer containing a code for the current interrupt model:

0 - PIC mode

1 - APIC mode

2 - SAPIC mode

Other values - Reserved

Return Value:

None

5.8. System Configuration Objects 340

CHAPTER
SIX

DEVICE CONFIGURATION

This section specifies the objects OSPM uses to configure devices. There are three types of configuration objects:

* Device identification objects associate platform devices with Plug and Play IDs.

* Device configuration objects declare and configure hardware resources and characteristics for devices enumer-
ated via ACPL.

* Device insertion and removal objects provide mechanisms for handling dynamic insertion and removal of de-

vices.

There are two types of Device objects:

* A Full Device Descriptor, which contains the complete description of a devices that cannot be discovered
through any other standard Bus enumeration mechanism. This type of Device object is enumerated by the
ACPI subsystem (OSPM), and contains a Hardware ID object (_HID).

* An Agumented Device Descriptor, which contains additional device information that is not provided from the
Device itself, yet is needed by the Device or Bus driver in order to properly configure and use the device. This
type of device is enumerated by a bus-specific enumeration mechanism, and OSPM uses the Address (_ADR)
to match the ACPI Device object in the Namespace to the device discovered through bus enumeration.

This section also defines the ACPI device-resource descriptor formats. Device-resource descriptors are used as param-
eters by some of the device configuration objects.

6.1 Device ldentification Objects

Device identification objects associate each platform device with a Plug and Play device ID for each device. All the
device identification objects are listed in the table below:

Table 6.1: Device Identification Objects

Object Description

_ADR Object that evaluates to a device’s address on its parent bus.

_CID Object that evaluates to a device’s Plug and Play-compatible ID list.

_CLS Object that evaluates to a package of coded device-class information.

_DDN Object that associates a logical software name (for example, COM1) with a device.
_HID Object that evaluates to a device’s Plug and Play hardware ID.

_HRV Object that evaluates to an integer hardware revision number.

_MLS Object that provides a human readable description of a device in multiple languages.
_PLD Object that provides physical location description information.

_SUB Object that evaluates to a device’s Plug and Play subsystem ID.

_SUN Object that evaluates to the slot-unique ID number for a slot.

continues on next page

341

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.1 — continued from previous page

Object Description
_STR Object that contains a Unicode identifier for a device. Can also be used for thermal zones.
_UID Object that specifies a device’s unique persistent ID, or a control method that generates it.

For any device that is on a non-enumerable type of bus (for example, an ISA bus), OSPM enumerates the devices’
identifier(s) and the ACPI system firmware must supply an _HID object (plus one or more optional objects such as
_CID, _CLS, _HRYV, _SUB) for each device to enable OSPM to do that. For devices on an enumerable type of bus,
such as a PCI bus, the ACPI system must identify which device on the enumerable bus is identified by a particular
address; the ACPI system firmware must supply an _ADR object for each device to enable this. A device object must
contain either an _HID object or an _ADR object, but must not contain both.

If any of these objects are implemented as control methods, these methods may depend on operation regions. Since
the control methods may be evaluated before an operation region provider becomes available, the control method must
be structured to execute in the absence of the operation region provider. (_ REG methods notify the platform runtime
firmware of the presence of operation region providers.) When a control method cannot determine the current state of
the hardware due to a lack of operation region provider, it is recommended that the control method should return the
condition that was true at the time that control passed from the platform boot firmware to the OS. (The control method
should return a default, boot value).

6.1.1 _ADR (Address)

This object is used to supply OSPM with the address of a device on its parent bus. An _ADR object must be used
when specifying the address of any device on a bus that has a standard enumeration algorithm (see Configuration and
“Plug and Play”, for the situations when these devices do appear in the ACPI namespace). The _ADR object is valid
only within an Augmented Device Descriptor.

Arguments:
None
Return Value:
An Integer containing the address of the device

An _ADR object can be used to provide capabilities to the specified address even if a device is not present.
This allows the system to provide capabilities to a slot on the parent bus.

OSPM infers the parent bus and segment from the location of the _ADR object’s device package in the
ACPI namespace. For more information about the positioning of device packages in the ACPI namespace,
see Device (Declare Device Package)

_ADR object information must be static and can be defined for the following bus types listed in ADR
Object Address Encodings.

Table 6.2: ADR Object Address Encodings

BUS Address Encoding
EISA EISA slot number 0-F
Floppy Bus Drive select values used for programming the floppy controller to access the

specified INT13 unit number. The _ADR Objects should be sorted based on
drive select encoding from 0-3.

continues on next page

6.1. Device Identification Objects 342

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.2 — continued from previous page

BUS

Address Encoding

13C

Bits [63:52] - Reserved

Bits [51:48] - Master Instance

Bits [47:0] - I3C Device Provisional ID, following encoding defined in the MIPI
Specification for I3C.

If an I3C device supports a static address instead of a Provisional ID, then bits
[47:7] are Reserved (zero), and bits [6:0] are the 7-bit static address.

IDE Controller

0-Primary Channel, 1-Secondary Channel

IDE Channel

0-Master drive, 1-Slave drive

Intel® High Definition Audio

High word - SDI (Serial Data In) ID of the codec that contains the function
group. Low word - Node ID of the function group.

PCI High word-Device #, Low word-Function #. (for example, device 3, function
2 is 0x00030002). To refer to all the functions on a device #, use a function
number of FFFF).

PCMCIA Socket #; O-First Socket

PC CARD Socket #; 0-First Socket

Serial ATA SATA Port: High word—Root port #, Low word—port number off of a SATA port
multiplier, or OXFFFF if no port multiplier attached. (For example, root port
2 would be 0x0002FFFF. If instead a port multiplier had been attached to root
port 2, the ports connected to the multiplier would be encoded 0x00020000,
0x00020001, etc.) The value OXFFFFFFFF is reserved.

SMBus Lowest Slave Address

USB Root HUB

Only one child of the host controller. It must have an _ADR of 0. No other
children or values of _ADR are allowed.

USB Ports Port number (1-n)

SDIO Bus High word - Slot number (0-First Slot) Low word - Function number (see SD
specification for definitions.)

NVDIMM NFIT Device handle as defined by the NVDIMM Region Mapping Structure

6.1.2 _CID (Compatible ID)

This optional object is used to supply OSPM with a device’s Plug and Play-Compatible Device ID. Use _CID objects
when a device has no other defined hardware standard method to report its compatible IDs. The _CID object is valid
only within a Full Device Descriptor. An _HID object must also be present.

Arguments:
None

Return Value:

An Integer or String containing a single CID or a Package containing a list of CIDs

A _CID object evaluates to either:

* A single Compatible Device ID

* A package of Compatible Device IDs for the device — in the order of preference, highest preference

first.

Each Compatible Device ID must be either:
» A valid HID value (a 32-bit compressed EISA type ID or a string such as “ACPI0004”).

* A string that uses a bus-specific nomenclature. For example, _CID can be used to specify the PCI
ID. The format of a PCI ID string is one of the following:

6.1. Device ldentification Objects

343

https://mipi.org/specifications/i3c-sensor-specification
https://mipi.org/specifications/i3c-sensor-specification

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

"PCI\CC_ccss"

"PCI\CC_ccsspp"
"PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss&REV_rr"
"PCI\VEN_vvvv&DEV_dddd&SUBSYS _ssssssss"
"PCI\VEN_vvvv&DEV_ddddsREV_rr"
"PCI\VEN_vvvv&DEV_dddd"

Where:

cc — hexadecimal representation of the Class Code byte

ss - hexadecimal representation of the Subclass Code byte

joje] — hexadecimal representation of the Programming Interface byte
Navavav — hexadecimal representation of the Vendor ID

dddd - hexadecimal representation of the Device ID

ssssssss — hexadecimal representation of the Subsystem ID

rr — hexadecimal representation of the Revision byte

A compatible ID retrieved from a _CID object is only meaningful if it is a non-NULL value.

Example ASL:

Device (XYZ) {
Name (_HID, EISAID ("PNP0303")) // PC Keyboard Controller
Name (_CID, EISAID ("PNPO30B"))

6.1.3 _CLS (Class Code)

This object is used to supply OSPM with the PCI-defined base-class, sub-class and programming interface for a device.
This object is optional. However, it may be useful for loading generic drivers on hardware that is compatible with PCI
-defined device classes, but that is not implemented on the PCI bus (and is therefore enumerated by ACPIL.)

Arguments:
None
Return Value:

A Package containing the PCI -defined class information as a list of Integers:

Package (3) {<base-class code>, <sub-class code>, <Programming Interface code>

=}

A list of available class codes and programming interface codes is provided by the PCI SIG. See “PCI Code and
ID Assignment Specification”, available from “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the
heading “PCI Code and ID Assignment Specification

Example ASL:

Device (SATA) //AHCI- compatible SATA controller
{
Name (_HID, "...™)
Name (_CLS, Package (3)
{

0x01, // Base Class (0lh == Mass Storage)
0x06, // Sub-Class (06h == SATA)
0x01, // Programming Interface (0lh == AHCI)

(continues on next page)

6.1. Device ldentification Objects 344

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

b

Name (_CRS, ResourceTemplate ()

{

. // AHCI-defined system resources

})

6.1.4 _DDN (DOS Device Name)

This object is used to associate a logical name (for example, COM1) with a device. This name can be used by
applications to connect to the device.

Arguments:
None
Return Value:

A String containing the DOS device name

6.1.5 _HID (Hardware ID)

This object is used to supply OSPM with the device’s PNP ID or ACPI ID.
See also:
PNP ID and ACPI ID Registry is at http://www.uefi.org/PNP_ACPI_Registry .

When describing a platform, use of any _HID objects is optional. However, a _HID object must be used to describe
any device that will be enumerated by OSPM. OSPM only enumerates a device when no bus enumerator can detect the
device ID. For example, devices on an ISA bus are enumerated by OSPM. Use the _ADR object to describe devices
enumerated by bus enumerators other than OSPM. The _HID object is valid only within a Full Device Descriptor.

Arguments:
None
Return Value:
An Integer or String containing the HID

A _HID object evaluates to either a numeric 32-bit compressed EISA type ID or a string. If a
string, the format must be an alphanumeric PNP or ACPI ID with no asterisk or other leading
characters.

A valid PNP ID must be of the form “AAA####”° where A is an uppercase letter and # is a
hex digit. A valid ACPI ID must be of the form “NNNN####” where N is an uppercase letter
or a digit (‘0’-°9’) and # is a hex digit. This specification reserves the string “ACPI” for use
only with devices defined herein. It further reserves all strings representing 4 HEX digits for
exclusive use with PCI-assigned Vendor IDs.

Example ASL:
Name (_HID, EISAID ("PNPOCOC")) // Control-Method Power Button
Name (_HID, EISAID ("INTO0800")) // Firmware Hub

Name (_HID, "MSFT0003") // Vendor-defined device

(
(
Name (_HID, "ACPIO003") // AC adapter device
(
Name (_HID, "80860003") // PCI-assigned device identifier

6.1. Device ldentification Objects 345

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.1.6 _HRV (Hardware Revision)

This object is used to supply OSPM with the device’s hardware revision. The use of _HRV is optional.
Arguments:

None
Return Value:

An Integer (DWORD) containing the hardware revision number

Example ASL:

Name (_HRV, 0x0003) // Revision number 3 of this hardware device

6.1.7 _MLS (Multiple Language String)

The _MLS object provides OSPM a human readable description of a device in multiple languages. This information
may be provided to the end user when the OSPM is unable to get any other information about this device. Although
this functionality is also provided by the _STR object, _MLS expands that functionality and provides vendors with
the capability to provide multiple strings in multiple languages. The _MLS object evaluates to a package of packages.
Each sub-package consists of a Language identifier and corresponding unicode string for a given locale. Specifying a
language identifier allows OSPM to easily determine if support for displaying the Unicode string is available. OSPM
can use this information to determine whether or not to display the device string, or which string is appropriate for a
user’s preferred locale.

It is assumed that OSPM will always support the primary English locale to accommodate English embedded in a
non-English string, such as a brand name.

If OSPM doesn’t support the specific sub-language ID it may choose to use the primary language ID for displaying
device text.

Arguments:
None
Return Value:
A variable-length Package containing a list of language descriptor Packages as described below.

Return Value Information:

Package {
LanguageDescriptor[0] // Package
LanguageDescriptor[n] // Package

}

Each Language Descriptor sub-Package contains the elements described below:

Package {
LanguageId // String
UnicodeDescription // Buffer

}

Languageld is a string identifying the language. This string follows the format specified in the Internet RFC 3066
document (Tags for the Identification of Languages). In addition to supporting the existing strings in RFC 3066, the
table below lists aliases that are also supported.

6.1. Device Identification Objects 346

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.3: Additional Language ID Alias Strings

RFC String Supported Alias String
zh-Hans zh-chs
zh-Hant zh-cht

UnicodeDescription is a Buffer containing a Unicode (UTF-16) string. This string contains the language-specific
description of the device corresponding to the LanguagelD. The Unicode() ASL macro can be used to create this
Buffer.

Example:

Device (XYZ) {
Name (_ADR, 0x00020001)
Name (_MLS, Package(){(2){"en", Unicode ("ACME super DVD controller")}})

6.1.8 _PLD (Physical Location of Device)

This optional object is a method that conveys to OSPM a general description of the physical location of a device’s
external connection point. The _PLD may be child object for any ACPI Namespace object the system wants to
describe. This information can be used by system software to describe to the user which specific connector or device
input mechanism may be used for a given task or may need user intervention for correct operation. The _PLD should
only be evaluated when its parent device is present as indicated by the device’s presence mechanism (i.e. _STA or
other)

An externally exposed device connection point can reside on any surface of a system’s housing. The respective surfaces
of a system’s housing are identified by the “Panel” field (described below). The _PLD method returns data to describe
the location of where the device’s connection point resides and a Shape (described below) that may be rendered at
that position. One physical device may have several connection points. A _PLD describes the offset and rotation of a
single device connection point from an “origin” that resides in the lower left hand corner of its Panel.

All Panel references (Top, Bottom, Right, Left, etc.) are interpreted as though the user is facing the front of the system.
For handheld mobile devices, the front panel is the one holding the display screen, and its origin is in the lower-left
corner when the display is viewed in the Portrait orientation. For example, the Right Panel is the right side of the
system as viewed from the front.

All “origin” references for a Panel are interpreted as its lower left corner when the user is facing the respective Panel.
The Top Panel shall be viewed with the system is viewed resting on its Front Panel, and the Bottom Panel shall be
viewed with the system resting on its Back Panel. All other Panels shall be viewed with the system resting on its
Bottom Panel. See System Panel and Panel Origin Positions for more information.

The data bits also assume that if the system is capable of opening up like a laptop that the device may exist on the base
of the laptop system or on the lid. In the case of the latter, the “Lid” bit (described below) should be set indicating the
device connection point is on the lid. If the device is on the lid, the description describes the device’s connection point
location when the system is opened with the lid up. If the device connection point is not on the lid, then the description
describes the device’s connection point location when the system with the lid closed.

6.1. Device Identification Objects 347

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 6.1: System Panel and Panel Origin Positions

Front
Panel (base)
Lid Top Panel
Lid _ Origin
Front Panel N
Origin Ny

Fig. 6.2: Laptop Panel and Panel Origin Positions

To render a view of a system Panel, all _PLDs that define the same Panel and Lid values are collected. The _PLDs
are then sorted by the value of their Order field and the view of the panel is rendered by drawing the shapes of each
connection point (in their correct Shape, Color, Horizontal Offset, Vertical Offset, Width, Height, and Orientation)
starting with all Order = 0 _PLDs first. Refer to PLD Back Panel Rendering for an example.

The location of a device connection point may change as a result of the system connecting or disconnecting to a
docking station or a port replicator. As such, Notify event of type 0x09 will cause OSPM to re-evaluate the _PLD object
residing under the particular device notified. If a platform is unable to detect the change of connecting or disconnecting
to a docking station or port replicator, a _PLD object should not be used to describe the device connection points that
will change location after such an event.

Arguments:
None
Return Value:
A variable-length Package containing a list of Buffers

This method returns a package containing a single or multiple buffer entries. At least one buffer entry must be returned
using the bit definitions below.

6.1. Device Identification Objects 348

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.4: Buffer 0 Return Value

tion on the panel
where the device
connection point
resides.

Name Definition DWORD | Bit Bit Length
Offset Offset (bits)
(DWORD) | (Buffer)
Revision The current Revision is 0x2 0 0 0 7
Ignore Color If this bit is set, the Color field is ig- | 0 7 7 1
nored, as the color is unknown.
Color 0 8 8 24
24-bit RGB value for the color of the
device connection point:
Bits [15:8]=red value
Bits [23:16]=green value
Bits [31:24]=blue value
Width Width of the widest point of the device | 1 0 32 16
connection point, in millimeters
Height Height of the tallest point of the device | 1 16 48 16
connection point, in millimeters
User Visible Set if the device connection point can | 2 0 64 1
be seen by the user without disassem-
bly.
Dock Set if the device connection point re- | 2 65 1
sides in a docking station or port repli-
cator.
Lid Set if this device connection point re- | 2 66 1
sides on the lid of laptop system.
Panel 2 67 3
Describes which panel surface of the
system’s housing the device
connection point resides on:
0 - Top
1 - Bottom
2 - Left
3 - Right
4 - Front
5 - Back
6 - Unknown (Vertical Position and
Horizontal Position will be ignored)
Vertical Position 2 70 2
on the panel | O- Upper
where the device | 1 - Center
connection point | 5 _ ower
resides
Horizontal Posi- 2 72 2

continues on next page

6.1. Device ldentification Objects

349

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.4 — continued from previous page

Name

Definition

DWORD

Bit
Offset
(DWORD)

Bit
Offset
(Buffer)

Length
(bits)

Shape

Describes the shape of the device
connection point. The Width and
Height fields may be used to distort a
shape, e.g. A Round shape will look
like an Oval shape if the Width and
Height are not equal. And a Vertical
Rectangle or Horizontal Rectangle
may look like a square if Width and
Height are equal. See Default Shape
Definitions:

0 - Round

I -Oval

2 - Square

3 - Vertical Rectangle

4 - Horizontal Rectangle

5 - Vertical Trapezoid

6 - Horizontal Trapezoid

7 - Unknown - Shape rendered as a
Rectangle with dotted lines

8 - Chamfered

15:9 - Reserved

74

Group Orienta-
tion

if Set, indicates vertical grouping, oth-
erwise horizontal is assumed.

78

Group Token

Unique numerical value identifying a
group.

79

Group Position

Identifies this device connection
point’s position in the group (i.e. 1st,
2nd)

87

Bay

Set if describing a device in a bay or if
device connection point is a bay.

95

Ejectable

Set if the device is ejectable. Indicates
ejectability in the absence of _EJx ob-
jects.

96

OSPM Ejection
required

OSPM Ejection required: Setif OSPM
needs to be involved with ejection pro-
cess. User-operated physical hardware
ejection is not possible.

97

Cabinet Number

For single cabinet system, this field is
always 0.

98

Card Cage Num-
ber

For single card cage system, this field
is always 0.

106

Reference

if Set, this _PLD defines a “reference”
shape that is used to help orient the
user with respect to the other shapes
when rendering _PLDs.

114

continues on next page

6.1. Device ldentification Objects

350

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.4 — continued from previous page
Name Definition DWORD | Bit Bit Length
Offset Offset (bits)
(DWORD) | (Buffer)
Rotation 2 115 4
Rotates the Shape clockwise in 45
degree steps around its origin where:

0-0°

1-45°
2-90°
3-135°
4 -180°
5-225°
6 - 270°
7-315°

Order 2 119 5
Identifies the drawing order of the
connection point described by a
_PLD:

Order = 0 connection points are drawn
before Order = 1 connection points.
Order = 1 before Order = 2, and so on.
Order = 31 connection points are
drawn last.

Order should always start at 0 and be
consecutively assigned.

Reserved Reserved, must contain a value of 0. 2 124 4

Vertical Offset Offset of Shape Origin from Panel Ori- | 2 128 16
gin (in mm). A value of OxFFFFFFFF
indicates that this field is not supplied.
Horizontal Offset | Offset of Shape Origin from Panel Ori- | 2 144 16
gin (in mm). A value of OxFFFFFFFF
indicates that this field is not supplied.

Note: All additional buffer entries returned may contain OEM-specific data, but must begin in a { GUID, data} pair.
These additional data may provide complimentary physical location information specific to certain systems or class of
machines.

6.1. Device Identification Objects 351

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 6.3: Default Shape Definitions

Buffers 1-N Return Value (Optional):
* Buffer 1 Bit [127:0] - GUID 1

Buffer 2 Bit [127:0] - Data 1

Buffer 3 Bit [127:0] - GUID 2

Buffer 4 Bit [127:0] - Data 2
e etc.

PLD Back Panel Rendering provides an example of a rendering of the external device connection points that may
be conveyed to the user by _PLD information. Note that three _PLDs (System Back Panel, Power Supply, and
Motherboard (MB) Connector Area) that are associated with the System Bus tree (_SB) object. Their Reference
flag is set indicating that are used to provide the user with visual queues for identifying the relative locations of the
other device connection points.

The connection points (C1 through C16) are defined by _PLD objects found in the System bus tree.

The following connection points all have their Panel and Lid fields set to Back and 0, respectively. And the Reference
flag of the System Back Panel, Power Supply, and MB Connector Area connection points are set to 1. in this example
are used to render PLD Back Panel Rendering:

Table 6.5: PLD Back Panel Example Settings

Name | Ignore| R | G | B | Width| Height VOff | HOff | Shape | Notation| Goup Rotation
Color Position

Back Yes 0 0 0 2032 | 4318 | O 0 V Rect 1 0

Panel

MB Yes 0 0 0 445 1556 | 1588 | 127 | V Rect 2 0

Conn

arca

continues on next page

6.1. Device Identification Objects 352

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.5 — continued from previous page

Name | Ignore | R | G | B | Width| Height VOff | HOff | Shape | Notation| Goup Rotation
Color Position

Power | Yes 0 0 0 1524 | 889 3302 | 127 | HRect 2 0

Sup-

ply

USB No 0 0 0 125 52 2223 | 159 | HRect Cl 3 90

Port 1

USB No 0 0 0 125 52 2223 | 254 | HRect C2 3 90

Port 2

USB No 0 [0 |0 125 52 2223 | 350 | HRect | C3 3 90

Port 3

USB No 0 [0 |0 125 52 2223 | 445 | HRect | C4 3 90

Port 4

USB No 0 0 0 125 52 2007 | 159 | HRect C5 3 90

Port 5

USB No 0 [0 |0 125 52 2007 | 254 | HRect | C6 3 90

Port 6

Ethernet No 0 [0 |0 157 171 2007 | 350 | VRect | C7 3 90

Audio | No FF | FF | FF | 127 127 1945 | 151 Round C8 3 90

1

Audio | No 151| 247| 127| 127 127 1945 | 286 | Round C9 3 90

2

Audio | No 0 [0 |0 127 127 1945 | 427 | Round C10 3 90

3

SPDIF | No 0 0 0 112 126 1756 | 176 | V Trap Cl1 3 90

Audio | No 0 |[FF|O 127 127 1765 | 288 | Round Ci2 3 90

4

Audio | No 0 |0 | FF| 127 127 1765 | 429 | Round Cl13 3 90

5

SATA | No 0 0 0 239 88 3091 | 159 | HRect Cl4 3 90

1394 | No 0 [0 |0 112 159 2890 | 254 | HTrap | Cl15 3 0

Coax No 0 0 0 159 159 2842 | 143 | Round Cl6 3 90

PCI1 | No 0 [0 |0 1016 | 127 127 | 127 | HRect 1 3 0

PCI2 | No 0 0 0 1016 | 127 334 127 | HRect 2 3 0

PCI3 | No 0 [0 |0 1016 | 127 540 | 127 | HRect | 3 3 0

PCI4 | No 0 0 0 1016 | 127 747 127 | HRect 4 3 0

PCI5 | No 0 [0 |0 1016 | 127 953 | 127 | HRect | 5 3 0

PCI6 | No 0 0 0 1016 | 127 1159 | 127 | HRect 6 3 0

PCI7 | No 0 0 0 1016 | 127 1366 | 127 | H Rect 7 3 0

Note that the origin is in the lower left hand corner of the Back Panel, where positive Horizontal and Vertical Offset
values are to the right and up, respectively.

6.1. Device ldentification Objects 353

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Fig. 6.4: PLD Back Panel Rendering

6.1. Device Identification Objects 354

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.1.9 _SUB (Subsystem ID)

This object is used to supply OSPM with the device’s Subsystem ID. The use of _SUB is optional.
Arguments:
None
Return Value:
A String containing the SUB

A _SUB object evaluates to a string and the format must be a valid PNP or ACPI ID with no
asterisk or other leading characters.

See the definition of _HID (_HID (Hardware ID)) for the definition of PNP and ACPI ID
strings.

Example ASL:

’Name (_SUB, "MSFT3000") // Vendor-defined subsystem

6.1.10 _STR (String)
The _STR object evaluates to a Unicode string that describes the device or thermal zone. It may be used by an OS to
provide information to an end user. This information is particularly valuable when no other information is available.
Arguments:

None
Return Value:

A Buffer containing a Unicode string that describes the device

Example ASL:

Device (XYZ) {

Name (_ADR, 0x00020001)

Name (_STR, Unicode ("ACME super DVD controller"))
}

Then, when all else fails, an OS can use the info included in the _STR object to describe the hardware to the user.

6.1.11 _SUN (Slot User Number)

_SUN is an object that evaluates to the slot-unique ID number for a slot. _SUN is used by OSPM UI to identify
slots for the user. For example, this can be used for battery slots, PCI slots, PCMCIA slots, or swappable bay slots to
inform the user of what devices are in each slot. _SUN evaluates to an integer that is the number to be used in the user
interface.

Arguments:
None
Return Value:
An Integer containing the slot’s unique ID

The _SUN value is required to be unique among the slots of the same type. It is also recommended that
this number match the slot number printed on the physical slot whenever possible.

6.1. Device Identification Objects 355

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.1.12 _UID (Unique ID)

This object provides OSPM with a logical device ID that does not change across reboots. This object is optional,
but is required when the device has no other way to report a persistent unique device ID. The _UID must be unique
across all devices with either a common _HID or _CID. This is because a device needs to be uniquely identified to
the OSPM, which may match on either a _HID or a _CID to identify the device. The uniqueness match must be true
regardless of whether the OSPM uses the _HID or the _CID. OSPM typically uses the unique device ID to ensure that
the device-specific information, such as network protocol binding information, is remembered for the device even if
its relative location changes. For most integrated devices, this object contains a unique identifier.

In general, a _UID object evaluates to either a numeric value or a string. However, when defining an object with an
_HID of ACPIO007 (processor definition objects), the _UID object must return an integer. This integer is used as
an identifier in the MADT, PPTT and other tables to connect non-enumerable devices to a processor object. When a
string is used in these cases, there is no mechanism for connecting these devices.

Arguments:
None
Return Value:

An Integer or String containing the Unique ID

6.2 Device Configuration Objects

This section describes objects that provide OSPM with device specific information and allow OSPM to configure
device operation and resource utilization.

OSPM uses device configuration objects to configure hardware resources for devices enumerated via ACPI. Device
configuration objects provide information about current and possible resource requirements, the relationship between
shared resources, and methods for configuring hardware resources.

Note: these objects must only be provided for devices that cannot be configured by any other hardware standard such
as PCI, PCMCIA, and soon.

When OSPM enumerates a device, it calls _PRS to determine the resource requirements of the device. It may also call
_CRS to find the current resource settings for the device. Using this information, the Plug and Play system determines
what resources the device should consume and sets those resources by calling the device’s _SRS control method.

In ACPI, devices can consume resources (for example, legacy keyboards), provide resources (for example, a propri-
etary PCI bridge), or do both. Unless otherwise specified, resources for a device are assumed to be taken from the
nearest matching resource above the device in the device hierarchy.

Some resources, however, may be shared amongst several devices. To describe this, devices that share a resource
(resource consumers) must use the extended resource descriptors (0x7-0xA) described in Large Resource Data Type.
These descriptors point to a single device object (resource producer) that claims the shared resource in its _PRS. This
allows OSPM to clearly understand the resource dependencies in the system and move all related devices together if
it needs to change resources. Furthermore, it allows OSPM to allocate resources only to resource producers when
devices that consume that resource appear.

The device configuration objects are listed in the table below.

6.2. Device Configuration Objects 356

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.6: Device Configuration Objects

Object Description

_CCA Cache Coherency Attribute — specifies whether a device and its descendants support hardware
managed cache coherency.

_CDM Object that specifies a clock domain for a processor.

_CRS Object that specifies a device’s current resource settings, or a control method that generates such
an object.

_DIS Control method that disables a device.

_DMA Object that specifies a device’s current resources for DMA transactions.

_DSD Object that evaluates to device specific information

_FIX Object used to provide correlation between the fixed-hardware register blocks defined in the
FADT and the devices that implement these fixed-hardware registers.

_GSB Object that provides the Global System Interrupt Base for a hot-plugged I/O APIC device.

_HMA Object that provides updated HMAT structures.

_HPP Object that specifies the cache-line size, latency timer, SERR enable, and PERR enable values to

be used when configuring a PCI device inserted into a hot-plug slot or initial configuration of a
PCI device at system boot.

_HPX Object that provides device parameters when configuring a PCI device inserted into a hot-plug
slot or initial configuration of a PCI device at system boot. Supersedes _HPP.

_MAT Object that evaluates to a buffer of Interrupt Controller Structures.

_0SC An object OSPM evaluates to convey specific software support / capabilities to the platform al-
lowing the platform to configure itself appropriately.

_PRS An object that specifies a device’s possible resource settings, or a control method that generates
such an object.

_PRT Object that specifies the PCI interrupt routing table.

_PXM Object that specifies a proximity domain for a device.

_SLI Object that provides updated distance information for a system locality.

_SRS Control method that sets a device’s settings.

6.2.1 _CDM (Clock Domain)

This optional object conveys the processor clock domain to which a processor belongs. A processor clock domain
is a unique identifier representing the hardware clock source providing the input clock for a given set of processors.
This clock source drives software accessible internal counters, such as the Time Stamp Counter, in each processor.
Processor counters in the same clock domain are driven by the same hardware clock source. In multi-processor plat-
forms that utilize multiple clock domains, such counters may exhibit drift when compared against processor counters
on different clock domains.

The _CDM object evaluates to an integer that identifies the device as belonging to a specific clock domain. OSPM
assumes that two devices in the same clock domain are connected to the same hardware clock.

Arguments:
None
Return Value:
An Integer (DWORD) containing a clock domain identifier.

In the case the platform does not convey any clock domain information to OSPM via the SRAT or the _CDM object,
OSPM assumes all logical processors to be on a common clock domain. If the platform defines _CDM object under
a logical processor then it must define _CDM objects under all logical processors whose clock domain information is
not provided via the SRAT.

6.2. Device Configuration Objects 357

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.2.2 _CRS (Current Resource Settings)

This required object evaluates to a byte stream that describes the system resources currently allocated to a device.
Additionally, a bus device must supply the resources that it decodes and can assign to its children devices. If a device
is disabled, then _CRS returns a valid resource template for the device, but the actual resource assignments in the
return byte stream are ignored. If the device is disabled when _CRS is called, it must remain disabled.

The format of the data contained in a _CRS object follows the formats defined in Resource Data Types for ACPI,
which is a compatible extension of the Plug and Play BIOS Specification (see reference below). The resource data
is provided as a series of data structures, with each of the resource data structures having a unique tag or identifier.
The resource descriptor data structures specify the standard PC system resources, such as memory address ranges, 1/O
ports, interrupts, and DMA channels.

See also:

Plug and Play BIOS Specification Version 1.0A, May 5, 1994, Compaq Computer Corp., Intel Corp., Phoenix Tech-
nologies Ltd.

Arguments:
None
Return Value:

A Buffer containing a resource descriptor byte stream

6.2.3 _DIS (Disable)

This control method disables a device. When the device is disabled, it must not be decoding any hardware resources.
Prior to running this control method, OSPM will have already put the device in the D3 state.

When a device is disabled via the _DIS, the _STA control method for this device must return with the Disabled bit set.
Arguments:

None
Return Value:

None

6.2.4 _DMA (Direct Memory Access)

This optional object returns a byte stream in the same format as a _CRS object. _DMA is only defined under devices
that represent buses. It specifies the ranges the bus controller (bridge) decodes on the child-side of its interface. (This
is analogous to the _CRS object, which describes the resources that the bus controller decodes on the parent-side of
its interface.) Any ranges described in the resources of a _DMA object can be used by child devices for DMA or bus
master transactions.

The _DMA object is only valid if a _CRS object is also defined. OSPM must re-evaluate the _DMA object after an
_SRS object has been executed because the _DMA ranges resources may change depending on how the bridge has
been configured.

If the _DMA object is not present for a bus device, the OS assumes that any address placed on a bus by a child device
will be decoded either by a device on the bus or by the bus itself, (in other words, all address ranges can be used for
DMA).

For example, if a platform implements a PCI bus that cannot access all of physical memory, it has a _DMA object
under that PCI bus that describes the ranges of physical memory that can be accessed by devices on that bus.

6.2. Device Configuration Objects 358

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

A _DMA object is not meant to describe any “map register” hardware that is set up for each DMA transaction. It is
meant only to describe the DMA properties of a bus that cannot be changed without reevaluating the _SRS method.

Arguments:
None
Return Value:
A Buffer containing a resource descriptor byte stream

_DMA Example ASL:

Device (BUSO)
{
//
// The _DMA method returns a resource template describing the
// addresses that are decoded on the child side of this
// bridge. The contained resource descriptors thus indicate
// the address ranges that bus masters living below this
// bridge can use to send accesses through the bridge toward a
// destination elsewhere in the system (e.g. main memory) .
//
// In our case, any bus master addresses need to fall between
// 0 and 0x80000000 and will have 0x200000000 added as they
// cross the bridge. Furthermore, any child-side accesses
// falling into the range claimed in our _CRS will be
// interpreted as a peer-to-peer traffic and will not be
// forwarded upstream by the bridge.
//
// Our upstream address decoder will only claim one range from
// 0x20000000 to Ox5fffffff in the _CRS. Therefore _DMA
// should return two QWORDMemory descriptors, one describing
// the range below and one describing the range above this
// "peer—-to-peer" address range.
//
Method (_DMA, ResourceTemplate ()
{
QWORDMemory (
ResourceConsumer,
PosDecode, // _DEC
MinFixed, // _MIF
MaxFixed, // _MAF
Prefetchable, // _MEM
ReadWrite, // _RW
0, // _GRA
0, // _MIN
Ox1fffffff, // _MAX
0x200000000, // _TRA
0x20000000, // _LEN

’
’

’

)

QWORDMemory (
ResourceConsumer,
PosDecode, // _DEC
MinFixed, // _MIF
MaxFixed, // _MAF
Prefetchable, // _MEM

(continues on next page)

6.2. Device Configuration Objects 359

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

ReadWrite, // _RW

0, // _GRA
0x60000000, // _MIN
Ox7fffffff, // _MAX
0x200000000, // _TRA
0x20000000, // _LEN

6.2.5 _DSD (Device Specific Data)

This optional object is used to provide device drivers (via OSPM) with additional device properties and information.
_DSD returns a variable-length package containing a list of Device Data Descriptor structures each consisting of a
UUID (see Universally Unique Identifiers (UUIDs)) and a package (Data Structure). The UUID is all that is needed to
define the Data Structure. The UUID itself may place a restriction based on _HID or the optional _CID, _CLS, _HRYV,
_SUB objects, or _HID and one of those optional objects. However, it also may not place such a restriction.

New UUIDs may be created by OEMs and IHVs or other interface or device governing bodies (e.g. the PCI SIG or
the UEFI Forum), as long as the UUID is different from other published UUIDs.

The list of well-known UUIDs allocated for _DSD and the definition of data formats associated with them is available
in an auxiliary document hosted on the UEFI Forum: http.//www.uefi.org/acpi .

Arguments:
None
Return Value:
A variable-length Package containing a list of Device Data Descriptor structures as described below.

Return Value Information:

Package ()
{

Device Data Descriptor 0

Device Data Descriptor n

}

Each Device Data Descriptor structure consists of two elements, as follows:

UuUID // Buffer (16 bytes)
Data Structure // Package (depending on UUID)

UUID uniquely determines the format of Data Structure.

Data Structure is a set of device specific data items the format of which is uniquely determined by the UUID and the
meaning of which is uniquely determined by the UUID possibly in combination with a PNP or ACPI device ID.

Multiple Device Data Descriptor structures with the same UUID are not permitted.

_DSD must return the same data each time it is evaluated. Firmware should not expect it to be evaluated every time
(in case it is implemented as a method).

6.2. Device Configuration Objects 360

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Examples:

Note: The UUID used in the following examples is assumed to define the data format for Data Structure as a list
of packages of length 2 (Properties) whose first element (Key) must be a String and the second element is a Value
associated with that key. The set of valid Keys and the format and interpretation of the Values associated with them is
then dependent on the PNP or ACPI device ID of the device.

Device (MDEV) {
Name (_HID, "PNP####")

Name (_DSD, Package () {
ToUUID ("daffd814-6eba-4d8c-8a91l-bc9bbf4aa301l"),
Package () {

Package (2) {...}, // Property 1

Package (2) {...} // Property n

//
// PWM controller with two pins that can be driven and a device using
// those pins with the periods of 5000000 and 4500000 nanoseconds,
// respectively.
//
Device (_SB.PCIO.PWM) {
Name (_HID, "PNP####")

Name (_DSD, Package () {
ToUUID ("daffd814-6eba-4d8c-8a91l-bc9bbf4aa301l"),
Package () {

Package (2) {"#pwm-cells", 2}

1)

}

Device (_SB.PCIO.BL) {
Name (_HID, "ACPI####")

Name (_DSD, Package () {
ToUUID ("daffd814-6eba-4d8c-8a91l-bc9bbf4aa301"),
Package () {
Package (2) {
"pwms",
Package () {

_SB.PCIO.PWM, 0, 5000000,
_SB.PCIO.PWM, 1, 4500000
}

})
}
//
// SPI controller using a fixed frequency clock represented by the CLKO
// device object.
//
Device (_SB_.PCIO) {

(continues on next page)

6.2. Device Configuration Objects 361

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

Device (CLKO) {
Name (_HID, "PNP####")

Name (_DSD, Package () {
ToUUID ("daffd814-6eba-4d8c-8a91-bc9bbf4aa301l"),
Package () {

Package (2) {"#clock-cells", 0},
Package (2) {"clock-frequency", 120000000}
}

Device (SPIO) {
Name (_HID, "PNP####")

Name (_DSD, Package () {
ToUUID ("daffd814-6eba-4d8c-8a91-bc9%bbfd4aal30l"™),
Package () {

Package (2) {"clocks", Package () {1, "CLKO}}
}
})

6.2.6 _FIX (Fixed Register Resource Provider)

This optional object is used to provide a correlation between the fixed-hardware register blocks defined in the FADT
and the devices in the ACPI namespace that implement these fixed-hardware registers. This object evaluates to a
package of Plug and Play-compatible IDs (32-bit compressed EISA type IDs) that correlate to the fixed-hardware
register blocks defined in the FADT. The device under which _FIX appears plays a role in the implementation of
the fixed-hardware (for example, implements the hardware or decodes the hardware’s address). _FIX conveys to
OSPM whether a given device can be disabled, powered off, or should be treated specially by conveying its role in the
implementation of the ACPI fixed-hardware register interfaces. This object takes no arguments.

The _CRS object describes a device’s resources. That _CRS object may contain a superset of the resources in the
FADT, as the device may actually decode resources beyond what the FADT requires. Furthermore, in a machine that
performs translation of resources within I/O bridges, the processor-relative resources in the FADT may not be the same
as the bus-relative resources in the _CRS.

Arguments:
None
Return Value:
A variable-length Package containing a list of Integers, each containing a PNP ID

Each of fields in the FADT has its own corresponding Plug and Play ID, as shown below:

PNPOC20 - SMI_CMD

PNPOC21 - PMla_EVT_BLK /
PNP0OC22 - PMlb_EVT_BLK /
PNP0C23 - PMla_CNT_BLK /
PNP0C24 - PMlb_CNT_BLK /

X_ PMla_EVT_BLK
PMlb_EVT_BLK
PMla_CNT_BLK
X_ PM1b_CNT_BLK

X_
X_

(continues on next page)

6.2. Device Configuration Objects 362

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

PNPOC25 - PM2_CNT_BLK / X_ PM2_CNT_BLK
PNP0C26 - PM_TMR_BLK / X_ PM_TMR_BLK
PNP0C27 - GPEO_BLK / X_GPEO_BLK

PNP0OC28 - GPE1_BLK / X_ GPE1_BLK
PNPOBOO - FIXED_RTC

PNPOBO1l - FIXED_RTC

PNPOB0O2 — FIXED_RTC

Example ASL for _FIX usage:

Scope (_SB) {

Device (PCIO) { // Root PCI Bus
Name (_HID, EISAID ("PNPOAO3")) // Need _HID for root device
Method (_CRS,0) { // Need current resources for root device

// Return current resources for root bridge 0
}
Name (_PRT, Package () { // Need PCI IRQ routing for PCI bridge
// Package with PCI IRQ routing table_
—information
})
Name (_FIX, Package(l) {
EISAID ("PNPOC25") } // PM2 control ID
)
Device (PX40) { // ISA
Name (_ADR, 0x00070000)
Name (_FIX, Package(1l) {
EISAID ("PNPOC20") } // SMI command port
)
Device (NS17) { // NS17 (Nat. Semi 317, an ACPI part)
Name (_HID, EISAID ("PNPOCO2"))
Name (_FIX, Package(3) {
EISAID ("PNPOC22"), // PMlb event ID
EISAID ("PNPOC24"), // PMlb control ID
EISAID ("PNPOC28")} // GPEl ID

} // end PX40
Device (PX43) { // PM Control
Name (_ADR, 0x00070003

Name (_FIX, Package (4 {

)
)
EISAID ("PNPOC21"), // PMla event ID
EISAID ("PNPOC23"), // PMla control ID
EISAID ("PNPOC26"), // PM Timer ID
EISAID ("PNPOC27") } // GPEO ID
)
} // end PX43
} // end PCIO
} // end scope SB

6.2. Device Configuration Objects 363

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.2.7 _GSB (Global System Interrupt Base)

_GSB is an optional object that evaluates to an integer that corresponds to the Global System Interrupt Base for
the corresponding I/O APIC device. The I/O APIC device may either be bus enumerated (e.g. as a PCI device) or
enumerated in the namespace as described in 7/O APIC Device. Any I/O APIC device that either supports hot-plug or
is not described in the MADT must contain a _GSB object.

If the I/O APIC device also contains a _MAT object, OSPM evaluates the _GSB object first before evaluating the
_MAT object. By providing the Global System Interrupt Base of the I/O APIC, this object enables OSPM to process
only the _MAT entries that correspond to the I/O APIC device. See _MAT (Multiple APIC Table Entry). Since _MAT
is allowed to potentially return all the MADT entries for the entire platform, _GSB is needed in the /O APIC device
scope to enable OSPM to identify the entries that correspond to that device.

If an I/O APIC device is activated by a device-specific driver, the physical address used to access the I/O APIC will
be exposed by the driver and cannot be determined from the _MAT object. In this case, OSPM cannot use the _MAT
object to determine the Global System Interrupt Base corresponding to the I/O APIC device and hence requires the
_GSB object.

The Global System Interrupt Base is a 64-bit value representing the corresponding I/OAPIC device as defined in
Global System Interrupts.

Arguments:
None Return Value: An Integer containing the interrupt base

Example ASL for _GSB usage for a non-PCI based I/0 APIC Device:

Scope (_SB) {

Device (APIC) { // I/O APIC Device
Name (_HID, "ACPIOO009") // ACPI ID for I/O APIC
Name (_CRS, ResourceTemplate ()
{ ...}) // only one resource pointing to I/O APIC register base
Method (_GSB) {
Return (0x10) // Global System Interrupt Base for I/0 APIC starts at 16
}
} // end APIC
} // end scope SB

Example ASL for _GSB usage for a PCI-based I/O APIC Device:

Scope (_SB) {
Device (PCI0) // Host bridge
Name (_HID, EISAID ("PNPOAO3")) // Need _HID for root device
Device (PCI1) { // I/O APIC PCI Device
Name (_ADR, 0x00070000)
Method (_GSB) {
Return (0x18) // Global System Interrupt Base for I/O0 APIC_
—starts at 24
}
} // end PCI1
} // end PCIO
} // end scope SB

6.2. Device Configuration Objects 364

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.2.8 _HPP (Hot Plug Parameters)

This optional object evaluates to a package containing the cache-line size, latency timer, SERR enable, and PERR
enable values to be used when configuring a PCI device inserted into a hot-plug slot or for performing configuration
of a PCI devices not configured by the platform boot firmware at system boot. The object is placed under a PCI bus
where this behavior is desired, such as a bus with hot-plug slots. _HPP provided settings apply to all child buses, until
another _HPP object is encountered.

Arguments:
None
Return Value:
A Package containing the Integer hot-plug parameters

Example:

Method (_HPP, 0) {
Return (Package (4) {
0x08, // CachelineSize in DWORDS
0x40, // LatencyTimer in PCI clocks
0x01, // Enable SERR (Boolean)
0x00 // Enable PERR (Boolean)

Table 6.7: HPP Package Contents

Field Object Type | Definition

Cache-line Integer Cache-line size reported in number of DWORD:s.

size

Latency timer | Integer Latency timer value reported in number of PCI clock cycles.

Enable SERR | Integer When set to 1, indicates that action must be performed to enable SERR in the
command register.

Enable PERR | Integer When set to 1, indicates that action must be performed to enable PERR in the
command register.

Example: Using HPP

Scope (_SB) {
Device (PCIO) { // Root PCI Bus
Name (_HID, EISAID ("PNPOAO3"))
Method (_CRS,0) { //
//
}
Name (_PRT,

Package () { //

//
})
Device (P2P1)
Name (_ADR, 0x000C0000) //
Name (_PRT, Package(){ //
//
1)
} //
Device (P2P2) {
//
—slots)

{ // First PCI-to-PCI bridge

// _HID for root device
Need current resources for root dev
Return current resources for root bridge 0

Need PCI IRQ routing for PCI bridge
Package with PCI IRQ routing table information
(No Hot
Device#Ch, Func#0 on
Need PCI IRQ routing
Package with PCI IRQ

Plug slots)

bus PCIO

for PCI bridge

routing table information

end P2P1

Second PCI-to-PCI bridge (Bus contains Hot plug,,

(continues on next page)

6.2. Device Configuration Objects

365

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

Name (_ADR, 0x000E0000) // Device#Eh, Func#0 on bus PCIO
Name (_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
// Package with PCI IRQ routing table information
)
Name (_HPP, Package () {0x08,0x40, 0x01, 0x00})
// Device definitions for Slot 1- HOT PLUG SLOT
Device (S1F0) { // Slot 1, Func#0 on bus P2P2
Name (_ADR, 0x00020000)
Method (_EJO, 1) { // Remove all power to device}
}
Device (S1F1l) { // Slot 1, Func#l on bus P2P2
Name (_ADR, 0x00020001)
Method (_EJO, 1) { // Remove all power to device}
}
Device (S1F2) { // Slot 1, Func#2 on bus P2P2
Name (_ADR, 0x000200 02)
Method (_EJO, 1) { // Remove all power to device}
}
Device (S1F3) { // Slot 1, Func#3 on bus P2P2
Name (_ADR, 0x00020003)
Method (_EJO, 1) { // Remove all power to device}
}
Device (S1F4) { // Slot 1, Func#4 on bus P2P2
Name (_ADR, 0x00020004)
Method (_EJO, 1) { // Remove all power to device}
}
Device (S1F5) { // Slot 1, Func#5 on bus P2P2
Name (_ADR, 0x00020005)
Method (_EJO, 1) { // Remove all power to device}
}
Device (S1F6) { // Slot 1, Func#6 on bus P2P2
Name (_ADR, 0x00020006)
Method (_EJO, 1) { // Remove all power to device}
}
Device (S1F7) { // Slot 1, Func#7 on bus P2P2
Name (_ADR, 0x00020007)
Method (_EJO, 1) { // Remove all power to device}
}
// Device definitions for Slot 2- HOT PLUG SLOT
Device (S2F0) { // Slot 2, Func#0 on bus P2P2
Name (_ADR, 0x00030000)
Method (_EJO, 1) { // Remove all power to device}
}
Device (S2F1) { // Slot 2, Func#l on bus P2P2
Name (_ADR, 0x00030001)
Method (_EJO, 1) { // Remove all power to device}
}
Device (S2F2) { // Slot 2, Func#2 on bus P2P2
Name (_ADR, 0x00030002)
Method (_EJO, 1) { // Remove all power to device}
}
Device (S2F3) { // Slot 2, Func#3 on bus P2P2
Name (_ADR, 0x00030003)
Method (_EJO, 1) { // Remove all power to device}
}
Device (S2F4) { // Slot 2, Func#4 on bus P2P2
Name (_ADR, 0x00030004)

(continues on next page)

6.2. Device Configuration Objects 366

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

Method (_EJO, 1) { // Remove all power to device}
}
Device (S2F5) { // Slot 2, Func#5 on bus P2P2
Name (_ADR, 0x00030005)
Method (_EJO, 1) { // Remove all power to device}
}
Device (S2F6) { // Slot 2, Func#6 on bus P2P2
Name (_ADR, 0x00030006)
Method (_EJO, 1) { // Remove all power to device}
}
Device (S2F7) { // Slot 2, Func#7 on bus P2P2
Name (_ADR, 0x00030007)
Method (_EJO, 1) { // Remove all power to device}

} // end P2P2
} // end PCIO
} // end Scope (_SB)

OSPM will configure a PCI device on a card hot-plugged into slot 1 or slot 2, with a cache line size of 32 (Notice this
field is in DWORD:s), latency timer of 64, enable SERR, but leave PERR alone.

6.2.9 _HPX (Hot Plug Parameter Extensions)

This optional object provides platform-specific information to the OSPM PCI driver component responsible for con-
figuring PCI, PCI-X, or PCI Express Functions. The information conveyed applies to the entire hierarchy downward
from the scope containing the _HPX object. If another _HPX object is encountered downstream, the settings conveyed
by the lower-level object apply to that scope downward.

OSPM uses the information returned by _HPX to determine how to configure PCI Functions that are hot-plugged into
the system, to configure Functions not configured by the platform firmware during initial system boot, and to configure
Functions any time they lose configuration space settings (e.g. OSPM issues a Secondary Bus Reset/Function Level
Reset or Downstream Port Containment is triggered). The _HPX object is placed within the scope of a PCI-compatible
bus where this behavior is desired, such as a bus with hot-plug slots. It returns a single package that contains one or
more sub-packages, each containing a single Setting Record. Each such Setting Record contains a Setting Type
(INTEGER), a Revision number (INTEGER) and type/revision specific contents.

The format of data returned by the _HPX object is extensible. The Setting Type and Revision number determine the
format of the Setting Record. OSPM ignores Setting Records of types that it does not understand. A Setting Record
with higher Revision number supersedes that with lower revision number, however, the _HPX method can return
both together, OSPM shall use the one with highest revision number that it understands. Type 3 records may have
multiple records with the same revision or different revision (refer to the Revision field in PCI Express Descriptor
Setting Record Content. Out of all the Type 3 records, the OSPM shall determine the highest revision number that it
understands and use all Type 3 records with that revision.

_HPX may return multiple types or Record Settings (each setting in a single sub-package.) OSPM is responsible
for detecting the type of Function and for applying the appropriate settings. OSPM is also responsible for detecting
the device / port type of the PCI Express Function and applying the appropriate settings provided. For example, the
Secondary Uncorrectable Error Severity and Secondary Uncorrectable Error Mask settings of Type 2 record are only
applicable to PCI Express to PCI-X/PCI Bridge whose device / port type is 1000b. Similarly, AER settings are only
applicable to hot plug PCI Express devices that support the optional AER capability.

Arguments:
None

Return Value:

6.2. Device Configuration Objects 367

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

A variable-length Package containing a list of Packages, each containing a single PCI, PCI-X, PCI Ex-
press, or PCI Express Descriptor Record Setting as described below

The _HPX object supersedes the _HPP object. If the _HPP and _HPX objects exist within a device’s
scope, OSPM will only evaluate the _HPX object.

Note: OSPM may override the settings provided by the _HPX object’s Type2 record (PCI Express Settings) or Type3
record (PCI Express Descriptor Settings) when OSPM has assumed native control of the corresponding feature. For
example, if OSPM has assumed ownership of AER (via _OSC), OSPM may override AER related settings returned
by _HPX.

Note: Since error status registers do not drive error signaling, OSPM is not required to clear error status registers as
part of _HPX handling.

Note: There are other mechanisms besides _HPX that provide platform-specific information to the OSPM PCI driver
component responsible for configuring PCI, PCI-X, or PCI Express Functions (e.g., _DSM Definitions for Latency
Tolerance Reporting as defined in the PCI Firmware Specification). System firmware should only provide platform-
specific information via one of these mechanisms for any given register or feature (i.e., if Latency Tolerance Reporting
information is provided via _DSM Definitions for Latency Tolerance Reporting then no information related to Latency
Tolerance Reporting should be provided by _HPX and vice versa). Failure to do so will result in undefined behavior
from the OSPM.

6.2.9.1 PCI Setting Record (Type 0)

The PCI setting record contains the setting type 0, the current revision 1 and the type/revision specific content: cache-
line size, latency timer, SERR enable, and PERR enable values.

Table 6.8: PCI Setting Record Content

Field Object Type Definition

Header

- Type Integer 0x00: Type 0 (PCI) setting record.

- Revision Integer 0x01: Revision 1, defining the set of fields below.

Cache-line size Integer Cache-line size reported in number of DWORDs.

Latency timer Integer Latency timer value reported in number of PCI clock cycles.

Enable SERR Integer When set to 1, indicates that action must be performed to enable
SERR in the command register.

Enable PERR Integer When set to 1, indicates that action must be performed to enable
PERR in the command register.

If the hot plug device includes bridge(s) in the hierarchy, the above settings apply to the primary side (command
register) of the hot plugged bridge(s). The settings for the secondary side of the bridge(s) (Bridge Control Register)
are assumed to be provided by the bridge driver.

The Type 0O record is applicable to hot plugged PCI, PCI-X and PCI Express devices. OSPM will ignore settings
provided in the TypeO record that are not applicable (for example, Cache-line size and Latency Timer are not applicable
to PCI Express).

6.2. Device Configuration Objects 368

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.2.9.2 PCI-X Setting Record (Type 1)

The PCI-X setting record contains the setting type 1, the current revision 1 and the type/revision specific content:
the maximum memory read byte count setting, the average maximum outstanding split transactions setting and the
total maximum outstanding split transactions to be used when configuring PCI-X command registers for PCI-X buses

and/or devices.

Table 6.9: PCI-X Setting Record Content

Field Object Type | Definition

Header

- Type Integer 0x01: Type 1 (PCI-X) setting record.

- Revision Integer 0x01: Revision 1, defining the set of fields below.

Maximum Integer Maximum memory read byte count reported: Value 0: Maximum byte count

memory read 512 Value 1: Maximum byte count 1024 Value 2: Maximum byte count 2048

byte count Value 3: Maximum byte count 4096

Average Integer The following values are defined: Value 0: Maximum outstanding split trans-

maximum action 1 Value 1: Maximum outstanding split transaction 2 Value 2: Maximum

outstanding outstanding split transaction 3 Value 3: Maximum outstanding split transaction

split transac- 4 Value 4: Maximum outstanding split transaction 8 Value 5: Maximum out-

tions standing split transaction 12 Value 6: Maximum outstanding split transaction
16 Value 7: Maximum outstanding split transaction 32

Total max- | Integer See the definition for the average maximum outstanding split transactions.

imum out-

standing split

transactions

For simplicity, OSPM could use the Average Maximum Outstanding Split Transactions value as the Maximum Out-
standing Split Transactions register value in the PCI-X command register for each PCI-X device. Another alternative
is to use a more sophisticated policy and the Total Maximum Outstanding Split Transactions Value to gain even more
performance. In this case, the OS would examined each PCI-X device that is directly attached to the host bridge,
determine the number of outstanding split transactions supported by each device, and configure each device accord-
ingly. The goal is to ensure that the aggregate number of concurrent outstanding split transactions does not exceed the
Total Maximum Outstanding Split Transactions Value: an integer denoting the number of concurrent outstanding split
transactions the host bridge can support (the minimum value is 1).

This object does not address providing additional information that would be used to configure registers in bridge
devices, whether architecturally-defined or specification-defined registers or device specific registers. It is expected
that a driver for a bridge would be the proper implementation mechanism to address both of those issues. However,
such a bridge driver should have access to the data returned by the _HPX object for use in optimizing its decisions on
how to configure the bridge. Configuration of a bridge is dependent on both system specific information such as that
provided by the _HPX object, as well as bridge specific information.

6.2.9.3 PCI Express Setting Record (Type 2)

The PCI Express setting record contains the setting type 2, the current revision 1 and the type/revision specific content
(the control registers as listed in the table below) to be used when configuring registers in the Advanced Error Reporting
Extended Capability Structure or PCI Express Capability Structure for the PCI Express devices.

The Type 2 Setting Record allows a PCI Express-aware OS that supports native hot plug to configure the specified
registers of the hot plugged PCI Express device. A PCI Express-aware OS that has assumed ownership of native
hot plug (via _OSC) but does not support or does not have ownership of the AER register set must use the data
values returned by the _HPX object’s Type 2 record to program the AER registers of a hot-added PCI Express device.

6.2. Device Configuration Objects 369

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

However, since the Type 2 record also includes register bits that have functions other than AER, OSPM must ignore
values contained within this setting record that are not applicable.

To support PCIe RsvdP semantics for reserved bits, two values for each register are provided: an “AND mask” and
an “OR mask”. Each bit understood by firmware to be RsvdP shall be set to 1 in the “AND mask” and 0O in the “OR
mask”. Each bit that firmware intends to be configured as 0 shall be set to 0 in both the “AND mask™ and the “OR
mask”. Each bit that firmware intends to be configured a 1 shall be set to 1 in both the “AND mask” and the “OR
mask”.

When configuring a given register, OSPM uses the following algorithm:

1. Read the register’s current value, which contains the register’s default value.

2. Perform a bit-wise AND operation with the “AND mask” from the table below.
3. Perform a bit-wise OR operation with the “OR mask” from the table below.
4

. Override the computed settings for any bits if deemed necessary. For example, if OSPM is aware of an ar-
chitected meaning for a bit that firmware considers to be RsvdP, OSPM may choose to override the computed
setting for that bit. Note that firmware sets the “AND value” to 1 and the “OR value” to O for each bit that it
considers to be RsvdP.

5. Write the end result value back to the register.

Note that the size of each field in the following table matches the size of the corresponding PCI Express register.

Table 6.10: PCI Express Setting Record Content

Field Object | Definition
Type

Header

- Type Integer 0x02: Type 2 (PCI Express) setting record.

- Revision Integer 0x01: Revision 1, defining the set of fields below.

Uncorrectable Error Mask Register | Integer Bits [31:0] contain the “AND mask” to be used in the OSPM

AND Mask algorithm described above.

Uncorrectable Error Mask Register | Integer Bits [31:0] contain the “OR mask” to be used in the OSPM

OR Mask algorithm described above.

Uncorrectable Error Severity Register | Integer Bits [31:0] contain the “AND mask” to be used in the OSPM

AND Mask algorithm described above.

Uncorrectable Error Severity Register | Integer Bits [31:0] contain the “OR mask” to be used in the OSPM

OR Mask algorithm described above.

Correctable Error Mask Register | Integer Bits [31:0] contain the “AND mask” to be used in the OSPM

AND Mask algorithm described above.

Correctable Error Mask Register OR | Integer Bits [31:0] contain the “OR mask™ to be used in the OSPM

Mask algorithm described above.

Advanced Error Capabilities and Con- | Integer Bits [31:0] contain the “AND mask” to be used in the OSPM

trol Register AND Mask algorithm described above.

Advanced Error Capabilities and Con- | Integer Bits [31:0] contain the “OR mask” to be used in the OSPM

trol Register OR Mask algorithm described above.

Device Control Register AND Mask Integer Bits [15 :0] contain the “AND mask” to be used in the OSPM
algorithm described above.

Device Control Register OR Mask Integer Bits [15:0] contain the “OR mask” to be used in the OSPM
algorithm described above.

Link Control Register AND Mask Integer Bits [15 :0] contain the “AND mask” to be used in the OSPM
algorithm described above.

Link Control Register OR Mask Integer Bits [15 :0] contain the “OR mask” to be used in the OSPM
algorithm described above.

continues on next page

6.2. Device Configuration Objects

370

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.10 — continued from previous page

Field Object | Definition
Type

Secondary Uncorrectable Error Sever- | Integer Bits [31 :0] contain the “AND mask” to be used in the OSPM
ity Register AND Mask algorithm described above

Secondary Uncorrectable Error Sever- | Integer Bits [31 :0] contain the “OR mask” to be used in the OSPM
ity Register OR Mask algorithm described above

Secondary Uncorrectable Error Mask | Integer Bits [31 :0] contain the “AND mask” to be used in the OSPM
Register AND Mask algorithm described above

Secondary Uncorrectable Error Mask | Integer Bits [31 :0] contain the “OR mask” to be used in the OSPM
Register OR Mask algorithm described above

6.2.9.4 PCI Express Descriptor Setting Record (Type 3)

The PCI Express Descriptor setting record contains the setting type 3, the current revision 1 and the type/revision
specific content (the control registers as listed in the tables below) to be used when configuring registers in PCI
Express Functions. There may be multiple PCI Express Descriptor setting records in a single _HPX object with the
same or different revision. Each PCI Express Descriptor setting record shall contain at least one, and may contain
more than one, PCI Express Register Descriptors as defined in PCI Express Register Descriptor.

The Type 3 Setting Record allows a PCI Express-aware OS to configure the indicated registers of the PCI Express
Function. A PCI Express-aware OS that does not support or does not have ownership of a register in this record
must use the data values returned by the _HPX object’s Type 3 record to program that register of a PCI Express
Function that has lost its configuration space settings (e.g. a hot-added device, a device not configured by the platform
firmware during initial system boot, a Device/Function that was reset via Secondary Bus Reset/Function Level Reset,
Downstream Port Containment was triggered, etc.).

To support PCle RsvdP semantics for reserved bits, two values for each register indicated by Write Register Offset are
provided: a Write AND Mask and a Write OR Mask. Each bit understood by firmware to be RsvdP shall be set to 1 in
the Write AND Mask and 0 in the Write OR Mask. Each bit that firmware intends to be configured as 0 shall be set to
0 in both the Write AND Mask and the Write OR Mask. Each bit that firmware intends to be configured a 1 shall be
set to 1 in both the Write AND Mask and the Write OR Mask.

OSPM evaluates each PCI Express Register Descriptor in order starting with the first PCI Express Register Descriptor
and continuing through the Nth PCI Express Register Descriptor as shown in PCI Express Descriptor Setting Record
Content for each PCI Express Function that has lost its configuration space settings (e.g. a hot-added device, a device
not configured by the platform firmware during initial system boot, a Device/Function that was reset via Secondary
Bus Reset/Function Level Reset, Downstream Port Containment was triggered, etc.) in the scope of the _HPX method
using the following algorithm:

1. Verify the PCI Express Register Descriptor applies to the PCI Express Function.
a. Read the PCI Express Function’s Device Type/Port from its PCI Express Capabilities Register.

b. Read the bit corresponding to the PCI Express Function’s Device Port/Type in the Device/Port Type from
PCI Express Register Descriptor below.

If set to Ob, then the PCI Express Register Descriptor does not apply to the PCI Express Function and
OSPM moves to the next Function in the scope of the _HPX method or the next PCI Express Register
Descriptor if there are no more Functions.

If set to 1b, then continue to the next step.

c. Determine if the PCI Express Function is a non-SR-IOV Function, an SR-IOV Physical Function, or an
SR-IOV Virtual Function.

d. Read the bit corresponding to the PCI Express Function’s type in the Function Type from PCI Express
Register Descriptor below.

6.2. Device Configuration Objects 371

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

If set to Ob, then the PCI Express Register Descriptor does not apply to the PCI Express Function and
OSPM moves to the next Function in the scope of the _HPX method or to the next PCI Express Register
Descriptor if there are no more Functions.

If set to 1b, then the PCI Express Register Descriptor applies to the PCI Express Function and OSPM
continues to the next step.

2. Read the Configuration Space Location from PCI Express Register Descriptor below.

a. If Configuration Space Location is 0, then the Match Register Offset and Write Register Offset field’s byte
offset is relative to offset O of the Function’s configuration space.

b. If Configuration Space Location is 1, then the Match Register Offset and Write Register Offset field’s byte
offset is relative to the starting offset of the Capability Structure indicated by PCle Capability ID.

If the Capability ID is 01h (PCI Power Management Capability Structure) or 10h (PCI Express Capability
Structure) then OSPM shall check the Capability Version of the Function’s Capability Structure against
the PClIe Capability ID field. In the event that there are more than one PCI Express Register Descriptors
for a given PCle Capability ID with different PCle Capability Versions, OSPM shall use the PCI Express
Register Descriptors with the highest PCle Capability Version supported by the Function.

There may be more than one instance of a Capability Structure that matches the indicated PCle Capability
ID. Continue to step 3 for each such instance. If no Capability Structures indicated by PCle Capability ID
are found, then start back at step 1 above for the next Function in the scope of the _HPX method or the
next PCI Express Register Descriptor if there are no more Functions.

c. If Configuration Space Location is 2, then the Match Register Offset and Write Register Offset field’s byte
offset is relative to the starting offset of the Extended Capability Structure indicated by PCle Capability
ID and PCle Capability Version.

In the event that there are more than one PCI Express Register Descriptors for a given PCle Capability ID
with different PCle Capability Versions, OSPM shall use the PCI Express Register Descriptors with the
highest PCle Capability Version supported by the Function.

There may be more than one instance of an Extended Capability Structure that matches the indicated PCle
Capability ID and PCle Capability Version. Continue to step 3 for each such instance. If no Extended
Capability Structures indicated by PCle Capability ID and PCle Capability Version are found, then start
back at step 1 above for the next Function in the scope of the _HPX method or the next PCI Express
Register Descriptor if there are no more Functions.

d. If Configuration Space Location is 3, then the Match Register Offset and Write Register Offset field’s byte
offset is relative to the starting offset of the Extended Capability Structure indicated by PCle Capability
ID, PClIe Capability Version, PCle Vendor ID, VSEC ID, and VSEC Rev.

In the event that there are more than one PCI Express Register Descriptors for a given PCle Capability ID
with different PCle Capability Versions, OSPM shall use the PCI Express Register Descriptors with the
highest PCle Capability Version supported by the Function.

Once the PCI Express Register Descriptors that match the PCle Capability ID with the highest PCle Capa-
bility Version supported by the Function are found, the OSPM shall use PCI Express Register Descriptors
among those with the highest VSEC Rev supported by the Function.

There may be more than one instance of an Extended Capability Structure that matches the indicated PCle
Capability ID, PCle Capability Version, PCle Vendor ID, VSEC ID, and VSEC Rev. Continue to step 3 for
each such instance. If no Extended Capability Structures indicated by PCle Capability ID, PCle Capability
Version, PCle Vendor ID, VSEC ID, and VSEC Rev are found, then start back at step 1 above for the next
Function in the scope of the _HPX method or the next PCI Express Register Descriptor if there are no
more Functions.

e. If Configuration Space Location is 4, then the Match Register Offset and Write Register Offset field’s byte
offset is relative to the starting offset of the Extended Capability Structure indicated by PCle Capability

6.2. Device Configuration Objects 372

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

ID, PClIe Capability Version, PCle Vendor ID, DVSEC ID, and DVSEC Reyv.

In the event that there are more than one PCI Express Register Descriptors for a given PCle Capability ID
with different PCle Capability Versions, OSPM shall use the PCI Express Register Descriptors with the
highest PCle Capability Version supported by the Function.

Once the PCI Express Register Descriptors that match the PCle Capability ID with the highest PCle Capa-
bility Version supported by the Function are found, the OSPM shall use PCI Express Register Descriptors
among those with the highest DVSEC Rev supported by the Function.

There may be more than one instance of an Extended Capability Structure that matches the indicated PCle
Capability ID, PCle Capability Version, PCle Vendor ID, DVSEC ID, and DVSEC Rev. Continue to step
3 for each such instance. If no Extended Capability Structures indicated by PCle Capability ID, PCle
Capability Version, PCle Vendor ID, DVSEC ID, and DVSEC Rev are found, then start back at step 1
above for the next Function in the scope of the _HPX method or the next PCI Express Register Descriptor
if there are no more Functions.

3. Check the Match Register to see if the Write Register should be updated.
a. Read the current value from the register indicated by the Match Register Offset.
b. Perform a bit-wise AND operation on the result of step 3a with the Match AND Mask.

c. Compare the result of step 3b with the Match Value. If they are equal then continue to step 4, else start
back at step 1 above for the next Function

d. In the scope of the _HPX method or the next PCI Express Register Descriptor if there are no more Func-
tions.

4. Update the Write Register.

a. Read the current value from the register indicated by the Write Register Offset.

b. Perform a bit-wise AND operation on the result of step 4a with the Write AND Mask.
c. Perform a bit-wise OR operation on the result of step 4b with the Write OR Mask.

d. Override the computed settings from step 4c for any bits if deemed necessary. For example, if OSPM is aware
of an architected meaning for a bit that firmware considers to be RsvdP, OSPM may choose to override the
computed setting for that bit. Note that firmware sets the Write AND Mask to 1 and the Write OR Mask to O for
each bit that it considers to be RsvdP.

e. Write the result of step 4d back to the register indicated by the Write Register Offset.

Table 6.11: PCI Express Descriptor Setting Record Content

Field Object Type Definition

Header

- Type Integer 0x03: Type 3 (PCI Express Descriptor) setting record.
- Revision Integer 0x01: Revision 1, defining the set of fields below.
PCI Express Regis- | Integer Number of Register Descriptors in this setting record.

ter Descriptor Count

First PCI Express
Register Descriptor

PCI Express Regis-
ter Descriptor

The first PCI Express Register Descriptor {add link}

Second PCI Express
Register Descriptor

PCI Express Regis-
ter Descriptor

The second PCI Express Register Descriptor {add link}

Nth PCI Express
Register Descriptor

PCI Express Regis-
ter Descriptor

The Nth PCI Express Register Descriptor {add link}

6.2. Device Configuration Objects

373

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.12: PCI Express Register Descriptor

Field Object | Definition
Type
Device/Port Type Integer This field is a bitmask of Device/Port Types to which the PCI Express

Register Descriptor applies. A bit is set to 1 to indicate the PCI Express
Register Descriptor applies to the corresponding Device/Port Type and
is set to O to indicate it does not apply to the corresponding Device/Port
Type. At least one bit shall be set. More than one bit may be set. Bit
[0]: PCI Express Endpoint Bit [1]: Legacy PCI Express Endpoint Bit [2]:
RCiEP Bit [3]: Root Complex Event Collector Bit [4]: Root Port of PCI
Express Root Complex Bit [5]: Upstream Port of PCI Express Switch
Bit [6]: Downstream Port of PCI Express Switch Bit [7]: PCI Express to
PCI/PCI-X Bridge Bit [8]: PCI/PCI-X to PCI Express Bridge All other
bits are reserved.

Function Type Integer This field is a bitmask of Function Types to which the PCI Express Regis-
ter Descriptor applies. A bit is set to 1 to indicate the PCI Express Register
Descriptor applies to the corresponding Function Type and is set to 0 to
indicate it does not apply to the corresponding Function Type. At least
one bit shall be set. More than one bit may be set. Bit [0]: Non-SR-
IOV Function Bit [1]: SR-IOV Physical Function Bit [2]: SR-IOV Virtual
Function All other bits are reserved.

Configuration Space Lo- | Integer A value of 0 indicates the Match Register Offset and Write Register Off-
cation set fields are relative to offset O of the Function’s configuration space. A
value of 1 indicates the Match Register Offset and Write Register Off-
set fields are located in a Capability Structure within the first 256 bytes
of PCle configuration space and are relative to offset O of the Capability
Structure. A value of 2 indicates the Match Register Offset and Write Reg-
ister Offset fields are located in an Extended Capability Structure beyond
the first 256 bytes of PCI configuration space and are relative to offset 0
of the Extended Capability Structure. A value of 3 indicates the Match
Register Offset and Write Register fields are located in a PCI Express
Vendor-Specific Extended Capability and are relative to offset O of the
Vendor-Specific Extended Capability. A value of 4 indicates the Match
Register Offset and Write Register Offset fields are located in a PCI Ex-
press Designated Vendor-Specific Extended Capability and are relative to
offset O of the Designated Vendor-Specific Extended Capability. All other
values are reserved.

PCle Capability ID Integer PCle Capability ID indicates the capability ID of the Capability Structure
(@if Configuration Space Location is 1) or Extended Capability Structure
(if Configuration Space Location is 2) to which the PCI Express Reg-
ister Descriptor applies. This field only applies if Configuration Space
Location is 1 (Capability Structure), 2 (Extended Capability Structure), 3
(Vendor-Specific Extended Capability), or 4 (Designated Vendor-Specific
Extended Capability).

continues on next page

6.2. Device Configuration Objects 374

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.12 — continued from previous page
Field Object | Definition
Type
PCle Capability Version Integer This field contains information about the Capability Version/Extended
Capability Version and applies in the following conditions: Configura-
tion Space Location is 1 (Capability Structure) and Capability ID is O01h
(PCI Power Management Capability Structure); or Configuration Space
Location is 1 (Capability Structure) and Capability ID is 10h (PCI Express
Capability Structure); or Configuration Space Location is 2 (Extended Ca-
pability Structure); or Configuration Space Location is 3 (Vendor-Specific
Extended Capability); or Configuration Space Location is 4 (Designated
Vendor-Specific Extended Capability). Bit [4] indicates the applicability
of the Capability Version/Extended Capability Version in bits [3:0]. De-
fined values are: Ob The PCI Express Register Descriptor applies to Capa-
bility Structures/Extended Capability Structures with Capability Versions
that are equal to the version in bits [3:0]. 1b The PCI Express Register De-
scriptor applies to Capability Structures/Extended Capability Structures
with Capability Versions that are greater than or equal to the version in
bits [3:0]. Bits [3:0] indicate the Capability Version of the Capability
Structures/Extended Capability Structure. Note that the version of the
Capability Structure/Extended Capability Structure is always 4 bits ex-
cept for the PCI Power Management Capability Structure whose Version
field is only 3 bits. For the PCI Power Management Capability structure,
this field shall contain the Version in bits [2:0] and bit [3] shall be Ob. All
other bits are reserved.
PClIe Vendor ID Integer If Configuration Space Location is 3 (Vendor-Specific Extended Capabil-
ity Structure), this field indicates the vendor in the Vendor ID register at
offset O of the Function’s configuration space to which the PCI Express
Register Descriptor applies. If Configuration Space Location is 4 (Desig-
nated Vendor-Specific Extended Capability Structure), this field indicates
the vendor in the DVSEC Vendor ID register at offset 4 in the Designated
Vendor-Specific Extended Capability Structure to which the PCI Express
Register Descriptor applies. This field only applies if Configuration Space
Location is 3 (Vendor-Specific Extended Capability Structure) or 4 (Des-
ignated Vendor-Specific Extended Capability Structure).
VSEC/DVSEC ID Integer If Configuration Space Location is 3 (Vendor-Specific Extended Capabil-
ity Structure), this field indicates the vendor-defined ID number (VSEC
ID) of the Vendor-Specific Extended Capability Structure to which the
PCI Express Register Descriptor applies. If Configuration Space Loca-
tion is 4 (Designated Vendor-Specific Extended Capability Structure),
this field indicates the DVSEC ID of the Designated Vendor-Specific
Extended Capability Structure to which the PCI Express Register De-
scriptor applies. This field only applies if Configuration Space Location
is 3 (Vendor-Specific Extended Capability Structure) or 4 (Designated
Vendor-Specific Extended Capability Structure).

continues on next page

6.2. Device Configuration Objects 375

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.12 — continued from previous page

Field

Object
Type

Definition

VSEC/DVSEC Rev

Integer

This field contains information about the VSEC/DVSEC Rev and only ap-
plies if Configuration Space Location is 3 (Vendor-Specific Extended Ca-
pability Structure) or 4 (Designated Vendor-Specific Extended Capability
Structure). Bit [4] indicates the applicability of the VSEC/DVSEC Rev
in bits [3:0]. Defined values are: Ob The PCI Express Register Descrip-
tor applies to Vendor Specific Extended Capabilities/Designat ed Vendor-
Specific Capabilities with VSEC/DVSEC Revs that are equal to the re-
vision in bits [3:0]. 1b The PCI Express Register Descriptor applies to
Vendor Specific Extended Capabilities/Designat ed Vendor-Specific Ca-
pabilities with VSEC/DVSEC Revs that are greater than or equal to the
revision in bits [3:0]. Bits [3:0] - If Configuration Space Location is 3
(Vendor-Specific Extended Capability Structure), this field indicates the
VSEC Rev of the Vendor-Specific Extended Capability Structure. If Con-
figuration Space Location is 4 (Designated Vendor-Specific Extended Ca-
pability Structure), this field indicates the DVSEC Revision of the Des-
ignated Vendor-Specific Extended Capability Structure. All other bits are
reserved.

Match Register Offset

Integer

Byte offset of the PCle configuration space register that is checked before
the write. This offset shall be dword aligned (i.e. bits [1:0] are 00b).

Match AND Mask

Integer

Bits 0 to 31 contain the AND mask to be used by the operating system
engine during the check.

Match Value

Integer

Bits 0 to 31 contain the value to be compared by Operating system engine
before the write.

Write Register Offset

Integer

Byte offset of the PCle configuration space register to be modified. This
offset shall be dword aligned (i.e. bits [1:0] are 00b).

Write AND Mask

Integer

Bits O to 31 contain the AND mask to be used by the operating system
engine to modify the value to be written to the register indicated by Write
Register Offset.

Write OR Mask

Integer

Bits 0 to 31 contain the OR mask to be used by the operating system
engine to modify the value to be written to the register indicated by Write
Register Offset.

6.2.9.5 HPX Example

Method (_HPX, 0) {
Return (Package (2) {

Package (6) {
0x00,
0x01,
0x08,
0x40,
0x01,
0x00

}I

Package (5) {
0x01,
0x01,
0x03,
0x04,
0x07

/7
/7
//
/7
/7
//
/7

//
//
//
//
/7
//

PCI Setting Record

Type 0

Revision 1

CachelLineSize in DWORDS
LatencyTimer in PCI clocks
Enable SERR (Boolean)
Enable PERR (Boolean)

PCI-X Setting Record

Type 1

Revision 1

Maximum Memory Read Byte Count

Average Maximum Outstanding Split Transactions
Total Maximum Outstanding Split Transactions

(continues on next page)

6.2. Device Configuration Objects 376

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

}
Package (17) {
0x03,
0x01,
0x01,
0x01FF,
0x03,
0x01,
0x10,
0x12,
0x0000,
0x00,
0x00,
0x24,
0x00000002,
0x00000002
0x28,
OXFFFFFFFO,
0x00000006
}
Package (17) {
0x03,
0x01,
0x01,
0x01FF,
0x03,
0x01,
0x10,
0x12,
0x0000,
0x00,
0x00,
0x24,
0x00000006,
0x00000004
0x28,
OxXFFFFFFFO,
0x00000009
}
Package (17) {
0x03,
0x01,
0x01,
0x01FF,
0x03,
0x01,
0x10,
0x12,
0x0000,
0x00,
0x00,
0x24,
0x00000016,
0x00000010
0x28,
OxXFFFFFFFF,
0x00000010

//
/7
//
//
/7
//
//
/7
//
//
/7
//
//
/7
//
//
/7
//

/7
//
//
/7
//
//
/7
//
//
/7
//
//
/7
//
//
/7
//
/7

//
//
/7
//
/7
/7
//
/7
/7
//
/7
/7
//
/7
/7
//
/7
//

PCI Express Descriptor setting Record (Type 3)

Type 3

Revision 1

Number of Register Descriptors

Device/Port Type - All types in PCIe 4.0

Function Type - All but VFs

Configuration Space Location - Capability Structure
PCIe Capability ID - PCI Express Cap Struct

PCIe Capability Version - Applies to rev 2 and higher
PCIe Vendor ID - N/A

VSEC/DVSEC ID - N/A

VSEC/DVSEC Rev - N/A

Match Register Offset - Device Cap 2

Match AND Mask - Check Range B

Match Value - CTO Range B supported?

Write Register Offset - Device Ctrl 2

Write AND Mask - Clear CTO Range

Write OR Mask - Set CTO range 65 ms to 210 ms

PCI Express Descriptor setting Record (Type 3)

Type 3

Revision 1

Number of Register Descriptors

Device/Port Type - All types in PCIe 4.0

Function Type - All but VFs

Configuration Space Location - Capability Structure
PCIe Capability ID - PCI Express Cap Struct

PCIe Capability Version - Applies to rev 2 and higher
PCIe Vendor ID - N/A

VSEC/DVSEC ID - N/A

VSEC/DVSEC Rev - N/A

Match Register Offset - Device Cap 2

Match AND Mask - Check Range B/C

Match Value - CTO Range B not supported but C is?
Write Register Offset - Device Ctrl 2

Write AND Mask - Clear CTO Range

Write OR Mask - Set CTO range 260 to 900 ms

PCI Express Descriptor setting Record (Type 3)

Type 3

Revision 1

Number of Register Descriptors

Device/Port Type - All types in PCIe 4.0

Function Type - All but VFs

Configuration Space Location - Capability Structure
PCIe Capability ID - PCI Express Cap Struct

PCIe Capability Version - Applies to rev 2 and higher
PCIe Vendor ID - N/A

VSEC/DVSEC ID - N/A

VSEC/DVSEC Rev - N/A

Match Register Offset - Device Cap 2

Match AND Mask - Check Range B/C and CTO Disable
Match Value - CTO Disable support but no range B/C?
Write Register Offset - Device Ctrl 2

Write AND Mask - Don't mask anything

Write OR Mask - Set CTO Disable

(continues on next page)

6.2. Device Configuration Objects 377

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

6.2.10 _MAT (Multiple APIC Table Entry)

This optional object evaluates to a buffer returning data in the format of a series of Multiple APIC Description Table
(MADT) APIC Structure entries. This object can appear under an I/O APIC or processor object definition as processors
may contain Local APICs. Specific types of MADT entries are meaningful to (in other words, processed by) OSPM
when returned via the evaluation of this object as described in Table 5.21. Other entry types returned by the evaluation
of _MAT are ignored by OSPM.

When _MAT appears under a Processor object, OSPM uses the ACPI processor ID in the entries returned from the
object’s evaluation to identify the entries corresponding to either the ACPI processor ID of the Processor object or the
value returned by the _UID object under a Processor device.

Arguments:
None
Return Value:
A Buffer containing a list of Interrupt Controller Structures.

Example ASL for _MAT usage:

Scope (_SB) {

Device (PCIO) { // Root PCI Bus
Name (_HID, EISAID ("PNPOAO3")) // Need _HID for root device
Device (P64A) { // P64A ACPI

Name (_ADR,0)
OperationRegion (OPRM, SystemMemory,
Offset in system memory of Interrupt Controller Structures,
Length in bytes)
Field (OPRM, ByteAcc, NoLock, Preserve) {
MATD, Length in bits
}
Method (_MAT, 0) {
Return (MATD)
}

} // end P64A
} // end PCIO

} // end scope SB

6.2. Device Configuration Objects 378

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.2.11 _OSC (Operating System Capabilities)

This optional object is a control method that is used by OSPM to communicate to the platform the feature support
or capabilities provided by a device’s driver. This object is a child object of a device and may also exist in the
_SB scope, where it can be used to convey platform wide OSPM capabilities. When supported, _OSC is invoked
by OSPM immediately after placing the device in the DO power state. Device specific objects are evaluated after
_OSC invocation. This allows the values returned from other objects to be predicated on the OSPM feature support
/ capability information conveyed by _OSC. OSPM may evaluate _OSC multiple times to indicate changes in OSPM
capability to the device but this may be precluded by specific device requirements. As such, _OSC usage descriptions
in ACPI-Defined Devices and Device-Specific Objects, or other governing specifications describe superseding device
specific _OSC capabilities and / or preclusions.

_OSC enables the platform to configure its ACPI namespace representation and object evaluations to match the capa-
bilities of OSPM. This enables legacy operating system support for platforms with new features that make use of new
namespace objects that if exposed would not be evaluated when running a legacy OS. _OSC provides the capability
to transition the platform to native operating system support of new features and capabilities when available through
dynamic namespace reconfiguration. _OSC also allows devices with Compatible IDs to provide superset functionality
when controlled by their native (For example, _HID matched) driver as appropriate objects can be exposed accordingly
as a result of OSPM’s evaluation of _OSC.

Arguments: (4)

Arg0 - A Buffer containing a UUID

Argl - An Integer containing a Revision ID of the buffer format

Arg2 - An Integer containing a count of entries in Arg3

Arg3 - A Buffer containing a list of DWORD capabilities

Return Value:

A Buffer containing a list of capabilities
Argument Information
Arg0: UUID - used by the platform in conjunction with Revision ID to ascertain the format of the Capabilities buffer.
Argl: Revision ID - The revision of the Capabilities Buffer format. The revision level is specific to the UUID.
Arg2: Count - Number of DWORD:s in the Capabilities Buffer in Arg3

Arg3: Capabilities Buffer - Buffer containing the number of DWORDs indicated by Count. The first DWORD of
this buffer contains standard bit definitions as described below. Subsequent DWORDs contain UUID-specific bits
that convey to the platform the capabilities and features supported by OSPM. Successive revisions of the Capabilities
Buffer must be backwards compatible with earlier revisions. Bit ordering cannot be changed.

Capabilities Buffers are device-specific and as such are described under specific device definitions. See ACPI-Defined
Devices and Device-Specific Objects for any _OSC definitions for ACPI devices. The format of the Capabilities
Buffer and behavior rules may also be specified by OEMs and IHVs for custom devices and other interface or device
governing bodies for example, the PCI SIG.

The first DWORD in the capabilities buffer is used to return errors defined by _OSC. This DWORD must always be
present and may not be redefined/reused by unique interfaces utilizing _ OSC.

¢ Bit [0]- Query Support Flag. If set, the _OSC invocation is a query by OSPM to determine or negotiate with
the platform the combination of capabilities for which OSPM may take control. In this case, OSPM sets bits in
the subsequent DWORDs to specify the capabilities for which OSPM intends to take control. If clear, OSPM is
attempting to take control of the capabilities corresponding to the bits set in subsequent DWORDs. OSPM may
only take control of capabilities as indicated by the platform by the result of the query.

* Bit [1] - Always clear (0).

6.2. Device Configuration Objects 379

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

* Bit [2] - Always clear (0).

* Bit [3] - Always clear (0).

e All others - reserved.
Return Value Information

Capabilities Buffer (Buffer) - The platform acknowledges the Capabilities Buffer by returning a buffer of DWORDs
of the same length. Set bits indicate acknowledgment that OSPM may take control of the capability and cleared bits
indicate that the platform either does not support the capability or that OSPM may not assume control.

The first DWORD in the capabilities buffer is used to return errors defined by _OSC. This DWORD must always be
present and may not be redefined/reused by unique interfaces utilizing _OSC.

¢ Bit [0] - Reserved (not used)

 Bit [1] - _OSC failure. Platform Firmware was unable to process the request or query. Capabilities bits may
have been masked.

* Bit [2] - Unrecognized UUID. This bit is set to indicate that the platform firmware does not recognize the UUID
passed in via Arg0Q. Capabilities bits are preserved.

* Bit [3] - Unrecognized Revision. This bit is set to indicate that the platform firmware does not recognize the
Revision ID passed in via Argl. Capabilities bits beyond those comprehended by the firmware will be masked.

* Bit [4] - Capabilities Masked. This bit is set to indicate that capabilities bits set by driver software have been
cleared by platform firmware.

¢ All others - reserved.

Note: OSPM must not use the results of _OSC evaluation to choose a compatible device driver. OSPM must use
_HID, _CID, or native enumerable bus device identification mechanisms to select an appropriate driver for a device.

The platform may issue a Notify**(device, 0x08) to inform OSPM to re-evaluate _OSC when the availability of
feature control changes. Platforms must **not **rely, however, on OSPM to evaluate _OSC after issuing a
**Notify for proper operation as OSPM cannot guarantee the presence of a target entity to receive and process the
Notify for the device. For example, a device driver for the device may not be loaded at the time the Notify is signaled.
Further, the issuance and processing rules for notification of changes in the Capabilities Buffer is device specific. As
such, the allowable behavior is governed by device specifications either in ACPI-Defined Devices and Device-Specific
Objects , for ACPI-define devices, or other OEM, IHV, or device governing body’s’ device specifications.

It is permitted for _OSC to return all bits in the Capabilities Buffer cleared. An example of this is when significant
time is required to disable platform-based feature support. The platform may then later issue a Notify to tell OSPM to
re-evaluate _OSC to take over native control. This behavior is also device specific but may also rely on specific OS
capability.

In general, platforms should support both OSPM taking and relinquishing control of specific feature support via

multiple invocations of _OSC but the required behavior may vary on a per device basis.

Since platform context is lost when the platform enters the S4 sleeping state, OSPM must re-evaluate _OSC upon
wake from S4 to restore the previous platform state. This requirement will vary depending on the device specific
_OSC functionality.

6.2. Device Configuration Objects 380

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.2.11.1 Rules for Evaluating _OSC

This section defines when and how the OS must evaluate _OSC, as well as restrictions on firmware implementation.

6.2.11.1.1 Query Flag

If the Query Support Flag (Capabilities DWORD 1, bit 0) is set by the OS when evaluating _OSC, no hardware
settings are permitted to be changed by firmware in the context of the _OSC call. It is strongly recommended that the
OS evaluate _OSC with the Query Support Flag set until _OSC returns the Capabilities Masked bit clear, to negotiate
the set of features to be granted to the OS for native support; a platform may require a specific combination of features
to be supported natively by an OS before granting native control of a given feature. After negotiation with the query
flag set, the OS should evaluate without it so that any negotiated values can be made effective to hardware.

6.2.11.1.2 Evaluation Conditions

The OS must evaluate _OSC under the following conditions:

During initialization of any driver that provides native support for features described in the section above. These
features may be supported by one or many drivers, but should only be evaluated by the main bus driver for that
hierarchy. Secondary drivers must coordinate with the bus driver to install support for these features. Drivers may not
relinquish control of features previously obtained (i.e., bits set in Capabilities DWORD3 after the negotiation process
must be set on all subsequent negotiation attempts.)

When a Notify(<device>, 8) is delivered to the PCI Host Bridge device.

Upon resume from S4. Platform firmware will handle context restoration when resuming from S1-S3.

6.2.11.1.3 Sequence of _OSC Calls

The following rules govern sequences of calls to _OSC that are issued to the same host bridge and occur within the
same boot.

* The OS is permitted to evaluate _OSC an arbitrary number of times.

e If the OS declares support of a feature in the Support Field in one call to _OSC, then it must preserve the set
state of that bit (declaring support for that feature) in all subsequent calls.

* If the OS is granted control of a feature in the Control Field in one call to _OSC, then it must preserve the set
state of that bit (requesting that feature) in all subsequent calls.

» Firmware may not reject control of any feature it has previously granted control to.

* There is no mechanism for the OS to relinquish control of a feature previously requested and granted.

6.2.11.2 Platform-Wide OSPM Capabilities
OSPM evaluates _SB._OSC to convey platform-wide OSPM capabilities to the platform. Argument definitions are as
follows:
Arguments(4):
* Arg0 - UUID (Buffer): 0811B06E-4A27-44F9-8D60-3CBBC22E7B48
* Argl - Revision ID (Integer): 1
e Arg2 - Count of Entries in Arg3 (Integer): 2

6.2. Device Configuration Objects 381

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

* Arg3 - DWORD capabilities (Buffer):
— First DWORD: as described in Section 6.2.11
— Second DWORD: see the following table.

Table 6.13: Platform-Wide _OSC Capabilities DWORD 2

Bits Field Name Definition
0 Processor Aggregator Device | This bit is set if OSPM supports the Processor Aggregator device as
Support described in Processor Aggregator Device {add link}
1 _PPC _OST Processing Support | This bit is set if OSPM will evaluate the _OST object defined under
a processor as a result of _PPC change notification (Notify 0x80).
2 _PR3 Support This bit is set if OSPM supports reading _PR3and using power re-
sources to switch power. Note this handshake translates to an oper-
ating model that the platform and OSPM supports both the power
model containing both D3hot and D3.
3 Insertion / Ejection _OST Pro- | This bit is set if OSPM will evaluate the _OST object defined under
cessing Support a device when processing insertion and ejection source event codes.
4 APEI Support This bit is set if OSPM supports the ACPI Platform Error Interfaces.
See ACPI Platform Error Interfaces (APEI) {add link}
5 CPPC Support This bit is set if OSPM supports controlling processor performance
via the interfaces described in the _CPC object.
6 CPPC 2 Support This bit is set if OSPM supports revision 2 of the _CPC object.
7 Platform Coordinated Low | This bit is set if OSPM supports platform coordinated low power
Power Idle Support idle states (see note below)*.
8 OS Initiated Low Power Idle | This bit is set if OSPM supports OS initiated low power idle states.
Support *(see note, below).
9 Fast Thermal Sampling support | This bit is set if OSPM supports _TFP.
10 Greater Than 16 p-state support | This bit is set if OSPM supports greater than 16 p-states. If clear,
no more than 16 p-states are supported.
11 Generic Event Device support This bit is set if OSPM supports parsing of the generic event device.
12 Diverse CPPC Highest Opti- | This bit is set if OSPM can process processor device notifications
mization Support for changes in CPPC Highest Performance. It also indicates sup-
port for optimizing for performance domains with diverse Highest
Performance capabilities. Potential OS optimizations for diverse
CPPC highest performance include but are not limited to placement
of work on specific logical processors yielding a performance or
power benefit. Note: These optimizations are independent of the
platform’s existing ability to expose diverse Highest Performance
to OSPM as well as OSPM support for the MADT GICC’s Proces-
sor Power Efficiency Class.
13 Interrupt ResourceSource sup- | This bit is set if OSPM supports the usage of the ResourceSource in
port the extended interrupt descriptor. As part of the handshake provided
through _OSC, the platform will indicate to the OS whether or not
it supports usage of ResourceSource. If not set, the OS may choose
to ignore the ResourceSource parameter in the extended interrupt
descriptor.
14 Flexible Address Space for | This bit is set if OSPM supports any CPPC register being located
CPPC Registers in PCC, SystemMemory, SystemlO, or Functional Fixed Hardware
address spaces. If not set, per-register restrictions described in ACPI
Specification 6.1 apply.

continues on next page

6.2. Device Configuration Objects

382

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.13 — continued from previous page

Bits Field Name Definition

15 GHES_ASSIST Support This bit is set if OSPM supports the GHES_ASSIS Flag in HEST
Error Structures. See ACPI Platform Error Interfaces (APEI) {add
link}

16 Multi PCC channel support for | The OSPM sets this bit when it supports multiple PCC channels for

CPPC the CPPC protocol.

17 Generic Initiator Support This bit is set if OSPM supports the Generic Initiator Affinity Struc-
ture in SRAT.

18 Native USB4 Support The OS sets this bit to indicate support for an OSPM-native USB4

Connection Manager, which handles USB4 connection events and
link management.

19 Battery Charge Limiting Sup- | The OS sets this bit to indicate support for Battery Charge Limit-
port ing. This bit promises that the platform will advertise “true” state
of charge to the OSPM at all times.
20 PCI BAR Target GAS Support The OS sets this bit to indicate support for the PCI BAR Target GAS
structure, as described in Table 5.2.
31:21 Reserved (must be 0)

Note: * As part of the handshake provided through _OSC, the OS will pass in flags to indicate whether it supports
Platform Coordinated Low Power Idle or OS Initiated Low Power Idle or both (see Section 8.4.4.2), through flags 7 and
8. The platform will indicate which of the modes it supports in its response by clearing flags that are not supported.
If both are supported, the default is platform coordinated and OSPM can switch the platform to OS Initiated via a
processor architecture specific mechanism. By setting either flag 7 or 8 or both, the OSPM is asserting it supports
any objects associated with Low Power Idle states (see Section 8.4.4.3, Table 8.16, and Section 7.2.5), and supports a
Processor Container Device.

Return Value Information

Capabilities Buffer (Buffer) - The platform acknowledges the Capabilities Buffer by returning a buffer of DWORDs
of the same length. Set bits indicate acknowledgment and cleared bits indicate that the platform does not support the
capability.

6.2.11.3 Operating System Capabilities (_OSC) for USB

Platform hardware and operating systems with support for USB4 require a few controls for passing information back
and forth. The following definition is used to convey this information.

Along with the Platform-Wide OSPM Capabilities defined in Section 6.2.11.2, this _OSC interface is implemented
within the same scope, and therefore the same _OSC Control Method, using a different UUID value. If the platform
does not support USB4, the UUID defined in this section should not be supported.

Note that if control of any features described in Table 6.15 are granted to OSPM, system firmware must not attempt to
control any other features not granted to OSPM; only one Connection Manager is permitted to be active at any point
in time. OSPM evaluates _SB._OSC to manage USB capabilities within the platform. Argument definitions are as
follows.

Arguments (4):

Arg0 — UUID (Buffer): 23A0D13A-26AB-486C-9CS5F-0FFAS525A575A
Argl — Revision ID (Integer): 1

Arg2 — Count of entries (DWORDS) in Arg3 (Integer): 3

6.2. Device Configuration Objects 383

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Arg3 — DWORD capabilities buffer:
* First DWORD: As described in Section 6.2.11.1
* Second DWORD: OSPM Support Field for USB. See Table 6.14 for details.
¢ Third DWORD: OSPM Control Field for USB. See Table 6.15 for details.
Note: OSPM must re-invoke _OSC during S4 resume.

Table 6.14: OSPM USB Support Field

Bits Field Name Definition
31:0 Reserved

Table 6.15: OSPM USB Control Field

Bits Field Name Definition

0 USB Tunneling OSPM requests control of USB tunneling across USB4 connections via the
OSPM-native Connection Manager. Once OSPM receives control of this fea-
ture, it must not relinquish support to the platform.

1 DisplayPort Tunnel- | OSPM requests control of DisplayPort tunneling across USB4 connections via
ing the OSPM-native Connection Manager. Once OSPM receives control of this

feature, it must not relinquish support to the platform.
2 PCI Express Tun- | OSPM requests control of PCI Express tunneling across USB4 connections via
neling the OSPM-native Connection Manager. Once OSPM receives control of this

feature, it must not relinquish support to the platform.
3 Inter-domain USB4 | Inter-domain USB4 protocol: OSPM requests control of inter-domain USB4

connections via the OSPM-native Connection Manager. Once OSPM receives
control of this feature, it must not relinquish support to the platform.

31:4 Reserved

Return Value Information

Capabilities Buffer (Buffer): The platform acknowledges the Capabilities Buffer by returning a buffer of DWORDs of
the same length. Preserved bits in the Control Field convey control from the platform to OSPM, while masked/cleared
bits in the Control Field indicate that the platform does not permit OSPM control of the respective capability or feature.

6.2.12 _PRS (Possible Resource Settings)

This optional object evaluates to a byte stream that describes the possible resource settings for the device. When
describing a platform, specify a _PRS for all the configurable devices. Static (non-configurable) devices do not specify
a _PRS object. The information in this package is used by OSPM to select a conflict-free resource allocation without
user intervention. This method must not reference any operation regions that have not been declared available by a
_REG method.

The format of the data in a _PRS object follows the same format as the _CRS object (for more information, see Section
6.2.2).

If the device is disabled when _PRS is called, it must remain disabled.
Arguments:

None
Return Value:

A Buffer containing a Resource Descriptor byte stream

6.2. Device Configuration Objects 384

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.2.13 _PRT (PCI Routing Table)

PCI interrupts are inherently non-hierarchical. PCI interrupt pins are wired to interrupt inputs of the interrupt con-
trollers. The _PRT object provides a mapping from PCI interrupt pins to the interrupt inputs of the interrupt controllers.
The _PRT object is required under all PCI root bridges. _PRT evaluates to a package that contains a list of packages,
each of which describes the mapping of a PCI interrupt pin.

Arguments:
None
Return Value:

A Package containing variable-length list of PCI interrupt mapping packages, as described below

Note: The PCI function number in the Address field of the _PRT packages must be OxFFFF, indicating “any” function
number or “all functions”.

The _PRT mapping packages have the fields listed in the table below.

Table 6.16: Mapping Fields

Field Type Description

Address | DWORD The address of the device (uses the same format as _ ADR).

Pin Byte The PCI pin number of the device (0-INTA, 1-INTB, 2-INTC, 3-INTD).

Source NamePath Or | Name of the device that allocates the interrupt to which the above pin is connected.
Byte The name can be a fully qualified path, a relative path, or a simple name segment that

utilizes the namespace search rules. Note: This field is a NamePath and not a String
literal, meaning that it should not be surrounded by quotes. If this field is the integer
constant Zero (or a Byte value of 0), then the interrupt is allocated from the global
interrupt pool.

Source DWORD Index that indicates which resource descriptor in the resource template of the device
Index pointed to in the Source field this interrupt is allocated from. If the Source field is the
Byte value zero, then this field is the global system interrupt number to which the pin
is connected.

There are two ways that _PRT can be used. Typically, the interrupt input that a given PCI interrupt is on is configurable.
For example, a given PCI interrupt might be configured for either IRQ 10 or 11 on an 8259 interrupt controller. In this
model, each interrupt is represented in the ACPI namespace as a PCI Interrupt Link Device.

These objects have _PRS, _CRS, _SRS, and _DIS control methods to allocate the interrupt. Then, OSPM handles the
interrupts not as interrupt inputs on the interrupt controller, but as PCI interrupt pins. The driver looks up the device’s
pins in the _PRT to determine which device objects allocate the interrupts. To move the PCI interrupt to a different
interrupt input on the interrupt controller, OSPM uses _PRS, _CRS, _SRS, and _DIS control methods for the PCI
Interrupt Link Device.

In the second model, the PCI interrupts are hardwired to specific interrupt inputs on the interrupt controller and are not
configurable. In this case, the Source field in _PRT does not reference a device, but instead contains the value zero,
and the Source Index field contains the global system interrupt to which the PCI interrupt is hardwired.

6.2. Device Configuration Objects 385

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.2.13.1 Example: Using _PRT to Describe PCI IRQ Routing

The following example describes two PCI slots and a PCI video chip. Notice that the interrupts on the two PCI slots
are wired differently (barber-poled):

Scope (_SB) {
Device (LNKA) {
Name (_HID, EISAID ("PNPOCOF")) // PCI interrupt link
Name (_UID, 1)
Name (_PRS, ResourceTemplate () {
Interrupt (ResourceProducer, ...) {10,11} // IRQs 10,11
1)
Method (_DIS) {...}
Method (_CRS) {...}
Method (_SRS, 1) {...}
}
Device (LNKB) {
Name (_HID, EISAID ("PNPOCOF")) // PCI interrupt link
Name (_UID, 2)
Name (_PRS, ResourceTemplate () {
Interrupt (ResourceProducer, ...) {11,12} // IRQs 11,12
})
Method (_DIS) {...}
Method (_CRS) {...}
Method (_SRS, 1) {...}
}
Device (LNKC) {
Name (_HID, EISAID ("PNPOCOEF")) // PCI interrupt link
Name (_UID, 3)
Name (_PRS, ResourceTemplate () {
Interrupt (ResourceProducer,...) {12,14} // IRQs 12,14
})
Method (_DIS) {...}
Method (_CRS) {...}
Method (_SRS, 1) {...}
}
Device (LNKD) {
Name (_HID, EISAID ("PNPOCOF")) // PCI interrupt link
Name (_UID, 4)
Name (_PRS, ResourceTemplate () {
Interrupt (ResourceProducer, ...) {10,15} // IRQs 10,15
})
Method (_DIS) {...}
Method (_CRS) {...}
Method (_SRS, 1) {...}
}
Device (PCIO) {

Name (_PRT, Package{ // A fully qualified pathname can be used, or a
// osimple name segment utilizing the search rules.
Package{0x0004FFFF, 0, _SB_.LNKA, 0}, // Slot 1, INTA

Package{0x0004FFFF, 1, _SB_.LNKB, 0}, // Slot 1, INTB
Package{0x0004FFFF, 2, _SB_.LNKC, 0}, // Slot 1, INTC
Package{0x0004FFFF, 3, _SB_.LNKD, 0}, // Slot 1, INTD
Package{0x0005FFFF, 0, LNKB, 0}, // Slot 2, INTA
Package{0x0005FFFF, 1, LNKC, 0}, // Slot 2, INTB
Package{0x0005FFFF, 2, LNKD, 0}, // Slot 2, INTC
Package{0x0005FFFF, 3, LNKA, 0}, // Slot 2, INTD

(continues on next page)

6.2. Device Configuration Objects 386

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

Package{0x0006FFFF, 0, LNKC, 0} // Video, INTA
1)

6.2.14 _PXM (Proximity)

This optional object is used to describe proximity domain associations within a machine. _PXM evaluates to an integer
that identifies a device as belonging to a Proximity Domain defined in the System Resource Affinity Table (SRAT).
OSPM assumes that two devices in the same proximity domain are tightly coupled. OSPM could choose to optimize
its behavior based on this. For example, in a system with four processors and six memory devices, there might be
two separate proximity domains (0 and 1), each with two processors and three memory devices. In this case, the OS
may decide to run some software threads on the processors in proximity domain O and others on the processors in
proximity domain 1. Furthermore, for performance reasons, it could choose to allocate memory for those threads from
the memory devices inside the proximity domain common to the processor and the memory device rather than from a
memory device outside of the processor’s proximity domain.

Children of a device belong to the same proximity domain as their parent unless they contain an overriding _ PXM.
Proximity domains do not imply any ejection relationships.

OSPM shall make no assumptions about the proximity or nearness of different proximity domains. The difference
between two integers representing separate proximity domains does not imply distance between the proximity domains
(in other words, proximity domain 1 is not assumed to be closer to proximity domain 0 than proximity domain 6).

If the Local APIC ID / Local SAPIC ID / Local x2APIC ID or the GICC ACPI Processor UID of a dynamically added
processor is not present in the System Resource Affinity Table (SRAT), a _PXM object must exist for the processor’s
device or one of its ancestors in the ACPI Namespace. See Section 5.2.16 for more information.

Arguments:
None
Return Value:

An Integer (DWORD) containing a proximity domain identifier.

6.2.15 _SLI (System Locality Information)
The System Locality Information Table (SLIT) table defined in Generic Initiator Affinity Structure provides relative
distance information between all System Localities for use during OS initialization.

The value of each Entry[i,j] in the SLIT table, where i represents a row of a matrix and j represents a column of a
matrix, indicates the relative distances from System Locality / Proximity Domain i to every other System Locality j in
the system (including itself).

The i,j row and column values correlate to the value returned by the _PXM object in the ACPI namespace. See _ PXM
(Proximity) for more information.

Dynamic runtime reconfiguration of the system may cause the distance between System Localities to change.

_SLI is an optional object that enables the platform to provide the OS with updated relative System Locality distance
information at runtime. _SLI provide OSPM with an update of the relative distance from System Locality i to all other
System Localities in the system.

Arguments:

None

6.2. Device Configuration Objects 387

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Return Value:
A Buffer containing a system locality information table

If System Locality i >= N, where N is the number of System Localities, the _SLI method returns a buffer that contains
these relative distances:

’[(l/ O)l (lr 1)/ LN (lr l_l)/ (l/ l)r (OI l)/ (17 l)/ "'(i_ll l)r (ll l)]

If System Locality i < N, the _SLI method returns a buffer that contains these relative distances:

’[(l/ O)l (lr 1)/ LN (ll l)r "'!(il N_l)/ (O/ l)r (11 i)/---(ir l)/ ey (N_lr l)J

Note: (i, i) is always a value of 10.

Fig. 6.5: System Locality information Table

The System Locality information Table diagrams a 4-node system where the nodes are numbered 0 through 3 (Node
n = Node 3) and the granularity is at the node level for the NUMA distance information. In this example we assign
System Localities / Proximity Domain numbers equal to the node numbers (0-3). The NUMA relative distances
between proximity domains as implemented in this system are described in the matrix represented in Example Relative
Distances Between Proximity Domains. Proximity Domains are represented by the numbers in the top row and left
column. Distances are represented by the values in cells internal in the table from the domains.

Table 6.17: Example Relative Distances Between Proximity Domains

ProximityDomain 0 1 2 3
0 10 15 20 18
1 15 10 16 24
2 20 16 10 12
3 18 24 12 10

An example of these distances between proximity domains encoded in a System Locality Information Table for con-
sumption by OSPM at boot time is described in the table below.

Table 6.18: Example System Locality Information Table

Field Byte Byte Description
Length | Offset

Header

- Signature 4 0 ‘SLIT.
- Length 4 4 60

- Revision 1 8 1

continues on next page

6.2. Device Configuration Objects 388

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.18 — continued from previous page

Field Byte Byte Description
Length | Offset

- Checksum 1 9 Entire table must sum to zero.

- OEMID 6 10 OEM ID.

- OEM Table ID 8 16 For the System Locality Information Table, the table ID
is the manufacturer model ID.

- OEM Revision 4 24 OEM revision of System Locality Information Table for
supplied OEM Table ID.

- Creator ID 4 28 Vendor ID of utility that created the table. For the
DSDT, RSDT, SSDT, and PSDT tables, this is the ID
for the ASL Compiler.

4 32 Revision of utility that created the table. For the DSDT,
¢ Creator Revision RSDT, SSDT, and PSDT tables, this is the revision for
the ASL Compiler.

Number of System Localities 8 36 4

Entry[0][0] 1 44 10

Entry[0][1] 1 45 15

Entry[0][2] 1 46 20

Entry[0][3] 1 47 18

Entry[1][0] 1 48 15

Entry[1][1] 1 49 10

Entry[1][2] 1 50 16

Entry[1][3] 1 51 24

Entry[2][0] 1 52 20

Entry[2][1] 1 53 16

Entry[2][2] 1 54 10

Entry[2][3] 1 55 12

Entry[3][0] 1 56 18

Entry[3][1] 1 57 24

Entry[3][2] 1 58 12

Entry[3][3] 1 59 10

If a new “Node 4” is added, then the following table represents the updated system’s NUMA relative distances of
proximity domains.

Table 6.19: Example Relative Distances Between Proximity Domains

- 5 Node
Proximity Domain 0 1 2 3 4
0 10 15 20 18 17
1 15 10 16 24 21
2 20 16 10 12 14
3 18 24 12 10 23
4 17 21 14 23 10

The new node’s _SLI object would evaluate to a buffer containing [17,21,14,23,10,17,21,14,23,10].

Note: Some systems support interleave memory across the nodes. The SLIT representation of these systems is
implementation specific.

6.2. Device Configuration Objects 389

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.2.16 _SRS (Set Resource Settings)

This optional control method takes one byte stream argument that specifies a new resource allocation for a device.
The resource descriptors in the byte stream argument must be specified exactly as listed in the _CRS byte stream -
meaning that the identical resource descriptors must appear in the identical order, resulting in a buffer of exactly the
same length. Optimizations such as changing an IRQ descriptor to an IRQNoFlags descriptor (or vice-versa) must not
be performed. Similarly, changing StartDependentFn to StartDependentFnNoPri is not allowed. A _CRS object can
be used as a template to ensure that the descriptors are in the correct format. For more information, see the _CRS
object definition.

The settings must take effect before the _SRS control method returns.
This method must not reference any operation regions that have not been declared available by a _REG method.

If the device is disabled, _SRS enables the device at the specified resources. _SRS is not used to disable a device; use
the _DIS control method instead.

Arguments: (1)
Arg0 - A Buffer containing a Resource Descriptor byte stream
Return Value:

None

6.2.17 _CCA (Cache Coherency Attribute)

The _CCA object returns whether or not a bus-master device supports hardware managed cache coherency. Expected
values are 0 to indicate it is not supported, and 1 to indicate that it is supported. All other values are reserved.

On platforms for which existing default cache-coherency behavior of the OS is not adequate, _CCA enables the OS to
adapt to the differences. If used, _CCA must be included under all bus-master-capable devices defined as children of
_SB, to ensure that the operating system knows when it can rely on hardware managed cache coherency. The value
of _CCA is inherited by all descendants of these devices, so it need not be repeated for their children devices and will
be ignored by OSPM if it is provided there. This includes slave devices on a shared DMA controller; thus these DMA
controllers must also be defined in the namespace under the System Bus and include a _CCA object.

If a device indicates it does not have hardware cache coherency support, then OSPM must use a software cache flushing
algorithm to ensure stale or invalid data is not accessed from the caches.

__CCA objects are only relevant for devices that can access CPU-visible memory, such as devices that are DMA
capable. On ARM based systems, the _CCA object must be supplied all such devices. On Intel platforms, if the _CCA
object is not supplied, the OSPM will assume the devices are hardware cache coherent.

Arguments:
None
Return Value:

An Integer indicating the device’s support for hardware cache coherency:

0 - The device does not have hardware managed cache coherency
1 - The device has hardware managed cache coherency
Other Values - Reserved

Note: There are restrictions related to when this object is evaluated which have implications for implementing this
object as a control method. The _CCA method must only access Operation Regions that have been indicated to be
available as defined by the _REG method. The _REG method is described in _REG (Region).

6.2. Device Configuration Objects 390

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.2.17.1 _CCA Example ASL.:

Scope (_SB) {
Device (XHCI) {

Name (_CCA, ZERO) // Cache—incoherent bus-master, child of _SB

}
Device (PCIO) { // Root PCI Bus
Name (_CCA, ONE) // Cache-coherent bus-master, child of _SB

Device (PRTO) {
// Bus-master-capable, not a child of _SB
c. // Will inherit coherency from PCIO, no _CCA required
Device (NICO) {
// Bus-master-capable, not a child of _SB
// Will inherit coherency from PRTO, no _CCA required

bé;ice (SDHC) {

ﬁé%e (_CCA, ONE) // Cache-coherent bus-master-capable, child of _SB
}
bé;ice (GPIO) {

// Not bus-master-capable
// _CCA not valid

Device (DMAC) {
e // DMA controller; _CCA must be specified
Name (_CCA, ONE) // Cache coherent bus-master, child of _SB

Device (SPI1) {
Name (_CRS, ResourceTemplate ()

{
FixedDMA(...) // Sharing the DMA, thus inherits coherency from it

// _CCA not wvalid

6.2. Device Configuration Objects 391

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.2.18 _HMA(Heterogeneous Memory Attributes)

The Heterogeneous Memory Attributes Table (HMAT) defined in Heterogeneous Memory Attribute Table (HMAT)
provides Heterogeneous Memory Attributes. Dynamic runtime reconfiguration of the system may cause proximities
domains or memory attributes to change. If the “Reservation Hint” is set, new HMAT update shall not reset the
“Reservation Hint” unless the memory range is removed.

_HMA is an optional object that enables the platform to provide the OS with updated Heterogeneous Memory At-
tributes information at runtime. _HMA provides OSPM with the latest HMAT in entirety overriding existing HMAT.

Arguments:

None
Return Value:

A Buffer containing entire HMAT.
Example ASL for _HMA usage:

Scope (_SB) {
Device (Devl) {

}

Device (Dev2) {

}
Method (_HMA, 0) {
Return (HMAD)
}
} // end of _SB scope

6.3 Device Insertion, Removal, and Status Objects

The objects defined in this section provide mechanisms for handling dynamic insertion and removal of devices and for
determining device and notification processing status.

Device insertion and removal objects are also used for docking and undocking mobile platforms to and from a pe-
ripheral expansion dock. These objects give information about whether or not devices are present, which devices are
physically in the same device (independent of which bus the devices live on), and methods for controlling ejection or
interlock mechanisms.

The system is more stable when removable devices have a software-controlled, VCR-style ejection mechanism instead
of a “surprise-style” ejection mechanism. In this system, the eject button for a device does not immediately remove
the device, but simply signals the operating system. OSPM then shuts down the device, closes open files, unloads the
driver, and sends a command to the hardware to eject the device.

1. If the device is physically inserted while the system is in the working state (in other words, hot insertion), the
hardware generates a general-purpose event.

2. The control method servicing the event uses the Notify(device,0) command to inform OSPM of the bus that the
new device is on or the device object for the new device. If the Notify command points to the device object for
the new device, the control method must have changed the device’s status returned by _STA to indicate that the
device is now present. The performance of this process can be optimized by having the object of the Notify as
close as possible, in the namespace hierarchy, to where the new device resides. The Notify command can also
be used from the _WAK control method (see Section 7.4.5) to indicate device changes that may have occurred
while the system was sleeping. For more information about the Notify command, see Section 5.6.6.

6.3. Device Insertion, Removal, and Status Objects 392

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

3. OSPM uses the identification and configuration objects to identify, configure, and load a device driver for the
new device and any devices found below the device in the hierarchy.

4. If the device has a _LL.CK control method, OSPM may later run this control method to lock the device.

The new device referred to in step 2 need not be a single device, but could be a whole tree of devices. For example, it
could point to the PCI-PCI bridge docking connector. OSPM will then load and configure all devices it found below
that bridge. The control method can also point to several different devices in the hierarchy if the new devices do not
all live under the same bus. (in other words, more than one bus goes through the connector).

For removing devices, ACPI supports both hot removal (system is in the SO state), and warm removal (system is in a
sleep state: S1-S4). This is done using the _EJx control methods. Devices that can be ejected include an _EJx control
method for each sleeping state the device supports (a maximum of 2 _EJx objects can be listed). For example, hot
removal devices would supply an _EJO; warm removal devices would use one of _EJ1-EJ4. These control methods
are used to signal the hardware when an eject is to occur.

The sequence of events for dynamically removing a device goes as follows:

1. The eject button is pressed and generates a general-purpose event. (If the system was in a sleeping state, it
should wake the system).

2. The control method for the event uses the Notify(device, 3) command to inform OSPM which specific device
the user has requested to eject. Notify does not need to be called for every device that may be ejected, but for
the top-level device. Any child devices in the hierarchy or any ejection-dependent devices on this device (as
described by _EJD, below) are automatically removed.

3. The OS shuts down and unloads devices that will be removed.
4. If the device has a _LCK control method, OSPM runs this control method to unlock the device.

5. The OS looks to see what _EJx control methods are present for the device. If the removal event will cause the
system to switch to battery power (in other words, an undock) and the battery is low, dead, or not present, OSPM
uses the lowest supported sleep state _EJx listed; otherwise it uses the highest state _EJx. Having made this
decision, OSPM runs the appropriate _EJx control method to prepare the hardware for eject.

6. Warm removal requires that the system be put in a sleep state. If the removal will be a warm removal, OSPM
puts the system in the appropriate Sx state. If the removal will be a hot removal, OSPM skips to step 8, below.

7. For warm removal, the system is put in a sleep state. Hardware then uses any motors, and so on, to eject the
device. Immediately after ejection, the hardware transitions the system to SO. If the system was sleeping when
the eject notification came in, the OS returns the system to a sleeping state consistent with the user’s wake
settings.

8. OSPM calls _STA to determine if the eject successfully occurred. (In this case, control methods do not need to
use the Notify(device,3) command to tell OSPM of the change in _STA) If there were any mechanical failures,
_STA returns 3: device present and not functioning, and OSPM informs the user of the problem.

Note: This mechanism is the same for removing a single device and for removing several devices, as in an undock.

ACPI does not disallow surprise-style removal of devices; however, this type of removal is not recommended because
system and data integrity cannot be guaranteed when a surprise-style removal occurs. Because the OS is not informed,
its device drivers cannot save data buffers and it cannot stop accesses to the device before the device is removed. To
handle surprise-style removal, a general-purpose event must be raised. Its associated control method must use the
Notify command to indicate which bus the device was removed from.

The device insertion and removal objects are listed in the table below.

6.3. Device Insertion, Removal, and Status Objects 393

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.20: Device Insertion, Removal, and Status Objects

Object Description

_EDL Object that evaluates to a package of namespace references of device objects that depend on the
device containing _EDL.

_EID Object that evaluates to the name of a device object on which a device depends. Whenever the
named device is ejected, the dependent device must receive an ejection notification.

_EJx Control method that ejects a device.

_LCK Control method that locks or unlocks a device.

_OST Control method invoked by OSPM to convey processing status to the platform.

_RMV Object that indicates that the given device is removable.

_STA Control method that returns a device’s status.

6.3.1 _EDL (Eject Device List)

This object evaluates to a package of namespace references containing the names of device objects that depend on the
device under which the _EDL object is declared. This is primarily used to support docking stations. Before the device
under which the _EDL object is declared may be ejected, OSPM prepares the devices listed in the _EDL object for
physical removal.

Arguments:
None
Return Value:
A variable-length Package containing a list of namespace references

Before OSPM ejects a device via the device’s _EJx methods, all dependent devices listed in the package returned by
_EDL are prepared for removal. Notice that _EJx methods under the dependent devices are not executed.

When describing a platform that includes a docking station, an _EDL object is declared under the docking station
device. For example, if a mobile system can attach to two different types of docking stations, _EDL is declared under
both docking station devices and evaluates to the packaged list of devices that must be ejected when the system is
ejected from the docking station.

An ACPI-compliant OS evaluates the _EDL method just prior to ejecting the device.

6.3.2 _EJD (Ejection Dependent Device)

This object is used to specify the name of a device on which the device, under which this object is declared, is
dependent. This object is primarily used to support docking stations. Before the device indicated by _EJD is ejected,
OSPM will prepare the dependent device (in other words, the device under which this object is declared) for removal.

Arguments:
None
Return Value:
A String containing the device name

_EJD is evaluated once when the ACPI table loads. The EJx methods of the device indicated by _EJD will be used to
eject all the dependent devices. A device’s dependents will be ejected when the device itself is ejected.

Note: OSPM will not execute a dependent device’s _EJx methods when the device indicated by _EJD is ejected.

6.3. Device Insertion, Removal, and Status Objects 394

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

When describing a platform that includes a docking station, usually more than one _EJD object will be needed. For
example, if a dock attaches both a PCI device and an ACPI-configured device to a mobile system, then both the PCI
device description package and the ACPI-configured device description package must include an _EJD object that
evaluates to the name of the docking station (the name specified in an _ADR or _HID object in the docking station’s
description package). Thus, when the docking connector signals an eject request, OSPM first attempts to disable and
unload the drivers for both the PCI and ACPI configured devices.

Note: An ACPI 1.0 OS evaluates the _EJD methods only once during the table load process. This greatly re-
stricts a table designer’s freedom to describe dynamic dependencies such as those created in scenarios with multiple
docking stations. This restriction is illustrated in the example below; the _EJD information supplied via and ACPI
1.0-compatible namespace omits the IDE2 device from DOCK2’s list of ejection dependencies. Starting in ACPI 2.0,
OSPM is presented with a more in-depth view of the ejection dependencies in a system by use of the _EDL methods.

Example

An example use of _EJD and _EDL is as follows:

Scope (_SB.PCIO) {

Device (DOCK1) { // Pass through dock - DOCK1
Name (_ADR, L)
Method (_EJO, 0) {...}
Method (_DCK, 1) {...}

Name (_BDN, L)

Method (_STA, 0) {O0OxF}

Name (_EDL, Package() { // DOCKl has two dependent devices - IDE2 and CB2
_SB.PCI0.IDEZ2,

_SB.PCI0.CB2})

}

Device (DOCK2) { // Pass through dock - DOCK2
Name (_ADR, ...)
Method (_EJO, 0) {...}
Method (_DCK, 1) {...}

Name (_BDN, L)
Method (_STA, 0) {0x0}
Name (_EDL, Package() { // DOCK2 has one dependent device — IDE2
_SB.PCIO.IDE2})
}

Device (IDE1) { // IDE Drivel not dependent on the dock
Name (_ADR, ...)
}
Device (IDE2) { // IDE Drive?2
Name (_ADR, ...)
Name (_EJD, "_SB.PCI0O.DOCK1") // Dependent on DOCK1
}
Device (CB2) { // CardBus Controller
Name (_ADR, ...)
Name (_EJD, "_SB.PCI0.DOCK1") // Dependent on DOCK1
}
} // end _SB.PCIO

6.3. Device Insertion, Removal, and Status Objects 395

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.3.3 _EJx (Eject)

These control methods are optional and are supplied for devices that support a software-controlled VCR-style ejection
mechanism or that require an action be performed such as isolation of power/data lines before the device can be
removed from the system. To support warm (system is in a sleep state) and hot (system is in SO) removal, an _EJx
control method is listed for each sleep state from which the device supports removal, where x is the sleeping state
supported. For example, _EJO indicates the device supports hot removal; _EJ1-EJ4 indicate the device supports warm
removal.

Arguments: (1)
Arg0 - An Integer containing a device ejection control
0 - Cancel a mark for ejection request (EJO will never be called with this value)
1 - Hot eject or mark for ejection
Return Value:
None

For hot removal, the device must be immediately ejected when OSPM calls the _EJO control method. The _EJO control
method does not return until ejection is complete. After calling _EJO, OSPM verifies the device no longer exists to
determine if the eject succeeded. For _HID devices, OSPM evaluates the _STA method. For _ADR devices, OSPM
checks with the bus driver for that device.

For warm removal, the _EJ1-_EJ4 control methods do not cause the device to be immediately ejected. Instead, they
set proprietary registers to prepare the hardware to eject when the system goes into the given sleep state. The hardware
ejects the device only after OSPM has put the system in a sleep state by writing to the SLP_EN register. After the
system resumes, OSPM calls _STA to determine if the eject succeeded.

A device object may have multiple _EJx control methods. First, it lists an EJx control method for the preferred sleeping
state to eject the device. Optionally, the device may list an EJ4 control method to be used when the system has no
power (for example, no battery) after the eject. For example, a hot-docking notebook might list _EJO and _EJ4.

6.3.4 _LCK (Lock)

This control method is optional and is required only for a device that supports a software-controlled locking mech-
anism. When the OS invokes this control method, the associated device is to be locked or unlocked based upon the
value of the argument that is passed. On a lock request, the control method must not complete until the device is
completely locked.

Arguments:
Arg0 - An Integer containing a device lock control
0 - Unlock the device
1 - Lock the device
Return Value:
None

When describing a platform, devices use either a _LCK control method or an _EJx control method for a device.

6.3. Device Insertion, Removal, and Status Objects 396

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.3.5 _OST (OSPM Status Indication)

This object is an optional control method that is invoked by OSPM to indicate processing status to the platform.
During device ejection, device hot add, Error Disconnect Recover, or other event processing, OSPM may need to
perform specific handshaking with the platform. OSPM may also need to indicate to the platform its inability to
complete a requested operation; for example, when a user presses an ejection button for a device that is currently
in use or is otherwise currently incapable of being ejected. In this case, the processing of the ACPI Eject Request
notification by OSPM fails. OSPM may indicate this failure to the platform through the invocation of the _OST control
method. As a result of the status notification indicating ejection failure, the platform may take certain action including
reissuing the notification or perhaps turning on an appropriate indicator light to signal the failure to the user.

Arguments: (3)
Arg0 - An Integer containing the source event
Argl - An Integer containing the status code
Arg2 - A Buffer containing status information
Return Value:
None
Argument Information:
Arg0 - source_event: DWordConst

If the value of source_event is <= OxFF, this argument is the ACPI notification value whose processing generated the
status indication. This is the value that was passed into the Notify operator.

If the value of source_event is 0x100 or greater then the OSPM status indication is a result of an OSPM action as
indicated in OST Source Event Codes. For example, a value of 0x103 will be passed into _OST for this argument upon
the failure of a user interface invoked device ejection.

If OSPM is unable to identify the originating notification value, OSPM invokes _OST with a value that contains all
bits set (ones) for this parameter.

Argl — Status Code: DWordConst. OSPM indicates a notification value specific status. See Table 6.22, Table 6.23,
and Table 6.25 for status code descriptions.

Arg2 - A buffer containing detailed OSPM-specific information about the status indication. This argument may be
null.

Table 6.21: OST Source Event Codes

Source Description

Event Code

0-OxFF Reserved for Notification Values

0x100 Operation System Shutdown Processing
0x101-0x102 | Reserved

0x103 Ejection Processing

0x104-0x1FF | Reserved

0x200 Insertion Processing

0x201- Reserved

OxFFFFFFFF

6.3. Device Insertion, Removal, and Status Objects 397

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.22: General Processing Status Codes

Status Code | Description

0 Success

1 Non-specific failure

2 Unrecognized Notify Code

3-0x7F Reserved

0x80- Notification value specific status codes

OxFFFFFFFF
Table 6.23: Operating System Shutdown Processing (Source Events :
0x100) Status Codes

Status Code | Description

0x80 OS Shutdown Request denied

0x81 OS Shutdown in progress

0x82 OS Shutdown completed

0x83 OS Graceful Shutdown not supported

0x84- Reserved

OxFFFFFFFF

6.3.5.1 Processing Sequence for Graceful Shutdown Request:

Following receipt of the Graceful Shutdown Request (see Table 5.155, value 0x81), the OS will be responsible for
responding with one of the following status codes:

¢ 0x80 (OS Shutdown Request denied) - This value will be sent if the OS is not capable of performing a graceful
shutdown.

* 0x81 (OS Shutdown in progress) - The OS has initiated the graceful shutdown procedure.
* 0x83 (OS Graceful Shutdown not supported) - The OS does not support the Graceful Shutdown Request.

If the OS does initiate a graceful shutdown it should continue to generate the “OS Shutdown in progress” message
(_OST source event 0x100 status code 0x81) every 10 seconds. This functions as a heartbeat so that the service which
requested the graceful shutdown knows that the request is currently being processed. The platform should assume that
the OS shutdown is not proceeding if it does not receive the “OS Shutdown in progress” message for 60 seconds.

When the graceful shutdown procedure has completed the OSPM will send the “OS Shutdown completed” message
and then transition the platform to the G2 “soft-off” power state.

Table 6.24: Ejection Request / Ejection Processing (Source Events:
0x03 and 0x103) Status Codes

Status Code | Description

0x80 Device ejection not supported by OSPM

0x81 Device in use by application

0x82 Device Busy

0x83 Ejection dependency is busy or not supported for ejection by OSPM
0x84 Ejection is in progress (pending)

0x85- Reserved

OxFFFFFFFF

6.3. Device Insertion, Removal, and Status Objects 398

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.25: Insertion Processing (Source Event: 0x200) Status Codes

Status Code | Description

0x80 Device insertion in progress (pending)

0x81 Device driver load failure

0x82 Device insertion not supported by OSPM

0x83-0x8F Reserved

0x90-0x9F Insertion failure - Resources Unavailable as described by the following bit encodings: Bit [3] Bus
or Segment Numbers Bit [2] Interrupts Bit [1] I/O Bit [0] Memory

0xAO0- Reserved

OxFFFFFFFF

It is possible for the platform to issue multiple notifications to OSPM and for OSPM to process the notifications
asynchronously. As such, OSPM may invoke _OST for notifications independent of the order the notification are
conveyed by the platform or by software to OSPM.

6.3. Device Insertion, Removal, and Status Objects 399

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

The figure below provides and example event flow of device ejection on a platform employing the _OST object.

Fig. 6.6: Device Ejection Flow Example Using _OST

Note: To maintain compatibility with OSPM implementations of previous revisions of the ACPI specification, the
platform must not rely on OSPM’s evaluation of the _OST object for proper platform operation.

6.3. Device Insertion, Removal, and Status Objects 400

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Example ASL for _OST usage:

External (_SB.PCI4,
Scope (_SB.PCI4) {
OperationRegion (LED1,

DeviceObij)

SystemIO,

0x10cCO,

0x20)

Field(LED1l, AnyAcc, NoLock, Preserve)

{ // LED controls
SOLE, 1, // Slot 0 Ejection Progress LED
SOLF, 1, // Slot 0 Ejection Failure LED
S1LE, 1, // Slot 1 Ejection Progress LED
S1LF, 1, // Slot 1 Ejection Failure LED
S2LE, 1, // Slot 2 Ejection Progress LED
S2LF, 1, // Slot 2 Ejection Failure LED
S3LE, 1, // Slot 3 Ejection Progress LED
S3LF, 1 // Slot 3 Ejection Failure LED

}

Device (SLT3) { // hot plug device
Name (_ADR, 0x000C0003)
Method (_OST, 3, Serialized) { // 0OS calls _OST with notify code 3 or 0x103

//

//

//

//

//
If (LEqual (Arg0,Ones)) //
{

//

and status codes 0x80-0x83

to indicate a hot remove request failure.
to indicate a hot remove request failure.
Status code 0x84 indicates an ejection
request pending.

Unspecified event

Perform generic event processing here

}
Switch (And (Arg0, OXFF))
{

1/

Mask to retain low byte

Case (0x03) //

{

Ejection request

Switch (Argl)
{
Case (Package () {0x80, 0x81, 0x82, 0x83})
{ // Ejection Failure for some reason
Store (Zero, ~"S3LE) // Turn off Ejection Progress LED
Store (One, "~"S3LF) // Turn on Ejection Failure LED
}

Case (0x84) // Eject request pending
{
Store (One, "~"S3LE) // Turn on Ejection Request LED
Store (Zero, "~"S3LF) // Turn off Ejection Failure LED
}
}
}
}
} // end _OST
Method (_EJO, 1) // Successful ejection sequence

{

Store (Zero, "~"S3LE) // Turn off Ejection Progress LED
}
} // end SLT3
} // end scope _SB.PCI4

Scope (_GPE)
{
Method (_E13)

{

(continues on next page)

6.3. Device Insertion, Removal, and Status Objects 401

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

(continued from previous page)

Store (One, _SB.PCI4.S3LE) // Turn on ejection request LED
Notify (_SB.PCI4.SLT3, 3) // Ejection request driven from GPE13

6.3.5.2 Processing Sequence for Error Disconnect Recover

If the OS attempts recovery operation following the receipt of the Error Disconnect Recover Request (see /PMI Status
Codes , value 0xOF) the OS will be responsible for invoking _OST with one of the following status codes in the lower
word of Argl:

* 0x80 (Success) -This value will be sent if the OS successfully recovers all the child devices affected by Error
Disconnect Recover, reconfigures then and brings them back to functional state. All child devices are accessible
at the time _OST is evaluated.

* 0x81 (Not recovered) - The OS did not successfully recover one or more child devices that were affected by
Error Disconnect Recover. Access to the child devices affected by Error Disconnect Recover may be unreliable.

The upper word of Argl can be used to communicate bus-specific status information.

6.3.6 _RMV (Remove)

The optional _RMV object indicates to OSPM whether the device can be removed while the system is in the working
state and does not require any ACPI system firmware actions to be performed for the device to be safely removed from
the system (in other words, any device that only supports surprise-style removal). Any such removable device that
does not have _LLCK or _EJx control methods must have an _RMYV object. This allows OSPM to indicate to the user
that the device can be removed and to provide a way for shutting down the device before removing it. OSPM will
transition the device into D3 before telling the user it is safe to remove the device.

This method is reevaluated after a device-check notification.
Arguments:

None
Return Value:

An Integer containing the device removal status:

0 - The device cannot be removed
1 - The device can be removed

Note: Operating Systems implementing ACPI 1.0 interpret the presence of this object to mean that the device is
removable.

6.3. Device Insertion, Removal, and Status Objects 402

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.3.7 _STA (Device Status)

This object returns the current status of a device, which can be one of the following: enabled, disabled, or removed.

OSPM evaluates the _STA object before it evaluates a device _INI method. The return values of the Present and Func-
tioning bits determines whether _INI should be evaluated and whether children of the device should be enumerated
and initialized. See _INI (Init) .

If a device object describes a device that is not on an enumerable bus and the device object does not have an _STA
object, then OSPM assumes that the device is present, enabled, shown in the Ul, and functioning.

This method must not reference any operation regions that have not been declared available by a _REG method.
Arguments:

None
Return Value:

An Integer containing a device status bitmap:

e Bit [0] - Set if the device is present.

Bit [1] - Set if the device is enabled and decoding its resources.

Bit [2] - Set if the device should be shown in the UI.

L]

Bit [3] - Set if the device is functioning properly (cleared if device failed its diagnostics).

Bit [4] - Set if the battery is present.
¢ Bits [31:5] - Reserved (must be cleared).
Return Value Information
If bit [0] is cleared, then bit 1 must also be cleared (in other words, a device that is not present cannot be enabled).

A device can only decode its hardware resources if both bits 0 and 1 are set. If the device is not present (bit [0] cleared)
or not enabled (bit [1] cleared), then the device must not decode its resources.

If a device is present in the machine, but should not be displayed in OSPM user interface, bit 2 is cleared. For example,
a notebook could have joystick hardware (thus it is present and decoding its resources), but the connector for plugging
in the joystick requires a port replicator. If the port replicator is not plugged in, the joystick should not appear in the
Ul, so bit [2] is cleared.

_STA may return bit O clear (not present) with bit [3] set (device is functional). This case is used to indicate a valid
device for which no device driver should be loaded (for example, a bridge device.) Children of this device may be
present and valid. OSPM should continue enumeration below a device whose _STA returns this bit combination.

Bit [4] of _STA applies only to the Control Method Battery Device (PNPOCOA). For all other devices, OSPM must
ignore this bit.

If a device object (including the processor object) does not have an _STA object, then OSPM assumes that all of the
above bits are set (i.e., the device is present, enabled, shown in the UI, and functioning).

6.3. Device Insertion, Removal, and Status Objects 403

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

6.4 Resource Data Types for ACPI

The _CRS, _PRS, and _SRS control methods use packages of resource descriptors to describe the resource require-
ments of devices.

6.4.1 ASL Macros for Resource Descriptors

ASL includes some macros for creating resource descriptors. The ASL syntax for these macros is defined in ASL
Operator Reference, along with the other ASL operators.

6.4.2 Small Resource Data Type

A small resource data type may be 2 to 8 bytes in size and adheres to the following format:

Table 6.26: Small Resource Data Type Tag Bit Definitions

Offset Field Description

Byte O Tag Bit [7]: Type-0 (Small item) Il Tag Bits [6:3]: Small item name Il Tag Bits [2:0]: Length- n
bytes

Bytes 1 ton Data bytes (Length O - 7)

The following small information items are currently defined for Plug and Play devices:

Table 6.27: Small Resource Items

Small ltem Name Value
Reserved 0x00-0x03
IRQ Format Descriptor 0x04
DMA Format Descriptor 0x05

Start Dependent Functions Descriptor 0x06

End Dependent Functions Descriptor 0x07

I/O Port Descriptor 0x08
Fixed Location I/O Port Descriptor 0x09
Fixed DMA Descriptor 0x0A
Reserved 0x0B-0x0D
Vendor Defined Descriptor 0x0E

End Tag Descriptor 0xOF

6.4.2.1 IRQ Descriptor

Type 0, Small Item Name 0x4, Length =2 or 3

The IRQ data structure indicates that the device uses an interrupt level and supplies a mask with bits set indicating the
levels implemented in this device. For standard PC-AT implementation there are 15 possible interrupts so a two-byte
field is used. This structure is repeated for each separate interrupt required.

Table 6.28: IRQ Descriptor Definition

Offset Field Name
Byte O Value = 0x22 or 0x23 (0010001nB) - Type = 0, Small item name = 0x4, Length =2 or 3
Byte 1 IRQ mask bits[7:0], _INT Bit [0] represents IRQO, bit[1] is IRQ1, and so on.

continues on next page

6.4. Resource Data Types for ACPI 404

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.28 — continued from previous page

Offset Field Name
Byte 2 IRQ mask bits[15:8], _INT Bit [0] represents IRQS, bit[1] is IRQ9, and so on.
Byte 3

IRQ Information. Each bit, when set, indicates this device is capable of driving a certain type of
interrupt. (Optional—-if not included then assume edge sensitive, high true interrupts.) These bits
can be used both for reporting and setting IRQ resources. Note: This descriptor is meant for
describing interrupts that are connected to PIC-compatible interrupt controllers, which can only
be programmed for Active-High-Edge-Triggered or Active-Low-Level-Triggered interrupts.
Any other combination is invalid. The Extended Interrupt Descriptor can be used to describe
other combinations:
Bit [7:6] Reserved (must be 0)
Bit [5] Wake Capability, _WKC
0x0 = Not Wake Capable: This interrupt is not capable of waking the system.
0x1 = Wake Capable: This interrupt is capable of waking the system from a low-power
idle state or a system sleep state.
Bit [4] Interrupt Sharing, _SHR
0x0 = Exclusive: This interrupt is not shared with other devices.
0x1 = Shared: This interrupt is shared with other devices.
Bit [3] Interrupt Polarity, LL
0 Active-High - This interrupt is sampled when the signal is high, or true
1 Active-Low - This interrupt is sampled when the signal is low, or false.
Bit [2:1] Ignored
Bit [0] Interrupt Mode, _HE
0 Level-Triggered - Interrupt is triggered in response to signal in a low state.
1 Edge-Triggered - Interrupt is triggered in response to a change in signal state from low
to high.

Note: Low true, level sensitive interrupts may be electrically shared, but the process of how this might work is beyond
the scope of this specification.

Note: If byte 3 is not included, High true, edge sensitive, non-shareable is assumed.

See IRQ (Interrupt Resource Descriptor Macro) for a description of the ASL macros that create an IRQ descriptor.

6.4.2.2 DMA Descriptor

Type 0, Small Item Name 0x5, Length = 2

The DMA data structure indicates that the device uses a DMA channel and supplies a mask with bits set indicating the
channels actually implemented in this device. This structure is repeated for each separate channel required.

Table 6.29: DMA Descriptor Definition

Offset Field Name
Byte O Value = 0x2A (00101010B) - Type = 0, Small item name = 0x5, Length =2
Byte 1 DMA channel mask bits [7:0] (channels O - 7), _DMA - Bit [0] is channel 0, etc.

continues on next page

6.4. Resource Data Types for ACPI 405

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.29 — continued from previous page

Offset Field Name
Byte 2

Bit [7] Reserved (must be 0)
Bits [6:5] DMA channel speed supported, _TYP:
00 Indicates compatibility mode
01 Indicates Type A DMA as described in the EISA
10 Indicates Type B DMA
11 Indicates Type F
Bits [4:3] Ignored
Bit [2] Logical device bus master status, _BM:
0 Logical device is not a bus master
1 Logical device is a bus master
Bits [1:0] DMA transfer type preference, _SIZ:
00 8-bit only
01 8- and 16-bit
10 16-bit only
11 Reserved

See DMA (DMA Resource Descriptor Macro) for a description of the ASL macro that creates a DMA descriptor.

6.4.2.3 Start Dependent Functions Descriptor

Type 0, Small Item Name 0x6, Length = 0 or 1

Each logical device requires a set of resources. This set of resources may have interdependencies that need to be
expressed to allow arbitration software to make resource allocation decisions about the logical device. Dependent
functions are used to express these interdependencies. The data structure definitions for dependent functions are
shown here. For a detailed description of the use of dependent functions refer to the next section.

Table 6.30: Start Dependent Functions Descriptor Definition

Offset Field Name
Byte 0

Value = 0x30 or 0x31 (0011000nB)
Type = 0, small item name = 0x6
Length=0o0r1

Start Dependent Function fields may be of length O or 1 bytes. The extra byte is optionally used to denote the
compatibility or performance/robustness priority for the resource group following the Start DF tag. The compatibility
priority is a ranking of configurations for compatibility with legacy operating systems. This is the same as the priority
used in the PNPBIOS interface. For example, for compatibility reasons, the preferred configuration for COM1 is IRQ4,
I/0 3F8-3FF. The performance/robustness performance is a ranking of configurations for performance and robustness
reasons. For example, a device may have a high-performance, bus mastering configuration that may not be supported
by legacy operating systems. The bus-mastering configuration would have the highest performance/robustness priority
while its polled I/O mode might have the highest compatibility priority.

If the Priority byte is not included, this indicates the dependent function priority is ‘acceptable’. This byte is defined
as:

6.4. Resource Data Types for ACPI 406

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4

Table 6.31: Start Dependent Function Priority Byte Definition

Bits Definition
1:0

Compatibility priority. Acceptable values are:
0 Good configuration: Highest Priority and preferred configuration
1 Acceptable configuration: Lower Priority but acceptable configuration
2 Sub-optimal configuration: Functional configuration but not optimal

3 Reserved
3:2
Performance/robustness. Acceptable values are:
0 Good configuration: Highest Priority and preferred configuration
1 Acceptable configuration: Lower Priority but acceptable configuration
2 Sub-optimal configuration: Functional configuration but not optimal
3 Reserved
7:4 Reserved (must be 0)

Notice that if multiple Dependent Functions have the same priority, they are further prioritized by the order in which
they appear in the resource data structure. The Dependent Function that appears earliest (nearest the beginning) in the
structure has the highest priority, and so on.

See StartDependentFn (Start Dependent Function Resource Descriptor Macro) for a description of the ASL macro
that creates a Start Dependent Function descriptor.

6.4.2.4 End Dependent Functions Descriptor

Type 0, Small Item Name 0x7, Length = 0

Only one End Dependent Function item is allowed per logical device. This enforces the fact that Dependent Functions
cannot be nested.

Table 6.32: End Dependent Functions Descriptor Definition

Offset | Field Name
Byte 0 | Value = 0x38 (00111000B) - Type = 0, Small item name = 0x7, Length =0

See EndDependentFn (End Dependent Function Resource Descriptor Macro) for a description of the ASL macro that
creates an End Dependent Functions descriptor.

6.4.2.5 1/0 Port Descriptor

Type 0, Small Item Name 0x8, Length = 7

There are two types of descriptors for I/O ranges. The first descriptor is a full function descriptor for programma